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1. Introduction 
1.1. Food allergy 

Food allergies are defined as “an adverse health effect arising from a specific 

immune response that occurs reproducibly on exposure to a given food” (Boyce et 

al., 2010; Tordesillas et al., 2017) . The prevalence of food allergies has increased in 

the past decade. Epidemiologic studies involving controlled food challenges for the 

diagnosis of food allergies indicated that between 1 % to 10.8 % of the population 

have immune-mediated non-toxic food hypersensitivity (Rona et al., 2007; Loh and 

Tang, 2018; Osborne et al., 2011; Strachan, 1989). Food allergies have been 

recognized as an important public health problem, in particular due to the risk of fatal 

anaphylaxis (Boyce et al., 2010; Lieberman and Sicherer, 2011).There are several 

postulates that explain the increased prevalence of food allergy: e.g. a reduced 

microbial burden during childhood as consequence of a westernized lifestyle and 

diet, reduced risk of infectious diseases (the hygiene hypothesis), the use of 

antibiotics in early childhood,  and altered gut microbiome in the consequence 

(Strachan, 1989; Droste et al., 2000; Romagnani, 2004). Factors related to the 

allergens itself are their physical, biological and immunological properties in addition 

to timing and route of sensitization. Individual genetic factors also influence on the 

onset of allergy (Cochrane et al., 2009; Loh and Tang, 2018; Strachan, 1989; Droste 

et al., 2000; Brown et al., 2011; Romagnani, 2004; Sicherer and Sampson, 2018; 

Hong et al., 2015). 

Despite the increasing prevalence, no curative treatment has been established for 

food allergies so far. The recommended management  of food allergies for patients 

with the risk of anaphylaxis consist in identification of the food allergen responsible of 

the reaction, avoidance of the offending food and treatment with epinephrine, 

antihistamines and corticosteroids to control severe reactions after accidental 

consumption (Bischoff and Crowe, 2004; Boyce et al., 2010; Burks et al., 2018; 

Sicherer and Sampson, 2010). These conditions significantly affect the quality of life 

of the patients (Boyce et al., 2010; Burks et al., 2018; Sicherer and Sampson, 2010; 

Primeau et al., 2000).  

Several studies have aimed to elucidate the cellular and molecular mechanisms of 

food allergies by investigating association of the skin barrier dysfunction with food 

allergen sensitization, the development of natural and therapeutically induced 
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tolerance, the role of microbiota,  the role of  inflammatory and regulatory immune 

cells in development of inflammation and tolerance, or  biochemical and 

immunological properties of food allergens, as well as cytokines and chemokines 

involved in maturation, activation and migration of the immune cells. Such studies are  

crucial to establish a preventive and therapeutic treatment  of food allergies (Sicherer 

and Sampson, 2018; Huang et al., 2018; Bischoff and Crowe, 2005; Berin and 

Mayer, 2009; Yu et al., 2016). While there is no stablished treatment to food allergies 

beside the complete avoidance of the elicited food, several clinical trials have been 

performed, including a phase III clinical trial using oral immunotherapy, that has 

shown promising results by increasing the dose of peanuts protein ingested by the 

patients involved in the clinical trial (Vickery et al., 2018; Peanut Allergy Oral 

Immunotherapy Study of AR101 for Desensitization in Children and Adults 

(PALISADE) - Full Text View - ClinicalTrials.gov; Varshney et al., 2011) 

1.2. Classification of food allergies 

Food allergies are classified into  a) IgE-mediated and b) non-IgE mediated (T-cell 

mediated) allergies, depending  on immunologic pathways in the pathogenesis 

(Wang and Sampson, 2011; Cianferoni and Spergel, 2009; Patel and Volcheck, 

2015; Sicherer and Sampson, 2006). 

1.2.1. IgE-mediated food allergies 

IgE-mediated allergy (also referred as type I allergy) is elicited rapidly and are 

characterized for an onset of acute symptoms that can appear from minutes up to 2 

hours after the ingestion of the offending food. This reaction is reproducible upon a 

re-exposure to elicited food and can be diagnosed by the detection of IgE (Burks et 

al., 2012; Tordesillas et al., 2017; Cianferoni and Spergel, 2009). The symptoms 

typically involve the skin, the respiratory tract, gastrointestinal tract and/or the 

cardiovascular system. 

After the sensitization phase inducing IgE production, food allergen binds to IgE 

associated with FcɛRI on the surface of mast cells and basophils upon a re-exposure 

to the offending food. The FcɛRI engagement activates mast cells and basophils, and 

triggers the release of granules containing anaphylactic and inflammatory mediators 

like histamine, tryptase and chymase. Mast cells and basophils also produce 

chemokines, leukotrienes and prostaglandins. The mediators released from granules 
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and de novo synthesized lipid products elicit a range of physiological reactions as 

vasodilatation, mucus secretion, smoot muscle contraction, increased vascular 

permeability (Fig.  1) (Burks et al., 2012; Renz et al., 2018; Morita et al., 2013).  

The cardiovascular symptoms are the most severe manifestations of a systemic 

reaction (Patel and Volcheck, 2015; Renz et al., 2018; Ho et al., 2014). Its severity 

could vary from pruritus alone, oral allergy syndrome to anaphylactic shock (Patel 

and Volcheck, 2015; Muluk and Cingi, 2018). The most prevalent symptoms are 

cutaneous manifestations (up to 20% of the cases), which include urticaria, 

angioedema, flushing or pruritus (Ho et al., 2014; Patel and Volcheck, 2015). The 

respiratory symptoms include sneezing, congestion, wheezing, rhinorrhea and 

laryngeal edema (Patel and Volcheck, 2015). Asthma on the other hand is an 

uncommon phenotype of food allergies. Gastrointestinal symptoms such as nausea, 

vomiting, abdominal pain, throat discomfort, tongue itchiness, swelling of the lips and 

diarrhea could be clinical manifestation of IgE-mediated food allergy, while bloody 

stools, malabsorption, and constipation are usually not symptoms related to IgE-

mediated food allergy, but more non-IgE mediated allergy (addressed in the next 

section) (Ho et al., 2014; Patel and Volcheck, 2015; Cianferoni and Spergel, 2009; 

Muluk and Cingi, 2018).  

 
Figure 1: Basic mechanism of type I allergy. Upon the first contact with an allergen 
antigen presenting cells (APC) capture, process and present it as a complex of antigenic 
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peptides with MHC Class II molecule for CD4+ T-cell activation and differentiation. Native 
CD4+ T-cells tend to differentiate into Th2 cells in allergic status.  IL-4 and IL-13 secreted by 
Th2cells lead to t IgE production by B cells.  IgE binds to the IgE high affinity receptor (FcɛRI) 
on the surface of mast cells and basophils. FcɛRI engagement with IgE and allergens induce 
degranulation and activation of mast cells and basophils, which lead to allergic reaction. 
 
1.2.2. Non-IgE-mediated food allergies 

In contrast to IgE-mediated food allergies, non-IgE-mediated food allergies have 

been less studied. One of the main reasons for the lack of knowledge about non-IgE-

mediated allergies is the difficulty in access to the gut-associated lymphoid tissue 

(GALT), responsible tissues for induction and development of immune cell responses 

in the gastrointestinal tract (Nowak-Węgrzyn et al., 2015; Ruffner and Spergel, 2016). 

Most of non-IgE-mediated allergies are diagnosed based on the clinical history and 

empiric food avoidance, while a endoscopy and/or biopsy are rarely performed 

(Ruffner and Spergel, 2016; Nowak-Węgrzyn et al., 2015). 

Non-IgE-mediated food allergies are more heterogeneous than IgE-mediated food 

allergies. It is postulated that T-cell mediated responses are involved in the 

progression of the pathology (Kim and Burks, 2015), although the exact mechanism 

how non-IgE-mediated food allergies take place is poorly understood. The spectrum 

of non-IgE-mediated food allergies includes food protein-induced enterocolitis 

syndrome (FPIES), food protein-induced allergic proctocolitis (FPIAP), food protein 

induced enteropathy, and allergic enteritis (Boyce et al., 2010; Nowak-Węgrzyn et al., 

2015; Morita et al., 2013). Such allergies are characterized by chronic inflammatory 

processes mainly in the intestines that generate clinical symptoms including 

abdominal pain, diarrhea and blood stool several hours after the exposition to the 

offending food (Nowak-Węgrzyn et al., 2015; Morita et al., 2013; Renz et al., 2018). 

Intestinal inflammation in non-IgE-mediated food allergies are characterized by 

edema, flattened villi, and accumulation of leukocytes e.g. eosinophils, mast cells and 

lymphocytes (Caubet and Nowak-Węgrzyn, 2011; Caubet et al., 2017; Chung et al., 

1999).  

Importantly, patients with non-IgE mediated food allergies often develop IgE, 

although IgE is not detectable in the initial stage of disease. In such cases, the 

reaction is characterized as a mixture of IgE and T-cell mediated reactions (Burks et 

al., 2012; Kim and Burks, 2015).  
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1.3. Allergic enteritis 

Allergic enteritis (AE) is basically classified as a non-IgE-mediated food allergy. This 

disease is predominantly observed in small children, but has been reported also in 

adults (Tan and Smith, 2014; Michelet et al., 2017; Czerwionka-Szaflarska et al., 

2017). The pathomechanism of allergic enteritis is not well known in comparison with 

other clinical phenotypes of food allergies (Prussin, 2014). The initial stimulus leading 

to the development of allergic enteritis remains to be elucidated, but it is postulated 

that delayed Th2 cell mediated-responses are involved in the development of the 

inflammation (Pineton de Chambrun et al., 2015; Caldwell et al., 2014). 

Patients with allergic enteritis frequently develop IgE to the offending food, despite to 

be classified as a non-IgE-mediated food allergy (Ruffner et al., 2013; Caubet et al., 

2014; Katz et al., 2011; Hwang et al., 2009; Ishige et al., 2015). Caubet et al reported 

that 24% of the subjects evaluated in their study with allergic enteritis confirmed by 

controlled food challenge developed specific IgE to the elicitor food (Caubet et al., 

2014). AE has been reported to be commonly outgrown (Ruffner et al., 2013; Caubet 

et al., 2014; Katz et al., 2011), but it seems that there is a role of IgE in the 

persistence of AE. Patients showing detectable IgE to the offending food in the initial 

diagnosis or during the follow up tend to experience a prolonged course of the 

disease. In some cases, it was reported that the disease turned into a IgE-mediated 

allergy over time (Nowak-Wegrzyn et al., 2003; Sicherer, 2005; Caubet et al., 2014; 

Ishige et al., 2015). In the same study, Caubet et al reported that 41% of patients 

with  specific IgE against cow´s milk never became tolerant during the study (Caubet 

et al., 2014). These studies have suggested that the presence of detectable levels of 

specific IgE is a poor prognostic factor of  allergic enteritis (Savage and Johns, 2015; 

Nowak-Wegrzyn et al., 2003; Nowak-Węgrzyn et al., 2015; Czerwionka-Szaflarska et 

al., 2017). 

The gastrointestinal symptoms of allergic enteritis are nonspecific, resulting in thet 

fact that a broad differential diagnoses including diagnostic approaches for allergic 

diseases is necessary to rule out other gastrointestinal diseases (Czerwionka-

Szaflarska et al., 2017; Pineton de Chambrun et al., 2015; Bischoff, 2010) (Ruffner 

and Spergel, 2016; Fleischer and Atkins, 2009). Biopsies of patients with allergic 

enteritis, have shown infiltration of inflammatory cells (e.g. mast cells, eosinophils, 

neutrophils, and T cells) in the lamina propria, disruption of intestinal villi, edema, and 
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presence of goblet cells (Rothenberg, 2004; Czerwionka-Szaflarska et al., 2017) in 

the intestine.  

1.4. Gut-associated lymphoid tissue (GALT)  

The gastrointestinal tract is the largest surface in the human body. To achieve 

protection from pathogens and immune tolerance to food derived components, the 

gastrointestinal tract is equipped with gut-associated lymphoid tissue (GALT) that is 

the largest reservoir of immune cells in the body (Bischoff, 2010; Sicherer and 

Sampson, 2010; Berin and Sampson, 2013). GALT comprise a collection of inductive 

sites like Peyer´s patches, appendix, isolated lymphoid follicles (ILFs). In these sites 

the antigen specific cellular and humoral response are first generated. The inductive 

sites are situated throughout the gastrointestinal tract and in combination with 

effector sites like mesenteric lymph nodes (MLNs) and lamina propria conform a 

immunological barrier (Donaldson et al., 2015; Paul, 2008; Pabst and Mowat, 2012; 

Berin and Sampson, 2013). 

GALT is able to distinguish between innocuous food antigens and pathogenic 

microorganisms and generate the correspondent response, having an important role 

in the development of tolerance or the pathogenesis of food allergies (Vighi et al., 

2008; Berin and Sampson, 2013). Studies have highlighted that MLNs are required to 

the development of tolerance. Through surgical or immunological ablation of the MLN 

the oral tolerance was abolished (Spahn et al., 2002; Worbs et al., 2006). Nakajima-

Adachi et al. showed that Peyer´s patches and MLN, but not ILFs, are important in 

the development of allergic intestinal inflammation as consequence of their role in the 

generation and maintenance of IL-4 producing CD4+ T-cells, although MLN plays a 

more central role in the development, compared to Peyer´s patches(Nakajima-Adachi 

et al., 2014). 

The lamina propria contributes in the induction of inflammation and tolerance, as it 

harbors large populations of activated T-cells, and Treg constitute more of 30% of 

CD4+ T-cells in the colonic lamina propria and about 20% in the small intestine 

lamina propria (Tanoue et al., 2016; Hadis et al., 2011). It is important for the 

expansion of B cells and their terminal differentiation to antibody-secreting plasma 

cells. Also, it is the site of antigen uptake and loading of the migratory dendritic cells 

that encounter naïve T-cells in the MLNs (Pabst and Mowat, 2012; Brandtzaeg et al., 
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2007; Berin and Mayer, 2009). The lamina propria has also a crucial role in the 

development of inflammatory responses due the high number of immune cells that 

contains, as eosinophils, T-cell, neutrophils, macrophages and plasma cells 

(Montalban-Arques et al., 2018; Egan et al., 2011; Schröder-Braunstein et al., 2014). 

1.5. Immune cells involved in development of allergic inflammation 

As  described above, there is a variety of immune cells involved in development and 

persistence of food allergies: T-cells, B cells, mast cells, eosinophils, neutrophils, 

macrophages and innate lymphoid cells (ILCs) (Zundler and Neurath, 2017; 

Montalban-Arques et al., 2018). 

1.5.1. T-cells 

T-cells are derived from HSCs that undergo differentiation in the thymus, giving origin 

of its name thymus-derived (T) lymphocytes, and migrate to the peripheral lymphoid 

tissue  (Yang et al., 2010; Paul, 2008).  

T-cells can be classified upon TCR that are expressed on their surface. The majority 

of T cells express a TCR that consists of α and β chains, while a minor group express 

that conformed by γ and δ  chains (Rothenberg, 2011; Chien et al., 2014). T-cells 

expressing α/β TCR are divided into two subtypes CD4+ and CD8+ T-cells, classified 

on base of receptor expressed on the cell surface (Paul, 2008). These cells also 

differ on the interaction with MHC class I (CD8+ T-cells) and class II (CD4+ T-cells) 

molecules on the surface of APCs (Paul, 2008; Lustgarten et al., 1991).   

CD4+ T cells, also known as T-helper cells (Th) carry out various functions including 

activation of B cells, cytotoxic T cells and other nonimmune cells (Zhu and Paul, 

2008; Luckheeram et al., 2012). CD4+ T-cells can polarize into different effector 

subsets: T helper type 1 (Th1) cells secreting mainly interleukin 2 (IL-2), tumor 

necrosis factor α (TNF-α) and interferon γ (IFN-γ), Th2 cells secreting mainly IL-4, IL-

5 and IL-13 (Zhu and Paul, 2008), Th9 cells secreting IL-9 (Goswami, 2017; 

Veldhoen et al, 2008), Th17 cells secreting IL-17A (Ouyang et al., 2008), or Th22 

cells secreting IL-22 (Plank et al., 2017).  

In the development of allergic disease, Th2 cells play a crucial role as depicted in 

figure 1.  Beyer et al reported in the gastrointestinal system an enhanced production 

of Th2 cytokines in duodenal biopsies of cow´s milk food allergic patients, as well as 
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a high T-cell CD4+ proliferation in the lamina propria (Beyer et al., 2002). Another 

study showed an increased number of T-cells, IL-4 expressing cells, IgE-bearing cells 

and eosinophils in the duodenal biopsies of patients with food-related gastrointestinal 

symptoms with negative in skin prick testing and serum specific IgE to the offending 

food, suggesting a possible role of  CD4+ T-cells and local of IgE in the pathology (Lin 

et al., 2002). 

In addition to effector T-cells, CD4+ T-cells differentiate into Tregs. Tregs are a 

heterogeneous population of T cells with immunoregulatory activities that are of 

importance in the development and maintenance of tolerance to self and foreign 

antigens  and avoiding an excessive immune response to pathogens (Paul, 2008; 

Palomares, 2013; Luckheeram et al., 2012).  Tregs exists as CD4+ CD25+ forkhead 

box protein 3 (Foxp3) natural thymus derived subset and as peripheral induced Treg 

cells (Luckheeram et al., 2012; Workman et al., 2009). Tregs are able to suppress 

sensitization and effector phases of allergic reactions through different mechanisms, 

e.g. by producing immune suppressive cytokines such as IL-10 and TGF-β and 

releasing cytolytic components such as granzyme (Arce-Sillas et al., 2016). IL-10 and 

TGF-β inhibit activation of effector T cells, mast cells and granulocytes, and thereby 

suppress development and aggravation of allergy (Zhang et al., 2014; Taylor et al., 

2006; Shachar and Karin, 2013) 

1.5.2. B cells 

B cells in mammalians derive from lymphoid progenitor cells in the bone marrow. B 

cells are present in the follicular areas in the lymphoid tissues and represent the 5 to 

25% of all human and murine blood cells (Ruiz et al., 1999). B cells play a  role in the 

humoral immunity because its principal function is production of immunoglobulins 

(alternatively called as antibody) (LeBien and Tedder, 2008; Hoffman et al., 2016). B 

cells express immunoglobulin on their surface as B-cell receptor (BCR) binding to 

antigen. Upon stimulation with BCR, CD40 and cytokine receptor(s), B cell undergo 

immunoglobulin class switch (Kondo, 2010; Paul, 2008; Janeway, 2001; Zou et al., 

2017).     

There are five immunoglobulin classes (isotypes) i.e. IgM, IgD, IgG, IgA and IgE. IgM 

is the first isotype expressed in the development of B cells and initially dominates the 

humoral immune response (Ohta and Flajnik, 2006; Schroeder and Cavacini, 2010). 



1. Introduction 
 

9 
 

IgG is the predominant isotype in the body (approximately 70-75% of the total Ig) and 

has the longest serum half-life of all immunoglobulin classes (Schroeder and 

Cavacini, 2010; Paul, 2008). IgA is the dominant immunoglobulin class in the 

mucosal secretions as well as in breast milk and colostrum (Woof and Mestecky, 

2005). IgE is involved in defense against parasitic infections but also triggers type I 

allergy as described above (Schroeder and Cavacini, 2010; Zou et al., 2017).  

IgG is further divided into subclasses: IgG1, IgG2, IgG3, IgG4 in human, whereas 

IgG1, IgG2a, IgG2b and IgG3 in mice (Vidarsson et al., 2014; Michaelsen et al., 

2004). Among the subclasses, IgG1 is the most prevalent (60 – 75 % of serum IgG). 

IL-4 induces class switch to IgG1 and IgE in both human and mice, but higher 

amount of this cytokine is required for IgE production (Lebman and Coffman, 1988; 

Moon et al., 1989). IL-13 also induces class switch to IgE in human and mice (Vicario 

et al., 2010; Takhar et al., 2007). IFN-γ induces class switch to IgG2 and IgG2a in 

human and mice, respectively, and inhibits class switch to IgG1 and IgE (Bossie and 

Vitetta, 1991; Paul, 2008). IL-10 induce class switch to IgG4 in human and IgG3 in 

mice (Paul, 2008; Schroeder and Cavacini, 2010).  

1.5.3. Mast cells. 

Mast cells are long-lived granulated sentinel cells (Bonnekoh et al., 2018; Dawicki 

and Marshall, 2007; Wouters et al., 2016). A primary role of  mast cells is in innate 

immune responses to pathogens (specially parasites and bacteria) by releasing a 

broad spectrum of mediators and enhancing the earliest processes in the 

development of immune responses (Dawicki and Marshall, 2007). Nevertheless mast 

cells are well recognized  as the key cells in induction of type I allergy (Bonnekoh et 

al., 2018; Bischoff et al., 2000).  

Mast cells express the IgE receptor, FcɛRI on their cell surface.  The association of 

allergens with IgE binding to FcɛRI leads to the release of granules. This process of 

degranulation in mast cells is called “the early phase reaction”. Granules contain 

various proteases (e.g. tryptase and chymase), which directly damage the tissues 

and trigger inflammation (Galli and Tsai, 2012; Janeway, 2001; Brown et al., 2008). 

Upon FcɛRI engagement, mast cells also induce de novo synthesis of cysteinyl 

leukotrienes, and gene expression of cytokines and chemokines (Laidlaw and Boyce, 

2012; Peters-Golden et al., 2006; Nakajima et al., 2002).  
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Mast cells are capable of producing various types of cytokines and chemokines. 

Such cytokines include TNF-α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-11, IL-

12, IL-13, IL-16, IL-33, IFN-γ and TGF-β1 (Mukai et al., 2018). Chemokines are low-

molecular-weight proteins that induce migration of immune cells, also known as 

chemotaxis (Moser and Willimann, 2004; Graves and Jiang, 1995), whereas 

chemokines include CC chemokine ligand (CCL)1, CCL2, CCL3, CCL4, CCL5, 

CCL7, CCL8, CCL9, CCL11, CCL17, CCL20, CCL22, CXC chemokine ligand 

(CXCL)2, and CXCL8 (Mukai et al., 2018). Depending on the cytokine milieu, types of 

stimulus, their localization in the tissues, and many other factors, mast cells alter 

production profiles of cytokines and chemokines (Galli et al., 2008). These cytokines 

and chemokines drive Th2 immune responses and leukocyte trafficking into the 

inflammatory sites. This infiltration of leukocytes into an area of inflammation is the 

late phase reaction. This late phase reaction in type I allergy is different from those in 

type IV allergy (T-cell mediated allergy) (Stone et al., 2010; Galli et al., 2008). 

Mast cells distribute in most tissues but are particularly abundant in body barriers 

with a potential infection like the skin, airways and the gastrointestinal tract (Dawicki 

and Marshall, 2007; Wouters et al., 2016). In the intestine, MCs comprise 2-3% of the 

mononuclear cells in the lamina propria and sub-mucosa, but can be also found in 

the  intraepithelial, smooth muscle and serosal layers of the intestine, in general near 

blood vessels, nerves and lymphatic tissue (Bischoff et al., 2000; Bischoff et al., 

1996; Wouters et al., 2016). The intestinal mast cells regulate the epithelial 

permeability, secretion, peristalsis, nociception, angiogenesis, fibrosis and tissue 

repair, bacterial defense, chemotaxis as well as innate and adaptive immunity 

(Bischoff, 2007). 

1.5.4. Eosinophils 

Eosinophils are granulocytes produced in the bone marrow  and circulate in the 

peripheral blood in low levels (1-3% of white blood cells) (Possa et al., 2013; Bischoff 

and Ulmer, 2008; Jung and Rothenberg, 2014). Most eosinophils generated under 

healthy conditions home to all the segments of the gastrointestinal tract lamina 

propria (except the esophagus) which constitutively contain eosinophils in contrast to 

other mucosa (Jung and Rothenberg, 2014). Their role is mainly involved in the 

maintenance of homeostasis with the gut microbiota and defense against parasites 

(Jung and Rothenberg, 2014). 
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Activated eosinophils release cytotoxic granule proteins such as eosinophil cationic 

protein (ECP), major basic protein (MBP) and eosinophil peroxidase (EPO) that 

initiate, escalate and maintain local inflammatory responses; those response are 

strong weapons of the cells in defense against parasites (Fulkerson and Rothenberg, 

2013; Woodruff et al., 2011).  

Numerous inflammatory mediators are associated to the eosinophil accumulation in 

the inflammatory site like cytokines IL-1, IL-3, IL-4, IL-5, IL-13 and GM-CSF and 

chemokines CCL3 (macrophage inflammatory protein 1 α), CCL5 (RANTES), CCL7 

(monocyte chemoattractant protein 3: MCP-3), CCL13 (MCP-4), as well as CCL11 

(eotaxin 1), CCL24 (eotaxin 2) and CCL25 (eotaxin 3) (Teixeira et al., 1995; 

Rothenberg, 1998; Rothenberg, 1999; Jacobsen et al., 2012). Among  eosinophil 

chemoattractants, IL-5 is considered to have the most potent eosinophil specific 

regulatory properties (Powell et al., 2010; Sanderson, 1992). IL-5 promotes  

eosinophil proliferation and maturation in the bone marrow, as well as their release 

into the circulation (Collins et al., 2017; Clutterbuck et al., 1989; Yamaguchi et al., 

1988; Shalit et al., 1995). IL-5 also inhibits the apoptosis of eosinophils, enhances 

the survival, stimulates eosinophil degranulation and primes their response to 

chemokines important in the mucosal recruitment (Collins et al., 2017; Powell et al., 

2010; Powell et al., 2010; Tai et al., 1991; Kita et al., 1992).  

In addition to IL-5, CCL11 is  an important selective eosinophil chemoattractant, 

promoting the recruitment of eosinophils in the gastrointestinal tract in healthy 

individuals and is expressed constitutively in the intestinal lamina propria (Powell et 

al., 2010; Matthews et al., 1998; Mishra et al., 1999). Studies using mouse models 

have demonstrated that the absence of CCL11 or its receptor CCR3,  abolish 

eosinophil trafficking to the intestinal tract (Matthews et al., 1998; Humbles et al., 

2002; Hogan et al., 2001). Abundance of CCL11 n the broncho-alveolar lavage 

correlates with an increased eosinophilia in the inflammatory site in both humans and 

rodents with allergic airway inflammation (Jose, 1994; Lamkhioued et al., 1997). In 

intestinal inflammatory pathologies like ulcerative colitis, Crohn´s disease in humans 

or  experimental colitis models in mice, CCL11 expression in the inflamed intestinal 

tissue was reported to correlate with an increased eosinophilia (Vieira et al., 2009; 

Garcia-Zepeda et al., 1996). 
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1.5.5. Neutrophils 

Neutrophils are short lived polymorphonuclear leukocytes that play a major role in 

acute inflammatory response to infection or injury (Kim and Luster, 2015). During 

infection neutrophils can recognize, phagocyte and kill pathogens by producing 

reactive oxygen species (ROS) with antimicrobial potential and releasing lytic 

enzymes such as myeloperoxidase, cathepsin-G, elastase, lysozyme and defensins 

from their granules, having as well as an important role in acute inflammation (Wéra 

et al., 2016; Kolaczkowska and Kubes, 2013; Barker and Reisfeld, 1993).  

 

Most of the studies regarding to the role of neutrophils in allergic inflammation have 

been performed in asthma. There is growing evidence that neutrophils play an 

important role in pathogenesis of both allergic and non-allergic asthma, given the 

correlation of airway neutrophilia with severity of airway obstruction in asthmatic 

patients (Agrawal and Shao, 2010). Neutrophils are postulated to promote more-

severe airway inflammation by mediating direct tissue injury or by releasing pro-

inflammatory mediators (Oliveira et al., 2016; Lacy, 2006). The presence of 

neutrophils in biopsies from patients with allergic enteritis has also been reported 

(Wéra et al., 2016; Kristjánsson et al., 2004)  

CXCL8, a ligand of CXCR1 and CXCR2, stands out as the most likely chemokine for 

neutrophil trafficking (Sawant et al., 2015; Nasser et al., 2009). Increased CXCL8 

expression in sputum of both non-allergic and allergic patients with asthma has been 

observed (Gras et al., 2010; Daldegan et al., 2005). IL-17A, which is largely produced 

by Th17 cells, alone or in combination with other cytokines, induced CXCL8 

production from airway epithelial cells and airway smooth muscle cells (Bullens et al., 

2006; Honda et al., 2016). In addition, CXCL1 a ligand for CXCR2 and CXR1, 

CXCL2, CXCL3, CXCL5, CXCL6 and CXCL7 ligands for CXCR2 are known to recruit 

neutrophils in intestinal tissues (Zimmerman et al., 2008).  

1.5.6. Macrophages 

Macrophages (Mɸ) are myeloid immune cells specialized in the neutralization and 

phagocytosis of cellular debris and potentially hazardous agents like pathogens 

(Varol et al., 2015). In a simplified way Mɸ can be classified as M1 and M2 as 
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suggested by Mills et al in 2000, mirroring the Th1/Th2 paradigm due observations 

made in mice (Mills et al., 2000).   

In inflammatory status, Mɸ have three major functions: a) antigen presentation, b) 

phagocytosis and c) either aggravation of inflammation or induction of 

immunomodulation through the production of cytokines and growth factors (Fujiwara 

and Kobayashi, 2005), depending on tissues, cytokine milieu, and other factors such 

as microbiome (Wynn and Barron, 2010; Mosser and Edwards, 2008). Mɸ can play a 

role in the different phases of inflammation as initiation, maintenance and resolution 

(Oishi and Manabe, 2018).  

When Mɸ are exposed to inflammatory stimuli, these are able to secrete multiple 

cytokines including TNF-α, IFN-γ, IL-1, IL-6, IL-8, and IL-12, as well as chemokines, 

leukotrienes, prostaglandins and complement (Arango Duque and Descoteaux, 2014; 

Fujiwara and Kobayashi, 2005). Those factors are able to increase the vascular 

permeability and recruitment of inflammatory cells, and produce systemic effects as 

fever and the production of inflammatory response proteins (Arango Duque and 

Descoteaux, 2014). Intestinal Mɸ seems also to have a role in the development of 

tolerance. In a mouse model, intestinal Mɸ expressed high levels of IL-10; that seems 

to be important for the expansion of Tregs in the lamina propria (Hadis et al., 2011). 

The role of macrophage in AE has not been identified.  

1.5.7. Innate lymphoid cells (ILCs) 

Innate lymphoid cells (ILCs) are a family of heterogeneous immune cells derived from 

a common bone marrow-derived lymphoid precursor. ILCs share similarities with 

CD4+ T-cell phenotype and functions. However, ILCs lack of rearranged antigen 

receptors (TCR and BCR), myeloid cell markers and lineage markers (Lin-), but 

express the IL-2 receptor (CD25) and the IL-7 receptor (IL-7R; CD127) (Geremia and 

Arancibia-Cárcamo, 2017; Spits and Cupedo, 2012; Artis and Spits, 2015).  

ILCs express and developmentally depend on transcription factors Id2, the common 

γ-chain, GATA3 and PLZF, that control their cytokine profile which could be 

comparable to their corresponding adaptive counterparts (Artis and Spits, 2015; 

Klose and Artis, 2016). There are three main subsets that have been described 

reflecting the functional characteristics of the Th subsets. ILC1 that like Th1 cells 

express the transcription factor T-bet and are characterized by the secretion of IFN-γ 



1. Introduction 
 

14 
 

and TNF-α and are involved in the response against intracellular pathogens. ILC2 

express GATA3hi as do Th2 cells, secrete IL-4, IL-5, IL-9 and IL-13, and are involved 

in the control of helminth infections and development of allergic asthma and atopic 

dermatitis (McKenzie, 2014; Hurrell et al., 2018; van Rijt et al., 2016). ILC3 express 

RORγt and correspond to Th17 cells and secrete IL-17, IL-22, GM-CSH  and are part 

of the protective response against pathogens in the mucosa (Artis and Spits, 2015; 

Klose et al., 2014; Hoyler et al., 2012; Klose and Artis, 2016; Melo-Gonzalez and 

Hepworth, 2017). 

Recently, Krämer et al showed the ILC distribution in the intestinal tract. ILC1 are the 

major fraction in the upper gastrointestinal tract, while ILC3 are the predominant 

population in ileum and colon that correlates with a higher distal expression of IL-7.  

The presence of ILC2 in the intestine has been shown (Krämer et al., 2017). 

However, their role in the development of allergic enteritis is not known. 

1.6. Chemokine and Chemokine receptors 

In allergy and other inflammatory conditions immune cells as T-cells, B cells, 

monocytes, neutrophils, eosinophils and basophils migrate to the inflammatory site 

due a common process controlled by chemokines (Castan et al., 2017; Kaplan, 2001; 

Dembic, 2015). Chemokines function as G protein-coupled chemotactic factors which 

also activate the cells with which they interact and their effect on the immune cell 

migration is initiated by the binding to its receptor (Kaplan, 2001; Dembic, 2015), after 

that the chemokine receptor facilitates the migration to the site of highest chemokine 

concentration even at fast blood flow, allowing the diapedesis from the blood vessels 

and the final infiltration in the inflammatory site (Dembic, 2015). 

A broad group of chemokines as CCL1, CCL7, CCL13, CCL11, CCL17, CCL22, 

CCL24, CCL26, are highly expressed in eosinophil, basophils and Th2 lymphocytes, 

three cell types mainly involve in the development of allergic inflammation (Garcia et 

al., 2005). Human and murine studies on asthma have shown that the role of that 

chemokines and their receptors including CCR3, CCR4 and CCR8 are potentially 

important in the development of allergic inflammation (Garcia et al., 2005; Castan et 

al., 2017; Hernández-Ruiz and Zlotnik, 2017; Lee et al., 2000; Legler and Thelen, 

2016; Romagnani, 2002). 
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In food allergy, despite the mechanisms are not very well understood and there are 

some contradictory results, there is a general agreement that the chemokines are 

crucial for the recruitment of immune cells to the intestine (Castan et al., 2017; 

Hernández-Ruiz and Zlotnik, 2017). Taking this in consideration, chemokines and G-

protein coupled receptors are an interesting target for therapeutic approaches, being 

reported that 30% of all available medicines exert their function by these receptors 

(Drews, 2000).  

Taking in consideration that 1) chemokines and chemokine receptors are an 

attractive target in drug development for the treatment of inflammatory diseases. 2) 

As shown by targeted deletions in mice most of chemokines/chemokine receptors are 

not essential for life with the exception of CXCL12 knock-out mice that is fatal due of 

multiple organ failure (Castan et al., 2017). 3) The CCL1/CCR8 axis is not very well 

understood as well as its role in allergic enteritis despite that CCL1 was one of the 

first chemokines described (Burd et al., 1987; Miller et al., 1989; Miller and Krangel, 

1992). CCR8KO mice were used in an AE model to evaluate the role of CCR8 in the 

development of allergic enteritis. 

1.7. Mouse models of food allergies 

Animal models are a useful tool to study allergic diseases in vivo, helping to 

understand the mechanism and pathogenesis of food allergies,  and to assess anti-

allergic effect of new therapeutics pre-clinically, although differences with the human 

system cannot be ignored (Bischoff and Crowe, 2005; van Gramberg et al., 2013; Liu 

et al., 2016; Fritsché, 2003). 

Ideally, murine models of food allergy should mirror pathology in human. However, 

feeding  allergenic diet alone induces little or no immune response, because mice 

tend to develop oral tolerance more strongly than humans (Chehade and Mayer, 

2005). Use of transgenic mice expressing monoclonal TCR specific for ovalbumin 

(OVA, an egg white allergen) has been used to induce allergic reaction and 

inflammation by feeding allergenic diet alone. However, such gene modified mice 

expressed only monoclonal TCR and do not reflect allergic status in human with 

allergen-specific polyclonal T cells. For this reason adjuvants like aluminum 

hydroxide (alum) or cholera toxin (CT) are frequently used to induce Th2 immune 

responses including IgE production, and to accelerate the hypersensitivity reaction 
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(Kanagaratham et al., 2018; Smit et al., 2015; Gonipeta et al., 2015). Alum is 

administered systemically by intraperitoneal injection and boost adaptive responses 

though activating inflammatory DCs via inflammasome activation (Kool et al., 2008; 

Petrovsky, 2015; He et al., 2015). The CT, a well-known mucosal adjuvant, is 

administered intragastrically and induces innate immune changes that generate 

allergen specific responses from T and B cells (Snider et al., 1994; Tamura et al., 

1994; Hörnquist and Lycke, 1993; Marinaro et al., 1995). The disadvantage in the 

use of CT are induction of  CT specific IgE responses  (Marinaro et al., 1995; Snider 

et al., 1994; Glenn et al., 1998). Therefore in many studies, Alum is used as an 

adjuvant  (Lexmond et al., 2017; Kim et al., 2016; Shin et al., 2015; Jin et al., 2017; 

Hiraide et al., 2017)Taking this in consideration previously our group developed a 

mouse model of allergic enteritis to study the pathomechanism of the disease 

(Burggraf et al., 2011). 
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2. Aim 

Allergic enteritis (AE) is one clinical phenotype of food allergies. The pathological 

mechanism for AE is not well known, which is partly due to difficulty in the access to 

inflammatory tissues in AE patients. The ultimate objective of this study is to 

elucidate cellular and molecular mechanism for the development of AE.   

In the previous study, our group developed a mouse model of AE (Burggraf et al., 

2011). Upon sensitization with allergen and challenge by feeding an allergenic diet, 

this model exhibits clinical symptoms (e.g. weight loss and soft stools) and 

inflammation in small intestines, and those are similar to pathological features 

observed in AE patients. Increased numbers of mast cells in basal area and 

accumulation of eosinophils in submucosa were observed in inflammatory sites of AE 

mice. In addition, DNA microarray analysis showed upregulated gene expressions of 

CC chemokine ligands CCL1 and CCL8 and its receptor CCR8, in the jejunum of AE 

mice (Fig. 2 and table 1, unpublished data). Previous studies by other groups showed 

that mast cells are the source of CCL1 to recruit eosinophils at inflammatory sites in 

murine models of allergic asthma (Gonzalo et al., 2007). Marked inflammatory 

infiltration by leukocytes is a characteristic feature of allergic diseases (Toda et al., 

2007; Galli et al., 2008; Pawankar et al., 2011). Elucidation of the mechanisms for 

leukocyte trafficking into inflammatory sites is an important factor for target 

identification and establishment of novel anti-inflammatory strategies for treatment of 

such diseases. Leukocyte trafficking is controlled by tissue-specific expression of 

chemokines and chemokine receptor expression on the leukocyte surface. 

Mast cells play a crucial role in IgE-mediated type I allergy. However, a role of mast 

cells in pathophysiology of AE is not known. Increased mast cells in biopsy of 

patients with AE have been observed (Czerwionka-Szaflarska et al., 2017; 

Rothenberg, 2004). FcεRI engagement by IgE and allergen induces strong activation 

of mast cells (Bax et al., 2012; Shiraishi et al., 2013; Galli and Tsai, 2012). AE is 

initiated by non-IgE-mediated mechanisms, but become persistent when patients 

developed IgE antibodies.  

Taking together, the following hypotheses were set up:  

(i) An axis of CCR8 and CCL1/CCL8 is involved in the development of AE 
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(ii) Mast cells produce CCL1 and CCL8 in the intestinal tissue that recruits  

eosinophils to the inflammatory site 

(iii) IgE is involved in the exacerbation of AE. 

To evaluate the hypothesis, the following experimental aims were set up: 

1) To investigate an involvement of CCL1 and CCR8 in the development of AE. 

2) To investigate a role of mast cells in the development of AE. 

3) To investigate a role of IgE in the exacerbation of AE. 

Collectively, this study would allow us to elucidate molecular and cellular 

mechanisms of AE, and to establish a novel strategy for treatment of such allergic 

disease. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Microarray DNA analysis from the 
jejunum of mice with AE. BALB/c mice (n=3/group) 
were i.p. sensitized with OVA plus ALUM twice at a 
two-week’s interval. Two weeks after the last 
sensitization, the mice were fed EW-diet (EW) or 
casein diet (CN) for 3 days. The jejunums (J) were 
harvested from the mice and the levels of gene 
expression in the tissues were assessed by 
microarray analysis (Data was provided by Dr. Toda). 
Green color indicates downregulated genes and red 
upregulated genes. 
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Table 1. Microarray analysis - significant upregulated genes in mice with AE. 
Symbol Gene name/description Genbank 

Accession 
Fold 
Change 

Gsdmcl-ps 
 

Adult male testis cDNA, RIKEN full-
length enriched library 

AK016931 
 

100.00 
 

Gsdmc2 Gasdermin C2 (Gsdmc2) NM_177912 100.00 
Retnla Resistin like alpha (Retnla)  NM_020509 93.30 
Retnla Resistin like alpha (Retnla) NM_020509 93.56 

Sprr2a Small proline-rich protein 2A 
(Sprr2a) 

NM_011468 100.00 

Pla2g4c 
Phospholipase A2, group IVC 
(cytosolic, calcium-independent) 
(Pla2g4c) 

NM_001004762 100.00 

Pla2g4c 

Cell embryo 1 cell cDNA, RIKEN full-
length enriched library, 
clone:I0C0013F18 product:weakly 
similar to Cytosolic phospholipase 
A2 gamma [Homo sapiens], full 
insert sequence 

AK145339 
 

100.00 
 

Retnlb Resistin like beta (Retnlb) NM_023881 100.00 

Duoxa2 Dual oxidase maturation factor 2 
(Duoxa2) 

NM_025777 100.00 

Ccl8 Chemokine (C-C motif) ligand 8 
(Ccl8)  

NM_021443 47.91 

Defb1 Defensin beta 1 (Defb1) NM_007843 46.27 
Defb1 Defensin beta 1 (Defb1) NM_007843 43.24 
Tpsab1 Tryptase alpha/beta 1 (Tpsab1) NM_031187 30.24 
A_51_P226791 Unknown  40.26 

Ear11 Eosinophil-associated, ribonuclease 
A family, member 11 (Ear11) 

NM_053113 
 

42.53 
 

St3gal4 ST3 beta-galactoside alpha-2,3-
sialyltransferase 4 (St3gal4) 

NM_009178 
 

50.32 
 

Ear6 
 

Eosinophil-associated, ribonuclease 
A family, member 6 (Ear6) 

NM_053111 34.43 

Sprr2e Small proline-rich protein 2E 
(Sprr2e) 

NM_011471 37.49 

Il6 Interleukin 6 (Il6) NM_031168 47.57 

Ccl1 Chemokine (C-C motif) ligand 1 
(Ccl1) 

NM_011329 41.66 

AK088994 

2 days neonate thymus thymic cells 
cDNA, RIKEN full-length enriched 
library, clone:E430034M04 
product:unclassifiable, full insert 
sequence 

AK088994 
 

45.86 

Atp13a4 ATPase type 13A4 (Atp13a4) NM_172613 15.50 

Cyp11a1 

Cytochrome P450, family 11, 
subfamily a, polypeptide 1 
(Cyp11a1), nuclear gene encoding 
mitochondrial protein 

NM_019779 
 

75.19 
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Ms4a2 Membrane-spanning 4-domains, 
subfamily A, member 2 (Ms4a2), 
mRNA  

NM_013516 
 

68.02 
 

Cma2 Chymase 2, mast cell (Cma2) NM_010779 69.30 

Fcer1a Fc receptor, IgE, high affinity I, alpha 
polypeptide (Fcer1a) 

NM_010184 
 

46.80 
 

Gp1ba Glycoprotein 1b, alpha polypeptide 
(Gp1ba) 

NM_010326 74.26 

Mcpt2 Mast cell protease 2 (Mcpt2) NM_008571 98.50 
Mcpt1 Mast cell protease 1 (Mcpt1)  NM_008570 92.52 

Cpa3 Carboxypeptidase A3, mast cell 
(Cpa3) 

NM_007753 73.56 

Mcpt4 Mast cell protease 4 (Mcpt4)  NM_010779 81.99 
Mcpt9 Mast cell protease 9 (Mcpt9) NM_010782 78.25 

Cyp11a1 

Cytochrome P450, family 11, 
subfamily a, polypeptide 1 
(Cyp11a1), nuclear gene encoding 
mitochondrial protein 

NM_019779 70.00 

Ccdc129 Coiled-coil domain containing 129 
(Ccdc129)  

AK085190 30.60 

Gsdmc1 Gasdermin C1 (Gsdmc1) NM_031378 100.00 
Gsdmc3 Gasdermin C3 (Gsdmc3) NM_183194 100.00 
Cma1 Chymase 1, mast cell (Cma1) NM_010780 97.46 
Cma1 Chymase 1, mast cell (Cma1) NM_010780 95.63 

E130202H07Rik 

Mus musculus 0 day neonate 
eyeball cDNA, RIKEN full-length 
enriched library, clone:E130202H07 
product:unclassifiable, full insert 
sequence 

AK053684 98.82 

Chi3l4 Chitinase 3-like 4 (Chi3l4) NM_145126 88.60 
Cst9 Cystatin 9 (Cst9) NM_009979 97.84 
Chi3l3 Chitinase 3-like 3 (Chi3l3) NM_009892 89.13 
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3. Materials and Methods  

3.1. Materials 

3.1.1. Equipment 

Device Model Company 

Flow cytometry  BD FACS LSRII SORP BD Biosciences, Heidelberg, 
Germany 

LunaTM Automated Cell 
Counter 

 L10001 Logos biosystems, Gyunggi-do, 
South Korea 

Centrifuges  Micro Centrifuge 100Vac 

 Centrifuge 5417 R 

 Centrifuge 5415 R 

 Megafuge 1.0R 

 Multifuge 1S-R 

 

Carl Roth, Karlsruhe, Germany 

Eppendorf, Hamburg, Germany 

Eppendorf, Hamburg, Germany 

Heraeus, Hanau, Germany 

Heraeus, Hanau, Germany 

Vortex  REAX 2000 Heildolph Instruments, Schwalbach, 
Germany 

ELISA reader  SpectraMax Plus 340 Molecular Devices, Munich, 
Germany 

CO2 cell incubator  BBD 6220 CU Heraeus, Hanau, Germany 

Laminar air flow  SterilGARD III  Labotect, Rosdorf, Germany  

Magnetic stirrer  MR3001 Heidolph Instruments, Schwalbach, 

Germany 

Orbital incubator  S5150 Fisher Scientific, Darmstadt, 

Germany 

Balance EK-300i A&D, Tokyo, Japan 

Microprobe thermometer BAT-12 Physitemp Instruments LLC, New 

Jersey, USA 
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3.1.2. Solutions, buffers preparation 

Solution / Buffer Composition Usage 

Phosphate buffered 

saline (PBS) 

1.5 mM potassium di-hydrogen phosphate 

(KH2PO4) 

0.8 mM disodium phosphate 

Na2HPO4  

137 mM sodium chloride (NaCl) 

3 mM KCl diluted  

in distillated H2O, pH 7.1 

ELISA, cell culture, 

Lamina propria 

dissociation 

Coating buffer  

 

16 mM sodium carbonate (Na2CO3) 

34 mM sodium hydrogen 
carbonate (NaHCO3)  

in 1 L distillated H2O, pH 9.6 

ELISA 

Washing buffer (PBS-T) 
for ELISA 

0.05 % Tween® 20 diluted in PBS ELISA 

Blocking buffer (PBS-
10%FCS)  

10 % FCS diluted in 

PBS 

ELISA 

FACS Buffer 1 % BSA 

20 mM EDTA 

0.03 % sodium azide (NaN3)  

diluted in PBS 

FACS 

 

Fixation solution (FACS-
1%PFA) 

1 % Paraformaldehyde (PFA) 

diluted in PBS and filtrated by 

0.22 µm membrane 

FACS 
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MACS buffer  5 % bovine serum albumin (BSA) 

2 mM ethylenediaminetetraacetic acid 

(EDTA) 

 diluted in PBS 

T-cell isolation 

HEPES solution 1 M 2-[4-(2-hydroxyethyl)- piperazin-1-

yl]ethane sulphonic acid, pH 7.9 

Lamina propria 

dissociation 

0.5 M EDTA 186.1 g disodium EDTA  

diluted in 1 L distillated H2O. pH 7.5 

Lamina propria 

dissociation 

Penicillin/ streptomycin/ 

L-glutamine  

3.14 g/L penicillin G potassium salt  

5 g/L streptomycin sulphate  

15 g/L L-glutamine  

Cell culture 

Trypan Blue solution 4% Trypan Blue diluted in PBS Cell counting 

 

3.1.3. Media and media composition 

Media Company or Composition Usage 

T-cell assay media 
500  ml  RPMI  1640 media 

0.5 % (w/v) Streptomycin 

0.3 % (w/v) Penicillin 

1.5 % (w/v) L-Glutamin 

5 % FCS  

1.75 µl 2-mercaptoethanol  

T- cell assay 
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Wash media 
500  ml  RPMI  1640 media 

0.5 % (w/v) Streptomycin 

0.3 % (w/v) Penicillin 

1.5 % (w/v) L-Glutamin  

1.75 µl 2-mercaptoethanol  

T- cell assay 

Roswell Park  Memorial  

Institute  (RPMI)  1640 

media 

Gibco, ThermoFisher Scientific, 

Darmstadt, Germany 

T- cell assay 

 

3.1.4. Chemicals 

Chemical Producer Usage 

Imject® Alum 

(aluminium hydroxide 

and magnesium 

hydroxide) 

ThermoFisher Scientific, Darmstadt, 

Germany 

Mice sensitization 

Lysing Buffer (red 

blood cell lysis 

buffer) 

BD Biosciences Pharm Lyse™, 

Heidelberg, DE 

Cell culture 

Paraformaldehyde 

(PFA) 

Sigma-Aldrich, Munich, Germany FACS 

Potassium chloride 

(KCl) 

Sigma-Aldrich, Munich, Germany ELISA, cell culture, 

Lamina propria 

dissociation 

Histofix (phosphate 

buffered, 4%) 

Carl Roth, Karlsruhe, Germany Histology 

Sodium azide (NaN3) Sigma-Aldrich, Munich, Germany FACS 
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Sodium carbonate 

(Na2CO3) 

Sigma-Aldrich, Munich, Germany ELISA 

Sodium chloride (NaCl) Sigma-Aldrich, Munich, Germany ELISA, cell culture, 

Lamina propria 

dissociation 

Sodium hydrogen 

carbonate (NaHCO3) 

Sigma-Aldrich, Munich, Germany ELISA 

Sodium di-hydrogen 

phosphate (NaH2PO4) 

Sigma-Aldrich, Munich, Germany ELISA, cell culture, 

Lamina propria 

dissociation 

Di-Sodium hydrogen 

phosphate (Na2HPO4) 

Sigma-Aldrich, Munich, Germany ELISA, cell culture, 

Lamina propria 

dissociation 

Sulfuric acid (H2SO4) 5N  Merck, Darmstadt, Germany ELISA 

Trypan Blue Sigma-Aldrich, Munich, Germany Cell counting 

Tween® 20 Sigma-Aldrich, Munich, Germany ELISA 

Hanks' Balanced Salt 

Solution (HBSS) 

ThermoFisher Scientific, Darmstadt, 

Germany 

Lamina propria 

dissociation 

Dithiothreitol (DTT)  Molekula, Munich, Germany Lamina propria 

dissociation 

Bicinchoninic acid assay 

(BCA) 

ThermoFisher Scientific, Darmstadt, 

Germany 

Protein 

concentration 
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Fixable Viability Dye 

eFluor™ 450 

ThermoFisher Scientific, Darmstadt, 

Germany 

FACS 

EDTA 0.5 mM Media kitchen PEI Lamina propria 

dissociation 

HEPES Media kitchen PEI Lamina propria 

dissociation 

2-mercaptoethanol Sigma-Aldrich, Munich, Germany Cell culture 

FoxP3/Transcription 

factor staining set  

ThermoFisher, Bonn, Germany FACS  

3, 3’, 5, 5’-

tetramethylbenzidine 

(TMB)  

Carl Roth, Karlsruhe, Germany ELISA 

 

3.1.5. Protein and enzymes 

Name Producer Usage 

Protease inhibitor 

cocktail set 1 

Merck, Darmstadt, Germany Intestinal 

homogenates 

Streptavidin HRP BD Biosciences, Heidelberg, Germany ELISA 

  Collagenase D from 

Clostridium histolyticum 

 

Sigma-Aldrich, Munich, Germany Lamina propria 

dissociation 

Dispase II protease Sigma-Aldrich, Munich, Germany Lamina propria 

dissociation 

DNase I grade II, from 

bovine pancreas 

Sigma-Aldrich, Munich, Germany Lamina propria 

dissociation 

http://en.wikipedia.org/wiki/Tetramethylbenzidine
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Albumin (OVA), from 

chicken egg grade V 

Sigma-Aldrich, Munich, Germany Mice sensitization 

Bovine serum albumin 

(BSA) 

Sigma-Aldrich, Munich, Germany FACS, lamina 

propria dissociation 

 

3.1.6. ELISA antibodies 

Name Clone Company 

Purified Anti-mouse IgE 
R35-72 BD Biosciences, Heidelberg, 

Germany  

Biotin Anti-mouse IgE 
R35-118 BD Biosciences, Heidelberg, 

Germany  

Anti-mouse IL-4 Purified  
11B11 ThermoFisher Scientific, Darmstadt, 

Germany 

Anti-mouse IL-4 biotin 
BVD6-24G2 ThermoFisher Scientific, Darmstadt, 

Germany 

Anti-human/mouse IL-5 purified 
TRFK5 ThermoFisher Scientific, Darmstadt, 

Germany 

Anti-mouse IL-5 biotin  
TRFK4 ThermoFisher Scientific, Darmstadt, 

Germany 

Anti-mouse IFNᵧ purified 
XMG1.2 ThermoFisher Scientific, Darmstadt, 

Germany 

Biotin Anti-mouse IFNᵧ  
R4-6A2 ThermoFisher Scientific, Darmstadt, 

Germany 

Anti-mouse IgG1 (ᵧ1) horseradish 

peroxidase (HRP) conjugate 

 ThermoFisher Scientific, Darmstadt, 

Germany 
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Anti-mouse IgG2a horseradish 

peroxidase (HRP) conjugate 

 ThermoFisher Scientific, Darmstadt, 

Germany 

Murine Eotaxin (CCL11) Standard 

ABTS ELISA Development Kit 

 Peprotech, Hamburg, Germany 

Mouse CCL1/TCA-3 DuoSet 

ELISA 

 R&D systems, Wiesbaden, Germany 

Mouse CCL8/MCP-2 DuoSet 

ELISA 

 R&D systems, Wiesbaden, Germany 

MCPT1 Mouse Uncoated ELISA 

Kit 

 ThermoFisher Scientific, Darmstadt, 

Germany 

Ready set GO! Anti-mouse IL-13  
 ThermoFisher Scientific, Darmstadt, 

Germany 

Ready set GO!  Anti-mouse IL-33  
 ThermoFisher Scientific, Darmstadt, 

Germany 

Murine IL-10 Standard ABTS 

ELISA Development Kit 

 Peprotech, Hamburg, Germany 

 

3.1.7. FACS antibodies 

Name Clone Company 

FITC anti-mouse CD45   30-F11 Biolegend, Fell, Germany 

PE Rat IgG2b, κ Isotype Ctrl  RTK4530 Biolegend, Fell, Germany 

PE- anti-mouse CD198 (CCR8) SA214G2 Biolegend, Fell, Germany 

Purified anti-mouse CD16/CD32  93 
ThermoFisher Scientific, Darmstadt, 

Germany 
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PE anti-mouse Ly6G (Gr1) RB6-8C5 
ThermoFisher Scientific, Darmstadt, 

Germany 

eFluor 660 anti-mouse CD170 

(Siglec F)  
1RNM44N 

ThermoFisher Scientific, Darmstadt, 

Germany 

PE-Cyanine5 anti-mouse CD11b  M1/70 
ThermoFisher Scientific, Darmstadt, 

Germany 

PE anti-mouse CD4 PE GK1.5 
ThermoFisher Scientific, Darmstadt, 

Germany 

APC anti-mouse CD25 APC PC61.5 
ThermoFisher Scientific, Darmstadt, 

Germany 

PE-Cyanine5 anti-mouse/rat 

FoxP3  
FJK-16s 

ThermoFisher Scientific, Darmstadt, 

Germany 

3.1.8. Software 

Name Company 

BD FACSDiva™ Software, Version 6.1.3 BD Biosciences, Heidelberg, DE 

SoftMax® Pro Software, Version 5.2 rev C Molecular Devices, Munich, Germany 

FlowJo V10.0.8r1 FlowJo, LLC, Oregon, US 

GraphPad Prism 7  GraphPad Software, La Jolla, US 

 

3.2. Methods  

3.2.1. Animals 

Animal experiments were performed in compliance with national law and approved by 

local authority (Regierungspräsidium Darmstadt, Germany, license number: 

F107/1020) following the guidelines of the Paul-Ehrlich-Institut. Mice on BALB/c 
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background were bred and maintained under pathogen free conditions in the animal 

facility of the Paul-Ehrlich-Institut. 

3.2.1.1. Mouse strains 

BALB/c wild type (WT) mice were purchased from Charles River Laboratories 

(Kisslegg), and maintained in the breeding facility of the Paul-Ehrlich-Institut. 

CCR8KO mice (C.129P2-Ccr8tm1Yiw) on BALB/c background were generated by the 

replacement of SphI-BglII fragment (1.5 kbp) containing the exon-2, that contains the 

translation initiation site, by a neomycin resistance gene (Neo) to disrupt the Ccr8 

gene, generating the absence of the receptor (Yabe et al., 2015). This mouse strain 

was provided by Prof. Yoichiro Iwakura (The University of Tokyo, Japan).  

KITw-sh/w-sh mice carry spontaneous  mutations at both alleles of the dominant white 

spotting (W) locus, generating a marked reduction in c-kit signaling, that is traduced 

in a mast cell deficiency (Grimbaldeston et al., 2005; Wolters et al., 2005; Lyon and 

Glenister, 1982). This mouse strain was provided by Dr. Michael Stassen, University 

Medical Center of the Johannes Gutenberg-University Mainz, Germany 

Cre-mediated mast cell eradication (CreMaster) mice (C.129P2-Cpa3tm3(icre)Hrr) were 

generated using a Knock-in strategy to induce the Cre recombinase expression, 

deleting 28 nucleotides of the first exon of the Cpa3 promoter by homologous 

recombination in ES cells (Feyerabend et al., 2011). This promoter encodes for the 

mast cell associated protease CPA3. The heterozygous mice (Cpa3Cre/+) show an 

almost complete lack of mast cells, probably due an Cre-induced genotoxicity, but a 

normal immune system (Feyerabend et al., 2011; Galli et al., 2015). This mouse 

strain was provided by Dr. Hans-Reimer Rodewald, Division of Cellular Immunology, 

German Cancer Research Center (DKFZ), Germany. 

IgE knock-in mice (C.Ighg1tm1.1Pyu) on BALB/c background were created by 

replacement of exons encoding for the soluble part of the constant region of the 

murine IgG1 with the IgE counterpart. The homozygous IgE knock-in mice (IgEki/ki, 

referred here as IgEki) display a 10-fold increase of total serum IgE and complete 

absence of IgG1 (Lubben et al., 2013). This mouse strain was provided by Dr. Philipp 

Yu, Institute of Immunology, Philipps University of Marburg, Germany. 



3. Materials and Methods 
 

31 
 

The gene modified mice and KITw-sh/w-sh mice were bred in the mouse breeding facility 

of the Paul-Ehrlich- Institut in compliance with national law and approved by local 

authority (Regierungspräsidium Darmstadt, Germany). For some experiments (e.g. 

preparation of antigen presenting cells for T cell assay), BALB/c wild type (WT) mice 

were purchased from Charles River Laboratories (Kisslegg). 

3.2.2. Induction of allergic enteritis 

Mice (female, 6 to 8 weeks old) were sensitized  by an intraperitoneal injection with 

10 μg of ovalbumin (OVA, grade V, Sigma-Aldrich, Munich, Germany) and 1 mg of 

ALUM (ThermoFisher Scientific, Darmstadt, Germany) in 500 µl of PBS, or treated 

only with PBS or Alum twice at a two-week interval as described previously (Burggraf 

et al., 2011). Alum was used as adjuvant to trigger strong Th2 response and IgE 

antibodies against OVA (Korsholm et al., 2010; Brewer et al., 1999). 

Two weeks after the second sensitization, the mice were fed an Egg white diet (EW-

diet) containing high amount of OVA for 7 days (Fig. 3A). The EW diet is a pellet-

based diet containing 100% EW as source of 20% of protein prepared at ssniff 

Spezialdiäten GmbH (Soest, Germany) as described in table 2. 

 

Table 2. EW-diet composition 

20.00% Dried egg white  

48.45% Corn starch 

  9.00% Alfa starch 

  5.00% Sugar 

  5.00% Cellulose 

  6.00% Soy oil 

  5.00% AIN 93M Min Mix 

  1.30% AIN 93M Vit mix 

  0.25% Choline chlorid 
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Figure 3: Immunization schedule.  Mice were i.p. sensitized with OVA plus ALUM twice at 
a two-week’s interval. Two weeks after the last sensitization, mice were fed EW diet for (A) 
seven days or (B) 4 weeks. 

3.2.3. Blood harvest 

Blood was harvested from the submandibular facial vein before or 7 days after the 

start of EW-diet. In the harvest, mouse was hold by the scruff of the neck, trying to 

keep the mouse relaxed as possible. Then with a lancet a puncture was performed in 

the back of the jaw of the mouse, slightly behind the hinge of the jawbones, toward 

the ear. There a small vascular bundle is located where orbital veins, submandibular 

vein and other veins draining the facial region join to form the beginning of the jugular 

vein. The blood was the collected in tubes containing a separation gel  for collection 

of serum and whole blood (Golde et al., 2005). 

3.2.4. Mouse euthanasia 

After 7 days of EW-diet feeding, it was necessary to euthanize the mice in order to 

harvest several organs like spleens, MLNs and small intestines for immune assay. 

The euthanasia was performed using a CO2 chamber.  

3.2.5. Measuring serum levels of OVA-specific antibodies 

Unless indicated otherwise, all dilutions following the coating step were done with 

10% FCS in PBS and all washings between the incubation steps with PBS-T (PBS, 

0.05% Tween 20) at room temperature. The volumes used were: 50 µl of antigen 

solution (OVA), primary antibody or secondary antibody; 100 µl of blocking buffer, 

200 µl of PBS-T, 50 µl of samples or standards, 100 µl of TMB substrate and 50 µl of 

stop solution.  

I.p. immunization  
(OVA and Alum) 

Feeding start  
(EW-diet) 

0 7 -7 -14 -21 -28 days 

I.p. immunization  
(OVA and Alum) 

Feeding start  
(EW-diet) 

0 28 days -7 -14 -21 -28 

A 

B 
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The serum levels of OVA-specific IgE, IgG1 and IgG2a antibodies were measured by 

ELISA as reported previously (Burggraf et al., 2011). Antibodies used for ELISA are 

listed in the section 3.1.6. Microtiter plates (Sarstedt, Nümbrecht, Germany) were 

coated with OVA in 50 mM sodium carbonate buffer (pH 9.6) at 4°C overnight. Plates 

were washed 3 times with PBS tween-20 1% (PBS-T). After blocking with 10% FCS 

in PBS at 4°C overnight, serum samples and standard were applied to the wells and 

incubated for two hours at room temperature (RT). Serum samples were diluted in 

blocking buffer in the following ratio: 1:105 for IgG1, 1:102 for IgG2a and IgE, except 

for samples from IgEki mice that were diluted 1:104 for IgE detection. Following 

monoclonal OVA-specific IgG1 and IgG2a antibodies were used as standard: IgG1 

antibody (clone: OVA-14), and IgE antibody (clone. E-G5).  

After incubation with serum samples and standard with serial dilution 1:2 from 200 

ng/ml for IgG1 and IgG2a and 1000 ng/ml for IgE, plates were washed with PBS-T 3 

times, and applied with detection antibodies. IgE binding was detected by biotin-

conjugated rat anti-mouse IgE antibodies and HRPO-conjugated streptavidin. For 

detection of IgG1 and IgG2a antibodies, HRPO-conjugated goat anti-mouse IgG1 

and HRPO-conjugated rabbit anti-mouse IgG2a antibodies were used. After 1 hour of 

incubation at RT, plates were washed 3 times with PBS-T and 3, 3’, 5, 5’-

tetramethylbenzidine (TMB) was used as streptavidin-HRP substrate. 1N sulfuric acid 

(H2SO4) was used as stop solution. The colorimetric change was measured by an 

ExpectraMax Plus ELISA reader. 

3.2.6. Intestinal homogenate preparation 

After harvest of small intestines, 15 cm of the jejunum (9.5 cm distal from the 

duodenum) were longitudinally separated. Tissue was rinsed with cold PBS to 

eliminate the feces. Peyer´s patches were removed. The jejunum was cut in 0.5 cm 

pieces, transferred to Eppendorf tubes and immediately placed into liquid nitrogen to 

freeze the samples. The samples were stored at -80°C until use.  

The frozen tissue was minced to a fine powder using a cold mortar and pistil. The 

powder of tissues was then transferred to an Eppendorf tube and suspended in 300 

µl of ice-cold PBS with protease inhibitors (Merck, Darmstadt, Germany) using a 

vortex. The samples were centrifuged at 12.000 g for 20 min and supernatant was 

collected. The protein content was determined using the bicinchoninic acid (BCA) 

http://en.wikipedia.org/wiki/Tetramethylbenzidine
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assay for the colorimetric detection and quantitation of total protein. Samples were 

adjusted to a concentration of 5 mg/ml in PBS and applied for ELISA assays to 

determine the concentrations of chemokines, cytokines and mMCP1 in the intestinal 

tissue homogenates.  

3.2.7. Determination of chemokine concentrations of CCL1, CCL8 and CCL11 in 
intestinal homogenates by ELISA 

The concentrations of CCL1 and CCL8 in intestinal tissue homogenates were 

determined using a R&D ELISA Duoset kit, whereas the concentrations of CCL11 

were determined using a Preprotech kit following the manufacturer indications with 

slightly modifications. Briefly, microtiter plates were coated with CCL1 or CCL8 

capture antibody in a dilution of 1:180 and CCL11 in a ratio 1:200 in PBS and 

incubated overnight at 4°C. The plates were washed 3 times with PBS-T and blocked 

with PBS-10% FCS at 4°C overnight. Plates were then washed 3 times with PBS-T. 

Standards with known concentration and the intestinal tissue homogenates were 

added to the wells and incubated at 4°C overnight. Plates were washed 3 times with 

PBS-T and detection antibodies were added to the plates in the same ratio than the 

capture antibodies to CCL1 and CCL8 in a ratio of 1:180, and in a ratio of 1:100 in 

PBS-T and incubated for 2 hours at RT. Then the plates were washed 3 times with 

PBS-T and Streptavidin-HRP was added to each well and incubated at RT for 30 

min. Plates were washed 3 times with PBS-T and TMB was used as streptavidin-

HRP substrate. The colorimetric change was measured by an ExpectraMax Plus 

ELISA reader. 

3.2.8. Determination of cytokines in intestinal samples by ELISA  

Unless indicated otherwise, all dilutions following the coating step were done with 

10% FCS in PBS and all washings between the incubation steps with PBS-T (PBS, 

0.05% Tween 20) at room temperature. The volumes used were: 50 µl of antigen 

solution (OVA), primary antibody or secondary antibody; 100 µl of blocking buffer, 

200 µl of PBS-T, 50 µl of samples or standards, 100 µl of TMB substrate and 50 µl of 

stop solution.  

IL-4, IL-5, IL-6, IL-10, IL-13, IL-33 and IFN-γ were detected in the intestinal tissue 

homogenates by ELISA. For detection of IL-10, IL-13 and IL-33, commercially 

available kits were used following instructions by manufacturers. For detection of IL-
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4, IL-5, IL-6, or IFN-γ plates were coated with the capture antibody at a dilution of 

1:103 in coating buffer and incubated overnight at 4°C. The plates were washed 3 

times with PBS-T and blocked with PBS-10% FCS at 4°C overnight. After washing 

with PBS-T three times, standards with known concentrations and intestinal tissue 

homogenates were incubated in the wells overnight at 4°C. After washing with PBS-

T, detection antibodies were incubated in PBS-10%FCS in the wells for 2 hours at 

RT. The plates were washed 3 times with PBS-T and Streptavidin-HRP in in PBS-

10%FCS was added to each well and incubated at RT for 30 min. Plates were 

washed 3 times with PBS-T and TMB was applied as streptavidin-HRP substrate. 1N 

H2SO4 was used as stop solution. The colorimetric change was measured by an 

ExpectraMax Plus ELISA reader. 

3.2.9. Determination of mMCP1 concentration in serum and intestinal samples 

Mouse mast cell protease 1 (mMCP1) was detected in sera and intestinal tissue 

homogenates by ELISA using a commercially available kit. The capture antibody was 

added in each well in a dilution 1:250 in 1X Coating buffer and incubated at 4°C 

overnight. The plate was washed 3 times with PBS-T and blocked using the 

1X/ELISA/ELISPOT diluent at 4°C overnight. After washing the plates, the standard 

and the diluted samples (1:10 for intestine homogenates and 1:103 for sera) were 

added and incubated at 4°C overnight. After washing with PBS-T 3 times, detection 

antibody in a dilution 1:250 in 1X/ELISA/ELISPOT were applied to the wells, and 

incubated 1 hour at RT. The plates were washed with PBS-T and the streptavidin-

HRP (1:250) in 1X/ELISA/ELISPOT was incubated 30 min at RT. The plates were 

then washed 3 times with PBS-T and TMB was applied as substrate. The colorimetric 

change was measured by an ExpectraMax Plus ELISA reader. 

3.2.10. Histology of jejuna samples 

Longitudinal sections of intestinal tissue (2 cm) were taken from the jejunum. The 

tissues were fixed in 4% formalin and embedded in paraffin. Sections (5 µm thick) 

were prepared and stained with hematoxylin and eosin (H&E) for morphologic 

analysis and detection of eosinophils. Toluidine blue staining was used for detection 

of mast cells. Additionally, Eosinophil-Mast Cell Stain Kit (Teomics, Houston, USA) 

was used to specifically visualize eosinophils. To visualize neutrophils, tissues were 

incubated with anti-Ly6G mAb (clone 1A8, Biolegend) in combination with Alexa 488 
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conjugated rabbit anti-rat IgG antibodies after blocking with rat IgG. Normal rat IgG2a 

(Biolegend) was used as an isotype control. To detect CCR8 and CD68, frozen 

tissues were blocked with goat sera, and stained with goat anti-mouse CCR8 

polyclonal antibodies (Abcam, Tokyo, Japan) and rat anti-mouse CD68 monoclonal 

antibody (BioLegend, Tokyo, Japan).  As isotype controls, normal Goat IgG 

antibodies (PM094 MBL) and Rat IgG2a antibodies (BioLegend) were used. After 

incubating with the primary antibodies or isotype controls, the tissues were treated 

with Alexa Fluor 647-conjugated donkey anti-goat IgG H&L Abs pre-adsorbed (Life 

technologies, Tokyo, Japan) and Alexa Fluor 488-conjugated donkey anti-rat IgG 

H&L Abs pre-adsorbed (Life technologies). The histology staining  and the criteria to 

assess inflammation grade was performed by the collaborator partners Irene 

Gonzalez-Menendez, Manuela Martella and Leticia Quintanilla-Martinez at the 

Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen 

and Comprehensive Cancer Center, University Hospital Tübingen. Histological and 

immunohistochemistry was performed by the collaborator partners Yoichiro Kato and 

Masaharu Ohbayashi at the Department of Pathology, Tokyo Women’s Medical 

University, Tokyo, Japan. 

Inflammation levels in the tissues were assessed in a blind manner by pathologists in 

University Hospital Tübingen with a score as describe in table 3. The total histological 

score represents the sum of the inflammation grade and villi score. Score ranges 

from 0 to 6 (total score = I + V +E). 
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Table 3. Histological score system 

Inflammation 

grade 

0-  Rare granulocytes, isolated cells detected in the 

mucosa of villi and between the crypts. 

1- Few granulocytes scattered in the mucosa. 

2- A solitary group of less than 10 granulocytes  

3- 2-3 groups of up to 10 granulocytes 

4- More than 3 groups of granulocytes and larger than 10 

cells. 

Villi 0- Normal 

1- Shorter villi – diffused and homogenous mild atrophy of 

the villi due to intestinal dilation with obvious central 

lumen 

Edema 0- Not present 

1- Diffused edema in the lamina propria   

 

3.2.11. Analysis of eosinophil and neutrophil frequency in intestinal lamina 
propria cells 

Intestinal lamina propria cells were prepared according to a protocol described by 

Weigmann et al. with slight modifications (Weigmann et al., 2007). Small intestines 

were harvested from OVA-sensitized or non-sensitized mice on day 7 of EW-diet.  

After removal of Peyer´s patches, intestines were cut into 4-5 cm pieces, washed 

with cold PBS to eliminate the feces, and opened longitudinally. To remove the 

mucous the tissues were then cut into 1 cm pieces, and treated with HBSS 

(ThermoFisher containing 5 mM DTT (Molekula, Munich, Germany) at 37°C for 20 

min at a ratio of 1.0 g of intestinal sample per 20 ml solution (1.0 g/20ml). The tissue 

was put on a 100 µm cell strainer to remove the solution. To remove epithelial cells 

from the tissues, these were incubated in 30 ml of a pre-digestion solution, i.e. HBSS 

containing 5 mM EDTA and 10 mM HEPES at 37°C for 20 min. The tissue was then 

put on a 100 µm cell strainer to remove the pre-digestion buffer, and re-suspended in 

20 ml of fresh buffer at 37°C for 20 min. The remaining pieces were separated using 

a 100 µm cell strainer and washed with HBSS containing 10 mM HEPES at 37°C for 

10 min to remove the remaining EDTA of the sample. After the removal of epithelial 
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cells, the digestion was performed in 7.5 ml of PBS containing 500 µg/ml 

Collagenase D, 500 µg/ml DNase I and 0.5 U/ml Dispase II  for 20 min at 37°C. The 

tissue suspensions were then applied on a 40 µm cell strainer. The suspension 

though the strainer was kept on ice and the remaining tissue was subject again to a 

second digestion.  

The suspensions was collected and centrifuged at 350 g for 10 min. After washing 

with cold PBS twice, the cells were treated with anti-CD16/CD32 mAb and Fixable 

Viability Dye eFluor 450, and stained with FITC-conjugated anti-CD45 mAb and 

eFluor 660-conjugated anti-CD170 (SiglecF) mAb to identify eosinophils, or with 

FITC-conjugated anti-CD45 mAb, PE-Cy5-conjugated anti-CD11b mAb and PE-

conjugated anti-Ly6G mAb to identify neutrophils for FACS analysis. Antibodies used 

in FACS analysis are listed in section 3.1.7. 

3.2.12. Preparation for single cell suspension of spleen and MLNs 

Spleens and MLNs were isolated from mice and disaggregated mechanically using a 

syringe plunger and a 70 µm cell strainer in a Petri dish containing cold PBS. The cell 

suspension was transferred to a 15 ml Falcon tube and centrifuged at 350 g at 4°C 

for 10 min. To eliminate erythrocytes, the cell suspensions from the spleens were re-

suspended in 2 ml of red blood cell lysing buffer (BD Biosciences Pharm Lyse™) and 

incubated at RT for 2 min. The cells were then washed twice with 10 ml of wash 

media (described in section 3.1.3) and centrifuged at 350 g at 4°C for 10 min. Cell 

concentration was determined using a Luna automated cell counter. These cells were 

used for FACS analysis or T-cell assay. 

3.2.13. T-cell assay 

MLNs and spleens were isolated from OVA-sensitized mice on day 7 of EW-diet as 

described before. Anti-CD3 mAb (200 µl) was added to culture plates at a 

concentration of 10 µg/ml and incubated overnight at 4°C. The plates were washed 3 

times with sterile PBS to remove the non-bound soluble antibody. MLN and spleen 

cells (2.0x106 cells/ml) were seeded in the plates and incubated for 72 h at 37°C and 

5%CO2. The concentrations of IL-4 and IL-5 in the culture supernatant were 

determined by means of ELISA.  
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3.2.14. Measuring T-cell frequency in spleens and MLNs  

MLNs and spleens were harvested from the mice, and single cell suspension was 

prepared as described in the section of “single cell suspension from Spleen and 

MLN”.  The cell suspension (1.0x106 cells in 100 ul) was transferred to FACS tubes. 

For IgG receptor blocking a rat anti-mouse CD16/32 mAb was added at 1µg/ml and 

incubated on ice for 20 min. After 50 µl of a mixture of fluorescence conjugated 

antibodies against the surface markers of interest (PE-conjugated anti-mouse CD4 

mAb, APC-conjugated anti-mouse CD25 mAb) and the viability dye (fixable viability 

die eFluor 450) to distinguish dead cells were added and incubated for 30 min on 

ice.. Samples were washed with 2 ml of FACS buffer 3 times. The cellular pellet was 

re-suspended in 300 µl of FACS buffer with 0.2% paraformaldehyde. The samples 

were measured in a BD FACS LSRII SORP and analyzed with FlowJo Engine 

v3.04910. 

In detection of Treg cells, after the final wash in the staining of cell surface molecules, 

cell permeabilization was performed using fixation/permeabilization buffer in the Anti-

mouse/Rat Foxp3 Staining set at 4°C overnight. After the incubation, 2 ml of 

permeabilization buffer was added and centrifuged at 350 g for 5 min at RT 2 times. 

Samples were re-suspended in 100 µl of permeabilization buffer containing rat anti-

mouse CD16/CD32 at 1 µg/ml and incubated 15 min at RT. PE-Cy5-conjugated anti-

mouse Foxp3 antibody was then added and incubated 1 hour at RT. Samples were 

washed twice with 2 ml of permeabilization buffer and centrifuged at 350 g for 5 min 

at RT. The cells were re-suspended in 300 µl of FACS buffer and measured in a BD 

FACS LSRII SORP. The FACS data was analyzed with FlowJo Engine v3.04910. 

3.2.15. Statistical analysis 

Comparison of mean values between different groups was performed by student t-

test in GraphPad Prism 7 (San Diego, USA), or by ANOVA followed by Dunnett's test 

in IBM SPSS statistics (Chicago, USA). p values < 0.05, and < 0.01 were designated 

with * and ** respectively, and considered significant. 
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4. Chapter 1: A role of CCR8 in the development of allergic enteritis 

4.1. A short introduction 

Our previous study showed that gene expression of CC chemokine receptor (CCR) 8 

and its ligand CC chemokine ligand (CCL) 1 and CCL8 was upregulated in inflamed 

tissues of AE mice (Fig. 2, page 17). Chemokines are a large family of small secreted 

chemotactic proteins of 8 to 12 kD that induce cell migration in homeostasis and 

disease condition (Garcia et al., 2005; Kaplan, 2001; Karin, 2018; Lloyd and Rankin, 

2003). Chemokines exert their activity by binding to a family of specific 7 

transmembrane G-protein-coupled surface receptors and are classified into four 

groups depending of the spacing of the N-terminal cysteine residues as CXC, CC, C 

and CX3C (where X is any amino acid)  (Griffith et al., 2014; Rossi and Zlotnik, 2000; 

Arimont et al., 2017). 

The selective expression of chemokines and their receptors inducing migration of 

specific cells in diseases states makes them appealing drug targets. Three 

chemokine receptors CCR3, CCR4 and CCR8 are preferentially expressed by Th2 

cells, mast cells or eosinophils therefore represent interesting therapeutic targets in 

allergy (Chantry and Burgess, 2002; Owen, 2001; Bonecchi et al., 1998). Among 

these receptors, the role of CCR8 is less understood than the others. 

Several studies have shown that CCR8 is also expressed by Th2 cells, Treg, 

macrophages, a subset of dendritic cells and endothelial cells, but its expression vary 

depending on experimental settings and tissues (Zheng et al., 2009; Kremer et al., 

2001; Hoshino et al., 2007; Qu et al., 2004; D'Ambrosio et al., 1998; Zingoni et al., 

1998; Bünemann et al., 2018). CCR8 is highly expressed in thymus and its 

expression has also been detected in the spleen, lymph nodes, lung, skin and the 

brain (Napolitano et al., 1996; Tiffany et al., 1997; Mutalithas et al., 2010; McCully 

and Moser, 2011). Human CCR8 has four ligands: CCL1, CCL8, CCL16 and CCL18 

(Islam et al., 2013; Karin, 2018; Bernardini et al., 1998; Asojo et al., 2003; Howard et 

al., 2000), whereas murine CCR8 has two ligands CCL1 and CCL8 (Islam et al., 

2011; Devi et al., 1995). CCR8 is the only known receptor for both human (I309) 

CCL1 and murine (TCA3) (Karin, 2018). 

CCR8 has been shown to play a role in the pathogenesis of asthma, allergic rhinitis 

and atopic dermatitis (Gombert et al., 2005; Gonzalo et al., 2007; Islam et al., 2011; 
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Mutalithas et al., 2010; Buckland et al., 2007; Yabe et al., 2015; Zhang et al., 2007). 

However, the role of CCR8 in development of AE was not investigated.  To evaluate 

the possible role of CCR8 in the pathogenesis of allergic enteritis CCR8KO mice 

were used in this study. 

4.2. Results 

4.2.1. CCR8 and CCL1 expressions are enhanced in AE tissues of WT mice 

First, to verify the results of DNA microarray analysis, i.e. increased expression 

CCR8 and its ligand CCL1, the CCR8 expression in AE tissues of WT mice by 

immunohistochemically analysis was performed. The analysis showed an increased 

presence of CCR8 expressing cells in the jejunum of OVA/EW WT mice in 

comparison with NC/EW WT mice (Fig 4).  To detect CCL1 expression in the tissues, 

ELISA was performed in intestinal homogenates of OVA/EW WT mice, ALUM/EW 

mice, or non-sensitized and EW-diet-fed (NC/EW) WT mice. Increased 

concentrations of CCL1 in OVA/EW WT mice were then detected, when compared to 

those in NC/EW WT mice or OVA/CN WT mice (Fig. 5).  The results confirm that 

CCR8 and CCL1 expression was enhanced in AE tissues of WT mice.   

 

Figure 4: CCR8 expression in the inflamed intestinal tissues of WT mice. WT mice were 
i.p. sensitized with OVA plus ALUM or non-sensitized and fed EW diet for 7 days. The 
jejunums were harvested, and stained with anti-CCR8 Abs (red) and propidium Iodide (blue). 
The data are representative for two independent experiments. OVA/EW: OVA-sensitized and 
EW-diet fed. NC/EW; non-treated and EW-diet fed.       
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Figure 5: Expression of CCL1 in inflamed tissues of AE mice. BALB/c mice were i.p. 
sensitized with OVA plus ALUM, treated with ALUM only or non-sensitized twice at a two-
week’s interval. Two weeks after the last sensitization, the mice were fed EW-diet for 7 days. 
The jejunums were harvested from mice. The concentrations of CCL1 in homogenates of the 
tissues were measured by ELISA. Each symbol represents an individual mouse. The data 
are pooled of two independent experiments. OVA/EW; OVA-sensitized and EW-diet fed, 
ALUM/EW; ALUM-treated and EW-diet fed, NC/EW; non-treated and EW-diet fed. ** p<0.01 
 

4.2.2. CCR8 deficiency did not suppress the development of clinical symptoms  

In order to investigate a role of CCR8 in development of AE, WT and CCR8KO mice 

received sensitization with OVA plus ALUM and fed EW diet. OVA sensitized and EW 

diet fed (OVA/EW) WT mice presented significantly reduced body weight and 

temperature, when compared to non-sensitized and EW diet fed (NC/EW) WT mice 

(Fig. 6 and Fig. 7). OVA-sensitized mice on conventional diet or non-sensitized mice 

on EW-diet did not develop such symptoms, suggesting that clinical symptoms are 

induced by challenge with EW-diet in OVA-specific manner. OVA/EW CCR8KO also 

showed reduced body weight and temperature in comparison to NC/EW WT mice 

and NC/EW CCR8KO mice. However, the levels of reduction in OVA/EW CCR8KO 

tended to be lower than those of OVA/EW WT mice. The results suggest that CCR8 

is partially involved in the development of clinical symptoms.  
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Figure 6: Reduced loss of body weight in CCR8KO mice. WT and CCR8KO mice were 
i.p. sensitized with OVA plus ALUM, or treated only with PBS, and fed EW-diet for up to 28 
days. The body weight was measured and represented as percentage of the initial weight. 
OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and EW-diet fed. * 
p<0.05, ** p<0.01  

3 2

3 4

3 6

3 8

4 0

4 2

E W -d ie t  fe e d in g  (7 d a y s )

B
o

d
y

 t
e

m
p

e
ra

tu
re

 (
°C

)

W T  (O V A /E W )

C C R 8 K O  (O V A /E W )

W T  (N C /E W )

C C R 8 K O  (N C /E W )

*

* *

* *

 
Figure 7: Reduced body temperature drops in CCR8KO mice on 7 days of EW-diet. WT 
and CCR8KO mice were i.p. sensitized with OVA plus ALUM, or treated only with PBS. Body 
weight was measured using a microprobe thermometer. OVA/EW; OVA-sensitized and EW-
diet fed, NC/EW; non-sensitized and EW-diet fed. * p<0.05, ** p<0.01 

 
4.2.3. CCR8 deficiency reduced development of AE, but only moderately.  

Next, the impact of CCR8 deficiency on AE development by histological analysis was 

assessed. H&E-stained tissues showed that OVA/EW WT and OVA/EW CCR8KO 

mice developed inflammation, which is characterized by irregular villi, a thickened 
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muscular layer, crypt elongation, and accumulation of granulocytes in the lamina 

propria (Fig. 8). A histology scoring analysis, which is based on grade of 

accumulation of granulocytes, villi morphology, and presence or absence of edema, 

indicated that inflammation levels were higher in OVA/EW WT mice, compared to 

OVA/EW CCR8KO mice (Table 4). Interestingly, the profile of granulocyte 

accumulation was different in the different groups. OVA/EW WT mice presented 

intensive infiltration of eosinophils and neutrophils (Fig. 9 and 10), whereas OVA/EW 

CCR8KO mice showed reduced accumulation of eosinophils (Fig. 9), but increased 

accumulation of neutrophils (Fig. 10). Morphological changes were not observed in 

the tissues of non-sensitized mice, NC/EW WT and NC/EW CCR8KO mice (Fig. 8). 

Animals that received ALUM alone and fed an EW-diet did not develop AE neither  

(Burggraf et al., 2011). 

 Table 4. Assessment of inflammation levels in WT and CCR8KO mice. 
Group Inflammation Villi Edema Total 

WT (OVA/EW) 3.75**(1),*(２)± 0.5 0.75 ± 0.5 0.75 ± 0.5 5.25**(1),*(２)± 1.5 

WT (NC/EW) 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 

CCR8KO (OVA/EW) 2.75**(3) ± 0.5 0.75 ± 0.5 0.50 ± 0.6 4.00**(3) ± 0.8 

CCR8KO (NC/EW) 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 
 
WT and CCR8KO mice were i.p. sensitized with OVA plus ALUM, or treated only with PBS, 
and fed EW-diet for 7 days. The jejunums were harvested from the mice, and Inflammation 
levels in the tissues were assessed. The total histological score represents the sum of the 
inflammation grade, villi and edema score. Score ranges from 0 to 6 (total score = I + V + E). 
OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and EW-diet fed. * 
p<0.05, ** p<0.01. (1) vs WT (NC/EW); (2) vs CCR8KO (OVA/EW); (3) vs CCR8KO 
(NC/EW).   
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Figure 8: Development of AE in CCR8KO mice. WT and CCR8KO mice were i.p. 
sensitized with OVA plus ALUM, or treated only with PBS, and fed EW-diet for 7 days. The 
jejunums were harvested from the mice, and stained with H&E. All images were taken in 
same magnification. OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and 
EW-diet fed. The data are representative for three independent experiments. 
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Figure 9: Reduced eosinophil accumulation in CCR8KO mice. WT and CCR8KO mice 
were i.p. sensitized with OVA plus ALUM, and fed EW-diet for 7 days. The harvested 
jejunums were stained with vital new red solution to visualize eosinophils. Arrows indicate 
eosinophils in the inflamed tissues of the WT and CCR8KO mice. The data are 
representative for two independent experiments.  

 

Figure 10: Enhanced neutrophil accumulation in CCR8KO mice. WT and CCR8KO mice 
were i.p. sensitized with OVA plus ALUM, and fed EW-diet for 7 days. The tissues were 
stained with anti-Ly6G mAb to visualize neutrophils. The data are representative for two 
independent experiments. 
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4.2.4. CCR8 deficiency reduced eosinophil accumulation, but enhanced 
neutrophil accumulation in AE tissues 

To verify the results of the histological analysis, lamina propria cells were isolated 

from small intestines of WT and CCR8KO mice for FACS analysis. Leukocyte 

population in the lamina propria cells were comparable between WT and CCR8KO in 

OVA/EW or NC/EW group. However, a decreased frequency of eosinophils (SiglecF+ 

CD11b+ cells) and an increased frequency of neutrophils (Ly6G+ CD11b+ SiglecF- 

cells) among the lamina propria leukocytes (CD45+ cells) was observed in OVA/EW 

CCR8KO mice (Fig. 11), compared to that in OVA/EW WT mice. The result suggests 

the differential involvement of CCR8 in eosinophil and neutrophil migration to the 

inflamed tissues in AE.  

Figure 11: Reduced frequency of eosinophils and increased frequency of neutrophils 
in the inflamed intestinal tissues of CCR8KO mice. WT and CCR8KO mice (n=4/group) 
were sensitized with OVA plus ALUM, and fed EW-diet for 7 days. The jejunums were 
harvested from the mice, and subjected to enzymatic treatment for preparation of lamina 
propria cells. The frequency of CD45+ cells in lamina propria cells, and the frequency of 
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eosinophils (SiglecF+ CD11b- cells) and neutrophils (Ly6G+ CD11b+ SiglecF- cells) in CD45+ 
cells population were determined by FACS. The data are representative for three 
independent experiments. * p<0.05, ** p<0.01 
 

4.2.5. CCR8 deficiency did not affect Th2 immune response in AE mice 

A previous study showed reduced eosinophil accumulation in allergen-induced 

airway inflammation of CCR8KO mice due to defective Th2 immune response 

(Chensue et al., 2001). To determine whether CCR8 influences the development of 

adaptive immunity in a murine model of AE, T-cell and antibody responses in WT and 

CCR8KO mice were assessed. Mesenteric lymph node (MLN)-derived T-cells and 

splenic T-cells from OVA/EW WT and OVA/EW CCR8KO mice produced similar 

levels of IL-4, and IL-5, Th2 cytokines that induce IgE production and eosinophil 

maturation/migration respectively in response to OVA (Fig. 12A-D). In the evaluated 

setting, the frequencies of CD4+ T-cells in MLNs and spleens were not statistical 

significant when OVA/EW WT and OVA/EW CCR8KO mice were compared (p=0.689 

and p=0.154, respectively) (Fig. 13A). There was also no significant difference in the 

frequency of T-reg cells (CD4+ CD25+ Fox p 3+ cells) in MLNs and spleens between 

OVA/EW WT and OVA/EW CCR8KO mice (p=0.079 and p=0.988, respectively), 

although the frequency was higher in NC/EW WT mice, compared to NC/EW 

CCR8KO mice (Fig. 13B). In addition, serum levels of OVA-specific IgE, IgG1, and 

IgG2a antibodies were similar in both groups of mice on day 7 of EW-diet (p=0.149, 

p=0.146, and p=0.378, respectively), although CCR8KO mice showed lower IgE and 

IgG2a levels before beginning the EW-diet (Fig. 14A-C). Increased levels of mMCP1, 

a marker of mast cell activation, were similarly detected in the sera of OVA/EW WT 

and OVA/EW CCR8KO mice (Fig. 14D). The results suggest that the absence of 

CCR8 does not influence the development of Th2-mediated immune responses.  



4. Chapter 1: A role of CCR8 in the development of AE 
 

49 
 

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

IL
-4

 (
p

g
/m

l)

S t im u la tio n

      -           C D 3          -           C D 3

W T

C C R 8 K O

n .d .
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

S t im u la tio n

IL
-5

 (
p

g
/m

l)

W T

C C R 8 K O

       -           C D 3          -          C D 3

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

IL
-4

 (
p

g
/m

l)

S t im u la tio n

      -           C D 3          -           C D 3

W T

C C R 8 K O

n .d .
0

1 0 0

2 0 0

3 0 0

4 0 0

S t im u la tio n

IL
-5

 (
p

g
/m

l)

       -           C D 3          -          C D 3

W T
C C R 8 K O

M L N

S p le e n

A B

C D

Figure 12: Th2 cytokine production by T-cells CCR8KO mice. WT and CCR8KO mice 
were sensitized with OVA plus ALUM and fed EW-diet for 7 days. (A) Mesenteric lymph node 
(MLN) cells and (B) splenocytes derived from the mice were cultured in the wells coated with anti-
CD3 mAb. Concentrations of IL-4 and IL-5 in the cell culture supernatants after 72 hrs. of 
stimulation were measured by ELISA. 
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Figure 13: Similar T-cell frequency in WT and CCR8KO mice. WT and CCR8KO mice 
were sensitized with OVA plus ALUM and fed EW-diet for 7 days. (A) The frequency of CD4+ 

T-cells and (B) the frequency of Treg (CD4+ CD25+ Fox p3+) cells in Mesenteric lymph node 
(MLN) and spleen were determined by FACS. The data are pooled of three independent 
experiments using n=2-4/group. * p<0.05. 
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Figure 14: No difference in the levels of OVA-specific antibody responses between WT 
and CCR8KO mice. WT and CCR8KO mice (n=3-5/group) were i.p. sensitized with OVA 
plus ALUM, and fed EW-diet for 7 days. The serum levels of (A) IgE, (B) IgG1 and (C) IgG2a 
Abs specific for OVA and (D) mMCP1 on days -7 and 7 of EW diet were measured by ELISA. 
Each symbol represents an individual mouse. The data are collected from three independent 
experiments. * p<0.05, ** p<0.01 
 

4.2.6. CCR8 deficiency reduced CCL11 expression in AE tissues 

In addition to IL-5, several chemokines e.g., CCL11, CCL24, and CCL26 directly 

induce eosinophil migration (Griffith et al., 2014; Ransohoff, 2009; Islam et al., 2011). 

Among them, enhanced gene expression of CCL11 in the intestinal tissues of 

OVA/EW WT mice was detected by microarray analysis (see Table 1 from previous 

study). Therefore, it was assessed whether the deficiency of CCR8 influences protein 

expression of CCL11 in the intestinal tissues of WT and CCR8KO mice. Notably, 

CCL11 concentrations were significantly lower in the tissue homogenates of OVA/EW 

CCR8KO mice, when compared to those in the tissue homogenates of OVA/EW WT 
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mice (Fig. 15A). These results suggest that CCR8 is involved in CCL11 expression in 

AE sites.  

The protein expression of  CCR8 ligands CCL1 and CCL8 (Islam et al., 2011; Devi et 

al., 1995) was measured by ELISA in the jejuna tissue homogenates (Fig. 15 B-C). 

The treatment with OVA/EW enhanced the CCL1 protein expression in both WT and 

CCR8KO mice in comparison with the NC/EW counterparts; while CCL8 expression 

was not significantly different between the mice and treatments. 

Next, in order to analyze the expression of cytokines in the intestinal tissues, the Th2 

type associated cytokines IL-5, IL-13, and IL-33 levels in intestinal tissues 

homogenates of OVA/EW WT and OVA/EW CCR8KO mice were measured. The 

concentrations of IL-5 were comparable in the homogenates of OVA/EW WT, 

OVA/EW WT CCR8KO mice and their control NC/EW animals (Fig. 15D). In addition, 

the concentrations of IL-13 (Fig. 15E) and IL-33 (Fig. 15F) were similar in the 

homogenates of mice from OVA/EW WT and OVA/EW CCR8KO mice. Furthermore, 

the concentration of mMCP1 in the intestinal tissue homogenates (Fig. 15G) and the 

number of intestinal mast cells (Fig. 16) were comparable in OVA/EW WT and 

OVA/EW CCR8KO mice, suggesting that mast cell activation was similar in the 

intestinal tissues of both type of mice.  
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Figure 15: Reduced expression of CCL11 in the inflamed intestinal tissues of CCR8KO 
mice. WT and CCR8KO mice (n=3-5/group) were i.p. sensitized with OVA plus ALUM, or 
non-sensitized, and fed EW-diet for 7 days. Small intestines were harvested from the mice. 
The concentrations of (A) CCL11, (B) IL-5, (C) IL-13, (D) IL-33 and (E) mMCP1 in the 
intestinal tissue homogenates were measured by ELISA. Each symbol represents an 
individual mouse. The data are collected from three independent experiments. * p<0.05. , ** 
p<0.01. 
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Figure 16: Similar number of mast cells in the inflamed intestinal tissues of WT and 
CCR8 KO mice. WT mice and CCR8 KO mice (n=3) were i.p. sensitized with OVA plus 
ALUM, and fed EW diet for 7 days. The jejunums were harvested from the mice, fixed in 4% 
paraformaldehyde, and embedded in paraffin. The tissues were cut and stained with toluidine 
blue. The numbers of stained mast cells in the tissues were counted under microscope. (A) 
Mast cells in jejunum. (B) Number of mast cells in muscle-submucosa and mucosa. 
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5. Chapter 2: The role of mast cells in the development of AE. 
5.1. A short introduction 

Mast cells play a crucial role in the development of  allergic disease (Bonnekoh et al., 

2018; Bischoff et al., 2000). Not only because of the broad range of mediators 

released from their granules, but also newly synthetized cytokines and chemokines 

(Burks et al., 2012; Renz et al., 2018; Morita et al., 2013). 

In the previous section, it was found that gene expression of CCL1 was up-regulated 

in the jejunum of AE mice (see Fig. 2). Notably, CCL1 binds only to CCR8 (Karin, 

2018). Mast cells have been reported to be the main producers of CCL1 in the lung 

of patients with allergic asthma and asthmatic mice (Gonzalo et al., 2007). An 

increased number of mast cells in intestinal tissues of OVA/EW mice was observed 

(Fig. 16). Taking together, it suggests an involvement of mast cells in the 

development of AE. To investigate whether and how mast cells are involved in the 

AE, two different types of mast cell deficient mouse strains i.e. KITw-sh/w-sh mice and 

CreMaster mice were used. 

KITw-sh/w-sh mice carry spontaneous mutations at both alleles of the dominant white 

spotting (W) locus, generating a marked reduction in c-kit signaling, that is traduced 

in a mast cell deficiency (Grimbaldeston et al., 2005; Wolters et al., 2005; Lyon and 

Glenister, 1982). Cre-mediated mast cell eradication (CreMaster) mice (C.129P2-

Cpa3tm3(icre)Hrr) were generated using a Knock-in strategy to induce the Cre 

recombinase expression, deleting 28 nucleotides of the first exon of the Cpa3 

promoter by homologous recombination in ES cells (Feyerabend et al., 2011). This 

promoter encodes for the mast cell associated protease CPA3. The heterozygous 

mice (Cpa3Cre/+) show an almost complete lack of mast cells, probably due an Cre-

induced genotoxicity, but a normal immune system (Feyerabend et al., 2011; Galli et 

al., 2015). 

5.2. Results 

5.2.1. Mast cell deficiency abolished the development of clinical symptoms 

In order to assess the role of mast cells in development of clinical symptoms and 

inflammation in AE, WT, KITw-sh/w-sh, or CreMaster mice received i.p. sensitization 

with OVA plus ALUM and challenge with EW diet (see immunization schedule in Fig. 
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3). OVA/EW WT mice exhibited drop in body temperature (Fig 17), weight loss (Fig 

18) and ruffled hair (data not shown) during EW-diet for 7 days. In contrast, OVA/EW 

CreMaster mice and OVA/EW KITw-sh/w-sh mice did not exhibit such clinical symptoms 

(Fig. 17 and 18). The results suggest that mast cells play an essential role in the 

development of clinical symptoms in experimental AE. 
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Figure 17: Abolished body weight loss in mast cell deficient mice. WT, KITw-sh/w-sh and 
CreMaster mice were i.p. sensitized with OVA plus ALUM, or treated only with PBS, and fed 
EW-diet for up to 28 days. The body weight was measured and represented as percentage 
of that on day 0 of EW diet. OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-
sensitized and EW-diet fed. * p<0.05, ** p<0.01. 
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Figure 18: Abolished reduction in body temperatures in mast cell deficient mice. WT, 
KITw-sh/w-sh and CreMaster mice were i.p. sensitized with OVA plus ALUM, or treated only with 
PBS on 7 days of EW-diet. Body weight was measured using a microprobe thermometer. 
OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and EW-diet fed. * 
p<0.05, ** p<0.01 

 
To verify the mast cell deficiency in KITw-sh/w-sh and CreMaster, toluidine blue staining 

of the jejuna samples from the mice was performed (Fig 19A). The number of mast 

cells was increased in OVA/EW WT mice in comparison with NC/EW mice, whereas 

in both OVA/EW and NC/EW groups of KITw-sh/w-sh, and CreMaster mice showed 

nearly no mast cells in the tissues (Fig 19A and Fig 19B). In addition, mMCP-1 a 

mast cell activation marker, that has been associated to the gastrointestinal 

manifestations of food allergies in several murine models (Benedé and Berin, 2018; 

Vaali et al., 2005), was not detectable in in both mast cell deficient mice (Fig. 20). 
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The results suggest that mast cells are not increased in KITw-sh/w-sh, and CreMaster 

mice by OVA sensitization and EW diet feeding. 

 

 
Figure 19: Reduced number of mast cells in mast cell deficient mice. WT, KITw-sh/w-sh and 
CreMaster mice were i.p. sensitized with OVA plus ALUM, and fed EW diet for 7 days. The 
jejunums were harvested from the mice, and stained with toluidine blue. The numbers of 
stained cells in the tissues were counted under microscope. (A) Images of stained jejunum of 
mice. (B) Number of mast cells in muscle-submucosa and mucosa in the jejunums of mice. 
OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and EW-diet fed.  
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Figure 20: Reduced expression of mMCP1 in mast cell deficient mice. WT, KITw-sh/w-sh 
and CreMaster mice were i.p. sensitized with OVA plus ALUM, or non-sensitized and fed 
EW-diet for 7 days. The concentrations mMCP1 in their (A) sera and (B) intestinal tissue 
homogenates were measured by ELISA. Each symbol represents an individual mouse. 
OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and EW-diet fed. * 
p<0.05, ** p<0.01 

 
5.2.2. Mast cell deficiency results in reduced development of AE 

Next, the development of AE in mast cell deficient mice by histological analysis was 

assessed. H&E-stained small intestines, in particular jejunums showed that, OVA/EW 

WT mice and OVA/EW CreMaster mice developed inflammation, which is 

characterized by irregular villi, crypt elongation, goblet cell hyperplasia and 

accumulation of granulocytes in the lamina propria (Fig. 21). In contrast, OVA/EW 

KITw-sh/w-sh mice did not develop inflammatory features in their intestines (Fig. 22). 

The assessment of the histology scores showed that inflammatory levels of OVA/EW 

WT mice were significantly higher than those of OVA/EW CreMaster mice, and KITw-

sh/w-sh mice. NC/EW mice did not develop intestinal inflammation in all strains. The 

results suggest that mast cells are dispensable for development of AE. 
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Table 5. Assessment of inflammation levels in WT and Mast cell deficient mice 
Group Inflammation Villi Edema Total 

WT (OVA/EW) 3.75**(1),**(２),**(4)± 0.5 0.75 ± 0.5 0.75 ± 0.5 5.25**(1),**(２), **(4)± 1.5 

WT (NC/EW) 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 

CreMaster (OVA/EW) 2.29**(3) ± 1.0 0.29 ± 0.5 0.71 ± 0.5 3.29**(3) ± 0.8 

CreMaster (NC/EW) 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 

KITw-sh/w-sh (OVA/EW) 1.75**(5) ± 1.5 0.00 ± 0.0 0.75 ± 0.5 2.50**(5) ± 1.3 

KITw-sh/w-sh (NC/EW) 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 
 
WT, CreMaster and KITw-sh/w-sh mice were i.p. sensitized with OVA plus ALUM, or treated only 
with PBS, and fed EW-diet for 7 days. The jejunums were harvested from the mice, and 
inflammation levels in the tissues were assessed. The total histological score represents the 
sum of the inflammation grade, villi and edema score. The score ranges from 0 to 6 (total 
score = I + V + E). OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and 
EW-diet fed. * p<0.05, ** p<0.01. (1) vs WT (NC/EW); (2) vs CreMaster (OVA/EW); (3) vs 
CreMaster (NC/EW); (4) vs KITw-sh/w-sh   (OVA/EW); (5) vs  KITw-sh/w-sh (NC/EW) 

 

 



5. Chapter 2: The role of mast cells in the development of AE 
 

61 
 

 

Figure 21: Development of AE in CreMaster mice. WT and CreMaster mice were i.p. 
sensitized with OVA plus ALUM, or treated only with PBS, and fed EW-diet for 7 days. The 
jejunums were harvested from the mice, and stained with H&E. All images were taken in the 
same magnification. OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and 
EW-diet fed. The data are representative for three independent experiments. 
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Figure 22: Abolished development of AE in KITw-sh/w-sh mice. WT and KITw-sh/w-sh mice 
were i.p. sensitized with OVA plus ALUM, or treated only with PBS, and fed EW-diet for 7 
days. The jejunums were harvested from the mice, and stained with H&E. All images were 
taken in the same magnification. OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-
sensitized and EW-diet fed. The data are representative for three independent experiments. 
 
5.2.3. Mast cell deficiency reduced accumulation of eosinophils in AE tissues. 

To assess whether the mast cell deficiency influences the types of accumulating cells 

in AE tissues of OVA/EW CreMaster mice and KITw-sh/w-sh mice, FACS analysis of 

intestinal lamina propria cells was performed. The frequency of granulocytes (CD45+) 
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in intestinal lamina propria was comparable between all mouse strains. In addition, a 

decreased frequency of eosinophils (SiglecF+ CD11b- cells) and a similar frequency 

of neutrophils (Ly6G+ CD11b+ SiglecF- cells) in the lamina propria leukocytes (CD45+ 

cells) were observed in OVA/EW CreMaster mice, when compared to those in 

OVA/EW WT mice (Fig. 23). In case of OVA/EW KITw-sh/w-sh mice, the frequency of 

both eosinophils and neutrophils were significantly reduced (Fig. 24). The result 

suggests mast cell play a crucial role in recruitment of eosinophils, but not of 

neutrophils.  

 
Figure 23: Reduced frequency of eosinophils and similar frequency of neutrophils in 
the inflamed intestinal tissues of CreMaster mice. WT and CreMaster mice (n=4/group) 
were sensitized with OVA plus ALUM, and fed EW-diet for 7 days. The jejunums were 
harvested from the mice, and subjected to enzymatic treatment for preparation of lamina 
propria cells. The frequency of CD45+ cells in lamina propria cells, and the frequency of 
eosinophils (SiglecF+ CD11b- cells) and neutrophils (Ly6G+ CD11b+ SiglecF- cells) in CD45+ 
cells population were determined by FACS. The data are representative for three 
independent experiments. * p<0.05, ** p<0.01 
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Figure 24: Reduced frequency of eosinophils and neutrophils in the intestinal tissues 
of KITw-sh/w-sh mice. WT and KITw-sh/w-sh mice (n=4/group) were sensitized with OVA plus 
ALUM, and fed EW-diet for 7 days. The jejunums were harvested from the mice, and 
subjected to enzymatic treatment for preparation of lamina propria cells. The frequency of 
CD45+ cells in lamina propria cells, and the frequency of eosinophils (SiglecF+ CD11b- cells) 
and neutrophils (Ly6G+ CD11b+ SiglecF- cells) in CD45+ cells population were determined by 
FACS. The data are representative for three independent experiments. * p<0.05, ** p<0.01 
 

5.2.4. Mast cell deficiency affected the frequency of CD4+T cell frequency but 
not the antibody development.  

Next, whether mast cell deficiency has an influence on T cell responses was 

assessed. The frequencies of CD4+ T-cells in MLNs were enhanced in OVA/EW 

Cremaster and OVA/EW KITw-sh/w-sh mice in comparison with OVA/EW WT, whereas 

those in spleens were comparable among the groups (Fig 25). In contrast, the 

frequency of Treg cells (CD4+ CD25+ Fox p 3+ cells) in spleens was reduced in 

OVA/EW Cremaster and OVA/EW KITw-sh/w-sh mice, in comparison with OVA/EW WT, 

whereas frequencies in spleens were comparable among the groups.  
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Figure 25: Altered T-cell frequency in in mast cell deficient mice. WT, CreMaster and 
KITw-sh/w-sh Mice (n=4-5/group) were sensitized with OVA plus ALUM and fed EW-diet for 
7 days, and mesentric lymph nodes (MLNs) and spleens were harvested from them. The 
frequency of CD4+ T-cells in the tissues of (A) CreMaster and (B) KITw-sh/w-sh , as well as the 
frequency of Treg (CD4+ CD25+ Fox p3+) cells in the tissues of (C) CreMaster and (D) KITw-

sh/w-sh in were determined by FACS. The data are pooled of three independent experiments 
using n=2-4/group. * p<0.05, **p<0.01 
 

One of the most potent chemoattractants for eosinophils is IL-5. Th2 cells are a main 

IL-5 producing cell type. To see if mast cell deficiency affects the development of Th2 

cells, T-cell and antibody responses in the mice were assessed. MLN-derived T-cells 

from OVA/EW CreMaster mice and OVA/EW KITw-sh/w-sh mice produced IL-4 and IL-5 

at similar levels, when compared to those from OVA/EW WT mice (Fig. 26). In 

addition, there were no statistical differences in serum levels of OVA-specific IgE, 

IgG1, and IgG2a antibodies between OVA/EW WT mice and OVA/EW CreMaster 

mice (Fig. 27). Serum levels of OVA-specific IgE and IgG1 antibodies in OVA/EW 

KITw-sh/w-sh mice tended to be lower than OVA/EW WT mice, although serum levels of 

OVA-specific IgG2a antibodies were not different between these mice (Fig. 28). IgE 

and IgG1 are antibodies induced by the Th2 cytokine IL-4, whereas IgG2a is 



5. Chapter 2: The role of mast cells in the development of AE 
 

66 
 

antibody induced by the Th1 cytokine IFN-γ. These results suggest that (i) WT mice 

and CreMaster mice developed systemic Th2 cells at similar levels upon OVA 

sensitization and EW diet feeding, and (ii) the development of systemic Th2 immune 

responses was partly defective in OVA/EW KITw-sh/w-sh mice, but it does not 

significantly affect IL-4 and IL-5 production in CD4+ T-cells.  
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Figure 26: Th2 cytokine production by T-cells in mast cell deficient mice. WT, CreMaster and KitW-sh/Ws-sh mice (n=4-5/group) were sensitized with 
OVA plus ALUM and fed EW-diet for 7 days. (A) Mesenteric lymph node (MLN) cells and (B) splenocytes derived from CreMaster mice (1-2) and KITw-sh/w-

sh mice (3-4) were cultured in wells coated with anti-CD3 mAb. Concentrations of IL-4 and IL5 in the cell culture supernatants 72 hrs. after stimulation  
were measured by ELISA.  
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Figure 27: No variation in the levels of OVA-specific antibody production in WT and 
CreMaster mice. WT and CreMaster mice (n=4-5/group) were i.p. sensitized with OVA plus 
ALUM, and fed EW-diet for 7 days. The serum levels of (A) IgE, (B) IgG1 and (C) IgG2a Abs 
specific for OVA on days -7 and 7 of EW-diet were measured by ELISA. Each symbol 
represents an individual mouse. The data are pooled of three independent experiments. * 
p<0.05, ** p<0.01 
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Figure 28: No variation in the levels of OVA-specific antibody production in WT and 
KITw-sh/w-sh mice. WT and KITw-sh/w-sh mice (n=4-5/group) were i.p. sensitized with OVA plus 
ALUM, and fed EW-diet for 7 days. The serum levels of (A) IgE, (B) IgG1 and (C) IgG2a Abs 
specific for OVA on days -7 and 7 of EW-diet were measured by ELISA. Each symbol 
represents an individual mouse. The data are pooled of three independent experiments. * 
p<0.05, ** p<0.01 

 

5.2.5. Mast cell deficiency partly reduced CCL11 concentration in AE tissues 

FACS analysis showed reduction in the frequency of eosinophils in the AE tissues of 

OVA/EW mast cell deficient mice (Fig X). To get insight into mechanism for the 

reduced frequency of eosinophils in mast cell deficient mice, we assessed the protein 

concentrations of several eosinophil chemoattractants, e.g. CCL11 and IL-5, and 

other Th2 and inflammatory cytokines (Fig 29 and Fig 30).  

CCL11 and IL-5 concentrations in the homogenates of OVA/EW Cremaster mice 

tended to be lower (Fig 29A) when compared to WT mice.  In addition, CCL11 

concentrations were significantly reduced in the homogenates of OVA/EW KITw-sh/w-sh 

mice (Fig 30A). These results suggest that the mast cell deficiency influences, at 
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least partly the expression of CCL11 in the jejunum of AE mice. In addition, when 

compared to those in WT mice, (i) the concentrations of Th2 type cytokines (IL-4 and 

IL-13) were similar (Fig. 29 B, E), and (ii) the concentrations of IFN-g, IL-6 and IL-10 

tended to be higher in OVA/EW CreMaster mice (Fig. 29 D, F-G). However, IL-13 

concentrations were rather higher, whereas IL-10 concentrations were lower in 

OVA/EW KITw-sh/w-sh mice (Fig. 30E-F), although the concentrations of other cytokines 

were similar.   

 

 

 

 



5. Chapter 2: The role of mast cells in the development of AE 
 

71 
 

0

1 0 0

2 0 0

3 0 0
C

C
L

1
1

 (
p

g
/m

l)
*

E W -fe e d in g  (7  d a y s )

0

2 0

4 0

6 0

8 0

IL
-5

 (
p

g
/m

l)

E W -fe e d in g  (7  d a y s )

*

0

1 0

2 0

3 0

4 0

5 0

IL
-4

 (
p

g
/m

l)

E W -fe e d in g  (7  d a y s )

0

1 0 0

2 0 0

3 0 0

4 0 0

IL
-6

 (
p

g
/m

l)

E W -fe e d in g  (7  d a y s )

0

2

4

6

8

1 0

IL
-1

3
 (

p
g

/m
l)

E W -fe e d in g  (7  d a y s )

0

1 0 0

2 0 0

3 0 0

IL
-1

0
 (

p
g

/m
l)

E W -fe e d in g  (7  d a y s )

0

1 0 0

2 0 0

3 0 0

4 0 0

IF
N

-g
(p

g
/m

l)

E W -fe e d in g  (7  d a y s )

W T  (O V A /E W )

C re M a s te r  (O V A /E W )

W T  (N C /E W )

C re M a s te r  (N C /E W )

A B

C D

E F

G

 

Figure 29: CCL11 expression tends to reduce in the inflamed intestinal tissues of 
CreMaster mice. WT and CreMaster mice (n=4-5/group) were i.p. sensitized with OVA plus 
ALUM, or non-sensitized and fed EW-diet for 7 days. Small intestines were harvested from 
the mice. The concentrations of (A) CCL11, (B) IL-4, (C) IL-5, (D) IL-6, (E) IL-13, (F) IL-10 
and (G) IFN-γ in the intestinal tissue homogenates were measured by ELISA. Each symbol 
represents an individual mouse. The data are pooled of three independent experiments. * 
p<0.05. 
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Figure 30: Reduced CCL11 expression but similar cytokine production in the inflamed 
intestinal tissues of KITw-sh/w-sh mice. WT and KITw-sh/w-sh mice (n=4-5/group)  were i.p. 
sensitized with OVA plus ALUM, or non-sensitized, and fed EW-diet for 7 days. Small 
intestines were harvested from the mice. The concentrations of (A) CCL11, (B) IL-4, (C) IL-5, 
(D) IL-6, (E) IL-13, (F) IL-10 and （G）IFN-γ in the intestinal tissue homogenates were 
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measured by ELISA. Each symbol represents an individual mouse. The data are pooled of 
three independent experiments. * p<0.05. 
 

5.2.6. Mast cells are the main producer of CCL1 in AE tissues  

A previous study showed that mast cells are the main producer of CCL1 (chemokine 

that specifically recognize CCR8) in human and murine lungs (Gonzalo et al., 2007). 

To evaluate whether this is the case in AE, the concentrations of CCL1 and CCL8 in 

the intestinal homogenates of mast cell deficient mice were determined by ELISA. 

The concentrations of CCL1 in OVA/EW mast cell deficient mice were significantly 

lower than those in OVA/EW WT mice (Fig. 31). There was nearly no difference in 

the concentrations of CCL8 between OVA/EW WT mice and mast cell deficient 

mouse strains. The results suggest that mast cells are a main producer of CCL1, but 

not CCL8 in the inflamed tissues of AE mice.  

 

 

 

 

 

 

 

 

 
Figure 31: Reduced CCL1 but similar CCL8 protein expression in the jejunum of mast 
cell deficient mice. WT, CreMaster and KITw-sh/w-sh mice (n=4-5/group) were sensitized with 
OVA plus ALUM and fed EW-diet for 7 days. the concentration of (A and C) CCL1 and (B 
and D) CCL8 in homogenates of their intestinal tissues were measured by ELISA * p<0.05., 
**p<0.01. 
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6. Chapter 3: The role of IgE in the exacerbation of AE 

6.1. A short introduction 

The role of IgE in allergic reactions has been extensively studied and it is very well 

known. As commented before, this roll is mainly as consequence of the IgE 

production by B cells that is then bond to the FcɛRI expressed on the cell surface of 

mast cells and basophils (Burks et al., 2012; Ho et al., 2014; Laffleur et al., 2017). 

After exposure with the eliciting allergen, the allergen-FcɛRI engagement activates 

mast cells and basophils. Mast cells and basophils release mediators contained in 

their granules or newly synthetized mediators that generate physiological reactions 

like vasodilatation, mucus secretion, smoot muscle contraction, increased vascular 

permeability, and influx of other inflammatory cells (Burks et al., 2012; Renz et al., 

2018; Morita et al., 2013).  

While these statements are true in IgE-mediated type I allergy, the role of IgE in the 

exacerbation of AE is not well understood. Despite AE is described as T-cell 

mediated allergy, patients with AE often develop IgE during the course of the 

pathology  (Burks et al., 2012; Kim and Burks, 2015; Ruffner et al., 2013; Caubet et 

al., 2014; Katz et al., 2011; Hwang et al., 2009). It has been reported that AE patients 

with  high levels of specific IgE to the offending food presented a prolonged  allergy 

and even developed a IgE-mediated systemic reaction over the time (Nowak-

Wegrzyn et al., 2003; Sicherer, 2005; Caubet et al., 2014). Based on the background 

the role of IgE in the development of AE was investigated. To this end, IgEki mice 

were used. The homozygous IgEki mice are able to express 10-fold higher total IgE 

and a complete absence of IgG1 in comparison with WT, as a consequence of the 

replacement of exons encoding for the soluble part of the constant region of the 

murine IgG1 with the IgE counterpart (Lubben et al., 2013).  

6.2. Results 

6.2.1. OVA-specific antibody responses by IgEki mice  

To assess whether allergen-specific IgE production is enhanced in IgEki mice, the 

levels of OVA specific IgE, IgG1 and IgG2a antibodies in IgEki mice were determined 

by ELISA. As expected, IgEki mice showed highly enhanced IgE levels after the 

sensitization and feeding of EW-diet (Fig 32A). In IgEki mice was not observed 
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production of OVA specific IgG1 as consequence of the genetic modification (Fig 

32B). Interestingly, an enhanced production of OVA specific IgG2a antibodies after 

the sensitization with OVA (-7 days) that was maintained after the EW-diet (+7 days) 

was observed in IgEki mice (Fig 32C). 

The levels of mMCP1 in the mice were also measured. The concentrations of 

mMCP1 in IgEki mice tended to be higher than those in WT mice, although it was not 

statistically significant (Fig 32D). 
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Figure 32: IgEki mice enhanced levels of OVA-specific IgE and IgG2a antibodies but 
did not produce OVA-specific IgG1 antibodies. WT and IgEki mice ((n=4-5)) were i.p. 
sensitized with OVA plus ALUM, and fed EW-diet for 7 days. The serum levels of (A) IgE, (B) 
IgG1 and (C) IgG2a Abs specific for OVA and (D) mMCP1 on days -7 and 7 of EW-diet were 
measured by ELISA. Each symbol represents an individual mouse. The data are pooled of 
three independent experiments. * p<0.05, ** p<0.01. 

6.2.2. Enhanced IgE expression promoted the development of clinical 
symptoms  

WT and IgEki mice were sensitized with OVA and Alum, and challenged with an EW-

diet as described. OVA/EW IgEki mice developed significantly stronger clinical 

symptoms, i.e. reduction in body weight (Fig. 33) and drop of body temperature (Fig. 
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34) during 7 days of continues feeding with EW-diet, when compared to OVA/EW WT 

mice and NC/EW controls.  
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Figure 33: High reduction in body weight of IgEki mice. WT and IgEki mice (n=4-5/group) 
were i.p. sensitized with OVA plus ALUM, or treated only with PBS, and fed EW-diet for up to 
9 days. The body weight was measured daily and presented as percentage of the initial 
weight. OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and EW-diet fed. 
* p<0.05, ** p<0.01 
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Figure 34: Enhanced body temperature drop in IgEki mice on 7 days of EW-diet. WT 

and IgEki mice (n=4-5/group) were i.p. sensitized with OVA plus ALUM, or treated only with 
PBS. Body weight was measured using a microprobe thermometer. OVA/EW; OVA-
sensitized and EW-diet fed, NC/EW; non-sensitized and EW-diet fed. * p<0.05, ** p<0.01 

To assess the influence of IgE on the number of mast cells in intestinal tissue, 

jejunum tissues from the mice were stained with toluidine blue (Fig. 35A). There was 

no difference in the mast cell number between WT OVA/EW mice and IgEki OVA/EW 
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mice. In addition, concentrations of mMCP-1 (mast cell activation marker) in the 

intestinal tissue homogenates were comparable between the mouse strains (Fig. 

35B).  

 

Figure 35: No difference in the number of mast cells in the inflamed intestinal tissues 
of IgEki and WT mice. WT and IgEki mice were i.p. sensitized with OVA plus ALUM, and 
fed EW diet for 7 days. The jejunums were harvested from the mice, fixed in 4% 
paraformaldehyde, and embedded in paraffin. The tissues were cut and stained with toluidine 
blue. The numbers of stained mast cells in (A) jejunum and (B) in muscle-submucosa and 
mucosa were counted under the microscope. (C) The concentrations of mMCP-1 in the 
intestinal homogenates of the mice. 

6.2.3. Enhanced IgE expression promoted the development of AE 

Next, histological analysis to assess development of AE in IgE Ki mice was 

performed. OVA/EW IgEki mice developed inflammation in the intestine as a 

consequence of the treatment (Fig. 36 and table 6). The animals showed dilated 

intestines and atrophy of the villi with edema in the lamina propria more visibly, when 
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compared to OVA/EW WT mice. In addition, OVA/EW IgEki mice showed mildly 

elongated crypts. Their mucosa was lined by abundant hypertrophic goblet cells and 

Paneth cells were observed in the crypts. In addition, large numbers of neutrophils 

and eosinophils were infiltrated in the lamina propria of OVA/EW IgEki mice. It’s 

important to notice that a small degree of inflammation was observed in the NC/EW 

IgEki mice.  

 
Figure 36: Development of AE in IgEki mice. WT mice and IgEki mice were i.p. sensitized 
with OVA plus ALUM, or treated only with PBS, and fed EW-diet for 7 days. The jejunums 
were harvested from the mice, and stained with H&E. All images were taken in same 
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magnification. OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and EW-
diet fed. The data are representative for three independent experiments. 

 

Table 6. Assessment of inflammation levels in WT and IgEki mice 
Group Inflammation Villi Edema Total 

WT (OVA/EW) 3.75**(1)± 0.5 0.75 ± 0.5 0.75 ± 0.5 5.25**(1) ± 1.5 

WT (NC/EW) 0.00 ± 0.0 0.00 ± 0.0 0.00 ± 0.0 0.00* ± 0.0 

IgEki (OVA/EW) 4**(3) ± 0.0 0.80 ± 0.5 0.60 ± 0.6 5.40**(3) ± 0.5 

IgEki (NC/EW) 1.33*(1) ± 0.6 0.00 ± 0.0 0.00 ± 0.0 1.33**(1) ± 0.5 
 
WT and IgEki mice were i.p. sensitized with OVA plus ALUM, or treated only with PBS, and 
fed EW-diet for 7 days. The jejunums were harvested from the mice, and Inflammation levels 
in the tissues were assessed. The total histological score represents the sum of the 
inflammation grade, villi and edema score. Score ranges from 0 to 6 (total score = I + V + E). 
OVA/EW; OVA-sensitized and EW-diet fed, NC/EW; non-sensitized and EW-diet fed. * 
p<0.05, ** p<0.01. (1) vs WT (NC/EW); (2) vs IgEki (OVA/EW); (3) vs IgEki (NC/EW). 

 
6.2.4. Enhanced IgE expression promoted accumulation of eosinophils and 
neutrophils in AE tissues 

To verify the results of histological analysis, FACS analysis using intestinal lamina 

propria cells isolated from the mice was performed. Consistent with histological 

analysis, the frequency of eosinophils (SiglecF+ CD11b-) and neutrophils (Ly6G+ 

CD11b+) in the lamina propria CD45+ cells were significantly enhanced in IgEki 

OVA/EW mice, compared to WT OVA/EW mice (Fig. 36). The results suggest an 

involvement of IgE in the eosinophil and neutrophil migration to the inflamed tissues 

in AE. 
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Figure 37: Enhanced frequency of eosinophils and neutrophils in the inflamed 
intestinal tissues of IgEki mice. WT and IgEki mice (n=4/group) were sensitized with OVA 
plus ALUM, and fed EW-diet for 7 days. The jejunums were harvested from the mice, and 
subjected to enzymatic treatment for preparation of lamina propria cells. The frequency of 
CD45+ cells in lamina propria cells, and the frequency of eosinophils (SiglecF+ CD11b- cells) 
and neutrophils (Ly6G+ CD11b+) in CD45+ cells population were determined by FACS. The 
data are representative for three independent experiments. * p<0.05, ** p<0.01 
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7. Discussion 
 

7.1. The role of CCR8 in the development of AE.  
 

Eosinophils have long been observed in the inflamed tissues of allergic patients and 

have been proven to be therapeutic targets in allergic diseases (Davoine and Lacy, 

2014; Vieira et al., 2009). Therefore, it is essential to identify which chemokine 

receptor and its ligands contribute to the migration of eosinophils to sites of allergic 

inflammation. CCR3/CCL11 and IL-5 receptor/IL-5 are well known to act in eosinophil 

migration to peripheral tissues, including the gastrointestinal tract (Jung and 

Rothenberg, 2014; Palmqvist et al., 2007). In the present study, an engagement of 

CCR8 in eosinophil migration to the inflamed AE tissues was found. However, unlike 

CCR3 and IL-5R, CCR8 seems to be only indirectly involved in eosinophil migration 

by inducing CCL11 expression. This finding is consistent with a previous study by 

Islam et al showing that CCL11 expression was reduced in the skin of allergen-

sensitized CCR8KO mice (Islam and Luster, 2012). Furthermore, it was found that 

CCR8 deficiency influences neutrophil migration. CCR8KO mice showed increased 

neutrophil accumulation and developed AE, although eosinophil accumulation in the 

intestinal tissues was reduced. There is increasing evidence that neutrophils play an 

important role in the pathogenesis of allergic inflammation by mediating direct tissue 

injury or by releasing pro-inflammatory mediators (Tecchio et al., 2014). Increased 

neutrophil numbers have also been detected in AE patients (Czerwionka-Szaflarska 

et al., 2017). The potential of CCR8 antagonists has been considered to treat allergic 

asthma, since several studies have shown a role for CCR8 in the recruitment of Th2 

cells and in the development of inflammation in murine models of allergic asthma 

(Mikhak et al., 2009; Wang et al., 2013; Pease, 2010). However, the results of this 

project suggest that CCR8 is not a suitable target in AE treatment (Fig. 8-11).  

Diverse roles for CCR8 in allergic asthma have been reported so far: e.g., 

involvement in the development of systemic Th2-type immune response and 

migration of Th2 cells, or regulatory T-cells, into the inflamed airway tissues (Nguyen 

et al., 2009; Mutalithas et al., 2010; Bishop and Lloyd, 2003). Using models of 

Schistosoma mansoni soluble egg antigen-induced granuloma formation, as well as 

OVA and cockroach antigen-induced asthma, Chensue et al have shown that 
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eosinophil recruitment is reduced in CCR8KO mice (Chensue et al., 2001). This 

reduction in eosinophil recruitment in inflamed airway tissues was explained by a 

systemic reduction in IL-5 concentration due to defective development of Th2-type 

immune responses. Islam et al have shown that CCR8 recruits IL-5 expressing Th2 

cells in atopic dermatitis using CCR8KO mice (Islam et al., 2011). However, in this 

thesis the IL-5 production in splenic and MLN T-cells from OVA/EW WT and 

OVA/EW CCR8KO mice were not significantly different. In addition, IL-5 

concentrations in intestinal tissue homogenates of both mice were not statistically 

different. There was no difference in the the frequency of regulatory T-cells in spleens 

and MLNs of both mice (see fig. 13). These results suggest that a defect in systemic 

Th2-type immune response or induction of regulatory T-cells is not the main 

mechanism underlying reduced eosinophil accumulation in the inflamed tissues of 

CCR8KO mice. 

Several studies have shown that histamine released from mast cells induces CCL11 

expression in epithelial cells of allergen-challenged skin and lung. However, it is very 

unlikely that CCR8 is involved in mast cell activation and, subsequently, in CCL11 

expression by epithelial cells. This postulation is supported by the fact that the 

number of mast cells and the concentration of mMCP1, a marker of mast cell 

activation, showed no statistical difference in intestinal tissues of OVA/EW WT and 

OVA/EW CCR8KO mice. In addition to epithelial cells, type 2 innate lymphoid cells 

(ILC2) could be a source of CCL11 (Lee et al., 2015). ILC2 have been associated 

with the allergic sensitization to foods due to their capacity to produce high amounts 

of IL-5 and IL-13 in intestinal mucosa (Burton et al., 2018). IL-33 has been reported 

to induce activation of ILC2 (Burton et al., 2018; Geremia and Arancibia-Cárcamo, 

2017). However, it is also unlikely that CCR8 influences the induction or activation of 

ILC2, since the concentrations of IL-5, IL-13, and IL-33, which are associated with 

ILC2 activation and function, were not statistically significant between the intestinal 

tissue homogenates of OVA/EW WT and OVA/EW CCR8KO mice (see Fig. 15). 

Alternatively, intestinal macrophages could act as CCL11 producing cells. Waddell et 

al showed that F4/80 positive cells are the producer of CCL11 in inflamed colon using 

a murine model of colitis (Waddell et al., 2011). In this thesis, it was found that 

OVA/EW WT mice exhibited higher numbers of macrophages (CD68 positive cells) in 

villi of their small intestines, compared to OVA/EW CCR8KO mice (Fig. S1). 
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However, immunohistochemically analysis showed that the CD68 positive cells do 

not express CCR8 (Fig. S2). These results suggest that intestinal macrophages do 

not have a direct CCR8 engagement in AE. CCL11 producing cells in the inflamed 

small intestines still need to be identified.  

It was unexpected that CCR8 deficiency accelerated neutrophil accumulation in the 

intestinal tissues (Fig. 10 and Fig. 11). In studies on allergic asthma using CCR8KO 

mice, such accelerated neutrophil accumulation has not been reported. CCR8 

deficiency might enhance expression of neutrophil chemoattractants, such as IL-8, 

leukotriene B4 (LTB4), and formyl-methionyl-leucyl-phenylalanine (fMLP), in intestinal 

tissues. The accelerated neutrophil accumulation may also be explained by a 

consequence of higher growth factor availability due to the reduced accumulation of 

eosinophils in CCR8KO mice. For instance, granulocyte-macrophage colony-

stimulating factor stimulates both eosinophils and neutrophils and enhances survival 

of these cells (Pitrak, 1997; Esnault and Kelly, 2016).  Interestingly, Cheng et al have 

shown that CCL11 expression counter-regulates accumulation of neutrophils in a 

murine model of endotoxemia. This finding suggests that reduced CCL11 expression 

could lead to the enhanced neutrophil accumulation in the intestinal tissues of 

OVA/EW CCR8KO mice (Pitrak, 1997). 

OVA/EW CCR8KO mice tended to exhibit lower levels of clinical symptoms, i.e. 

reduction of body weight and temperature, compared to OVA/EW WT mice (Fig. 6 

and Fig. 7). The development of clinical symptoms upon i.p. sensitization with OVA 

and feeding of the EW diet is induced by FcεRI-engaged mechanism in BALB/c mice 

(manuscript in preparation, personal communication with Dr. Masako Toda). 

CCR8KO mice showed lower IgE levels before beginning the EW-diet, which could 

explain the lower level of clinical symptoms observed.  

In summary, in this study was identified a chemokine receptor that leads to eosinophil 

recruitment in AE sites. To my knowledge, this is the first study to show a contribution 

of CCR8 in eosinophil recruitment in intestinal tissues. However, the results also 

suggest a potential involvement of CCR8 in the regulation of neutrophil recruitment in 

AE tissues (Fig. 38). In a future study, it would be necessary to assess whether 

CCR8 antagonists enhance neutrophil accumulation in AE.  
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Figure 38: Summary: The role of CCR8 in the development of AE. CCR8 deficiency 
reduced the number of infiltrating eosinophils and CCL11 expression, but enhanced the 
number of neutrophils in the AE tissues. The results suggest that CCR8 is involved in 
eosinophil accumulation in AE tissues by inducing CCL11 expression. 
 

7.2. The role of mast cells in the development of AE 

Mast cells are well recognized as a key player in the induction of type I allergy and 

allergic inflammation including asthma, conjunctivitis and colitis (Jang and Kim, 2015; 

He, 2004). However, their role in the development of AE remained to be investigated. 

Mast cells are able to release a broad spectrum of mediators, depending on cytokine 

milieu, types of stimulus, their localization in the tissues, and many other factors  

(Mukai et al., 2018; Galli et al., 2008). In this study, it was found that mast cells were 

involved in CCL1 and CCL11 expression and eosinophil recruitment in AE. To my 

knowledge, this is the first AE study to use two independent MC-deficient mouse 

models, showing a consistent result about the role of mast cells in eosinophil 

recruitment at AE sites. 

Several studies showed that CCL1 is the predominant chemokine secreted from IgE-

activated human and mouse mast cells (Nakajima et al., 2002; Gonzalo et al., 2007; 

Gombert et al., 2005; Wu et al., 2013), whereas CCL11 is produced by epithelial 

cells, endothelial cells, macrophage, or type 2 innate lymphoid cells (Waddell et al., 

2011; Rothenberg and Hogan, 2006; Matthews et al., 1998; Diny et al., 2016). In this 

study was found that CCL1 production is reduced in both KITw-sh/w-sh mice and 
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CreMaster mice (Fig. 31). The result suggests that mast cells are a main producer of 

CCL1 in AE tissues.  

In the experimental setting of this study, it was not possible to detect expression of 

CCR8, the receptor for CCL1, by eosinophils in intestinal lamina propria cells (data 

not shown) by FACS. This observation suggests that mast cell derived CCL1 recruit 

eosinophils at AE sites indirectly by inducing eosinophil chemoattractant(s), although 

CCR8 might not be detectable on the cell surface of eosinophils by FACS due to 

desensitization (i.e. endocytic internalization by ligand binding) upon engagement 

with CCL1.  

Importantly, as reported in the previous section, CCR8 deficiency also reduced 

CCL11 expression and the number of eosinophils, but not the number of mast cells in 

intestinal tissues (Fig. 19, Fig. 23-24 and Fig. 29-30). A reduction of CCL11 

expression in mast cell deficient mice was also observed. The results suggest that an 

axis of CCR8 and mast cell derived CCL1 leads to CCL11 expression and 

subsequent eosinophil recruitment in AE tissues. Das et al. reported the migration of 

eosinophils to the peritoneal cavity in response to CCL11 and proposed an indirect 

mechanism that involves the resident mast cells, where a reduction of 93% of mast 

cells resulted in a significant reduction of 52% in the number of CCL11-induced 

eosinophil accumulation, while no modulation in the neutrophil infiltration was 

observed (Das et al., 1997; Das et al., 1998). Harris et al. reported similar results 

observing a delayed and reduced eosinophil migration to the peritoneal cavity in mast 

cell deficient mice (WBB6FI/J-KitW/KitW-v (W/W’)), suggesting a role of the mast cells 

in the eosinophil migration potentially through an amplification of the CCL11 effect 

(Harris et al., 1997). In a model of asthma using OVA as a model allergen without 

any adjuvant, Williams et al. showed that mast cells are important in the recruitment 

of eosinophils to the airways, suggesting that mast cells are critical in regulating the 

eosinophil infiltration during allergic inflammation in mice (Williams and Galli, 2000). 

In summary, these data suggest that mast cells are involved in recruiting eosinophils 

in many types of allergic diseases including AE.  

It is noteworthy that the development of AE was abolished in KITw-sh/w-sh mice, but not 

in CreMaster mice. KITw-sh/w-sh mice showed a reduced accumulation of both 

eosinophils and neutrophils, whereas only the accumulation of eosinophils was 

reduced in CreMaster mice. The accumulation of eosinophils is a typical change 
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observed upon microscopically inspection in the majority of patients with AE 

(Czerwionka-Szaflarska et al., 2017; Yagi et al., 2019). In addition, Salinas et al. 

observed infiltrations with neutrophils and eosinophils in the biopsies of their AE 

patients (Sierra Salinas et al., 2006). A severity scale system recently proposed by 

Yagi et al. indicates that the presence of neutrophils in the intestinal biopsies is an 

indicator of a severe course of the disease (grade 3 of 3) (Yagi et al., 2019). These 

results suggest that (i) eosinophils and neutrophils participate in the development of 

AE, and (ii) targeting mast cells or eosinophils is not enough for the treatment of 

allergic enteritis, when neutrophil accumulation is observed at inflammatory sites in 

AE patients.  

Interestingly, it has been reported that the balance between infiltrating cells can 

change during the course of the pathology. For example in the acute phase of AE 

there is higher number of mast cells than eosinophils, that inverts over time (Yagi et 

al., 2019). This suggest that in AE the mast cells play a role in the infiltration of 

eosinophils to the intestine (Shakoory et al., 2004; Sakamoto et al., 1998).  

There are general differences between both mast cell deficient mouse strains. 

CreMaster shows a virtual lack of mast cells in every tissue and a moderate reduction 

of basophils, while the KITw-sh/w-sh affects all the cells in the c-Kit lineage (Feyerabend 

et al., 2011; Galli et al., 2015). These differences may explain the discrepancies 

observed between CreMaster mice and Kit mutant mice in the AE model: i.e. 

KITw−sh/w−sh mice, but not CreMaster mice showed significant reduction in neutrophil 

accumulation and serum levels of IgE and IgG1 antibodies. As well as WBB6F1-

KITW/W−v mice, KITW−sh/W−sh mice had been the most commonly used kit mutant mice 

for studies of mast cell functions in vivo (Galli et al., 2015; Michel et al., 2013). 

However, as commented before mutations of c-Kit also affect additional cells of 

hematopoietic and nonimmune origin (Grimbaldeston et al., 2005; Nigrovic et al., 

2008; Zhou et al., 2007). Michel et al showed that the w-sh mutation broadly affects 

the expression of c-Kit in precursor cells of the myeloid lineage, and accumulate 

Ly6G-expressing cells resemble granulocytic myeloid-derived suppressor cells (G-

MDSC) in spleens (Michel et al., 2013). Transfer of MDSC from naïve w-sh mice into 

line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced 

tumor progression, suggesting that MDSC can exert function as suppressor cells 

(Michel et al., 2013). Such presence of G-MDSC might reduce IgE and IgG1 
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production and neutrophil accumulation in KITW−sh/W−sh mice (Zilio and Serafini, 2016; 

He et al., 2018).  

It may be also needed to consider the impact of c kit mutation on ILCs, that can 

express c-kit in different degrees (Mazzurana et al., 2018; Boyd et al., 2014; Vivier et 

al., 2018; Hochdörfer et al., 2019). Murine lymphoid tissue-inducer cells (LTi) show a 

high expression of c-Kit in comparison with ILC3s that have a weak expression of the 

receptor, while murine ILC1 and ILC2 express c-Kit in some but not all the cell 

subsets (Vivier et al., 2018; Hochdörfer et al., 2019). Considering the fact that a small 

number of ILCs can generate a strong response, the c-Kit mutation could also affect 

the development of ILCs and thereby suppress development of AE in KITW−sh/W−sh 

mice in the AE model as observed in a mouse model of multiple sclerosis (Brown and 

Weinberg, 2018; Russi et al., 2015). In a model of multiple sclerosis, KITw/Wv mice 

showed defects in the ILC2 development, as observed by the failure to increase the 

number of ILC2s in the lymph nodes, spinal cord and brain (Brown and Weinberg, 

2018). ILC2s were found to be related to the development of different allergic 

diseases (Cosmi et al., 2017; Stier and Peebles, 2017; Barlow and McKenzie, 2014). 

A potential involvement of ILC2 in AE needs to be investigated. 

It was striking that both KITW−sh/W−sh mice and CreMaster mice abolished clinical 

symptoms: i.e. weight loss and reduced body temperature nearly completely (Fig. 17 

and Fig. 18). The results indicated that mast cells play an essential role in the 

development of clinical symptoms in the AE model.  These findings are consistent 

with previous studies showing that CreMaster or c-Kit deficient mice exhibited neither 

reduced body temperature nor mortality when subjected to an IgE-dependent model 

of passive systemic anaphylaxis (PSA) (Ando et al., 1993; Lilla et al., 2011; Mekori 

and Galli, 1990). It has been reported that the body temperature reduction in murine 

models of systemic anaphylaxis is controlled by histamine, which is mainly released 

during mast cell degranulation as a consequence of the crosslinking of the FcɛRI on 

the surface of the mast cells with the IgE (Makabe-Kobayashi et al., 2002; Lundius et 

al., 2010; Carlos et al., 2006).  

In summary, in this study was found that mast cells play a crucial role in development 

of both clinical symptoms and AE development. Mast cells produce CCL1, and 

thereby lead to CCL11 expression and subsequent eosinophil recruitment in AE 

tissues (Fig. 39). The results of this study also showed mast cell deficiency did not 
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reduce neutrophil accumulation in the development of AE. These findings will have 

important implications to establish AE treatments that target infiltrating leucocytes in 

AE tissues. 

 
Figure 39: Summary: An important role of mast cells in the development of allergic 
enteritis. Cremaster mice and KITw-sh/w-sh mice showed reduced eosinophil accumulation and 
AE levels in their small intestines. The mast cell deficiency also reduced CCL1 expression 
significantly and CCL11 expression partly in the inflamed tissues. Taken together, these 
results suggest that mast cells trigger CCL11-inducing recruitment of eosinophils and 
development of AE by production of CCL1.      

 
7.3. The role of IgE in exacerbation of AE 

 AE is classified as a non-IgE-mediated food allergy. However, the patients often 

develop IgE against the offending food. Therefore presence of IgE is considered a 

poor prognosis factor associated with a prolonged course of the disease (Caubet et 

al., 2014; Ruffner et al., 2013; Nowak-Węgrzyn et al., 2015; Czerwionka-Szaflarska 

et al., 2017; Ishige et al., 2015). The role of IgE in AE is not well understood in part 

due to the difficult access to tissue samples in humans, but also because of the low 

level of IgE in some patients (Yang et al., 2012; Talay et al., 2012; Hovanec-Burns, 

2006; Elkuch et al., 2017).  

To overcome this problem and evaluate the possible role of IgE in the development 

of AE, IgEki mice (overexpressing IgE) were used (Lubben et al., 2013). The results 
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of this study demonstrated that high levels of allergen-specific IgE enhance the 

development of clinical symptoms i.e. body weight, temperature, and ruffled fur. In 

addition, high levels of allergen-specific IgE enhanced development of AE by 

exacerbating the accumulation of eosinophils as well as neutrophils to the 

inflammatory site (Fig. 36 and Fig. 37). The cells receiving IgE-mediated stimulation 

are mast cells. It is well known that mast cells produce a wide range of chemokines 

including CCL1 upon engagement of FcɛRI (Oliveira and Lukacs, 2001; Matsuda et 

al., 2005; Watanabe et al., 2008). 

Therefore, I postulate that high levels of IgE enhance the expression of chemokines 

produced by mast cells that promote the migration of immune cells to the 

inflammatory site in AE tissues. 

IgE is a survival factor of mast cells. Therefore, it was expected that the number of 

mast cells were enhanced in IgEki mice. Unexpectedly, histological analysis and 

measurement of serum mMCP1 showed that the number of mast cells was not 

statistically different between OVA/EW WT and OVA/EW IgEki mice (Fig. 35). In this 

study, such mast cell related data using OVA-sensitized mice on day 7 of EW diet 

was analyzed. However, the small-scale experiment indicated that the number of 

mast cells is enhanced in IgEki mice when they receive feeding of EW diet more than 

14 days (data was taken by Dr. Toda and are not shown in this thesis). The result 

suggests that IgE could induce persistent AE by enhancing inflammation and the 

number of mast cells in AE sites. A further study using IgEki mice on long-term 

allergenic diet would be required to elucidate a role of IgE in persistent AE more in 

detail.  

In summary, it was found that IgE plays a crucial role in the exacerbation of clinical 

symptoms in AE. IgE promotes migration of eosinophils and neutrophils and may 

thereby be involved in persistent AE (Fig. 40). Attenuating IgE-mediated signals may 

be a potential strategy treatment for persistent AE. My study using mast cell deficient 

mice showed that mast cell-derived CCL1 leads to eosinophil migration into AE 

tissues. It is likely that FcɛRI engagement via IgE-antigen binding promotes CCL1 

production in mast cells and enhances eosinophil migration. However, it is still 

necessary to elucidate how IgE leads to neutrophil migration in AE in the future 

study. 
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Figure 40: Summary: The role of IgE in the development of AE. To evaluate the possible 
role of IgE in the development of allergic enteritis, IgEki mice (overexpress IgE and no IgG1) 
were used. The presence of high levels of allergen-specific IgE enhanced the infiltration of 
eosinophils as well as neutrophils to the inflammatory site and promotes the development of 
AE. 

 

7.4. A proposed model: Molecular and cellular mechanisms of allergic enteritis. 

Taking together the data generated in this study, the following molecular and cellular 

mechanisms for the development of AE are proposed. In the initial stage, mast cells 

in the intestinal lamina propria secrete CCL1 that interacts with the CCR8 on the 

surface of an immune cell not yet identified. This interaction of CCL1 with CCR8 

induces CCL11 secretion that recruits eosinophils to the inflammatory site. I postulate 

that intestinal macrophages are producers of CCL11 as discussed in section 7.1. 

This hypothesis needs to be tested in a further study. Neutrophils migrate in a CCR8-

CCL1 independent mechanism. IgE is an important factor influencing the severity of 

the clinical symptoms and AE. The present study has advanced our knowledge of the 

pathomechanism for AE, and may contribute to establish a novel strategy for the 

treatment of AE. 
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Figure 41: Proposed model: Eosinophils migrate into AE sites by an CCR8-CCL1 axis 
resulting in an induction of CCL11, whereas neutrophils migrate independent of this axis. IgE 
enhances both eosinophil and neutrophil migration. 
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8. Summary 

Food allergies are defined as an adverse health effect arising from a specific 

immune response that occurs reproducibly on exposure to a given food. The 

prevalence of food allergies has increased in the past decade. Epidemiologic 

studies involving controlled food challenges for the diagnosis of food allergies 

indicated that between 1 % to 10.8 % of the population have immune-

mediated non-toxic food hypersensitivity. 

Despite the increasing prevalence, no curative treatment has been 

established for food allergies so far except the complete avoidance of the 

elicited food. To establish safe and effective immunotherapy for food 

allergies, it is of crucially importance to elucidate pathological mechanism of 

such diseases.  

Food allergies are classified into IgE-mediated and non-IgE mediated (T-cell 

mediated) allergies, depending on the immunologic pathways and the role of 

the IgE on the pathogenesis of the disease. Allergic enteritis (AE) is a 

gastrointestinal form of food allergy. It is classified as non-IgE-mediated food 

allergy. However, patients with AE often develop IgE and high levels of IgE 

have been associated with development of persistent AE. The gastrointestinal 

symptoms of AE are nonspecific, resulting in the fact that a broad differential 

diagnoses including diagnostic approaches for allergic diseases are 

necessary to rule out other gastrointestinal pathologies. Biopsies of patients 

with allergic enteritis have shown infiltration of inflammatory cells (e.g. mast 

cells, eosinophils, neutrophils, and T cells) in the lamina propria, disruption of 

intestinal villi, edema, and presence of goblet cells in the intestine.  

It is well known that in allergy as well as in other inflammatory conditions 

immune cells migrate to the inflammatory site due a common process 

controlled by chemokines. Chemokines are a large family of small secreted 

chemotactic proteins of 8 to 12 kD that induce cell migration in homeostasis 

and disease condition. Chemokines exert their activity by binding to a family 
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of specific 7 transmembrane G-protein-coupled surface receptors and are 

classified into four groups depending of the spacing of the N-terminal cysteine 

residues as CXC, CC, C and CX3C (where X is any amino acid). Due to their 

role in the migration of immune cells chemokines and chemokine receptors 

have been an attractive target in drug development for the treatment of 

inflammatory diseases.  

In comparison with other phenotypes of food allergy, the pathomechanism of 

AE is not well characterized. The objective of this study was to elucidate 

cellular and molecular mechanisms of AE using a murine model. A previous 

study of our group showed that gene expressions of CC chemokine receptor 

8 (CCR8) and its ligand, CC chemokine ligand 1 (CCL1, known as I309 in 

human and TCA3 in mice) were up-regulated in inflamed tissues of AE mice. 

CCR8 has been shown to play a role in the pathogenesis of asthma, allergic 

rhinitis and atopic dermatitis. Mast cells have been suggested to produce 

CCL1 in respiratory tissues. However, an involvement of CCR8 and its 

ligands and a role of mast cells in AE remained unclear. Based on this 

background, the project aimed at elucidating the role of CCR8 and mast cells 

in the development of AE using CCR8 knock out (KO) mice and two mast cell 

deficient strains KITw-sh/w-sh and Cre-mediated mast cell eradication 

(CreMaster). In addition, the possible role of IgE in the exacerbation of AE 

was investigated using IgE knock-in (IgEki) mice. To induce AE, BALB/c WT 

mice, mast cell deficient mice, or IgEki mice received intraperitoneal 

sensitization with ovalbumin (a major egg white allergen) plus Alum as 

adjuvant and feeding of an egg white diet.  

First, the role of CCR8 in the AE development was assessed using CCR8KO 

mice. Histological analysis revealed that CCR8KO mice developed AE, but 

exhibited less eosinophil accumulation in the inflamed tissue, when compared 

to WT mice. FACS analysis showed a decreased frequency of eosinophils but 

an increased frequency of neutrophils in the inflamed tissues of CCR8 mice. 

In addition, by means of ELISA, it was found that protein expression of 
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CCL11, an eosinophil chemoattractant is significantly reduced in their tissues. 

CCR8KO mice exhibited reduced clinical symptoms as body weight reduction 

and body temperature drop. CCR8 deficiency did not affect development of 

OVA-specific T cell and antibody responses. These results suggest that 

CCR8 induces eosinophil migration and regulates neutrophil migration in AE. 

Next, the role of mast cells in the development of AE was assessed using 

KITw-sh/w-sh and CreMaster mice. KITw-sh/w-sh mice carry spontaneous mutations 

at both alleles of the dominant white spotting (W) locus, generating a marked 

reduction in c-kit signaling and therefore a mast cell deficiency. CreMaster 

mice are deficient of mast cells due to a genotoxicity effect of the Cre 

insertion in the mast cell protease CPA3 promotor. Histology analysis showed 

that the development of AE was partly reduced in CreMaster mice, whereas it 

was abolished in KITw-sh/w-sh mice. FACS analysis showed that the 

accumulation of eosinophils, but not of neutrophils, was reduced in CreMaster 

mice, whereas KITw-sh/w-sh mice showed a reduction of both eosinophil and 

neutrophil accumulation. Importantly, both KITw-sh/w-sh mice and CreMaster 

mice reduced CCL1 protein expression and tended to reduce CCL11 protein 

expression in their inflamed tissues. In addition, both mice abolished 

development of clinical symptoms nearly completely. Mast cell deficiency did 

not affect development of OVA-specific T cell and antibody responses 

significantly. It seems that reduction of neutrophil accumulation in KITw-sh/w-sh 

mice is due to influence of c-kit mutation on other cells than mast cells.  

These results suggest that mast cells are essential for the development of 

clinical symptoms, and involved in the eosinophil recruitment and 

development of AE by producing CCL1.  

Finally, the role of IgE in the exacerbation of AE was assessed using IgEki 

mice. IgEki mice overexpress IgE instead of IgG1 by replacement of exons 

encoding for the soluble part of the constant region of the murine IgG1 with 

the IgE counterpart. Histology analysis showed that IgEki mice developed 

more severe AE than WT mice. FACS analysis showed an enhanced 
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eosinophil and neutrophil accumulation in the inflamed tissues of IgEki mice. 

In addition, IgEki mice showed a significantly enhanced development of 

clinical symptoms. These results suggest that IgE act as an exacerbation 

factor in the development of clinical symptoms and inflammation in AE.   

Collectively, this study demonstrated that (i) the axis CCR8-CCL1 has an 

indirect involvement in eosinophil recruitment by inducing CCL11 expression, 

(ii) mast cells are the main CCL1 producer in the inflamed tissues of AE and 

(iii) high levels of IgE lead to the development of severe clinical symptoms 

and enhance the development of AE. The potential of CCR8 antagonists has 

been considered to treat allergic asthma, since several studies have shown a 

role for CCR8 in the recruitment of Th2 cells and in the development of 

inflammation in murine models of allergic asthma. However, the results of this 

study suggest that CCR8 is not a suitable target in AE treatment. In addition, 

the results suggest that (i) eosinophils and neutrophils contribute to the 

development of AE, and (ii) targeting mast cells or eosinophils will not be 

sufficient for the treatment of AE, when neutrophil accumulation is observed 

at inflammatory sites in AE patients. Mast cells are fully activated upon FcɛRI 

engagement. IgE would promote migration of eosinophils and neutrophils and 

thereby be involved in persistent AE. Attenuating IgE-mediated signals may 

be a potential strategy for the treatment of persistent AE. However, it is still 

necessary to elucidate the mechanism of migration of neutrophils in AE. This 

study advanced our knowledge of the molecular and cellular mechanisms of 

AE, and may contribute to the establishment of effective anti-inflammatory 

strategies in AE treatment. 
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9. Summary in German 

Lebensmittelallergien sind gesundheitsschädigende Auswirkungen 

spezifischer Immunreaktionen, die infolge der Aufnahme bestimmter 

Lebensmittelbestandteile auftreten. Die Prävalenz solcher 

Lebensmittelallergien ist in den letzten Jahren kontinuierlich gestiegen. Aus 

epidemiologischen Studien, die kontrollierte Nahrungsmittelbelastungstests 

zur Diagnose von Lebensmittelallergien in Betracht ziehen, geht hervor, dass 

1% bis 10.8% der Population von einer immunologisch vermittelten nicht-

toxischen Lebensmittelhypersensitivität betroffen sind.  

Trotz der steigenden Prävalenz konnte bislang keine Heilbehandlung für 

Lebensmittelallergien etabliert werden, die Vermeidung des Nahrungsmittels 

stellt also bis dato die einzige Art der Behandlung dar. Um sichere und 

effektive Immuntherapien entwickeln zu können, ist die Aufklärung der 

zugrunde liegenden pathologischen Mechanismen von entscheidender 

Bedeutung. 

Lebensmittelallergien werden entweder als IgE-vermittelt oder als nicht-IgE-

vermittelt (T-lymphozytär vermittelt) eingestuft, abhängig von der 

Immunantwort und der Rolle von IgE Antikörpern in der Pathogenese der 

Erkrankung. Allergische Enteritis (AE) ist eine gastrointestinale Form der 

Lebensmittelallergie und gilt als nicht-IgE-vermittelte Lebensmittelallergie. 

Nichtsdestotrotz entwickeln AE PatientInnen häufig auch IgE, was mit einem 

verlängerten Krankheitsverlauf einhergeht. Gastrointestinale Symptome von 

AE sind unspezifisch, dementsprechend sind umfassende 

Differentialdiagnosen notwendig, um andere Magen-Darm-Erkrankungen 

auszuschließen zu können. Biopsien von AE-PatientInnen  zeigen eine 

Infiltration von Entzündungszellen (z.B. Mastzellen, Eosinophile, Neutrophile 

und T-Lymphozyten) in der Lamina Propria, sowie eine Störung der 

Dünndarmzotten, Ödeme und Vorkommen von Becherzellen im Dünndarm. 

Charakteristisch für allergische und andere entzündliche Erkrankungen ist die 

durch Chemokine kontrollierte Migration von Entzündungszellen hin zum 
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Entzündungsherd. Sekretierte Chemokine sind als chemotaktische Proteine 

in der Lage, Vorgänge der Zellmigration sowohl in Homöostase, als auch im 

Krankheitszustand zu beeinflussen. Diese 8 kDa bis 12 kDa kleinen Proteine 

entfalten ihre Aktivität durch die Bindung an bestimmte G-Protein-gekoppelte 

Rezeptoren und werden in vier Gruppen unterteilt, abhängig vom Abstand der 

N-terminalen Cysteinreste: CXC, CC, C und CX3C, wobei X für jede andere 

mögliche Aminosäure steht. Aufgrund ihrer Rolle in der Migration von 

Immunzellen stellen Chemokine und deren Rezeptoren attraktive 

Zielmoleküle in der Wirkstoffentwicklung für die Behandlung entzündlicher 

Krankheiten dar.  

Im Gegensatz zu anderen klinischen Phänotypen der Lebensmittelallergie ist 

der Pathomechanismus der AE nicht gut charakterisiert. Ziel dieser Studie 

war es, die zellulären und molekularen Mechanismen der AE im murinen 

Modell aufzuklären. Vordaten aus unserer Gruppe zeigen eine 

Hochregulierung der Genexpression von CC- Chemokin-Rezeptor  8 (CCR8) 

und seinem Liganden, CC-Chemokin-Ligand 1 (CCL1, auch bekannt als I309 

im Menschen und TCA3 in der Maus) in entzündetem Gewebe von AE 

Mäusen. Es wurde gezeigt, dass CCR8 eine Rolle in der Pathogenese von 

Asthma, allergischer Rhinitis und atopischer Dermatitis spielt. Die Produktion 

von CCL1 durch Mastzellen in respiratorischen Geweben war bereits 

beschrieben, ihre Rolle in der AE jedoch unklar. Vor diesem Hintergrund  

zielte das Projekt darauf ab, die Rolle von CCR8 und Mastzellen während der 

Entwicklung von AE unter Zuhilfenahme von CCR8 knock out (KO) Mäusen 

und zwei Mastzell-defizienten Mausstämmen (KITw-sh/w-sh und Cre-mediated 

mast cell eradication (CreMaster)) aufzuklären. Des Weiteren wurde die Rolle 

des IgE während der Exazerbation einer AE mittels IgE knock-in (IgEki) 

Mäusen untersucht. Eine AE wurde durch intraperitoneale Sensibilisierung 

mit Ovalbumin (einem Hauptallergen im Hühnereiweiß) und Alum als 

Adjuvans, sowie Fütterung einer Hühnereiweiß-Diät in BALB/c WT, mastzell-

defizienten oder IgEki Mäusen ausgelöst. 
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Zunächst wurde die Rolle von CCR8 in der Entwicklung von AE untersucht. 

Histologische Untersuchungen zeigten, dass CCR8KO Mäuse AE 

entwickelten, aber weniger Ansammlungen eosinophiler Granulozyten im 

entzündeten Gewebe im Vergleich zu WT Mäusen aufwiesen. In FACS 

Analysen konnte eine verringerte Frequenz von Eosinophilen und eine 

verstärkte Frequenz an neutrophilen Granulozyten im entzündeten Gewebe 

von CCR8KO Mäusen gezeigt werden. Zusätzlich wurde in diesen Geweben 

eine signifikante Reduktion der Proteinexpression von CCL1, einem 

Chemoattraktor für Eosinophile, mittels ELISA nachgewiesen. Diese 

Ergebnisse weisen daraufhin hin, dass CCR8 in der AE die Migration von 

Eosinophilen induziert, sowie die Migration von Neutrophilen reguliert. 

Nachfolgend wurde die Rolle von Mastzellen in der Entwicklung von AE unter 

Zuhilfenahme von KITw-sh/w-sh  und CreMaster Mäusen betrachtet. KITw-sh/w-sh  

Mäuse tragen Spontanmutationen an beiden Allelen des dominanten White 

Spotting Lokus (W-Lokus), was zu einer ausgeprägten Reduktion des c-kit 

Signaling führt und dadurch zu einer Mastzelldefizienz. CreMaster Mäuse 

bilden keine Mastzellen aus aufgrund des genotoxischen Effekts einer Cre 

Insertion im Promoter der Mastzellprotease CPA3. 

In histologischen Untersuchungen konnte gezeigt werden, dass die 

Ausbildung einer AE in CreMaster Mäusen teilweise reduziert war, während 

sie in KITw-sh/w-sh Mäusen gänzlich fehlte. Mittels FACS Analysen konnte in 

CreMaster Mäusen eine reduzierte Akkumulation von Eosinophilen, jedoch 

nicht von Neutrophilen,  demonstriert werden, während KITw-sh/w-sh Mäuse in 

Bezug auf beide Zellpopulationen eine Reduktion aufwiesen. Wichtig ist 

anzumerken, dass beide Mausstämme eine reduzierte CCL1 

Proteinexpression und eine Tendenz zu verminderter CCL11 

Proteinexpression im entzündeten Gewebe aufwiesen. Zusätzlich wurde die 

Ausprägung klinischer Symptome beinahe vollständig verhindert. Die 

Defizienz an Mastzellen hatte keinen signifikanten Einfluss auf die 

Ausprägung OVA-spezifischer T-Lymphozyten und Antikörper. Es ist 
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naheliegend, dass die reduzierte Akkumulierung von Neutrophilen in KITw-sh/w-

sh Mäusen auf die c-kit Mutation in Zellen, die nicht Mastzellen sind, 

zurückzuführen ist. Aus diesen Ergebnissen kann geschlossen werden, dass 

Mastzellen essentiell für die Entwicklung klinischer Symptome sind, dass sie 

an der Rekrutierung von Eosinophilen beteiligt sind und zur Entstehung von 

AE durch Produktion von CCL1 beitragen. 

Schließlich wurde die Beteiligung von IgE an der Exazerbation von AE 

untersucht. Zu diesem Zwecke wurden IgEki Mäuse verwendet. In diesen 

Mäusen wird statt des löslichen Teils der konstanten Region von murinem 

IgG1 jener von IgE überexprimiert. Histologische Untersuchungen belegten 

einen deutlich schwereren Verlauf der AE in IgEki Mäusen im Vergleich zu 

WT Mäusen. In FACS Analysen wurden erhöhte Akkumulationen an 

Eosinophilen und Neutrophilen im entzündeten Gewebe der IgEki Mäuse 

nachgewiesen. Zusätzlich zeigten IgEki Mäuse signifikant verstärkte klinische 

Symptome. Diese Ergebnisse belegen, dass IgE als Exazerbationsfaktor in 

Bezug auf klinische Symptome und Entzündungsreaktionen in AE wirken 

kann. 

Zusammenfassend konnte in dieser Studie gezeigt werden, dass (i) die 

CCR8-CCL1-Achse indirekt an der Rekrutierung von Eosinophilen über die 

Induktion einer CCL11 Expression beteiligt ist, (ii) Mastzellen die 

Hauptproduzenten von CCL1 in entzündeten AE Gewebe sind und (iii) hohe 

IgE Level zur Ausprägung von schweren klinischen Symptomen führen und 

die Entwicklung einer AE verstärken können. Das Potenzial von CCR8 

Antagonisten wurde  bereits zur Behandlung von allergischem Asthma in 

Erwägung gezogen, da in einigen Studien in murinen Modellen des 

allergischen Asthmas eine Beteiligung von CCR8 an der Rekrutierung von 

Th2 Zellen und der Ausbildung einer Entzündungsreaktion gezeigt werden 

konnte. Die Ergebnisse der vorliegenden Studie legen jedoch nahe, dass 

CCR8 kein adäquates Ziel in der AE Behandlung ist. Weiterhin lassen die 

Ergebnisse darauf schließen, dass (i) Eosinophile und Neutrophile an der 
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Entwicklung einer AE beteiligt sind und (ii) die Ausrichtung der AE Therapie 

auf Mastzellen oder Eosinophile nicht ausreichend sein wird, sofern auch 

Akkumulationen von Neutrophilen an Entzündungsherden in AE PatientInnen 

beobachtet werden. Nach Kreuzvernetzung der FcɛRI  Rezeptoren sind 

Mastzellen vollständig aktiviert. IgE würde die Einwanderung von 

Eosinophilen und Neutrophilen förden und so an einer persistenten AE 

beteiligt sein. Eine mögliche Therapiestrategie für persistente AE könnte 

folglich die Abmilderung IgE-vermittelter Signale sein. Dennoch ist es nötig, 

die Mechanismen der Migration von Neutrophilen in der AE aufzuklären. 

Diese Arbeit erweitert unser Wissen über die molekularen und zellulären 

Mechanismen der AE und kann möglicherweise zur Etablierung von 

effektiven anti-entzündlichen Therapiestrategien der AE beitragen. 
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10. Supplemental data 

10.1. CCR8KO mice exhibited a reduced number of macrophages in the 
intestine. 

Several cell types has been reported to express CCR8; e.g. Th2 cells, Treg, DCs, 

endothelial cells and macrophages (Zheng et al., 2009; Kremer et al., 2001; Hoshino 

et al., 2007; Qu et al., 2004; D'Ambrosio et al., 1998; Zingoni et al., 1998; Bünemann 

et al., 2018). The evaluation of Th2 cells and Treg for possible effect as consequence 

of the absence of CCR8 was shown in the previous sections. Several studies showed 

an important role of intestinal macrophages in the development of inflammatory 

responses (Bain and Mowat, 2014; Grainger et al., 2017; Liu et al., 2018). Taking this 

in consideration the number of macrophages in the intestinal tissue of OVA/EW WT 

and OVA/EW CCR8KO mice were evaluated. It was observed that OVA/EW WT 

mice exhibited higher numbers of macrophages, defined as CD68 positive cells, in 

the villi of the small intestines when compared to OVA/EW CCR8KO mice (Fig. S1A-

B). However, immunohistochemical analysis showed no co-localization of CD68 

positive cells and CCR8 (Fig. S2). That suggests that the CD68 positive cells do not 

express CCR8, what implies that probably intestinal macrophages would not have a 

direct CCR8 engagement in AE.  
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Figure S1: Reduced number of CD68 positive cells in AE tissues of CCR8KO mice. WT 
and CCR8KO mice were i.p. sensitized with OVA plus ALUM and fed EW-diet for 7 days. As 
controls, mice fed EW-diet without sensitization. On day 7 of EW diet, jejunums were 
harvested from the mice. (A) The tissues were stained with anti-CD68 mAb (green) and 
propidium Iodide (blue). (B) The numbers of CD68 positive cells/villus in the jejunum of the 
mice were counted. OVA/EW; OVA-sensitized and EW-diet fed. NC/EW; Non-sensitized and 
EW-diet fed. * P<0.05.   
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Figure S2: CD68 and CCR8 expression in the inflamed tissues of WT mice. WT mice 
were i.p. sensitized with OVA plus ALUM and fed EW-diet for 7 days. On day 7 of EW diet, 
jejunums were harvested from the mice. The tissues were stained with anti-CD68 mAb 
(green), anti-CCR8-Abs (red), or isotype controls plus propidium Iodide (blue).  
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