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Protein–protein interactions are at the core of all cellular functions and dynamic alterations
in protein interactions regulate cellular signaling. In the last decade, mass spectrometry
(MS)-based proteomics has delivered unprecedented insights into human protein
interaction networks. Affinity purification-MS (AP-MS) has been extensively employed for
focused and high-throughput studies of steady state protein–protein interactions. Future
challenges remain in mapping transient protein interactions after cellular perturbations
as well as in resolving the spatial organization of protein interaction networks. AP-MS
can be combined with quantitative proteomics approaches to determine the relative
abundance of purified proteins in different conditions, thereby enabling the identification
of transient protein interactions. In addition to affinity purification, methods based on
protein co-fractionation have been combined with quantitative MS to map transient
protein interactions during cellular signaling. More recently, approaches based on
proximity tagging that preserve the spatial dimension of protein interaction networks
have been introduced. Here, we provide an overview of MS-based methods for analyzing
protein–protein interactions with a focus on approaches that aim to dissect the temporal
and spatial aspects of protein interaction networks.

Keywords: mass spectrometry-based proteomics, protein–protein interactions, transient interactions, spatial
interactions

PROTEIN INTERACTIONS ARE DEFINED BY TEMPORAL
AND SPATIAL CONSTRAINTS

Protein–protein interactions are at the core of all cellular functions and dynamic alterations
in protein interactions regulate cellular signaling (Scott and Pawson, 2009). Accurate and
comprehensive mapping of protein–protein interaction networks is essential for understanding
the regulatory mechanisms of cellular processes and signaling pathways as well as for identifying
perturbed cellular signaling underlying human diseases. Proteins can form stable interactions and
function as part of permanent protein assemblies, however a large proportion of protein–protein
interactions are defined by temporal and spatial constraints. Protein–protein interactions can
be dynamically altered in response to the intrinsic and extrinsic stimuli (Perkins et al., 2010).
Transient protein interactions are frequently induced by posttranslational modifications (PTMs)
and, depending on their cellular function, have a range of affinities and lifetimes (Nooren and
Thornton, 2003; Seet et al., 2006). Prominent examples include the recruitment of DNA repair
factors to sites of DNA lesions, cell cycle-regulated interactions and the formation of receptor
signaling complexes after growth factor stimulation. Furthermore, protein–protein interactions are
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restricted by cellular compartments and can be regulated by
protein re-localization to specific cellular structures or organelles.
The transient nature and spatial organization are therefore
important features that need to be considered when analyzing
protein–protein interaction networks (Figure 1).

MASS SPECTROMETRY-BASED
PROTEOMICS FOR ANALYSIS
OF PROTEIN–PROTEIN INTERACTIONS

Mass spectrometry (MS)-based proteomics has become an
indispensable tool in modern molecular and cell biology research
(Larance andLamond, 2015). In shotgun or bottomupproteomics
approaches, proteins are extracted from cells or tissues and
digested into peptides using specific proteases (Aebersold and
Mann, 2003). The resulting peptides are separated according to
hydrophobicity using high-pressure liquid chromatography and
identified by tandemMS (LC-MS/MS).

The most commonly employed approach to study
protein–protein interactions in vivo is affinity purification-
MS (AP-MS; Gingras et al., 2007; Vermeulen et al., 2008;
Meyer and Selbach, 2015). In AP-MS workflows, a protein
of interest (bait protein) is co-purified with its interaction
partners and the purified proteins are subsequently identified
by LC-MS/MS. Purification of the bait protein can be achieved
using antibodies that specifically bind to the endogenous bait
protein. Alternatively, epitope tags can be employed that enable
robust and reproducible purification of the bait protein and
its interaction partners using highly specific affinity matrices.
The latter approach is especially beneficial when antibodies
recognizing the bait protein are not available; however, the
introduction of epitope tags usually involves overexpression of
the bait protein and can lead to non-physiological interactions.

The power of AP-MS for high-throughput discovery of
protein–protein interactions has been exemplified by recent
landmark studies from the Mann and Gygi laboratories that
demonstrated systematic analyses of human protein–protein
interactions and mapped 28,500 and 23,744 unique interactions,
respectively (Hein et al., 2015; Huttlin et al., 2015). These studies
represent a milestone in the long-term effort to comprehensively
map human protein–protein interactions.

In addition to AP-MS, co-fractionation strategies have been
employed to study cellular organelles and protein complexes. The
Mann laboratory has employed biochemical fractionation based
on density gradient centrifugation to define the composition of
cellular organelles (Andersen et al., 2003; Foster et al., 2006).More
recently, Havugimana et al. (2012) andWan et al. (2015) employed
extensive biochemical fractionation and MS to determine the
composition of soluble protein complexes in human cells and in
cells from diverse metazoan model organisms.

RESOLVING TRANSIENT
PROTEIN–PROTEIN INTERACTIONS

Most studies conducted have so far investigated steady state
protein–protein interactions, leaving the temporal and spatial
aspects of protein–protein interactions largely disregarded.

Mapping transient protein–protein interactions during
cellular signaling and in response to cellular perturbations
remains a major future challenge. For instance, changes in
protein interactions induced by growth factor stimulation or
cellular stress, as well as interactions between PTM-catalyzing
enzymes and substrates, can often not be captured using
conventional methods for analyses of protein interactions.
Accordingly, efforts are ongoing to design proteomics methods
that permit analysis of transient and low affinity protein
interactions.

AP-MS Combined with Quantitative Mass
Spectrometry-Based Proteomics
Affinity purification combined with quantitative MS-based
proteomics can be used to identify dynamic protein–protein
interactions (Figure 2). In this approach, affinity purifications are
performed under different conditions and the relative abundance
of interaction partners is then determined by quantitative MS-
based approaches, including metabolic and chemical labeling as
well as label-free methods (Ong andMann, 2005; Bantscheff et al.,
2012). Affinity purification is often combined with stable isotope
labeling with amino acids in cell culture (SILAC) to monitor
protein interactomes after different types of cellular perturbations,
including DNA damage (Mosbech et al., 2012; Brown et al., 2015)
and ligand stimulation (Satpathy et al., 2015). In addition, this
approach has been applied to study the temporal dynamics of
protein interactions during cell cycle progression (Hubner et al.,
2010; Pagliuca et al., 2011).

Recently, data-independent acquisition (DIA) methods have
been employed to map changes in protein–protein interactions
after cellular perturbations. Analysis of peptide samples from
affinity purification experiments has typically been performed
using data-dependent acquisition methods (DDA). Due to the
semi-stochastic precursor ion selection in DDA methods, the
complete set of peptides can often not be reproducibly identified
across all samples. In DIA methods, fragment spectra for
the entire mass range are acquired by co-isolating precursor
ions in isolation windows of selected m/z ranges. Collins
et al. (2013) have described a method for mapping dynamic
changes in protein–protein interactions by combining affinity
purification with DIA usingMS-sequential window acquisition of
all theoretical spectra (MS-SWATH). The authors have analyzed
interaction partners of 14-3-3β in cells stimulated with insulin-
like growth factor for different time periods and reproducibly
quantified 1,967 proteins across all samples. A similar approach
has been used by Lambert et al. (2013) to map the interaction
partners of wild type and mutant forms of CDK4 as well as to
probe the effects of Hsp90 inhibition on CDK4 interactions.

In Vivo Reversible Crosslinking
A complementary approach to affinity purification that aims to
capture transient and low affinity protein–protein interactions is
reversible chemical crosslinking (Hall and Struhl, 2002; Vasilescu
et al., 2004; Klockenbusch and Kast, 2010; Smith et al., 2011).
Chemicals that mediate protein crosslinks, such as formaldehyde,
are applied to cells before lysis to “freeze” protein–protein
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FIGURE 1 | Protein–protein interactions are defined by temporal and spatial constraints. Many protein interactions are transient and occur only at specific
time points, for instance in a particular cell cycle stage. These transient interactions can be mediated by posttranslational modification or by dynamic changes in
expression of the binding partners. In addition to temporal constrains, protein interactions are spatially restricted by cellular compartments.

interactions in vivo by forming reversible covalent bonds between
adjacent amino acids, thereby providing a snapshot of the protein
interactome (Figure 2). Following crosslinking, cells are lysed
and proteins are subjected to conventional affinity purification
protocols. Crosslinks are reversed after purification, often simply
by boiling, and affinity-purified proteins are identified by LC-
MS/MS. In addition to formaldehyde, other crosslinkers that
are commonly used for protein–protein interaction studies
are NHS-esters and imidates that react with primary amines
in the proteins to yield stable amide bonds. If crosslinking
is combined with epitope tagging of the bait protein and
purification with affinity matrices such as GFP-Trap and Ni-
NTA, cell lysis and washing can be performed under denaturing
conditions, thus enabling the recovery of poorly soluble proteins
and reducing contamination with non-physiological interactions
that might occur during the purification (Tagwerker et al.,
2006). Formaldehyde-based crosslinking and purification under
denaturing conditions has been employed to identify interaction
partners of Skp1, an essential component of the SCF ubiquitin
ligase complex, and to map the dynamic interaction partners of
the 26S proteasome across cell cycle phases (Tagwerker et al.,
2006; Kaake et al., 2010). The fact that the crosslinking procedure
requires optimization for different cell types and bait proteins
might be the reason that this technique has not so far been

frequently used for the investigation of transient protein–protein
interactions.

Co-fractionation Combined with
Quantitative Mass Spectrometry
Kristensen et al. (2012) have developed a method that employs
quantitative MS based on SILAC and high-performance
size-exclusion chromatography to monitor changes in the
cellular interactome in response to growth factor stimulation
(Figure 2). Using this approach, the authors have identified
350 proteins whose association with a complex increased or
decreased after cells were stimulated with the epidermal growth
factor. A particular feature of this method is that it allows
mapping of dynamic changes in the cellular interactome without
the need to overexpress bait proteins and perform affinity
purifications. In addition, size-exclusion chromatography enables
the heterogeneity of protein complexes within the cells to be
determined, by monitoring the distribution of a protein among
different complexes. Another advantage of this method is that it
provides the possibility to analyze the interactome within a single
subcellular compartment, thereby providing a spatial dimension
and avoiding the risk of non-physiological interactions that can
occur after cell lysis and loss of cellular compartmentalization.
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FIGURE 2 | Mass spectrometry-based proteomics methods for analysis of temporal and spatial aspects of protein–protein interactions. In affinity
purification approaches, an antibody that specifically binds to endogenously expressed bait protein is used to purify the protein of interest and its interaction partners.
Alternatively, a bait protein fused to an epitope tag is ectopically expressed in cells and purified using affinity matrices or tag-specific antibodies. To increase the
probability of capturing transient and weak interactions, chemicals that mediate protein–protein crosslinks can be applied to cells before lysis to “freeze” interactions
by forming reversible covalent bonds between adjacent amino acids (A). In co-fractionation-based methods, proteins are subjected to extensive fractionation, for
instance by high-performance size-exclusion chromatography, and the precise co-elution of two proteins is used as evidence for their interaction (B). In spatially
restricted enzymatic tagging BirA* or APEX is fused to a protein of interest and ectopically expressed in cells. Biotinylation of proximal proteins is triggered by the
addition of biotin for 24 h (BioID) or biotin-phenol for 1 min (APEX). Cells are lysed under denaturing conditions and biotinylated proteins are recovered using
streptavidin followed by LC-MS/MS analysis (C).

RESOLVING SPATIAL ORGANIZATION
OF PROTEIN–PROTEIN INTERACTIONS
BY PROXIMITY TAGGING
In addition to defining transient protein–protein interactions,
another challenge lies in resolving the spatial organization of
protein interaction networks. In affinity purification approaches,
proteins localized to different cellular compartments are

mixed during cell lysis and subjected to purification under
native conditions, which might lead to the formation of non-
physiological interactions. Recently developed methods for
spatially restricted enzymatic tagging using the promiscuous
biotin ligase BirA* (BioID) or the engineered ascorbate peroxidase
(APEX) can be employed to overcome this problem and preserve
the spatial dimension of interactions (Roux et al., 2012; Rhee
et al., 2013).
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Biotin Ligase-Based Proximity Tagging
(BioID)
BirA is a biotin ligase from E. coli that activates biotin to biotinoyl
5-AMP (bioAMP) in an ATP-dependent reaction (Chapman-
Smith and Cronan, 1999). Biotinoyl 5′-AMP is then transferred
to substrate proteins containing a specific BirA recognition
sequence (Beckett et al., 1999). An engineered mutant form of
BirA (R118G) with abolished substrate specificity and reduced
affinity for biotinoyl 5′-AMP promiscuously biotinylates proteins
in its proximity (Choi-Rhee et al., 2004; Cronan, 2005). Roux et al.
(2012) devised a method called BioID in which the promiscuous
biotin ligase BirA* is fused to a protein of interest and expressed
in mammalian cells. After incubation of the cells with biotin,
the BirA*-fusion protein biotinylates proteins in its proximity
(Figure 2). Subsequently, cells are lysed under denaturing
conditions and biotinylated proteins are selectively isolated using
streptavidin and identified by LC-MS/MS. The authors tested
the utility of BioID by fusing BirA* to the nuclear envelope (NE)
component lamin A (LaA) that is highly insoluble and therefore
difficult to study with conventional methods for interactome
analysis. Analysis of biotinylated proteins in cells expressing
BirA*-LaA by LC-MS/MS identified known LaA interactors
as well as the novel NE component SLAP75 (Roux et al.,
2012). BioID possesses several advantages over conventional
affinity purification. Firstly, BirA*-based biotinylation of
proteins occurs in living cells and therefore non-physiological
interactions that might occur after cell lysis and loss of cellular
compartmentalization are avoided. Secondly, proximity-
dependent biotinylation by the promiscuous biotin ligase BirA*
can capture low affinity interactions that will frequently be lost
in conventional affinity purification. Furthermore, BioID allows
the use of denaturing lysis conditions, which helps to identify
proteins that are insoluble under commonly used native lysis
conditions and reduces contamination with non-specific binders.
However, BioID also has limitations that should be considered
during experimental design. Activated biotin targets primary
amines (predominantly lysine residues) and the efficacy of the
biotinylation depends on the number and availability of primary
amines in proteins (Roux et al., 2013). As result, the abundance
of the purified biotinylated proteins does not necessarily correlate
with the strength or stoichiometry of the association. Moreover,
biotinoyl 5′-AMP has a half-life of minutes, which might lead
to a large labeling radius (Rhee et al., 2013). In the BioID-LaA
experiment, the authors showed that histone proteins constitute
only a small fraction of the identified proteins, although they are
lysine rich and highly abundant in the nucleus, which provides
evidence against the idea that BioID generates widespread
biotinylation (Roux et al., 2012). Importantly, BioID does not
distinguish interaction from proximity, which needs to be taken
into account during data analysis. BioID has been successfully
employed to identify interaction partners of proteins and to
characterize the composition of subcellular organelles, such
as the centrosomes and the nuclear pore, which are otherwise
refractory to traditional approaches (Couzens et al., 2013;
Firat-Karalar et al., 2014; Coyaud et al., 2015; Dingar et al., 2015;
Rodriguez-Fraticelli et al., 2015; Zhou et al., 2015). A recent study
employed BioID to identify over 50 putative substrates of the

ubiquitin ligase SCFβ-TrCP1/2 indicating a potential application of
BioID for the analysis of substrates of PTM-catalyzing enzymes
(Coyaud et al., 2015). The Gingras laboratory has performed
a side-by-side comparison of AP-MS and BioID for analyzing
interaction partners of chromatin-associated proteins (Lambert
et al., 2015). Interestingly, they concluded that BioID enables the
identification of a larger number of interaction partners and that
identified interaction partners are significantly less abundant than
interaction partners identified by AP-MS. Another observation
from this study is the relatively small overlap between the
interaction partners identified by AP-MS and BioID, suggesting
that both approaches have a bias for specific subsets of proteins
and might have a complementary value for comprehensive
identification of protein interaction partners.

Ascorbate Peroxidase-Based Proximity
Tagging
Another enzymatic proximity tagging approach developed by the
Ting laboratory uses an engineered ascorbate peroxidase (APEX)
(Martell et al., 2012). APEX is a monomeric mutant derived from
the plant APEX with increased enzymatic activity. Like wild type
peroxidase, APEX catalyzes H2O2-dependent polymerization
and local deposition of DAB (3,3′-diaminobenzidine), which
subsequently recruits electron dense osmium, yielding electron
microscopy (EM) contrast (Lam et al., 2015). Based on the
observation that APEX is active in all cellular compartments and
withstands strong EM fixation, Martell et al. (2012) demonstrated
the utility of APEX for EM analysis of a variety of mammalian
organelles and specific proteins.

In addition to DAB, APEX also oxidizes numerous phenol
derivatives such as biotin-phenol to phenoxyl radicals that
covalently react with electron-rich amino acids. In cells expressing
APEX fused to a protein of interest, biotinylation of proximal
proteins is initiated by incubating cells with biotin-phenol and
H2O2 for 1 min. The proximal proteins can subsequently be
purified using streptavidin under denaturing conditions and
identified by LC-MS/MS analysis (Figure 2). Rhee et al. (2013)
selected mitochondria as a model organelle for testing APEX-
based identification of organelle proteins. To test the spatially
restricted labeling capacity of APEX, mitochondrial matrix-
targeted APEX was used to investigate the protein composition
of the mitochondrial matrix and inner mitochondrial membrane.
Using LC-MS/MS, the authors have identified 495 proteins, 94%
of which had prior mitochondrial annotation. Thirty-one of those
495 proteins had never been correlated with mitochondria and
are therefore potentially novel mitochondrial proteins. Of note,
only subunits with exposure to matrix space were identified,
indicating that phenoxyl radicals do not pass through the inner
mitochondrial membrane, proving further the specificity of
APEX-based proximity tagging (Lam et al., 2015).

APEX-based proximity tagging can provide spatially and
temporally resolved proteomic maps and can be potentially
employed to study weak and dynamic protein interactions as well
as enzyme-substrate relations. APEX requires only 1 min to label
proximal proteins rather than the 24 h required for the BioID
method. It therefore, has a better temporal resolution and offers
a better platform to study transient protein–protein interactions
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under different conditions and time points. Furthermore,
phenoxyl radicals are short lived (<1 ms) and therefore have
a small labeling radius (<20 nm). It is worth mentioning that
APEX can also be used to confirm the subcellular localization
of target proteins using EM or fluorescent microscopy. To date,
the applicability of APEX beyond the mapping of proteins in
membrane-bound cellular organelles has not been demonstrated,
and it remains to be addressed if APEX-based proximity tagging is
suitable for analysis of interaction partners of individual proteins
or protein substrates of PTM-catalyzing enzymes.

CONCLUSION

Mass spectrometry-based proteomics has delivered
unprecedented insights into human protein interaction networks.
To date, most studies have focused on mapping steady-state
protein–protein interactions. Future challenges remain in the
identification of transient and low affinity interactions during
cellular signaling, as well as in understanding the spatial
organization of protein interaction networks. Although affinity
purification combined with quantitative MS-based proteomics is
a powerful approach for the identification of dynamic protein
interactions, transient and low affinity interactions, such as
those induced by growth factor stimulation or cellular stress, are
frequently lost. In vivo chemical crosslinking, in which chemicals
that form reversible covalent bonds are applied to cells before lysis
to “freeze” protein–protein interactions can help to identify these
interactions. The need to optimize the crosslinking procedure
for different cell types and bait proteins hinders the routine use
of this method for analyzing transient protein interactions. In
addition to AP-MS, approaches based on protein co-fractionation

combined with quantitative MS have been successfully employed
to analyze transient protein interactions during cellular signaling.
Spatially restricted enzymatic tagging approaches, such as BioID
andAPEX, preserve the spatial organization of protein interaction
networks and enable analysis of protein interactions in insoluble
structures, thereby complementing AP-MS. Importantly, these
approaches do not enable a distinction to be made between
interaction partners and non-interacting proximal proteins.
Therefore, combining affinity purification and spatially restricted
enzymatic tagging could help to produce a more accurate and
comprehensive picture of protein–protein interaction networks
of interest. This strategy has the potential to become a standard
procedure for protein interaction studies, as has already been
exemplified by a recent study that focused on chromatin-
associated protein complexes (Lambert et al., 2015)
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