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Abstract

The present thesis is primarily concerned with the application of the functional
renormalization group (FRG) to spin systems. In the first part, we study the
critical regime close to the Berezinskii-Kosterlitz-Thouless (BKT) transition
in several systems. Our starting point is the dual-vortex representation
of the two-dimensional XY model, which is obtained by applying a dual
transformation to the Villain model. In order to deal with the integer-valued
field corresponding to the dual vortices, we apply the lattice FRG formalism
developed by Machado and Dupuis [Phys. Rev. E 82, 041128 (2010)]. Using
a Litim regulator in momentum space with the initial condition of isolated
lattice sites, we then recover the Kosterlitz-Thouless renormalization group
equations for the rescaled vortex fugacity and the dimensionless temperature.
In addition to our previously published approach based on the vertex expansion
[Phys. Rev. E 96, 042107 (2017)], we also present an alternative derivation
within the derivative expansion. We then generalize our approach to the O(2)
model and to the strongly anisotropic XXZ model, which enables us to show
that weak amplitude fluctuations as well as weak out-of-plane fluctuations do
not change the universal properties of the BKT transition.

In the second part of this thesis, we develop a new FRG approach to
quantum spin systems. In contrast to previous works, our spin functional
renormalization group (SFRG) does not rely on a mapping to bosonic or
fermionic fields, but instead deals directly with the spin operators. Most
importantly, we show that the generating functional of the irreducible vertices
obeys an exact renormalization group equation, which resembles the Wetterich
equation of a bosonic system. As a consequence, the non-trivial structure
of the su(2) algebra is fully taken into account by the initial condition
of the renormalization group flow. Our method is motivated by the spin-
diagrammatic approach to quantum spin system that was developed more
than half a century ago in a seminal work by Vaks, Larkin, and Pikin (VLP)
[Sov. Phys. JETP 26, 188 (1968)]. By embedding their ideas in the language
of the modern renormalization group, we avoid the complicated diagrammatic
rules while at the same time allowing for novel approximation schemes.

1



2 CONTENTS

As a demonstration, we explicitly show how VLP’s results for the leading
corrections to the free energy and to the longitudinal polarization function
of a ferromagnetic Heisenberg model can be recovered within the SFRG.
Furthermore, we apply our method to the spin-S Ising model as well as to the
spin-S quantum Heisenberg model, which allows us to calculate the critical
temperature for both a ferromagnetic and an antiferromagnetic exchange
interaction. Finally, we present a new hybrid formulation of the SFRG, which
combines features of both the pure and the Hubbard-Stratonovich SFRG that
were published recently [Phys. Rev. B 99, 060403(R) (2019)].



Chapter 1

Introduction

1.1 Overview

The purpose of the first chapter is to lay the foundation for the main part
of this thesis. We start with an introduction to the renormalization group
in Sec. 1.2, where we present an overview on its historical development as
well as on its main concepts. In Sec. 1.3 we then give a short primer on
the imaginary-time formalism, which will be a central building block in the
development of the spin functional renormalization group in Ch. 3.

The second chapter is devoted to the Berezinskii-Kosterlitz-Thouless
(BKT) transition, whose main features are illustrated in Sec. 2.1 in the
context of the two-dimensional XY model. After introducing the Villain
model as well as several of its dual representations in Sec. 2.2, we show in
Sec. 2.3 how the functional renormalization group can be applied to the dual-
vortex representation. The explicit derivation of the Kosterlitz-Thouless flow
equations within the vertex expansion is given in Sec. 2.4, while in Sec. 2.5
we present an alternative derivation based on the derivative expansion. We
then generalize our approach to the O(2) model (Sec. 2.6) and to the strongly
anisotropic XXZ model (Sec. 2.7), where we study the influence of amplitude
and out-of-plane fluctuations on the BKT transition.

Finally, Ch. 3 is concerned with our work on the spin functional renor-
malization group (SFRG), which we briefly motivate in Sec. 3.1. We then
construct the pure SFRG and apply it to the spin-S Ising model in Sec. 3.2.
We end this section by discussing several possibilities for the initial condition
of the renormalization group flow in quantum spin systems. In Sec. 3.3
we develop an alternative formulation of the SFRG and illustrate that this
Hubbard-Stratonovich SFRG is closely connected to the spin-diagrammatic
approach of Vaks, Larkin, and Pikin (VLP) [1–3]. We demonstrate the method

3



4 1. Introduction

by rederiving some results of VLP as well as by calculating the critical tem-
perature of the spin-S quantum Heisenberg model. We conclude the chapter
by developing a hybrid version of the pure and the Hubbard-Stratonovich
SFRG in Sec. 3.4.

Note that throughout the thesis we will set kB = ~ = 1 to simplify the
notation. Unless specifically stated otherwise, we will also assume (discrete)
translational invariance in time and space.

1.2 Renormalization group

1.2.1 Historical overview
Perturbative renormalization

To understand the origins of the modern renormalization group, one has
to go back to the early days of quantum field theory. This discipline was
born 1927 when Dirac formulated a quantum theory of electrodynamics
(aptly called quantum electrodynamics by him) by coupling the electric
current density to a quantized version of the electromagnetic field, which he
described as a system of quantized oscillators [4]. Within a leading-order
perturbative calculation, this theory enabled Dirac to explain the phenomenon
of spontaneous emission as well as photon scattering processes, resonance
fluorescence, and non-relativistic Compton scattering of photons by electrons
[5]. It quickly turned out, however, that higher-order terms are always riddled
with infinities [6], since the corresponding Feynman diagrams involve closed
loops which correspond to ultraviolet divergent integrals over arbitrarily high
momenta. Nevertheless, as the leading-order results were good enough for
the experimental accuracy at that time, it was possible to ignore this issue
for a while [5].

Being unsolved for almost twenty years, a new impetus to tackle the
problem of the ultraviolet divergences came from the experimental results
of Lamb and Retherford, who showed that the 2S1/2 and the 2P1/2 states of
hydrogen correspond to different energy levels [7]. While the Dirac equation
predicted these states to be exactly degenerate, they found that the 2S1/2 state
has a slightly higher energy with ∆E ≈ 4.37× 10−6 eV (Lamb shift). Shortly
after this observation had been discussed at the Shelter Island conference in
1947, Bethe managed to derive the Lamb shift by taking the interaction of
the electron with the radiation field into account and effectively introducing
an ultraviolet cutoff of the order of mec

2 [8]. Since most of the effect is due
to photons of lower energy, the relative error of his result was below two
per cent. About two years later, Kroll and Lamb [9] as well as French and
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Weisskopf [10] managed to improve on this by calculating perturbatively the
exact contribution to the Lamb shift up to lowest order in e2/~c. Although
these authors managed to arrive at a finite result by subtracting the divergent
terms, the methods to achieve this were “clumsy and unreliable” [5]. It was
only through the work of Tomonaga, Schwinger, and Feynman that a reliable
way of dealing with the infinities emerged, winning them the Physics Nobel
prize in 1965; their approaches were subsequently unified by Dyson [11]. In
essence, the idea consists of introducing counterterms at each order of the
perturbative expansion in such a way that all infinities are cancelled; most
importantly, the exact form of these counterterms can be fixed in quantum
electrodynamics through a finite number of experimental measurements, which
allows to calculate higher-order contributions to electromagnetic effects in an
unambiguous way [11]. This method of perturbative renormalization marks
the beginning of the modern renormalization group and will be described in
more detail in Sec. 1.2.2.

Renormalization group

Although it was now possible to calculate observables like the Lamb shift
or the g-factor of the electron perturbatively to a high precision, the situ-
ation was not really satisfying. On the one hand, there was evidence that
the meson coupling constants1 are of order unity, while on the other hand
even in quantum electrodynamics there are domains in momentum space
where the effective coupling can grow to infinity, making non-perturbative
considerations necessary [14]. An important step in this direction was made
by Stückelberg and Petermann [15, 16], who found that finite renormalization
transformations of scattering-matrix elements form a Lie group and thus obey
differential equations. Seemingly unaware of their work, Gell-Mann and Low
[17] independently considered scale transformations in QED and showed that
the electromagnetic coupling changes with the energy scale according to a
differential equation, which in modern parlance is known as a beta function.
These ideas were further developed by Bogolyubov and Shirkov [14]; the title
of their paper “Charge Renormalization Group in Quantum Field Theory”
marks the first appearance of the term renormalization group (RG).

Wilsonian RG

While these works resulted in useful techniques to analyze quantum field
theories, their importance was not recognized for many years. The renormal-

1The concept of quarks was only developed more than a decade later in 1964 by
Gell-Mann [12] and by Zweig [13].



6 1. Introduction

ization group only seemed to provide information about the large-momentum
regime; however, asymptotic freedom had not been discovered yet, so that
the general consensus at this time was that all quantum field theories are
strongly interacting in the short-distance limit. Without a good alternative
to perturbation theory, it thus seemed that the renormalization group merely
allowed for discussing, but not calculating, the asymptotic behaviour of quan-
tum field theories in a physically uninteresting regime [18]. It was only in the
beginning of the 1970s that Wilson provided a conceptual framework for the
renormalization group and thus revolutionized the way we think about the
scale dependence of physical theories [19–22]. In a seminal work [19, 20], he
cast Kadanoff’s “block spin” transformation [23] of an Ising ferromagnet into
a differential form and subsequently generalized the approach to momentum
space (see Sec. 1.2.3 for details). This allowed Wilson to connect the renor-
malization group to second-order phase transitions and to analyze the critical
regime in a simple way.

Moreover, his work not only provided an extremely powerful technique to
describe criticality in condensed matter systems, but it also had a significant
impact on the interpretation of quantum field theories by comparing them
with condensed matter systems. Since these systems are usually formulated
on a lattice, the inverse lattice parameter 1/a acts as a ultraviolet cutoff. It
is thus natural to interpret it as the energy scale where the model ceases
to be meaningful; e.g., the Heisenberg model can only be expected to give
a reasonable description of real magnetic materials at length scales much
larger than a, while at shorter length scales it has to be superseded by a
more fundamental theory. In this sense, the Heisenberg model constitutes an
effective theory to describe the low-energy physics of the real material. By
applying this point of view to quantum field theory, we see that the standard
model should really be interpreted as an effective model; it constitutes the low-
energy limit of some yet unknown physics. The necessity of introducing a finite
ultraviolet cutoff Λ0 that was hitherto seen as unphysical is easily explained
by this: Λ0 just represents the energy scale where the standard model ceases
to be valid. Insisting on sending Λ0 to infinity thus corresponds to the (rather
bold) claim that our theory is valid at arbitrarily high energies. Furthermore,
this point of view explains why the standard model is renormalizable (see
Sec. 1.2.3 for details) [22, 24].

In addition to these conceptual points, Wilson also indirectly contributed
to the discovery of asymptotic freedom in non-Abelian gauge theories by
Gross and Wilczek [25] and by Politzer [26] by reviving the renormalization
group formalism [18]. This led to the rehabilitation of quantum field theory,
which was seen as suspect due to the apparent inevitability of a diverging
coupling constant in the ultraviolet regime [27]. With respect to condensed
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matter physics, a very impressive practical contribution was Wilson’s solution
of the Kondo model using a formulation of the RG that combines its formal
aspects with numerical calculations (today known as numerical renormaliza-
tion group), which allowed him to arrive at quantitatively accurate results
[28, 29]. While Anderson, Yuval, and Hamann [30] and Anderson [31] had
previously succeeded in describing the weak-coupling regime of the Kondo
model, Wilson’s approach also covered the strong-coupling as well as the
intermediate regime.

Functional RG

As mentioned above, Wilson’s original idea [19] of implementing the renormal-
ization procedure was based on Kadanoff’s “block spin” transformation [23],
where one groups nearby spins into so-called blocks and treats these blocks
as single effective spins by averaging over their constituents. In practice,
however, it is usually better to work in momentum space and to successively
eliminate degrees of freedom whose wavevector lies inside a given interval;
technically, Wilson realized this by dividing the momentum space into finite-
sized spherical shells [20]. Shortly after the publication of Wilson’s ideas, it
was realized by Wegner and Houghton [32] that by making the momentum-
space shells infinitely thin, one can derive an exact functional differential
equation (Wegner-Houghton equation) that describes how the effective action
of the model evolves with respect to the cutoff Λ. Conceptually, this was an
important result; unfortunately, the momentum shell procedure can lead to
technical complications due to the non-analyticity of a sharp momentum cutoff
[33]. A significant improvement was made about ten years later by Polchinski,
who formulated the renormalization group using functional integrals and
introduced a general momentum cutoff [24]. Again a decade later, Wetterich
[34] brought the functional renormalization group (FRG) into its modern
form by introducing the average effective action. Defined as the Legendre
transform of the generating functional of the connected Green functions, it
generates the vertices that are irreducible with respect to the cutting of a
single propagator line. Its behaviour under an infinitesimal change in the
cutoff is given by the Wetterich equation, which nowadays usually constitutes
the starting point for practical calculations in bosonic or fermionic systems
[33].
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1.2.2 Perturbative renormalization
Introduction

To shed more light on the technical details of perturbative renormalization, we
will in the following demonstrate the concept by means of a simple example.
As already mentioned in Sec. 1.2.1, the idea consists in renormalizing an ill-
defined perturbative expansion via the introduction of suitable counterterms.
Following Ref. [35], we consider an unspecified theory depending on a free
parameter g0, which we will call the bare coupling constant. We further
assume that we are interested in calculating some function F (x), which
corresponds to an observable like a correlation function or the cross section
of a scattering process. Expanding this function in powers of g0 results in the
general expression [up to a trivial redefinition of F (x)]

F (x) = g0 + g2
0F1(x) + g3

0F2(x) +O(g4
0). (1.1)

The point is now that the coefficients in this Taylor expansion can be diver-
gent; in practice, these divergences usually result from loop diagrams that
correspond to ultraviolet-divergent integrals. A simple example is given by
the integral

F1(x) = α
∫ ∞

0

dk

k + x
, (1.2)

which exhibits a logarithmic divergence as is common in renormalizable
theories like the standard model. While the expansion (1.1) is then obviously
pathological, this does not necessarily mean that a perturbative expansion
of F (x) is impossible; it might just be the case that expanding in the bare
coupling g0 is problematic. We therefore measure F (x) experimentally at
a single point x = µ and use the data to define the renormalized coupling
constant gR,

F (µ) = gR. (1.3)
In order to replace the bare coupling constant in Eq. (1.1) by the renormalized
one, we first have to ensure the existence of the expansion (1.1) by regularizing
it. In general we thus write

FΛ(x) = g0 + g2
0FΛ,1(x) + g3

0FΛ,2(x) +O(g4
0), (1.4)

where Λ is an auxiliary parameter that deforms our theory such that all
coefficients FΛ,i are well defined and we recover the original theory for Λ→∞.
A simple choice would be

FΛ,1(x) = α
∫ Λ

0

dk

k + x
= α ln

(
Λ + x

x

)
, (1.5)
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where Λ acts as an ultraviolet cutoff. Note that in practice it is often
advisable to use other schemes like dimensional regularization that preserve
the symmetries of the theory at hand.

First- and second-order correction

Since the expansion (1.4) is well defined, we can now start the renormalization
procedure. Since to leading order

FΛ(x) = g0 +O(g2
0), (1.6)

we directly see from condition (1.3) that

g0 = gR +O(g2
R). (1.7)

Up to this order it is trivial to take the limit Λ→∞ so that

F (x) = gR +O(g2
R). (1.8)

The next-to-leading order is more interesting. Defining δ2g as the subleading
term in the expansion

g0 = gR + δ2g +O(g3
R), (1.9)

we can write

FΛ(x) = gR + δ2g + g2
RFΛ,1(x) +O(g3

R). (1.10)

To fix the counterterm δ2g, we set x = µ and again make use of condition (1.3)
to find

δ2g = −g2
RFΛ,1(µ), (1.11)

which immediately yields

FΛ(x) = gR + g2
R [FΛ,1(x)− FΛ,1(µ)] +O(g3

R). (1.12)

For the specific case (1.5) we can write this as

FΛ(x) = gR + g2
Rα ln

[
(Λ + x)µ
(Λ + µ)x

]
+O(g3

R), (1.13)

which is still well defined in the limit Λ→∞,

F (x) = gR + g2
Rα ln

(
µ

x

)
+O(g3

R). (1.14)
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General remarks

Note that it is only possible to remove the cutoff in our second-order re-
sult (1.12) if the limit

∆F1(x, µ) = lim
Λ→∞

[FΛ,1(x)− FΛ,1(µ)] (1.15)

exists for all x. This is not always the case; a simple counterexample is given
by

FΛ,1(x) = α
∫ Λ

1
dk

k

k + x
, (1.16)

which diverges linearly. Setting µ = 0 for simplicity so that our condition (1.3)
becomes

F (0) = gR, (1.17)

we find that

FΛ,1(x)− FΛ,1(µ) = (µ− x)α
∫ Λ

1
dk

k

(k + x)(k + µ) . (1.18)

Although the linear divergence has been weakened to a logarithmic one, we still
cannot remove the cutoff. This is only possible if our theory contains another
free parameter that we can then use to get rid of the remaining logarithmic
divergence. Generalizing this point to higher orders in the perturbative
renormalization, we find that there are two main possibilities: on the one
hand, it might turn out that a finite number of free parameters is sufficient
to remove, order by order, all divergences that appear. In this case we say
that the theory is renormalizable; a specific example of this behaviour is
quantum electrodynamics, where only two parameters (mass and electric
charge) have to be renormalized [11]. On the other hand, it is possible that
divergences in higher-order terms can only be removed by introducing an
ever increasing number of free parameters. Since this necessitates an infinite
number of experimental measurements to fully define the theory, we say that
it is non-renormalizable. It therefore seems rather fortunate that the structure
of the standard model is such that the theory is renormalizable; however, as
we will see in Sec. 1.2.3, this follows naturally from a Wilsonian point of view.

1.2.3 Wilsonian renormalization group
Setup

While the Wilsonian RG is related to the perturbative renormalization as
discussed in the previous section, it differs significantly in appearance as
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decimation

rescaling

Figure 1.1: Schematic representation of Wilson’s RG procedure in real space.

well as in its interpretation. The basic idea is to start from a microscopic
model and to iteratively eliminate degrees of freedom. A single iteration of
the Wilsonian RG consists of two steps: first we eliminate a subset of the
degrees of freedom by integrating over them or by taking a partial trace
(decimation). Intuitively, this has the effect of “zooming out” of the system.
After the decimation has been performed, we then rescale all length scales
such that the lattice parameter has again the original size. This rescaling
is important since it makes it possible to encounter fixed points, where the
system is invariant under the combined action of decimation and rescaling.
A graphical representation of this procedure is shown in Fig. 1.1. While
it is possible to perform the decimation and rescaling steps in real space
(known as Migdal-Kadanoff RG [36, 37]), it is usually more efficient to work
in momentum space. More explicitly, let us assume that we are interested in
calculating the partition function [33]

Z(g) =
∫
D[ϕ] e−S[ϕ,g], (1.19)

where S[ϕ, g] is the action of the system under consideration. Here we have
collected all coupling constants into the vector g, while ϕ is a superfield that
can comprise both bosonic and fermionic degrees of freedom. Furthermore, we
perform an initial averaging over all microscopic fluctuations whose wavevec-
tors k are larger than the UV cutoff Λ0 [29]. In real space, this corresponds
conceptually to dividing the system into regions of the size (2π/Λ0)D and per-
forming a statistical averaging over these regions. We thus rewrite Eq. (1.19)
as

Z(g) =
∫ Λ0

0
D[ϕ] e−SΛ0 [ϕ,gΛ0 ], (1.20)
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where the functional integral∫ Λ0

0
D[ϕ] =

∫
D[ϕ<Λ0 ] (1.21)

by definition only involves fluctuations whose wavevectors fulfill |k| < Λ0.
On a technical level, this can be done by separating the superfield ϕ into a
long-distance part ϕ<Λ0

and a microscopic part ϕ>Λ0
,

ϕ(k) = ϕ<Λ0(k) + ϕ>Λ0(k). (1.22)

Here ϕ(k) are the Fourier components of the superfield ϕ and we use a sharp
cutoff to realize the scale separation,

ϕ<Λ0(k) = Θ(Λ0 − |k|)ϕ(k),
ϕ>Λ0(k) = Θ(|k| − Λ0)ϕ(k). (1.23)

The important point is that Eq. (1.20) implicitly defines

e
−SΛ0 [ϕ<Λ0

,gΛ0 ] =
∫ ∞

Λ0
D[ϕ] e−S[ϕ,g], (1.24)

where SΛ0 [ϕ<Λ0
, gΛ0 ] characterizes our model at the microscopic scale Λ0.

Decimation and rescaling

We are now in a position to define the decimation step of the RG procedure
as

e−SΛ[ϕ<Λ ,gΛ] =
∫ Λ0

Λ
D[ϕ] e−SΛ0 [ϕ<Λ0

,gΛ0 ]
, (1.25)

where we integrate over all fluctuations with wavevectors inside the momentum
shell Λ < |k| < Λ0. All that is left to do is to properly rescale all variables.
We therefore introduce the rescaled wavevector

k̃ = bk, (1.26)

where b = Λ0/Λ > 1 is the step size of the RG transformation. In quantum
systems we should also rescale the frequency as

ω̃ = bzω, (1.27)

where z is the dynamical critical exponent [33]. The rescaling of the superfield
ϕ consists of two parts,

ϕ̃(k̃) = bDϕ
√
Zbϕ(k). (1.28)
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Here Dϕ is called the canonical (or engineering) dimension of ϕ, which can be
easily derived by a dimensional analysis. The second factor

√
Zb arises due to

interaction effects and is related to the anomalous dimension [33]. Finally, we
express the action SΛ[ϕ<Λ , gΛ] in terms of the rescaled variables such that is
has the same form as before the decimation step, which implicitly defines the
rescaled coupling constants g̃Λ. We can therefore summarize the combined
effect of decimation and rescaling as the RG transformation

g̃Λ = R(b; gΛ0). (1.29)

However, since there is nothing special about the ultraviolet cutoff Λ0, we
can write this in the more general form

g̃′ = R(b; g̃), (1.30)

which relates the coupling constants g̃ at some scale Λ to the couplings
constants g̃′ at the lower scale Λ′ = Λ/b. In general, R(b; g̃) is a complicated
nonlinear function of the coupling constants. However, since a single RG
transformation with the step size b′′ = b′b is by construction identical to two
successive transformations with the step sizes b and b′, we know that the
functions R(b; g̃) fulfill the semigroup2 property

R(b′b; g̃) = R(b′;R(b; g̃)). (1.31)

Fixed points and universality

An important characteristic of the RG transformations R(b; g̃) is the existence
of fixed points,

g̃∗ = R(b; g̃∗). (1.32)

Since the correlation length ξ is rescaled as

ξ̃ = ξ

b
(1.33)

under a single iteration of the Wilsonian RG and we require ξ = ξ̃ at a
fixed point, it follows that there are exactly two classes of fixed points.
One possibility is that the correlation length vanishes (ξ = 0); we then

2Since the Wilsonian RG involves the averaging over short-distance fluctuations, the
transformation g̃Λ cannot in general have an inverse; in this sense, the term renormalization
group is a misnomer. Note that this argument does not apply to the modern FRG, where
one introduces a regulator that depends continuously on the cutoff.
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say that the fixed point is trivial. More interesting are critical fixed points
where the correlation length diverges (ξ = ∞). These are encountered at
a continuous phase transition, where fluctuations occur on all length scales.
Setting g̃ = g̃∗ + δg̃ and linearizing

δg̃′ = g̃′ − g̃∗ = R(b; g̃)−R(b; g̃∗) = R(b; g̃∗)δg̃ +O(δg̃2) (1.34)

thus allows us to gain information about the critical regime by studying the
quadratic matrix R(b; g̃∗). In particular, it enables us to study the flow of
the coupling constants close to the fixed point, which is closely related to the
critical exponents that characterize a continuous phase transition [33]. On a
technical level, we consider linear combinations of the coupling constants,

uα = vTα δg̃ =
∑
i

vα,iδg̃i, (1.35)

where the vα are left eigenvectors of R(b; g̃∗). As a consequence, the scaling
variables uα do not mix under the linearized RG transformation (1.34). Using
the semigroup property of the R(b; g̃), it is also straightforward to show that
the eigenvalues λα(b) corresponding to the vα can be written as

λα(b) = byα , (1.36)

where the (in general real-valued) exponents yα are independent of b. We
thus arrive at the linearized flow equation of the scaling variables [33],

∂luα = yαuα +O(u2
α), (1.37)

where we have parametrized b = el. Since u∗α = 0 at the fixed point, the sign
of yα determines the qualitative behaviour of the flow of the scaling variables.
For yα > 0 the associated scaling variable is called relevant, since it grows
under the RG transformation. On the other hand, irrelevant scaling variables
are related to a negative yα. In the special case of yα = 0, the behaviour of the
scaling variable is determined by the higher-order corrections in Eq. (1.37);
this corresponds to marginally relevant and marginally irrelevant scaling
variables, respectively.

As we will see in Ch. 2, this classification is directly useful for practical
calculations as it allows us to study the critical regime by retaining only
the relevant and marginal couplings. Furthermore, from a conceptual point
of view, this shows how the phenomenon of universality3 arises: while a
microscopic model might depend on a large (possibly infinite) number of

3Universality refers to the fact that physical systems can exhibit the same critical
behaviour although their underlying microscopic models are different.
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coupling constants, it usually turns out that only a small number of them
are relevant or marginal. In the critical regime close to a critical fixed point,
almost all coupling constants flow to zero so that the macroscopic behaviour
of the system can be characterized by a small number of parameters. With
respect to quantum field theory, this also explains the renormalizability of the
standard model by considering it as the long-distance limit of a more general
theory [22]: since non-renormalizable couplings (i.e., irrelevant couplings with
respect to an infrared fixed point) are strongly suppressed in the low energy
regime, they can be neglected in this limit without significantly affecting
the predictive power of the model. The seemingly fortunate fact that the
perturbative renormalization procedure allowed to obtain finite results from
quantum electrodynamics thus emerges in a natural way.

1.3 Imaginary-time formalism
In the following we will shift the focus away from the renormalization group
and consider the imaginary-time formalism, which is also known as Matsubara
formalism [38]. Since the functional renormalization group for spin operators
as presented in Ch. 3 is formulated in terms of imaginary-time ordered
Green functions, it seems appropriate to give a short introduction to this
approach. The advantage of the Matsubara formalism is that it facilitates
actual calculations by treating the statistical Boltzmann factor e−βH and
the time-evolution operator e−itH on the same footing. More specifically, in
Sec. 3.2.1 it will allow us to write down the flow equation of the generating
functional of connected spin correlators in a simple way. However, since
experimentally only real times are relevant, results within the Matsubara
formalism do not directly correspond to observables. In the present section,
we will therefore motivate this approach by showing how imaginary-time
ordered Green functions are related to physical quantities.

1.3.1 Experimental motivation
Linear response theory and retarded Green functions

In condensed matter physics, one is often interested in the response of a system
to external perturbations driving it out of equilibrium. While working with
many-body systems far from equilibrium is in general difficult, it is in many
cases sufficient to assume weak perturbations and to linearize around the
equilibrium state. This is achieved within linear response theory. As we will
see, the corresponding response functions (magnetic susceptibility, thermal or
electrical conductivity, etc.) are instances of retarded Green functions, which
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have a direct relation to imaginary-time ordered Green functions. Consider
the Hamiltonian

H = H0 + V (t), (1.38)

where H0 is the time-independent Hamiltonian of the system under consider-
ation and V (t) is a weak perturbation of the form

V (t) = Bf(t). (1.39)

Here B is a quantum-mechanical operator and f(t) is a scalar function
modelling the external force acting on the system. We are thus interested
in the effect of the time-dependent perturbation V (t) on an observable A.
Assuming that V (t) is turned on at the time t0, we define

∆ 〈A(t)〉 = 〈Ã(t)〉 − 〈A(t0)〉 , (1.40)

where the time evolution of Ã is in the Heisenberg picture of the perturbed
system,

Ã(t) = eiH(t−t0)A(t0)e−iH(t−t0), (1.41)

while the expectation value 〈. . . 〉 refers to the unperturbed system. It turns
out that we can expand ∆ 〈A(t)〉 perturbatively in V (t), which to leading
order results in

∆ 〈A(t)〉 ≈ −i
∫ t

t0
dt′ 〈[A(t), B(t′)]〉 f(t′) ≡

∫
dt′GR

AB(t, t′)f(t′). (1.42)

Here we have defined the response function

GR
AB(t, t′) = −iΘ(t− t′) 〈[A(t), B(t′)]〉 , (1.43)

which is known as the retarded Green function. Since the time evolution is
now in the Heisenberg picture of the unperturbed system,

A(t) = eiH0(t−t0)A(t0)e−iH0(t−t0), (1.44)

GR
AB is independent of the perturbation V (t) and can be evaluated fully within

an equilibrium calculation.4 The retarded Green function thus has direct
physical relevance as it tells us how the system will react when it is slightly
driven out of equilibrium, but it also has a clear microscopic interpretation in
terms of the operators A and B.

4Conversely, this implies that static and dynamical properties of quantum-mechanical
systems are intrinsically linked to each other: while for a classical system it is possible to
treat the statics and the dynamics separately, this is in general not the case for quantum-
mechanical systems unless all operators commute with each other [39].
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Spectroscopy and spectral function

Another fundamental quantity in condensed matter physics is the spectral
function ρ, which is related to the elementary excitations of the system. To
give an idea of its physical relevance, consider a photoemission spectroscopy
experiment, where we shine light with frequency ν on a metallic surface and
measure the photocurrent Ip(ν) of emitted electrons with momentum p and
energy εp. In a simplified description, we can express the photocurrent as
[40, 41]

Ip(ν) = 2π
∑
k

|Mp,k|2 ρ̃k(εp − ν), (1.45)

where the exact form of the matrix elements Mp,k depends on the electron-
photon interaction. Since one can usually approximate Mp,k as a constant
[40], the non-trivial functional dependence is encoded in [41]

ρ̃k(ω) = 1
Z
∑
m,n

|〈Em| ck |En〉|2 e−βẼnδ[ω − (Ẽn − Ẽm)], (1.46)

where |En〉 = |En(N)〉 is a simultaneous eigenstate of both the Hamiltonian
H and the particle number operator N , while Ẽn = En(N)− µN with the
chemical potential µ. The form of ρ̃k(ω) is essentially dictated by Fermi’s
golden rule [42], where the fermionic annihilation operator ck appears in the
matrix element as the incoming photon removes an electron with momentum
k from the system. The delta distribution ensures conservation of energy,
while the Boltzmann factor

e−βẼn

Z
= e−β(En(N)−µ)

Tr [e−β(H−µN)] (1.47)

results from the finite temperature of the system. Besides the experimen-
tal relevance of ρ̃k(ω), its Fourier transform also has a simple microscopic
interpretation, ∫

dωe−iωtρ̃k(ω) =
〈
c†k(0)ck(t)

〉
. (1.48)

We can therefore use ρ̃k(ω) to connect microscopic calculations on the theory
side to experimental line spectra. However, as we will see in Sec. 1.3.2, a
more convenient quantity to work with is the spectral function

ρk(ω) = (eβω − ζ)ρ̃k(ω), (1.49)
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where the sign of ζ = ±1 is usually chosen depending on whether we work with
bosonic or fermionic operators. In general, we define the spectral function as

ρAB(ω) = 1
Z
∑
m,n

〈En|B |Em〉 〈Em|A |En〉 e−βẼn(eβω − ζ)δ[ω − (Ẽn − Ẽm)],

(1.50)

where A and B are arbitrary operators. For example, the choice A = B† = ck
is connected to the single-particle correlator in Eq. (1.48) and describes
photoemission spectroscopy as discussed above, while A = B† = ckck′ refers
to a microscopic two-particle correlator and corresponds to Auger electron
spectroscopy. We can also write the spectral function in terms of correlators,∫

dωe−iωtρAB(ω) = 2πρAB(t) =
〈
[A(t), B(0)]−ζ

〉
, (1.51)

where the ζ subscript refers to the commutator or anticommutator, respec-
tively. Comparing this expression with Eq. (1.43) shows the close relationship
between ρAB and GR

AB, which in frequency space takes the form

GR
AB(ω) =

∫
dω′

ρAB(ω′)
ω − ω′ + i0+ . (1.52)

1.3.2 Wick rotation and Matsubara Green function
As we have seen in the previous subsection, the retarded Green function GR

AB

and the spectral function ρAB are central objects in the study of condensed
matter systems, since they connect microscopic quantities like single-particle
correlators to experimentally accessible observables. In the end, both can be
expressed through correlators of the form

〈A(t)B(0)〉 = 1
Z
Tr
[
e−β(H−µN)A(t)B(0)

]
= 1
Z
Tr
[
e−βHeiHtAe−iHtB

]
,

(1.53)

where we have defined the grand-canonical Hamiltonian H = H − µN . How-
ever, these real-time correlators at finite temperature are unfortunately in-
convenient for practical calculations. An important technical point is that
Wick’s theorem, which tells us how to decompose time-ordered correlators of
a non-interacting system, is only valid at T = 0 in the real-time formalism.
In the context of the present work, the main obstacle is that the real-time
formalism does not allow for an efficient formulation of the spin FRG devel-
oped in Ch. 3. To circumvent this problem, we analytically continue the time
variable t in Eq. (1.53) to the complex plane. The correlator is then well
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defined as long as Im(t) ∈ [−β, 0], since H = H† is bounded from below. For
convenience, we write t = −iτ and choose τ ∈ [0, β], which is known as Wick
rotation [43]. We can now introduce the Matsubara Green function

GM
AB(τ, τ ′) = −〈T A(τ)B(τ ′)〉 , (1.54)

where the time evolution is in the imaginary-time Heisenberg picture,

A(τ) = eHτAe−Hτ , (1.55)

and the time-ordering symbol T sorts later times to the left,

T A(τ)B(τ ′) =
{
A(τ)B(τ ′), τ > τ ′,
B(τ ′)A(τ), τ < τ ′.

(1.56)

More specifically, Eq. (1.54) refers to the bosonic Matsubara Green function,
which corresponds to ζ = 1 in Eqs. (1.49)–(1.51). While it is easy to define
GM
AB for general ζ = ±1, we will in the present thesis only need the bosonic

form since spin operators on different lattice sites commute. The Matsubara
Green function is the main object of interest in the imaginary-time formalism.
We first note that it is well defined as long as −β < τ − τ ′ < β and that it
obeys the Kubo-Martin-Schwinger boundary conditions,

GM
AB(β, τ ′) = GM

AB(0, τ ′), (1.57a)
GM
AB(τ, β) = GM

AB(τ, 0), (1.57b)

which follow from the cyclicity of the trace. As a result, its Fourier transform

GM
AB(iωn) =

∫ β

0
dτeiωτGM

AB(τ, 0) (1.58)

is defined on the countably infinite set of (bosonic) Matsubara frequencies
ωn = 2πn/β with n ∈ Z. It turns out that the Matsubara Green function
in frequency space has a direct connection to the spectral function from the
previous section via

GM
AB(iωn) =

∫
dω′

ρAB(ω′)
iωn − ω′

. (1.59)

Together with ∣∣∣∣∫ dωρAB(ω)
∣∣∣∣ = |〈[A,B]〉| <∞, (1.60)

it follows that we can analytically continue GM
AB(iωn) → GM

AB(iω) to the
entire upper and lower half-plane, i.e., Im(iω) 6= 0. Note that in the common
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case where ρAB(ω) acts as a probability distribution, the resulting function
GM
AB(iω) can be identified with the Stieltjes transform of the spectral function.

We also observe that, according to Eq. (1.59), GM
AB(iω) is holomorphic and

vanishes for |iω| → ∞ along any straight line in the upper or lower half-
plane. These two conditions can be used in actual calculations to identify
the correct analytic continuation of GM

AB(iωn) [44]. Comparing the spectral
representation (1.52) of GR

AB with Eq. (1.59), we see that we can recover the
retarded Green function via

GR
AB(ω) = GM

AB(ω + i0+). (1.61)

Furthermore, using Eq. (1.59) we can also express the spectral function as5

ρAB(ω) = i

2π
[
GM
AB(ω + i0+)−GM

AB(ω − i0+)
]
. (1.62)

We thus find that the knowledge of the analytic continuation of the Matsubara
Green function gives us direct access to physically relevant quantities, which
justifies the use of the imaginary-time formalism.

For completeness, we should mention that there is an alternative to the
Matsubara approach called Keldysh formalism, which is especially useful in
non-equilibrium situations (see, e.g., Ref. [45]). While it leads to a more
complicated theory due to an artificial doubling of the degrees of freedom,
it has the advantage of dealing directly with real-time Green functions. As
a consequence, it avoids the additional step of analytically continuing to
the real-frequency axis, in contrast to the Matsubara formalism. Since the
analytic continuation of GM

AB(iωn) is an ill-posed problem if the function is
only known at a finite number of points to a finite precision, the Keldysh
approach can be advantageous in situations where only numerical methods
are feasible [46]. Due to the analytical nature of the present thesis, however,
it is for our purpose more efficient to work completely within the Matsubara
formalism.

5For real ρAB(ω) we can simplify Eq. (1.62) as ρAB(ω) = − 1
π Im

[
GRAB(ω)

]
. This is a

general form of the well-known fluctuation-dissipation theorem, as it connects a correlator
(fluctuation) to the imaginary part of a response function (dissipation).



Chapter 2

FRG approach to the
Berezinskii-Kosterlitz-Thouless
transition

2.1 Motivation

In the beginning of the 1970s, it was well known that long-range order through
the spontaneous breaking of a continuous symmetry is not possible at finite
temperature in one and two dimensions. This fact, which is formalized in
the Mermin-Wagner theorem [47], is due to the increasingly strong effect
of fluctuations in lower dimensions resulting from the massless Goldstone
mode. The discovery of the Berezinskii-Kosterlitz-Thouless (BKT) transition
was therefore completely unexpected as it constitutes a finite temperature
continuous phase transition in a two dimensional system with continuous
symmetry, something that was believed to be impossible due to the absence
of long-range order. The solution to this apparent paradox is that the
BKT transition does not break any symmetry, but is instead driven by
topological defects. This possibility was first realized by Berezinskii [48, 49]
and was developed further by Kosterlitz and Thouless [50, 51], whose correct
description of the nature of the phase transition won them the Physics Nobel
prize in 2016 as it highlighted the importance of topological concepts in the
description of condensed matter systems.

21
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vortex
antivortex

Figure 2.1: (a) Schematic representation of the XY model. The unit-length
spins (arrows), parametrized by their polar angle θ, interact via a nearest-
neighbour interaction J (shown in red for the center spin). (b) Configuration
of the XY model with two topological defects. The vortex on the left has a
vorticity of q = 1, while the antivortex on the right has a vorticity of q = −1.
Together they form a vortex-antivortex pair with vanishing vorticity.

2.1.1 Introduction to the XY model
One of the original examples [48, 50] for a system exhibiting a BKT transition
is the two-dimensional classical XY model with the Hamiltonian

HXY = −J
∑
i,µ

si · si+µ = −J
∑
i,µ

cos(θi+µ − θi). (2.1)

It consists of unit-length spins si = ex cos θi + ey sin θi located at the sites ri
of a square lattice with N sites and lattice spacing a, which interact via a
nearest-neighbour interaction J > 0 (see Fig. 2.1a). The subscript i+µ refers
to the lattice site ri + aµ, where the vector aµ connects nearest-neighbour
lattice sites in the direction µ ∈ {x, y}. Since J is positive, it is obvious
that the ground state of the system is ferromagnetic and thus spontaneously
breaks the U(1) symmetry of the Hamiltonian. On the other hand, for
T > 0 the Mermin-Wagner theorem tells us that spontaneous symmetry
breaking of a continuous symmetry is not possible in two dimensions [47].
Naively, this seems to exclude a classical continuous phase transition since
long-range order is forbidden at any finite temperature. In order to understand
why this conclusion is in fact wrong, it is useful to consider the continuum
approximation of the system, which allows us to rigorously introduce the
notion of topological defects in the XY model. Expanding the cosine in
Eq. (2.1) to second order and taking the lattice spacing a to zero yields (up
to a constant term)

Hcont
XY = J

2

∫
d2r (∇θ)2 , (2.2)
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where θ = θ(r) is now a scalar field. This allows us to split the phase field θ
into a spin-wave part θsw and a vortex part θv,

θ(r) = θsw(r) + θv(r), (2.3)

where θv(r) is a local minimum of Hcont
XY and θsw(r) is the so-called spin-wave

deviation from it. This results in

Hcont
XY = J

2

∫
d2r

[
(∇θsw)2 + (∇θv)2

]
, (2.4)

where ∮
dr ·∇θsw = 0, (2.5)∮
dr ·∇θv = 2πq. (2.6)

Here the integration is over an arbitrary closed contour and q is the integer-
valued vorticity. Topological defects with q > 0 are called vortices, while
antivortices have q < 0. For illustration, Fig. 2.1b shows a sample configura-
tion of a vortex-antivortex pair with q = ±1 on a lattice. Note that vortex
and spin-wave degrees of freedom are decoupled in the Hamiltonian (2.4).
Retaining only the spin-wave part (which amounts to ignoring the periodicity
of the phase), one can show that for all T this results in an algebraically
decaying spin-spin correlation [51],

〈si · sj〉 ∼ |rij|−T/2πJ . (2.7)

While spin waves are thus ultimately responsible for destroying any long-range
order at low temperatures, they only result in an analytic contribution to the
free energy and can therefore be neglected in a qualitative description of the
BKT transition. For this reason, we will in the following concentrate on the
effect of vortices in the system.

2.1.2 Role of vortices in the BKT transition
There is a simple argument in favor of a finite-temperature phase transition
in the XY model. Consider a vortex with vorticity q centered at r = 0. Its
minimum energy configuration can be parametrized with the polar angle ϕ of
r as

θv(r) = qϕ, (2.8)
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so that

|∇θv(r)| = q

r
. (2.9)

From Eq. (2.2) we see that the energy of this configuration is given by

Hv = J

2

∫
d2r

(
q

r

)2
= q2πJ

∫ R

r0
dr

1
r

= q2πJ ln R
r0
, (2.10)

where r0 is the radius of the vortex core (which of the order of the lattice
spacing) and R is related to the system size. Obviously, Hv diverges in
the thermodynamic limit where R → ∞. However, at finite temperature
we should actually consider the free energy. Since we have roughly (R/r0)2

possibilities to place the vortex core in the system, we can approximate the
free energy shift that results from introducing a single vortex as

∆F = Hv − TSv ≈ q2πJ ln R
r0
− T ln R

2

r2
0

=
(
q2πJ

2 − T
)

ln R
2

r2
0
. (2.11)

While ∆F > 0 at low temperatures, we see that for sufficiently high temper-
atures the system energetically favors the creation of a single vortex. This
argument thus indicates a phase transition at the critical temperature

Tc = πJ

2 , (2.12)

above which free vortices and antivortices with |q| = 1 appear. Below Tc, topo-
logical defects are only possible in the form of bound vortex-antivortex pairs
(cf. Fig. 2.1b), which at large separations d have the energy [cf. Eq. (2.10)]

Hpair = 2q2πJ ln d

r0
. (2.13)

The intuitive picture (cf. Fig. 2.2) is then as follows: close to zero temperature,
only tightly bound vortex-antivortex pairs arise. Increasing the temperature
also increases the average size of the pairs, up to a point where the largest pair
is broken up, which results in free vortices and antivortices. Note that our
simple derivation of Tc above neglected the effect of having a finite number
of vortex-antivortex pairs in the system. Since smaller pairs can lead to the
screening of larger pairs, it facilitates the breaking of vortex-antivortex pairs
and thus reduces the critical temperature. While it is possible to take this
effect into account within a mean-field approach, we will not cover this here
since we are mainly interested in the critical behaviour close to the BKT
transition, where a mean-field approach will inevitably break down. In order
to correctly describe the critical regime, we will in the following turn our
attention to RG approaches.
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quasi-long-range order disordered phase

Figure 2.2: Intuitive picture of the BKT transition. (a) At low temperatures,
the vortices (red dots) and antivortices (blue dots) only appear as bound
pairs, which grow in size with increasing T . This dimerized behaviour of the
topological defects results in an algebraically decaying spin-spin correlation,
parametrized by the temperature-dependent anomalous dimension η(T ). Due
to the corresponding infinite correlation length ξ, we call this phase quasi-
long-range ordered. (b) Increasing the temperature beyond Tc breaks up the
vortex-antivortex pairs and allows (anti)vortices to move around freely. Since
this allows for much more efficient screening, the correlation length ξ becomes
finite and the system is in the disordered phase.

2.1.3 Kosterlitz-Thouless real-space RG

Originally, the critical regime of the BKT transition was studied by Kosterlitz
and Thouless within a real-space RG approach. Close to τl = π/2 and ỹl = 0,
the resulting flow equations [51–53] are equivalent to

∂lỹl = (2− π/τl)ỹl, (2.14)

∂lτl = ỹ2
l

8π , (2.15)

where l is the scale parameter (given by the dimensionless lattice spacing in
Ref. [52]), τl is related to T/J and ỹl is proportional to the vortex fugacity,
whose initial condition depends on T/J in the XY model. The corresponding
flow diagram is shown in Fig. 2.3. We see that for sufficiently small ỹl and τl
(which translates to small T/J in the XY model), the flow terminates at a
line of Gaussian fixed points where ỹl = 0; this case corresponds to Fig. 2.2a.
The behaviour changes as soon as we cross the separatrix; while ỹl will still
initially decrease, it diverges for l →∞. This implies that the system is in
the high-temperature phase in Fig 2.2b where free vortices are energetically
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Figure 2.3: Flow diagram for the BKT transition in the neighborhood of
τl = π/2, ỹl = 0, as described by the flow equations (2.14) and (2.15). To the
left of the separatrix (red line), the system flows into the line of Gaussian
fixed points (green line) at ỹl = 0, τl ∈ [0, π/2], which corresponds to the
quasi-long-range ordered phase at low temperatures. The disordered phase
at high temperatures is found to the right of the separatrix, where the flow
finally escapes to large ỹl and τl. (Figure reproduced from Ref. [54])

allowed, leading to a finite correlation length ξ(T ) of the form [52]

ξ(T ) ∼
T→Tc

e
C

√
Tc

T−Tc , (2.16)

where C is a non-universal number (C ≈ 1.5 in the XY model). Since the
singular part of the free energy F behaves as

F (T ) ∼
T→Tc

ξ−2(T ) (2.17)

above Tc, we find that the BKT transition is of infinite order in the Ehrenfest
classification.

Note that the KT flow equations (2.14) and (2.15) have been derived
in the limit of small ỹl, which amounts to a very large, negative chemical
potential of the vortices. In the XY model, this assumption is not strictly
fulfilled: as we have noted at the end of Sec. 2.1.2, the density of vortices will
be finite at the BKT transition, so that we cross the separatrix at a finite ỹl.
However, while this will certainly affect the numerical value of non-universal
quantities, it does not change the universal behaviour of the phase transition.
A good example of this fact is the discontinuous behaviour of τ−1

l for l→∞
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Figure 2.4: Experimental data on thin 4He films for the discontinuity of the
superfluid density ρs(T ) at the phase transition as a function of the critical
temperature Tc. The solid line corresponds to the theoretical prediction in
Eq. (2.19). (Reprinted figure with permission from D. J. Bishop and J. D.
Reppy, Phys. Rev. Lett. 40, 1727 (1978). Copyright 2019 by the American
Physical Society.)

at Tc [55],

lim
l→∞

[
1

τl(T−c ) −
1

τl(T+
c )

]
= 2
π
. (2.18)

In superfluid 4He, we can identify the large l limit of τ−1
l with ρs(T )/(m2T ),

where ρs(T ) is the superfluid density and m is the mass of a helium atom [56].
While neither Tc nor ρs(Tc) are universal quantities on their own, Eq. (2.18)
implies that the jump of the superfluid density at the phase transition is
always proportional to Tc,

ρs(T−c ) = 2
π
m2Tc. (2.19)

As can be seen in Fig. 2.4, the predicted universal behaviour is reproduced very
well in experiments on thin 4He films [57], which corroborates the theoretical
description of the BKT transition by Kosterlitz and Thouless [51, 52]. Good
agreement with theory is also seen in experiments on arrays of Josephson
junctions [58] and in ultracold gases [59–61].
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2.1.4 Previous FRG approaches to the BKT transition

As we have seen, Kosterlitz and Thouless correctly described the nature of
the BKT transition. However, they used a rather uncommon real-space RG
approach, which is not easily generalized to more complicated systems. It
would therefore be desirable to reformulate their approach using a standard
momentum regulator within the modern FRG formalism. This was first
attempted by Gräter and Wetterich [62], who studied the O(N)-symmetric
linear σ model in two dimensions within the derivative expansion. For
N = 2, they generally found good agreement with the characteristics of
the BKT transition; for instance, they estimated the anomalous dimension
as η(Tc) ≈ 0.24, which is very close to the exact result of 1/4. In spite of
that, their theory does not actually predict a phase transition at all, but
rather a well-defined crossover: at low temperatures, they only found a line
of quasi-fixed points with a large, but finite correlation length. Although
the FRG flow almost stops at these quasi-fixed points, the finite mass of the
amplitude mode very slowly decreases until the high-temperature regime is
reached.

The same behaviour was found in subsequent FRG approaches to the
two-dimensional O(2) model, which also employed the derivative expansion
[63–65]. While Jakubczyk, Dupuis, and Delamotte [64] managed to fine-tune
the momentum regulator separately for each T ≤ Tc such that they encounter
a line of true fixed points, yielding an accurate description of the universal
jump of the superfluid density [cf. Eq. (2.19)], this fine-tuning is only justified
if one assumes a priori that the O(2) model in fact involves a BKT transition.
However, as discussed in the paper by Jakubczyk and Metzner [65], it seems
possible that the amplitude fluctuations in the O(2) model do in fact reduce
the BKT transition to a well-defined crossover: since the FRG calculations
yield an exponentially large correlation length in the low-temperature region,
it would be hard to distinguish from a truly infinite correlation length in
numerical simulations or in experiments.

In another recent FRG approach to the O(2) and the XY model in
D = 2, Defenu et al. [66] decoupled the amplitude and phase fluctuations
by hand. This enabled them to first solve the flow of the amplitude part
and use it as input for the phase part; the latter is then solved with the
help of the Kosterlitz-Thouless flow equations, which they do not derive
within the FRG. While they generally find good agreement with BKT physics,
similar to the previous FRG approaches [63–65], it seems unsatisfying not to
consider amplitude and phase fluctuations simultaneously. Furthermore, they
directly used the Kosterlitz-Thouless flow equations of the phase part, thus
circumventing the problem of deriving them within the FRG formalism.
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Our work in the present chapter thus serves two purposes: First, we show
how to rederive the Kosterlitz-Thouless flow equations fully within an FRG
approach, using a standard Litim cutoff in momentum space. In Sec. 2.4
we present the derivation within the vertex expansion and afterwards show
an alternative route via the derivative expansion in Sec. 2.5. Secondly, we
generalize our approach to the O(2) model in Sec. 2.6, where we include weak
amplitude fluctuations and show that they only lead to irrelevant additional
couplings. Finally, in Sec. 2.7 we consider weak out-of-plane fluctuations and
find that do not spoil the BKT transition either.

2.2 Villain model and dual transformations

2.2.1 Villain approximation
Since we are interested in the physics of the XY model described by the
Hamiltonian (2.1), we would like to calculate the partition function

ZXY =
∏
i

(∫ 2π

0

dθi
2π

)
e

1
τ

∑
i,µ

cos(∆µθi), (2.20)

where we have defined the dimensionless temperature

τ = T/J (2.21)

as well as the lattice derivative

∆µθi = θi+µ − θi. (2.22)

Since the cosine terms in the partition function (2.20) make it difficult to
work directly with ZXY , we employ the Villain approximation [67],

e
1
τ

cos(∆µθi) ≈ RV (1/τ)
∞∑

niµ=−∞
exp

[
−(∆µθi − 2πniµ)2

2τV (1/τ)

]
. (2.23)

To determine RV and τV , we first expand both sides in a Fourier series,

∞∑
l=−∞

Il(1/τ) cos(lθi) ≈ RV (1/τ)
√
τV (1/τ)

2π

∞∑
l=−∞

e−l
2τV (1/τ)/2 cos(lθi), (2.24)

where the Il(x) are modified Bessel functions of the first kind,

Il(x) ≡ 1
2π

∫ 2π

0
dθ ex cos θ cos(lθ). (2.25)
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Demanding equality for the two lowest Fourier coefficients l = 0 and l = 1
then results in

τV (x) = 2 ln I0(x)
I1(x) , (2.26)

RV (x) = I0(x)
√

2π
τV (x) . (2.27)

Intuitively, Eq. (2.23) amounts to a second-order expansion of the cosine
around all its minima. This respects the periodicity of the cosine, which
is crucial for the existence of the high-temperature phase due to vortices
(cf. Sec. 2.1.1). Contrary to popular knowledge, the Villain approximation
becomes exact in the limit of low as well as high temperatures [68]. Dropping
the constant prefactor due to RV , we arrive at the partition function of the
Villain model,

ZVillain =
∏
i

(∫ 2π

0

dθi
2π

)∏
i,µ

 ∞∑
niµ=−∞

 exp
−∑

i,µ

(∆µθi − 2πniµ)2

2τV (1/τ)

 . (2.28)

In the remainder of this section, we will derive several alternative representa-
tions of ZVillain via exact duality transformations. To simplify the notation,
we will from now on write τ instead of τV (1/τ).

2.2.2 Current representation
We start by replacing the niµ variables in Eq. (2.28) by another set of integers
piµ with the help of the identity

∞∑
n=−∞

e−(x−2πn)2/(2τ) =
√
τ

2π

∞∑
p=−∞

e−τp
2/2−ipx, (2.29)

which follows as a special case from the Poisson summation formula [69]
∞∑

n=−∞
f(x− 2πn) = 1

2π

∞∑
p=−∞

e−ipx
∫ ∞
−∞

dx′eipx
′
f(x′) (2.30)

by setting f(x) = e−x
2/(2τ). This results in

ZVillain =
∏
i

(∫ 2π

0

dθi
2π

)∏
i,µ

 ∞∑
piµ=−∞

 exp
−∑

i,µ

(
τ

2p
2
iµ + ipiµ∆µθi

) ,
(2.31)
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where we have again dropped a constant prefactor. In order to get rid of the
θi field, we rewrite [55]

−i
∑
i,µ

piµ∆µθi = −i
∑
i,µ

piµ(θi+µ − θi) = i
∑
i

θi∆ · pi, (2.32)

where we have introduced the lattice divergence

∆ · pi =
∑
µ

(piµ − pi−µ,µ), (2.33)

so that pi = (pi,x, pi,y) can be interpreted as a current-like degree of freedom.
This allows us perform the θi integrals,

ZVillain =
∏
i,µ

 ∞∑
piµ=−∞

δ∆·pi,0

 e− τ2 ∑i,µ
p2
iµ , (2.34)

which has the effect of enforcing a local constraint of vanishing lattice diver-
gence at each lattice site.

2.2.3 Dual-vortex representation
We have thus arrived at a representation of ZVillain that is formulated purely in
terms of discrete degrees of freedom. This is an important step, since we know
that the BKT transition is driven by vortices, which are discrete quantities.
However, the constraint of vanishing lattice divergence is inconvenient for
actual calculations. It is more efficient to take it into account automatically
by expressing piµ as the lattice curl of another field [55, 70, 71],

piµ =
∑
ν

εµν∆νmi+µ, (2.35)

where εµν is the Levi-Civita symbol and the integer field mi lives on the dual
lattice (see Fig. 2.5). Up to a constant prefactor,1 the partition function now
reads

ZVillain =
∏
i

 ∞∑
mi=−∞

 e−Sdual[m], (2.36)

1The partition function (2.36) is actually divergent, since ωk=0 = 0. This is due to
the transformation (2.35), which only depends on differences of the mi field. Strictly
speaking, we should therefore fix the value of mi at an arbitrary lattice site. However,
since this choice does not affect the physics, it is more convenient to sum over all possible
configurations, which results in Eq. (2.36).
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Figure 2.5: Schematic representation of the physical lattice (blue dots), the
dual lattice (green dots), and of the related fields. The conserved currents
piµ (red arrows) flow between sites of the physical lattice, while the mi field
defined in Eq. (2.35) lives on the dual lattice. (Figure reproduced from
Ref. [54])

where the dual-vortex action is given by

Sdual[m] = τ

2
∑
i,µ

(∆µmi)2 = 1
2
∑
k

ωk |mk|2 . (2.37)

Here the Fourier components of the mi field are defined as

mk = 1√
N

∑
i

e−ik·rimi, (2.38)

so that for the dimensionless dispersion we find

ωk = 4τ(1− γk) (2.39)

with

γk = 1
2
∑
µ

cos(kµa), (2.40)

the nearest-neighbour structure factor on a square lattice. The simple form
of Sdual[m] will make it an ideal starting point for our FRG approach.
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2.2.4 Coulomb-gas representation
Nevertheless, let us perform one more duality transformation on ZVillain to
obtain the Coulomb-gas representation, as it will show the relation of the mi

field to the physical vortices. We therefore introduce an auxiliary continuous
field φi and an integer field qi by writing

ZVillain =
∏
i

∫ ∞
−∞

dφi
∞∑

qi=−∞

 e− τ2 ∑i,µ
(∆µφi)2−2πi

∑
i
qiφi . (2.41)

The equivalence to Eq. (2.36) can be seen by using the distributional form of
the Poisson summation formula (2.30),

∞∑
q=−∞

e−2πiqφ =
∞∑

m=−∞
δ(φ−m), (2.42)

so that the φi integrals become trivial due to the delta distributions. On the
other hand, we can first perform the Gaussian integral over φi, which yields
(up to a constant factor)

ZVillain =
∏
i

 ∞∑
qi=−∞

 δ (∑
i

qi

)
e−

1
2
∑

ij
Vijqiqj . (2.43)

Here the delta distribution2 ensures charge neutrality of the system and the
interaction Vij is defined as

Vij = (2π)2

N

∑
k 6=0

eik·(ri−rj)

ωk
→ a2

∫ π/a

−π/a
dkx

∫ π/a

−π/a
dky

eik·(ri−rj)

ωk
, (2.44)

where the latter expression refers to the thermodynamic limit. Since ωk ≈
τa2k2 for small momenta, it is obvious that the integral in Eq. (2.44) is
infrared divergent. This behaviour is due to the finite on-site interaction

V0 = (2π)2

N

∑
k 6=0

1
ωk
, (2.45)

which diverges for an infinite system. We therefore introduce the regularized
interaction Ṽij by subtracting the problematic on-site term,

Ṽij = Vij − V0 = (2π)2

N

∑
k 6=0

eik·(ri−rj) − 1
ωk

, (2.46)

2The appearance of the delta distribution without an enclosing integral is due to the
divergence of the partition function (2.36) (cf. footnote 1). In practice, we can thus
interpret it as a Kronecker delta.
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which is still well defined in the thermodynamic limit. The partition func-
tion (2.43) is unchanged under the replacement Vij → Ṽij,

ZVillain =
∏
i

 ∞∑
qi=−∞

 δ (∑
i

qi

)
e−

1
2
∑

ij
Ṽijqiqj , (2.47)

as the additional term in the action

1
2
∑
ij

Ṽijqiqj = 1
2
∑
ij

Vijqiqj −
V0

2

(∑
i

qi

)2

(2.48)

vanishes due to the enforced charge neutrality. Comparing the large-distance
behaviour of the regularized interaction,

Ṽij ∼ − ln
(
|ri − rj|

a

)
, (2.49)

with the energy of a vortex-antivortex pair [cf. Eq. (2.13)],

Hpair = 2q2πJ ln
(
|ri − rj|

r0

)
, (2.50)

we see that we can interpret the partition function (2.47) as describing a
system of interacting (anti)vortices, where qi gives the vorticity of a topological
defect at the lattice site ri. Since we can equally interpret the qi as interacting
electrical charges in two dimensions, the form of ZVillain in Eq. (2.47) is also
called Coulomb-gas representation. We thus find that themi field in Eq. (2.36)
is related to the physical vortices by a duality transformation; therefore, we
refer to the mi as dual vortices.

2.3 FRG on the dual-vortex model

2.3.1 Technical preliminaries
Before we apply the FRG to the dual-vortex representation (2.36) of ZVillain,
let us first give a technical overview of the definitions we will use and the
resulting exact relations. We consider a general deformation Sλ of the full
action Sdual, which depends continuously on the cutoff λ via a regulator Rλ.
The generating functional of the scale-dependent connected Green functions
Gλ is then defined via

eGλ[h] =
∏
i

 ∞∑
mi=−∞

 e−Sλ[m]+
∑

i
himi . (2.51)
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Taking derivatives of Gλ with respect to the source field hi yields the scale-
dependent connected Green functions of the integer field mi; e.g.,

δhiGλ[h] = 〈mi〉λ,h = m̄λ,i[h], (2.52)
δhjδhiGλ[h] = 〈mimj〉λ,h − 〈mi〉λ,h 〈mj〉λ,h , (2.53)

where the scale- and source field-dependent expectation value of an arbitrary
functional F [m] is defined by

〈F [m]〉λ,h =
∏
i

(∑∞
mi=−∞

)
e−Sλ[m]+

∑
i
himiF [m]∏

i

(∑∞
mi=−∞

)
e−Sλ[m]+

∑
i
himi

. (2.54)

Inverting the relation between the hi and the m̄λ,i[h] allows us to introduce
the generating functional of the irreducible vertices Γλ as the subtracted
Legendre transform

Γλ[m̄] =
∑
i

hλ,i[m̄]m̄i − Gλ[hλ[m̄]]− 1
2
∑
k

Rλ(k) |m̄k|2 , (2.55)

so that the irreducible vertices are defined by

Γ(n)
λ (k1, . . . ,kn) = δm̄kn · · · δm̄k1

Γλ[m̄]
∣∣∣
m̄=0

. (2.56)

Since the full action Sdual[m] is parity symmetric with respect to the field mi,
we assume that the regulator Rλ is chosen such that this also holds for the
deformed action Sλ[m]; as a consequence, all irreducible n-point vertices with
n odd vanish identically. It is easy to show that Γλ[m̄] obeys the Wetterich
equation

∂λΓλ[m̄] = 1
2
∑
k

∂λRλ(k)
Γ(2)
λ,k,−k[m̄] +Rλ(k)

, (2.57)

where

Γ(2)
λ,k,k′ [m̄] = δm̄kδm̄k′Γλ[m̄]. (2.58)

Differentiating the Wetterich equation twice then yields the flow equation of
the two-point irreducible vertex,

∂λΓ(2)
λ (k) = 1

2N
∑
q

Ġλ(q)Γ(4)
λ (k,−k, q,−q). (2.59)
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Here Ġλ is the single-scale propagator,

Ġλ(k) = − [Gλ(k)]2 ∂λRλ(k), (2.60)

which depends on the propagator

Gλ(k) = 1
N

∑
ij

eik·(ri−rj) δhjδhiGλ[h]
∣∣∣
m=0

=
[
Γ(2)
λ (k) +Rλ(k)

]−1
. (2.61)

The exact flow equations of higher-order irreducible vertices are derived
analogously by taking derivatives of the Wetterich equation; the irreducible
four-point vertex, e.g., flows according to

∂λΓ(4)
λ (k1,k2,k3,k4) = 1

2N
∑
q

Ġλ(q)Γ(6)
λ (k1,k2,k3,k4, q,−q)

− 1
N

∑
q

[
Ġλ(q)Γ(4)

λ (k1,k2, q,−q − k1 − k2)Gλ(−q − k1 − k2)

× Γ(4)
λ (q + k1 + k2,−q,k3,k4) + (k2 ↔ k3) + (k2 ↔ k4)

]
. (2.62)

A graphical representation of these flow equations up to sixth order is shown
in Fig. 2.6.

2.3.2 Initial condition within the lattice FRG
We are now in a position to set up the FRG. As mentioned above, we will work
within the dual-vortex representation of the Villain model [see Eq. (2.36)],
where the dual-vortex action is given by

Sdual[m] = τ

2
∑
i,µ

(∆µmi)2 = 1
2
∑
k

ωk |mk|2 . (2.63)

Due to the quadratic dependence of Sdual on the integer field mi, this rep-
resentation is also known as the discrete Gaussian model [73–75]. Since a
Gaussian theory describes a trivial system of non-interacting entities, the
non-trivial aspects that are responsible for the BKT transition are encoded
in the discreteness of the mi. This prevents us from applying the usual FRG
methods, which are tailored to path integrals [33]. Instead, we will rely on
the lattice FRG formalism developed by Machado and Dupuis [76], where the
deformed action is given by

Sλ[m] = 1
2
∑
k

[ωk +Rλ(k)] |mk|2 (2.64)
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Figure 2.6: Graphical representation of the exact flow equations of the
irreducible n-point vertices Γ(n)

λ with n = 2 [see Eq. (2.59)], n = 4 [see
Eq. (2.62)], and n = 6 (see Ref. [72]). Solid lines denote the propagator
Gλ defined in Eq. (2.61), while slashed solid lines represent the single-scale
propagator Ġλ given in Eq. (2.60). The dotted vertices on the left-hand side
refer to their scale-derivative ∂λΓ(n)

λ . We have labelled the external momenta
by integers, omitting them where there is no danger of ambiguity. (Figure
reproduced from Ref. [54])

with the Litim regulator [77]

Rλ(k) = (λ− ωk)Θ(λ− ωk). (2.65)

Choosing this regulator has two advantages: on the one hand, it only modifies
the dispersion at long wavelengths and thus follows the intuitive picture where
we integrate out high-energy modes during the FRG flow. On the other hand,
at the initial scale

λ0 = max
k

ωk = 8τ (2.66)

the dual vortices on different lattice sites are completely decoupled,

Sλ0 [m] = λ0

2
∑
k

|mk|2 = λ0

2
∑
i

m2
i , (2.67)

so that the initial condition reduces to a single-site problem; this is the main
feature of the lattice FRG [76]. As a result, the scale-dependent generating
functional of the connected Green functions introduced in Eq. (2.51) simplifies
at the initial scale to

Gλ0 [h] =
∑
i

ln
 ∞∑
mi=−∞

e−
λ0
2 m

2
i+himi

 =
∑
i

lnϑ3

(
ihi
2 , e−λ0/2

)
, (2.68)
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where the theta-function ϑ3(z, q) is defined as [78]

ϑ3(z, q) =
∞∑

m=−∞
qm

2
e2imz = 1 + 2

∞∑
m=1

qm
2 cos(2mz) (2.69)

and exists as long as |q| < 1. We can bring this into a more intuitive form by
using Jacobi’s identity [69]

ϑ3(z, e−πx) = 1√
x
e−z

2/(πx)ϑ3

(
z

ix
, e−π/x

)
. (2.70)

This results in

Gλ0 [h] =
∑
i

[
h2
i

2λ0
+ ln

√
2π
λ0

+ lnϑ3

(
πhi
λ0

, y0

)]
, (2.71)

where we have introduced the vortex fugacity at scale λ0,

y0 = e−2π2/λ0 = e−π
2/(4τ). (2.72)

In the limit of low temperatures where no vortices are present (y0 = 0), the
last term in Eq. (2.71) vanishes and Gλ0 [h] describes a free (Gaussian) system.
A finite value of y0 thus takes the discreteness of the mi field into account,
which reflects a finite density of vortices. At this point it turns out to be
useful to generalize our model by considering y0 as an independent variable;
the dual-vortex model is then recovered by using the relation (2.72). Since
we can show a posteriori that the universal aspects of the BKT transition
can be discussed within a neighborhood of y0 = 0, we expand

ϑ3

(
πhi
λ0

, y0

)
= 1 + 2y0 cos

(
2πhi
λ0

)
+O(y4

0). (2.73)

The expectation value of mi as a function of the source field then reads

〈mi〉λ0,h
= m̄λ0,i[h] = δGλ0 [h]

δhi
= hi
λ0
− 4πy0

λ0
sin

(
2πhi
λ0

)
+O(y2

0), (2.74)

so that
hλ0,i[m̄] = λ0m̄i + 4πy0 sin(2πm̄i) +O(y2

0). (2.75)
As a consequence, the generating functional of the irreducible vertices [see
Eq. (2.55)] has the initial form

Γλ0 [m̄] = −N ln
√

2π
λ0

+ 1
2
∑
k

ωk |m̄k|2 − 2y0
∑
i

cos(2πm̄i) +O(y2
0). (2.76)
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2.3.3 Continuum limit
So far we have formulated everything on a lattice, which has allowed us
to make use of the lattice FRG formalism in order to derive the initial
condition (2.76) for Γλ[m̄]. For the discussion of the critical regime and the
derivation of the Kosterlitz-Thouless RG equations, however, it will be useful
to switch to the continuum limit, where

ωk = c0k
2 +O(k4) (2.77)

with

cΛ0 = τa2. (2.78)

We accordingly parametrize the cutoff via

λ = cΛ0Λ2 (2.79)

and rescale the regulator Rλ(k) by an appropriate wave-function renormal-
ization factor cΛ/cΛ0 , so that

RΛ(k) = cΛ(Λ2 − k2)Θ(Λ2 − k2). (2.80)

Here the scale-dependent coupling cΛ is defined via the long-wavelength
expansion of the flowing irreducible two-point vertex,

Γ(2)
Λ (k) = rΛ + cΛk

2 +O(k4). (2.81)

Within this parametrization, the propagator is given by

GΛ(k) =
[
Γ(2)

Λ (k) +RΛ(k)
]−1

=
{

(rΛ + cΛΛ2)−1, k < Λ,
(rΛ + cΛk

2)−1, k > Λ, (2.82)

while the single-scale propagator reads

ĠΛ(k) = − [GΛ(k)]2 ∂ΛRΛ(k) = − [2cΛΛ + (∂ΛcΛ)(Λ2 − k2)]Θ(Λ2 − k2)
(rΛ + cΛΛ2)2 .

(2.83)

From simple power counting we find that rΛ is a relevant coupling at the
Gaussian fixed-point manifold with a scaling dimension of two, while cΛ is
a marginal coupling. This generalizes to higher-order irreducible vertices:
expanding the irreducible n-point vertex with n ∈ Z+ as

Γ(2n)
Λ (k,−k, 0, . . . , 0) = u

(2n)
Λ + 1

2c
(2n)
Λ a2k2 +O(k4), (2.84)
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it turns out that the couplings

u
(2n)
Λ = Γ(2n)

Λ (0, . . . , 0) (2.85)

are all relevant with the same scaling dimension, while the couplings

c
(2n)
Λ = a−2 lim

k→0
∂2
kΓ

(2n)
Λ (k,−k, 0, . . . , 0) (2.86)

are all marginal (couplings due to higher-order terms in k are irrelevant).
To derive the Kosterlitz-Thouless RG equations, we thus have to keep track
of a countably infinite number of relevant and marginal couplings. In the
following section we will do this within the vertex expansion, while in Sec. 2.5
we will present an alternative derivation within the derivative expansion by
using a generalization of the LPA’.

2.4 Kosterlitz-Thouless flow equations from
the vertex expansion

2.4.1 General strategy
For a non-trivial system like the Villain model, it is of course impossible to
keep track of an infinite number of couplings in an exact way. We therefore
start with a few remarks about the strategy that we will use in this section
and the approximations we will be making. Let us first write down the
initial condition for the generating functional of the irreducible vertices in
the continuum limit [cf. Eq. (2.76)],

ΓΛ0 [m̄] = −N ln
√
π

4τ + 1
2
∑
k

ωk |m̄k|2 − 2y0
∑
i

cos(2πm̄i) +O(y2
0)

= NΓ(0)
Λ0

+ 1
2
∑
k

(rΛ0 + cΛ0k
2) |m̄k|2 +

∞∑
n=2

u
(2n)
Λ0

(2n)!
∑
i

m̄2n
i +O(y2

0),

(2.87)

where

Γ(0)
Λ0

= − ln
√
π

4τ − 2y0, (2.88a)

rΛ0 = u
(2)
Λ0

= (2π)22y0, (2.88b)
cΛ0 = τa2, (2.88c)
u

(2n)
Λ0

= (−1)n+1(2π)2n2y0. (2.88d)
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Since we have chosen the regulator such that at the initial scale the system
reduces to a single-site problem, we see that the expansion of ΓΛ0 in the initial
vortex fugacity amounts to an expansion of the initial value of the relevant
couplings u(2n)

Λ0
in y0, which to leading order depend linearly on the initial

vortex fugacity. This continues to hold during the flow: defining the flowing
vortex fugacity yΛ via

Γ(2)
Λ (0) = u

(2)
Λ = rΛ = (2π)22yΛ (2.89)

so that yΛ0 = y0 +O(y2
0), the flowing relevant couplings u(2n)

Λ will to leading
order depend linearly on yΛ. Furthermore, for n ≥ 2 we will find that
the marginal couplings c(2n)

Λ , which initially vanish, will to leading order be
proportional to y2

Λ. These facts will allow us to simplify the flow equations
of the relevant and marginal couplings by expanding the right-hand side to
leading order in yΛ, which makes it possible to solve the infinite hierarchy of
flow equations analytically. Consider the exact flow equation of the irreducible
two-point vertex,

∂ΛΓ(2)
Λ (k) = 1

2N
∑
q

ĠΛ(q)Γ(4)
Λ (k,−k, q,−q). (2.90)

From the considerations above it is clear that to leading order in yΛ and
neglecting irrelevant couplings, we can ignore the dependence of Γ(4)

Λ on the
loop-momentum q. This results in the simpler flow equation

∂ΛΓ(2)
Λ (k) = 1

2N
∑
q

ĠΛ(q)Γ(4)
Λ (k), (2.91)

where we have defined

Γ(2n)
Λ (k) = Γ(2n)

Λ (k,−k, 0, . . . , 0), n ∈ Z+. (2.92)

Dropping all contributions which are at least of the order of y3
Λ, we can

simplify the flow equations of the irreducible four- and six-point vertices in a
similar way, which results in [cf. Eq. (2.62)]

∂ΛΓ(4)
Λ (k) = 1

N

∑
q

ĠΛ(q)
[1
2Γ(6)

Λ (k)−GΛ(q)Γ(4)
Λ (k)Γ(4)

Λ (0)

− 2GΛ(k + q)[Γ(4)
Λ (k)]2

]
(2.93)
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=
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Figure 2.7: Graphical representation of the approximate flow equations of
the irreducible vertices Γ(2)

Λ (k), Γ(4)
Λ (k), and Γ(6)

Λ (k) as given in Eqs. (2.91),
(2.93), and (2.94), respectively. External legs without labels carry vanishing
momentum. (Figure reproduced with modifications from Ref. [54])

and (cf. Fig. 2.6)

∂ΛΓ(6)
Λ (k) = 1

N

∑
q

ĠΛ(q)
[

1
2Γ(8)

Λ (k)−GΛ(q)Γ(4)
Λ (k)Γ(6)

Λ (0)

− 6GΛ(q)Γ(4)
Λ (0)Γ(6)

Λ (k)− 8GΛ(q + k)Γ(4)
Λ (k)Γ(6)

Λ (k)
]
.

(2.94)

In Fig. 2.7 we show a graphical representation of these approximate flow
equations.

2.4.2 Flow of the relevant couplings

To begin with, let us concentrate on the flow of the relevant couplings u(2n)
Λ ,

which are defined as the momentum-independent part of the irreducible 2n-
point vertices. Since all Γ(2n)

Λ with n ∈ Z+ are at least of the order of yΛ, we
see that to leading order in the flowing vortex fugacity it is sufficient to keep
only the first term in the flow equations. This results in the infinite hierarchy

∂Λu
(2n)
Λ = AΛ

2 u
(2n+2)
Λ , n ∈ Z+, (2.95)
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where AΛ is given by

AΛ = 1
N

∑
q

ĠΛ(q) = −
a2
(
Λ3cΛ + 1

4Λ4∂ΛcΛ
)

2π(rΛ + cΛΛ2)2 = −
a2
(
1 + 1

4Λ∂ΛcΛ
cΛ

)
2πcΛΛ[1 + rΛ/(cΛΛ2)]2

= − a2 [1 +O(y2
Λ)]

2πcΛΛ[1 +O(yΛ)]2 = − 1
2πτlΛ

+O(yΛ). (2.96)

Here we have used that ∂ΛcΛ is of the order of y2
Λ, which we will show explicitly

in Sec. 2.4.3, and we have introduced the scale-dependent dimensionless
temperature τl,

τl = cΛ

a2 , (2.97)

which is a function of the logarithmic scale parameter l = ln(Λ0/Λ). With the
logarithmic scale derivative ∂l = −Λ∂Λ we can now write down the infinite
hierarchy of coupled flow equations of the relevant couplings as

∂lu
(2n)
Λ = u

(2n+2)
Λ
4πτl

+O(y2
Λ), n ∈ Z+, (2.98)

with the initial condition

u
(2n)
Λ0

= (−1)n+1(2π)2n2y0, (2.99)

which obeys the recurrence relation u
(2n+2)
Λ0

= −(2π)2u
(2n)
Λ0

. The obvious
ansatz of generalizing this relation to arbitrary Λ,

u
(2n+2)
Λ = −(2π)2u

(2n)
Λ , (2.100)

is in fact compatible with the flow equations, which subsequently decouple as

∂lu
(2n)
Λ = −π

τl
u

(2n)
Λ +O(y2

Λ), n ∈ Z+. (2.101)

Note that relation (2.100) or the equivalent statement

u
(2n)
Λ = (−1)n+1(2π)2n2yΛ (2.102)

amount to the ansatz

UΛ(m̄) = 1
N

ΓΛ[m̄]|m̄i=m̄ = Γ(0)
Λ + 2yΛ − 2yΛ cos(2πm̄) (2.103)

for the effective potential, which we will encounter again in Sec. 2.5 in the
context of the derivative expansion. In order to derive the Kosterlitz-Thouless
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RG equations, we are mainly interested in the irreducible two-point vertex.
We therefore set n = 1 in Eq. (2.101) to obtain the flow of the vortex fugacity,

∂lyΛ = −π
τl
yΛ +O(y2

Λ). (2.104)

Since yΛ is a relevant coupling with a scaling dimension of two, we should
introduce the rescaled vortex fugacity

ỹl = (2π)32yΛ

cΛΛ2 = − u
(4)
Λ

2πcΛΛ2 , (2.105)

which obeys the flow equation

∂lỹl = (2− ηl − π/τl)ỹl +O(ỹ2
l ). (2.106)

As we will later show that the flowing anomalous dimension

ηl = ∂lτl
τl

(2.107)

of the dual-vortex field m̄k is of the order of ỹ2
l , we recover the first Kosterlitz-

Thouless RG equation from Sec. 2.1.3,

∂lỹl = (2− π/τl)ỹl +O(ỹ2
l ). (2.108)

2.4.3 Flow of the marginal couplings
The remaining step is now to solve the infinite hierarchy of flow equations of
the marginal couplings. We start by writing down the flow equation of τl,

∂Λτl = AΛ

4 c
(4)
Λ , (2.109)

which follows from the long-wavelength expansion of Eq. (2.91). Using the
same approximation of AΛ as before [see Eq. (2.96)], we find to leading order
in the vortex fugacity

∂lτl = c
(4)
Λ

8πτl
. (2.110)

Since the structure of the flow equations of the marginal couplings is more
complicated than in the case of the relevant couplings, let us first consider
the flow equation of c(4)

Λ in detail. From the Taylor expansion of Eq. (2.93)
we see that

∂Λc
(4)
Λ = AΛ

2 c
(6)
Λ − 5B0

Λu
(4)
Λ c

(4)
Λ − 2B′′Λ

(
u

(4)
Λ

)2
, (2.111)
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where the coefficients B0
Λ and B′′Λ are defined via

BΛ(k) = 1
N

∑
q

ĠΛ(q)GΛ(q + k) = B0
Λ + k2a2

2 B′′Λ +O(k4). (2.112)

Within our cutoff scheme, we can analytically evaluate them to leading order
in yΛ as

B0
Λ = −

a2
(
Λ3cΛ + 1

4Λ4∂ΛcΛ
)

2π(rΛ + cΛΛ2)3 = − a2

2πc2
ΛΛ3 +O(yΛ), (2.113)

B′′Λ = c2
ΛΛ3

2π(rΛ + cΛΛ2)4 = 1
2πc2

ΛΛ5 +O(yΛ), (2.114)

so that

∂lc
(4)
Λ = c

(6)
Λ

4πτl
− 5u(4)

Λ c
(4)
Λ

2πτlcΛΛ2 + 1
π

 u
(4)
Λ

cΛΛ2

2

= c
(6)
Λ

4πτl
+ 5c(4)

Λ ỹl
τl

+ 4πỹ2
l , (2.115)

where we have used the definition (2.105) of ỹl. However, as we have mentioned
before in Sec. 2.4.1, all c(2n)

Λ with n ≥ 2 are of the order of ỹ2
l . This allows us

to drop the second term in the flow equation of c(4)
Λ , which thus reads

∂lc
(4)
Λ = c

(6)
Λ

4πτl
+ 4πỹ2

l +O(ỹ3
l ). (2.116)

To get an idea of the general structure, let us also consider the flow equations
of the marginal couplings c(6)

Λ and c(8)
Λ explicitly. From Eq. (2.94) we see that

∂Λc
(6)
Λ = AΛ

2 c
(8)
Λ − 8u(4)

Λ u
(6)
Λ B′′Λ, (2.117)

since all other terms containing either c(4)
Λ or c(6)

Λ are of the order of y3
Λ. With

our leading-order results for AΛ and B′′Λ given above as well as the recurrence
relation (2.102), we can write the flow equation as

∂lc
(6)
Λ = c

(8)
Λ

4πτl
− (4π)3ỹ2

l +O(ỹ3
l ). (2.118)

Writing down the flow equation of Γ(8)
Λ (k), one can analogously show that

∂Λc
(8)
Λ = AΛ

2 c
(10)
Λ −

[
12u(4)

Λ u
(8)
Λ + 20(u(6)

Λ )2
]
B′′Λ, (2.119)
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which to leading order in the vortex fugacity reads

∂lc
(8)
Λ = c

(10)
Λ

4πτl
+ (4π)5ỹ2

l +O(ỹ3
l ). (2.120)

Comparing Eqs. (2.116), (2.118), and (2.120), we see that they have the form

∂lc
(2n)
Λ = c

(2n+2)
Λ
4πτl

+ (−1)n(4π)2n−3ỹ2
l +O(ỹ3

l ). (2.121)

It turns out that this expression is in fact valid for all n ≥ 2 (see Appendix A.1
for the explicit derivation) and thus constitutes an infinite hierarchy of
coupled flow equations. Though this system of differential equations is more
complicated than the one for the relevant couplings in Eq. (2.98), we can
solve it analogously with the ansatz

c
(2n+2)
Λ = −(4π)2c

(2n)
Λ , n ≥ 2, (2.122)

which implies

c
(2n)
Λ = (−1)n(4π)2n−4c

(4)
Λ , n ≥ 2. (2.123)

This decouples the flow equations as

∂lc
(2n)
Λ = −4π

τl
c

(2n)
Λ + (−1)n(4π)2n−3ỹ2

l +O(ỹ3
l ). (2.124)

To simplify this further, it is convenient to parametrize

c
(2n)
Λ = (−1)n(4π)2n−3c̃lỹ

2
l , n ≥ 2. (2.125)

Inserting this into the flow equation of c(2n)
Λ and using Eq. (2.108) to replace

∂lỹl results in

∂lc̃l = 1− c̃l
(

4 + 2π
τl

)
+O(ỹl). (2.126)

From this expression we readily see that c̃l is of order unity; as a result, the
c

(2n)
Λ with n ≥ 2 are of the order of ỹ2

l , justifying our previous approximations.
To leading order in the vortex fugacity we thus have to take care of three
independent couplings, which flow according to

∂lỹl = (2− π/τl)ỹl, (2.127a)

∂lτl = c̃lỹ
2
l

2τl
, (2.127b)

∂lc̃l = 1− c̃l
(

4 + 2π
τl

)
. (2.127c)
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However, in the vicinity of the line of Gaussian fixed points at ỹl = 0 and
τl ≤ π/2, the third coupling c̃l will rapidly converge to

c̃l = 1
4 + 2π

τl

, (2.128)

so that

∂lτl = ỹ2
l

8τl + 4π +O(ỹ3
l ). (2.129)

Close to the BKT transition temperature for vanishing vortex fugacity, τl ≈
τ∗ = π/2, we therefore recover the second Kosterlitz-Thouless RG equation
from Sec. 2.1.3,

∂lτl = ỹ2
l

8π +O(ỹ3
l ). (2.130)

Solving this flow equation together with

∂lỹl = (2− π/τl)ỹl +O(ỹ2
l ) (2.131)

then results in the well-known flow diagram shown in Fig. 2.3. Note that
since yΛ is a relevant coupling, there is some freedom in defining the rescaled
coupling ỹl. While Eq. (2.131) is unaffected by this, a rescaling of ỹl would
change the prefactor on the right-hand side of Eq. (2.130), which is thus
non-universal. Finally, let us point out a technical subtlety regarding the flow
equation of ỹl: while it is certainly consistent for general τl to neglect the
second-order term in the vortex fugacity, this is not true for the interesting
region close to τ∗ = π/2, where the coefficient of the linear ỹl term can become
arbitrarily small. In that case, our result in Eq. (2.131) should be understood
as the second-order mixed term in a double expansion in ỹl and in τ − τ∗,
which implies that we also have to take the ỹ2

l term at τ = τ∗ into account
to be consistent. However, in Appendix A.2 we show that including the
next-to-leading-order term yields

∂lỹl =
(

2− π

τl

)
ỹl + 8τl + 5π

8 (τl + π) (2τl + π)

(
2− π

τl

)
ỹ2
l +O(ỹ3

l ). (2.132)

It follows that Eq. (2.131) is indeed correct to second order in the double
expansion in ỹl and in τ − τ∗.
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2.5 Alternative derivation within the deriva-
tive expansion

2.5.1 Parametrization of ΓΛ[m̄]
As we have seen in the last section, working within the vertex expansion
amounts to taking an infinite number of relevant and marginal couplings into
account and solving the corresponding infinite hierarchy of flow equations.
The analytic solution to this was helped by the internal structure of the
infinite sets of couplings {u(2n)

Λ } and {c(2n)
Λ }; this structure can be traced

back to the cosine term in the initial condition (2.87) of ΓΛ[m̄], which relates
higher-order couplings via its Taylor expansion. While we were successful in
deriving the Kosterlitz-Thouless flow equations in Sec. 2.4, it nevertheless
seems inefficient to renormalize the prefactor of a cosine function by working
with its infinite number of Taylor coefficients. We will therefore show in
the present section how we can recover the flow equations of τl and ỹl from
the derivative expansion. This expansion strategy has been very successful
to calculate the critical exponents of O(N)-symmetric scalar models [79].
Intuitively, an expansion in gradients of the field m̄i is justified by the fact
that we are interested in the long-wavelength properties of the system.3

We start by parametrizing the generating functional of the irreducible
vertices as

ΓΛ[m̄] =
∑
i

UΛ(m̄i) + 1
2
∑
i

cΛ(m̄i) (∇rim̄i)2 , (2.133)

so that for a space-independent field configuration

ΓΛ[m̄]|m̄i=m̄ = NUΛ(m̄), (2.134)
δ2ΓΛ[m̄]
δm̄kδm̄−k

∣∣∣∣∣
m̄i=m̄

= U ′′Λ(m̄) + cΛ(m̄)k2. (2.135)

Here UΛ(m̄) is the effective potential and cΛ(m̄) is the field-dependent wave-
function renormalization factor, whose field-independent part corresponds
to

cΛ(m̄ = 0) = cΛ = τla
2. (2.136)

In contrast to the usual approach, it is for our purpose more convenient to
work directly with m̄ instead of m̄2/2. Comparing our parametrization of

3While ΓΛ[m̄] can contain non-analyticities in the physical limit Λ→ 0, this is not the
case for finite Λ where long-wavelength fluctuations are suppressed by the regulator.
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ΓΛ[m̄] with its initial value (2.87), we find that

UΛ0(m̄) = − ln
√
π

4τ − 2y0 cos(2πm̄) +O(y2
0) (2.137)

cΛ0(m̄) = cΛ0 = τa2. (2.138)

Note that neither the local potential approximation (LPA) nor its common
improvement LPA’ (see, e.g., Ref. [33]) would be sufficient for our system,
since we know from Sec. 2.3.3 that all Taylor coefficients of cΛ(m̄) are marginal
and have to be taken into account. As a result, we need to compute the flow
of both UΛ(m̄) and cΛ(m̄).

2.5.2 Derivation of the flow equations of UΛ(m̄) and
cΛ(m̄)

Flow equation of the effective potential

Let us first consider the effective potential, whose flow equation can be simply
read off from the Wetterich equation (2.57) as

∂ΛUΛ(m̄) = 1
2N

∑
k

∂ΛRΛ(k)
U ′′Λ(m̄) + cΛ(m̄)k2 +RΛ(k) . (2.139)

Since the regulator is given by [cf. Eq. (2.80)]

RΛ(k) = cΛ(Λ2 − k2)Θ(Λ2 − k2), (2.140)

it will be useful to introduce the shorthand G<
Λ as the low-momentum part

(k < Λ) of the propagator,

G<
Λ(m̄, k) = 1

U ′′Λ(m̄) + [cΛ(m̄)− cΛ] k2 + cΛΛ2 . (2.141)

With the flowing anomalous dimension ηl = ∂l ln τl we can then write the flow
equation of UΛ(m̄) as

∂lUΛ(m̄) = −a
2Λ2

4π

∫ 1

0
dxxG<

Λ(m̄,Λx)
[
2Λ2cΛ + (∂ΛcΛ)Λ3(1− x2)

]
= −a

2Λ2

4π
cΛ

cΛ(m̄)− cΛ

ηl2 +
[
1− ηl

2

(
1 + cΛΛ2 + U ′′Λ(m̄)

[cΛ(m̄)− cΛ]Λ2

)]

× ln
(

1 + [cΛ(m̄)− cΛ]Λ2

cΛΛ2 + U ′′Λ(m̄)

). (2.142)
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Flow equation of the wave-function renormalization factor

Next we evaluate the flow equation of the field-dependent wave-function
renormalization factor, which is given by

cΛ(m̄) = 1
2 lim
k→0

∂2
k

δ2ΓΛ[m̄]
δm̄kδm̄−k

∣∣∣∣∣
m̄i=m̄

. (2.143)

We therefore need the second derivative of the Wetterich equation with respect
to the field,

∂Λ
δ2ΓΛ[m̄]
δm̄kδm̄−k

∣∣∣∣∣
m̄i=m̄

= 1
2
∑
q

ĠΛ(m̄, q)Γ(4)
Λ (m̄,k,−k, q,−q)

−
∑
q

ĠΛ(m̄, q)G(2)
Λ (m̄,k + q)

[
Γ(3)

Λ (m̄,k, q,−k − q)
]2
.

(2.144)

The irreducible four-point vertex is for a space-independent field configuration
given by

Γ(4)
Λ (m̄,k,−k, q,−q) = 1

N

[
U ′′′′Λ (m̄) + c′′Λ(m̄)(k2 − 4k · q + q2)

]
, (2.145)

so that

1
2 lim
k→0

∂2
kΓ

(4)
Λ (m̄,k,−k, q,−q) = c′′Λ(m̄)

N
. (2.146)

As a consequence, we can write the Γ(4)
Λ contribution to the flow equation of

cΛ(m̄) as

1
2
∑
q

ĠΛ(m̄, q)1
2∂

2
k Γ(4)

Λ (m̄,k,−k, q,−q)
∣∣∣
k=0

= −cΛc
′′
Λ(m̄)a2Λ3

4π I
(4)
Λ (m̄),

(2.147)

where we have defined

I
(4)
Λ (m̄) =

∫ 1

0
dxx [G<

Λ(m̄,Λx)]2
[
2− ηl(1− x2)

]
. (2.148)

For the irreducible three-point vertex we find

Γ(3)
Λ (m̄,k, q,−k − q) = 1√

N

[
U ′′′Λ (m̄) + (k2 + k · q + q2)c′Λ(m̄)

]
. (2.149)
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Due to the k dependence in the propagator in Eq. (2.144) we need the
derivatives

∂k Γ(3)
Λ (m̄,k, q,−k − q)

∣∣∣
k=0

= c′Λ(m̄)q cosφ√
N

, (2.150)

∂2
k Γ(3)

Λ (m̄,k, q,−k − q)
∣∣∣
k=0

= 2c′Λ(m̄)√
N

, (2.151)

where φ is defined via k · q = kq cosφ. We thus get

∂k
[
Γ(3)

Λ (m̄,k, q,−k − q)
]2∣∣∣∣

k=0
= 2c′Λ(m̄)q cosφ

N

[
U ′′′Λ (m̄) + q2c′Λ(m̄)

]
,

(2.152)

∂2
k

[
Γ(3)

Λ (m̄,k, q,−k − q)
]2∣∣∣∣

k=0
= 2c′Λ(m̄)

N

[(
2 + cos2 φ

)
q2c′Λ(m̄) + 2U ′′′Λ (m̄)

]
.

(2.153)
We also need the derivatives of the propagator with respect to k, which for
q < Λ are given by
∂k G

(2)
Λ (m̄,k + q)

∣∣∣
k=0

= −2q cosφ [cΛ(m̄)− cΛ] [G<
Λ(m̄, q)]2 , (2.154)

∂2
k G

(2)
Λ (m̄,k + q)

∣∣∣
k=0

= 2 [G<
Λ(m̄, q)]2

{
4q2 cos2 φ [cΛ(m̄)− cΛ]2G<

Λ(m̄, q)

− [cΛ(m̄)− cΛ]− ΛcΛ cos2 φδ(Λ− q)
}
.

(2.155)

Putting these expressions together, we find that the three Γ(3)
Λ contributions

to the flow of cΛ(m̄) read

−
∑
q

ĠΛ(m̄, q)G(2)
Λ (m̄, q)∂

2
k

2
[
Γ(3)

Λ (m̄,k, q,−k − q)
]2∣∣∣∣

k=0

= cΛc
′
Λ(m̄)a2Λ3

2π I
(1)
Λ (m̄), (2.156)

−
∑
q

ĠΛ(m̄, q) ∂kG(2)
Λ (m̄,k + q)

∣∣∣
k=0

∂k
[
Γ(3)

Λ (m̄,k, q,−k − q)
]2∣∣∣∣

k=0

= −cΛc
′
Λ(m̄) [cΛ(m̄)− cΛ] a2Λ5

π
I

(2)
Λ (m̄), (2.157)

−
∑
q

ĠΛ(m̄, q)∂
2
k

2 G
(2)
Λ (m̄,k + q)

∣∣∣
k=0

[
Γ(3)

Λ (m̄, 0, q,−q)
]2

= cΛ [cΛ(m̄)− cΛ] a2Λ3

2π I
(3)
Λ (m̄)− c2

Λa
2Λ3

4π
[
c′Λ(m̄)Λ2 + U ′′′Λ (m̄)

]2
[G<

Λ(m̄,Λ)]4 ,
(2.158)
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where the momentum integrals are given by

I
(1)
Λ (m̄) =

∫ 1

0
dxx [G<

Λ(m̄,Λx)]3
[
2− ηl(1− x2)

] [5
2c
′
Λ(m̄)x2Λ2 + 2U ′′′Λ (m̄)

]
,

(2.159)

I
(2)
Λ (m̄) =

∫ 1

0
dxx3 [G<

Λ(m̄,Λx)]4
[
2− ηl(1− x2)

] [
c′Λ(m̄)x2Λ2 + U ′′′Λ (m̄)

]
,

(2.160)

I
(3)
Λ (m̄) =

∫ 1

0
dxx [G<

Λ(m̄,Λx)]4
[
2− ηl(1− x2)

] [
c′Λ(m̄)x2Λ2 + U ′′′Λ (m̄)

]2
×
[
2 [cΛ(m̄)− cΛ]x2Λ2G<

Λ(m̄,Λx)− 1
]
. (2.161)

Putting everything together, we arrive at the flow equation

∂lcΛ(m̄) = cΛa
2Λ2

4π

− 2c′Λ(m̄)Λ2I
(1)
Λ (m̄) + 4c′Λ(m̄) [cΛ(m̄)− cΛ] Λ4I

(2)
Λ (m̄)

− 2 [cΛ(m̄)− cΛ] Λ2I
(3)
Λ (m̄) + c′′Λ(m̄)Λ2I

(4)
Λ (m̄)

+ cΛΛ2 [c′Λ(m̄)Λ2 + U ′′′Λ (m̄)]2

[U ′′Λ(m̄) + cΛ(m̄)Λ2]4

. (2.162)

Since it is straightforward to evaluate the integrals I(n)
Λ (m̄) analytically, we

actually know the flow equation of cΛ(m̄) in closed form, which should be
solved together with the flow equation (2.142) of UΛ(m̄). Note that both flow
equations are exact within our ansatz (2.133) for ΓΛ[m̄]. By evaluating the
initial condition ΓΛ0 [m̄] numerically, we can therefore compute the flow of ỹl
and τl without assuming that the vortex fugacity is small. However, in the
present context we are mainly interested in rederiving the Kosterlitz-Thouless
RG equations, which we will do in the following.

2.5.3 Recovering the Kosterlitz-Thouless RG equa-
tions

Flow equation of ỹl

We start with the effective potential, whose flow equation is given in
Eq. (2.142). Using the fact that cΛ(m̄) = cΛ + O(y2

Λ), we can expand this
expression as

∂lUΛ(m̄) = −a
2Λ2(1− ηl/4)

4π
[
1 + U ′′Λ(m̄)

cΛΛ2

] +O(y2
Λ) = −a

2Λ2

4π

[
1− U ′′Λ(m̄)

cΛΛ2

]
+O(y2

Λ),

(2.163)
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where in the second step we have also used U ′′Λ = O(yΛ) and ηl = O(y2
Λ).

Inserting the ansatz [cf. Eq. (2.103)]

UΛ(m̄) = Γ(0)
Λ + 2yΛ − 2yΛ cos(2πm̄) (2.164)

on the right-hand side of this flow equation yields

∂lUΛ(m̄) = π

τl
2yΛ cos(2πm̄)− a2Λ2

4π +O(y2
Λ), (2.165)

so that

∂lyΛ = ∂lU
′′
Λ(0)

2(2π)2 = −π
τl
yΛ +O(y2

Λ). (2.166)

Rewriting this in terms of the rescaled vortex fugacity

ỹl = (2π)32yΛ

cΛΛ2 (2.167)

then gives

∂lỹl = (2− π/τl)ỹl +O(ỹ2
l ), (2.168)

in exact agreement with our result (2.108) from the last section.

Flow equation of τl

In the same spirit we can also expand the flow equation (2.162) of cΛ(m̄) to
leading order in yΛ. With cΛ(m̄) = cΛ +O(y2

Λ) and UΛ(m̄) = O(yΛ) we find

∂lτl(m̄) = 1
4π

τ ′′l (m̄)
τl

+ [U ′′′l (m̄)]2

τ 2
l a

4Λ4

+O(y3
Λ), (2.169)

where we have defined τl(m̄) = cΛ(m̄)/a2. From our ansatz (2.164) for the
effective potential it follows that

U ′′′Λ (m̄) = −(2π)32yΛ sin(2πm̄) = −τla2Λ2ỹl sin(2πm̄), (2.170)

so that we have to solve

∂lτl(m̄) = τ ′′l (m̄)
4πτl

+ ỹ2
l

4π sin2(2πm̄). (2.171)
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This can be done with the ansatz

τl(m̄) = τl + c̃l
ỹ2
l

4π sin2(2πm̄), (2.172)

which leads to

∂lτl +
[
∂lc̃l
c̃l

+ 2∂lỹl
ỹl

]
c̃lỹ

2
l

4π sin2(2πm̄) = c̃lỹ
2
l

2τl
cos(4πm̄) + ỹ2

l

4π sin2(2πm̄).

(2.173)

For m̄ = 0 this simplifies to

∂lτl = c̃lỹ
2
l

2τl
, (2.174)

while for m̄ = 1/4 we have

∂lc̃l = 1− 4πc̃l
τl
− 2c̃l

∂lỹl
ỹl

= 1− c̃l
(

4 + 2π
τl

)
, (2.175)

where we have inserted the flow equation (2.168) of ỹl. The fact that these
flow equations of τl and c̃l solve Eq. (2.173) for any m̄ justifies our ansatz for
τl(m̄) above. All in all, we end up with a set of three coupled flow equations,

∂lỹl = (2− π/τl)ỹl, (2.176a)

∂lτl = c̃lỹ
2
l

2τl
, (2.176b)

∂lc̃l = 1− c̃l
(

4 + 2π
τl

)
, (2.176c)

which are identical to the flow equations (2.127a)–(2.127c) from the last
section where we have used the vertex expansion.

2.6 Effect of weak amplitude fluctuations on
the BKT transition

2.6.1 Including density fluctuations in the dual-vortex
model

Villain approximation of the O(2) model

Having understood how to derive the Kosterlitz-Thouless flow equations
within the modern FRG formalism, we are now in a position to assess the
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effect of weak amplitude fluctuations on the BKT transition. As already
discussed in Sec. 2.1.4, previous FRG studies [62–65] yielded the unexpected
result that these fluctuations become massless in the long-distance limit, so
that the correlation length is always finite and the BKT transition is replaced
by a well-defined crossover. However, these studies did not explicitly introduce
vortices, which are known to be the relevant degrees of freedom at the BKT
transition. In the following, we will therefore analyze the effect of amplitude
fluctuations within a generalization of our dual-vortex FRG as developed in
the previous sections.

For this purpose, we consider the O(2) model with the action

S[ψ] = U

2T
∑
i

(
|ψi|2 − α2

)2
+ J

2T
∑
i,µ

|ψi+µ − ψi|2 , (2.177)

where ψi represents a complex field on a square lattice with lattice parameter
a. We can understand Eq. (2.177) as the action of a bosonic field close to a
classical continuous phase transition, where it is sufficient to retain only the
zero-frequency mode. The first term in the action is then related to a repulsive
contact interaction between the bosons with interaction strength U > 0, while
the second term represents the kinetic energy due to the finite exchange
interaction J > 0. The parameter α depends to the chemical potential and is
assumed to be positive definite, so that the interaction term has the form of
a Mexican-hat potential with radius α. The XY model corresponds to the
limit U →∞ where the field can only take values on the brim of the Mexican
hat. In order to evaluate the effect of weak amplitude fluctuations, we thus
assume that U is sufficiently large; more specifically, writing the complex field
in density-phase notation,

ψi = √ρieiθi , (2.178)

we assume that Uρ̄2/T � 1, where ρ̄ = 〈ρi〉 is the expectation value of the
density field ρi. On a technical level, the relation to the XY model is more
clearly seen by expressing the action in terms of ρi and θi,

S[ρ, θ] = U

2T
∑
i

(
ρi − α2

)2
+ J

2T
∑
i,µ

[
ρi + ρi+µ − 2√ρiρi+µ cos(θi+µ − θi)

]
.

(2.179)

In the limit U →∞, the first term fixes the density field to a constant value
so that only the phase-dependent cosine with constant prefactor remains,
while for general U we find that the density field allows for fluctuations of
the effective exchange coupling √ρiρi+µJ . We thus have to generalize our
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derivation of the dual-vortex model in Sec. (2.2) to take this additional field
dependence into account. We start with the Villain approximation

exp
[
J
√
ρiρi+µ

T
cos(∆µθi)

]
≈ RV,iµ

∞∑
niµ=−∞

exp
[
−(∆µθi − 2πniµ)2

2τV,iµ

]
,

(2.180)

where the coefficients now read

RV,iµ = RV (√ρiρi+µ/τ), (2.181a)
τV,iµ = τV (√ρiρi+µ/τ), (2.181b)

with τ = T/J ; the functions RV and τV are in turn given in Eqs. (2.26) and
(2.27).

Dual-vortex picture with weak density fluctuations

For the next steps it will be useful to separate the phase part of the partition
function,

Zamp =
∏
i

(∫ ∞
0

dρi

)
Zeff[ρ]

× exp
− U

2T
∑
i

(
ρi − α2

)2
− 2J

T

∑
i

ρi +
∑
i,µ

lnRV,iµ

, (2.182)

where

Zeff[ρ] =
∏
i

(∫ 2π

0

dθi
2π

)∏
i,µ

 ∞∑
niµ=−∞

 exp
−∑

i,µ

(∆µθi − 2πniµ)2

2τV,iµ

 . (2.183)

It is then straightforward to apply the same duality transformations that we
have used for the XY model between Eqs. (2.28) and (2.34) to derive the
current representation; the fact that τV,iµ is now position dependent does not
pose any problem and we get

Zeff[ρ] = exp
1

2
∑
i,µ

ln τV,iµ

∏
i,µ

 ∞∑
piµ=−∞

δ∆·pi,0

 exp
−1

2
∑
i,µ

τV,iµp
2
iµ

 ,
(2.184)

with the lattice divergence

∆ · pi =
∑
µ

(piµ − pi−µ,µ). (2.185)
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The final duality transformation from the current-field piµ to the dual-vortex
field mi is given by (cf. Sec. 2.2.3)

piµ =
∑
ν

εµν∆νmi+µ. (2.186)

Inserting this into Zeff[ρ] results in the more complicated exponent

−1
2
∑
i,µ

τV,iµp
2
iµ = −1

2
∑
i,µ

τV,iµ(∆µ̄mi+µ)2, (2.187)

where µ̄ is the complement of µ so that µ+µ̄ = x+y. For a given configuration
of the density field, the spatial dependence of τV,iµ breaks the translational
invariance so that the right-hand side of Eq. (2.187) is non-diagonal in Fourier
space. To render the model more tractable and to make contact with our
previous work in Sec. 2.4, we introduce the relative fluctuations ρ̃i of the
density field,

ρi = ρ̄(1 + ρ̃i), (2.188)

and expand our action in the density fluctuations ρ̃i. For τV,iµ we find

τV,iµ ≈ τ
(0)
V + τ

(1)
V

ρ̃i+µ + ρ̃i
2 + 1

2τ
(2)
V ρ̃2

i (2.189)

with the coefficients

τ
(0)
V = τV

(
ρ̄

τ

)
, τ

(1)
V = ρ̄

τ
τ ′V

(
ρ̄

τ

)
, τ

(2)
V =

(
ρ̄

τ

)2
τ ′′V

(
ρ̄

τ

)
. (2.190)

In the expansion we have additionally approximated ρ̃i+µ ≈ ρ̃i in the second-
order term. This is sufficient since we are eventually interested in the leading-
order contributions due to the density fluctuations; the only reason to include
the second-order term at all is that it allows us to extend the integrals over the
density fluctuations ρ̃i to the entire real axis, which simplifies the calculations.
With this expansion of τV,iµ we find that Eq. (2.187) becomes

−1
2
∑
i,µ

τV,iµp
2
iµ = −1

2
∑
i

Mi

[
τ

(0)
V + τ

(1)
V ρ̃i + 1

2τ
(2)
V ρ̃2

i

]
, (2.191)

where

Mi = 1
2
∑
µ

[
(∆µmi)2 + (∆µmi+µ̄)2

]
. (2.192)
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In the same manner we can expand the logarithm of τV,iµ as

1
2
∑
i,µ

ln τV,iµ ≈ κ
(0)
V + κ

(1)
V

∑
i

ρ̃i + 1
2κ

(2)
V

∑
i

ρ̃2
i , (2.193)

where κ(0)
V amounts to a trivial constant contribution and

κ
(1)
V = τ

(1)
V

τ
(0)
V

, κ
(2)
V = τ

(2)
V

τ
(0)
V

−

τ (1)
V

τ
(0)
V

2

. (2.194)

Finally, we also need the expansion of RV,iµ,

RV,iµ ≈ R
(0)
V +R

(1)
V

ρ̃i+µ + ρ̃i
2 + 1

2R
(2)
V ρ̃2

i , (2.195)

with coefficients

R
(0)
V = RV

(
ρ̄

τ

)
, R

(1)
V =

(
ρ̄

τ

)
R′V

(
ρ̄

τ

)
, R

(2)
V =

(
ρ̄

τ

)2
R′′V

(
ρ̄

τ

)
, (2.196)

so that its logarithm has the expansion∑
i,µ

lnRV,iµ ≈ L
(0)
V + 2L(1)

V

∑
i

ρ̃i + L
(2)
V

∑
i

ρ̃2
i , (2.197)

where the constant L(0)
V can again be neglected and

L
(1)
V = R

(1)
V

R
(0)
V

, L
(2)
V = R

(2)
V

R
(0)
V

−

R(1)
V

R
(0)
V

2

. (2.198)

We then find that the full partition function of our model, formulated in
terms of the dual-vortex field mi and the density fluctuations ρ̃i, reads

Zamp =
∏
i

∫ ∞
−∞

dρ̃i
∞∑

mi=−∞


× exp

−∑
i

[
1
2uρ̃

2
i + vρ̃i + 1

2Mi

(
τ

(0)
V + τ

(1)
V ρ̃i + 1

2τ
(2)
V ρ̃2

i

) ],
(2.199)

where the dimensionless coefficients u and v are defined as

u = Uρ̄2

T
− 2L(2)

V − κ
(2)
V ≈

Uρ̄2

T
, (2.200)

v = 2ρ̄
τ

+ Uρ̄(ρ̄− α2)
T

− 2L(1)
V − κ

(1)
V . (2.201)
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Our assumption of weak amplitude fluctuations thus translates to the require-
ment u� 1. Considering the order of magnitude of the remaining coefficients,
we find that close to the BKT transition ρ̄/τ is of order unity, which thus
also holds for the τ (i)

V . Regarding the coefficient v we note that

v = −1
2τ

(1)
V 〈Mi〉+O(u−1), (2.202)

which follows easily from the identity 〈ρ̃i〉 = 0. Since the expectation value of
Mi is at most of order unity below the BKT transition, this is therefore also
true for v.

Effective dual-vortex model

We now take advantage of the fact that the action in Eq. (2.199) is quadratic
in ρ̃i, which allows us to integrate out the density fluctuations exactly. Up
to a constant prefactor, this results in the following effective theory for the
dual-vortex field mi,

Zamp =
∏
i

 ∞∑
mi=−∞



× exp

−
1
2
∑
i

τ (0)
V Mi + ln

(
1 + τ

(2)
V

2u Mi

)
−

(
v + τ

(1)
V

2 Mi

)2

u+ τ
(2)
V

2 Mi


 .
(2.203)

We first note that for large Mi we have

τ
(0)
V Mi + ln

(
1 + τ

(2)
V

2u Mi

)
−

(
v + τ

(1)
V

2 Mi

)2

u+ τ
(2)
V

2 Mi

∼

τ (0)
V −

(
τ

(1)
V

)2

2τ (2)
V

Mi, (2.204)

so that our partition function is only well defined if

τ
(0)
V −

(
τ

(1)
V

)2

2τ (2)
V

> 0. (2.205)

Fortunately, this inequality is always fulfilled (this would not be true if we had
neglected τ (2)

V ). We also find that close to the BKT transition, the left-hand
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side of Eq. (2.205) is of order unity so that the sums over mi are effectively
cut off at Mi ≈ 1. This allows us to approximate our partition function by

Zamp =
∏
i

 ∞∑
mi=−∞

 exp
− τ ′

2
∑
i

Mi + (τ (1)
V )2

8
∑
i

M2
i

u+ τ
(2)
V

2 Mi

, (2.206)

where the effective dimensionless temperature τ ′ is defined as

τ ′ = τ
(0)
V + τ

(2)
V

2u −
vτ

(1)
V

u
≈ τ

(0)
V . (2.207)

Since u� 1, we may also expand

exp

(τ (1)
V )2

8
∑
i

M2
i

u+ τ
(2)
V

2 Mi

 ≈ 1 + (τ (1)
V )2

8u
∑
i

M2
i . (2.208)

With the dimensionless coupling constant

g =
3
(
τ

(1)
V

)2

u
� 1 (2.209)

we can then write

Zamp =
∏
i

 ∞∑
mi=−∞

 exp
[
−τ
′

2
∑
i

Mi

](
1 + g

4!
∑
i

M2
i

)
. (2.210)

In momentum space this becomes

Zamp =
∏
i

 ∞∑
mi=−∞

 exp
[
−1

2
∑
k

ωk|mk|2
]

×

1 + g

4!N
∑

k1k2k3k4

δk1+k2+k3+k4,0Vk1,k2,k3,k4mk1mk2mk3mk4

, (2.211)

where the dispersion ωk = 4τ ′(1 − γk) is defined in analogy to Eq. (2.39)
and Vk1,k2,k3,k4 describes the momentum dependence of the fully symmetrized
quartic interaction due to amplitude fluctuations,

Vk1,k2,k3,k4 = 1
3
[
Ṽk1,k2;k3,k4 + Ṽk1,k3;k2,k4 + Ṽk1,k4;k3,k2

]
, (2.212)

where

Ṽk1,k2;k3,k4 = 1
4

∑
µν∈{x,y}

(
eik1·aµ − 1

) (
eik2·aµ − 1

) (
1 + ei(k1+k2)·(ax+ay−aµ)

)
×
(
eik3·aν − 1

) (
eik4·aν − 1

) (
1 + ei(k3+k4)·(ax+ay−aν)

)
.

(2.213)
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2.6.2 Effect of the quartic interaction on the KT flow
equations

Due to the similarity of Eq. (2.211) to the partition function (2.36) of the
original dual-vortex model, we set up the FRG in the same way as we did in
Sec. 2.3 for our analysis of the XY model. To that end, we replace

1
2
∑
k

ωk|mk|2 →
1
2
∑
k

[ωk +Rλ(k)] |mk|2, (2.214)

where the Litim regulator is defined as

Rλ(k) = ζλ(λ− ωk)Θ(λ− ωk). (2.215)

Here the scale-dependent prefactor initially fulfills ζλ0 = 1; its behaviour
during the flow will be specified later on. The initial value of the cutoff,
λ0 = maxk ωk, is again chosen such that the dispersion becomes constant. The
cutoff-dependent generating functional of the connected correlation functions
[cf. Eq. (2.51)] is then initially given by

eGλ0 [h] =
1 + g

4!N
∑

k1k2k3k4

δk1+k2+k3+k4,0Vk1,k2,k3,k4

δ

δh−k1

δ

δh−k2

δ

δh−k3

δ

δh−k4


×
∏
i

 ∞∑
mi=−∞

exp
[
−λ0

2 m
2
i + himi

] . (2.216)

Here we have used the fact that we may replace the Fourier coefficients of
the dual-vortex field mk by the derivative with respect to the corresponding
Fourier coefficient of the source field h−k, which allows us to pull the non-
trivial terms out of the mi sums. Reusing our earlier results (2.71) and (2.73)
for the second line,

∞∑
mi=−∞

exp
[
−λ0

2 m
2
i + himi

]
=
√

2π
λ0

exp
[
h2
i

2λ0
+ 2y0 cos

(
2πhi
λ0

)
+O(y4

0)
]
,

(2.217)

it is then trivial to evaluate the derivatives with respect to the source field.
Up to a constant term, we find

Gλ0 [h] =
∑
i

h2
i

2λ0
+ 2y0

∑
i

cos
(

2πhi
λ0

)
+ g

4λ3
0N

∑
k

|hk|2
∑
q

Vk,−k,q,−q

+ g

4!λ4
0N

∑
k1k2k3k4

δk1+k2+k3+k4,0Vk1,k2,k3,k4hk1hk2hk3hk4 +O(y2
0, y0g, g

2).

(2.218)
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Inverting the relation

m̄i = δGλ0 [h]
δhi

(2.219)

perturbatively, it is straightforward to show that the initial condition for the
average effective action [cf. Eq. (2.55)] is to first order in y0 and g given by

Γλ0 [m̄] = c0

2
∑
k

k2 |m̄k|2 − 2y0
∑
i

cos(2πm̄i)

− g

4!N
∑

k1k2k3k4

δk1+k2+k3+k4,0Vk1,k2,k3,k4m̄k1m̄k2m̄k3m̄k4 , (2.220)

where

c0 = τ ′a2 − ga2

λ0
(2.221)

and we have expanded

ωk = τ ′a2k2 +O(k4), (2.222)
g

2λ0N

∑
q

Vk,−k,q,−q = ga2k2

λ0
+O(k4). (2.223)

In analogy to our FRG approach to the XY model we now set λ = τ ′a2Λ.
Due to the g-dependent term in Eq. (2.221), it is then convenient to define
the wave-function renormalization factor as

ζλ =
cΛ + ga2

λ0

c0 + ga2

λ0

, (2.224)

which leads to

Rλ(k) =
(
cΛ + ga2

λ0

)(
Λ2 − k2

)
Θ
(
Λ2 − k2

)
. (2.225)

This differs from the regulator (2.80) in the XY model by a g-dependent
correction, which thus also appears in the flow equations of the relevant and
the marginal couplings via the functions AΛ and BΛ(k), see Eqs. (2.96) and
(2.112). However, in our derivation of the KT flow equations in Sec. 2.4
we have neglected yΛ-dependent corrections to these functions, so that it is
consistent to neglect g-dependent corrections as well. This leaves us with
evaluating the effect of the finite quartic interaction in the initial average
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effective action (2.220) on the KT flow equations. In a qualitative way, this
is most easily done by considering the long-wavelength expansion

Ṽk1,k2;k3,k4 ≈
∑

µν∈{x,y}
(k1 · aµ)(k2 · aµ)(k3 · aν)(k4 · aν), (2.226)

which implies that the interaction vertex Vk1,k2,k3,k4 is of fourth order in the
external momenta. As already mentioned in Sec. 2.3.3, this translates to an
irrelevant coupling with scaling dimension −2, which does not affect the KT
flow equations close to the line of Gaussian fixed points in a qualitative way.
To see more explicitly how this comes about, we make the ansatz that the
momentum dependence of the quartic interaction Vk1,k2,k3,k4 does not change
during the flow. We thus parametrize the vertex as

− gΛ

4!N
∑

k1k2k3k4

δk1+k2+k3+k4,0Vk1,k2,k3,k4m̄k1m̄k2m̄k3m̄k4 , (2.227)

where we identify gΛ0 = g. This allows us to show analytically (see Ap-
pendix A.3.1 for technical details) that the rescaled coupling

g̃l = cΛΛ2

2π gΛ (2.228)

obeys the flow equation

∂lg̃l = −2g̃l − 4τlỹ2
l . (2.229)

For τl ≈ π/2 and ỹl � 1, the flow quickly converges to its asymptotic
behaviour

g̃l ∼
l→∞
−2τlỹ2

l , (2.230)

which is independent of its initial value g̃0 ∝ g (see Fig. 2.8). While the flow
equation of ỹl is not affected by a finite g̃l, we show in Appendix A.3.2 that
it results in a correction to the flow equation of τl,

∂lτl = ỹ2
l

8π

(
1 + 16

3

)
. (2.231)

However, since we can absorb this additional factor by appropriately redefining
the rescaled vortex fugacity ỹl, it does not affect the universal properties of
the phase transition. We thus conclude that weak amplitude fluctuations are
indeed innocuous and do not spoil the BKT transition.



64 2. FRG approach to the Berezinskii-Kosterlitz-Thouless transition

Figure 2.8: Typical flow of the rescaled irrelevant coupling g̃l defined in
Eq. (2.228) as a function of the logarithmic scale parameter l = ln(Λ0/Λ).
The shown curves only differ by their initial condition for g̃l: the upper (red)
curve corresponds to g̃0 = 0.01 (implying finite amplitude fluctuations), while
the lower (blue) curve corresponds to g̃0 = 0 as in the XY model. Both curves
were computed by solving the flow equations (2.130), (2.131), and (2.229)
numerically with ỹ0 = 0.01 and τ ′ = 0.99τ∗ = 0.99π/2. Clearly both flows
converge for large l, so that the initial value of g̃l and, as a consequence, the
presence of weak amplitude fluctuations do not qualitatively affect the BKT
transition. (Figure reproduced from Ref. [54])

2.7 Effect of weak out-of-plane fluctuations
on the BKT transition

While the effect of amplitude fluctuations is one possible way for real systems
to deviate from the XY model, it is for sure not the only one. Another evident
generalization is the strongly anisotropic XXZ model, where the classical
spins of unit length are allowed to point slightly out of the xy plane. Since the
effect of out-of-plane fluctuations on the vortices driving the BKT transition
is not a priori obvious, it is interesting to analyze this situation. We therefore
consider the Hamiltonian of the XXZ model given by

HXXZ = −J
∑
i,µ

si · si+µ + U

2
∑
i

(
ϑi −

π

2

)2
, (2.232)

which generalizes the Hamiltonian (2.1) of the XY model. Here si =
(sinϑi cosϕi, sinϑi sinϕi, cosϑi) denotes a classical spin of unit length at
lattice site i and the coupling U parametrizes the easy-plane anisotropy.
While taking the limit U →∞ would result in the XY model, we will in the
following assume U/T � 1 so that weak out-of-plane fluctuations are possible.
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The partition function for our XXZ model is

ZXXZ =
∏
i

(∫
dΩi

)
exp

[
J

T

∑
i,µ

[cosϑi+µ cosϑi + sinϑi+µ sinϑi cos(∆µϕi)]

− U

2T
∑
i

(
ϑi −

π

2

)2
]
, (2.233)

where
∫
dΩi =

∫ π
0 dϑi sinϑi

∫ 2π
0 dϕi is a shorthand for the integral over the

unit sphere. In analogy to our treatment of the XY and the O(2) model, we
now apply the Villain approximation to the ϕi-dependent part of ZXXZ,

exp
[
J

T
sinϑi+µ sinϑi cos(∆µϕi)

]
≈ RV,iµ

∞∑
niµ=−∞

exp
[
−(∆µϕi − 2πniµ)2

2τV,iµ

]
,

(2.234)

where the coefficients are given by

RV,iµ = RV (sinϑi+µ sinϑi/τ), (2.235a)
τV,iµ = τV (sinϑi+µ sinϑi/τ). (2.235b)

Here τ = T/J and the functions RV and τV have been defined in Eqs. (2.26)
and (2.27). This results in the partition function

ZXXZ =
∏
i

(∫ π

0
dϑi sinϑi

)
Zeff [ϑ]

× exp
[
− U

2T
∑
i

(
ϑi −

π

2

)2
+ J

T

∑
i,µ

cosϑi+µ cosϑi +
∑
i,µ

lnRV,iµ

]
,

(2.236)

where

Zeff [ϑ] =
∏
i

(∫ 2π

0
dϕi

)∏
i,µ

 ∞∑
niµ=−∞

 exp
[
−(∆µϕi − 2πniµ)2

2τV,iµ

]
. (2.237)

Again performing the duality transformations between Eqs. (2.28) and (2.34)
then yields a current representation of Zeff[ϑ] similar to Eq. (2.184). We
proceed in the same spirit as in Sec. 2.6.1 by defining

ϑi = π

2 + ϑ̃i (2.238)
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and expanding τV,iµ as well as the cosine terms to second order in ϑ̃i, which
is certainly justified for U/T � 1. With

τV,iµ = τ
(0)
V − τ

(1)
V

ϑ̃2
i+µ + ϑ̃2

i

2 +O
(
ϑ̃4
i

)
(2.239)

and

τ
(0)
V = τV

(1
τ

)
, τ

(1)
V = 1

τ
τ ′V

(1
τ

)
, (2.240)

we find

Zeff [ϑ] = exp
1

2
∑
iµ

ln τV,iµ

∏
i

 ∞∑
mi=−∞

 exp
−τ (0)

V

2
∑
i

Mi + τ
(1)
V

2
∑
i

ϑ̃2
iMi

 ,
(2.241)

where mi is the familiar dual-vortex field and Mi is again defined as

Mi = 1
2
∑
µ

[
(∆µmi)2 + (∆µmi+µ̄)2

]
. (2.242)

Since expanding lnRV,iµ and ln τV,iµ as well as the integral measure sinϑi to
second order in ϑ̃i only results in terms of the form ϑ̃2

i with coefficients of order
unity, we can take their effect into account by introducing the dimensionless
coupling

u = U

T
+O(1)� 1. (2.243)

In total we thus arrive at

ZXXZ =
∏
i

∫ ∞
−∞

dϑ̃i
∞∑

mi=−∞

 exp
[
− τ

(0)
V

2
∑
i

Mi −
1
2
∑
ij

Aijϑ̃iϑ̃j

]
, (2.244)

where the matrix elements Aij are given by

Aij = δij
(
u− τ (1)

V Mi

)
− 1
τ

∑
µ

(δj,i+µ + δj,i−µ) (2.245)

and we have extended the ϑ̃i integration to the entire real line. Since τ (1)
V is

always negative, we note that the partition function (2.244) is well defined.
Performing the Gaussian integrals over the out-of-plane fluctuations ϑ̃i yields

ZXXZ =
∏
i

 ∞∑
mi=−∞

 exp
[
− τ

(0)
V

2
∑
i

Mi −
1
2 ln det A

]
, (2.246)
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where [A]ij = Aij. Since the off-diagonal part of A does not contribute to
first order in 1/u, we may write the second term in the action as

ln det A =
∑
i

ln
[
u− τ (1)

V Mi +O
(
u−1

)]
= N ln u− τ

(1)
V

u

∑
i

Mi +O
(
u−2

)
,

(2.247)

which results in

ZXXZ =
∏
i

 ∞∑
mi=−∞

 exp
[
−τ
′

2
∑
i

Mi

]
. (2.248)

Up to the renormalization of the dimensionless temperature,

τ ′ = τ
(0)
V −

τ
(1)
V

u
, (2.249)

the partition function (2.248) is identical to the dual-vortex representa-
tion (2.36) of the XY model. Let us also consider the next-to-leading-order
correction in 1/u. In this case, the off-diagonal part of A only contributes an
irrelevant constant term, which after expanding ln det A leads to a constant
rescaling of the partition function. On the other hand, the second-order
contribution from the diagonal part of A is proportional to M2

i and thus
depends on the dual-vortex field mi. To second order in 1/u we therefore find

ZXXZ =
∏
i

 ∞∑
mi=−∞

 exp
[
−τ
′

2
∑
i

Mi

](
1 + g

4!
∑
i

M2
i

)
, (2.250)

where the dimensionless coupling g is defined as

g =
6
(
τ

(1)
V

)2

u2 . (2.251)

Comparing Eq. (2.250) with the effective dual-vortex representation (2.210) of
the O(2) model, it is clear that weak out-of-plane fluctuations lead to the same
effective theory as weak amplitude fluctuations do. Our discussion in Sec. 2.6.2
about the effect of weak amplitude fluctuations on the BKT transition thus
applies directly to weak out-of-plane fluctuations. We therefore conclude that
the strongly anisotropic XXZ model also exhibits a phase transition, whose
universal properties are identical to the BKT transition in the XY model.
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Chapter 3

Spin functional renormalization
group

3.1 Motivation
In the first half of this thesis, we have exclusively dealt with classical spins
that can be described by vectors in three-dimensional Euclidean space. While
classical spin systems are conceptually rather easy to understand, they can
already lead to highly non-trivial emergent phenomena. A good example is
the XY model as discussed in Ch. 2, featuring a phase transition of infinite
order driven by vortices that themselves are emergent entities. On a technical
level, this is reflected by the various representations of the partition function
derived in Sec. 2.2, which are connected by duality transformations.

In terms of complexity and richness of physical phenomena, however,
classical spin systems do not come close to quantum spin systems, which
encompass exotic behaviour such as fractional excitations and resonating
valence bonds [80]. A quantum-mechanical spin S = (Sx, Sy, Sz) cannot
be easily visualized: in contrast to the Cartesian components of a classical
spin which are real numbers, the Sα are operators acting on a Hilbert space.
Mathematically, they are elements of the Lie algebra su(2) satisfying the
commutation relation [

Sα, Sβ
]

= iεαβγSγ, (3.1)

where εαβγ is the three-dimensional Levi-Civita symbol. The crucial difference
between this spin algebra and the algebra of bosonic or fermionic ladder
operators consists in the appearance of the spin component Sγ on the right-
hand side of Eq. (3.1). For this reason, we cannot directly transfer the usual
construction of a path integral for bosonic or fermionic fields to spin systems.

69
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While it is indeed possible to define spin coherent states and use them to
construct a path integral formulation of quantum-mechanical spins [81], it is
rather uncommon to see this approach in actual calculations. In fact, modern
many-body techniques are often tailored towards bosonic or fermionic field
theories; this is also true for the FRG [33]. Although in one dimension the
Bethe ansatz provides a way to work directly on the level of spin operators
and wavefunctions [82], it is therefore quite common to map spin systems
to a bosonic or fermionic field theory, which is then handled by one of
the many available many-body techniques. For ordered magnets where the
low-energy excitations are renormalized spin waves, one can apply the Holstein-
Primakoff [83] or the Dyson-Maleev [84, 85] transformation and expand in
powers of the inverse spin number 1/S. This approach is unfortunately not
applicable to systems without long-range magnetic order; in this case, one may
represent the spin operators in terms of Schwinger bosons [86, 87], Abrikosov
pseudofermions [88, 89], or Majorana fermions [90–93]. While these methods
have been successfully used to describe spin systems, they all have their own
shortcomings: using Majorana fermions leads to a redundancy in Hilbert
space, whereas both the Abrikosov pseudofermion and the Schwinger boson
approach introduce unphysical states which have to projected out, which can
only be done approximately for non-trivial systems.

There is, however, another method by Vaks, Larkin, and Pikin (VLP) [1–3]
that was developed in the 1960s. While their spin-diagrammatic approach
is formulated directly in terms of the physical spin operators, it also makes
use of diagrammatic many-body techniques based on spin correlators and the
Matsubara formalism. VLP’s starting point is a generalized Wick theorem
for isolated spin operators [1, 3], which allows them to systematically expand
the irreducible1 spin vertices in powers of the inverse range 1/r0 of the
ferromagnetic exchange interaction. Although this approach is conceptually
close to the usual diagrammatic techniques for bosons or fermions and was
further developed by other people [3, 94–96], it never gained widespread
popularity, probably due to the more complicated Wick theorem for spin
operators that results in rather cumbersome diagrammatic rules.

In the present chapter, we will show how to formulate the FRG in terms
of the physical spin operators. This allows us to retain the advantages of
the VLP approach such as dealing directly with the physical Hilbert space
and being conceptually close to the more familiar many-body techniques for
bosons and fermions, while replacing the complicated diagrammatic rules by
the well-known expansion of the Wetterich equation. Although we will later

1The spin vertices are irreducible with respect to the cutting of a single line of the
effective exchange interaction.
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show that our spin FRG (SFRG) allows us to recover VLP’s 1/r0 expansion
via a simple truncation of the corresponding Wetterich equation, the SFRG
by no means restricted to this approach. With the Wetterich equation being
an exact flow equation of the generating functional of the irreducible vertices,
it not only allows for novel approximation schemes, but it also enables us to
describe the critical behaviour of spin systems. Furthermore, we will in fact
formulate the SFRG for three different generating functionals of irreducible
vertices: while we can define irreducibility either with respect to the cutting of
a single spin propagator or exchange interaction line, we will also construct a
hybrid approach which combines these two notions of irreducibility by treating
the transversal and the longitudinal part of the spin correlators separately.
Depending on the system at hand, we can then choose the most suitable
formulation of the SFRG.

Finally, while we will in the present chapter mainly consider the quantum
Heisenberg model, it is straightforward to generalize our SFRG formalism to
any Hamiltonian which can be written in terms of local operators satisfying
a non-trivial algebra such as Hubbard X-operators [97]. A specific example
of this is given by our recent work on the Kondo model [98], where we derive
a generalized Wetterich equation for both the conduction electrons and the
impurity spin. Using a simple truncation of the average effective action, this
allows us to derive Anderson’s one-loop “poor man’s scaling” equations for
the Kondo model [30, 31] with an arbitrary impurity spin.

3.2 Pure SFRG

3.2.1 Derivation of the Wetterich equation for quan-
tum spin systems

In the following we will show how to construct the SFRG for the quantum
Heisenberg model, which is defined by the Hamiltonian

H = −1
2
∑
ij

VijSi · Sj − h0
∑
i

Szi . (3.2)

Here the subscripts i and j label the N lattice sites ri of an arbitrary
D-dimensional lattice, Vij = V (ri − rj) represents an arbitrary exchange
coupling, and h0 measures an external magnetic field in units of energy. The
spin operators Si fulfill the commutation relation (3.1) and are normalized
such that S2

i = S(S + 1). To set up the FRG, we replace the exchange
coupling Vij by the continuous deformation V Λ

ij , which is parametrized by
the deformation parameter Λ ∈ [0, 1]. We choose the deformed exchange
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interaction such that for Λ = 0 the system is sufficiently simple to allow for a
controlled calculation of the spin correlators, while for Λ = 1 we recover the
full Heisenberg model, V Λ=1

ij = Vij.
The Λ-dependent generating functional of the connected spin correlators

can then be written as

GΛ[h] = ln Tr
[
e−βH0T e

∫ β
0 dτ[∑i

hi(τ)·Si(τ)−VΛ(τ)]
]
, (3.3)

in full analogy to bosonic systems [41]. Here
H0 = −h0

∑
i

Szi (3.4)

is the free part of the Hamiltonian, T denotes the time-ordering symbol in
imaginary time, the hi(τ) are arbitrary time-dependent source fields, and

VΛ(τ) = −1
2
∑
ij

V Λ
ij Si(τ) · Sj(τ) (3.5)

is the deformed interaction part of the Hamiltonian. The time dependence of
all operators is in the interaction picture with respect to H0,

Si(τ) = eτH0Sie
−τH0 . (3.6)

Taking the nth derivative of GΛ[h] with respect to the source fields and setting
hi(τ) = h̄Λ afterwards yields the connected n-point spin correlators; e.g., the
first derivative of the generating functional gives the local magnetic moment
at the lattice site ri,

〈Si(τ)〉Λ = δGΛ[h]
δhi(τ)

∣∣∣∣∣
h=h̄Λ

, (3.7)

while the second derivative generates the spin propagator,
Gαα′

Λ,ij(τ, τ ′) = 〈T [Sαi (τ)Sα′j (τ ′)]〉Λ − 〈Sαi (τ)〉Λ〈Sα
′

j (τ ′)〉Λ

= δ2GΛ[h]
δhαi (τ)δhα′j (τ ′)

∣∣∣∣∣
h=h̄Λ

. (3.8)

Here the scale-dependent uniform field configuration h̄Λ = h̄Λez is related to
the flowing minimum of the Legendre transform of GΛ[h] as we will show later
on.2 While it is guaranteed that h̄Λ vanishes for Λ = 1 so that we recover

2Instead of evaluating the connected n-point spin correlators at h = h̄Λ, we could have
equally well defined them to be evaluated at h = 0. The advantage of the former choice,
however, is that the connected spin correlators are then directly related to the irreducible
vertices as defined in Eq. (3.23). This is easily seen from Eqs. (3.12), (3.14), (3.21), and
(3.23); in essence, since the irreducible n-point vertices are defined as the nth derivative
of the generating functional of the irreducible vertices ΓΛ[M ] evaluated at its minimum
M = M̄Λ instead of M = 0, they depend on GΛ[h] and its derivatives evaluated at h̄Λ.
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the physical connected spin correlators [see Eq. (3.26)], it will in general be
non-zero during the flow. Note that spin operators on different lattice sites
commute with each other, which mirrors the behaviour of bosonic ladder
operators. As a consequence, the imaginary-time-ordered spin propagator
Gαα′

Λ,ij(τ, τ ′) has the same analytical properties as the bosonic Matsubara Green
function that we discussed in Sec. 1.3. Most importantly, this implies that
we can obtain physical observables like the dynamical spin structure factor
by Fourier transforming the connected spin correlators to frequency space
and analytically continuing the Matsubara frequencies to just above or below
the real axis. From this we can already see the close connection between our
SFRG and the usual FRG of bosonic field theories.

To derive an exact flow equation of the generating functional of the
connected spin correlators, we simplify differentiate Eq. (3.3) with respect to
Λ,

∂ΛGΛ[h] = 1
2

∫ β

0
dτ
∑
ij,α

(∂ΛV
Λ
ij )
[

δ2GΛ[h]
δhαi (τ)δhαj (τ) + δGΛ[h]

δhαi (τ)
δGΛ[h]
δhαj (τ)

]
. (3.9)

This expression corresponds to an infinite hierarchy of coupled flow equations
for the connected n-point spin correlators

Gα1...αn
Λ,i1...in(τ1, . . . , τn) = δnGΛ[h]

δhα1
i1 (τ1) . . . δhαnin (τn)

∣∣∣∣∣
h=h̄Λ

, (3.10)

which is explicitly given by

∂ΛG
α1...αn
Λ,i1...in(τ1, . . . , τn) = 1

2

∫ β

0
dτ
∑
ij,α

(∂ΛV
Λ
ij )
[
Gα1...αnαα

Λ,i1...inij (τ1, . . . , τn, τ, τ)

+
n∑

m=0
S1,...,m;m+1,...,n

{
Gα1...αmα

Λ,i1...imi(τ1, . . . , τm, τ)Gαm+1...αnα
Λ,im+1...inj

(τm+1, . . . , τn, τ)
}]

+
∫ β

0
dτ
∑
i

Gα1...αnz
Λ,i1...ini(τ1, . . . , τn, τ)∂Λh̄Λ. (3.11)

Here we have introduced the symmetrization operator S1,...,m;m+1,...,n, which
symmetrizes the expression to its right with respect to the exchange of all
labels [33]. The last term in Eq. (3.11) arises due to the fact that the spin
correlators are evaluated at hi(τ) = h̄Λ; the flow equation of h̄Λ will be
derived later on [see Eqs. (3.24) and (3.26)]. A graphical representation of
the exact flow equation (3.11) is shown in Fig. 3.1.

However, it is well known from FRG calculations for bosonic and fermionic
systems that it is often more efficient to work with the average effective action,
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++

Figure 3.1: Graphical representation of the exact flow equation (3.11) of the
connected n-point spin correlator Gα1...αn

Λ,i1...in(τ1, . . . , τn). The dot above the dia-
grams represents the derivative ∂Λ, the red slashed lines denote the derivative
∂ΛV

Λ
ij of the deformed exchange coupling, and the flowing magnetic field h̄Λ

is symbolized by a crossed circle. (Figure reproduced with modifications from
Ref. [99])

which generates all vertices which are irreducible with respect to the cutting
of a single propagator line [33, 79, 100]. We therefore introduce the generating
functional of the irreducible spin vertices, ΓΛ[M ], which we define in the
usual way as the subtracted Legendre transform of the generating functional
GΛ[h],

ΓΛ[M ] =
∫ β

0
dτ
∑
i

hi(τ) ·Mi(τ)− GΛ[h]− 1
2

∫ β

0
dτ
∑
ij

RΛ
ijMi(τ) ·Mj(τ).

(3.12)

Here the regulator

RΛ
ij = Vij − V Λ

ij (3.13)

is defined such that it vanishes at Λ = 1 and the source fields hi(τ) appearing
on the right-hand side of Eq. (3.12) are to be understood as functionals of
the local magnetization Mi(τ) by inverting the relation

Mi(τ) = 〈Si(τ)〉Λ,h = δGΛ[h]
δhi(τ) . (3.14)

The first derivative of ΓΛ[M ] with respect to the local magnetization Mi(τ)
thus reads

δΓΛ[M ]
δMi(τ) = hi(τ)−

∑
j

RΛ
ijMj(τ), (3.15)
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while the Hessian matrix Γ′′Λ[M ] of ΓΛ[M ] can be written as

[Γ′′Λ[M ]]αiτ,α′jτ ′ = Γαα′Λ,ij(τ, τ ′;M ) = δ2ΓΛ[M ]
δMα

i (τ)δMα′
j (τ ′)

=
[
G−1

Λ [h]−RΛ
]
αiτ,α′jτ ′

. (3.16)

Here G−1
Λ [h] is the inverse of the spin-propagator matrix in the presence of

the source fields,

[GΛ[h]]αiτ,α′jτ ′ = Gαα′

Λ,ij(τ, τ ′;h) = δ2GΛ[h]
δhαi (τ)δhα′j (τ ′) , (3.17)

and RΛ is the regulator matrix

[RΛ]αiτ,α′jτ ′ = δα,α′δ(τ − τ ′)RΛ
ij. (3.18)

Differentiating Eq. (3.12) with respect to the deformation parameter Λ,
replacing ∂ΛGΛ[h] by its flow equation (3.9), and using the relation (3.16) we
then find

∂ΛΓΛ[M ] = 1
2 Tr

{
(Γ′′Λ[M ] + RΛ)−1

∂ΛRΛ
}
. (3.19)

However, since ΓΛ[M ] will in general have a minimum at a finite scale-
dependent uniform field configurationMi(τ) = M̄Λ = M̄Λez that is implicitly
defined by

δΓΛ[M ]
δMα

i (τ)

∣∣∣∣∣
M=MΛ

= 0, (3.20)

we should actually consider the shifted generating functional

Γ̃Λ[η] = ΓΛ[M̄Λ + η], (3.21)

where ηi(τ) = Mi(τ) − M̄Λ measures the distance to the minimum of the
average effective action. Together with Eq. (3.19) we thus arrive at the
Wetterich equation [34] for quantum spin systems,

∂ΛΓ̃Λ[η] = ∂ΛΓΛ[M ]|M→M̄Λ+η +
∫ β

0

∑
i

δΓ̃Λ[η]
δηzi (τ) ∂ΛM̄Λ

= 1
2 Tr

{(
Γ̃′′Λ[η] + RΛ

)−1
∂ΛRΛ

}
+
∫ β

0

∑
i

δΓ̃Λ[η]
δηzi (τ) ∂ΛM̄Λ. (3.22)

This flow equation is formally identical to the Wetterich equation for bosonic
systems [33], which can be traced back to the identical analytical properties of
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imaginary-time-ordered spin correlators and bosonic Matsubara Green func-
tions as already mentioned above. We note that our derivation of Eq. (3.22)
makes no mention of path integrals at any point, in contrast to the usual
construction of the FRG in terms of complex-valued or Berezin integrals [33].
The fact that the derivation of exact FRG flow equations does not depend on
a path-integral formulation was already noticed by Pawlowski [101] and was
subsequently applied to classical spin systems and bosonic quantum lattice
models [76, 102–106].

It is now straightforward to derive the infinite hierarchy of flow equations
for the irreducible vertices

Γ̃α1...αn
Λ,i1...in(τ1, . . . , τn) = δnΓ̃Λ[η]

δηα1
i1 (τ1) . . . δηαnin (τn)

∣∣∣∣∣
η=0

(3.23)

by expanding Eq. (3.22) around η = 0. Of special interest is the first-order
coefficient since it yields an exact flow equation for the flowing magnetization
M̄Λ, ∫ β

0
dτ ′

∑
j

Γ̃zzΛ,ij(τ, τ ′)∂ΛM̄Λ

=− 1
2

∫ β

0
dτ1

∫ β

0
dτ2

∑
i1i2,α1α2

Ġα1α2
Λ,i1i2(τ1, τ2)Γ̃α2α1z

Λ,i2i1i(τ2, τ1, τ). (3.24)

Here we have defined the single-scale propagator

Ġαα′

Λ,ij(τ, τ ′) = −
[
GΛ[h̄Λ] (∂ΛRΛ) GΛ[h̄Λ]

]
αiτ,α′jτ ′

(3.25)

and we have used that the irreducible one-point vertex vanishes by construc-
tion. Together with Eq. (3.15), this fact also allows us to connect the flowing
magnetization M̄Λ to the flowing uniform field configuration hi(τ) = h̄Λ via

h̄Λ =
∑
j

RΛ
ijM̄Λ. (3.26)

As a consequence, the derivative ∂Λh̄Λ appearing in Eq. (3.11) can be directly
expressed through the flow equation (3.24) of M̄Λ.

Finally, let us point out a subtlety in our formalism that is related to
the appearance of the equal-time combination Si(τ) · Sj(τ) under the time-
ordering symbol [see Eqs. (3.3) and (3.5)]. Writing the scalar product in
terms of the fundamental spin operators,

Si(τ) · Sj(τ) = Sxi (τ)Sxj (τ) + Syi (τ)Syj (τ) + Szi (τ)Szj (τ), (3.27)
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it is clear that the operators commute with each other so that there is no
ambiguity regarding their time ordering. However, in practice it is often
useful to express Sxi and Syi in terms of the spin ladder operators

S±i = 1√
2

(Sxi ± iS
y
i ). (3.28)

Rewriting Eq. (3.27) in terms of S+
i and S−i we now have to introduce an

infinitesimal shift,

Si(τ) · Sj(τ) = S+
i (τ + 0±)S−j (τ) + S−i (τ + 0±)S+

j (τ) + Szi (τ)Szj (τ), (3.29)

where both choices of 0+ and 0− are equally valid. While the formal appearance
of the Wetterich equation (3.22) stays unchanged, the regulator matrix is
now given by

[RΛ]αiτ,α′jτ ′ = δα,α′δ(τ − τ ′ − 0±)RΛ
ij. (3.30)

Note that in the quantum Heisenberg model we can circumvent this subtlety
by redefining the deformed exchange interaction V Λ

ij such that V Λ
ii = 0, since

spin operators on different sites always commute with each other and an on-
site interaction only amounts to a constant shift in the Hamiltonian. However,
as the SFRG formalism is not restricted to the Heisenberg model and similar
subtleties can also appear in a more complicated fashion, it will be instructive
to consider the general case of a finite on-site interaction. We will come back
to this point in Sec. 3.3.3 where we explicitly evaluate the flow equations of
the quantum Heisenberg model.

3.2.2 Initial condition of isolated spins in the Ising
model

As the construction of the SFRG given above is rather technical, let us
demonstrate the main concepts by considering the spin-S Ising model,

H = −1
2
∑
ij

VijS
z
i S

z
j − h0

∑
i

Szi . (3.31)

Since all Szi operators commute with each other, we can neglect their time
dependence; for example, the generating functional of the connected spin
correlators then reads

GΛ[hz] = ln Tr
[
e−βH0eβ(

∑
i
hzi S

z
i −VΛ)

]
, (3.32)
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where

VΛ = −1
2
∑
ij

V Λ
ij S

z
i S

z
j . (3.33)

For simplicity, we choose the deformation scheme V Λ
ij = ΛVij where the

deformed exchange interaction initially vanishes, V Λ=0
ij = 0. Our SFRG

formalism then corresponds to the lattice FRG for classical spin systems
developed by Machado and Dupuis [76], which we have already used in Ch. 2
to study the BKT transition. At Λ = 0, calculating GΛ[hz] reduces to a
single-site problem that can be solved analytically,

G0[hz] =
∑
i

ln Tr
[
eβ(h0+hzi )Szi

]
=
∑
i

B (β(h0 + hzi )) , (3.34)

where

B(y) = ln
[

sinh [(S + 1/2)y]
sinh(y/2)

]
. (3.35)

Taking the first derivative of G0[hz] then results in

M z
i [hz] = 〈Szi 〉Λ,hz = ∂G0[hz]

∂(βhzi )
= b (β(h0 + hzi )) , (3.36)

where

b(y) = B′(y) =
(
S + 1

2

)
coth

[(
S + 1

2

)
y
]
− 1

2 coth
(
y

2

)
(3.37)

is the well-known Brillouin function. Higher-order connected spin correlators
are derived analogously by successively differentiating the Brillouin function,

G
(n)
0,i1...in [hz] = ∂nG0[hz]

∂(βhzi )n
= δi1,i2 · · · δi1,inb(n−1) (β(h0 + hzi )) . (3.38)

To derive the initial condition for the average effective action ΓΛ[M z], we
need to invert the relation (3.36) between M z

i and hzi , which amounts to
finding the inverse function to b(y). Unfortunately, it is not possible to invert
the Brillouin function analytically for general spin S [107]. Nevertheless, we
may expand ΓΛ[M z] in a Taylor series around its minimum at M̄ z

Λ, which is
determined by the condition

δΓΛ[M z]
δM z

i

∣∣∣∣∣
Mz=M̄z

Λ

= 0. (3.39)
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To simplify the following calculations, we set h0 = 0 and assume that there
is no spontaneous breaking of the rotational symmetry so that M̄ z

Λ = 0. We
may then expand the average effective action as

ΓΛ[M z] =
∞∑
n=0

1
n!Nn−1

∑
k1...kn

δk1+...+kn,0Γ(n)
Λ (k1, . . . ,kn)M z

k1 . . .M
z
kn , (3.40)

where

M z
k =

∑
i

e−ik·riM z
i (3.41)

are the Fourier coefficients of the local magnetization M z
i . By taking deriva-

tives of the exact relation (3.16) and setting M z
i = 0 afterwards, we can

express the irreducible vertices Γ(n)
Λ through the connected spin correlators

G
(m)
Λ with m ≤ n. Since we know the connected spin correlators at Λ = 0

from Eq. (3.38), this allows us to derive the initial condition Γ(n)
0 for the

irreducible vertices. For example, the irreducible two-point vertex is initially
given by

Γ(2)
0 (k) = 1

b′
− βVk, (3.42)

where b′ = S(S + 1)/3 is the first derivative of b(y) at y = 0, Vk is the Fourier
transform of the exchange interaction, and we have used the notation

Γ(2)
0 (k,k′) = δk,−k′Γ(2)

0 (k′). (3.43)

Let us here also write down the irreducible four-point vertex,

Γ(4)
0 (k1,k2,k3,k4) = −δk1+k2+k3+k4,0

b′′′

(b′)4 , (3.44)

where b′′′ = [1− (2S+ 1)4]/120 is the third derivative of the Brillouin function
at vanishing external field.

3.2.3 Critical temperature of the spin-S Ising model
within the vertex expansion

As a simple way to quantitatively compare our SFRG with established meth-
ods, we will in the following compute the critical temperature Tc of the
spin-S Ising model with nearest-neighbour interaction on a D-dimensional
hypercubic lattice within the vertex expansion. Its Hamiltonian is given by

H = −V
∑
〈ij〉

Szi S
z
j , (3.45)



80 3. Spin functional renormalization group

where we sum over all distinct pairs of nearest neighbors. Since Tc is de-
termined by the condition Γ(2)

Λ=1(0) = 0, we have to evaluate the flow of
the irreducible two-point vertex. In the simplest approximation we replace
Γ(2)

Λ (k) ≈ Γ(2)
0 (k), which according to Eq. (3.42) yields the mean-field result

Tc0 = b′|V0| =
S(S + 1)

3 2D|V | (3.46)

for the critical temperature, where V0 = Vk=0 = 2DV . We can improve on
this result by considering the exact flow equation of the irreducible two-point
vertex,

∂ΛΓ(2)
Λ (k) = β

2N
∑
q

ĠΛ(q)Γ(4)
Λ (−q, q,−k,k), (3.47)

which can be derived by expanding the Wetterich equation (3.22) in the usual
way [33]. Here we have introduced the single-scale propagator

ĠΛ(k) = −G2
Λ(k)∂ΛRΛ(k), (3.48)

which is defined in terms of the regularized spin propagator

GΛ(k) = 1
Γ(2)

Λ (k) + βRΛ(k)
(3.49)

and the regulator

RΛ(k) = (1− Λ)Vk. (3.50)

The irreducible four-point vertex that appears in Eq. (3.47) obeys the exact
flow equation

∂ΛΓ(4)
Λ (k1,k2,k3,k4) = β

2N
∑
q

ĠΛ(q)Γ(6)
Λ (−q, q,k1,k2,k3,k4)

− β

2N Sk1,k2;k3,k4

∑
q

ĠΛ(q)Γ(4)
Λ (−q, q − k1 − k2,k1,k2)GΛ(q − k1 − k2)

× Γ(4)
Λ (−q + k1 + k2, q,k3,k4), (3.51)

which in turn depends on the irreducible six-point vertex. We close this
infinite hierarchy of flow equations by approximating Γ(6)

Λ by its initial value

Γ(6)
0 (k1,k2,k3,k4,k5,k6) = δk1+k2+k3+k4+k5+k6,0

[
− b(5)

(b′)6 + 10(b′′′)2

(b′)7

]
,

(3.52)
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=

= -

Figure 3.2: Graphical representation of the exact flow equations (3.47) and
(3.51) of the irreducible vertices Γ(2)

Λ and Γ(4)
Λ , respectively. The dot over

the diagrams denotes the derivative ∂Λ, the colored circles symbolize the
irreducible vertices Γ(n)

Λ , solid lines represent the regularized spin propagator
GΛ(k), and slashed solid lines represent the single-scale propagator ĠΛ(k).
Note the formal similarity to the flow equations of the irreducible vertices in
the dual-vortex model as shown in Fig. 2.6.

where b(n) is the nth derivative of b(y) at y = 0. A graphical representation
of the flow equations (3.47) and (3.51) is shown in Fig. 3.2. To keep the
calculation simple, we also replace the flowing irreducible four-point vertex
by its zero-momentum part. This has the advantage that the momentum
dependence of the irreducible two-point vertex, which we there parametrize
as

Γ(2)
Λ (k) = ΣΛ − βVk, (3.53)

does not change during the flow. The resulting set of coupled flow equations
reads

∂ΛΣΛ = β

2N
∑
q

ĠΛ(q)Γ(4)
Λ , (3.54)

∂ΛΓ(4)
Λ = β

2N
∑
q

ĠΛ(q)
[
Γ(6)

0 − 6
(
Γ(4)

Λ

)2
GΛ(q)

]
, (3.55)

where

ĠΛ(k) = Vk

[ΣΛ − βΛVk]2
, GΛ(k) = 1

ΣΛ − βΛVk
, (3.56)

and the exchange interaction Vk can be written in terms of the nearest-
neighbor structure factor γk for a D-dimensional hypercubic lattice with
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lattice parameter a,

Vk = V0γk with γk = 1
D

D∑
i=1

cos(kia). (3.57)

It is straightforward to solve these flow equations in the thermodynamic limit,
where the momentum sums are replaced by integrals over the first Brillouin
zone. While it is not possible to evaluate the integrals analytically in higher
dimensions, it is straightforward to calculate them numerically for various
values of ΛV0/ΣΛ and interpolate the result. This allows us to integrate the
flow equations of ΣΛ and Γ(4)

Λ efficiently for any value of the spin S.
The results for the critical temperature Tc at various values of D and

S are shown in Table 3.1 and Table 3.2, respectively. We find good quan-
titative agreement with the accepted results, except for D = 2 where our
truncation incorrectly predicts Tc = 0. This can be understood by noting that
our truncation strategy amounts to an expansion of the effective potential
UΛ(M̄ z) = ΓΛ[M z]|Mz

i =M̄z up to the sixth order in M̄ z. While fluctuations
of the magnetization field are suppressed in higher dimensions, they can be
rather strong in one and two dimensions where our truncation overestimates
their effect. This can be seen explicitly for the special case S = 1/2, which
was studied numerically by Machado and Dupuis within the local potential
approximation [76]. Taking the full effective potential into account, they
obtain a finite Tc for D = 2, while their prediction for D = 3 is of a similar
accuracy as our result.

3.2.4 Critical temperature of the spin-S Ising model
within the 1/D expansion

While the vertex expansion as discussed above yields in general quantitatively
good results for Tc, it becomes increasingly difficult in higher dimensions to
compute the momentum integrals on the right-hand of the flow equations
to a sufficiently high accuracy. In this section we will therefore develop an
alternative approximation strategy, which has the additional advantage that
it is almost fully analytical. The basic idea is to use our SFRG formalism to
generate an expansion of the irreducible two-point vertex in powers of 1/D,
which we can then use to compute the critical temperature. Let us again
write down the exact flow equation of Γ(2)

Λ (k),

∂ΛΓ(2)
Λ (k) = β

2N
∑
q

VqΓ(4)
Λ (−q, q,−k,k)[

Γ(2)
Λ (q) + βRΛ(q)

]2 . (3.58)
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Tc/Tc0 for S = 1/2

D vertex expansion benchmark rel. error / %

1 0 0 0
2 0 0.57 -
3 0.744 0.752 1
4 0.839 0.835 0.5
5 0.880 0.878 0.3
6 0.904 0.903 0.2
7 0.920 0.919 0.1

Table 3.1: Critical temperature Tc in units of the mean-field result Tc0
for the spin-1/2 Ising model on a D-dimensional hypercubic lattice with
nearest-neighbour interaction. The second column refers to our results from
the vertex expansion which have been computed by numerically solving the
flow equations (3.54) and (3.55), while the third column shows the accepted
results [108–111].

Tc/Tc0 for D = 3

S vertex expansion benchmark rel. error / %

1/2 0.744 0.752 1
1 0.805 0.799 1
3/2 0.823 0.814 1
2 0.830 0.820 1
3 0.837 0.826 1
∞ 0.843 0.832 1

Table 3.2: Critical temperature Tc in units of the mean-field result Tc0 for
the spin-S Ising model on a cubic lattice. Analogous to Table 3.1, the second
column refers to our results from the vertex expansion, while the third column
shows the accepted results [109, 112].
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To leading order in 1/D we can replace both Γ(2)
Λ and Γ(4)

Λ on the right-hand
side of Eq. (3.58) by their initial condition, so that

∂ΛΓ(2)
Λ (k) = βΓ(4)

0
2N

∑
q

Vq[
1
b′
− βΛVq

]2 +O(D−2). (3.59)

Since it is easy to see that for any integer n ≥ 0 we have

∑
q

(γq)2n =
∑
q

[
1
D

D∑
i=1

cos(kia)
]2n

= O(D−n), (3.60)∑
q

(γq)2n+1 = 0, (3.61)

we can expand the denominator as

∂ΛΓ(2)
Λ (k) = β(b′)2Γ(4)

0
2N

∑
q

Vq (1 + 2βΛb′Vq) +O(D−2)

= − Λb′′′g2

2(b′)3D
+O(D−2), (3.62)

where we have introduced the dimensionless parameter

g = βb′V0 = Tc0
T

sgn(V0). (3.63)

Eq. (3.62) is then easily integrated to

Γ(2)
Λ=1(k) = 1

b′

[
1− γkg −

b′′′g2

4(b′)2D
+O(D−2)

]
. (3.64)

Since this function is of quadratic order in g, it is trivial to calculate its roots
and we can immediately write down the resulting expression for the critical
temperature,

Tc
Tc0

= 1
2

1 +

√√√√1− |b′′′|
(b′)2D

 . (3.65)

As can be seen from Table 3.3, Eq. (3.65) is quite accurate in higher dimensions,
but it also yields qualitatively correct results for lower dimensions, especially
for D = 2 where it predicts a finite Tc. Our result (3.65) works equally well
for arbitrary spin S, as can be seen from the comparison in Table 3.4.

It is straightforward to extend our 1/D expansion of the irreducible two-
point vertex beyond the first-order result (3.64); the explicit calculations can
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D Tc/Tc0 for S = 1/2 rel. error / %

O(D−1) O(D−2) O(D−3) benchmark O(D−1) O(D−2) O(D−3)

1 - - - 0 - - -
2 0.50 - - 0.57 12 - -
3 0.79 0.740 - 0.752 5 2 -
4 0.85 0.839 0.832 0.835 2 0.5 0.4
5 0.89 0.880 0.8782 0.8778 1 0.3 0.04
6 0.908 0.9041 0.9032 0.9029 0.6 0.1 0.03
7 0.923 0.9198 0.9193 0.9192 0.4 0.06 0.01
8 0.933 0.9310 0.9308 0.9307 0.3 0.04 0.01
9 0.941 0.9395 0.93931 0.93926 0.2 0.02 0.005
10 0.9472 0.9461 0.94595 0.94593 0.1 0.01 0.002

Table 3.3: Critical temperature Tc in units of the mean-field result Tc0 for
the spin-1/2 Ising model on a D-dimensional hypercubic lattice. The second
column refers to the leading-order result (3.65) from the 1/D expansion,
while the third and fourth columns refer to the higher-order truncations of
the irreducible two-point vertex in Eqs. (3.66) and (3.67), respectively. The
accepted results are shown in the fifth column as a comparison [108–111].
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S Tc/Tc0 for D = 3 rel. error / %

O(D−1) O(D−2) benchmark O(D−1) O(D−2)

1/2 0.79 0.740 0.752 5 2
1 0.85 0.806 0.799 7 1
3/2 0.87 0.826 0.814 7 2
2 0.88 0.834 0.820 7 2
3 0.88 0.842 0.826 7 2
∞ 0.89 0.849 0.832 7 2

Table 3.4: Critical temperature Tc in units of the mean-field result Tc0 for
the spin-S Ising model on a cubic lattice. Analogous to Table 3.3, the second
column refers to the leading-order result (3.65) from the 1/D expansion, while
the third column refers to the next-to-leading-order truncation (3.66). The
fourth column shows the accepted results [109, 112].

be found in Appendix B.1. To next-to-leading order we find a momentum-
dependent contribution of the order g3 and a momentum-independent term
of the order g4,

b′Γ(2)
Λ=1(k) =1− γkg −

b′′′g2

4(b′)2D
− (b′′′)2γkg

3

24(b′)4D2 −
(b(5) + 12b′b′′′)g4

32(b′)3D2 +O(D−3).

(3.66)

Setting Γ(2)
Λ=1(k) = 0 and solving for g, we find that an instability first occurs

for γk = sgn(V0). This signals a phase transition to a ferromagnetic or to
a Néel state, respectively, where Tc is the same for both cases as it should
be. Since Eq. (3.66) is of quartic order in g, it is still possible to express Tc
analytically; the results for various value of D and S are shown in Table 3.3
and Table 3.4. Finally, expanding Γ(2)

Λ=1(0) to third order in 1/D yields

b′Γ(2)
Λ=1(0) = 1− g + C1g

2

D
− C2g

3

D2 + C3g
4

D2 −
C4g

4

D3 −
C5g

5

D3 + C6g
6

D3

+O(D−4), (3.67)

where we have assumed V0 > 0 since this does not affect the critical tempera-
ture. The spin dependence is encoded in the coefficients Ci, which take on
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positive values of order unity and are explicitly given by

C1 = − b′′′

4(b′)2 , (3.68a)

C2 = (b′′′)2

24(b′)4 , (3.68b)

C3 = −b
(5) + 12b′b′′′

32(b′)3 , (3.68c)

C4 = b′′′b(5) − 36(b′)3b′′′

192(b′)5 , (3.68d)

C5 = b′b′′′b(5) − (b′′′)3 + 9(b′)2(b′′′)2

48(b′)6 , (3.68e)

C6 = −b
′b(7) + 3b′′′b(5) + 36(b′)2b(5) + 80b′(b′′′)2 + 360(b′)3b′′′

384(b′)5 . (3.68f)

For example, setting S = 1/2 results in

1
4Γ(2)

Λ=1(0) = 1− g + g2

2D −
g3

6D2 + g4

4D2 −
5g4

24D3 −
g5

4D3 + g6

2D3 +O(D−4).
(3.69)

For a given choice of D and S it is then trivial to find Tc by calculating the
roots of Eq. (3.67) numerically. The resulting Tc for S = 1/2 and various
values of D, which corresponds to the lowest positive root of Eq. (3.69), is
shown in Table 3.3.

Comparing the behaviour of the different truncations in Table 3.3 for small
D, it seems plausible that our expansion of the irreducible two-point vertex
is asymptotic; to nth order in 1/D, the prediction for Tc seems to be reliable
as long as D > n. Note that, despite its formal appearance, our approach is
not identical to a high-temperature expansion of Γ(2)

Λ=1; truncating the 1/D
expansion after the nth order with n > 1, we find that the coefficients of
the terms up to gn+1 coincide with the high-temperature expansion, while
the higher-order terms up to g2n have a different coefficient. This seems to
result in nicer analytic properties: comparing with the work by Butera and
Pernici who have computed Tc for the spin-1/2 Ising model by expanding
the spin susceptibility in a high-temperature series up to the 20th order and
subsequently applying a generalization of the Padé approximant method [111],
we find that our result for Tc, which follows simply from calculating the roots
of the sixth-order polynomial in Eq. (3.69), lies just outside their error bars
for D = 10.
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3.2.5 Choice of the initial condition for quantum spin
systems

Isolated spins

Let us now come back to the more general SFRG formalism for quantum spin
systems. An important point that we have not touched upon so far concerns
the existence of the Taylor expansion of the average effective action ΓΛ[M ]
around its minimum. Since ΓΛ[M ] is defined as the subtracted Legendre
transform of the generating functional of the connected spin correlators
GΛ[h], we have to express the source fields hi(τ) as a functional of the
local magnetization Mi(τ) by inverting relation (3.14). According to the
implicit function theorem, this requires that we can invert the spin-propagator
matrix GΛ[h] defined in Eq. (3.17). For practical calculations, however, we
also require that the Taylor expansion of ΓΛ[M ] around its minimum at
Mi(τ) = M̄Λ is well defined. Together with Eq. (3.15), this leads to the
stronger condition that the spin-propagator matrix GΛ ≡ GΛ[h̄Λ = V0M̄Λ]
is invertible. To show that this condition may be violated, let us consider a
deformation scheme where we start with isolated spins, V Λ=0

ij = 0, so that

G0[h] = ln Tr
[
e−βH0T e

∫ β
0 dτ

∑
i
hi(τ)·Si(τ)

]
, (3.70)

where

H0 = −h0
∑
i

Szi (3.71)

is the free part of the Hamiltonian. Due to the rotational symmetry around
the z axis, the spin-propagator matrix has the form

[GΛ]iτ,jτ ′ →

G
xx
Λ,ij(τ, τ ′) Gxy

Λ,ij(τ, τ ′) 0
Gyx

Λ,ij(τ, τ ′) Gyy
Λ,ij(τ, τ ′) 0

0 0 Gzz
Λ,ij(τ, τ ′)

 . (3.72)

However, since Szi commutes with H0,

[Szi , H0] = 0, (3.73)

it is obvious from Eqs. (3.4) and (3.6) that the longitudinal part of the
propagator is initially time independent, Gzz

0,ij(τ, τ ′) = Gzz
0,ij, which implies

that the determinant of G0 vanishes. To get a better understanding of this
point, we introduce the spin ladder operators

S±i = 1√
2

(Sxi ± iS
y
i ) (3.74)
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as well as the notation

Gαα′

Λ (K,K ′) = δ(K +K ′)Gαα′

Λ (K), (3.75)

where K = (k, iω) is a collective label for momentum and Matsubara fre-
quency, δ(K) = βNδk,0δω,0, and

Gαα′

Λ (K,−K) =
∫ β

0
dτ
∫ β

0
dτ ′

∑
ij

e−ik·(ri−rj)+iω(τ−τ ′)Gαα′

Λ,ij(τ, τ ′) (3.76)

is the Fourier transform of the spin propagator. We can then write

GΛ(K)→

G
+−
Λ (K) 0 0

0 G−+
Λ (K) 0

0 0 Gzz
Λ (K)

 , (3.77)

where obviously

G+−
Λ (K) = G−+

Λ (−K). (3.78)

In the local limit of isolated spins, the transversal and the longitudinal part
of the spin correlator are given by

G+−
0 (K) = b(βh)

h− iω
, Gzz

0 (K) = δ(ω)b′(βh), (3.79)

where h = h0+h̄0 and δ(ω) = βδω,0. WhileG+−
0 (K) has a non-trivial dynamics

due to the external magnetic field which breaks the rotational invariance,
Gzz

0 (K) vanishes for finite frequencies so that its inverse diverges. As a result,
we cannot use the local limit of isolated spins as an initial condition for the
pure SFRG formalism developed above. In the following, we will therefore
discuss several other initial conditions that do result in well-defined irreducible
vertices. Note that in Sec. 3.3 we will derive an alternative formulation of
the SFRG based on a Hubbard-Stratonovich decoupling of the exchange
interaction; this will allow us to define a generating functional of irreducible
vertices which is still well defined in the local limit of isolated spins.

High-temperature expansion

While we cannot turn off the exchange interaction completely within the
pure SFRG formalism, we can instead tune it to a very small but finite
value. We can do this in a systematic way by expanding the connected spin
correlators of the full Heisenberg Hamiltonian (3.2) in a high-temperature
series. One possibility to generate this series is to choose the deformation
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scheme V Λ
ij = ΛVij and to solve the infinite hierarchy of flow equations in

Eq. (3.11) iteratively.3 Introducing the notation

Γαα′Λ (K,K ′) = δ(K +K ′)Γαα′Λ (K ′) (3.80)

for the Fourier transform of Γαα′Λ,ij(τ, τ ′;M̄Λ), setting h0 = 0 so that

Γαα′Λ (K) = δα,α′ΓΛ(K), (3.81)

and assuming a nearest-neighbor interaction on a D-dimensional hypercubic
lattice, we find that the irreducible two-point vertex is to leading order given
by

ΓΛ=1(K) + Vk ≈
δω,0
βb′

[
1 + g2

24D

(
10|b′′′|
(b′)2 + γk

b′

)]
+ 1− δω,0

β

β2ω2D

(1− γk)g2 ,

(3.82)

where we have again used g = βb′V0. Taking the limit g → 0 in Eq. (3.82),
we recover the local limit of isolated spins where the finite-frequency part of
the irreducible two-point vertex diverges. Analogous to ΓΛ(K), we can also
expand higher-order irreducible vertices in a high-temperature series. For
example, the leading behaviour of the irreducible three-point vertex with
S = 1/2 is given by

Γα1α2α3
Λ=1 (K1, K2, K3) ≈ δ(K1 +K2 +K3) εα1α2α3β

2D2

2g4(1− γk1)(1− γk2)(1− γk3)
×
[
(ω1 − ω2)(ω2 − ω3)(ω3 − ω1) + γk1ω2ω3(ω2 − ω3)

+ γk2ω1ω3(ω3 − ω1) + γk3ω1ω2(ω1 − ω2)
]
, (3.83)

where εα1α2α3 is the three-dimensional Levi-Civita symbol with εxyz = 1. We
can then use Eqs. (3.82) and (3.83) as an initial condition for the pure SFRG
as developed in Sec. 3.2.1.

Note that both ΓΛ=1(K) and Γα1α2α3
Λ=1 (K1, K2, K3) as given above diverge

for vanishing momentum and finite frequency, since the definition (3.57) of
the structure factor implies γk=0 = 1. This is not an artifact of our truncation,
but rather a property of the quantum Heisenberg model, which results from
the fact that the total magnetization in z direction is conserved,[∑

i

Szi , H

]
= 0. (3.84)

3In practice, it is more efficient to employ the Hubbard-Stratonovich SFRG formalism
and calculate the irreducible vertices introduced in Sec. 3.3 in a high-temperature series,
which we can then use to derive the high-temperature series of the connected spin correlators.
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As a consequence,∑
ij

Gzz
ij (τ, τ ′) = 〈T [

∑
i

Szi (τ)
∑
j

Szj (τ ′)]〉 − 〈Szi (τ)〉 〈Szj (τ ′)〉 (3.85)

is time independent, so that

Gzz(k = 0, iω) = 1
βN

∫ β

0
dτ
∫ β

0
dτ ′

∑
ij

eiω(τ−τ ′)Gzz
ij (τ, τ ′) (3.86)

vanishes for ω 6= 0. We thus conclude that, strictly speaking, the Taylor expan-
sion of the average effective action Γ[M ] around its minimum atMi(τ) = M̄Λ
does not exist in the quantum Heisenberg model. However, since the point
k = 0 has Lebesgue measure zero in the thermodynamic limit, this should
not lead to any problems in practical calculations.

Spin dimers

Another possibility to obtain a non-trivial dynamics for the longitudinal part
of the spin correlator consists in coupling each spin Si in the Heisenberg
model to an auxiliary spin Ti,

H = −1
2
∑
ij

VijSi · Sj + J
∑
i

Si · Ti − h0
∑
i

Szi , (3.87)

while coupling the source field h only to the Si spins,

GΛ[h] = ln Tr
[
e−βH0T e

∫ β
0 dτ[∑i

hi(τ)·Si(τ)−VΛ(τ)]
]
, (3.88)

where the free part of the Hamiltonian is now given by

H0 = J
∑
i

Si · Ti − h0
∑
i

Szi . (3.89)

We can then use a deformation scheme V Λ
ij where the exchange interaction

between the Si is initially turned off completely,

VΛ=0(τ) = −1
2
∑
ij

V Λ=0
ij Si(τ) · Sj(τ) = 0, (3.90)

so that the system decouples into N isolated spin dimers which can be treated
analytically. In the simplest case we set h0 = 0 and S = T = 1/2, so that the
spin propagator reads

G0(K) = δ(ω)J2 + (eβJ − 1)J
2(eβJ + 3)(J2 + ω2) , (3.91)
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where we have used the notation

Gαα′

Λ (K) = δα,α′GΛ(K) (3.92)

for rotationally invariant systems. It is easy to invert this result, which yields
the irreducible two-point vertex

Γ0(K) + Vk = 2(eβJ + 3)(J2 + ω2)
δ(ω)J2 + (eβJ − 1)J . (3.93)

Note that it is important that we have not coupled the source field h to the
Ti spins in Eq. (3.88). The reason for this is that the determinant of the
full spin-propagator matrix including both Si and Ti vanishes due to the
conservation of the total spin length,[

(Si + Ti)2, H0
]

= 0, (3.94)

so that the corresponding irreducible vertices, containing information about
the correlations of both the Si and the Ti spins, would not be well defined.
The existence of the irreducible two-point vertex (3.93) thus depends on the
fact that Si on its own does not commute with H0.

It is straightforward to compute also higher-order irreducible vertices
which appear in the flow equation of ΓΛ(K). For example, the connected
three-point spin correlator is given by

Gα1α2α3
0 (K1, K2, K3) = εα1α2α3δ(K1 +K2 +K3)(1− δω1,0δω2,0δω3,0)

×
[
− (eβJ − 1)J(ω1 − ω2)(ω2 − ω3)(ω3 − ω1)

4(eβJ + 3)(J2 + ω2
1)(J2 + ω2

2)(J2 + ω2
3)

+
3∑
l=1

δ(ωl+1) J2 + 2ω2
l

4(eβJ + 3)ωl(J2 + ω2
l )

]
, (3.95)

where the delta functions in front take priority and we identify ω4 ≡ ω1. Due
to h0 = 0, we can then express the irreducible three-point vertex via the exact
relation

Γα1α2α3
0 (K1, K2, K3) = Gα1α2α3

0 (−K1,−K2,−K3)
G0(−K1)G0(−K2)G0(−K3) (3.96)

as

Γα1α2α3
0 (K1, K2, K3) = εα1α2α3δ(K1 +K2 +K3)(1− δω1,0δω2,0δω3,0)

×
[

2(eβJ + 3)2(ω1 − ω2)(ω2 − ω3)(ω3 − ω1)
(eβJ − 1)2J2

+
3∑
l=1

δ(ωl−1) 2(eβJ + 3)2J(J2 + 3ω2
l )

(eβJ − 1)2(eβJ − 1 + βJ)ωl

]
. (3.97)
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Note that for βJ � 1, Eq. (3.97) resembles the high-temperature result (3.83)
with D = 1 if we neglect its momentum dependence and identify V0 =

√
2J .

In this limit of a weak intra-dimer coupling, the spin-dimer approach thus
results in simpler initial conditions for the irreducible vertices than the high-
temperature expansion discussed above. However, the added complexity
in the high-temperature expansion might be beneficial in some situations,
because the momentum dependence of the irreducible vertices is generated
by the physical exchange coupling. Furthermore, it is conceptually trivial
to generalize the high-temperature expansion to arbitrary spin S by using
the generalized Wick theorem [1, 3]; in contrast, calculating the irreducible
vertices for a spin dimer while keeping one of its spins general is conceptually
more demanding.

Coupling the spins to a bath

The spin-dimer approach relies on the fact that the coupling of an isolated
spin Si to an auxiliary spin Ti results in a non-trivial dynamics of the spin
Si, which leads to well-defined irreducible vertices. More generally, we can
couple the isolated spins to any system which results in an invertible spin-
propagator matrix of the Si. A well-known toy model for such a configuration
is the spin-boson model, where a single spin is coupled to a bosonic bath
[113, 114]. Another famous example is the Kondo model, where a single
magnetic impurity is coupled to a fermionic bath of conduction electrons
[31, 115]. It is then natural to insert a momentum-dependent regulator in
the fermionic propagator and to generalize the SFRG to include fermionic
degrees of freedom. A recent application of this approach is given by our work
in Ref. [98], where we derive a generalized Wetterich equation for the Kondo
model within the SFRG, which we then solve in a simple approximation to
recover the one-loop “poor man’s scaling” equations for an arbitrary impurity
spin [31].

XY model

As discussed in the beginning of Sec. 3.2.5, we cannot invert the spin-
propagator matrix of an isolated spin in an external magnetic field. From
Eq. (3.79) we see that the transversal part has a non-trivial dynamics due to
the external field, while the longitudinal part of the spin propagator is time
independent so that det G0 = 0. We can avoid this problem by coupling the
source field h only to the transversal part of the spins,

GΛ[hx, hy] = ln Tr
[
e−βH0T e

∫ β
0 dτ[∑i

hxi (τ)Sxi (τ)+
∑

i
hyi (τ)Syi (τ)−VΛ(τ)]

]
, (3.98)
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where the free part of the Hamiltonian is still given by

H0 = −h0
∑
i

Szi . (3.99)

However, since our SFRG formalism requires that the right-hand side of the
flow equation of GΛ[hx, hy] can be expressed in terms of derivatives of this
generating functional, VΛ(τ) now has to be independent of the longitudinal
part Szi of the spins. This condition is naturally fulfilled in the quantum XY
model

H = −1
2
∑
ij

Vij
[
Sxi S

x
j + Syi S

y
j

]
− h0

∑
i

Szi , (3.100)

where

VΛ(τ) = −1
2
∑
ij

V Λ
ij

[
Sxi (τ)Sxj (τ) + Syi (τ)Syj (τ)

]
. (3.101)

Since the spin-propagator matrix now has the form

GΛ(K)→
(
G+−

Λ (K) 0
0 G−+

Λ (K)

)
, (3.102)

it is still invertible if we turn off the exchange interaction completely as long
as h0 6= 0, which can be seen from the initial condition

G+−
0 (K) = G−+

0 (−K) = b(βh)
h− iω

. (3.103)

Only at the end of the calculation one may then take the limit h0 → 0. This
approach has been employed by Rançon to describe the spin-1/2 quantum
XY model in two and three dimensions [106]; while that work relies on the
mapping of spin-1/2 operators to hardcore bosons, it should be straightforward
to generalize it to arbitrary spins by using our SFRG formalism.

3.2.6 Overview and future applications
Let us at this point summarize the main points of the present section on
the pure SFRG. In Sec. 3.2.1 we have shown that the Legendre transform of
the generating functional of the connected spin correlators obeys an exact
flow equation that is formally identical to the Wetterich equation for bosonic
degrees of freedom. Our derivation of this flow equation is formulated directly
in terms of spin operators, without any mapping to bosonic or fermionic
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fields. The non-trivial su(2) algebra is fully taken into account via the initial
conditions of the RG flow.

As a demonstration of our method, we have then applied the pure SFRG
formalism to the spin-S Ising model on a D-dimensional hypercubic lattice,
which allowed us to derive quantitatively accurate estimates for the critical
temperature. Due to the more complicated initial conditions for quantum
spin systems as discussed in Sec. 3.2.5, a generalization of this procedure to
quantum spin systems is cumbersome within the pure SFRG; in the next
section, we will present an alternative formulation of the SFRG to deal more
efficiently with this problem.

A first application of the pure SFRG to a non-trivial quantum system is
given by our recent work on the Kondo model in Ref. [98], where we derive a
generalized Wetterich equation that describes the conduction electrons as well
as the impurity spin. Using a standard Litim cutoff in momentum space, we
show how to derive the one-loop scaling equations for the anisotropic Kondo
model within a simple truncation of the infinite hierarchy of flow equations.
In contrast to the unconventional T -matrix renormalization in Anderson’s
“poor man’s scaling” approach, we use the language of the modern FRG which
allows for a significantly simpler derivation. Moreover, it is straightforward to
generalize our SFRG approach to keep track of the electronic self-energy, which
contains information about the spatial distribution of the charge density in
the vicinity of the impurity spin. Within a cutoff scheme where the electronic
bandwidth initially vanishes, the SFRG can also be used to study the strong
coupling regime.

Another interesting problem is the application of the SFRG to frustrated
spin systems. For the specific example of the Γ-Heisenberg-Kitaev model,
a possible line of attack within the pure SFRG is to start with decoupled
dimers, since in this case the initial conditions of the irreducible vertices are
well defined as shown recently by Arnold [116]. The interdimer interaction
can then be turned on continuously during the flow. While this approach
seems promising, we have not worked out a concrete implementation yet.

3.3 Hubbard-Stratonovich SFRG

3.3.1 General formalism
In this section we will develop an alternative SFRG formalism, which con-
ceptually relies on a Hubbard-Stratonovich transformation that decouples
the exchange interaction between the spins. Working with the generating
functional of the connected correlation functions of the Hubbard-Stratonovich
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field, we will find that its Legendre transform is well defined even in the local
limit of isolated spins. Moreover, the corresponding irreducible vertices have
a direct relation to the spin-diagrammatic approach of Vaks, Larkin, and
Pikin (VLP) [1–3]. This allows us to recover their results within our SFRG
formalism with its comparably simple diagrammatics, while at the same time
making it straightforward to improve on their work.

Amputated connected spin correlators

We start by defining the generating functional of the amputated connected
spin correlators FΛ[M ] as [33]

eFΛ[M ] = Tr
[
e−βH0T e

1
2

∫ β
0 dτ

∑
ij
V Λ
ij [Mi(τ)+Si(τ)]·[Mj(τ)+Sj(τ)]

]
, (3.104)

where

H0 = −h0
∑
i

Szi . (3.105)

From Eq. (3.104) we immediately see that FΛ[M ] is related to the generating
functional of the connected spin correlators by

FΛ[M ] = 1
2

∫ β

0
dτ
∑
ij

V Λ
ijMi(τ) ·Mj(τ) + GΛ

[∑
j

V Λ
ijMj(τ)

]
, (3.106)

which allows us to express the amputated connected spin correlators

Fα1...αn
Λ,i1...in(τ1, . . . , τn) = δnFΛ[M ]

δMα1
i1 (τ1) . . . δMαn

in (τn)

∣∣∣∣∣
M=M̄Λ

(3.107)

in terms of the more fundamental connected spin correlators. Here we have
expanded FΛ[M ] around the scale-dependent uniform field configuration [cf.
Eqs. (3.118) and (3.122)]

M̄Λ =
[

1
VΛ(k = 0) −

1
VΛ=1(k = 0)

]
h̄Λ, (3.108)

where h̄Λ is the flowing minimum of the Legendre transform of FΛ[M ] which
we will define in Eq. (3.115).4 To derive the flow equation of FΛ[M ] and

4Note that the definition of M̄Λ and h̄Λ in Sec. 3.2.1 is not compatible with the definition
in the present section; e.g., Eq. (3.108) implies that M̄Λ vanishes for Λ = 1, while in the
pure SFRG it flows to the physical magnetization. However, since one either works within
the pure or the Hubbard-Stratonovich formalism, this should not lead to any confusion.
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to get a better intuition for the amputated connected spin correlators, it is
helpful to decouple the exchange interaction V Λ

ij via a Hubbard-Stratonovich
transformation,

eFΛ[M ] =
∫
D[φ] e−

1
2
∑

α̃α̃′ [V−1
Λ ]

α̃α̃′
φα̃φα̃′+

∑
α̃
Mα̃φα̃ Tr

[
e−βH0T e

∑
α̃
φα̃Sα̃

]
∫
D[φ] e−

1
2
∑

α̃α̃′ [V−1
Λ ]

α̃α̃′
φα̃φα̃′

.

(3.109)

Here V−1
Λ is the matrix inverse of the exchange-interaction matrix

[VΛ]α̃α̃′ = [VΛ]αiτ,α′jτ ′ = δα,α′δ(τ − τ ′)V Λ
ij (3.110)

and we have introduced the superindex α̃ = {α, i, τ} with

∑
α̃

=
∫ β

0
dτ
∑
i,α

. (3.111)

We can thus interpret the amputated connected spin correlators as the
connected correlators of the Hubbard-Stratonovich field φα̃ = φαi (τ), which
mediates the exchange interaction between the spins. As a consequence, the
amputated connected two-point spin correlator plays the role of an effective
interaction,

F zz
Λ (K) = VΛ(k) + VΛ(k)Gzz

Λ (K)VΛ(k), (3.112a)
F+−

Λ (K) = VΛ(k) + VΛ(k)G+−
Λ (K)VΛ(k), (3.112b)

where again S±i = 1√
2(Sxi ± iS

y
i ) and we have used the notation

Fαα′

Λ (K,K ′) = δ(K +K ′)Fαα′

Λ (K ′) (3.113)

for the Fourier transform of Fαα′
Λ,ij(τ, τ ′). In the limit Λ→ 1, we can identify the

relations (3.112a) and (3.112b) with Eqs. (16a) and (16b) of Ref. [1], so that
F zz

Λ=1(K) and F+−
Λ=1(K) are indeed identical to the effective interaction in the

spin-diagrammatic approach of VLP. To compute the flow of the amputated
connected spin correlators, we need the flow equation of FΛ[M ]. We therefore
differentiate Eq. (3.109) with respect to Λ to obtain the Polchinkski equation
[24]

∂ΛFΛ[M ] = −1
2
∑
α̃α̃′

[
∂ΛV−1

Λ

]
α̃α̃′

[
δ2FΛ[M ]
δMα̃δMα̃′

+ δFΛ[M ]
δMα̃

δFΛ[M ]
δMα̃′

]

+ 1
2Tr

[
VΛ∂ΛV−1

Λ

]
. (3.114)
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Irreducible vertices

Analogous to the construction of the pure SFRG in Sec. 3.2.1, we now introduce
the subtracted Legendre transform ΦΛ[h] of the generating functional of the
amputated connected spin correlators,

ΦΛ[h] =
∑
α̃

Mα̃hα̃ −FΛ[M [h]]− 1
2
∑
α̃α̃′

[
R̃Λ

]
α̃α̃′

hα̃hα̃′ , (3.115)

where the local magnetizationMα̃ = Mα
i (τ) is to be understood as a functional

of the source fields hα̃ = hαi (τ) by inverting the relation

hα̃ = δFΛ[M ]
δMα̃

, (3.116)

and the regulator matrix R̃Λ is defined as

R̃Λ = V−1
Λ −V−1, (3.117)

where V = VΛ=1 is the bare exchange-interaction matrix. On a technical
level, ΦΛ[h] is the generating functional of the vertices which are irreducible
with respect to the cutting of a single (effective) interaction line. This is to be
contrasted with ΓΛ[M ] as defined in Eq. (3.12), which generates the vertices
that are irreducible with respect to the cutting of a single propagator line.
To derive the flow equation of ΦΛ[h], let us consider its first few derivatives.
In full analogy to Eqs. (3.15) and (3.16), the first derivative reads

δΦΛ[h]
δhα̃

= Mα̃ −
∑
α̃′

[
R̃Λ

]
α̃α̃′

hα̃′ , (3.118)

whereas the Hessian matrix Φ′′Λ[h] is given by

[Φ′′Λ[h]]α̃α̃′ = δ2ΦΛ[h]
δhα̃δhα̃′

=
[
F−1

Λ [M ]− R̃Λ
]
α̃α̃′

, (3.119)

where F−1
Λ [M ] is the matrix inverse of

[FΛ[M ]]α̃α̃′ = δ2FΛ[M ]
δMα̃δMα̃′

. (3.120)

Differentiating Eq. (3.114) with respect to Λ, we then find that ΦΛ[h] obeys
the Wetterich equation [34]

∂ΛΦΛ[h] = 1
2Tr

[(
Φ′′Λ[h] + R̃Λ

)−1
∂ΛR̃Λ

]
− 1

2Tr
[
VΛ∂ΛV−1

Λ

]
= 1

2Tr
{[(

Φ′′Λ[h] + R̃Λ
)−1
−VΛ

]
∂ΛR̃Λ

}
, (3.121)
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where in the second line we have used ∂ΛV−1
Λ = ∂ΛR̃Λ. Note that ΦΛ[h] has a

minimum at the scale-dependent uniform field configuration hα̃ = h̄Λ,α̃ = h̄αΛ
which is defined via

δΦΛ[h]
δhα̃

∣∣∣∣∣
h=h̄Λ

= 0, (3.122)

where h̄Λ will be non-zero for a finite external magnetic field h0 or in the
presence of a finite spontaneous magnetization. This can be seen from

h̄Λ = V0 〈Si(τ)〉
Λ,
[

1− VΛ(k=0)
VΛ=1(k=0)

]
h̄Λ
, (3.123)

where VΛ(k) is the Fourier transform of the deformed exchange interaction
V Λ
ij and

〈Sα̃〉Λ,h = δGΛ[h]
δhα̃

. (3.124)

In the limit Λ = 1 this simplifies to

h̄Λ=1 = V0 〈Si(τ)〉 , (3.125)

which relates h̄Λ=1 to the physical magnetization of the system. Note that
Eq. (3.123) follows from Eqs. (3.118) and (3.122) together with the general
relation ∑

α̃′

[
V−1

Λ

]
α̃α̃′

hα̃′ = Mα̃ + 〈Sα̃〉Λ,∑
α̃′′ [VΛ]α̃′α̃′′Mα̃′′

, (3.126)

which in turn follows directly from Eqs. (3.106) and (3.116). Physically, we
can interpret h̄Λ as the scale-dependent exchange correction to the external
magnetic field h0. We should therefore shift the fluctuating exchange field
hi(τ) = h̄Λ + ηi(τ) and consider the generating functional

Φ̃Λ[η] = ΦΛ[h̄Λ + η], (3.127)

which obeys the flow equation

∂ΛΦ̃Λ[η] = ∂ΛΦΛ[h]|h→h̄Λ+η +
∑
α̃

δΦ̃Λ[η]
δηα̃

∂Λh̄Λ,α̃

= 1
2Tr

{[(
Φ̃′′Λ[η] + R̃Λ

)−1
−VΛ

]
∂ΛR̃Λ

}
+
∑
α̃

δΦ̃Λ[η]
δηα̃

∂Λh̄Λ,α̃.

(3.128)
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Figure 3.3: Graphical representation of the relations between the longitudinal
two-point functions F zz

Λ (K), Πzz
Λ (K), and Gzz

Λ (K) as given in Eqs. (3.112a),
(3.132a), and (3.134a) (upper half) and the corresponding relations between
the transverse two-point functions F+−

Λ (K), Π+−
Λ (K), and G+−

Λ (K) as given
in Eqs. (3.112b), (3.132b), and (3.134b) (lower half). The connected two-
point spin correlators Gαα′

Λ (K) are denoted by light-colored circles, while the
polarization functions Παα′

Λ (K) are denoted by dark-colored circles. Double
wavy lines represent the amputated connected two-point spin correlators
Fαα′

Λ (K), while single wavy lines represent the deformed exchange interaction
VΛ(k). (Figure reproduced from Ref. [99])

Polarization functions

Below Eqs. (3.112a) and (3.112b) we have already pointed out that for Λ→ 1,
we can identify the amputated connected two-point spin correlators F zz

Λ (K)
and F+−

Λ (K) with the effective interaction of VLP. Introducing the notation

Φ̃αα′

Λ (K,K ′) = δ(K +K ′)Φ̃αα′

Λ (K) (3.129)

for the Fourier transform of the irreducible two-point vertex

[
Φ̃′′Λ

]
α̃α̃′

= Φ̃αα′

Λ,ij(τ, τ ′) = δ2Φ̃Λ[η]
δηαi (τ)δηα′j (τ ′)

∣∣∣∣∣
η=0

, (3.130)

we will now show that in the same limit Λ→ 1, we can identify the polarization
functions

Πzz
Λ (K) = V −1

k − Φ̃zz
Λ (K), (3.131a)

Π+−
Λ (K) = V −1

k − Φ̃+−
Λ (K), (3.131b)

with the irreducible vertices Σzz(K) and Σ+−(K) of VLP. From Eq. (3.119)
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we see that the definitions (3.131a) and (3.131b) imply

F zz
Λ (K) = 1

Φ̃zz
Λ (K) + R̃Λ(k)

= VΛ(k)
1− VΛ(k)Πzz

Λ (K) , (3.132a)

F+−
Λ (K) = 1

Φ̃+−
Λ (K) + R̃Λ(k)

= VΛ(k)
1− VΛ(k)Π+−

Λ (K) , (3.132b)

where R̃Λ(k) is the non-trivial part of the Fourier transform of
[
R̃Λ

]
αiτ,α′jτ ′

,

R̃αα′

Λ (K,K ′) = δα,α′δ(K +K ′)R̃Λ(k). (3.133)

As a result, we can express the spin propagators in terms of the polarization
functions,

Gzz
Λ (K) = Πzz

Λ (K)
1− VΛ(k)Πzz

Λ (K) , (3.134a)

G+−
Λ (K) = Π+−

Λ (K)
1− VΛ(k)Π+−

Λ (K) . (3.134b)

These expressions are identical to Eq. (13) of Ref. [1] in the limit Λ = 1, which
shows that Πzz

Λ=1(K) and Π+−
Λ=1(K) are indeed the irreducible vertices of VLP.

See Fig. 3.3 for a graphical representation of the relations between Fαα′
Λ (K),

Παα′
Λ (K), and Gαα′

Λ (K). Finally, we note that we can express the polarization
functions Πzz

Λ (K) and Π+−
Λ (K) in terms of the irreducible two-point vertices

ΓzzΛ (K) and Γ+−
Λ (K) from Sec. 3.2 via the exact relations

Πzz
Λ (K) = 1

ΓzzΛ (K) + Vk
, (3.135a)

Π+−
Λ (K) = 1

Γ+−
Λ (K) + Vk

, (3.135b)

which follow directly from Eqs. (3.16), (3.134a) and (3.134b). In Sec. 3.3.4,
these relations will allow us to generalize our 1/D expansion for the Ising
model to the quantum Heisenberg model, where we first expand Πzz

Λ (K) in
powers of 1/D and only afterwards use Eq. (3.135a) to convert our result into
an expansion of ΓzzΛ (K).

3.3.2 Initial condition of isolated spins
As we have discussed in Sec. 3.2.5, the irreducible vertices generated by
the average effective action ΓΛ[M ] do not exist in the limit of a vanishing
exchange interaction, which excludes the simple initial condition of isolated
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spins. However, we will show in the following that this is not the case for the
irreducible vertices that are generated by Φ̃Λ[η]. Assuming a deformation
scheme where V Λ=0

ij = 0, it follows from Eqs. (3.106), (3.115), and (3.126)
that the initial functional Φ0[h] is for a uniform source field h̄ = h̄ez given by

Φ0[h̄] = N

{
βh̄2

2V0
−B

[
β(h0 + h̄)

]}
, (3.136)

where B(y) is the primitive integral of the Brillouin function b(y) as defined
in Eq. (3.35). It is thus obvious that the minimum h̄Λ of the functional ΦΛ[h]
initially fulfills the self-consistency equation

h̄0 = V0b(β(h0 + h̄0)), (3.137)

which is consistent with the more general relation (3.123). As a consequence,
all correlation functions at Λ = 0 depend on the total magnetic field

h = h0 + h̄0. (3.138)

Writing h̄0 = V0M̄0, we note that Eq. (3.137) is equivalent to the familiar
result for the magnetization within self-consistent mean-field theory,

M̄0 = b(β(h0 + V0M̄0)). (3.139)

Considering the irreducible two-point vertex, it is obvious from Eqs. (3.134a)
and (3.134b) that the polarization functions are initially given by the con-
nected two-point spin correlators of an isolated spin subject to the magnetic
field h,

Πzz
0 (K) = Gzz

0 (K), (3.140a)
Π+−

0 (K) = G+−
0 (K). (3.140b)

To derive the initial condition of higher-order irreducible vertices, it is in-
structive to first look at the irreducible three-point vertex for arbitrary Λ,

[
Φ̃′′′Λ

]
α̃1α̃2α̃3

= Φ̃α1α2α3
Λ,i1i2i3(τ1, τ2, τ3) = δ3Φ̃Λ[η]

δηα1
i1 (τ1)δηα2

i2 (τ2)δηα3
i3 (τ3)

∣∣∣∣∣
η=0

. (3.141)

From Eqs. (3.106) and (3.119) we then find an exact relation between Φ̃′′′Λ
and the connected spin correlators,

[
Φ̃′′′Λ

]
α̃1α̃2α̃3

= −
∑

β̃1β̃2β̃3

3∏
i=1

[
(1+ GΛVΛ)−1

]
α̃iβ̃i

[G′′′Λ ]β̃1β̃2β̃3
, (3.142)
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where G′′′Λ is given by

[G′′′Λ ]α̃1α̃2α̃3
= Gα1α2α3

Λ,i1i2i3(τ1, τ2, τ3) = δ3GΛ[h]
δhα1

i1 (τ1)δhα2
i2 (τ2)δhα3

i3 (τ3)

∣∣∣∣∣
h=VΛ(k=0)M̄Λ

.

(3.143)

Since we are interested in the initial condition VΛ=0 = 0, it follows from
Eq. (3.142) that in Fourier space

Φ̃α1α2α3
0 (K1, K2, K3) = −Gα1α2α3

0 (K1, K2, K3). (3.144)

Analogously, the irreducible four-point vertex Φ̃(4)
Λ can be expressed as

[
Φ̃(4)

Λ

]
α̃1α̃2α̃3α̃4

= −
∑

β̃1β̃2β̃3β̃4

4∏
i=1

[
(1+ GΛVΛ)−1

]
α̃iβ̃i

[
G(4)

Λ

]
β̃1β̃2β̃3β̃4

+ 1
2 Sα̃1,α̃2;α̃3,α̃4

∑
β̃1β̃2

[
Φ̃′′′Λ

]
α̃1α̃2β̃1

[VΛ + VΛGΛVΛ]β̃1β̃2

[
Φ̃′′′Λ

]
β̃2α̃3α̃4

,

(3.145)

where the symmetrization operator Sα̃1,α̃2;α̃3,α̃4 symmetrizes the expression to
its right with respect to the exchange of all labels [33]. Since the second line
of Eq. (3.145) is proportional to VΛ, we find that the irreducible four-point
vertex is initially given by

Φ̃α1α2α3α4
0 (K1, K2, K3, K4) = −Gα1α2α3α4

0 (K1, K2, K3, K4). (3.146)

This procedure is easily generalized to higher orders, so that the irreducible
n-point vertex with n ≥ 3 has the initial condition

Φ̃α1...αn
0 (K1 . . . , Kn) = −Gα1...αn

0 (K1, . . . , Kn). (3.147)

In the spin-diagrammatic formalism of VLP, the connected spin correlators
Gα1...αn

0 (K1, . . . , Kn) of an isolated spin in an external magnetic field are
known as blocks (or as generalized blocks in Ref. [3]). Since they can be
calculated systematically via the generalized Wick theorem for spin operators
[1, 3], it is straightforward to compute the initial condition of the irreducible
vertices Φ̃(n)

Λ in a deformation scheme where V Λ=0
ij = 0.

3.3.3 Expansion in the inverse interaction range
Free energy

In the previous section, we have shown that the Hubbard-Stratonovich SFRG
is closely related to the spin-diagrammatic approach of VLP [1–3]. It should
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therefore be possible to recover the their expansion of both the free energy
and the polarization functions of the ferromagnetic Heisenberg model in
powers of the inverse interaction range 1/r0 [1, 2]. To show how this comes
about, let us first consider the deformed free energy in units of temperature,
Φ̃Λ ≡ Φ̃Λ[0]. Using Eq. (3.128) and noting that the irreducible one-point
vertex Φ̃α

Λ vanishes by construction, we find that the exact flow equation of
Φ̃Λ reads

∂ΛΦ̃Λ = 1
2Tr

{[(
Φ̃′′Λ + R̃Λ

)−1
−VΛ

]
∂ΛR̃Λ

}
. (3.148)

To make contact with the calculations of VLP, we choose the deformation
scheme V Λ

ij = ΛVij. The flow equation of the free energy can then be written
as

∂ΛΦ̃Λ[0] = −1
2
∑
k,ω

VkΠzz
Λ (K)

1− ΛVkΠzz
Λ (K) −

∑
k,ω

VkΠ+−
Λ (K)

1− ΛVkΠ+−
Λ (K) , (3.149)

where we have used Π−+
0 (K) = Π+−

0 (−K). Since the expansion in powers of
1/r0 amounts to an expansion in the number of momentum integrals, we can
recover the leading correction to the free energy by replacing the polarization
functions Πzz

Λ and Π+−
Λ on the right-hand side of Eq. (3.149) by their initial

condition. Integrating over Λ and inserting

Πzz
0 (K) = δ(ω)b′(βh),

Π+−
0 (K) = b(βh)

h− iω
, (3.150)

results in the leading correction

Φ̃Λ=1[0]− Φ̃0[0] ≈ 1
2
∑
k,ω

ln [1− VkΠzz
0 (K)] +

∑
k,ω

ln
[
1− VkΠ+−

0 (K)
]

= 1
2
∑
k

ln [1− βVkb′(βh)] +
∑
k,ω

ln
[
1− Vkb(βh)

h− iω

]
. (3.151)

The fact that the Matsubara sum in the transversal part is ill-defined can be
traced back to the ambiguity of S±i (τ)S∓i (τ) under the time-ordering symbol
as discussed at the end of Sec. 3.2.1. We therefore modify the time dependence
of the regulator matrix R̃Λ accordingly,

δ(τ − τ ′)→ δ(τ − τ ′ − 0±), (3.152)

so that its Fourier transform now reads

R̃αα′

Λ (K,K ′) = δα,α′δ(K +K ′)R̃Λ(k)eiω0± . (3.153)
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Since we have combined the transversal terms in Eq. (3.149) via Π−+
0 (K) =

Π+−
0 (−K), we have to use the average of both regularization factors,

1
2
(
eiω0+ + eiω0−

)
= cos(ω0+). (3.154)

We can incorporate this choice by replacing the Matsubara sum over an
arbitrary function by a contour integral in the following way:

1
β

∑
ω

f(iω) = −1
2

(−1)
2πi

∫
C
dz coth

(
βz

2

)
f(z), (3.155)

where the contour C encircles all Matsubara frequencies in a counterclockwise
manner [3, 41]. This allows us to perform the Matsubara sum in Eq. (3.151)
so that the leading correction to the free energy reads

Φ̃Λ=1[0]− Φ̃0[0] ≈ 1
2
∑
k

ln [1− βVkb′(βh)] +
∑
k

ln
sinh

(
βh−βVkb(βh)

2

)
sinh

(
βh
2

)
 ,

(3.156)

which is manifestly invariant under the transformation h→ −h. For vanishing
on-site interaction, our expression (3.156) is identical to the result of VLP as
given in Eq. (17) of Ref. [1].

Longitudinal polarization function

The same approach can be used to compute higher-order irreducible vertices.
As a specific example, we will compute the leading correction to the longi-
tudinal polarization function Πzz

0 (K). For this, we first need the exact flow
equation of the irreducible two-point vertex which follows from the vertex
expansion [33] of the Wetterich equation (3.128),

∂Λ
[
Φ̃′′Λ

]
α̃1α̃2

= 1
2Tr

[
ḞΛΦ̃(4)

Λ,α̃1α̃2

]
− 1

2 Sα̃1;α̃2 Tr
[
ḞΛΦ̃′′′Λ,α̃1FΛΦ̃′′′Λ,α̃2

]
+
∑
β̃

[
Φ̃′′′Λ

]
α̃1α̃2β̃

∂Λh̄Λ,β̃. (3.157)

Here the quadratic matrices Φ̃(n)
Λ,α̃1...α̃n−2

which appear in the trace are defined
as

[
Φ̃(n)

Λ,α̃1...α̃n−2

]
α̃n−1α̃n

=
[
Φ̃(n)

Λ

]
α̃1...α̃n

= δnΦ̃Λ[η]
δηα̃1 . . . δηα̃n

∣∣∣∣∣
η=0

(3.158)
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and we have introduced the single-scale propagator matrix

ḞΛ = −FΛ
(
∂ΛR̃Λ

)
FΛ. (3.159)

More explicitly, the exact flow equation of Πzz
Λ (K) can be written as

∂ΛΠzz
Λ (K) = −1

2

∫
Q
Ḟ zz

Λ (Q)Φ̃zzzz
Λ (Q,−Q,K)−

∫
Q
Ḟ+−

Λ (Q)Φ̃+−zz
Λ (Q,−Q,K)

+
∫
Q
Ḟ zz

Λ (Q)F zz
Λ (Q+K)Φ̃zzz

Λ (Q,−Q−K)Φ̃zzz
Λ (Q+K,−Q)

+
∫
Q

[
Ḟ+−

Λ (Q)F+−
Λ (Q+K) + F+−

Λ (Q)Ḟ+−
Λ (Q+K)

]
× Φ̃+−z

Λ (Q,−Q−K)Φ̃+−z
Λ (Q+K,−Q)− Φ̃zzz

Λ (K,−K)∂ΛhΛ.
(3.160)

Here we have introduced the notation
∫
K = 1

βN

∑
k,ω and

Φ̃α1...αn
Λ (K1, . . . , Kn) = δ(K1 + . . .+Kn)Φ̃α1...αn

Λ (K1, . . . , Kn−1) (3.161)

as well as the renormalized effective magnetic field hΛ = h0 + h̄Λ, while the
functions

Ḟ zz
Λ (K) = − [F zz

Λ (K)]2 ∂ΛR̃Λ(k) = ∂ΛVΛ(k)
[1− VΛ(k)Πzz

Λ (K)]2
, (3.162a)

Ḟ+−
Λ (K) = −

[
F+−

Λ (K)
]2
∂ΛR̃Λ(k) = ∂ΛVΛ(k)[

1− VΛ(k)Π+−
Λ (K)

]2 , (3.162b)

are related to the Fourier-space components of the single-scale propagator by

Ḟ zz
Λ (K,K ′) = δ(K +K ′)Ḟ zz

Λ (K ′), (3.163a)
Ḟ+−

Λ (K,K ′) = δ(K +K ′)Ḟ+−
Λ (K ′). (3.163b)

A graphical representation of the exact flow equation (3.160) is shown in
Fig. 3.4. We also need the flow equation of hΛ,

Φ̃zz
Λ (0)∂ΛhΛ = −1

2

∫
Q
Ḟ zz

Λ (Q)Φ̃zzz
Λ (Q,−Q)−

∫
Q
Ḟ+−

Λ (Q)Φ̃+−z
Λ (Q,−Q),

(3.164)

which can be obtained from the condition that the irreducible one-point vertex
Φ̃α

Λ vanishes. To derive the leading correction to the longitudinal polarization
function, we now approximate the polarization functions and the higher-order
irreducible vertices on the right-hand side of Eq. (3.160) and in Eq. (3.164)
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Figure 3.4: Graphical representation of the exact flow equation (3.160) of
the longitudinal polarization function Πzz

Λ . In our notation, a dot over a
diagram represents the derivative ∂Λ, a slashed double wavy line denotes
the corresponding single-scale propagator, and the renormalized effective
magnetic field hΛ is symbolized by a crossed circle. Except for the last term
which is considered separately by VLP, the diagrams on the right-hand side
of the above flow equation correspond to the diagrams in Fig. (3a) of Ref. [2]
if we set VΛ(k) = ΛVk, approximate the polarization functions as well as the
higher-order irreducible vertices by their initial value, and integrate over Λ.
(Figure reproduced with modifications from Ref. [99])

by their initial condition. Choosing the deformation scheme VΛ(k) = ΛVk,
we can then perform all Matsubara sums as well as the integrals over Λ
analytically. Postponing the evaluation of the last diagram in Fig. 3.4 for a
moment, we show in Appendix B.2 that
∫ 1

0
dΛ

[
∂ΛΠzz

Λ (K) + Φ̃zzz
Λ (K,−K)∂ΛhΛ

]
≈
∫
q

nq − nq+k

εq+k − εq − iω
+ δ(ω)

∫
q

{
n′y

+ βVq

[
b′′′

2 Lq + (b′′)2

2 βVq+kLqLq+k + b′′nq + β(b′)2Vq+k − 2b′
β(εq+k − εq)

(nq − nq+k)
]}
,

(3.165)

where we have followed VLP in assuming a vanishing on-site interaction,∑
k Vk = 0, as well as in defining

y = βh, εk = h− bVk, nk = 1
eβεk − 1 , ny = 1

ey − 1 , Lk = 1
1− βb′Vk

.

(3.166)

Our result (3.165) agrees exactly with Eq. (36) of Ref. [2], which corresponds
to the first-order correction to the longitudinal polarization function without
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taking the renormalization of the effective magnetic field into account. To
compute this missing contribution within the formalism of VLP, we first
determine the correction ∆y = β∆h to the dimensionless magnetic field from
the minimum of the free energy up to first order in the inverse interaction
range,

∆y = βV0

1− βb′V0

[
b′′

2

∫
q
βVqLq −

∫
q
(nq [1− βb′Vq]− ny)

]
, (3.167)

see Eqs. (17) and (18) of Ref. [1]. Inserting this correction into the initial
condition Πzz

0 (K) = δ(ω)b′(y) of the longitudinal polarization function then
yields

δ(ω)b′(y + ∆y)− δ(ω)b′(y) ≈ δ(ω)b′′(y)∆y. (3.168)

In Appendix B.2.5 we show that this is exactly the leading-order contribution
of the last diagram in Fig. 3.4,

− Φ̃zzz
0 (K,−K)

∫ 1

0
dΛ ∂ΛhΛ

≈δ(ω)b′′ βV0

1− βb′V0

[
b′′

2

∫
q
βVqLq −

∫
q
(nq [1− βb′Vq]− ny)

]
. (3.169)

We thus see that our SFRG exactly reproduces VLP’s result for the leading
correction to the longitudinal polarization function.

Together with our previous result (3.156) for the free energy, this suggest
that we can generate the expansion in the inverse interaction range 1/r0
within our SFRG by expanding the exact flow equations of the irreducible
vertices iteratively in the number of momentum integrals. Compared to the
spin-diagrammatic formalism of VLP, this is a significant simplification. Note
that in the context of the three-dimensional Heisenberg ferromagnet, the
expansion in powers of 1/r0 is known to yield an accurate description of the
thermodynamics for arbitrary spin, magnetic field, and temperature except
for a narrow region around the critical point [1]; moreover, for T < Tc it
enables us to study the transversal and longitudinal spin correlations [2].
While we have seen that it is possible to derive these results in a simpler way
within the SFRG, it also allows us to go beyond the 1/r0 expansion: as we
will discuss in Sec. 3.5, an interesting problem that we currently investigate
is the fate of spin waves above the critical temperature. Furthermore, in
contrast to the perturbative approach of VLP, our SFRG is still valid close
to Tc, which gives us access to the critical regime.
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3.3.4 Applying the 1/D expansion to the quantum
Heisenberg model

While we have shown in Sec. 3.3.3 that our Hubbard-Stratonovich SFRG
enables us to recover VLP’s expansion in 1/r0 in a simple way, it also allows
us to employ new approximation schemes. An obvious application is the
generalization of our 1/D expansion for the Ising model in Sec. 3.2.4 to quan-
tum systems. Since the irreducible vertices of a quantum spin model have
well-defined initial conditions for vanishing interaction within the Hubbard-
Stratonovich SFRG, it is straightforward to generalize our calculation for
the Ising model in Appendix B.1 to the quantum Heisenberg model. Again
assuming a D-dimensional hypercubic lattice with nearest-neighbour interac-
tion, we show in Appendix B.3.1 that the critical temperature of the spin-S
quantum Heisenberg model is to leading order in 1/D determined by the
quadratic equation

1− gγk −
g2

24D

(
10b′′′
(b′)2 −

γk
b′

)
= 0, (3.170)

where g = βb′V0. This equation is readily solved by

Tc
Tc0

= 1
2

1 +

√√√√1− 1
D

[
5
3
|b′′′|
(b′)2 ±

1
6b′

] , (3.171)

where Tc0 = b′|V0| is the mean-field result. We note that the last term
in the inner brackets is directly related to the quantumness of the model,
since it breaks the symmetry between a ferromagnetic (upper sign) and an
antiferromagnetic (lower sign) exchange interaction; this symmetry is only
restored in the classical limit S → ∞ where 1/b′ → 0. This behaviour is
seen explicitly in Fig. 3.5, where we compare our first-order result (3.171) for
the critical temperature in three dimensions to the predictions of Cuccoli et
al. [117] as well as to quantum Monte Carlo data [118, 119]. We find good
agreement (with a relative error below ten percent) for arbitrary spin S in the
antiferromagnetic case and for S > 1/2 in the ferromagnetic case. While we
assume that for D > 3 our leading-order expression (3.171) yields accurate
results over the full range of S for arbitrary sign of V0, it seems difficult to
find good benchmarks.

It is conceptually simple to extend our first-order calculation in Ap-
pendix B.3.1 to higher orders in 1/D. However, since we have not yet
evaluated the five- and six-point correlators of an isolated quantum spin
for arbitrary S, we focus on the limiting cases S = 1/2 and S → ∞. The
quantum limit is considered in Appendix B.3.2, where we show that the
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10 5 35/2 2 3/2 1 1/2

Figure 3.5: Critical temperature of the spin-S quantum Heisenberg model
on a cubic lattice for a ferromagnetic (dashed) or an antiferromagnetic (solid)
nearest-neighbour interaction. The upper (black) lines correspond to our
first-order result (3.171), while the lower (red) lines refer to the predictions
of Cuccoli et al. [117] which are calibrated to Monte Carlo results [120] for
S →∞. The blue diamond and triangle refer to quantum Monte Carlo results
[118, 119] for the spin-1/2 ferromagnetic and antiferromagnetic quantum
Heisenberg model, respectively.

critical temperature is to second order in 1/D determined by the quartic
equation

1− gγk + g2(5 + γk)
6D − g3(1 + γk)

3D2 + g4

18D2 (1− γk) = 0. (3.172)

For the ferromagnetic Heisenberg model on a cubic lattice we now do find
a phase transition at 2Db′Tc/Tc0 = 1, which qualitatively improves on the
first-order result, while for an antiferromagnetic interaction in D = 3 our
second-order result yields no phase transition. Similar to our first-order result,
we find that Eq. (3.172) predicts a finite Tc for D > 3 regardless of the sign
of V0.

Finally, in Appendix B.3.3 we derive the second-order correction for
S →∞, which results in5

1− gγk + g2

2D −
g3γk
10D2 + g4

4D2 = 0. (3.173)

5We note that Eq. (3.173) is invariant under the transformation {g, γk} → {−g,−γk},
which is in agreement with the fact that thermodynamic properties of the zero-field
classical Heisenberg model on a bipartite lattice do not depend on the sign of the exchange
interaction.
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Solving this equation for D = 3 yields 2Tc/Tc0 ≈ 1.42, which is rather close
to 2TMC

c /Tc0 ≈ 1.44 obtained from Monte Carlo simulations [120].

3.4 Hybrid SFRG

3.4.1 General formalism
Motivation

So far we have considered two different formulations of the spin FRG: on
the one hand, the pure SFRG developed in Sec. 3.2.1 deals directly with the
connected spin correlators and the corresponding irreducible vertices, which
are irreducible with respect to the cutting of a single propagator line. While
this formulation is very close to the usual FRG approach for bosonic and
fermionic systems, it has the disadvantage that the irreducible vertices do not
exist for the initial condition of isolated spins. This artifact is cured in the
Hubbard-Stratonovich SFRG, which is formulated in terms of the amputated
connected spin correlators and where irreducibility is defined with respect
to the cutting of a single (effective) interaction line. While this allows us to
use the comparably simple initial condition of isolated spins, it implies by
construction that we do not work with the usual irreducible vertices. On the
level of the irreducible two-point vertices, e.g., this means that we work with
the inverse of the usual self-energy Γαα′Λ (K) [cf. Eqs. (3.135a) and (3.135b)],
which might render some common approximation schemes less useful.

For magnetically ordered systems, it can therefore be useful to combine the
pure SFRG and the Hubbard-Stratonovich SFRG. In this hybrid SFRG, we
describe transversal fluctuations in a way similar to the pure SFRG formalism
which allows us to work directly with the usual irreducible vertices [e.g.,
with the self-energy Γ+−

Λ (K)], while the longitudinal fluctuations are treated
analogously to the Hubbard-Stratonovich SFRG so that the corresponding
irreducible vertices are well defined even in the local limit of isolated spins.

Auxiliary generating functional

On a technical level, we first define the auxiliary generating functional
AΛ[h⊥,M z] via [cf. Eqs. (3.3) and (3.104)]

eAΛ[h⊥,Mz ]

= Tr
[
e−βH0T e

∫ β
0 dτ

{∑
i
h⊥i (τ)·S⊥i (τ)+ 1

2
∑

ij
V Λ
ij [Mz

i (τ)+Szi (τ)][Mz
j (τ)+Szj (τ)]−H⊥Λ (τ)

}]
,

(3.174)
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where h⊥i = (hxi , h
y
i , 0)T, S⊥i = (Sxi , S

y
i , 0)T, and H⊥Λ denotes the transversal

part of the deformed Hamiltonian,

H⊥Λ = −1
2
∑
ij

V Λ
ij S

⊥
i · S⊥j = −1

2
∑
ij

V Λ
ij

(
S+
i S
−
j + S−i S

+
j

)
. (3.175)

Similar to Eq. (3.106), we can also express AΛ[h⊥,M z] in terms of the
generating functional of the connected spin correlators (3.3),

AΛ[h⊥,M z] = 1
2

∫ β

0
dτ
∑
ij

V Λ
ijM

z
i (τ)M z

j (τ) + GΛ
[
h⊥i (τ),

∑
j

V Λ
ijM

z
j (τ)

]
,

(3.176)

which will be useful later on. Conceptually, it is helpful to express Eq. (3.174)
in yet another way by decoupling the deformed exchange interaction via a
Hubbard-Stratonovich transformation in the longitudinal channel only,

eAΛ[h⊥,Mz ]

=

∫
D[φz] e−

1
2
∑

α̃α̃′ [V−1
Λ ]

α̃α̃′
φz
α̃
φz
α̃′ Tr

[
e−βH0T e

∑
α̃[(Mz

α̃+Szα̃)φzα̃+h⊥α̃S⊥α̃ ]−
∫ β

0 dτ H⊥Λ (τ)
]

∫
D[φz] e−

1
2
∑

α̃α̃′ [V−1
Λ ]

α̃α̃′
φz
α̃
φz
α̃′

,

(3.177)

so that the derivatives of AΛ[h⊥,M z] with respect to M z
i (τ) can be inter-

preted as the connected correlators of the Hubbard-Stratonovich field φzi (τ).
The inverse deformed exchange-interaction matrix V−1

Λ and the superindex
notation have already been introduced in Eq. (3.109); here we have also
defined φzα̃ = δα,zφ

z
i (τ), M z

α̃ = δα,zM
z
i (τ) and h⊥α̃ = h⊥i (τ) · eα, where eα is

the unit vector along the α axis. Differentiating Eq. (3.177) on both sides
with respect to Λ, we directly see that our auxiliary generating functional
AΛ[h⊥,M z] obeys the exact flow equation

∂ΛAΛ[h⊥,M z]

=1
2
∑
α̃α̃′

[
∂ΛV⊥Λ

]
α̃α̃′

[
δ2AΛ[h⊥,M z]
δh⊥α̃ δh

⊥
α̃′

+ δAΛ[h⊥,M z]
δh⊥α̃

δAΛ[h⊥,M z]
δh⊥α̃′

]

−1
2
∑
α̃α̃′

[
∂Λ (Vz

Λ)−1
]
α̃α̃′

[
δ2AΛ[h⊥,M z]
δM z

α̃δM
z
α̃′

+ δAΛ[h⊥,M z]
δM z

α̃

δAΛ[h⊥,M z]
δM z

α̃′

]

+ 1
2Tr

[
Vz

Λ∂Λ (Vz
Λ)−1

]
, (3.178)

where V⊥Λ and Vz
Λ refer to the transversal and to the longitudinal part of the

deformed exchange-interaction matrix, respectively, so that VΛ = V⊥Λ + Vz
Λ.
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We can write this flow equation more efficiently by introducing the superfield
Ji = (hxi , h

y
i ,M

z
i )T and the partially inverted exchange-interaction matrix

UΛ = V⊥Λ − (Vz
Λ)−1, so that

∂ΛAΛ[J ] = 1
2
∑
α̃α̃′

[∂ΛUΛ]α̃α̃′
[
δ2AΛ[J ]
δJα̃δJα̃′

+ δAΛ[J ]
δJα̃

δAΛ[J ]
δJα̃′

]

+ 1
2Tr

[
Vz

Λ∂Λ (Vz
Λ)−1

]
. (3.179)

Irreducible vertices

Similar to the pure and the Hubbard-Stratonovich SFRG, we now define the
subtracted Legendre transform ΨΛ[j] of our auxiliary generating functional
AΛ[J ] = AΛ[h⊥,M z] as

ΨΛ[j] =
∑
α̃

Jα̃jα̃ −AΛ[J [j]]− 1
2
∑
α̃α̃′

[
R̄Λ

]
α̃α̃′

jα̃jα̃′ , (3.180)

where Ji = (hxi , h
y
i ,M

z
i )T is to be understood as a functional of the superfield

ji = (Mx
i ,M

y
i , h

z
i )

T by inverting the relation

jα̃ = δAΛ[J ]
δJα̃

. (3.181)

The hybrid regulator matrix R̄Λ is given by

R̄Λ = R⊥Λ + Rz
Λ, (3.182)

where R⊥Λ and Rz
Λ are in turn defined as

R⊥Λ = V⊥ −V⊥Λ ,
Rz

Λ = (Vz
Λ)−1 − (Vz)−1 , (3.183)

which implies

∂ΛR̄Λ = −∂ΛUΛ. (3.184)

Due to its hybrid nature, ΨΛ[j] is the generating functional of the vertices
which are irreducible with respect to the cutting of either a single transversal
propagator line or a single longitudinal (effective) interaction line. Due to
our superfield notation, the derivatives of ΨΛ[j] have the usual form: while
its first derivative reads

δΨΛ[j]
δjα̃

= Jα̃ −
∑
α̃′

[
R̄Λ

]
α̃α̃′

jα̃′ , (3.185)
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the Hessian matrix Ψ′′Λ[j] is

[Ψ′′Λ[j]]α̃α̃′ = δ2ΨΛ[j]
δjα̃δjα̃′

=
[
A−1

Λ [J ]− R̄Λ
]
α̃α̃′

, (3.186)

where A−1
Λ [J ] is the matrix inverse of

[AΛ[J ]]α̃α̃′ = δ2AΛ[J ]
δJα̃δJα̃′

. (3.187)

This allows us to write the exact flow equation of ΨΛ[j] as

∂ΛΨΛ[j] = 1
2 Tr

[(
Ψ′′Λ[j] + R̄Λ

)−1
∂ΛR̄Λ

]
− 1

2Tr
[
Vz

Λ∂Λ (Vz
Λ)−1

]
= 1

2 Tr
{[(

Ψ′′Λ[j] + R̄Λ
)−1
−Vz

Λ

]
∂ΛR̄Λ

}
, (3.188)

where in the second line we have used that Vz
Λ and V⊥Λ are defined by

projecting VΛ onto orthogonal subspaces. In general, ΨΛ[j] will have a
minimum at the scale-dependent uniform superfield configuration jα̃ = j̄Λ,α̃ =
h̄Λ,α̃ = δα,zh̄Λ that fulfills

δΨΛ[j]
δjα̃

∣∣∣∣∣
j=h̄Λ

= 0, (3.189)

where the scale-dependent exchange correction to the external magnetic field
h̄Λ = h̄Λez will be non-zero if the O(3) symmetry of the quantum Heisenberg
model is either explicitly or spontaneously broken. We therefore introduce
the shifted generating functional

Ψ̃Λ[η] = ΨΛ[h̄Λ + η], (3.190)

where the superfield ηi(τ) = ji(τ)−h̄Λ measures the distance to the minimum
of ΨΛ[j]. The Wetterich equation [34] for Ψ̃Λ[η] thus reads [cf. Eq. (3.128)]

∂ΛΨ̃Λ[η] = ∂ΛΨΛ[j]|j→h̄Λ+η +
∑
α̃

δΨ̃Λ[η]
δηα̃

∂Λh̄Λ,α̃

= 1
2 Tr

{[(
Ψ̃′′Λ[η] + R̄Λ

)−1
−Vz

Λ

]
∂ΛR̄Λ

}
+
∑
α̃

δΨ̃Λ[η]
δηα̃

∂Λh̄Λ,α̃.

(3.191)
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3.4.2 Initial condition of isolated spins
Exchange correction to the external magnetic field

As mentioned in the beginning of Sec. 3.4.1, one motivation for the hybrid
SFRG is the fact that the corresponding irreducible vertices exist even in the
local limit of isolated spins as long as there is a finite (effective) magnetic
field during the flow (h̄Λ 6= 0 for Λ < 1). In the following, we will show
explicitly how this comes about by deriving the irreducible n-point vertices
of an isolated spin for n ≤ 4. We start with the generating functional itself:
assuming a uniform source field h̄ = h̄ez and a deformation scheme where
V Λ=0
ij = 0, we find that ΨΛ[h̄] is initially given by

Ψ0[h̄] = N

{
βh̄2

2V0
−B

[
β(h0 + h̄)

]}
; (3.192)

the derivation of this expression is completely analogous to the derivation of
Eq. (3.136). Minimizing Ψ0[h̄] then yields a self-consistency equation for the
initial value of h̄Λ,

h̄0 = V0b(β(h0 + h̄0)). (3.193)

This self-consistent mean-field result is identical to our initial condition (3.137)
in the Hubbard-Stratonovich SFRG, which is to be expected since the hybrid
SFRG treats longitudinal fluctuations in the same way.

Irreducible two-point vertices

To derive the initial condition of the irreducible two-point vertices, we first
note that Eq. (3.176) implies the general relations

AzzΛ (K) = VΛ(k) + VΛ(k)Gzz
Λ (K)VΛ(k), (3.194a)

A+−
Λ (K) = G+−

Λ (K). (3.194b)

Here we have used the notation

AzzΛ (K,K ′) = δ(K +K ′)AzzΛ (K ′), (3.195a)
A+−

Λ (K,K ′) = δ(K +K ′)A+−
Λ (K), (3.195b)

for the components of AΛ[J̄Λ] in Fourier space, where the scale-dependent
uniform superfield configuration J̄Λ = M̄Λez is defined via [see Eqs. (3.185)
and (3.189)]

M̄Λ =
[

1
VΛ(k = 0) −

1
VΛ=1(k = 0)

]
h̄Λ. (3.196)
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It then follows directly from Eq. (3.186) that the irreducible two-point vertices
can be related to the connected spin correlators by

ΠΛ(K) = Gzz
Λ (K)

1 + VΛ(k)Gzz
Λ (K) , (3.197a)

ΣΛ(K) = 1 + VΛ(k)G+−
Λ (K)

G+−
Λ (K) = 1

G+−
Λ (K) + VΛ(k), (3.197b)

where we have parametrized the Fourier-space representation of Ψ̃′′Λ[0] =
Ψ′′Λ[h̄Λ] as

Ψ̃zz
Λ (K,K ′) = δ(K +K ′)Ψ̃zz

Λ (K) = δ(K +K ′)
[
V −1
k − ΠΛ(K)

]
, (3.198a)

Ψ̃+−
Λ (K,K ′) = δ(K +K ′)Ψ̃+−

Λ (K ′) = δ(K +K ′)
[
ΣΛ(K ′)− Vk′

]
. (3.198b)

In a deformation scheme where we start the flow in the local limit of isolated
spins [i.e., VΛ=0(k) = 0], we then find that ΠΛ(K) and ΣΛ(K) are initially
given by

Π0(K) = Gzz
0 (K) = δ(ω)b′, (3.199a)

bΣ0(K) = b

G+−
0 (K) = h− iω, (3.199b)

where the Brillouin function b = b(βh) and its derivative b′ = b′(βh) depend
on the total magnetic field h = h0 + h̄0. Finally, it may be useful to define

Π̃Λ(K) = ΠΛ(K)− Π0(K), (3.200a)
Σ̃Λ(K) = bΣΛ(K)− bΣ0(K), (3.200b)

so that the irreducible two-point vertices can be written as

Ψ̃zz
Λ (K) = V −1

k − δ(ω)b′ − Π̃Λ(K), (3.201a)
bΨ̃+−

Λ (K) = εk − iω + Σ̃Λ(K), (3.201b)

where the spin-wave dispersion εk = h − bVk was already introduced in
Eq. (3.166). Most strikingly, the transversal part of the spin propagator is
then given by

G+−
Λ (K) = b

εk − iω + Σ̃Λ(K) + bRΛ(k)
; (3.202)

this strongly resembles the usual form of a bosonic or fermionic propagator
in the presence of an additive cutoff bRΛ(k) = bVk − bVΛ(k), where Σ̃Λ(K)
plays the role of a self-energy [33].
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Irreducible three-point vertices

In the next step we consider the third derivative of the hybrid generating
functional Ψ̃Λ[η],

[
Ψ̃′′′Λ [η]

]
α̃1α̃2α̃3

= δ3Ψ̃Λ[η]
δηα̃1δηα̃2δηα̃3

. (3.203)

Differentiating the Hessian matrix Ψ̃′′Λ[η] = Ψ′′Λ[h̄Λ + η] with respect to the
superfield ηi =

(
Mx

i ,M
y
i , h

z
i − h̄Λ

)T
, we find according to Eq. (3.186)

[
Ψ̃′′′Λ [η]

]
α̃1α̃2α̃3

= −
∑

α̃1α̃2α̃3

3∏
i=1

[
A−1

Λ [J ]
]
α̃iβ̃i

[A′′′Λ [J ]]β̃1β̃2β̃3
, (3.204)

where we have defined

[A′′′Λ [J ]]α̃1α̃2α̃3
= δ3AΛ[J ]
δJα̃1δJα̃2δJα̃3

. (3.205)

With Eq. (3.176) we can show that the Fourier-space components of Ψ̃′′′Λ [0]
are given by

Ψ̃zzz
Λ (K1, K2, K3) = −

3∏
i=1

[1 + VΛ(ki)Gzz
Λ (Ki)]−1Gzzz

Λ (K1, K2, K3),

(3.206a)

Ψ̃+−z
Λ (K1, K2, K3) = − G+−z

Λ (−K1,−K2, K3)
G+−

Λ (−K1)G+−
Λ (K2) [1 + VΛ(k3)Gzz

Λ (K3)] , (3.206b)

which relates the irreducible three-point vertices to the connected spin corre-
lators. For the initial condition of isolated spins it is then straightforward to
evaluate these expression explicitly,

Ψ̃zzz
0 (K1, K2) = −δ(K1)δ(K2)b′′, (3.207a)

bΨ̃+−z
0 (K1, K2) = 1− δ(K1 +K2)b

′

b
(h− iω2), (3.207b)

where we have parametrized

Ψ̃zzz
Λ (K1, K2, K3) = δ(K1 +K2 +K3)Ψ̃zzz

Λ (K1, K2), (3.208a)
Ψ̃+−z

Λ (K1, K2, K3) = δ(K1 +K2 −K3)Ψ̃+−z
Λ (K1, K2). (3.208b)
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Irreducible four-point vertices

The last case that we will explicitly consider concerns the fourth derivative of
the hybrid generating functional,[

Ψ̃(4)
Λ [η]

]
α̃1α̃2α̃3α̃4

= δ4Ψ̃Λ[η]
δηα̃1δηα̃2δηα̃3δηα̃4

. (3.209)

From Eq. (3.204) it directly follows that[
Ψ̃(4)

Λ [η]
]
α̃1α̃2α̃3α̃4

= −
∑

α̃1α̃2α̃3α̃4

4∏
i=1

[
A−1

Λ [J ]
]
α̃iβ̃i

[
A(4)

Λ [J ]
]
β̃1β̃2β̃3β̃4

+ 1
2 Sα̃1α̃2;α̃3α̃4

∑
β̃1β̃2

[
Ψ̃′′′Λ [η]

]
α̃1α̃2β̃1

[AΛ[J ]]β̃1β̃2

[
Ψ̃′′′Λ [η]

]
β̃2α̃3α̃4

,

(3.210)
where [

A(4)
Λ [J ]

]
α̃1α̃2α̃3α̃4

= δ4AΛ[J ]
δJα̃1δJα̃2δJα̃3δJα̃4

. (3.211)

Setting η = 0 and transforming into Fourier space, we find that the fully
longitudinal irreducible four-point vertex is given by

Ψ̃zzzz
Λ (K1, K2, K3, K4) = −

4∏
i=1

[1 + VΛ(ki)Gzz
Λ (Ki)]−1Gzzzz

Λ (K1, K2, K3, K4),

(3.212)
the mixed irreducible four-point vertex reads

Ψ̃+−zz
Λ (K1, K2, K3, K4)

=− G+−zz
Λ (−K1,−K2, K3, K4)

G+−
Λ (−K1)G+−

Λ (K2) [1 + VΛ(k3)Gzz
Λ (K3)] [1 + VΛ(k4)Gzz

Λ (K4)]
+δ(K1 +K2 −K3 −K4)
×
[
SK3;K4 G

+−
Λ (−K1 +K3)Ψ̃+−z

Λ (K1,−K1 +K3)Ψ̃+−z
Λ (K1 −K3, K2)

+Vk1+k2 [1 + Vk1+k2G
zz
Λ (K1 +K2)] Ψ̃+−z

Λ (K1, K2)Ψ̃zzz
Λ (K3, K4)

]
, (3.213)

and the fully transversal irreducible four-point vertex can be expressed as

Ψ̃+−+−
Λ (K1, K2, K3, K4)

=− G+−+−
Λ (−K1,−K2,−K3,−K4)

G+−
Λ (−K1)G+−

Λ (K2)G+−
Λ (−K3)G+−

Λ (K4)
+SK1;K3 δ(K1 +K2 +K3 +K4)VΛ(k1 + k2) [1 + VΛ(k1 + k2)Gzz

Λ (K1 +K2)]
× Ψ̃+−z

Λ (K1, K2)Ψ̃+−z
Λ (K3, K4). (3.214)
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For vanishing exchange interaction, these objects simplify to

Ψ̃zzzz
Λ (K1, K2, K3) = −δ(ω1)δ(ω2)δ(ω3)b′′′, (3.215a)

bΨ̃+−zz
Λ (K1, K2, K3) = − [δ(ω3) + δ(ω1 + ω2 − ω3)] b

′

b

+ δ(ω3)δ(ω1 + ω2 − ω3)2(b′)2 − bb′′

b2 (h− iω2),
(3.215b)

b2Ψ̃+−+−
Λ (K1, K2, K3) = 1

b
(2h+ iω1 + iω3)

− [δ(ω1 + ω2) + δ(ω3 + ω2)] b
′

b2 (h+ iω1)(h+ iω3),
(3.215c)

where we have defined

Ψ̃zzzz
Λ (K1, K2, K3, K4) = δ(K1 +K2 +K3 +K4)Ψ̃zzzz

Λ (K1, K2, K3),
(3.216a)

Ψ̃+−zz
Λ (K1, K2, K3, K4) = δ(K1 +K2 −K3 −K4)Ψ̃+−zz

Λ (K1, K2, K3),
(3.216b)

Ψ̃+−+−
Λ (K1, K2, K3, K4) = δ(K1 +K2 +K3 +K4)Ψ̃+−+−

Λ (K1, K2, K3).
(3.216c)

Although the initial conditions of the irreducible vertices have a non-trivial
structure, we note that they all consist of polynomials in the frequencies.
This is a direct consequence of the fact that we have performed a Hubbard-
Stratonovich transformation only in the longitudinal channel, which initially
does not exhibit any dynamics.

3.4.3 Exact flow equations
Exact flow equation of the free energy

To conclude our presentation of the hybrid SFRG approach, we will in the
following derive exact flow equations which connect the initial conditions in
Sec. 3.4.2 to the corresponding quantities of the fully interacting system. Our
starting point is the Wetterich equation for the hybrid generating functional
Ψ̃Λ[η],

∂ΛΨ̃Λ[η] = 1
2 Tr

{[(
Ψ̃′′Λ[η] + R̄Λ

)−1
−Vz

Λ

]
∂ΛR̄Λ

}
+
∑
α̃

δΨ̃Λ[η]
δηα̃

∂Λh̄Λ,α̃.

(3.217)
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The exact flow equation of the deformed free energy in units of temperature,
Ψ̃Λ ≡ Ψ̃Λ[0], is obtained by simply setting η = 0 in Eq. (3.217),

∂ΛΨ̃Λ = 1
2 Tr

{[(
Ψ′′Λ[0] + R̄Λ

)−1
−Vz

Λ

]
∂ΛR̄Λ

}
= −1

2
∑
k,ω

[∂ΛVΛ(k)] ΠΛ(K)
1− VΛ(k)ΠΛ(K) −

∑
k,ω

∂ΛVΛ(k)
ΣΛ(K)− VΛ(k) . (3.218)

Using the deformation scheme VΛ(k) = ΛVk and replacing both ΣΛ(K)
and ΠΛ(K) by their initial value, we would of course arrive at the same
result (3.156) as in the Hubbard-Stratonovich SFRG.

Exact flow equation of the effective magnetic field

To derive the flow equation of the renormalized effective magnetic field
hΛ = h0 + h̄Λ, we need to go one level higher in the hierarchy of the irreducible
vertices. Using the fact that the irreducible one-point vertex vanishes by
construction, we arrive at

0 = 1
2 Tr

[
ȦΛΨ̃′′′Λ,α̃

]
+
∑
β̃

[
Ψ̃′′Λ

]
α̃β̃
∂ΛhΛ,β̃, (3.219)

where we have introduced the single-scale propagator

ȦΛ = −AΛ
(
∂ΛR̄Λ

)
AΛ (3.220)

as well as the notation[
Ψ̃(n)

Λ,α̃1...α̃n−2

]
α̃n−1α̃n

=
[
Ψ̃(n)

Λ

]
α̃1...α̃n

= δnΨ̃Λ[η]
δηα̃1 . . . δηα̃n

∣∣∣∣∣
η=0

. (3.221)

More explicitly, we find

Ψ̃zz
Λ (0)∂ΛhΛ = −1

2

∫
Q
ȦzzΛ (Q)Ψ̃zzz

Λ (Q,−Q)−
∫
Q
Ȧ+−

Λ (Q)Ψ̃+−z
Λ (−Q,Q),

(3.222)
where the functions

ȦzzΛ (K) = ∂ΛVΛ(k)
[1− VΛ(k)ΠΛ(K)]2

, (3.223)

Ȧ+−
Λ (K) = ∂ΛVΛ(k)

[ΣΛ(k)− VΛ(k)]2
, (3.224)

are related to the single-scale propagator in Fourier space by

ȦzzΛ (K,K ′) = δ(K +K ′)ȦzzΛ (K ′), (3.225)
Ȧ+−

Λ (K,K ′) = δ(K +K ′)Ȧ+−
Λ (K). (3.226)
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Exact flow equation of the irreducible two-point vertices

Finally, let us derive the exact flow equations of ΠΛ(K) and ΣΛ(K). Differ-
entiating Eq. (3.217) twice with respect to η and setting η = 0 afterwards
yields the general relation

∂Λ
[
Ψ̃′′Λ

]
α̃1α̃2

= 1
2 Tr

[
ȦΛΨ̃(4)

Λ,α̃1α̃2

]
− 1

2 Sα̃1;α̃2 Tr
[
ȦΛΨ̃′′′Λ,α̃1AΛΨ̃′′′Λ,α̃2

]
+
∑
β̃

[
Ψ̃′′′Λ

]
α̃1α̃2β̃

∂ΛhΛ,β̃, (3.227)

whose longitudinal part corresponds to

∂ΛΠΛ(K) = −1
2

∫
Q
ȦzzΛ (Q)Ψ̃zzzz

Λ (Q,−Q,K)−
∫
Q
Ȧ+−

Λ (Q)Ψ̃+−zz
Λ (−Q,Q,K)

+
∫
Q
ȦzzΛ (Q)AzzΛ (Q+K)Ψ̃zzz

Λ (Q,−Q−K)Ψ̃zzz
Λ (Q+K,−Q)

+
∫
Q

[
Ȧ+−

Λ (Q)A+−
Λ (Q+K) + A+−

Λ (Q)Ȧ+−
Λ (Q+K)

]
× Ψ̃+−z

Λ (−Q,Q+K)Ψ̃+−z
Λ (−Q−K,Q)

− Ψ̃zzz
Λ (K,−K)∂ΛhΛ, (3.228)

while the transversal part yields

∂ΛΣΛ(K) = 1
2

∫
Q
ȦzzΛ (Q)Ψ̃+−zz

Λ (−K,K,Q) +
∫
Q
Ȧ+−

Λ (Q)Ψ̃+−+−
Λ (−K,K,−Q)

−
∫
Q

[
ȦzzΛ (Q)A+−

Λ (K +Q) + AzzΛ (Q)Ȧ+−
Λ (K +Q)

]
× Ψ̃+−z

Λ (−K,K +Q)Ψ̃+−z
Λ (−K −Q,K)

+ Ψ̃+−z
Λ (−K,K)∂ΛhΛ. (3.229)

A graphical representation of these exact flow equations is shown in the upper
and the lower half of Fig. 3.6, respectively.

3.5 Summary and outlook
Before we conclude the present chapter, let us give a short overview on the
current status of the SFRG. We have developed three different formulations of
our method, which each have their own strengths and shortcomings. The pure
SFRG is conceptually very close to the usual formulation of the FRG for bosons
and fermions, since it is formulated in terms of connected spin correlators
and the corresponding irreducible vertices. With respect to approximation
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Figure 3.6: Graphical representation of the exact flow equations (3.228)
and (3.229) of ΠΛ(K) and ΣΛ(K), respectively. Here AzzΛ (K) is denoted by
a double wavy line, while a double solid line refers to A+−

Λ (K). A slashed
double line of either kind represents the corresponding single-scale propagator,
the dot over the diagrams denotes the derivative ∂Λ, and the renormalized
effective magnetic field hΛ is symbolized by a crossed circle.
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strategies, this should allow us to transfer the intuition gained from previous
FRG works on bosonic or fermionic fields. An example of this is our application
of the pure SFRG to the spin-S Ising model in Sec. 3.2.3, where we have
used a simple truncation of the vertex expansion to get quantitatively good
results for the critical temperature. When it comes to quantum spin systems,
however, a drawback of the pure SFRG are the complicated initial conditions:
since the irreducible vertices Γ̃(n)

Λ do not exist in the local limit of isolated
spins as discussed in Sec. 3.2.5, we are forced to consider a more complex
initial configuration.

This shortcoming is cured in the Hubbard-Stratonovich SFRG, where the
irreducible vertices Φ̃(n)

Λ are well defined even in the limit of a single spin
without an external magnetic field. While the internal structure of the su(2)
algebra enforces a certain amount of complexity, the initial conditions of the
Φ̃(n)

Λ can thus be chosen to be comparatively simple. This has enabled us,
e.g., to apply the 1/D expansion to the spin-S quantum Heisenberg model
(see Sec. 3.3.4). Another advantage of the Hubbard-Stratonovich SFRG is its
conceptual closeness to the spin-diagrammatic formalism of Vaks, Larkin, and
Pikin, which allows us to formulate their ideas in a more powerful yet simpler
way. As we have shown in Sec. 3.3.3, it is straightforward to recover their
expansion in the inverse interaction within our formalism, while at the same
time avoiding the complicated diagrammatic rules of their spin-diagrammatic
formalism. A possible disadvantage of the Hubbard-Stratonovich SFRG is
that the Φ̃(n)

Λ are by construction irreducible with respect to the cutting of
a single (effective) interaction line instead of a single propagator line. It
might therefore be more difficult to translate common approximation schemes
that are known to work within the usual FRG formalism to the Hubbard-
Stratonovich SFRG. This is already seen in the 1/D expansion of the quantum
Heisenberg model mentioned above, where the calculation of the polarization
function Πzz

Λ (K) is only a means to generate the Taylor series of the self-energy
ΓzzΛ (K); while it would be possible to determine Tc directly from Πzz

Λ (K), the
results turn out to be inferior.

Finally, the hybrid SFRG developed in Sec. 3.4 naturally shares features
with both the pure and the Hubbard-Stratonovich SFRG. In terms of com-
plexity of the initial conditions it occupies an intermediate position: while the
irreducible vertices Ψ̃(n)

Λ can still be well defined for isolated spins, this is only
possible if the O(3) symmetry of the Heisenberg model is either explicitly
or spontaneously broken. While in the present thesis we have not shown a
practical application of the hybrid SFRG, preliminary calculations suggest
that in the presence of a finite magnetization it might be preferable to the
Hubbard-Stratonovich SFRG.

As already discussed in Sec. 3.2.6, promising future applications of the
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pure SFRG include an extension of our recent work on the Kondo model
in Ref. [98] to the strong coupling regime and the study of frustrated spin
systems. On the other hand, a specific problem that can be studied within
the Hubbard-Stratonovich and the hybrid SFRG is the question about the
fate of spin waves in a quantum Heisenberg ferromagnet above the critical
temperature. While the total magnetization averaged over the full system
vanishes in this regime, this is not the case if we only consider subregions
that are small compared to the correlation length ξ. As a consequence, the
concept of spin waves should still be meaningful above Tc as long as their
wavevector k is much larger than 1/ξ. Since the initial condition for the
magnetization is in our SFRG given by self-consistent mean-field theory, the
scale-dependent magnetization M̄Λ can be finite during the flow even in two
dimensions. Using a regulator in momentum space to separate short-distance
and long-distance fluctuations, we can then study how the properties of spin
waves change when we increase the length scale.



Appendix A

Technical details regarding the
BKT transition

A.1 Flow equations of the marginal couplings
to leading order in ỹl

As we have shown in Sec. 2.4.3, the flow equation of the marginal couplings
c

(2n)
Λ is for n = 2, 3, 4 given by [cf. Eq. (2.121)]

∂lc
(2n)
Λ = c

(2n+2)
Λ
4πτl

+ (−1)n(4π)2n−3ỹ2
l +O(ỹ3

l ). (A.1)

In the following we will show that this flow equation indeed holds for all n ≥ 2
by considering the general flow equation of the irreducible 2n-point vertex.
Only retaining terms up to second order in ỹl, we can parametrize it as

∂ΛΓ(2n)
Λ (k) = Γ̇(2n,1)

Λ (k) + Γ̇(2n,2)
Λ (k), (A.2)

where the Γ̇(2n,m)
Λ (k) are defined as containing only terms with exactly m

irreducible vertices. This is possible since all Γ(2n)
Λ for n ≥ 2 are at least of

the order of ỹl. For m = 1 we find [33]

Γ̇(2n,1)
Λ (k) = 1

2N
∑
q

ĠΛ(q)Γ(2n+2)
Λ (q,−q,k,−k, 0, . . . , 0)

≈ AΛ

2 Γ(2n+2)
Λ (k), (A.3)

where the coefficient AΛ was defined in Eq. (2.96) and we have neglected the
dependence of the internal vertex Γ(2n+2)

Λ on the loop momentum q, as it

125
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would either involve irrelevant couplings or terms of higher order in ỹl. The
second contribution Γ̇(2n,2)

Λ (k) is more complicated; it consists of terms of the
form [33]

1
N

∑
pq

ĠΛ(q)GΛ(p)Γ(n1+2)
Λ (q,−p,k1, . . . ,kn1)Γ(n2+2)

Λ (p,−q,kn1+1, . . . ,k2n),

(A.4)
where n1 and n2 are positive even integers with n1 + n2 = n and the set
of momenta {k1, . . . ,k2n} is a permutation of {k,−k, 0, . . . , 0}. We can
neglect all terms where k and −k belong to the same internal vertex, as they
contribute at least to order ỹ3

l to the flow of c(2n)
Λ . Approximating the internal

vertices in the remaining terms by their momentum-independent parts and
taking account of the proper combinatorial factors then gives

Γ̇(2n,2)
Λ (k) ≈ −1

2

∞∑
n1=1

∞∑
n2=1

δn1+n2,2n
2n1n2(2n− 2)!

n1!n2! u
(n1+2)
Λ u

(n2+2)
Λ BΛ(k), (A.5)

where BΛ was defined in Eq. (2.112). The combinatorial factors in the
numerator correspond to the symmetry k↔ −k, to the n1 (n2) possibilities
to assign k or −k to the first (second) internal vertex, and to the (2n− 2)!
possibilities of distributing the remaining vanishing momenta, while the
denominator results from the n1! (n2!) different permutations of the indices of
the first (second) internal vertex. Since the relevant couplings u(n)

Λ vanish for
odd n in our model, we can rewrite this expression using binomial coefficients
as

Γ̇(2n,2)
Λ (k) ≈ −

n−1∑
i=1

(
2n− 2
2i− 1

)
u

(2i+2)
Λ u

(2n−2i+2)
Λ BΛ(k). (A.6)

According to Eqs. (2.102) and (2.105) we have

u
(2i+2)
Λ u

(2n−2i+2)
Λ = (−1)nc2

ΛΛ4(2π)2n−2ỹ2
l , (A.7)

which is clearly independent of the summation index i. The sum can thus be
performed analytically, so that

Γ̇(2n,2)
Λ (k) ≈ −22n−3u

(4)
Λ u

(2n)
Λ BΛ(k) (A.8)

and hence

∂ΛΓ(2n)
Λ (k) ≈ AΛ

2 Γ(2n+2)
Λ (k)− 22n−3u

(4)
Λ u

(2n)
Λ BΛ(k). (A.9)

The flow equation of c(2n)
Λ is given by the second-order term of a Taylor

expansion in k of this expression. Replacing ∂Λ = −Λ−1∂l and inserting our
leading-order results for AΛ and BΛ we then recover Eq. (A.1).
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A.2 Next-to-leading-order correction to the
flow equation of ỹl

A.2.1 Flow equations of the relevant couplings to next-
to-leading order

As we have mentioned at the end of Sec. 2.4.3, we also need to consider
the ỹ2

l correction at τ = π/2 to the flow of ỹl. To this end, we will in the
following derive the subleading ỹ2

l correction to the flow equation of the
relevant couplings u(2n)

Λ , which to leading order is given by [cf. Eq. (2.98)]

∂lu
(2n)
Λ = u

(2n+2)
Λ
4πτl

+O(y2
Λ), n ∈ Z+. (A.10)

We need to compute

∂ΛΓ(2n)
Λ (0) = Γ̇(2n,1)

Λ (0) + Γ̇(2n,2)
Λ (0), (A.11)

where we use the same notation as in Eq. (A.2). The first term is in general
given by [33]

Γ̇(2n,1)
Λ (0) = 1

2N
∑
q

ĠΛ(q)Γ(2n+2)
Λ (q). (A.12)

With the long-wavelength expansion (2.84) this becomes

Γ̇(2n,1)
Λ (0) = AΛ

2 u
(2n+2)
Λ + A

(2)
Λ
4 a2c

(2n+2)
Λ , (A.13)

where we have dropped all irrelevant couplings and have defined

A
(2)
Λ = 1

N

∑
q

ĠΛ(q)q2 = − Λ
4πτl

+O(yΛ). (A.14)

Since c(2n+2)
Λ is already of second order in yΛ, it is sufficient to consider only

the leading contribution to A(2)
Λ , while for AΛ as defined in Eq. (2.96) we also

need the first-order correction,

AΛ = − 1
2πτΛΛ + u

(2)
Λ

πτΛcΛΛ3 +O(y2
Λ). (A.15)

We thus arrive at

−ΛΓ̇(2n,1)
Λ (0) = u

(2n+2)
Λ
4πτl

− u
(2)
Λ u

(2n+2)
Λ

2πτlcΛΛ2 + a2Λ2c
(2n+2)
Λ

16πτl
+O(y3

Λ). (A.16)
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In the next step we consider the second contribution Γ̇(2n,2)
Λ (0), which we can

write as [33]

Γ̇(2n,2)
Λ (0) = − 1

2N

∞∑
n1,n2=1

δ2n,n1+n2

(2n)!
n1!n2!

∑
q

ĠΛ(q)GΛ(q)Γ(n1+2)
Λ (q)Γ(n2+2)

Λ (q).

(A.17)

Here the combinatorial factors are due to the (2n)! possibilities of distributing
the 2n vanishing external momenta on the internal vertices and due to the
n1!(n2!) different permutations of the indices of the first (second) internal
vertex. Since the internal vertices are at least of order yΛ, we can neglect their
dependence on the loop-momentum q, which results in the simpler expression

Γ̇(2n,2)
Λ (0) = −BΛ(0)

2

n−1∑
i=1

(
2n
2i

)
u

(2i+2)
Λ u

(2n−2i+2)
Λ , (A.18)

where we have used the definition (2.112) of BΛ(k) as well as the fact that
vertices with an odd number of legs vanish. With our leading-order result for
BΛ(0) we can write this as

−ΛΓ̇(2n,2)
Λ (0) = −

n−1∑
i=1

(
2n
2i

)
u

(2i+2)
Λ u

(2n−2i+2)
Λ

4πτlcΛΛ2 , (A.19)

so that in total

∂lu
(2n)
Λ = u

(2n+2)
Λ
4πτl

+ a2Λ2c
(2n+2)
Λ

16πτl
−

n∑
i=0

(
2n
2i

)
u

(2i+2)
Λ u

(2n−2i+2)
Λ

4πτlcΛΛ2 +O(y3
Λ).

(A.20)

Since we know from Eq. (A.7) that u(2i+2)
Λ u

(2n−2i+2)
Λ is to second order in yΛ

independent of the summation index i, we can explicitly perform the sum to
arrive at

∂lu
(2n)
Λ = u

(2n+2)
Λ
4πτl

+ a2Λ2c
(2n+2)
Λ

16πτl
− (−1)na2Λ2(4π)2n−2ỹ2

l

2π +O(y3
Λ). (A.21)

Inserting our parametrization (2.125) for c(2n)
Λ then yields

∂lu
(2n)
Λ = u

(2n+2)
Λ
4πτl

+ (−1)n+1a2Λ2(4π)2n−2ỹ2
l

[
c̃l
4τl

+ 1
2π

]
+O(y3

Λ), n ∈ Z+.

(A.22)
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A.2.2 Next-to-leading-order correction to ΓΛ0[m̄]
In order to solve the flow equation (A.22) for the relevant couplings, it is
helpful to first consider the y2

0 correction to the initial value of ΓΛ[m̄]. We
start by expanding GΛ0 up to second order in y0 [cf. Eq. (2.71)],

GΛ0 [m̄] =
∑
i

[
h2
i

2λ0
+ ln

√
2π
λ0

+ 2y0 cos
(

2πhi
λ0

)
− 2y2

0 cos2
(

2πhi
λ0

)
+O(y3

0)
]
,

(A.23)
which results in the field-dependent propagator

GΛ0,k[h] = 1
λ0
− 1
N

∑
i

[
8π2y0

λ2
0

cos
(

2πhi
λ0

)
− 16π2y2

0
λ2

0
cos

(
4πhi
λ0

)
+O(y3

0)
]
.

(A.24)

This allows us to compute Γ(2)
Λ0,k

[m̄] via the relation

Γ(2)
Λ0,k

[m̄] = (GΛ0,k[hΛ0 [m̄]])−1 −RΛ0(k) = (GΛ0,k[hΛ0 [m̄]])−1 − λ0 + ωk,

(A.25)
yielding

Γ(2)
Λ0,k

[m̄] = ωk + 8π2y0

N

∑
i

cos
(

2πhΛ0,i[m̄]
λ0

)

+ 16π2y2
0

N

∑
i

[
4π2

λ0
cos2 (2πm̄i)− cos (4πm̄i)

]
+O(y3

0), (A.26)

where in the second-order term we have already used our first-order re-
sult (2.75) for hΛ0,i[m̄],

hΛ0,i[m̄] = λ0m̄i + 4πy0 sin(2πm̄i) +O(y2
0). (A.27)

Also expressing hΛ0,i[m̄] in terms of m̄i in the first-order term, we find that
the momentum-independent part of Γ(2)

Λ,k[m̄] is initially given by

Γ(2)
Λ0,k=0[m̄] = 1

N

∑
i

[
8π2y0 cos (2πm̄i) + 8π2y2

0
π2 − 2τ

τ
cos (4πm̄i) +O(y3

0)
]
,

(A.28)

where we have also used that λ0 = 8τ . The initial value of the relevant
couplings u(2n)

Λ then results from a simple Taylor expansion of the cosine
terms,

u
(2n)
Λ0

= (−1)n+1(2π)2n2y0

[
1 + π2 − 2τ

τ
4n−1y0

]
+O(y3

0). (A.29)
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For n = 1 this becomes

u
(2)
Λ0

= (2π)22y0

[
1 + π2 − 2τ

τ
y0

]
+O(y3

0), (A.30)

so that according to the definition (2.89) of the flowing vortex fugacity yΛ its
initial value reads

yΛ0 = y0

[
1 + π2 − 2τ

τ
y0

]
+O(y3

0). (A.31)

Since yΛ is the quantity we actually work with, we finally express y0 through
yΛ0 in Eq. (A.29) to get

u
(2n)
Λ0

= (−1)n+1(2π)2n2yΛ0

[
1 + π2 − 2τ

τ
(4n−1 − 1)yΛ0

]
+O(y3

Λ0). (A.32)

A.2.3 Evaluation of the ỹ2
l correction to ∂lỹl

With our results (A.22) and (A.32) we are now in a position to evaluate the
ỹ2
l correction to the flow equation of ỹl. We first parametrize the flowing
relevant couplings u(2n)

Λ as

u
(2n)
Λ = (−1)n+1(2π)2n−3τla

2Λ2ỹl
[
1 + (4n−1 − 1)υ(2n)

l ỹl
]
, n ≥ 2, (A.33)

so that all υ(2n)
l have the same initial condition,

υ
(2n)
0 = (π2 − 2τ)

2π3 , (A.34)

which will be useful in the following. Inserting our ansatz (A.33) into the
flow equation (A.22) with n = 1 yields

∂lỹl
ỹl

= 2− π

τl
+
(
c̃l
2τl

+ 1
π
− 3υ(4)

l

)
π

τl
ỹl +O(ỹ2

l ). (A.35)

On the other hand, for n ≥ 2 our ansatz gives to leading order in ỹl

∂lu
(2n)
Λ = (−1)n+1(2π)2n−3τla

2Λ2ỹl

{[
ỹl
ỹl
− 2

] [
1 +

(
4n−1 − 1

)
v

(2n)
l ỹl

]
+
(
4n−1 − 1

)
ỹl

[(
2− π

τl

)
v

(2n)
l + ∂lv

(2n)
l

]}
,

(A.36)
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which together with the flow equations (A.22) and (A.35) yields

∂lυ
(2n)
l = 2

(
π

τl
− 1

)
υ

(2n)
l + π

τl

(
c̃l
2τl

+ 1
π

)
−

4π
[
(4n − 1)υ(2n+2)

l − 3υ(4)
l

]
τl(4n − 4) .

(A.37)
This infinite hierarchy of coupled flow equations is solved by the obvious
ansatz

υ
(2n)
l = υ

(4)
l , (A.38)

which results in the n-independent flow equation

∂lυ
(4)
l = −2

(
1 + π

τl

)
υ

(4)
l + π

τl

(
c̃l
2τl

+ 1
π

)
+O(ỹl). (A.39)

We thus arrive at the following set of coupled flow equations,

∂lỹl =
(

2− π

τl

)
ỹl +

(
c̃l
2τl

+ 1
π
− 3υ(4)

l

)
π

τl
ỹ2
l , (A.40a)

∂lτl = c̃lỹ
2
l

2τl
, (A.40b)

∂lc̃l = 1− c̃l
(

4 + 2π
τl

)
, (A.40c)

∂lυ
(4)
l = π

τl

(
c̃l
2τl

+ 1
π

)
− 2

(
1 + π

τl

)
υ

(4)
l . (A.40d)

Close to the line of Gaussian fixed points at ỹl = 0 and τl ≤ π/2 we find that
c̃l and υ(4)

l rapidly converge to

c̃l = 1
4 + 2π

τl

, (A.41)

υ
(4)
l = 8τl + 5π

8 (τl + π) (2τl + π) , (A.42)

which finally allows us to write the flow equation of ỹl as

∂lỹl =
(

2− π

τl

)
ỹl + 8τl + 5π

8 (τl + π) (2τl + π)

(
2− π

τl

)
ỹ2
l +O(ỹ3

l ). (A.43)

A.3 Flow of the additional coupling g̃l due to
amplitude fluctuations

A.3.1 Derivation of the flow equation of g̃l
In this section we will derive the flow equation of the quartic coupling gΛ,
which according to Sec. 2.6 has a non-zero initial value in the O(2) model
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due to amplitude fluctuations. In addition to approximating the irreducible
vertices by their long-wavelength expansion as was done for the XY model
[cf. Eq. (2.84)],

Γ(2n)
Λ (k,−k, 0, . . . , 0) = u

(2n)
Λ + 1

2c
(2n)
Λ a2k2 +O(k4), (A.44)

we therefore also include a higher-order momentum dependence of the four-
point vertex via the term

− gΛ

4!N
∑

k1k2k3k4

δk1+k2+k3+k4,0Vk1,k2,k3,k4m̄k1m̄k2m̄k3m̄k4 , (A.45)

where Vk1,k2,k3,k4 was defined in Eqs. (2.212) and (2.213). Since

Vk,k,−k,−k ≈ a4k4 (A.46)

in the long-wavelength limit, we find that the flow equation of gΛ is given by

∂ΛgΛ = − 1
4!a4 lim

k→0
∂4
k∂ΛΓ(4)

Λ,k,k,−k,−k

= 1
4!a4N

∑
p

ĠΛ(p) lim
k→0

∂4
k

[
2GΛ(p)

(
Γ(4)

Λ,p,−p,k,−k

)2

+GΛ(p+ 2k)
(
Γ(4)

Λ,p,−p−2k,k,k

)2
]
. (A.47)

Up to second order in yΛ and gΛ, we can write this more explicitly as

∂ΛgΛ = 1
4!a4N

∑
p

ĠΛ(p)

× lim
k→0

[ (
u

(4)
Λ

)2
∂4
kGΛ(p+ 2k)− 12u(4)

Λ gΛ
(
∂2
kGΛ(p+ 2k)

)
∂2
kVp,−p−2k,k,k

+ 18g2
ΛGΛ(p)

(
∂2
kVp,−p,k,−k

)2
]
. (A.48)

For the second and third term we need the long-wavelength expansion

Vp,−p,k,−k ≈ −Vp,−p−2k,k,k ≈
a4p2k2

3
(
1 + 2 cos2 ϕp

)
, (A.49)

and in turn
1
N

∑
p

p2
(
1 + 2 cos2 ϕp

)
ĠΛ(p) lim

k→0
∂2
kGΛ(p+ 2k) = 5

πτ 2
Λa

2Λ3 +O(ỹl).

(A.50)
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The first term involving the fourth derivative of the propagator is more
complicated; a rather tedious calculation yields

1
4!a4N

∑
p

ĠΛ(p) lim
k→0

∂4
kGΛ(p+ 2k) = 2

πτ 2
Λa

6Λ7 +O(ỹl), (A.51)

so that in total the flow equation of gΛ becomes

∂lgΛ = −8πỹ2
l

a2Λ2 + 10ỹlgΛ

3τl
+ a2Λ2g2

Λ
4πτ 2

Λ
+O(ỹ3

l , ỹ
2
l gΛ, ỹlg

2
Λ, g

3
Λ). (A.52)

In terms of the rescaled coupling

g̃l = cΛΛ2

2π gΛ, (A.53)

this flow equation simplifies to

∂lg̃l =
(
−2 + 10ỹl

3τl
+ g̃l

2τ 3
l

)
g̃l − 4τlỹ2

l ≈ −2g̃l − 4τlỹ2
l . (A.54)

As mentioned in Sec. 2.6.2, for τl ≈ π/2 and ỹl � 1 this results in the
asymptotic behaviour

g̃l ∼
l→∞
−2τlỹ2

l , (A.55)

which justifies neglecting the second and third term in Eq. (A.54).

A.3.2 Effect of g̃l on the flow equation of τl
We are now in a position to evaluate the effect of a finite g̃l on the flowing
dimensionless temperature τl, which obeys the exact flow equation

∂Λτl = 1
4a2N

∑
q

ĠΛ(q) lim
k→0

∂2
kΓ

(4)
Λ (k,−k, q,−q). (A.56)

Inserting our result (2.129) for ∂lτl from the XY model and using the long-
wavelength expansion (A.49) as well as

1
N

∑
q

ĠΛ(q)q2
(
1 + 2 cos2 ϕq

)
= − Λ

2πτΛ
+O (ỹΛ) , (A.57)

we find to leading order

∂lτΛ = ỹ2
l

8τl + 4π + gΛΛ
4a2N

∑
q

ĠΛ(q) lim
k→0

∂2
kVk,−k,q,−q = ỹ2

l

8τl + 4π −
gΛa

2Λ2

12πτΛ
.

(A.58)
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In terms of the rescaled coupling g̃l this becomes

∂lτl = ỹ2
l

8τl + 4π −
g̃l

6τ 2
l

. (A.59)

Finally, in the regime close to the BKT transition we may approximate
τl ≈ π/2 and insert our result (A.55) for the asymptotic behaviour of g̃l, so
that

∂lτl = ỹ2
l

8π

(
1 + 16

3

)
. (A.60)



Appendix B

Technical details regarding the
spin FRG

B.1 1/D expansion of Γ(2)
Λ in the spin-S Ising

model

B.1.1 Alternative derivation of the leading correction
to Γ(2)

0

In Sec. 3.2.4 we have used the pure SFRG formalism to derive the leading
correction in 1/D to the irreducible two-point vertex Γ(2)

0 (k) within the spin-S
Ising model,

Γ(2)
Λ=1(k) = 1

b′

[
1− γkg −

b′′′g2

4(b′)2D
+O(D−2)

]
, (B.1)

where we have assumed a nearest-neighbor interaction on a D-dimensional
hypercubic lattice. While it is straightforward to extend this calculation to
higher orders in 1/D, we will in the following choose a slightly different way:
instead of working within the pure SFRG formalism, we employ the Hubbard-
Stratonovich SFRG developed in Sec. 3.3. This has the advantage that our
procedure can be directly generalized to the spin-S quantum Heisenberg
model, which would not be possible within the pure SFRG. While in Sec. 3.3
we have derived the Hubbard-Stratonovich SFRG for the Heisenberg model,
it is easy to apply our formalism to the Ising model. We therefore restrict
ourselves to purely longitudinal correlators, which are now time independent
since all operators in the zero-field Ising model commute with each other.

To demonstrate the procedure, we start by rederiving the leading-order
result (B.1). Adapting Eq. (3.160) to the Ising model, we see that the exact

135
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flow equation of the polarization function Πzz
Λ (K) = δ(ω)ΠΛ(k) is for hΛ = 0

given by

∂ΛΠΛ(k) = −1
2

∫
q
ḞΛ(q)Φ̃(4)

Λ (q,−q,k), (B.2)

where
∫
q = 1

N

∑
q and we have introduced the notation

Φ̃zzzz
Λ (K1, K2, K3) = δ(ω1)δ(ω2)δ(ω3)Φ̃(4)

Λ (k1,k2,k3). (B.3)

Again using the deformation scheme VΛ(k) = ΛVk, we find that the single-scale
propagator ḞΛ(k) reads

ḞΛ(k) = βḞ zz
Λ (K) = βVk

[1− ΛβVkΠΛ(k)]2
, (B.4)

so that the exact flow equation of ΠΛ(k) becomes

∂ΛΠΛ(k) = −1
2

∫
q

βVqΦ̃(4)
Λ (q,−q,k)

[1− ΛβVqΠΛ(q)]2
. (B.5)

To leading order in 1/D, we can replace ΠΛ and Φ̃(4)
Λ on the right-hand side

of Eq. (B.5) by their initial conditions Π0 = b′ and Φ̃(4)
0 = −b′′′, respectively,

and expand the denominator to first order in Vq,

∂ΛΠΛ(k) = 1
2

∫
q
βVqb

′′′ [1 + 2ΛβVqb′] = Λb′′′g2

2b′D , (B.6)

where we have again used the notation

Vk = V0γk with γk = 1
D

D∑
i=1

cos(kia) (B.7)

and g = βb′V0. Integrating Eq. (B.6) then yields the polarization function to
leading order in 1/D,

ΠΛ(k) = b′
[
1 + Λ2b′′′g2

4(b′)2D
+O(D−2)

]
. (B.8)

To make contact with our previous calculation in Sec. 3.2.4, we use the exact
relation (3.135a) between Πzz

Λ (K) and ΓzzΛ (K), which in the Ising model can
be written as

Γ(2)
Λ (k) = 1

ΠΛ(k) − βVk. (B.9)

Inserting our leading-order result (B.8) for Λ = 1 and expanding the denomi-
nator to first order in 1/D, we recover our earlier result (B.1).
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B.1.2 Next-to-leading-order correction
First-order correction to the irreducible four-point vertex

In order to calculate the second-order correction in 1/D, we need the leading
correction to the irreducible four-point vertex. Its exact flow equation reads

∂ΛΦ̃(4)
Λ,1234 = 1

2 Tr
[
ḞΛΦ̃(6)

Λ,1234

]
− 1

2 S12;34 Tr
[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(4)
Λ,34

]
, (B.10)

where the objects inside the trace are to be understood as matrices in mo-
mentum space in the obvious way and we have defined

Φ̃(n)
Λ,1...n = δk1+...+kn,0Φ̃(n)

Λ (k1, . . . ,kn−1) (B.11)

as well as

S12;34 = Sk1,k2;k3,k4 (B.12)

to simplify the notation. The first term is more explicitly given by

1
2 Tr

[
ḞΛΦ̃(6)

Λ,1234

]
= 1

2

∫
q

βVqΦ̃(6)
Λ,1234,q,−q

[1− ΛβVqΠΛ,q]2
, (B.13)

where

Φ̃(6)
Λ,1234,q,−q = Φ̃(6)

Λ (k1, . . . ,k4, q,−q) (B.14)

and

ΠΛ,q = ΠΛ(q). (B.15)

Similar to the calculation in the previous section, we approximate ΠΛ,q ≈
Π0,q = b′ as well as Φ̃(6)

Λ,1234,q,−q ≈ Φ̃(6)
0,1234,q,−q = −b(5) and expand the denomi-

nator to first order in the exchange interaction. We then find

1
2 Tr

[
ḞΛΦ̃(6)

Λ,1234

]
≈ −1

2

∫
q
βVqb

(5) [1 + 2ΛβVqb′] = −Λb(5)g2

2b′D . (B.16)

For the second term in Eq. (B.10) we have to consider

1
2 Tr

[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(4)
Λ,34

]
= 1

2

∫
q

Λβ2VqVq+1+2Φ̃(4)
Λ,12,q,−q−1−2Φ̃(4)

Λ,34,−q,q+1+2

[1− ΛβVqΠΛ,q]2 [1− ΛβVq+1+2ΠΛ,q+1+2]

≈ Λ(b′′′)2g2

2(b′)2

∫
q
γqγq+1+2 = Λ(b′′′)2g2γ1+2

4(b′)2D
, (B.17)



138 B. Technical details regarding the spin FRG

where we have used ∫
q
γqγq+k = γk

2D. (B.18)

We thus find

∂ΛΦ̃(4)
Λ,1234 = −Λb(5)g2

2b′D − Λ(b′′′)2g2

4(b′)2D
S12;34 γ1+2, (B.19)

which integrates to

Φ̃(4)
Λ,1234 = −b′′′ − Λ2b(5)g2

4b′D − Λ2(b′′′)2g2

8(b′)2D
S12;34 γ1+2. (B.20)

More explicitly, the last part is given by

S12;34 γ1+2 = γk1+k2 + γk1+k3 + γk1+k4 + γk2+k3 + γk2+k4 + γk3+k4 , (B.21)

which for {k1,k2,k3,k4} = {q,−q,k,−k} simplifies to

S12;34 γ1+2 = 2 + 2(γk+q + γk−q), (B.22)

so that to leading order

Φ̃(4)
Λ (q,−q,k) = −b′′′ −

Λ2
[
b′b(5) + (b′′′)2

]
g2

4(b′)2D
− Λ2(b′′′)2g2(γk+q + γk−q)

4(b′)2D
.

(B.23)

Second-order correction to the irreducible two-point vertex

We can now insert our results (B.8) and (B.23) in the exact flow equation (B.5)
of ΠΛ(k) to compute its next-to-leading-order correction. We start with the q-
independent part of Φ̃(4)

Λ . Since the resulting calculation is basically identical
to the one leading to Eq. (B.6), we can just replace

Λg2

2b′Db
′′′ → Λg2

2b′D
Λ2
[
b′b(5) + (b′′′)2

]
g2

4(b′)2D
=

Λ3
[
b′b(5) + (b′′′)2

]
g4

8(b′)3D2 (B.24)

to find its second-order contribution. On the other hand, the q-dependent
part of Φ̃(4)

Λ results in

Λ2(b′′′)2g3

8(b′)3D

∫
q

γq(γk+q + γk−q)
[1− ΛβVqΠΛ,q]2

≈ Λ2(b′′′)2g3

8(b′)3D

∫
q
γq(γk+q + γk−q)

= Λ2(b′′′)2g3γk
8(b′)3D2 . (B.25)
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The last second-order contribution comes from the denominator in Eq. (B.5),

b′′′g

2b′
∫
q

γq

[1− ΛβVqΠΛ,q]2

≈b
′′′g

2b′
∫
q
γq
[
1 + 2ΛβVqΠΛ,q + 3 (ΛβVqΠ0,q)2 + 4 (ΛβVqΠ0,q)3

]
=b
′′′g

2b′
∫
q
γq
[
2ΛβVqΠΛ,q + 4 (Λgγq)3

]
. (B.26)

Inserting our leading-order result (B.8) for ΠΛ(k) then yields the second-order
contribution

Λb′′′g2

b′

∫
q
γ2
q

[
Λ2b′′′g2

4(b′)2D
+ 2Λ2g2γ2

q

]
≈ Λ3 [(b′′′)2 + 12(b′)2b′′′] g4

8(b′)3D2 , (B.27)

where we have used ∫
q
γ4
q = 3

4D2 −
3

8D3 . (B.28)

Combining our results (B.24), (B.25), and (B.27) we find to second order

∂ΛΠΛ(k) = Λb′′′g2

2b′D + Λ2(b′′′)2g3γk
8(b′)3D2 +

Λ3
[
b′b(5) + 2(b′′′)2 + 12(b′)2b′′′

]
g4

8(b′)3D2 ,

(B.29)

which integrates to

ΠΛ(k) = b′ + Λ2b′′′g2

4b′D + Λ3(b′′′)2g3γk
24(b′)3D2 +

Λ4
[
b′b(5) + 2(b′′′)2 + 12(b′)2b′′′

]
g4

32(b′)3D2 .

(B.30)

B.1.3 Third-order correction
First-order correction to the irreducible six-point vertex

In analogy to the second-order calculation where we had to consider the
irreducible four-point vertex to leading order in 1/D, we now need the
irreducible six-point vertex, which obeys the exact flow equation

∂ΛΦ̃(6)
Λ,123456 = 1

2 Tr
[
ḞΛΦ̃(8)

Λ,123456

]
− 1

2 S12;3456 Tr
[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(6)
Λ,3456

]
− 1

2 S1234;56 Tr
[
ḞΛΦ̃(6)

Λ,1234FΛΦ̃(4)
Λ,56

]
+ 1

2 S12;34;56 Tr
[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(4)
Λ,34FΛΦ̃(4)

Λ,56

]
.

(B.31)
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We already observe that the last term involves two FΛ propagators in addition
to the single-scale propagator ḞΛ. As a consequence, it only contributes
to subleading order in 1/D and can therefore be neglected in the present
calculation, leaving us with the first three terms. The contribution which
involves the irreducible eight-point vertex can be evaluated in complete
analogy to Eq. (B.16), so that

1
2 Tr

[
ḞΛΦ̃(8)

Λ,123456

]
≈ −Λb(7)g2

2b′D . (B.32)

For the second term in Eq. (B.31) we first consider

1
2 Tr

[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(6)
Λ,3456

]
≈ 1

2

∫
q

Λβ2VqVq+1+2b
′′′b(5)

[1− ΛβVqΠΛ,q]2 [1− ΛβVq+1+2ΠΛ,q+1+2]

≈ Λb′′′b(5)g2

2(b′)2

∫
q
γqγq+1+2 = Λb′′′b(5)g2γ1+2

4(b′)2D
. (B.33)

In the same way we find

1
2 Tr

[
ḞΛΦ̃(6)

Λ,1234FΛΦ̃(4)
Λ,56

]
≈ Λb′′′b(5)g2γ5+6

4(b′)2D
. (B.34)

For the specific choice {k1,k2,k3,k4,k5,k6} = {k,−k,p,−p, q,−q} we may
therefore evaluate the symmetrization operators in Eq. (B.31) as

S12;3456 γ1+2 = S1234;56 γ5+6

= 3 + 2(γk+p + γk−p + γk+q + γk−q + γp+q + γp−q). (B.35)

Combining these results yields the flow equation

∂ΛΦ̃(6)
Λ (k,−k,p,−p, q) = −

Λ
[
b′b(7) + 3b′′′b(5)

]
g2

2(b′)2D

− Λb′′′b(5)g2

(b′)2D
(γk+p + γk−p + γk+q + γk−q + γp+q + γp−q), (B.36)

which is easily solved as

Φ̃(6)
Λ (k,−k,p,−p, q) = −b(5) −

Λ2
[
b′b(7) + 3b′′′b(5)

]
g2

4(b′)2D

− Λ2b′′′b(5)g2

2(b′)2D
(γk+p + γk−p + γk+q + γk−q + γp+q + γp−q). (B.37)
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Second-order correction to the irreducible four-point vertex

We can now use our leading-order result (B.37) for Φ̃(6)
Λ to derive the next-to-

leading-order correction to the irreducible four-point vertex. According to its
exact flow equation

∂ΛΦ̃(4)
Λ,1234 = 1

2 Tr
[
ḞΛΦ̃(6)

Λ,1234

]
− 1

2 S12;34 Tr
[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(4)
Λ,34

]
, (B.38)

we have to consider two terms, which themselves consist of several contribu-
tions. The first term has the form

1
2 Tr

[
ḞΛΦ̃(6)

Λ,1234

]
= 1

2

∫
q

βVqΦ̃(6)
Λ,1234,q,−q

[1− ΛβVqΠΛ,q]2
, (B.39)

which we have previously only evaluated to leading order in 1/D. For
{k1,k2,k3,k4} = {k,−k,p,−p}, we find that the q-independent terms of
Φ̃(6)

Λ trivially result in the second-order correction

−
Λ3
[
b′b(7) + 3b′′′b(5)

]
g4

8(b′)3D2 − Λ3b′′′b(5)g4

4(b′)3D2 (γk+p + γk−p), (B.40)

while the q-dependent terms of Φ̃(6)
Λ yield

−Λ2b′′′b(5)g3

4(b′)3D

∫
q

γq(γk+q + γk−q + γp+q + γp−q)
[1− ΛβVqΠΛ,q]2

≈ −Λ2b′′′b(5)g3

4(b′)3D2 (γk + γp).

(B.41)

The last second-order contribution to the first term (B.39) comes from the
expansion of the denominator,

− b(5)

2

∫
q

βVq

[1− ΛβVqΠΛ,q]2

≈− b(5)

2

∫
q
βVq

[
1 + 2ΛβVqΠΛ,q + 3 (ΛβVqΠ0,q)2 + 4 (ΛβVqΠ0,q)3

]
=− b(5)g

2b′
∫
q
γq
[
2ΛβVqΠΛ,q + 4 (Λgγq)3

]
. (B.42)

With our leading-order result (B.8) for ΠΛ(k) we then find the second-order
contribution

−Λb(5)g2

2b′
∫
q
γ2
q

[
Λ2b′′′g2

2(b′)2D
+ 4Λ2g2γ2

q

]
≈ −

Λ3
[
b′′′b(5) + 12(b′)2b(5)

]
g4

8(b′)3D2 . (B.43)
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The first term in Eq. (B.38) is therefore up to second order in 1/D given by

1
2 Tr

[
ḞΛΦ̃(6)

Λ,1234

]
= −Λb(5)g2

2b′D −
Λ3
[
b′b(7) + 4b′′′b(5) + 12(b′)2b(5)

]
g4

8(b′)3D2

− Λ3b′′′b(5)g4

4(b′)3D2 (γk+p + γk−p)−
Λ2b′′′b(5)g3

4(b′)3D2 (γk + γp). (B.44)

Since it is sufficient for the calculation of Tc to consider the special case k = 0,
we can further simplify this expression as

1
2 Tr

[
ḞΛΦ̃(6)

Λ,1234

]
= −Λb(5)g2

2b′D −
Λ3
[
b′b(7) + 4b′′′b(5) + 12(b′)2b(5)

]
g4

8(b′)3D2

− Λ3b′′′b(5)g4γp
2(b′)3D2 − Λ2b′′′b(5)g3

4(b′)3D2 (1 + γp). (B.45)

Let us now turn our attention to the second term in the flow equation of Φ̃(4)
Λ ,

where we need to evaluate

1
2 Tr

[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(4)
Λ,34

]
= 1

2

∫
q

Λβ2VqVq+1+2Φ̃(4)
Λ,12,q,−q−1−2Φ̃(4)

Λ,34,−q,q+1+2

[1− ΛβVqΠΛ,q]2 [1− ΛβVq+1+2ΠΛ,q+1+2]
.

(B.46)

With our earlier result (B.20) for Φ̃(4)
Λ ,

Φ̃(4)
Λ,1234 = −b′′′ − Λ2b(5)g2

4b′D − Λ2(b′′′)2g2

8(b′)2D
S12;34 γ1+2, (B.47)

we find that

Φ̃(4)
Λ,12,q,−q−1−2Φ̃(4)

Λ,34,−q,q+1+2

≈(b′′′)2 + Λ2b′′′b(5)g2

2b′D + Λ2(b′′′)3g2

4(b′)2D
(2γ1+2 + γq+1 + γq+2 + γq−3 + γq−4).

(B.48)

Here we have used

S12;q,−q−1−2 γ1+2 = 2(γ1+2 + γq+1 + γq+2), (B.49a)
S34;−q,q+1+2 γ3+4 = 2(γ1+2 + γq−3 + γq−4), (B.49b)

which in turn follows from γ3+4 = γ−1−2 = γ1+2. While the q-dependent
terms in Eq. (B.48) only contribute to third order in 1/D to the flow of Φ̃(4)

Λ ,



B.1. 1/D expansion of Γ(2)
Λ in the spin-S Ising model 143

inserting the q-independent terms from Eq. (B.48) into Eq. (B.46) yields the
second-order correction

1
2

∫
q

Λβ2VqVq+1+2
[

Λ2b′′′b(5)g2

2b′D + Λ2(b′′′)3g2γ1+2
2(b′)2D

]
[1− ΛβVqΠΛ,q]2 [1− ΛβVq+1+2ΠΛ,q+1+2]

≈ Λ3g4

4(b′)4D

[
b′b′′′b(5) + (b′′′)3γ1+2

] ∫
q
γqγq+1+2

=Λ3b′′′b(5)g4γ1+2

8(b′)3D2 + Λ3(b′′′)3g4γ2
1+2

8(b′)4D2 . (B.50)

The last contribution we have to evaluate comes from the denominator of
Eq. (B.46),

1
2

∫
q

Λβ2VqVq+1+2(b′′′)2

[1− ΛβVqΠΛ,q]2 [1− ΛβVq+1+2ΠΛ,q+1+2]

≈Λ(b′′′)2g2

2(b′)2

∫
q

γqγq+1+2

[1− Λgγq]2 [1− Λgγq+1+2]
. (B.51)

Subtracting the first-order term, we find that the momentum integral results
in ∫

q

γqγq+1+2

[1− Λgγq]2 [1− Λgγq+1+2]
−
∫
q
γqγq+1+2

≈
∫
q
γqγq+1+2

{[
1 + 2Λgγq + 3 (Λgγq)2

] [
1 + Λgγq+1+2 + (Λgγq+1+2)2

]
− 1

}
≈Λ2g2

∫
q

(
3γ3
qγq+1+2 + 2γ2

qγ
2
q+1+2 + γqγ

3
q+1+2

)
≈ Λ2g2

2D2

(
1 + 6γ1+2 + 2γ2

1+2

)
,

(B.52)

where we have used∫
q
γ3
qγq+k =

∫
q
γqγ

3
q+k = 3γk

4D2 −
3γk
8D3 , (B.53a)∫

q
γ2
qγ

2
q+k = 1 + 2γ2

k

4D2 − 2 + γ2k

8D3 . (B.53b)

Together with our result (B.50) we thus get

1
2 Tr

[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(4)
Λ,34

]
= Λ(b′′′)2g2γ1+2

4(b′)2D
+ Λ3(b′′′)2g4

4(b′)2D2

(
1 + 6γ1+2 + 2γ2

1+2

)
+ Λ3b′′′b(5)g4γ1+2

8(b′)3D2 + Λ3(b′′′)3g4γ2
1+2

8(b′)4D2 , (B.54)
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which for {k1,k2,k3,k4} = {0, 0,p,−p} yields

1
2 S12;34 Tr

[
ḞΛΦ̃(4)

Λ,12FΛΦ̃(4)
Λ,34

]
=Λ(b′′′)2g2(1 + 2γp)

2(b′)2D
+

Λ3
[
b′b′′′b(5) + (b′′′)3 + 22(b′)2(b′′′)2

]
g4

4(b′)4D2

+
Λ3
[
b′′′b(5) + 12b′(b′′′)2

]
g4γp

2(b′)3D2 +
Λ3 [(b′′′)3 + 4(b′)2(b′′′)2] g4γ2

p

2(b′)4D2 . (B.55)

Integrating Eqs. (B.45) and (B.55) with respect to Λ and replacing p→ q,
we thus find that the irreducible four-point vertex is to second order in 1/D
given by

Φ̃(4)
Λ (q,−q, 0)

=− b′′′ −
Λ2
[
b′b(5) + (b′′′)2

]
g2

4(b′)2D
− Λ2(b′′′)2g2γq

2(b′)2D
− Λ3b′′′b(5)g3(1 + γq)

12(b′)3D2

−
Λ4
[
(b′)2b(7) + 6b′b′′′b(5) + 12(b′)3b(5) + 2(b′′′)3 + 44(b′)2(b′′′)2

]
g4

32(b′)4D2

−
Λ4
[
b′′′b(5) + 6b′(b′′′)2

]
g4γq

4(b′)3D2 −
Λ4 [(b′′′)3 + 4(b′)2(b′′′)2] g4γ2

q

8(b′)4D2 . (B.56)

Third-order correction to the irreducible two-point vertex

With our next-to-leading-order result (B.56) for Φ̃(4)
Λ , we can evaluate the

flow equation of the irreducible two-point vertex with vanishing external
momentum,

∂ΛΠΛ(0) = −1
2

∫
q

βVqΦ̃(4)
Λ (q,−q, 0)

[1− ΛβVqΠΛ,q]2
, (B.57)

to third order in 1/D. Let us first consider the contribution from the
q-independent second-order terms in Eq. (B.56), which is in analogy to
Eq. (B.24) given by

Λb′′′g2

2b′D →Λ4b′′′b(5)g5

24(b′)4D3

+
Λ5
[
(b′)2b(7) + 6b′b′′′b(5) + 12(b′)3b(5) + 2(b′′′)3 + 44(b′)2(b′′′)2

]
g6

64(b′)5D3 .

(B.58)
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The situation is equally simple for the q-dependent second-order terms in
Eq. (B.56); while the γ2

q term only contributes to fourth order in 1/D, the
linear-in-γq terms result in

− 1
2

∫
q

βVq

[
−Λ3b′′′b(5)g3γq

12(b′)3D2 −
Λ4[b′′′b(5)+6b′(b′′′)2]g4γq

4(b′)3D2

]
[1− ΛβVqΠΛ,q]2

≈Λ3b′′′b(5)g4

48(b′)4D3 +
Λ4
[
b′′′b(5) + 6b′(b′′′)2

]
g5

16(b′)4D3 . (B.59)

Now we take the first-order terms in Eq. (B.56) into account. For the part
that is linear in γq we get

−1
2

∫
q

βVq
[
−Λ2(b′′′)2g2γq

2(b′)2D

]
[1− ΛβVqΠΛ,q]2

≈ Λ2(b′′′)2g3

4(b′)3D

∫
q
γ2
q

[
1 + 2ΛβVqΠΛ,q + 3 (Λgγq)2

]
.

(B.60)

Only the last term in the square brackets leads to a third-order contribution,
which reads

3Λ4(b′′′)2g5

4(b′)3D

∫
q
γ4
q ≈

9Λ4(b′′′)2g5

16(b′)3D3 . (B.61)

The first-order, momentum-independent part of Eq. (B.56) leads to a slightly
more complicated calculation,

1
2

∫
q

βVq
Λ2[b′b(5)+(b′′′)2]g2

4(b′)2D

[1− ΛβVqΠΛ,q]2

≈
Λ2
[
b′b(5) + (b′′′)2

]
g3

8(b′)3D

∫
q
γq
[
1 + 2ΛβVqΠΛ,q + 3 (ΛβVqΠΛ,q)2 + 4 (Λgγq)3

]

≈
Λ2
[
b′b(5) + (b′′′)2

]
g3

8(b′)3D

∫
q
γq
[
2ΛβVqΠΛ,q + 4 (Λgγq)3

]
. (B.62)

Inserting our leading-order result (B.8) for the irreducible two-point vertex
then yields the third-order correction

Λ2
[
b′b(5) + (b′′′)2

]
g3

8(b′)3D

∫
q

[
Λ3b′′′g3

2(b′)2D
γ2
q + 4Λ3g3γ4

q

]

≈
Λ5
[
b′b(5) + (b′′′)2

]
[b′′′ + 12(b′)2] g6

32(b′)5D3 . (B.63)



146 B. Technical details regarding the spin FRG

The last contribution that we have to evaluate comes from the initial value of
the irreducible four-point vertex,

1
2

∫
q

βVqb
′′′

[1− ΛβVqΠΛ,q]2
≈ b′′′g

2b′
∫
q
γq
[
1 + 2ΛβVqΠΛ,q + 3 (ΛβVqΠΛ,q)2

+ 4 (ΛβVqΠΛ,q)3 + 5 (ΛβVqΠΛ,q)4 + 6 (Λgγq)5
]

≈ b′′′g

2b′
∫
q
γq
[
2ΛβVqΠΛ,q + 4 (ΛβVqΠΛ,q)3 + 6 (Λgγq)5

]
.

(B.64)

Here we need ΠΛ,k up to second order in 1/D, which according to Eq. (B.30)
reads

ΠΛ(k)
b′

= 1 + Λ2b′′′g2

4(b′)2D
+ Λ3(b′′′)2g3γk

24(b′)4D2 +
Λ4
[
b′b(5) + 2(b′′′)2 + 12(b′)2b′′′

]
g4

32(b′)4D2 .

(B.65)

With [
ΠΛ(q)
b′

]3

≈
[
1 + Λ2b′′′g2

4(b′)2D

]3

≈ 1 + 3Λ2b′′′g2

4(b′)2D
(B.66)

and ∫
q
γ4
q = 3

4D2 −
3

8D3 (B.67)

we then arrive at the third-order contribution

− 3Λ3b′′′g4

4b′D3 + Λ5b′′′g6

2b′
∫
q

[
b′b(5) + 2(b′′′)2 + 12(b′)2b′′′

16(b′)4D2 γ2
q + 3b′′′

(b′)2D
γ4
q + 6γ6

q

]

≈− 3Λ3b′′′g4

4b′D3 +
Λ5
[
b′b′′′b(5) + 2(b′′′)3 + 84(b′)2(b′′′)2 + 360(b′)4b′′′

]
g6

64(b′)5D3 ,

(B.68)

where we have also used∫
q
γ6
q = 15

8D3 −
45

16D4 + 5
4D5 . (B.69)

Integrating the third-order contributions to ΠΛ from Eqs. (B.58), (B.59),
(B.61), (B.63), and (B.68) with respect to Λ and combining them with our



B.2. 1/r0 expansion of Πzz
Λ in the Heisenberg model 147

previous result (B.65), we arrive at

ΠΛ=1(0) = b′ + b′′′g2

4b′D + (b′′′)2g3

24(b′)3D2 +

[
b′b(5) + 2(b′′′)2 + 12(b′)2b′′′

]
g4

32(b′)3D2

+
b′′′
[
b(5) − 36(b′)3

]
g4

192(b′)4D3 +

[
b′′′b(5) + 9b′(b′′′)2

]
g5

48(b′)4D3

+

[
(b′)2b(7) + 9b′b′′′b(5) + 36(b′)3b(5) + 6(b′′′)3 + 152(b′)2(b′′′)2 + 360(b′)4b′′′

]
g6

384(b′)5D3 .

(B.70)

Finally, expanding the inverse of this expression in powers of 1/D and using
the exact relation

Γ(2)
Λ (k) = 1

ΠΛ(k) − βVk (B.71)

then results in Eq. (3.67) of the main text,

b′Γ(2)
Λ=1(0) = 1− g + C1g

2

D
− C2g

3

D2 + C3g
4

D2 −
C4g

4

D3 −
C5g

5

D3 + C6g
6

D3

+O(D−4), (B.72)

where the spin-dependent coefficients Ci are given in Eqs. (3.68a)–(3.68f).

B.2 1/r0 expansion of Πzz
Λ in the Heisenberg

model

In Sec. 3.3 we have developed the Hubbard-Stratonovich SFRG formalism,
which has the advantage that the corresponding irreducible vertices are still
well defined in the local limit of isolated spins. Furthermore, these irreducible
vertices are closely related to the irreducible vertices of VLP, which allows
us to recover their expansion in powers of the inverse interaction range 1/r0
[1, 2] within a simple truncation of our flow equations with the deformation
scheme V Λ

ij = ΛVij. While we have already derived the first-order correction
to the free energy in Sec. 3.3.3, we will in the following calculate the leading
correction to the longitudinal polarization function Πzz

Λ (K), which obeys the
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exact flow equation

∂ΛΠzz
Λ (K) = −1

2

∫
Q
Ḟ zz

Λ (Q)Φ̃zzzz
Λ (Q,−Q,K)−

∫
Q
Ḟ+−

Λ (Q)Φ̃+−zz
Λ (Q,−Q,K)

+
∫
Q
Ḟ zz

Λ (Q)F zz
Λ (Q+K)Φ̃zzz

Λ (Q,−Q−K)Φ̃zzz
Λ (Q+K,−Q)

+
∫
Q

[
Ḟ+−

Λ (Q)F+−
Λ (Q+K) + F+−

Λ (Q)Ḟ+−
Λ (Q+K)

]
× Φ̃+−z

Λ (Q,−Q−K)Φ̃+−z
Λ (Q+K,−Q)− Φ̃zzz

Λ (K,−K)∂ΛhΛ.
(B.73)

A graphical representation of this flow equation is shown in Fig. 3.4. To
leading order in the inverse interaction range, we can replace the polarization
functions and the higher-order irreducible vertices on the right-hand side of
Eq. (B.73) by their initial values, which will allow us to perform all Matsubara
sums and Λ integrals analytically. To simplify the comparison with the results
of VLP, we will in the following assume that the on-site interaction vanishes.

B.2.1 Contribution from Φ̃zzzz
Λ

We start with the contribution of the first term in Eq. (B.73), which we can
write as

−1
2

∫
Λ

∫
Q
Ḟ zz

Λ (Q)Φ̃zzzz
Λ (Q,−Q,K) = −1

2

∫
Λ

∫
Q

VqΦ̃zzzz
Λ (Q,−Q,K)

[1− ΛVqΠzz
Λ (Q)]2

, (B.74)

where we have introduced the notation
∫

Λ =
∫ 1

0 dΛ. We now approximate Πzz
Λ

and Φ̃zzzz
Λ by their initial conditions

Πzz
0 (K) = δ(ω)b′, (B.75)

Φ̃zzzz
0 (Q,−Q,K) = −δ(ν)δ(−ν)δ(ω)b′′′. (B.76)

Note that we here use the abbreviations b′ = b′(βh) and b′′′ = b′′′(βh) to
denote the derivatives of the Brillouin function at finite field. We then find

δ(ω)b
′′′

2

∫
Λ

∫
q

βVq

(1− Λβb′Vq)2 = δ(ω)b
′′′

2

∫
q

βVq
1− βb′Vq

= δ(ω)b
′′′

2

∫
q
βVqLq,

(B.77)

where we have adopted VLP’s notation

Lk = 1
1− βb′Vk

. (B.78)
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B.2.2 Contribution from Φ̃+−zz
Λ

The contribution from the mixed irreducible four-point vertex Φ̃+−zz
Λ is more

complicated due to its initial condition [1, 3]

Φ̃+−zz
0 (Q,−Q,K) = − b

(h− iν)2

[
1

h− i(ν + ω) + 1
h− i(ν − ω)

]

+ δ(ω)
[

2b′
(h− iν)2 −

βb′′

h− iν

]
. (B.79)

Together with the initial condition of the transversal polarization function,

Π+−
0 (K) = b

h− iω
, (B.80)

we find

−
∫

Λ

∫
Q
Ḟ+−

Λ (Q)Φ̃+−zz
Λ (Q,−Q,K) ≈ −

∫
Λ

∫
Q

VqΦ̃+−zz
0 (Q,−Q,K)(
1− Λ bVq

h−iν

)2

= −
∫
Q

Vq(h− iν)Φ̃+−zz
0 (Q,−Q,K)

h− iν − bVq
.

(B.81)

Let us first consider the general case ω 6= 0, for which the irreducible four-point
vertex can be written as

Φ̃+−zz
0 (Q,−Q,K) = − 2b

(h− iν)(h− iν − iω)(h− iν + iω) . (B.82)

We now insert this expression into Eq. (B.81) and replace the Matsubara sum
by a contour integral,

1
β

∑
ν

f(iν) = (−1)
2πi

∫
C

dz

1− eβz f(z). (B.83)

In contrast to the more general expression (3.155), we here follow VLP in
assuming a vanishing on-site interaction to facilitate the comparison with
their results. As discussed at the end of Sec. 3.2.1, this allows us to choose
any regularization scheme for equal-time expressions. We thus arrive at the
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finite-frequency contribution

−
∫
Q

2bVq
(iν − h+ bVq)(iν − h+ iω)(iν − h− iω)

=(−1)
2πi

∫
q

∫
C

dz

eβz − 1
2bVq

(z − h+ bVq)(z − h+ iω)(z − h− iω)

=2b
∫
q
Vq

[
nq

(iω − bVq)(−iω − bVq)
+ ny

2iω

(
1

bVq + iω
− 1
bVq − iω

)]

=2b
∫
q
Vq

nq − ny
(bVq)2 + ω2 . (B.84)

Here we have used the notation of VLP [2],

nk = 1
eβεk − 1 , ny = 1

ey − 1 , (B.85)

where in turn

εk = h− bVk, y = βh. (B.86)

On the other hand, for the static case ω = 0 we find∫
Q

Vq
h− iν − bVq

[
2b

(h− iν)2 −
2βb′
h− iν

+ β2b′′
]

=(−1)
2πi

∫
q
Vq

∫
C

dz

(eβz − 1)(z − h+ bVq)

[
2b

(z − h)2 + 2βb′
z − h

+ β2b′′
]

=2βn′y +
∫
q

2(nq − ny)
bVq

+ 2βb′
b

∫
q
(ny − nq) + β2b′′

∫
q
Vqnq, (B.87)

where we have defined n′y = ∂yny. To leading order in the inverse interaction
range, the total contribution from Φ̃+−zz

Λ thus reads

−
∫

Λ

∫
Q

VqΦ̃+−zz
0 (Q,−Q,K)(

1− ΛVqΠ+−
0 (Q)

)2

=2b
∫
q

Vq(nq − ny)
(bVq)2 + ω2 + δ(ω)

∫
q

[
2n′y + 2b′

b
(ny − nq) + b′′βVqnq

]
. (B.88)

B.2.3 Contribution from
(
Φ̃zzz

Λ
)2

We continue with the purely longitudinal part involving the irreducible three-
point vertex Φ̃zzz

Λ , which has the initial condition

Φ̃zzz
0 (Q,−Q−K) = −δ(ν)δ(ν − ω)b′′. (B.89)
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To leading order we then find

∫
Λ

∫
Q
Ḟ zz

Λ (Q)F zz
Λ (Q+K)Φ̃zzz

Λ (Q,−Q−K)Φ̃zzz
Λ (Q+K,−Q)

≈δ(ω)(b′′)2
∫

Λ

∫
q

Λβ2VqVq+k

(1− Λβb′Vq)2 (1− Λβb′Vq+k)

=δ(ω)(b′′)2
∫

Λ

∫
q

Λβ2VqVq+k [2− Λβb′ (Vq + Vq+k)]
2 (1− Λβb′Vq)2 (1− Λβb′Vq+k)2

=δ(ω)(b′′)2
∫
q

βVqβVq+k

2 (1− βb′Vq) (1− βb′Vq+k)
= δ(ω)(b′′)2

2

∫
q
β2VqVq+kLqLq+k,

(B.90)

where in the third line we have used the transformation q → −q−k to render
the expression more symmetric.

B.2.4 Contribution from
(
Φ̃+−z

Λ
)2

The contribution involving the mixed irreducible three-point vertex Φ̃+−z
Λ is

again more difficult to evaluate. The first part, which corresponds to the
fourth diagram in Fig. 3.4, can be written as

∫
Λ

∫
Q
Ḟ+−

Λ (Q)F+−
Λ (Q+K)Φ̃+−z

Λ (Q,−Q−K)Φ̃+−z
Λ (Q+K,−Q)

≈
∫

Λ

∫
Q

ΛVqVq+kΦ̃+−z
0 (Q,−Q−K)Φ̃+−z

0 (Q+K,−Q)[
1− ΛVqΠ+−

0 (Q)
]2 [

1− ΛVq+kΠ+−
0 (Q+K)

]
=
∫

Λ

∫
Q

ΛVqVq+kΦ̃+−z
0 (Q,−Q+K)Φ̃+−z

0 (Q−K,−Q)[
1− ΛVqΠ+−

0 (Q)
] [

1− ΛVq+kΠ+−
0 (Q−K)

]2 , (B.91)

where in the last line we have used the transformations q → −q − k and
ν → ν − ω. Together with the contribution from the fifth diagram in Fig. 3.4,
which can be obtained by replacing K → −K in Eq. (B.91), we arrive at the
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more symmetric expression

∫
Λ

∫
Q

ΛVqVq+k
[
2− ΛVqΠ+−

0 (Q)− ΛVq+kΠ+−
0 (Q+K)

]
[
1− ΛVqΠ+−

0 (Q)
]2 [

1− ΛVq+kΠ+−
0 (Q+K)

]2
× Φ̃+−z

0 (Q,−Q−K)Φ̃+−z
0 (Q+K,−Q)

=
∫
Q

VqVq+kΦ̃+−z
0 (Q,−Q−K)Φ̃+−z

0 (Q+K,−Q)[
1− VqΠ+−

0 (Q)
] [

1− Vq+kΠ+−
0 (Q+K)

]
=
∫
Q

VqVq+k

(iν − h+ bVq) (iν − h+ iω + bVq+k)

×
[

b2

(iν − h)(iν − h+ iω) + δ(ω)
(

2bb′
iν − h

+ β(b′)2
)]

, (B.92)

where we have used the initial condition of the mixed irreducible three-point
vertex [1, 3],

Φ̃+−z
0 (K1, K2) = b

(h− iω1)(h+ iω2) − δ(ω3) b′

h− iω1
. (B.93)

For the general case of ω 6= 0 we then find

b2 (−1)
2πi

∫
q

∫
C

dz

1− eβz
VqVq+k

(z − h+ bVq)(z − h+ iω + bVq+k)(z − h)(z − h+ iω)

=
∫
q

2bVq+knq
(bVq)2 − bVqbVq+k − ω2

[(bVq)2 + ω2] [(bVq − bVq+k)2 + ω2] +
∫
q

2bVqny
(bVq)2 + ω2

=
∫
q

nq − nq+k

εq+k − εq − iω
− 2b

∫
q

Vq(nq − ny)
(bVq)2 + ω2 . (B.94)

On the other hand, the static case ω = 0 results in the three contributions∫
Q

b2VqVq+k

(iν − h+ bVq) (iν − h+ bVq+k) (iν − h)2 =
∫
q

2Vq+knq
bVq(Vq − Vq+k)

+
∫
q

2ny
bVq

− βn′y, (B.95a)∫
Q

2βbb′VqVq+k

(iν − h+ bVq) (iν − h+ bVq+k) (iν − h) = −2βb′
∫
q
Vq
nq − nq+k

εq+k − εq

+ 2βb′
b

∫
q
(nq − ny), (B.95b)∫

Q

β2(b′)2VqVq+k

(iν − h+ bVq) (iν − h+ bVq+k)
= β2(b′)2

∫
q
VqVq+k

nq − nq+k

εq+k − εq
.

(B.95c)
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The total contribution from the mixed three-point vertices can thus be written
as ∫

Λ

∫
Q

ΛVqVq+kΦ̃+−z
0 (Q,−Q+K)Φ̃+−z

0 (Q−K,−Q)[
1− ΛVqΠ+−

0 (Q)
] [

1− ΛVq+kΠ+−
0 (Q−K)

]2 + (K ↔ −K)

=
∫
q

nq − nq+k

εq+k − εq − iω
− 2b

∫
q

Vq(nq − ny)
(bVq)2 + ω2 + δ(ω)

[
− n′y − 2b′

∫
q
Vq
nq − nq+k

εq+k − εq

+ 2b′
b

∫
q
(nq − ny) + β(b′)2

∫
q
VqVq+k

nq − nq+k

εq+k − εq

]
. (B.96)

B.2.5 Contribution from ∂ΛhΛ

The final contribution that we have to evaluate stems from the Λ dependence
of the renormalized effective magnetic field hΛ,

−
∫

Λ
Φ̃zzz

Λ (K,−K)∂ΛhΛ ≈ −Φ̃zzz
0 (K,−K)

∫
Λ
∂ΛhΛ. (B.97)

From the flow equation (3.164) of hΛ we find

Φ̃zz
0 (0)

∫
Λ
∂ΛhΛ ≈ −

1
2

∫
Λ

∫
Q

VqΦ̃zzz
0 (Q,−Q)

[1− ΛVqΠzz
0 (Q)]2

−
∫

Λ

∫
Q

VqΦ̃+−z
0 (Q,−Q)[

1− ΛVqΠ+−
0 (Q)

]2
= b′′

2

∫
q

βVq
1− βb′Vq

−
∫
Q

Vq
iν − h+ bVq

[
b

iν − h
+ βb′

]

= b′′

2

∫
q
βVqLq +

∫
q
(ny − nq) + b′

∫
q
βVqnq, (B.98)

so that

− Φ̃zzz
0 (K,−K)

∫
Λ
∂ΛhΛ

≈δ(ω)b′′ βV0

1− βb′V0

[
b′′

2

∫
q
βVqLq −

∫
q
(nq [1− βb′Vq]− ny)

]
. (B.99)

B.3 1/D expansion of ΓzzΛ in the quantum
Heisenberg model

B.3.1 Leading correction to ΓzzΛ
In order to determine the critical temperature of the spin-S Heisenberg model
on a D-dimensional hypercubic lattice with nearest-neighbor interaction to
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leading order in 1/D, we need the exact flow equation

∂Λ
[
Φ̃′′Λ

]
α̃1α̃2

= 1
2Tr

[
ḞΛΦ̃(4)

Λ,α̃1α̃2

]
− 1

2 Sα̃1;α̃2 Tr
[
ḞΛΦ̃′′′Λ,α̃1FΛΦ̃′′′Λ,α̃2

]
, (B.100)

which follows from Eq. (3.157) by assuming hΛ = 0. Since this assumption
also implies that the O(3) symmetry of the quantum Heisenberg model is
intact,

Παα′

Λ (K) = δα,α′Πzz
Λ (K), (B.101)

it is sufficient to consider Πzz
Λ . Within the deformation scheme VΛ(k) = ΛVk

we thus get

∂ΛΠzz
Λ (K) = −1

2
∑
α

∫
Q

VqΦ̃ααzz
Λ (Q,−Q,K)

[1− ΛVqΠαα
Λ (Q)]2

+ Λ
2 SK;−K

∑
αγ

∫
Q

VqVq+kΦ̃αγz
Λ (Q,−Q−K)Φ̃γαz

Λ (Q+K,−Q)
[1− ΛVqΠαα

Λ (Q)]2 [1− ΛVq+kΠγγ
Λ (Q+K)]

.

(B.102)

To first order in 1/D, we can further restrict ourselves to the evaluation of

∂ΛΠzz
Λ (k) = −1

2
∑
α

∫
Q

VqΦ̃ααzz
Λ (Q,−Q,k)

[1− ΛVqΠαα
Λ (Q)]2

+ Λ
∑
αγ

∫
Q

VqVq+kΦ̃αγz
Λ (Q,−Q− k)Φ̃γαz

Λ (Q+ k,−Q)
[1− ΛVqΠαα

Λ (Q)]2 [1− ΛVq+kΠγγ
Λ (Q+ k)]

, (B.103)

where k appearing as an argument to a polarization function or to an irre-
ducible vertex is a shorthand for (k, iω = 0); e.g.,

Πzz
Λ (k) ≡ Πzz

Λ

(
(k, iω = 0)

)
. (B.104)

Approximating the polarization functions and the irreducible vertices by their
initial values, we find that the first term on the right-hand side of Eq. (B.103)
becomes

− 1
2
∑
α

∫
Q

VqΦ̃ααzz
0 (Q,−Q,k)

(1− ΛVqb′δ(ν))2 = − 1
2β

∑
α

∫
q

VqΦ̃ααzz
0 (0, 0, 0)

(1− Λβb′Vq)2

≈− 1
2β

∑
α

Φ̃ααzz
0 (0, 0, 0)

∫
q
Vq(1 + 2Λβb′Vq) = − Λg2

2β2b′D

∑
α

Φ̃ααzz
0 (0, 0, 0)

= 5Λβb′′′g2

6b′D , (B.105)
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where we have used the zero-field limit of Eqs. (B.76) and (B.79),

Φ̃zzzz
0 (Q,−Q,K) = −βb′′′δ(ν)δ(ω), (B.106)

Φ̃xxzz
0 (Q,−Q,K) = Φ̃yyzz

0 (Q,−Q,K) = β



−β2b′′′/3, ν = ω = 0,
−2b′/(ω2), ν = 0, ω 6= 0,
−2b′/(ν2), ν 6= 0, ω = 0
b′/(ω2), |ν| = |ω| 6= 0

0, else,
(B.107)

and we have again introduced the dimensionless parameter g = βb′V0. The
second term results in

Λ
∑
αγ

∫
Q

VqVq+kΦ̃αγz
0 (Q,−Q− k)Φ̃γαz

0 (Q+ k,−Q)
[1− ΛVqΠαα

0 (Q)]2 [1− ΛVq+kΠγγ
0 (Q+ k)]

≈− Λ
∑
αγ

∫
Q
VqVq+k

[
Φ̃αγz

0 (ν,−ν)
]2

= −Λβg2γk
12D , (B.108)

where ν appearing as an argument to an irreducible vertex is a shorthand for
(0, iν), i.e.,

Φ̃αγz
0 (ν,−ν) ≡ Φ̃αγz

0

(
(q = 0, iν), (q = 0,−iν)

)
, (B.109)

and we have inserted the zero-field limit of Eqs. (B.89) and (B.93),

Φ̃αγz
0 (K1, K2) = εαγzb

′ (1− δω1,0δω2,0)
(
δ(ω1)
ω2

+ δ(ω2)
ω3

+ δ(ω3)
ω1

)
, (B.110)

where εαγz is the Levi-Civita symbol. In total we therefore find

∂ΛΠzz
Λ (k) = Λβg2

12b′D (10b′′′ − b′γk) , (B.111)

so that to leading order in 1/D

Πzz
Λ (k) = βb′

[
1 + Λ2g2

24D

(
10b′′′
(b′)2 −

γk
b′

)]
. (B.112)

Inserting this result into Eq. (3.135a) we arrive at

ΓzzΛ (k) + Vk = 1
βb′

[
1− Λ2g2

24D

(
10b′′′
(b′)2 −

γk
b′

)]
. (B.113)
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Together with the condition ΓzzΛ=1(k) = 0 for the critical temperature, this
leads to the quadratic equation

1− gγk −
g2

24D

(
10b′′′
(b′)2 −

γk
b′

)
= 0, (B.114)

which is trivially solved by

Tc
Tc0

= 1
2

1 +

√√√√1− 1
D

[
5
3
|b′′′|
(b′)2 ±

1
6b′

] , (B.115)

where Tc0 = b′|V0| is the mean-field result for the critical temperature.

B.3.2 Second-order correction to ΓzzΛ for S = 1/2
First-order correction to the irreducible four-point vertex

It is straightforward to extend our result (B.113) for Πzz
Λ (k) to second order

in 1/D. Since the flow equation of the polarization function depends on the
irreducible four-point vertex Φ̃ααzz

Λ (Q,−Q,k), we need to solve its exact flow
equation to first order in 1/D. While the full expression for the exact flow
equation is quite lengthy (see Ref. [33] for a diagrammatic representation),
we can neglect several terms to leading order in 1/D so that

∂Λ
[
Φ̃(4)

Λ

]
α̃1α̃2α̃3α̃4

≈ 1
2Tr

[
ḞΛΦ̃(6)

Λ,α̃1α̃2α̃3α̃4

]
− 1

2 Sα̃1α̃2;α̃3α̃4 Tr
[
ḞΛΦ̃(4)

Λ,α̃1α̃2
FΛΦ̃(4)

Λ,α̃3α̃4

]
− Sα̃1;α̃2α̃3α̃4 Tr

[
ḞΛΦ̃(3)

Λ,α̃1
FΛΦ̃(5)

Λ,α̃2α̃3α̃4

]
. (B.116)

To better organize the following calculations, we rewrite this flow equation as

∂Λ
[
Φ̃(4)

Λ

]
α̃1α̃2α̃3α̃4

≈
[
∆(6)

Λ

]
α̃1α̃2α̃3α̃4

− Sα̃1α̃2;α̃3α̃4

[
∆(4,4)

Λ

]
α̃1α̃2α̃3α̃4

− Sα̃1;α̃2α̃3α̃4

[
∆(3,5)

Λ

]
α̃1α̃2α̃3α̃4

, (B.117)

where the tensors ∆(6)
Λ , ∆(4,4)

Λ , and ∆(3,5)
Λ are defined as

[
∆(6)

Λ

]
α̃1α̃2α̃3α̃4

≡ 1
2Tr

[
ḞΛΦ̃(6)

Λ,α̃1α̃2α̃3α̃4

]
, (B.118)[

∆(4,4)
Λ

]
α̃1α̃2α̃3α̃4

≡ 1
2Tr

[
ḞΛΦ̃(4)

Λ,α̃1α̃2
FΛΦ̃(4)

Λ,α̃3α̃4

]
, (B.119)[

∆(3,5)
Λ

]
α̃1α̃2α̃3α̃4

≡ Tr
[
ḞΛΦ̃(3)

Λ,α̃1
FΛΦ̃(5)

Λ,α̃2α̃3α̃4

]
. (B.120)
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We also introduce the following notation for their components in Fourier
space:[

∆(x)
Λ

]
α̃1α̃2α̃3α̃4

→ δ(K1 +K2 +K3 +K4)∆(x),α1α2α3α4
Λ (K1, K2, K3). (B.121)

Note that the calculation of these tensors to leading order involves the
initial conditions of the irreducible five- and six-point vertices. While it is
straightforward to derive them for general spin S via the generalized Wick
theorem [1, 3], we have so far only evaluated them for the special cases
of S = 1/2 and S → ∞. In the present section we therefore consider
the spin-1/2 Heisenberg model, while in Appendix B.3.3 we will cover the
classical Heisenberg model. We also note that, according to the exact flow
equation (B.103) of Πzz

Λ (k), the first-order correction to the irreducible four-
point vertex only appears in the expression

− 1
2
∑
α

∫
Q

VqΦ̃ααzz
Λ (Q,−Q,k)

[1− ΛVqΠαα
Λ (Q)]2

≈ −1
2
∑
α

∫
Q

VqΦ̃ααzz
Λ (Q,−Q,k)

[1− ΛVqb′δ(ν)]2

≈− 1
2β

∑
α

∫
q
VqΦ̃ααzz

Λ (q,−q,k)− Λb′
∑
α

∫
q
V 2
q Φ̃ααzz

Λ (q,−q,k)

− 1
2β

∑
α

∫
q

∑
ν 6=0

VqΦ̃ααzz
Λ (Q,−Q,k). (B.122)

Together with Eq. (3.61), this implies that for ν 6= 0 we can neglect the
q-independent part of the first-order correction to Φ̃ααzz

Λ (Q,−Q,k), which
will simplify the following calculations.

Contribution from ∆(6)
Λ We start with the term involving the irreducible

six-point vertex, which to leading order reads

∆(6),ααzz
Λ (Q,−Q,k) ≈ 1

2
∑
γ

∫
P

VpΦ̃γγααzz
0 (P,−P,Q,−Q,k)

[1− ΛVpb′δ(ρ)]2

= 1
2β

∑
γ

Φ̃γγααzz
0 (0, 0, ν,−ν, 0)

∫
p

Vp

[1− Λβb′Vp]2

≈ Λg2

2β2b′D

∑
γ

Φ̃γγααzz
0 (0, 0, ν,−ν, 0). (B.123)

Since this result is always independent of q, we only need to consider the
special case where ν = 0. For S = 1/2 we find

∑
αγ

Φ̃γγααzz
0 (0, 0, 0, 0, 0) = − 7

12β
5, (B.124)
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so that

∑
α

∆(6),ααzz
Λ (q,−q,k) ≈ −7Λβ3g2

6D . (B.125)

Contribution from ∆(4,4)
Λ Next we consider the tensor ∆(4,4)

Λ , whose com-
ponents in Fourier space are in general described by

∆(4,4),α1α2α3α4
Λ (K1, K2, K3)

=1
2
∑
γδ

∫
P
Ḟ γγ

Λ (P )Φ̃γδα1α2
Λ (P,−P −K1 −K2, K1)F δδ

Λ (P +K1 +K2)

× Φ̃δγα3α4
Λ (P +K1 +K2,−P,K3)

≈ Λ
2β

∑
γδ

∑
ρ

Φ̃γδα1α2
0 (ρ,−ρ− ω1 − ω2, ω1)Φ̃δγα3α4

0 (ρ+ ω1 + ω2,−ρ, ω3)

×
∫
p

VpVp+k1+k2

[1− ΛVpb′δ(ρ)]2 [1− ΛVp+k1+k2b
′δ(ρ+ ω1 + ω2)]

≈Λg2γk1+k2

4β3(b′)2D

∑
γδ

∑
ρ

Φ̃γδα1α2
0 (ρ,−ρ− ω1 − ω2, ω1)Φ̃δγα3α4

0 (ρ+ ω1 + ω2,−ρ, ω3).

(B.126)

For our purpose, we specifically need

∆(4,4),α1α2α3α4
Λ (K1, K2, K3) = ∆(4,4),ααzz

Λ (Q,−Q,k), (B.127)

so that for ν = 0 and S = 1/2 we get
∑
α

Sα̃1α̃2;α̃3α̃4 ∆(4,4),ααzz
Λ (Q,−Q,k)

≈ Λg2

2β3(b′)2D

∑
αγδ

∑
ρ

[
(γq+k + γq−k)Φ̃γδαz

0 (ρ,−ρ, 0)Φ̃δγαz
0 (ρ,−ρ, 0)

+ Φ̃γδαα
0 (ρ,−ρ, 0)Φ̃δγzz

0 (ρ,−ρ, 0)
]

=Λβ3g2

2D
∑
ρ

{
(γq+k + γq−k)5/12 + 25/36, ρ = 0,

(γq+k + γq−k)12/(βρ)4 + 16/(βρ)4, ρ 6= 0

=Λβ3g2

120D [43 + 26(γq+k + γq−k)] , (B.128)

where, with a slight abuse of notation, the symmetrization operator now
symmetrizes the function to its right with respect to the function’s variables
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in Fourier space. On the other hand, for finite ν and S = 1/2 we find

1
β

∑
ν 6=0

∑
α

Sα̃1α̃2;α̃3α̃4 ∆(4,4),ααzz
Λ (Q,−Q,k)

≈ Λg2

2β4(b′)2D

∑
αγδ

∑
ν 6=0

∑
ρ

[
(γq+k + γq−k)Φ̃γδαz

0 (ρ,−ρ− ν, ν)Φ̃δγαz
0 (ρ+ ν,−ρ,−ν)

+ Φ̃γδαα
0 (ρ,−ρ, ν)Φ̃δγzz

0 (ρ,−ρ, 0)
]

= Λg2

2β2D

∑
ν 6=0

∑
ρ

{
(γq+k + γq−k)

[
(δρ,0 + δρ,−ν)

12
ν4 + (1− δρ,0)(1− δρ,−ν)

×
(

2
ν2ρ2 + 2

ν2(ν + ρ)2 + 2
ρ2(ν + ρ)2

)]
− δρ,0

10β2

3ν2 − (δν,ρ + δν,−ρ)
8
ν4

}

=Λβ2g2

30D

[
−9

2 + γq+k + γq−k

]
, (B.129)

which implies

∫
q
Vq

1
β

∑
ν 6=0

∑
α

Sα̃1α̃2;α̃3α̃4 ∆(4,4),ααzz
Λ (Q,−Q,k) = 2Λβg3γk

15D2 . (B.130)

Contribution from ∆(3,5)
Λ The final contribution that we have to evaluate

comes from ∆(3,5)
Λ , which in general yields

∆(3,5),α1α2α3α4
Λ (K1, K2, K3)

=
∑
γδ

∫
P
Ḟ γγ

Λ (P )Φ̃γδα1
Λ (P,−P −K1)F δδ

Λ (P +K1)

× Φ̃δγα2α3α4
Λ (P +K1,−P,K2, K3)

≈ Λg2γk1

2β3(b′)2D

∑
γδ

∑
ρ

Φ̃γδα1
0 (ρ,−ρ− ω1)Φ̃δγα2α3α4

0 (ρ+ ω1,−ρ, ω2, ω3). (B.131)

Choosing

∆(3,5),α1α2α3α4
Λ (K1, K2, K3) = ∆(3,5),ααzz

Λ (Q,−Q,k) (B.132)
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and assuming ν = 0 as well as S = 1/2, we arrive at∑
α

Sα̃1;α̃2α̃3α̃4 ∆(3,5),ααzz
Λ (Q,−Q,k)

≈ Λg2

β3(b′)2D

∑
αγδ

∑
ρ

[
γqΦ̃γδα

0 (ρ,−ρ)Φ̃δγαzz
0 (ρ,−ρ, 0, 0)

+ γkΦ̃γδz
0 (ρ,−ρ)Φ̃δγααz

0 (ρ,−ρ, 0, 0)
]

=5Λg2(γq + γk)
3βD

∑
ρ6=0

12 + β2ρ2

ρ4 = Λβ3g2(γq + γk)
6D . (B.133)

For ν 6= 0 we are only interested in the q-dependent terms, so that it is in
this case sufficient to consider∫

q
Vq

1
β

∑
ν 6=0

∑
α

[
∆(3,5),ααzz

Λ (Q,−Q,k) + ∆(3,5),ααzz
Λ (−Q,Q,k)

]

≈
∫
q
Vq

Λg2γq
β4(b′)2D

∑
αγδ

∑
ν 6=0

∑
ρ

Φ̃γδα
0 (ρ,−ρ− ν)Φ̃δγαzz

0 (ρ+ ν,−ρ,−ν, 0)

= 10Λg3

3β3D2

∑
ν 6=0

∑
ρ

(δρ,0 + δρ,−ν)
12 + β2ν2

ν4 = 2Λβg3

3D2 . (B.134)

Second-order contribution to the flow of Πzz
Λ from the leading cor-

rection to Φ̃(4)
Λ Collecting all relevant terms, we find in the static case

∂Λ
∑
α

Φ̃ααzz
Λ (q,−q,k) ≈ −7Λβ3g2

6D − Λβ3g2

120D [43 + 26(γq+k + γq−k)]

− Λβ3g2(γq + γk)
6D

= −Λβ3g2

6D

[183
20 + 13

10(γq+k + γq−k) + γq + γk

]
,

(B.135)

so that

− 1
2β

∑
α

∫
q
VqΦ̃ααzz

Λ (q,−q,k) ≈ Λ2βg3

12D2

(
1 + 13

5 γk
)
,

(B.136)

−Λb′
∑
α

∫
q
V 2
q

[
Φ̃ααzz

Λ (q,−q,k)− Φ̃ααzz
0 (0, 0, 0)

]
≈ Λ3βg4

6D2

(183
20 + γk

)
,

(B.137)
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while for ν 6= 0 we have

− 1
2β

∑
α

∫
q

∑
ν 6=0

VqΦ̃ααzz
Λ (Q,−Q,k) ≈ Λ2βg3

30D2 (5 + γk) . (B.138)

The total second-order contribution to the flow of Πzz
Λ (k) from the first-order

correction to the irreducible four-point vertex thus reads

Λ2βg3

12D2

(
1 + 13

5 γk
)

+ Λ3βg4

6D2

(183
20 + γk

)
+ Λ2βg3

30D2 (5 + γk)

=Λ2βg3

4D2 (1 + γk) + Λ3βg4

6D2

(183
20 + γk

)
. (B.139)

First-order correction to the irreducible three-point vertex

Analogous to the previous calculation, we also have to derive the first-order
correction to the irreducible three-point vertex. To leading order in 1/D, this
vertex obeys the flow equation

∂Λ
[
Φ̃(3)

Λ

]
α̃1α̃2α̃3

≈ 1
2Tr

[
ḞΛΦ̃(5)

Λ,α̃1α̃2α̃3

]
− Sα̃1;α̃2α̃3 Tr

[
ḞΛΦ̃(3)

Λ,α̃1
FΛΦ̃(4)

Λ,α̃2α̃3

]
=
[
∆(5)

Λ

]
α̃1α̃2α̃3

− Sα̃1;α̃2α̃3

[
∆(3,4)

Λ

]
α̃1α̃2α̃3

, (B.140)

where the tensors ∆(5)
Λ and ∆(3,4)

Λ are defined as[
∆(5)

Λ

]
α̃1α̃2α̃3

≡ 1
2Tr

[
ḞΛΦ̃(5)

Λ,α̃1α̃2α̃3

]
, (B.141)[

∆(3,4)
Λ

]
α̃1α̃2α̃3

≡ Tr
[
ḞΛΦ̃(3)

Λ,α̃1
FΛΦ̃(4)

Λ,α̃2α̃3

]
, (B.142)

and we again use the notation[
∆(x)

Λ

]
α̃1α̃2α̃3

→ δ(K1 +K2 +K3)∆(x),α1α2α3
Λ (K1, K2) (B.143)

for their components in Fourier space. According to the exact flow equa-
tion (B.103) of Πzz

Λ (k), the first-order correction to the irreducible three-point
vertex only appears in the expression

Λ
∑
αγ

∫
Q

VqVq+kΦ̃αγz
Λ (Q,−Q− k)Φ̃γαz

Λ (Q+ k,−Q)
[1− ΛVqΠαα

Λ (Q)]2 [1− ΛVq+kΠγγ
Λ (Q+ k)]

≈Λ
∑
αγ

∫
Q
VqVq+kΦ̃αγz

Λ (Q,−Q− k)Φ̃γαz
Λ (Q+ k,−Q)

=2Λ
∫
Q
VqVq+kΦ̃xyz

Λ (Q,−Q− k)Φ̃xyz
Λ (−Q,Q+ k). (B.144)
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It is therefore sufficient to focus on the flow equation of Φ̃xyz
Λ (Q,−Q − k).

Together with Eq. (3.61) it is also clear that, to leading order in 1/D, we can
neglect all q-dependent terms in the first-order correction to the irreducible
three-point vertex.

Contribution from ∆(5)
Λ The first contribution to the flow of the irre-

ducible three-point vertex is given by

∆(5),xyz
Λ (Q,−Q− k) ≈ 1

2
∑
γ

∫
P

VpΦ̃γγxyz
0 (P,−P,Q,−Q− k)

[1− ΛVpb′δ(ρ)]2

= 1
2β

∑
γ

Φ̃γγxyz
0 (0, 0, ν,−ν)

∫
p

Vp

[1− Λβb′Vp]2

≈ Λg2

2β2b′D

∑
γ

Φ̃γγxyz
0 (0, 0, ν,−ν)

= −(1− δν,0)5(12 + β2ν2)Λg2

12βν3D
, (B.145)

where in the last line we have set S = 1/2.

Contribution from ∆(3,4)
Λ For the second contribution we first consider

the general relation
∆(3,4),α1α2α3

Λ (K1, K2)

=
∑
γδ

∫
P
Ḟ γγ

Λ (P )Φ̃γδα1
Λ (P,−P −K1)F δδ

Λ (P +K1)Φ̃δγα2α3
Λ (P +K1,−P,K2)

≈ Λg2γk1

2β3(b′)2D

∑
γδ

∑
ρ

Φ̃γδα1
0 (ρ,−ρ− ω1)Φ̃δγα2α3

0 (ρ+ ω1,−ρ, ω2). (B.146)

While the full contribution to the flow of Φ̃xyz
Λ (Q,−Q− k) is given by

Sα̃1;α̃2α̃3 ∆(3,4),xyz
Λ (Q,−Q− k)

=∆(3,4),xyz
Λ (Q,−Q− k) + ∆(3,4),yzx

Λ (−Q− k,k) + ∆(3,4),zxy
Λ (k, Q), (B.147)

only the last term is independent of q,

∆(3,4),zxy
Λ (k, Q) = Λg2γk

2β3(b′)2D

∑
γδ

∑
ρ

Φ̃γδz
0 (ρ,−ρ)Φ̃δγxy

0 (ρ,−ρ, ν)

= (1− δν,0)Λg2γk
2βD

∑
ρ6=0

[
δρ,ν + δρ,−ν

ν3 + 2
νρ2

]

= (1− δν,0)(12 + β2ν2)Λg2γk
12βν3D

, (B.148)
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where we have again set S = 1/2.

Second-order contribution to the flow of Πzz
Λ from the leading cor-

rection to Φ̃(3)
Λ We thus arrive at

∫
q
∂ΛΦ̃xyz

Λ (Q,−Q− k) ≈ −(1− δν,0)(12 + β2ν2)(5 + γk)Λg2

12βν3D
, (B.149)

where the momentum integral removes the irrelevant q-dependent terms.
Integrating up the flow then leads to∫

q
Φ̃xyz

Λ (Q,−Q− k) ≈ (1− δν,0) β4ν

[
1− (12 + β2ν2)(5 + γk)Λ2g2

6β2ν2D

]
,

(B.150)

so that the total second-order contribution to the flow equation of Πzz
Λ (k)

from the first-order correction to the irreducible three-point vertex reads

2Λ
∫
Q
VqVq+k

[
Φ̃xyz

Λ (Q,−Q− k)Φ̃xyz
Λ (−Q,Q+ k)− Φ̃xyz

0 (ν,−ν)Φ̃xyz
0 (−ν, ν)

]
≈ 2Λ

∫
Q
VqVq+k(1− δν,0) β2

16ν(−ν)(−2)(12 + β2ν2)(5 + γk)Λ2g2

6β2ν2D

= γk(5 + γk)βΛ3g4

3D2

∑
ν 6=0

12 + β2ν2

β4ν4 = γk(5 + γk)βΛ3g4

30D2 . (B.151)

First-order correction to Πzz
Λ (K) for ω 6= 0

Since the polarization function Πzz
Λ (K) itself appears on the right-hand side of

its flow equation (B.103), we also have to evaluate its first-order correction in
1/D for finite frequencies. Assuming ω 6= 0, the term involving the irreducible
four-point vertex is to leading order given by

−1
2
∑
α

∫
Q

VqΦ̃ααzz
0 (ν,−ν, ω)

[1− ΛVqb′δ(ν)]2
≈ − Λg2

2β2b′D

∑
α

Φ̃ααzz
0 (0, 0, ω) = 2Λg2

βω2D
,

(B.152)

while the term involving the irreducible three-point vertex yields

Λ
∑
αγ

∫
Q
VqVq+kΦ̃αγz

0 (ν,−ν − ω)Φ̃γαz
0 (ν + ω,−ν)

=− Λg2γk
β3(b′)2D

∑
ν

[
Φ̃xyz

0 (ν,−ν − ω)
]2

= −2Λg2γk
βω2D

. (B.153)
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We thus find

∂ΛΠzz
Λ

(
(k, iω 6= 0)

)
= 2Λg2(1− γk)

βω2D
, (B.154)

which together with our earlier result (B.112) for the static case leads to

Πzz
Λ (K) = δ(ω)b′

[
1 + Λ2g2

24D

(
10b′′′
(b′)2 −

γk
b′

)]
+ (1− δω,0)Λ2g2(1− γk)

βω2D
.

(B.155)

Second-order contributions from the denominators

We are now in a position to evaluate the final contribution to the flow of
Πzz

Λ (k), which comes from the denominators in

∂ΛΠzz
Λ (k) = −1

2
∑
α

∫
Q

VqΦ̃ααzz
Λ (Q,−Q,k)

[1− ΛVqΠαα
Λ (Q)]2

+ Λ
∑
αγ

∫
Q

VqVq+kΦ̃αγz
Λ (Q,−Q− k)Φ̃γαz

Λ (Q+ k,−Q)
[1− ΛVqΠαα

Λ (Q)]2 [1− ΛVq+kΠγγ
Λ (Q+ k)]

. (B.156)

Since the denominator of the second term only contributes to third order in
1/D, we are left with

− 1
2
∑
α

∫
Q

VqΦ̃ααzz
0 (ν,−ν, 0)

[1− ΛVqΠαα
Λ (Q)]2

≈− 1
2β

∑
α

∑
ν

Φ̃ααzz
0 (ν,−ν, 0)

∫
q
Vq
[
2ΛVqΠαα

Λ (Q) + δν,04(Λβb′Vq)3
]
.

(B.157)

Subtracting the trivial leading correction, the first term in this expression is
easily evaluated as

− Λ
β

∑
α

∑
ν

Φ̃ααzz
0 (ν,−ν, 0)

∫
q
V 2
q [Παα

Λ (Q)− Παα
0 (Q)]

≈− 5b′′′Λ3g2

12b′D
∑
α

Φ̃ααzz
0 (0, 0, 0)

∫
q
V 2
q −

Λ3g2

D

∑
α

∑
ν 6=0

Φ̃ααzz
0 (ν,−ν, 0)

∫
q

V 2
q

β2ν2

=25βΛ3g4

72D2 + 8βΛ3g4

D2

∑
ν 6=0

1
β4ν4 = 43βΛ3g4

120D2 , (B.158)

where in the last line we have set S = 1/2. For the second term we find

−2Λ3β2(b′)3∑
α

Φ̃ααzz
0 (0, 0, 0)

∫
q
V 4
q = −5βΛ3g4

12b′
∫
q
γ4
q ≈ −

5βΛ3g4

4D2 , (B.159)
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where we have used Eq. (B.67). The total second-order contribution to the
flow of Πzz

Λ (k) from the denominators is thus

43βΛ3g4

120D2 −
5βΛ3g4

4D2 = −107βΛ3g4

120D2 . (B.160)

Total second-order contribution to the flow of Πzz
Λ (k)

Collecting all intermediate second-order results (B.139), (B.151), and (B.160)
yields

βΛ2g3

4D2 (1 + γk) + βΛ3g4

6D2

(183
20 + γk

)
+ γk(5 + γk)βΛ3g4

30D2 − 107βΛ3g4

120D2

=βΛ2g3

4D2 (1 + γk) + βΛ3g4

30D2 (19 + 10γk + γ2
k). (B.161)

Integrating this expression over Λ and combining it with our first-order
result (B.112), we arrive at the static, zero-field polarization function for
S = 1/2 to second order in 1/D,

1
βb′

Πzz
Λ=1(k) = 1− g2(5 + γk)

6D + g3(1 + γk)
3D2 + g4

3D2

(
19
10 + γk + γ2

k

10

)
.

(B.162)

Finally, via Eq. (3.135a) we can use this result to derive the 1/D expansion
of ΓzzΛ=1(k) to second order,

βb′ΓzzΛ (k) = 1− gγk + g2(5 + γk)
6D − g3(1 + γk)

3D2 + g4

18D2

(
11
10 − γk −

γ2
k

10

)
.

(B.163)

Setting ΓzzΛ=1(k) = 0 to compute the critical temperature, we find that a
phase transition first occurs for γ2

k = 1. This allows us to simplify the g4 term
so that we end up with the quartic equation

1− gγk + g2(5 + γk)
6D − g3(1 + γk)

3D2 + g4

18D2 (1− γk) = 0. (B.164)

B.3.3 Second-order correction to ΓzzΛ for S →∞
First-order correction to the irreducible four-point vertex

Having derived the second-order correction to ΓzzΛ in Sec. B.3.2 for the quantum
limit S = 1/2, it is only natural to also consider the classical limit S →∞.
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Similar to the calculations for the Ising model in Sec. B.1, the classical limit
implies that all irreducible vertices with an odd number of external legs vanish
and that we do not need to introduce a temporal dependence. We start by
considering the flow equation of the irreducible four-point vertex, which to
leading order can be written as

∂Λ
[
Φ̃(4)

Λ

]
α̃1α̃2α̃3α̃4

≈
[
∆(6)

Λ

]
α̃1α̃2α̃3α̃4

− Sα̃1α̃2;α̃3α̃4

[
∆(4,4)

Λ

]
α̃1α̃2α̃3α̃4

. (B.165)

Here the tensors ∆(6)
Λ and ∆(4,4)

Λ are defined analogously to the S = 1/2 case
in Sec. B.3.2,

[
∆(6)

Λ

]
α̃1α̃2α̃3α̃4

≡ 1
2Tr

[
ḞΛΦ̃(6)

Λ,α̃1α̃2α̃3α̃4

]
, (B.166)[

∆(4,4)
Λ

]
α̃1α̃2α̃3α̃4

≡ 1
2Tr

[
ḞΛΦ̃(4)

Λ,α̃1α̃2
FΛΦ̃(4)

Λ,α̃3α̃4

]
. (B.167)

Note that, due to S →∞, the superindex α̃ = (α, i, τ) can now effectively be
taken as time independent, which suggests the notation[

∆(x)
Λ

]
α̃1α̃2α̃3α̃4

→ δ(k1 + k2 + k3 + k4)∆(x),α1α2α3α4
Λ (k1,k2,k3) (B.168)

for the tensor components in Fourier space. It is implied that these tensor
components as well as the irreducible vertices are properly normalized with
respect to β and S to render them dimensionless and finite; the last point
also applies to derivatives of the Brillouin function so that, e.g.,

b′ = S(S + 1)
3 → 1

S2 b
′ = 1 + 1/S

3 ∼ 1
3 . (B.169)

Contribution from ∆(6)
Λ We first consider ∆(6)

Λ , for which we find

∑
α

∆(6),ααzz
Λ (q,−q,k) ≈ 1

2
∑
αγ

∫
p

βVpΦ̃γγααzz
0 (p,−p, q,−q,k)

[1− Λb′βVp]2

≈ Λg2

2b′D
∑
αγ

Φ̃γγααzz
0 = −8Λg2

9D . (B.170)

Here we have introduced the notation

Φ̃α1...αn
0 ≡ Φ̃α1...αn

0 (k1 = 0, . . . ,kn−1 = 0). (B.171)
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Contribution from ∆(4,4)
Λ From our previous calculation (B.126) we al-

ready know that in general

∆(4,4),α1α2α3α4
Λ (k1,k2,k3) ≈ Λg2γk1+k2

4(b′)2D

∑
γδ

Φ̃γδα1α2
0 Φ̃δγα3α4

0 . (B.172)

Specifying

∆(4,4),α1α2α3α4
Λ (k1,k2,k3) = ∆(4,4),ααzz

Λ (q,−q,k), (B.173)

we find that the fully symmetrized contribution reads

∑
α

Sα̃1α̃2;α̃3α̃4 ∆(4,4),ααzz
Λ (q,−q,k)

≈ Λg2

2(b′)2D

∑
αγδ

[
Φ̃γδαα

0 Φ̃δγzz
0 + (γq+k + γq−k)Φ̃γδαz

0 Φ̃δγαz
0

]

=2Λg2

9D

[
1 + 3

5(γq+k + γq−k)
]
. (B.174)

Second-order contribution to the flow of Πzz
Λ from the leading cor-

rection to Φ̃(4)
Λ In total we thus find

∑
α

∂ΛΦ̃ααzz
Λ (q,−q,k) ≈ −2Λg2

9D

[
5 + 3

5(γq+k + γq−k)
]
, (B.175)

which integrates to

∑
α

[
Φ̃ααzz

Λ (q,−q,k)− Φ̃ααzz
0

]
≈ −Λ2g2

9D

[
5 + 3

5(γq+k + γq−k)
]
. (B.176)

According to Eq. (B.122), the total second-order contribution to the flow of
Πzz

Λ (k) from this first-order correction is then given by

− 1
2
∑
α

∫
q
βVqΦ̃ααzz

Λ (q,−q,k)− Λb′
∑
α

∫
q
β2V 2

q

[
Φ̃ααzz

Λ (q,−q,k)− Φ̃ααzz
0

]
≈Λ2g3γk

10D2 + 5Λ3g4

6D2 . (B.177)
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Second-order contribution from the denominator

It now remains to evaluate the contribution from the denominator of the first
term in Eq. (B.103),

− 1
2
∑
α

∫
q

βVqΦ̃ααzz
0 (q,−q,k)

[1− ΛβVqΠαα
Λ (q)]2

≈−
∑
α

Φ̃ααzz
0

∫
q
βVq

[
ΛβVqΠzz

Λ (q) + 2(Λb′βVq)3
]

≈− 2Λb′
9

∫
q
β2V 2

q

[
1− Λ2g2

2D + 2(Λb′βVq)2
]

≈− Λg2

3D + Λ3g4

6D2 −
Λ3g4

D2 = −Λg2

3D −
5Λ3g4

6D2 , (B.178)

where we have used Eq. (B.67) as well as our first-order result (B.112).

Total second-order contribution to the flow of Πzz
Λ (k)

The total second-order contribution to the flow of Πzz
Λ (k) thus reads

Λ2g3γk
10D2 + 5Λ3g4

6D2 −
5Λ3g4

6D2 = Λ2g3γk
10D2 , (B.179)

so that the static, zero-field polarization function for S = ∞ is to second
order in 1/D given by

Πzz
Λ=1(k) ≈ b′

[
1− g2

2D + g3γk
10D2

]
. (B.180)

Inverting this expression and using the relation (3.135a) yields

ΓzzΛ (k) + βVk = 1
b′

[
1 + g2

2D −
g3γk
10D2 + g4

4D2

]
, (B.181)

which together with the condition ΓzzΛ (k) = 0 for a phase transition results in
the quartic equation

1− gγk + g2

2D −
g3γk
10D2 + g4

4D2 = 0. (B.182)



Appendix C

Deutsche Zusammenfassung

C.1 Renormierungsgruppe
Da sich die vorliegende Arbeit hauptsächlich mit der Anwendung der Re-
normierungsgruppe (RG) auf Spinsysteme beschäftigt, soll diese Methode
hier kurz vorgestellt werden. Da die RG konzeptionell sehr stark durch die
Arbeiten von Wilson geprägt wurde [19–22, 28, 29] und die in Kap. 2 und
3 benötigten Methoden der modernen funktionalen Renormierungsgruppe
(FRG) dort konkret hergeleitet werden, soll im Folgenden insbesondere auf
die Wilsonsche RG eingegangen werden. Die grundlegende Idee ist, ausgehend
von einem mikroskopischen Modell iterativ Freiheitsgrade zu eliminieren.
Dabei besteht eine Iteration jeweils aus zwei Schritten: Dezimierung und
Reskalierung. Im ersten Schritt findet eine Reduktion der Freiheitsgrade statt,
indem wir diese ausintegrieren oder eine partielle Spur berechnen. Intuitiv
lässt sich dieser Vorgang so vorstellen, dass man das System mittels der RG
durch ein Mikroskop betrachtet und schrittweise "herauszoomt", um schließlich
Informationen über die makroskopische Eigenschaften des Systems zu erhal-
ten. Nach der Dezimierung ist es nötig, alle Längenskalen so zu reskalieren,
dass die Gitterkonstante wieder ihren ursprünglichen Wert annimmt. Durch
diesen zweiten Schritt ist es möglich Fixpunkte zu finden, an denen sich das
System invariant bezüglich der kombinierten Wirkung von Dezimierung und
Reskalierung verhält. Eine anschauliche Darstellung dieser beiden Schritte im
Ortsraum ist in Abb. C.1 gezeigt.

Allerdings hat sich gezeigt, dass es in der Praxis nützlicher ist, im Impuls-
raum zu arbeiten. In der einfachsten Variante eines harten Cutoffs unterteilt
man die Fourierkomponenten der relevanten Felder ϕ in einen makroskopi-
schen Teil ϕ<Λ0

und einen mikroskopischen Teil ϕ>Λ0
,

ϕ(k) = ϕ<Λ0(k) + ϕ>Λ0(k). (C.1)
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Dezimierung

Reskalierung

Abbildung C.1: Schematische Darstellung der beiden RG-Schritte im Orts-
raum.

Die Unterteilung erfolgt dabei durch den Cutoff Λ0 mittels der Heaviside-
Funktion,

ϕ<Λ0(k) = Θ(Λ0 − |k|)ϕ(k),
ϕ>Λ0(k) = Θ(|k| − Λ0)ϕ(k). (C.2)

Indem wir zu Beginn nur über den mikroskopischen Teil ϕ>Λ0
integrieren,

erhalten wir eine Formulierung des Systems bezüglich der Impulsskala Λ0;
mathematisch drückt sich dies durch die Wirkung SΛ0 [ϕ<Λ0

, gΛ0 ] aus, wobei
der Vektor gΛ0 alle vorkommenden Kopplungskonstanten beinhaltet. Der
RG-Schritt der Dezimierung lässt sich nun dadurch definieren, dass wir eine
zweite Impulsskala Λ < Λ0 einführen und nur die Freiheitsgrade ausintegrieren,
deren Impuls in das Intervall [Λ,Λ0] fällt, wodurch wir die neue Wirkung
SΛ[ϕ<Λ , gΛ] erhalten. Grundsätzlich entspricht dies der in Kap. 2 verfolgten
Strategie, wobei die dort verwendete technische Durchführung mittels eines
Litim-Regulators eine effizientere Version des harten Cutoffs darstellt. Der
Reskalierungsschritt lässt sich nun einfach durchführen, indem wir reskalierte
Impulse

k̃ = bk (C.3)

und reskalierte Felder

ϕ̃(k̃) = bDϕ
√
Zbϕ(k) (C.4)

einführen mit b = Λ0/Λ > 1. Während sich der Exponent Dϕ aus einer
einfachen Dimensionsanalyse ergibt, ist die Berechnung von Zb nichttrivial,
da in diesen Faktor Wechselwirkungseffekte einfließen. Zuletzt drücken wir
die Wirkung SΛ[ϕ<Λ , gΛ] durch die reskalierten Größen aus und bringen die
Wirkung in dieselbe Form, die sie vor der Dezimierung hatte. Diese Forderung
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definiert impliziert die reskalierten Kopplungskonstanten g̃Λ. Daher lässt
sich eine einzelne Iteration der RG auch als Funktion darstellen, die Punkte
im Raum aller möglichen Kopplungskonstanten aufeinander abbildet. Für
infinitesimal kleine Schritte beschreibt die sukzessive Anwendung der RG
daher eine Kurve in diesem Raum, was als Fluss der Kopplungskonstanten
bezeichnet wird. Ein Beispiel für den Fluss in einem zweidimensionalen
Unterraum ist im nächsten Abschnitt in Abb. C.4 dargestellt.

Der letzte wichtige Teil betrifft die Existenz von Fixpunkten. Diese zeich-
nen sich dadurch aus, dass die dazugehörigen Kopplungskonstanten g∗ durch
eine Iteration der RG auf sich selbst abgebildet werden. Da die reskalierte
Korrelationslänge durch

ξ̃ = ξ

b
(C.5)

gegeben ist und wir an einem Fixpunkt ξ = ξ̃ fordern, folgt sofort die wich-
tige Erkenntnis, dass die Korrelationslänge an einem Fixpunkt entweder
verschwindet oder divergiert. Letzterer Fall tritt bei kontinuierlichen Pha-
senübergängen wie dem Berezinkskii-Kosterlitz-Thouless-Phasenübergang
auf, der im nächsten Abschnitt betrachtet wird. Betrachtet man nun das
Verhalten der Kopplungskonstanten in der Nähe eines solchen kritischen
Fixpunktes, so findet man üblicherweise, dass fast alle Kopplungskonstanten
gegen Null fließen; diese werden daher als irrelevant bezüglich des betrachteten
Fixpunkts bezeichnet. Zur Berechnung der universellen Eigenschaften des
kritischen Fixpunktes ist es daher ausreichend, nur eine kleine Untermenge an
Kopplungskonstanten zu betrachten. Diese Tatsache wird explizit in Kap. 2
ausgenutzt, was dort eine analytische Betrachtung ermöglicht.

C.2 Berezinkskii-Kosterlitz-Thouless-
Phasenübergang

Im zweiten Kapitel dieser Arbeit betrachten wir den BKT-Phasenübergang,
der nach Berezinkskii, Kosterlitz und Thouless benannt ist [48–52]. Das
einfachste Modell zur Beschreibung dieses kontinuierlichen Phasenübergangs
ist das zweidimensionale XY-Modell

HXY = −J
∑
i,µ

si · si+µ = −J
∑
i,µ

cos(θi+µ − θi). (C.6)

Dieses besteht aus klassischen Spins si = ex cos θi + ey sin θi mit fester Länge,
die auf den Gitterplätzen ri eines quadratischen Gitters befestigt sind und die
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Vortex
Antivortex

Abbildung C.2: (a) Schematische Darstellung des XY-Modells. Die durch
den Polarwinkel θ parametrisierten klassischen Spins (schwarze Pfeile) wech-
selwirken über die Nächste-Nachbar-Wechselwirkung J (rote Linien, gezeigt
für den zentralen Spin) miteinander. (b) Beispiel für eine Spinkonfiguration,
die einen Vortex mit Vortizität q = 1 und einen Antivortex mit Vortizität
q = −1 aufweist.

über eine Nächste-Nachbar-Wechselwirkung J > 0 miteinander wechselwirken.
Eine graphische Darstellung dieses Systems ist in Abb. C.2a) gezeigt. Während
das System offensichtlich einen ferromagnetischen Grundzustand besitzt, ist
eine langreichweitige Ordnung bei endlichen Temperaturen aufgrund des
Mermin-Wagner-Theorems [47] nicht möglich. Dies schließt jedoch nicht die
Existenz eines kontinuierlichen Phasenübergangs aus, wie wir im Folgenden
sehen werden. Dazu ist es nötig, das emergente Phänomen von Vortizes und
Antivortizes zu betrachten.

Intuitiv bezeichnen diese eine spezielle Konfiguration der Spins, bei der
diese kreisförmig um einen zentralen Punkt ausgerichtet sind [siehe Skizze
in Abb. C.2b)]. Mathematisch ist es nützlich, die ganzzahlige Vortizität q
einzuführen: Dabei entsprechen Vortizes einer positiven Vortizität, während
für Antivortizes q < 0 gilt. Wie in Abb. C.2b) zu sehen ist, heben sich die
Effekte von Vortizes und Antivortizes gleicher Vortizität für größere Abstände
auf, was die Interpretation von q als Ladung nahelegt. Damit lässt sich nun
der BKT-Phasenübergang qualitativ beschreiben: Für kleine Temperaturen
T < Tc liegen Vortizes und Antivortizes nur in eng gebundenen Paaren von
verschwindender Vortizität vor. Diese Phase weist eine quasi-langreichweitige
Ordnung auf, bei der die Spin-Spin-Korrelation für große Abstände mit einem
Potenzgesetz abfällt [Abb. C.3a)]. Erst bei der kritischen Temperatur Tc
werden die größten Vortex-Antivortex-Paare aufgebrochen, sodass für T > Tc
ungebundene Vortizes und Antivortizes energetisch möglich sind. Dies führt
dazu, dass die Spin-Spin-Korrelation für große Distanzen exponentiell abfällt,
was einer ungeordneten Phase entspricht [Abb. C.3b)].
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quasi-langreichweitige Ordnung ungeordnete Phase

Abbildung C.3: Intuitive Darstellung des BKT-Phasenübergangs. (a) Bei
hinreichend niedrigen Temperaturen liegen Vortizes (rote Punkte) und Antivor-
tizes (blaue Punkte) nur in eng gebundenen Paaren vor. Das langreichweitige
Verhalten der Spin-Spin-Korrelationsfunktion entspricht daher einem Potenz-
gesetz und wird durch die anomale Dimension η(T ) charakterisiert. (b) Für
T > Tc ist die Existenz von freien Vortizes und Antivortizes möglich. Dies
führt zu einem exponentiellen Verhalten der Spin-Spin-Korrelationsfunktion
mit einer endlichen Korrelationslänge ξ(T ).

In der Sprache der RG lässt sich dieser Phasenübergang durch das
Verhalten der Kopplungskonstanten ỹl und τl charakterisieren, wobei er-
stere der reskalierten Vortex-Fugazität und letztere der dimensionslosen
Temperatur entspricht. Deren Fluss wird durch die Kosterlitz-Thouless-
Renormierungsgruppengleichungen

∂lỹl = (2− π/τl)ỹl, (C.7)

∂lτl = ỹ2
l

8π , (C.8)

beschrieben; das entsprechende Flussdiagramm in der Nähe des BKT-
Phasenübergangs ist in Abb. C.4 gezeigt. Ursprünglichen wurden die
Kosterlitz-Thouless-Flussgleichungen mithilfe einer spezifischen Formulie-
rung der RG im Ortsraum hergeleitet [51–53]; dieser Zugang hat allerdings
den Nachteil, dass er recht schwierig auf andere Probleme verallgemeinerbar
ist. Der erste Teil von Kap. 2 beschäftigt sich daher mit der Herleitung die-
ser Flussgleichungen innerhalb der FRG, wozu wir im Impulsraum arbeiten
und den weitverbreiteten Litim-Regulator [77] verwenden. Die Grundlage
bildet dabei Abschn. 2.2, wo wir das XY-Modell durch das Villain-Modell
[67] nähern und mittels mehrerer Transformationen eine duale Darstellung
dessen herleiten. Das resultierende “Dual-Vortex”-Modell wird durch die
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Abbildung C.4: Flussdiagramm für die Kosterlitz-Thouless-Renormierungs-
gruppengleichungen (C.7) und (C.8), die den Fluss der Vortex-Fugazität ỹl
und der dimensionslosen Temperatur τl beschreiben. Auf der linken Seite der
Separatrix (rote Linie) fließt das System in das Kontinuum an Gaußschen
Fixpunkten (grüne Linie), was der quasi-langreichweitig geordneten Phase bei
niedrigen Temperaturen entspricht. Die ungeordnete Phase bei hohen Tempe-
raturen entspricht dem rechten Bereich, wo ỹl und τl divergieren. (Abbildung
übernommen aus Ref. [54])

Zustandssumme

ZVillain =
∏
i

 ∞∑
mi=−∞

 e−Sdual[m] (C.9)

mit der Wirkung

Sdual[m] = τ

2
∑
i,µ

(∆µmi)2 = 1
2
∑
k

ωk |mk|2 (C.10)

beschrieben. Das auffällige an dieser Darstellung ist, dass das Feld mi nur
ganzzahlige Werte annehmen kann, sodass wir die übliche Formulierung der
FRG mittels Funktionalintegralen nicht anwenden können. Daher verwenden
wir die von Machado und Dupuis entwickelte Gitter-FRG [76], die auch für
ganzzahlige Felder gültig ist. Dazu regularisieren wir die Wirkung,

Sλ[m] = 1
2
∑
k

[ωk +Rλ(k)] |mk|2 , (C.11)

wobei der Litim-Regulator gegeben ist durch

Rλ(k) = (λ− ωk)Θ(λ− ωk). (C.12)
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Diese Wahl hat den Vorteil, dass die Felder mi bei der Anfangsskala

λ0 = max
k

ωk = 8τ (C.13)

vollständig entkoppeln,

Sλ0 [m] = λ0

2
∑
k

|mk|2 = λ0

2
∑
i

m2
i , (C.14)

sodass wir für die Anfangsbedingung nur einen einzelnen isolierten Gitterpunkt
betrachten müssen. Dies ermöglicht die analytische Herleitung der Kosterlitz-
Thouless-Flussgleichungen (C.7) und (C.8), was wir in Abschn. 2.4 mittels
der “vertex expansion” und in Abschn. 2.5 mittels der “derivative expansion”
zeigen. Schließlich verallgemeinern wir unsere Methode in Abschn. 2.6 und 2.7
auf das O(2)-Modell sowie auf das stark anisotrope XXZ-Modell. Dies ermög-
licht uns zu zeigen, dass schwache Amplitudenfluktuationen sowie schwache
Auslenkungen aus der xy-Ebene in der Nähe des BKT-Phasenübergangs nur
zu nicht-universellen Änderungen führen, sodass der Phasenübergang erhalten
bleibt und in der gleichen Universalitätsklasse wie der des XY-Modells liegt.

C.3 Funktionale Renormierungsgruppe für
Spinsysteme

Der letzte Teil der vorliegenden Arbeit beschäftigt sich mit der Entwicklung ei-
ner neuen Formulierung der FRG für Spinsysteme. Aufgrund der nichttrivialen
Kommutationsrelation für quantenmechanische Spinoperatoren,[

Sα, Sβ
]

= iεαβγSγ, (C.15)

lässt sich die übliche Formulierung der FRG für bosonische oder fermionische
Felder nicht direkt auf diese übertragen. Bisher wurde dieses Problem da-
durch gelöst, dass man die Spinoperatoren auf bosonische oder fermionische
Freiheitsgrade abbildet und die FRG für das resultierende Modell löst, was in
der Praxis allerdings mit verschiedenen Näherungen verbunden ist.

Einer der Hauptvorteile der in Kap. 3 vorgestellten Spin-FRG (SFRG) liegt
daher in der Tatsache, dass diese direkt über die Spinoperatoren selbst formu-
liert ist. Möglich ist dies dadurch, dass Spinoperatoren an verschiedenen Git-
terplätzen miteinander kommutieren, sodass die imaginärzeitgeordneten Spin-
korrelationsfunktionen bosonische Kubo-Martin-Schwinger-Randbedingungen
erfüllen. Die su(2)-Algebra der Spinoperatoren wird dabei komplett über
die Anfangsbedingungen des FRG-Flusses berücksichtigt, welche daher eine
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vergleichsweise hohe Komplexität aufweisen. Indem wir einen Cutoff Λ in
das generierende Funktional der zusammenhängenden imaginärzeitgeordne-
ten Spinkorrelationsfunktionen einführen, welches durch eine Spur über den
gesamten Spinraum definiert ist, können wir in Abschn. 3.2 durch einfaches
Ableiten nach Λ eine exakte Flussgleichung für dieses generierende Funktio-
nal herleiten. Ausgehend davon folgen wir der üblichen Formulierung der
FRG, um mittels Legendretransformation eine exakte Flussgleichung für das
generierende Funktional der irreduziblen Vertizes zu erhalten,

∂ΛΓ̃Λ[η] = 1
2 Tr

{(
Γ̃′′Λ[η] + RΛ

)−1
∂ΛRΛ

}
+
∫ β

0

∑
i

δΓ̃Λ[η]
δηzi (τ) ∂ΛM̄Λ. (C.16)

Diese entspricht in ihrer Form exakt der Wetterichgleichung [34] für bosonische
Felder. Um ein konkretes Beispiel für die Struktur der SFRG zu geben, wenden
wir diese daraufhin auf das Spin-S Ising-Modell an und demonstrieren zwei
verschiedene Methoden zur Berechnung der kritischen Temperatur Tc.

In Abschn. 3.3 zeigen wir, dass sich mittels einer Hubbard-Stratonovich-
Transformation eine alternative Variante der SFRG herleiten lässt. Neben der
Tatsache, dass diese eine einfachere Form der Anfangsbedingungen für quan-
tenmechanische Spinsysteme erlaubt, stellt sie auch eine direkte Verbindung
zum spindiagrammatischen Formalismus von Vaks, Larkin und Pikin (VLP)
[1–3] her. Als Demonstration dessen zeigen wir explizit anhand der freien
Energie und der longitudinalen Polarisationsfunktion, wie sich die von VLP
berechneten führenden Korrekturen bezüglich einer Entwicklung in der inver-
sen Wechselwirkungsreichweite innerhalb der SFRG herleiten lassen. Darüber
hinausgehend nutzen wir die Hubbard-Stratonovich-SFRG außerdem, um die
kritische Temperatur für das quantenmechanische Spin-S Heisenberg-Modell
mit ferromagnetischer sowie antiferromagnetischer Austauschwechselwirkung
zu erhalten.

Abschließend entwickeln wir in Abschn. 3.4 eine weitere Variante der SFRG,
bei der die Hubbard-Stratonovich-Transformation nur im longitudinalen Kanal
durchgeführt wird. Diese Hybrid-SFRG sollte insbesondere in der geordneten
Phase von Vorteil sein, da in diesem Fall eine unterschiedliche Behandlung
von transversalen und longitudinalen Fluktuationen naheliegt.
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