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Transforming growth factor-β (TGF-β) suppresses innate and adaptive immune responses

via multiple mechanisms. TGF-β also importantly contributes to the formation of an

immunosuppressive tumormicroenvironment thereby promoting tumor growth. Amongst

others, TGF-β impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D

is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells

and cytotoxic T cells, and stimulates their effector functions upon engagement by

NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their

expression is induced by cellular stress and malignant transformation, and, accordingly,

frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play

a decisive role in cancer immunosurveillance and, obviously, often is compromised in

clinically apparent tumors. There is mounting evidence that TGF-β, produced by tumor

cells and immune cells in the tumor microenvironment, plays a key role in blunting

the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on

the impairment of NKG2D-mediated cancer immunity through TGF-β and discuss

therapeutic approaches aiming at counteracting this major immune escape pathway. By

reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes

through down-regulation of NKG2D, TGF-β is acting upon both sides of the NKG2D axis

severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies

targeting the TGF-β pathway are expected to reinvigorate NKG2D-mediated tumor

elimination and thereby to improve the survival of cancer patients.
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INTRODUCTION

Transforming growth factor-β (TGF-β) is a potent suppressor of immune responses affecting
many subsets of immune cells in various ways (1). For example, TGF-β impairs MHC class II
expression (2, 3), thus potentially impairing priming of CD4T cells, and suppresses the activity
of cytotoxic lymphocytes by inhibiting the differentiation, proliferation, and effector functions
of CD8T cells and NK cells (1, 4). TGF-β also promotes the differentiation of suppressive
immune cells subsets (5–7). In physiological settings, the TGF-β-mediated immune suppression
is crucial for the establishment of immune tolerance and prevention of chronic inflammation,
e.g., in the gastrointestinal tract (4, 8, 9), but in malignant disease TGF-β promotes immune
escape, tumor progression and metastasis (4, 10–13). Importantly, there is emerging evidence
that TGF-β also impairs immunorecognition of tumor cells by NK cells and cytotoxic T cells
through down-regulation of activating immunoreceptors such as NKG2D. NKG2D ligation by
stress-induced MHC class I-like glycoproteins on tumor cells transmits a potent stimulatory signal
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into cytotoxic lymphocytes and therefore promotes
immunosurveillance of malignant cells (14, 15). Hence,
evasion from NKG2D-mediated recognition is thought to
represent a major mechanism allowing tumors to escape from
tumor immunity. In this review, we specifically focus on the
TGF-β-mediated impairment of immunorecognition through
the NKG2D axis and its implications for tumor immunity and
cancer therapies. The function and biology of TGF-β as well as of
NKG2D will be summarized only briefly as both have extensively
been reviewed elsewhere (4, 10, 16–18).

TGF-β: EXPRESSION, RECEPTORS, AND
SIGNALING

The three members of the human TGF-β family, TGF-β1,−2,
and−3 are synthesized as precursor proteins containing an N-
terminal latency-associated peptide (LAP) (∼280–300 amino
acids) followed by a shorter C-terminal polypeptide (112–114
amino acids) which represents the biologically active mature
cytokine (19, 20). During the intracellular processing of this
precursor protein, LAP is cleaved but remains associated
with the TGF-β dimer forming an inactive latency complex
that is sequestered into the extracellular matrix. Activation
of TGF-β requires release from this latency complex (21). In
addition, TGF-β can be present on the surface of regulatory
T cells (Tregs), endothelial cells, platelets, macrophages and
microglia in a membrane-associated form (22, 23). Mature TGF-
β homodimers bind, with or without the assistance of the
accessory receptor betaglycan (BG, also called TGF-β receptor
III), first to homodimers of the TGF-β receptor II (TGF-βRII)
which then phosphorylate TGF-β receptor I homodimers (TGF-
βRI, ALK5) under formation of a hexameric complex of TGF-β,
TGF-βRII, and TGF-βRI homodimers. Subsequently, TGF-βRI
phosphorylates the cytoplasmic SMAD2 and SMAD3 proteins,
which then, under association with SMAD4, transmigrate into
the nucleus and exert transcriptional activity (4, 16). TGF-β
receptors are expressed on virtually all immune cells. Of note,
TGF-βRII expression was shown to decline in the course of
mouse NK cell maturation (24).

TGF-β-MEDIATED IMMUNOSUPPRESSION

TGF-β1 is the predominant TGF-β family member expressed
by immune cells and suppresses innate and adaptive immune
responses at multiple levels (4, 25). Amongst others, TGF-β has
a prominent role in dampening T and NK cell responses: TGF-
β impairs T cell proliferation and effector functions through
down-regulation of IL-2 during T cell priming (26) and has
been shown to induce cell cycle arrest and apoptosis of T
cells (27–29). TGF-β directly inhibits the cytotoxic functions
of CD8T cells (30) and the differentiation of both Th1 and
Th2 subsets by downregulation of their key transcription factors
(31–35). Further, TGF-β downregulates the expression of MHC
class II molecules via affecting CIITA expression (2, 3) thus
impairing the capacity of antigen presenting cells (APC) for
antigen presentation and CD4T cell priming. TGF-β also inhibits

the expansion, cytotoxicity, and cytokine production by NK
cells (36–39). More recently, TGF-β was shown to block the
IL-15-induced metabolic activity and proliferation of NK cells
by inhibiting mTOR activity (24). In addition, TGF-β promotes
conversion of NK cells into non-cytotoxic ILC1 in the tumor
microenvironment (TME) thereby blunting tumor killing (40).
TGF-β further promotes differentiation of Tregs (5, 6) and
of myeloid derived suppressor cells (MDSC) (7). An eminent
importance of TGF-β in affecting cancer immunosurveillance
and efficacy of checkpoint blockade cancer therapy was recently
highlighted by a series of studies on human cancer patients
and of mouse tumor models: TGF-β produced by the TME
was shown to restrict tumor infiltration by T cells and other
cytotoxic lymphocytes and to block the acquisition of a Th1
effector phenotype (41–43). Inhibition of TGF-β activity not
only facilitated T cell infiltration into central sites of the tumor,
but also unleashed vigorous and efficient anti-tumor immunity,
particularly in the course of checkpoint blockade (41–43). On
the other hand, immunosuppression by TGF-β plays a central
physiologic role in the establishment of immune tolerance and
control of inflammation. Germline deletion of TGF-β1 in mice
is lethal due to multi-organ inflammation (8, 9). Loss of TGF-β
signaling, particularly in T cells, is associated with uncontrolled
adaptive T cell responses and severe inflammatory disease (4, 44–
46). In the persistent presence of antigen stimuli, e.g., in the
gastrointestinal tract, TGF-β aids in suppression of immune
responses in order to prevent chronic inflammation (4).

PLEOTROPIC ROLE OF TGF-β IN THE
DEVELOPMENT AND PROGRESSION OF
TUMORS

Loss of function mutations in the TGF-β receptors or in SMAD
proteins are found in many tumors indicating a function as
a tumor suppressor (4). TGF-β inhibits cell growth (4, 47–
50), blocks the transition of pre-malignant cells to a more
evasive phenotype and induces their apoptosis (51, 52). In
contrast, there is also broad evidence suggesting that TGF-β
supports tumorigenesis and invasiveness, and enables tumor
growth by establishing an immunosuppressive and T cell
excluding TME. For example, elevated TGF-β levels in the
TME impair anti-tumor T cell responses (11–13, 53) with
restricting T cell infiltration into the tumors as shown for
mouse models of metastatic colorectal, urothelial and epithelial
ovarian cancers (41–43). TGF-β is thought to function as a
tumor suppressor at the early stages of tumor development,
but with the progression of disease, cancer cells may decouple
growth-inhibitory paracrine TGF-β signals by obstructing their
TGF-β receptor signaling pathway and rather exploit the
immunosilencing capacity of TGF-β to facilitate immune evasion
and metastatic dissemination (4, 16).

NKG2D-NKG2DL AXIS

NKG2D is a type II transmembrane glycoprotein comprising
an extracellular C-type lectin-like domain, a transmembrane
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domain, and a short cytoplasmic portion without signaling
motifs (54, 55). NKG2D glycoproteins form disulfide-linked
homodimers with both monomers building a single ligand
binding site (56). In humans, NKG2D homodimers associate
with two pairs of DAP10 adaptor proteins through interaction
of charged residues in the respective transmembrane domains.
Formation of this hexameric complex is required for cell surface
expression of NKG2D and signal transduction (55, 57). NKG2D
is found on virtually all human NK cells and CD8T cells, on
most γδ T cells and iNKT cells, as well as on a few CD4T
cells (54, 58). Ligation of NKG2D activates cytotoxicity and
cytokine production of NK cells and provides stimulatory signals
for effector CD8T cells (54, 59–63). NKG2D expression is
enhanced through cytokines promoting NK and T cell survival
and expansion such as IL-15 and IL-2 (62–64).

NKG2D ligands (NKG2DL) are stress-inducible membrane-
bound proteins distantly related to MHC class I molecules. In
human, there are two families of NKG2DL, the MIC family
consisting of MICA and MICB, and the ULBP family consisting
of ULBP1 through ULBP6 (14, 65, 66). All NKG2DL contain
an ectodomain with an MHC class I-like α1α2-fold (14, 56, 67),
but unlike MHC molecules NKG2DLs neither associate with β2-
microglobulin, nor present antigenic peptides (54, 61). MICs
contain an additional Ig-like α3 domain in their extracellular
part that is absent from ULBPs (14, 56). Most MICs are single-
pass transmembrane proteins, although there are also reports for
GPI-anchored MICA variants (68, 69). ULBP1 through ULBP3
and ULBP6 are GPI-anchored, whereas ULBP4 and ULBP5
are inserted into the membrane with a single transmembrane
domain (67, 70, 71).

While NKG2DLs are typically absent from the cell surface
of healthy cells, NKG2DL transcripts are found in almost
all human tissues (72), indicating a dominant control of
NKG2DL expression at the post-transcriptional level. NKG2DL
are surfacing on activated hematopoietic cells which may
contribute to an NKG2D-mediated regulation of immune
responses and may dampen T cell responses (73, 74), e.g.,
during the resolution of an infection (75, 76). NKG2DL are
also found on many human tumor cell lines and primary
human tumors (77), and are up-regulated during viral infections,
particularly during infections with viruses of the herpesvirus
family (78, 79). Such NKG2DL expression marks infected
or malignant cells as “dangerous” for the immune system
and facilitates their clearance through cytotoxic lymphocytes.
NKG2DL on tumor cells enhance their susceptibility to NK
cell killing (54, 80), protects against tumor initiation (81)
promotes tumor rejection and/or reduce the tumor progression
(82–85). Tumors utilize a variety of mechanisms to escape
from NKG2D-mediated immunosurveillance: these mechanisms
include the release of soluble NKG2DLs (sNKG2DL) either
by proteolytic cleavage (71, 86–88) or by exosomal release of
membrane-bound NKG2DLs (89, 90). Release of sNKG2DL
reduces the density of NKG2DL on malignant cells and thereby
impairs NKG2D-mediated recognition and elimination of tumor
cells by cytotoxic lymphocytes (82–85). While some studies
also report down-modulation of surface NKG2D on cytotoxic
lymphocytes through sNKG2DL-mediated internalization (91,

92), other studies were unable to confirm these findings
or attributed NKG2D down-modulation instead to TGF-β
(82, 93, 94). Possibly, potent NKG2D down-modulation by
TGF-β (see below) in serum samples of cancer patients
containing both TGF-β and sNKG2DL may have led to
some erroneous conclusions regarding sNKG2DL-mediated
NKG2D down-modulation in previous studies (15, 92–94).
Also, sera of tumor-free MICA-transgenic mice containing
very high levels of sMICA did not affect NKG2D surface
levels by splenic mouse NK cells (82). However, persistent
exposure of NKG2D tomembrane-boundMICAdown-regulated
surface NKG2D and reduced NK cell cytotoxicity in these
MICA-transgenic mice as well as in other transgenic mouse
models overexpressing NKG2DL (82, 95, 96). Hence, strong
overexpression of NKG2DL may represent a strategy of tumor
cells to blunt NKG2D-mediated immunosurveillance. In contrast
to proteolytically shed monomeric sNKG2DL (i.e., most MICA
variants, MICB, and ULBP2), exosomally released NKG2DL
such as the prevalent MICA∗08, ULBP1 or ULBP3 may down-
modulate surface NKG2D through multivalency-based cross-
linking (89, 90). Further escape mechanisms from NKG2D-
mediated cancer immunosurveillance include down-regulation
of NKG2DL through miRNAs (97, 98), epigenetic changes
or transcriptional repression (99, 100), and TGF-β mediated
signaling as outlined below. Intraindividual heterogeneity of
malignant cells can also impair NKG2D-mediated tumor
clearance: a recent study by Paczulla et al. showed that malignant
cells of human acute myeloid leukemia (AML) patients are
heterogeneous for NKG2DL expression with leukemic stem cells
(LSC) being devoid of NKG2DL and therefore resistant to NK
cell-mediated elimination (100). Poly-ADP-ribose polymerase
1 (PARP1) was shown to repress transcription of NKG2DL
in LSC thereby enabling their escape from NKG2D-mediated
immunosurveillance (100).

TGF-β IMPAIRS NK AND T CELLS
FUNCTION THROUGH INTERFERENCE
WITH THE NKG2D AXIS

Soon after cloning of the TGF-β1 cDNA (101), TGF-β1 was
shown to inhibit both the proliferation of T cells (102) and
the anti-tumor cytotoxicity of NK cells (36). While it was
demonstrated that TGF-β impairs effector functions of NK cells
against target cells, the underlying mechanisms remained elusive
until it was reported by Moretta and colleagues that TGF-
β downregulates the surface expression of the activating NK
receptors NKG2D and NKp30, thereby impairing NK cytolysis
of tumor cell lines in vitro (103) (Figure 1). Obviously, this
effect depends on the extent of expression of NKG2DL and
ligands of NKp30 by the respective tumor cells. Subsequent
studies confirmed and extended these observations (104, 105):
TGF-β inhibits NKG2D-mediated lysis of target cells without
altering the expression of perforin or Fas ligand, or without
affecting NK cell viability, indicating that down-regulation of
NKG2D is a major effect of TGF-β on NK cytolysis of tumor
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FIGURE 1 | TGF-β-mediated escape from NKG2D-mediated tumor immunorecognition by cytotoxic lymphocytes. NKG2D down-regulation on cytotoxic lymphocytes

impairs their immunosurveillance of NKG2DL-expressing malignant cells and subsequent tumor elimination. Tumor cells release both soluble TGF-β and

TGF-β-containing exosomes locally and systemically acting on NK cells and cytotoxic T lymphocytes (CTL), thereby inducing downregulation of NKG2D. In addition,

tumor-derived exosomes may contain NKG2DLs and miRNA with the capacity to down-regulate NKG2D surface expression. TGF-β also acts on tumor cells in an

autocrine or paracrine manner thereby reducing NKG2DL expression and further subverting cancer immunosurveillance by the NKG2D-NKG2DL axis. Other major

source of TGF-β are platelets as well as regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) which also present membrane bound TGF-β.

cells (105). A study on glioblastoma not only reported TGF-
β-induced reduction of NKG2D expression on NK cells, but
also on cytotoxic T lymphocytes (CTL). Decreased NKG2D
expression resulted in the decreased cytolysis of NKG2DL
positive targets by NK cells and a reduced NKG2D-mediated
co-stimulation of CD8T cells (104). The elevated TGF-β
levels in sera of patients with lung and colorectal cancers
were shown to down-regulate NKG2D on NK cells. Other
studies linked increased tumor-associated TGF-β levels with the
impairment of the function of NK cells and CTLs, and NKG2D
down-regulation in various malignancies including Hodgkin
lymphoma (106), gastric cancer (107) and head and neck
squamous cell carcinoma (108, 109). Hence, impaired NKG2D
expression may serve as a biomarker for TGF-β-compromised
cytotoxic lymphocytes. TGF-β-mediated down-regulation of
NKG2D and associated impaired NK cell functions were also
reported in the context of infections with hepatitis B and C
viruses (110, 111).

Elevated TGF-β levels as detected in glioblastoma patients
were also shown to affect the expression of NKG2DLs (104,
112): experimentally reduced TGF-β expression by glioma cells
led to an increase of MICA, ULBP2, and ULBP4 transcripts
and increased cell surface expression of MICA and ULBP2 as
well as of a reduction of tumorigenicity in vivo (104, 112).
Thus, tumor derived TGF-β can act in a paracrine fashion

to decrease NKG2D expression on cytotoxic lymphocytes in
the TME and in an autocrine manner to diminish tumor-
associated NKG2DL expression thereby impairing the innate
recognition and clearance of tumors (104). Hence, TGF-β-
mediated repression of NKG2DL expression together with
proteolytic shedding of NKG2DL has been suggested to facilitate
the immune escape of glioma in the immune-privileged brain
(112). However, there are also some reports that TGF-β treatment
increases surface levels of NKG2DLs (113). The induction of
cell surface expression of MICA and MICB upon culture with
TGF-β was described for several human cell lines and appears
at least partially dependent on mTOR signaling. In the case
of HaCat cells, the increase in NKG2DL was associated with
the TGF-β-induced epithelial-to-mesenchymal transition (113).
These reports indicate that the regulation of NKG2DL expression
by TGF-β may be dependent on the cell type and the context of
the microenvironment.

ROLE OF MEMBRANE-BOUND AND
EXOSOMALLY SECRETED TGF-β

TGF-β can be presented as a membrane bound form on the
surface of several cell types (22, 23) and there is evidence that
membrane-bound TGF-β can also regulate NKG2D expression.
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Surface-bound TGF-β presented by Tregs was found to decrease
NKG2D expression on NK cells and this correlated with the
inhibition of NK cell cytotoxicity (114). Adoptive transfer of
Tregs in Treg-deficient mice resulted in a decreased NKG2D
expression and NK cell cytotoxicity in vivo and reduced the
anti-tumor effector functions of NK cells in an NKG2D-
sensitive tumor model in a TGF-β dependent manner (114).
Other reports confirmed that TGF-β produced by Tregs impairs
NKG2D-mediated NK cell killing of target cells in vitro (115).
Decreased NKG2D expression was also found on NK cells in
murine models of liver and lung cancer and correlated with
the frequency of MDSC. MDSC isolated from cancer-bearing
mice were able to impair NK cells functions and NKG2D
expression on NK cells in vitro, and after adoptive transfer
in healthy mice, and depletion of MDSC from tumor-bearing
mice restored the functionality and NKG2D expression on NK
cells and delayed the tumor progression in vivo (116). The
observed effects were also mediated through a membrane-bound
TGF-β presented by MDSC, while NK cells deficient in TGF-
β signaling were resistant to the MDSC-mediated effects (116).
Exosomal secretion of NKG2DL can impair NKG2D expression
on cytotoxic lymphocytes thus desensitizing them for NKG2DL-
mediated tumor recognition (89). Exosomes derived from a panel
of tumor cell lines and from patients with malignant pleural
mesothelioma were also shown to contain TGF-β on exosomes
and down-regulated NKG2D on the surface of CTLs and NK
cells. Neutralizing TGF-β or MICA of exosomes indicated that
TGF-β, and not MICA, is the main factor driving the observed
NKG2D downregulation (94). Microvesicles derived from sera of
AML patients were also shown to contain high levels of TGF-β
and decreased NKG2D expression as well as NK cell cytotoxicity
in a TGF-β dependent manner (117).

TGF-β IN THE PLATELET-NK CELL
CROSS-TALK

Mouse models suggest that metastasis formation is dependent
on the tumor-protective function of platelets, but the cross-
talk between tumor-coating platelets and NK cells in the blood
is not yet fully understood (118, 119). Platelet-derived TGF-β
may promote the immune escape of circulating disseminated
tumor cells as activated platelets release factors reducing the
activation and IFN-γ production of NK cells and the expression
of a set of activating NK cell receptors including NKG2D. This
effect is at least partially mediated by platelet-derived TGF-β
(120). Platelet-derived TGF-β was shown to induce an invasive
phenotype of tumor cells promoting metastasis in mouse models
of colon and breast carcinoma. Abrogation of either TGF-
β signaling in tumor cells or TGF-β expression by platelets
suppressed metastasis formation and epithelial-mesenchymal
transition (121). Accordingly, it was proposed that platelet-
derived TGF-β in the circulation provides a “pulse” to tumor
cells enabling them to acquire a more invasive mesenchymal-like
phenotype (121). Platelets were also shown to secrete TGF-β-
rich exosomes upon storage, e.g., before transfusions, that induce
downregulation of NKG2D, NKp30, and DNAM-1 andmodulate
NK cell functions (122).

MECHANISMS OF TGF-β-MEDIATED
DOWN-REGULATION OF NKG2D AND
NKG2DL

The molecular mechanism underlying the TGF-β-mediated
down-modulation of NKG2D surface expression are not yet
fully elucidated. Several studies reported that TGF-β treatment
only results in a moderate reduction of NKG2D transcripts
(64, 103) demonstrating that TGF-β mainly acts through post-
transcriptional mechanisms on NKG2D expression. A more
recent study provided conclusive evidence that induction of
mature miR-1245 by TGF-β controls NKG2D expression in NK
cells (123) (Figure 2). TGF-β augments processing of the pri-
miR-1245 in NK cells and strongly increases the levels of mature
miR-1245 in NK cells which acts on a target site in the 3’-UTR
of NKG2D transcripts. Overexpression or silencing of miRNA-
1245markedly reduced or enhanced surface NKG2D onNK cells,
respectively (123). Of note, IL-15 suppressed the maturation of
miRNA-1245 which is detectable in tumor-derived exosomes in
hematopoietic malignancies (123). Expression of miRNA-1245 is
up-regulated by c-myc which directly binds to the miRNA-1245
promoter (124) indicating that exosomes of c-myc-driven tumors
may harbor miRNA-1245 and thereby target NKG2D expression.
However, TGF-β-mediated reduction of surface NKG2D levels is
not completely abolished inmiR-1245 knock-out cells arguing for
further mechanisms (123). Accordingly, other studies reported
that TGF-β treatment substantially decreases DAP10 expression
both at mRNA and protein levels (64, 125). Since NKG2D
cell surface expression strictly depends on complex formation
with DAP10 (55, 57), the TGF-β-mediated down-regulation
of DAP10 indirectly complements the direct suppression of
NKG2D expression by miR-1245 (64, 123).

Multiple miRNA have also been shown to down-regulate
expression of human NKG2DL by human tumor cells thereby
impairing NKG2D-mediated tumor recognition (97, 98, 126,
127). However, for most of these miRNA their tumor-associated
regulation is not clear. In contrast, expression of the oncomiR-
183, up-regulated by TGF-β in lung cancer, was shown to down-
regulate MICA andMICB glycoprotein expression in lung tumor
cell lines through a binding site in the 3’-UTR of MICA/B
transcripts. Accordingly, shRNA-mediated knock-down of either
TGF-β or miR-183 resulted in an enhanced MICA/B expression
and cytolysis by CD8T cells (128). TGF-β-induced miR-183
was also reported to impair expression and function of several
activating NK receptors such as NKp44 through down-regulation
of the adaptor protein DAP12 (129), and hence, targets tumor
recognition by NK cells at various receptors.

RESCUE OF THE NKG2D-NKG2DL AXIS IN
CANCER BY TGF-β TARGETING
THERAPIES

The crucial role of TGF-β in tumor progression and tumor
immune escape renders this cytokine an important target
for therapeutic intervention in cancer. Accordingly, multiple
cancer therapies targeting the TGF-β pathway are currently
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FIGURE 2 | Therapeutic targeting of TGF-β-mediated NKG2D down-regulation by cytotoxic lymphocytes. TGF-β bound to a tetrameric complex of TGF-β-RI and

TGF-β-RII homodimers causes phosphorylation of SMAD proteins, which, together with further contextual transcriptional regulators, alter the cellular transcriptional

profile. This ultimately also leads to markedly reduced cell surface NKG2D expression by cytotoxic lymphocytes which appears to result from several direct and

indirect effects: (i) decrease of NKG2D transcripts, (ii) maturation of miR-1245 interacting with the 3’-UTR of NKG2D transcripts thereby repressing NKG2D

expression, and (iii) decreased levels of DAP10 transcripts and proteins with DAP10 being essentially required for NKG2D surface expression. Therapeutic strategies

interfering with TGF-β signaling (marked in red) to rescue NKG2D expression include: (i) neutralization of TGF-β receptor through TGF-β specific antibodies or soluble

TGF-β-RII, (ii) inhibition of TGF-β-RI-II activation through small molecules such as galunisertib, and (iii) engineering therapeutic lymphocytes prior to adoptive transfer

with dominant negative TGF-β-RII chains.

being evaluated in clinical trials. Therapies targeting the TGF-
β pathway have, amongst others, the potential to boost tumor
elimination by cytotoxic lymphocytes through harnessing the
NKG2D-mediated tumor recognition and boosting cytolysis by
NK cells and cytotoxic T lymphocytes. For example, galunisertib
(LY2157299), a small molecule inhibiting TGF-βRI kinase
activity (Figure 2), prevented in vitro the TGF-β-mediated
down-regulation of surface NKG2D (as well as of NKp30,
DNAM-1, TRAIL) by activated NK cells and preserved their
cytotoxic activity toward various tumor cell lines (130, 131).
Accordingly, administration of galunisertib markedly enhanced
the anti-tumor effect of adoptively transferred activated human
NK cells in NSG mice bearing human tumors (130, 131).
Significant therapeutic effects in phase II clinical trials were
reported with galunisertib given either in combination with
gemcitabine in pancreatic cancer (132) or as a monotherapy
in hepatocellular carcinoma (133). Importantly, no adverse
side effects and no cardiac toxicity were reported by several
clinical trials (134). Encouraging pre-clinical studies show that

a combined cancer treatment using galunisertib together with
checkpoint blockade antibodies strongly potentiated cancer
immunity (43, 135).

Suppressive effects of TGF-βmay also be overcome by targeted
delivery of cytokines IL-2, IL-15, and IL-18 into the tumor.
While TGF-β was shown to have a dominant effect over IL-
2 or IL-15 alone with regard to NKG2D modulation on the
surface of NK cells (64, 105), a combination of IL-2 and IL-18
protected NK-92MI cells from TGF-β-mediated NKG2D down-
regulation and the associated impairment of NK cell function
(136). An IL-15 superagonist/IL-15Rα fusion complex (ALT-
803) rescued NK cytolysis of tumor cell lines from TGF-β1-
mediated immunosuppression in vitro and diminished TGF-β1-
mediated down-regulation of surface NKG2D (137). IRX-2, a
poorly defined mixture of cytokines derived from the culture
supernatants of activated lymphocytes, was tested in clinical
trials for treatment of head and neck squamous cell cancer, and
increased NKG2D surface expression and NKG2D-dependent
NK cytotoxicity, even in the presence of TGF-β (109).
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TGF-β-neutralizing macromolecules such as TGF-β-specific
mAb or soluble forms of TGF-βRII are currently evaluated in
several phase I and II clinical trials in treatment of patients
with various solid tumors (4). A recent report on a phase
I/II clinical trial for treatment of chemo-refractory metastatic
breast cancer with the TGF-β-neutralizing mAb fresolimumab
during radiotherapy did not observe an objective or abscopal
response in tumor patients treated with fresolimumab (138, 139).
Exploratory analyses of circulating T cells from these patients
indicated that this treatment regimen with fresolimumab was
not sufficient to reverse the impaired T cell function observed
in these cancer patients (139). In addition, various chimeric
molecules consisting of soluble TGF-βRII receptors, acting as
TGF-β traps, linked to checkpoint blockade antibodies currently
are tested in pre-clinical studies and clinical trials. Several
preclinical studies have already shown substantially enhanced
anti-tumor responses as compared to a monotherapy with anti-
CTLA4 or anti-PD-L1mAb in various mouse solid tumormodels
(140, 141). For example, administration of a bifunctional fusion
protein, termed M7824, with an anti-PD-L1 mAb coupled to the
extracellular domain of TGFβ-RII, provided an efficient tumor
control in preclinical models of colorectal and breast tumors.
M7824 administration resulted in a shift of tumor-infiltrating
immune cell populations toward an increase of cytotoxic CD8T
cells and NKG2D+NKp46+NK cells which mediated tumor
immunity (141). M7824 has already given to a small cohort of
heavily pretreated patients with advanced solid tumors showing
early signs of efficacy and a manageable safety profile (142), and
is currently undergoing further clinical trials in patients with
advanced solid tumors (e.g., NCT02517398, NCT02699515).

An elegant approach to shield adoptively transferred cytotoxic
lymphocytes from the suppressive effects of TGF-β in cancer
immunotherapy, such as NKG2D silencing, is the transduction
of T cells or NK cells with a dominant negative form of TGF-βRII
prior to adoptive transfer (143, 144). Transduction of cord blood
NK cells with a dominant negative TGF-βRII efficiently blocked
TGF-β signal transduction and supported the maintenance of
the cell surface expression of activating receptors and NK cell
cytotoxicity in the presence of TGF-β (144). Treatment of a small
cohort of chemorefractory Hodgkin lymphoma patients with
TGF-βRII-transduced autologous EBV-derived tumor antigen-
specific CD8T cells showed complete remission in four out

of seven patients (145) suggesting that this type of engineered
cytotoxic lymphocytes is safe and efficacious.

Another elegant strategy attempts to convert
immunosuppressive signals of soluble TGF-β into stimulatory
signals using the chimeric antigen receptor (CAR) concept. A
recent report created a chimeric receptor consisting of a TGF-
β-binding scFv fused to the transmembrane segment of CD28
and the cytoplasmic signaling domains of both CD28 and CD3ζ
(146). T cells ectopically expressing such a CAR were activated
by TGF-β-induced CAR dimerization that led an activation of
both NFAT and NFκB with a subsequent stimulation of Th1
cytokine responses and an enhanced T cell expansion (146). It
will be of great interest to address the in vivo performance of
such anti-TGF-β CAR T cells utilizing TGF-β as an activating
growth factor in mouse models of solid tumors.

CONCLUDING REMARKS

TGF-β broadly and potently suppresses the effector functions of
NK cells and cytotoxic T lymphocytes with the TGF-β-mediated
impairment of the NKG2D axis representing an important
facet of this phenomenon in cancer immunity. Down-regulation
of both NKG2D, on cytotoxic lymphocytes, and NKG2DL
surface expression, on tumor cells, facilitates the immune escape
of tumor cells from induced-self recognition and elimination
by cytotoxic lymphocytes. Hence, targeting TGF-β appears to
represent a key intervention for an efficient boosting of tumor
immunity and should be considered in future cancer treatment
modalities. However, the intracellular mechanisms mediating the
suppression of the NKG2D axis through TGF-β are not yet fully
elucidated and further research is needed to define the underlying
molecular and cellular pathways to allow for the development of
more tailored and efficacious therapeutic options.
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