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1. Introduction

Asset pricing is about explaining how risk and attitudes towards risk translate into market

prices. For example, if riskier stocks have higher average returns, one would conclude that the

marginal investor is risk averse. In this paper we focus on the timing of uncertainty resolution.

We investigate when uncertainty is resolved, rather than how much of what type of uncertainty

the investor is exposed to.1 Investors with non-neutral preferences concerning the timing of

uncertainty resolution prefer specific uncertainty resolution profiles, which must be reflected in

asset prices in equilibrium. Using options data, we characterize stocks as exhibiting early or

late resolution of uncertainty. An average return differential between late and early resolution

stocks of more than five percent per year suggests that investors have a preference for early

resolution of uncertainty (PERU). This premium is not due to different exposures of late and

early resolution stocks to standard risk factors.

Whether the marginal investor indeed exhibits PERU is of major importance in many

asset pricing models. In particular, this includes applications of Epstein and Zin (1989) util-

ity such as Bansal and Yaron (2004) or Wachter (2013). Technically, the representative agent

exhibits PERU when the coefficient of relative risk aversion is greater than the inverse of the

elasticity of intertemporal substitution. It is, however, notoriously difficult to obtain reliable

empirical estimates for these two preference parameters (see Havránek, 2015; Thimme, 2016).

Consequently, there is an intense debate about whether recursive preferences with their dis-

tinction between risk aversion and the inverse of the intertemporal elasticity of substitution (as

opposed to, e.g., time-additive constant relative risk aversion (CRRA)) are relevant at all.

Our contribution to this debate is that we offer evidence concerning timing preferences

that does not require the estimation of an elaborate model. Instead, our evidence comes from

measuring the return differential between stocks featuring late and early resolution of uncer-

tainty. We interpret the difference as an indication for PERU and aim at quantifying the

compensation investors require to hold late resolution stocks.

1We do not investigate issues related to ambiguity, so we use the terms uncertainty and risk interchangeably.
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We illustrate the basic idea behind our empirical exercise via a simple example in the

spirit of Epstein and Zin (1989) presented graphically in Figure 1. There are two claims E and

L, which, as seen from time t = 0, both pay off one dollar with probability p at time t = 2.

The difference between the claims is that, for claim E, all uncertainty about the outcome is

resolved at t = 1, whereas uncertainty about the payoff of claim L is resolved only at t = 2. Put

differently, the variance for the payoff of claim E narrows down from its initial value p(1 − p)

at t = 0 to zero at t = 1, whereas the variance of claim L stays at p(1 − p) until t = 2. An

agent exhibiting PERU prefers claim E over claim L and would therefore be willing to pay a

higher price for E than for L. Thus, in this case, the expected return on E must be less than

that on L, with the opposite being true in the case of a preference for late resolution.

Our empirical strategy is to identify stocks of types E or L in the cross section. To

identify pairs of stocks with the above properties we use option-implied volatilities (IVs).2

More precisely, we consider two stocks whose IVs over a long horizon from t to T are very

close to each other. Since the variances over the long horizon are almost the same, the two

stocks exhibit basically the same amount of long-term uncertainty. Then, among all such pairs,

we only consider those where the IVs over a shorter horizon from t to τ < T are markedly

different. This means that, for the stock with the higher short-horizon IV, a greater share of

overall uncertainty is resolved early. The (almost) equal long-term IV in the data corresponds to

the exactly equal volatility of
√
p(1− p) in the introductory example. Claim L in the example

had no uncertainty resolved after the first period, corresponding to a low short-term IV in the

data. Conversely, claim E had all of its uncertainty resolved in the first period, resulting in a

high short-term volatility such that very little of the initial volatility of
√
p(1− p) is left after

the first period. This corresponds to a high short-term IV. In accordance with our motivating

example in Figure 1 we label the stock with the higher short-horizon IV among the two stocks

in the pair a type E (‘early’) claim, while the other one is of type L (‘late’).

2We are aware that an IV is a quantity given under the risk-neutral measure Q, while our theoretical
argument refers to the physical probability measure P. We show that IVs are closely related to physical volatilites
in Section 4.2, and that our empirical results are not driven by variance risk premiums, i.e., by differences between
variances under the physical and the risk-neutral measure in Section 4.4.
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The average return difference between L and E stocks in the respective pairs in our

sample is positive and amounts to 5.2 percent per year with a t-statistic of 3.1. This return

difference cannot be explained by the exposures to the usual set of factors proposed by Fama

and French (1996, 2015). In general we find that the larger the spread in short term IVs, the

more pronounced is the return difference but the smaller is the number of stocks which can

be matched with a respective counterpart. With moderate short-term IV differences between 5

and 15 percent we can classify about 70% of the stocks in our sample as exhibiting late or early

resolution. The resulting return differential is lower but statistically significant at 1.3 percent

on average.

The above investment strategy is a direct way of bringing the notion of early resolution of

uncertainty to the data. As a more convenient absolute measure for the timing of uncertainty

resolution, which can be computed for any stock with traded options, we introduce the concept

of Implied Volatility Duration (IVD). Perfectly analogous to the well-known Macaulay duration

in the area of fixed income, it represents a time-weighted average of the IVs for different

subperiods of a total period from t to T . So, ceteris paribus, the higher the IVD, the larger the

share of total uncertainty that is resolved later.

We then perform a double sort of the stocks in our sample into quintiles for 365-day

IV as a measure of total uncertainty and IVD as a measure for the timing of its resolution.

We call the extreme portfolios with the highest and the lowest-IVD stocks ‘late’ and ‘early’,

respectively. Within the stocks with high IV, we find a significantly positive average return

of around seven percent on the ‘late-minus-early’ (LME) portfolio. The fact that we find a

significant LME return in the group of stocks with high IV is not surprising: When the overall

level of uncertainty is high, its resolution over time naturally is more relevant to the investor.

Indeed, we do not expect to find a timing premium among stocks that are not uncertain to

begin with.

The excess return on the LME portfolio varies over time and is higher in times of high eco-

nomic uncertainty and in periods with negative realized returns on the aggregate stock market.
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Similar to the investment strategy based on pairs of stocks described before, the loadings of the

LME portfolio on various factors are small. We also control for a large number of characteristics

that have been shown to be related to expected returns but none of them explains our results.

As an example, the effect is distinct from cash-flow duration, recently studied by Weber (2018).

I.e., stocks exhibiting late resolution do not have longer cash-flow duration. Conceptually, cash

flow duration refers to the timing of first moments of cash flows, whereas IVD refers to the

evolution of second moments of returns over time. Moreover, our results are also robust to

explanations based on shorting fees (see Drechsler and Drechsler, 2016), idiosyncratic volatility

(see Ang et al., 2006), and mispricing (see Stambaugh and Yuan, 2016).

To investigate the explanatory power of IVD for the cross-section of expected returns we

include an interaction term of 365-day IV2 and IVD as a characteristic in cross-sectional re-

gressions. We find that it has strong explanatory power for cross-sectional variation in expected

returns.

Our empirical findings are interesting in their own right and can be considered indepen-

dent of their theoretical motivation. However, we do offer a possible explanation by considering

a rational Epstein and Zin investor in a frictionless general equilibrium model. In this model

we price type-E and type-L dividend claims. The key result of our analysis is that in order to

generate a pronounced spread between expected returns on the L stock and the E stock, the in-

vestor’s degree of relative risk aversion must exceed the inverse of her elasticity of intertemporal

substitution by a considerable amount, i.e., the investor must exhibit PERU.3

3PERU only refers to the psychic effect of early uncertainty resolution (see Strzalecki, 2013) but not the
instrumental value of early information that would for example allow to sell stocks earlier if their future per-
formance is revealed to be weak. In equilibrium, any asset must be held by a market participant due to market
clearing. In a representative agent setup, or, if all market participants have PERU, there is no instrumental
value in early resolution.
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2. Related Literature

Our paper is related to several strands of the literature. The issue of whether the rep-

resentative agent exhibits PERU is of key importance in asset pricing models with recursive

preferences, since only under PERU the sign of the market price of risk for key state variables

is such that these models can match the data. Prominent examples for models of this type

are Bansal and Yaron (2004) and Drechsler and Yaron (2011). Epstein et al. (2014) criticize

these long-run risk models because they would imply an immense discount for early resolution

of uncertainty. For example, the dynamics of Bansal and Yaron (2004) imply that the investor

would be willing to forgo 31 percent of lifetime wealth to eliminate all uncertainty about future

consumption. A preference for early resolution of uncertainty alone does not necessarily lead

to such high values, and the key driver for the results obtained by Epstein et al. (2014) are the

assumed consumption dynamics. Our paper only makes a statement about timing preferences

and neither refutes nor confirms other aspects of the long-run risk model such as, in particular,

a highly persistent but latent component in consumption growth.

In the context of Epstein and Zin (1989) preferences, an agent exhibits PERU if the degree

of relative risk aversion, γ, exceeds the inverse of the elasticity of intertemporal substitution

(EIS), ψ. So all one would basically need is estimates of these two parameters to make a state-

ment about the representative investor’s timing preferences. In the literature, special attention

has been devoted to the EIS. Hall (1988) estimates the EIS from the consumption Euler equa-

tion in a time-additive CRRA model. He concludes that it is most likely very small and not

much greater than zero, if at all. Epstein and Zin (1991) estimate the EIS in a recursive utility

model where the relation γ = 1
ψ

need not hold. They find estimates of γ around one and the

EIS to be roughly in the range of 0.2 to 0.9. These results would imply that the representative

agent has a preference for late resolution of uncertainty. But also the opposite result has been

found in empirical studies. For example, Attanasio and Weber (1989) find a γ of about five and

an EIS around two, which is in favor of a preference for early resolution of uncertainty.

Other authors estimate preference parameters based on survey data, using the socio-
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economic background of survey respondents. Vissing-Jørgensen and Attanasio (2003) and more

recently Crump et al. (2015) provide evidence that, among wealthy individuals and stockhold-

ers, the EIS is well above one, which together with the usually assumed values for risk aversion

of γ > 1 would imply PERU. Relatedly, D’Acunto et al. (2016) find that shocks to inflation

expectations raise the willingness to consume, indicating a marked willingness to substitute

consumption intertemporally. There is also some experimental evidence in favor of PERU pro-

vided by, e.g., Brown and Kim (2014) and Meissner and Pfeiffer (2018). In an earlier study,

Ahlbrecht and Weber (1996) find that some participants prefer early and others late resolution.

In an asset pricing context it is of key importance whether survey respondents or subjects in

experiments could at least potentially represent the marginal investor. Since we use prices of

traded assets, our approach is informative about the timing preferences of the marginal in-

vestor, which, however, does not necessarily imply PERU on part of every single investor or

even the average investor. In general equilibrium asset pricing models with a representative

agent, it is crucial to consider the preferences of the marginal investor, since it is her behavior

that ultimately affects asset prices.

Instead of estimating preference parameters directly, Ai and Bansal (2018) study the

impact of intertemporal preferences on announcement premiums. Intuitively, investors with

time-additive expected utility do not claim an announcement premium, since they only price

covariation with current consumption, not the arrival of news about future consumption. In

contrast to this, Ai and Bansal (2018) find that only 30 days with important announcements per

year account for more than half of the total equity premium. They argue that such premiums

can only arise in the presence of so-called risk-sensitive preferences such as those suggested by

Epstein and Zin (1989).

Our findings complement those of Ai and Bansal nicely. While they focus on the exact

moment of uncertainty resolution itself and study realized stock returns at that moment, we

look at expected stock returns during the period before uncertainty resolution. Importantly,

our approach is to compare stocks which differ with respect to the amount of uncertainty that

6



is resolved at different points in time. Our economic interpretation of our findings is based

precisely on the rationale put forward by Ai and Bansal (2018).

Somewhat related to our paper, Jagannathan and Liu (2019) provide evidence in favor of

PERU based on a model with learning. Depending on the preferences for early or late resolution

of uncertainty, new information about the persistence of dividend growth results in either an

increase or a decrease of the price-dividend ratio. However, while also using market prices,

their approach requires much stronger parametric assumptions. In contrast, our analysis is

model-free.

Our paper also relates to the literature on option-implied information about the cross-

section of stock returns, represented by papers such as An et al. (2014) and much of the work

cited there. The work by Johnson (2017) and Xie (2014) is in a certain sense similar to ours,

since they also consider the asset pricing implications of implied volatilities across maturities.

However, they focus on the term structure of the VIX volatility index, i.e., a characteristic of

market-wide implied volatility, whereas we focus on the timing pattern of uncertainty resolution

in individual stocks and its implications for expected returns.

3. An investment strategy

3.1. Pairs of stocks

Our main idea in this paper is to identify stocks that provide an early or a late resolution

of uncertainty. Comparing their subsequent returns then shows whether either type of stock

commands a premium over the other, indicating a premium for the timing of uncertainty

resolution. To take this idea to the data, we use option implied volatilities (IVs) for different

maturities as a representation of the uncertainty associated with the returns on this stock over

different horizons. Using end-of-month data on the IV surface provided by OptionMetrics IvyDB

for the period from January 1996 to August 2015, we identify pairs of stocks with basically
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identical 365-day IV (IV365) but rather different 30 day-IV (IV30). In particular, we look for

stocks for which the IV365 values differ by at most 1 percentage point (e.g., 30% vs. 31%), while

the difference between the respective (annualized) IV30 values is at least 25 percentage points.4

In the spirit of the motivating example in Figure 1, we go long in the stock with lower IV30

and short in the stock with higher IV30.5 At every point in time we compute the average return

difference within the pairs.6,7

When we hold the long and the short portfolio over twelve months, the return differential

between the two amounts to a highly significant value of 5.17 percentage points, as shown in

Table 1. In this setting, we cover on average about ten percent of the stocks in our sample at

a given point in time. Table C.1 in the Internet Appendix shows that the spread in returns

increases in the required distance between IV30 of the two stocks. Panel D of that table shows

that, considering pairs with moderate differences in IV30 of for example 5 to 15 percent yields

a premium of 1.26 percent which is smaller in magnitude compared to the benchmark case but

still significantly positive. This specification allows us to assign about 70 percent of the stocks to

a pair. Hence, the return differential is not just a phenomenon of a few select stocks.8 Moreover,

it becomes consistently insignificant when there is no restriction regarding the IV365-values for

the stocks in a pair. Thus, the effect is not driven by the difference in short-term IVs alone. This

suggests that our effect is distinct from well-established low volatility anomalies such as the

low idiosyncratic volatility puzzle. Moreover, it has been shown in the literature that sorting

on idiosyncratic volatility only yields significant return differentials over short-term horizons

4For liquidity reasons, we only use the IVs for at-the-money (ATM) calls.
5For a discussion of the robustness of this procedure and the associated summary statistics see Appendix A.
6We use monthly return and market capitalization data for actively traded common shares from the Center

for Research in Security Prices (CRSP) database. Stocks with a market price of $1 or less are excluded in the
respective month. Delisting returns are included wherever available. This leaves us with more than 7,100 stocks,
which are in the sample for at least one month. On average, there are more than 2,300 stocks in our sample in
a month. Data on the monthly risk-free rate are taken from Kenneth French’s website. Accounting-related data
are taken from the CRSP-Compustat merged database.

7This corresponds to equal weighting across pairs. In Appendix A, we discuss different weighting schemes.
The results are robust to different choices.

8Considering extremely low short-end IV differences of 0.01 to 5 percent, yields a coverage of about 95%
and a significantly positive, but not surprisingly, low average return differential of 0.64 percent. With 15 to 25
percent short-end IV difference yields a coverage of about 20% and a significant mean return of 3.17 percent.
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(Huang et al., 2011) and can be explained by short-term reversals (Fu, 2009).9 As shown in

Table C.2, the average returns on the trading strategy remain positive for all twelve months

within the holding period, with significance waning after about six months. In particular, the

returns are largest in the second month after portfolio formation, which suggests that the return

differential is not due to short-term reversals.

As further indicated by the numbers in Table 2, the returns on our trading strategy cannot

be explained by standard risk factors. As a matter of fact, the strategy exhibits substantial

alphas relative to the factor models. Furthermore, the loadings on the factors are not very

pronounced. Only for the market factor we obtain a significant coefficient, but it is negative.

Appendix A contains further analyses as well as a number of robustness checks for the trading

strategy based on pairs. For example, the result is robust to using non-overlapping holding

periods which require less trading (see Table C.6 in the appendix), for a variety of different IV

cut-off points (Table C.1) and maturities (Table C.5).

We also investigate the combinations of implied volatility term structures in the respective

pairs. Table C.7 in the Appendix shows that for the majority of pairs the term structure of

the ‘late’ stock is downward sloping (meaning that the annualized 30-day IV exceeds the 1-

year IV), while that of the ‘early’ stock is upward sloping. As expected, the average return

difference for these pairs is statistically and economically significant. With the baseline cut-off

points, other types of pairs occur rarely, but they all yield positive return differentials. In case of

the combination downward sloping/flat, the spread is even significant, despite the small number

of stocks.

3.2. Discussion

A natural economic interpretation of the profitability of the investment strategy described

above is that the observed return difference is a premium for early resolution of uncertainty.

9Huang et al. (2011) show that when dropping the month after portfolio formation, idiosyncratic volatility
strategies do not yield significant returns.
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Consider two stocks with the same return variance over the total horizon T . If one of the stocks

has a higher variance over a short horizon τ < T , it must have lower variance over the period

from τ to T . In terms of the timing of uncertainty resolution, this means that the stock with

the higher short term variance exhibits early resolution of uncertainty relative to the stock

with the lower variance from t to τ . In other words, the variance over a certain time horizon

corresponds to the expected resolution of uncertainty over that period.10 As we are going to

formally derive in the context of a general equilibrium model in Section 5, if the marginal

investor exhibits PERU, the expected return on the stock with the later resolution needs to be

higher to compensate the investor for having to wait longer until uncertainty is resolved. The

fact that the return spread increases in the short-end IV difference is in line with this idea. The

more uncertainty is expected to be resolved, the higher the premium that is paid for its late

resolution.

In this spirit, the positive return on the investment strategy described above is in line

with a positive premium for stocks with a late resolution of uncertainty. Moreover, the negative

estimates of market beta from Table 2 point to another interesting aspect. In times of market

downturns, returns on our strategy are particularly high. It thus seems that it is especially

in these periods, when investors demand a substantial premium for bearing uncertainty for a

longer period. This feature can also be seen from Figure 2, which shows the returns on the

market and on the investment strategy. For instance, during the two recessions in our sample

(marked gray), the investment strategy described above earned substantial positive returns.

The notion that volatility over a certain time interval corresponds to expected resolution

of uncertainty refers to volatility under the physical measure P, while IV measures volatility

under the risk-neutral measure Q. Our use of IV as a forward looking measure could mean that

our result picks up a phenomenon related to cross-sectional differences in the spread between

Q- and P-volatilities. Note that as long as our sort on Q-volatilities yields the same result as a

sort on P-volatilities, our approach is entirely innocuous. As shown in greater detail in Section

10Here, variance includes both diffusive and jump risk.
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4.2, sorting on IV indeed generates a strictly monotonic pattern in (realized) P-volatilities. In

line with the literature on the predictive properties of implied volatility,11 we find that there is

a strong positive relation between IV and realized volatility in our sample. We perform cross-

sectional regressions of the realized variance, estimated from daily returns over 30 and 365 days,

on the respective implied variances over those time horizons. The slope coefficients are always

positive, with an average coefficient of 0.45 for 30 days and 0.52 for 365 days and average R2

values of 18 and 31 percent, respectively. Finally, to make sure that our results are not driven

by individual variance risk premiums, i.e., by the differences between P- and Q-variances, we

control for these premiums in Fama-MacBeth regressions (see Section 4.4).

Apart from the impact of variance risk premiums, IV could deviate from forward looking

return volatility (as assessed by stock market participants), when the beliefs of stock and option

market participants differ with respect to their volatility assessment over different horizons. The

more pronounced these differences between the two groups of investors, the noisier our forward-

looking measure of beliefs about volatility in the stock market will be. Market segmentation

in combination with such differences in belief would, however, most likely work against the

strong return patterns we find in Table 1. For our results to be in line with a preference

for late resolution of uncertainty, it would be necessary that stock market investors have the

exact opposite belief concerning the term structure of return variances than option market

participants. It seems unlikely that such opposing beliefs are the explanation for our result.

4. Implied Volatility Duration

4.1. Definition

The trading strategy from the previous section is based on pairs of stocks satisfying the

criteria described above with respect to short- and long-term IV. This strategy is a direct way

11See for example Christensen and Prabhala (1998) and Busch et al. (2011). Poon and Granger (2003) survey
the volatility forecasting literature and conclude that forecasting methods that use IV outperform methods that
rely on historical volatility, GARCH, or related time series models.
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to implement a test for the existence of a premium for the timing of uncertainty resolution

that does not require the estimation of a full model (and is in this sense model-free). However,

it would nevertheless be preferable to cover a larger share of the overall sample. Moreover, it

would be desirable to have a characteristic that directly indicates how early or late uncertainty

is expected to be resolved and which can be assigned to every single stock at every point in

time.

The characteristic we suggest for this purpose is Implied Volatility Duration (IVD). The

IVD of stock i at time t, denoted by IVDit, is defined as follows:

IVDit =
J∑
j=1

∆IV 2
i,t,j∑J

j=1 ∆IV 2
i,t,j

· τj (1)

where ∆IV 2
t,i,j ≡ IV 2

i,t,t+τj
− IV 2

i,t,t+τj−1
is the difference at time t between the (non-annualized)

squared IVs for call options maturing at t + τj and those maturing at day t + τj−1.12 We set

τ0 = 0 so that IV 2
i,t,t+τ0

= IV 2
i,t,t ≡ 0. For our empirical exercise, we use maturities of up to one

year available in OptionMetrics, i.e., J = 8 and (τ1, . . . , τ8) = (30, 60, 91, 122, 152, 182, 273, 365)

(days).

The interpretation of IVD is similar to that of the well-known Macaulay duration in the

area of fixed income instruments. The denominator of the right-hand side of (1) is simply

equal to IV 2
i,t,t+τJ

(analogous to the bond price as the normalizing quantity in the Macaulay

duration), so that the increments ∆IV 2
i,t,j are normalized by the implied variance over the total

horizon (analogous to the present values of the individual cash flows). We can thus interpret

the terms
∆IV 2

i,t,j∑J
j=1 ∆IV 2

i,t,j

as weights for the respective horizon τj, meaning that IVD is an implied

variance-weighted average time over which uncertainty is resolved. If for example the difference

between IV2
60 and IV2

30 makes up 5 percent of total IV2
365, then 60 days is assigned a weight

of 5 percent in IVD. Comparing IVD across stocks then tells us for which stock uncertainty is

expected to be resolved earlier.

12OptionMetrics reports annualized values, so we multiply the implied variance for options maturing at date
t+ τj by τj/365 to undo the annualization.
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Figure 3 presents two stylized cases for short and long IVD, representing early and late

resolution of uncertainty. The larger the area above the piecewise linear function, the more of

the total IV365 comes from longer-term IV, and consequently, the higher IVD.

4.2. Portfolio sorts

To investigate how IVD is related to other quantities such as future returns, implied

volatility, and other characteristics, we group the stocks in our sample into portfolios according

to their IVD. More precisely, at the end of every month we perform an independent double sort

of all stocks into 25 portfolios based on IVD and IV365 as a measure for the overall ‘amount’ of

uncertainty.

As shown in Table 3, IVD typically varies between slightly more than 190 and around

220 days, a spread of about one calendar month. While 30 days do not seem large at first sight

note that, as an average, it can correspond to pronounced differences in timing of uncertainty

resolution. Consider for example two firms A and B whose stock prices evolve as jump diffusions

with daily diffusive volatility of 0.01 (corresponding to an annual return volatility of 19.1%).

Over the next year both firms will experience important news, say the possible approval of

a drug by the FDA. These decisions cause independent and normally distributed jumps with

mean zero and volatility 0.4 in the respective stock price. For firm A, the approval decision will

be made deterministically on day 5 while for firm B this will happen deterministically on day

275. Then the IVDs will be about 269 (days) for stock A and 298 for stock B but the decisive

events for the stock prices will occur nine months apart.

Across any given column, there is hardly any variation in IVD. An analogous picture

emerges for IV365. In general, there is a large variation of this characteristic across stocks with

values between 22 and 79 percentage points, but across each individual row in Panel B, IV365

does not vary much. All in all, this indicates that IVD as a measure of resolution timing is

essentially independent of IV as a measure of the level of uncertainty.13

13To investigate this more formally, we compute the correlation coefficient between the two measures for each
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We now study the returns on what we call the ‘late-minus-early’ (LME) portfolios, which

are formed in every IV365-quintile by going long ‘late’ (high IVD) and shorting ‘early’ (low IVD)

stocks. The different panels of Table 4 show value-weighted and equally-weighted returns for the

quintile and the LME portfolios over a holding period of twelve months. Our most important

finding is that in the quintile of high IV365 stocks, returns on the LME portfolio are significantly

positive and large for both weighting schemes. For example, Panel A shows that forming a new

value weighted LME portfolio from high IV365 stocks every month and holding this portfolio

for twelve months results in a statistically significant average return of more than seven percent

per year. In the spirit of the discussion so far, we interpret this significantly positive average

return on the LME portfolio as a premium for the early resolution of uncertainty. The premium

becomes even more pronounced when we consider stocks with even higher IV365. The average

return on the LME portfolio held for 12 months is about 10 percent in the top IV365-decile, and

13 percent when we consider the five percent of stocks with the highest IV365 (not tabulated).

For stocks with low overall uncertainty, the timing of uncertainty resolution is obviously

not as relevant, so one would not expect a pronounced premium for early resolution in the

first place. This is indeed what we find: For the quintiles of stocks with lower IV365, the return

differential between late and early resolution stocks is not significant. In our model in Section 5,

we also only find strong return differentials among highly volatile stocks.

Table 5 shows the returns on portfolios double sorted on market beta and IVD. The

distinction between systematic (undiversifiable) risk and idiosyncratic, i.e., (at least theoret-

ically) diversifiable risk is broadly discussed in the literature. IV could potentially pick up

cross-sectional variation in both of these risks. Table 5 shows that the return differences across

stocks with different IVD can also be observed when conditioning on a high level of purely

systematic risk, as measured by market betas. Although smaller in magnitude compared to the

results in Table 4, the LME portfolio in the top beta quintile has significantly positive mean

returns. This corroborates our results from Table 4.

month in our sample. The time-series average of these correlation coefficients is close to zero.
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The results in Table 6 further support the view that it is not the absolute amount of risk,

but rather the timing of its resolution that matters. Like in the case of a 12-month holding

period, value-weighted and equally-weighted LME returns in the highest IV365-quintile are

significantly positive also over a horizon of one month. If one ignored the effect of timing

preferences, one could expect a negative sign for this return differential, since early resolution

stocks have higher short term uncertainty than late resolution stocks.

As discussed above, the use of Q-volatilities as a forward-looking measure for uncertainty

under physical probabilities is based on the conjecture that P- and Q-volatilities are closely

related in the cross-section. Table 7 shows the realized return variances for our 25 double-

sorted portfolios. Most importantly, realized variances increase monotonically in IV365, showing

that IV indeed predicts realized variance. Furthermore, we expect early resolution stocks to

have higher realized variances over the first month than their late resolution counterparts in

a given IV group, and this is indeed the case.14 Over 12 months, on the other hand, realized

variances should be roughly the same for the late and early resolution portfolios, and this is

also supported by the data.15

As suggested by the above results and discussed in more detail in Section 4.3, IV365 is

strongly related to measures of systematic risk. However, just as in the case of the trading

strategy based on pairs, standard factor models are not able to explain the high returns on

the LME portfolio within the high IV365 quintile. The alphas in the regressions presented in

Table 8 are large and statistically significant. As before, there are only very few significant

loadings across the different specifications. The only exception is the market factor, on which

LME loads negatively, albeit with an insignificant coefficient in the case of the Fama and French

(2015) five factor model.

14An F -test rejects the null hypothesis of equal variances of the late and early portfolio in the highest IV
quintile for the one month holding period for both equally and value-weighted returns.

15The null hypothesis of equal variances cannot be rejected based on Levene’s test with p-values of 0.76
and 0.57 for value-weighted and equally weighted returns, respectively. The F -test is not applicable here, since
12-month returns in successive months overlap to a large degree.
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4.3. Portfolio characteristics

Panel A in Table 9 displays a number of descriptive statistics for the five IVD-sorted

portfolios in the top IV365 quintile, while the last column shows the time series average of

the cross-sectional median of each characteristic over the entire sample.16 The betas of these

portfolios with respect to standard risk factors are shown in Panel B.

As expected, IV365 is related to a number of other characteristics. In line with our dis-

cussion in Section 4.2, market betas in the high IV quintile are substantially greater than 1,

indicating that high implied volatility proxies for high systematic uncertainty. High IV365 stocks

also tend to have relatively low market capitalization and high book-to-market ratios (both in-

dicating high expected returns). On the other hand, however, they exhibit low profitability and

high investment (indicating low expected returns). This is mirrored in the corresponding factor

betas of the stocks in the high IV quintile portfolios. SMB and HML betas are positive, CMA

and RMW betas negative. Taking all this together, it does not seem surprising that, as shown

in Tables 4 and 6, high IV stocks do not have significantly higher average returns than low IV

stocks. In general, a stock with a strong absolute exposure to a risk factor has high IV ceteris

paribus. Depending on the market price of factor risk the expected return on that stock can

be higher or lower than the expected return on a stock without exposure to the factor. The

common intuition that more volatile stocks should have higher expected returns can be mis-

leading. For example, Kogan and Papanikolaou (2014) discuss investment-specific technology

shocks which have a negative market price of risk. In case of these shocks, more volatile stocks

have lower expected returns. Notwithstanding the sign of the respective market price of risk, IV

constitutes a measure of overall uncertainty and an investor with PERU wants all uncertainty

to be resolved early, irrespective of the sign of the market price of risk.

Importantly, there is hardly any variation in risk characteristics in the IVD-dimension

within the top IV365 quintile. Thus, these characteristics cannot explain the return differential

16Table C.10 in the Internet Appendix provides details about the construction and the data sources of the
different characteristics.
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between the late and early resolution high IV365 stocks.

Some features of the stocks in the high IV quintile, however, merit further discussion. For

example, given that IVD is a duration-based uncertainty measure, it appears natural to look at

the relation between this characteristic and cash-flow duration (CFD). Table 9 shows that there

is no systematic variation in CFD, computed as in Weber (2018), along the IVD dimension. In

the end this result is not that surprising, given that IVD is based on second moments, while

CFD measures first moments, to provide an estimate of the average dividend payout date.

High implied volatility stocks also have high idiosyncratic volatility as measured relative

to the Fama and French (1992) three factor model. Because short IVD stocks tend to have

high IV30 which includes idiosyncratic volatility, it is not surprising that idiosyncratic volatility

decreases in IVD. Table C.11 in the Internet Appendix shows the average idiosyncratic volatility

for each of the IV-IVD double sorted portfolios. Idiosyncratic volatility differences are much

more pronounced across the IV quintiles than within IV quintiles in the IVD dimension. In

Section 4.4 below, by controlling for idiosyncratic volatility in cross-sectional regressions, we

provide further support for our claim that the return differential between late and early stocks

is not driven by an idiosyncratic volatility effect.

In Table 9 we also report two versions of the variance risk premium for the five IVD

portfolios in the top IV quintile. The ex ante measure is computed as the difference between

the realized return variance (estimated from daily returns and scaled appropriately) over the

previous month and the squared implied volatility at the end of that month. The realized

version uses the same squared implied volatility, but the realized variance is computed over the

next instead of the previous month.

Variance risk premiums are decreasing in absolute value with increasing IVD. This is not

surprising. Among high IV365 stocks, those with a higher IV30 are typically sorted into the short

IVD portfolio. Thus, if the 30-day variance risk premium is high (in absolute terms) for high

IV30 stocks, then a shorter IVD is related to a more negative variance risk premium. Below, we

show that variance risk premiums do not drive our results.
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SIRIO is the ratio of short interest over institutional ownership as computed in Drechsler

and Drechsler (2016) and serves as a proxy for shorting fees. We find that stocks in the top

IV365 quintile tend to have high SIRIO. Drechsler and Drechsler (2016) show that stocks with

higher shorting fees have lower average returns. However, just as many other characteristics,

the spread in average SIRIO within the high IV365 quintile is very small compared to the spread

across IV365 quintiles. Moreover, there is no monotonic pattern within the top IV365 quintile.

This is consistent with the finding in Drechsler and Drechsler (2016) that shorting fees are

a persistent characteristic of stocks whereas IVD is a rather transitory feature (see below).

Importantly, the low IVD portfolio has lower SIRIO (and thus presumably lower shorting fees)

than the late portfolio, which, given the results in Drechsler and Drechsler (2016), should imply

a lower return for the late portfolio. We further address this issue in Section 4.4 below.

We also study if stocks from certain industries are more prevalent in some portfolios than

in others. Table C.9 shows the relative number of stocks within industries as classified by Fama

and French. Similar to many of the firm characteristics discussed above, there is not much

variation in industry classification across IVD portfolios, but rather marked patterns in terms

of IV in turn. For example, stocks in the high-tech industry are overrepresented in the top IV

quintile, which is in line with our notion of IV being an uncertainty measure.

In Panel B of Table 9, we report factor betas for the IVD quintile portfolios. Similar to the

investment strategy based on pairs, discussed in Section 3, there is a negative relation between

IVD and market betas, which makes the high positive returns on the LME portfolio even more

striking. The other betas do not exhibit any pronounced pattern across IVD sorted portfolios.

This suggests that the return differential between late and early resolution stocks is not due to

differences in the exposure to known risk factors.

Table 10 shows the migration of stocks across IVD quintile portfolios for both the entire

sample and the stocks in the top IV quintile. The timing of uncertainty resolution appears to

be a rather transitory characteristic. All relative frequencies in Table 10 are below 0.5, which

means that the average stock is more likely to move out of a given portfolio by the end of the
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month than to remain there. In line with this, we do not find pronounced relations between IVD

and other, more persistent characteristics (see Table 9). An early resolution stock can become

a late resolution stock as soon as uncertainty-resolving information arrives. Likewise, a late can

become an early resolution stock, as the time of uncertainty resolution draws near. If there is

something like an early resolution premium, stocks will only trade at a discount for as long as

they exhibit late resolution.

4.4. IVD and the cross section of returns

We now study if the variation in IVD can explain cross-sectional variation in expected

returns by running monthly Fama-MacBeth regressions of single stock excess returns on a num-

ber of characteristics as well as on IVD. In Section 4.2 we found that the return differential

between late and early resolution stocks is higher for stocks with higher uncertainty as mea-

sured by IV2
365. To take this into account, we consider the interaction term IVD×IV2

365 as a

characteristic.

The results of the Fama-MacBeth regressions are presented in Table 11. The interaction

term between IVD and IV2
365 is highly significant and explains cross-sectional variation in

expected returns. Concerning economic significance, multiplying an estimated coefficient for

the characteristic of 0.05 percent by the average implied variance in the top IV365 quintile of

around 0.772 ≈ 0.6 (see Table 9) yields a value of 0.03 percent. I.e. an increase in IVD of one

day ceteris paribus leads to a higher abnormal return of three basis points per month. The

average IVD-spread between the high and the low IVD quintile in our sample is around 30 days

(see again Table 9), implying a return difference of around one percent per month between the

quintile portfolios, which is well in line with the findings presented in Section 4.2.

To control for possible differences in the variance risk premiums of stocks with high and

low IVD×IV2, we include measures of the stock-specific variance risk premium for different

maturities. As can be seen in Table C.12 in the Internet Appendix, this does not change our

results. The coefficient of the interaction term remains practically the same, with respect to
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both magnitude and significance.

As pointed out in the previous subsection, 30 day idiosyncratic volatility is higher for

early than for late resolution stocks. In the Internet Appendix, we present the results of the

Fama-MacBeth regression when controlling for idiosyncratic volatility (Table C.13) and idiosyn-

cratic variance (Table C.14) in a variety of specifications. In light of the results of Stambaugh

et al. (2015), we interact idiosyncratic variance (volatility) with (a function of) the authors’

mispricing characteristic MISP. As Stambaugh et al. (2015) show, the effect of idiosyncratic

volatility on expected return changes sign in mispricing (negative for overvalued stocks and

positive for undervalued stocks). In the baseline setting, to maintain our linear framework, we

simply demean MISP such that idiosyncratic volatility is interacted with a negative value for

undervalued stocks and with a positive value for overvalued stocks.17 Given the results of Stam-

baugh et al. (2015), we would expect a negative coefficient of IVol×MISP, and this is indeed

what we obtain. However, including this characteristic (or including IVol or IVar alone) leaves

our results significant and qualitatively unaltered.

As a further robustness check, we repeat the double sort of stocks on IV365 and IVD for

the 20 percent of stocks with the lowest Stambaugh et al. (2012) mispricing measure (which the

authors of that paper labeled “most underpriced” stocks). As shown in Stambaugh et al. (2015),

for these stocks, the relation between idiosyncratic volatility and expected returns is positive,

i.e., higher idiosyncratic volatility is related to higher rather than lower expected returns. As

can be seen from Table C.15 in the Internet Appendix, a positive premium for early resolution

in the top IV quintile still prevails, even though the idiosyncratic volatility effect would suggest

the opposite return differential in this particular subsample.18

Stocks with high implied volatility tend to be stocks which are expensive to short as

indicated by the high values of SIRIO in this quintile relative to the total sample. Drechsler and

Drechsler (2016) show that stocks that are expensive to short have on average lower returns

17Using piecewise linear functions of the form f(MISP) = 1θi≤MISP≤θi+1(ai + bi ·MISP) for different sets
of cutoffs θi, intercepts ai and slope coefficients bi calibrated to the results in Stambaugh et al. (2015) yields
similar results and leaves the coefficient of IV2×IVD unaltered.

18We thank Robert Stambaugh for suggesting this robustness check.
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to compensate arbitrageurs for the risks involved in shorting stocks, i.e. the low returns of

expensive-to-short stocks constitute a systematic risk premium. With respect to our results,

the important point is that – unlike for the anomalies considered in Drechsler and Drechsler

(2016) – it is not the case that stocks in the short leg of the LME portfolio (early stocks) are

substantially more difficult to short than those in the long leg. If anything, the average values of

SIRIO would suggest the opposite (see Table 9). In other words, given the characteristics of the

stocks in the top IV quintile, the ‘shorting premium’ documented in Drechsler and Drechsler

(2016) would not imply the return differential between late and early stocks that we observe.

As a further test whether our results are driven by the shorting premium, we control for

our sample equivalent of Drechsler and Drechsler’s E-factor that serves as a factor-mimicking

portfolio for the shorting premium risk factor (see Table C.16 in the Internet Appendix). We

moreover include for a proxy version of the authors’ cheap-minus-expensive (CME) factor,

where, instead of sorting on the unavailable shorting fee data we sort on the proxy SIRIO

(see Table C.17 in the Internet Appendix). Both robustness checks leave our results unaltered,

suggesting that the return differential we find is not driven by the shorting premium.

5. Rationalizing the early resolution premium

5.1. Model

In the following we analyze the impact of timing preferences on cross-sectional expected

return variation in the context of a general equilibrium model. In order to model non-trivial

uncertainty resolution, one needs to introduce somewhat more involved consumption and div-

idend dynamics. We do this in the popular way by modeling conditional means and variances

as first-order autoregressive processes. We show that a preference for early resolution of uncer-

tainty in the sense of Epstein and Zin (1989) generates a return differential between late and

early resolution stocks. The model solution is described in detail in Appendix B.
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Consider an agent with preferences described by the recursive value function

Ut =

[
(1− e−δ)C

1− 1
ψ

t + e−δ
(
Et
[
U1−γ
t+1

]) 1− 1
ψ

1−γ

] 1

1− 1
ψ

. (2)

Here, γ, ψ, and δ denote the agent’s coefficient of relative risk aversion, her elasticity of in-

tertemporal substitution, and her time preference parameter, respectively. In the case γ = 1
ψ

,

the above specification reduces to time-additive CRRA preferences.

Log consumption growth exhibits the following dynamics:

∆ct+1 = µc +
n∑
i=1

φci xi,t + σc ε
c
t+1, (3)

The processes xi are state variables modeling different cycles. Their dynamics are given as

xi,t+1 = ρi xi,t +
√
vi,t ε

i
t+1. (4)

Our model is similar to the long-run risk model of Bansal and Yaron (2004). The major dif-

ference is that we consider multiple cycles instead of just one. The focus of the long-run risks

model is on aggregate consumption and dividend claims, not on the cross-section of firms.

Our approach to introduce a cross-section in the model is to allow firms’ cash flows to depend

to different degrees on different cycles. As an example, certain firms may benefit more from

innovations in certain production technologies than others.

The time-varying volatilities have dynamics

vi,t+1 = v̄ + ρv (vi,t − v̄) + σv ε
vi
t+1. (5)

For simplicity, we assume that all innovations ε are i.i.d. standard normal. Furthermore, the

economic uncertainties (i.e., time-varying volatilities) vi associated with the different cycles

have the same long-run mean v̄, persistence ρv, and volatility σv. These assumptions can easily
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be generalized and would not change our conclusions qualitatively. The difference between the

cycles is their persistence, i.e. the innovations to a given cycle i can have a more transitory or

a longer-lasting effect on aggregate consumption, depending on the respective persistence ρi.

Real life examples of such processes xi are business cycles in different sectors, political cycles,

and innovation waves in different industries.

In our model, all uncertainty is “bad”, with the implication that more volatile stocks have

higher expected returns in equilibrium. We assume this structure for simplicity. In reality, there

is likely also “good” uncertainty, such that stocks with an exposure to the respective shocks

should command lower risk premiums (see Bekaert and Engstrom, 2017; Segal et al., 2015).

Such a structure would be in line with our results from Section 4.3, where we found that high IV

stocks do not necessarily have higher expected returns. Irrespective of the kind of uncertainty,

an agent with PERU prefers an early resolution.

We assume that firm j pays dividends dj with dynamics

∆djt+1 = µj +
n∑
i=1

φji xi,t + σj ε
j
t+1, (6)

where the innovations εjt+1 are mutually independent and independent of the innovations in

consumption and the state variables. For each asset j, representing the claim on dividend dj,

we calculate the conditional term structure of expected excess returns:

Et
[
rjt→t+τ − r

f
t→t+τ

]
+

1

2
V art(r

j
t→t+τ ) = πj0,τ +

n∑
i=1

πji,τ vi,t. (7)

Here, rjt→t+τ denotes the log return on asset j between time t and time t+ τ , and rft→t+τ is the

corresponding risk-free rate. The conditional term structure of return variances is given by

V art(r
j
t→t+τ ) = χj0,τ +

n∑
i=1

χji,τ vi,t. (8)

The coefficients πj0 and πji , as well as χj0 and χji are determined in equilibrium and their deriva-
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tions are shown in Appendices B.3 and B.4. Qualitatively, these coefficients are functions of

the exposures φji of asset j’s dividend stream to innovations in cycle i, and the persistence ρi

of cycle xi.

Equation (8) allows us to calculate asset j’s implied volatility duration and, using Equation

(7), we can investigate the relation between IVD and expected returns over different horizons

in the cross-section of firms. In the context of the model, we consider P-volatilities instead of

implied (i.e., Q-) volatilities. The difference between these two types of volatilities is negligible

in our model, since variance risk premiums are virtually zero in long-run risk models without

jumps (see Drechsler and Yaron, 2011).

As a direct implication of Equation (8), IVD is only a function of the variances, but

not of the levels of the cycles. If a stock’s dividends are particularly sensitive to cycle i, that

stock’s IVD is relatively high in periods when the variance of cycle i is above its steady state.

In contrast, the cash-flow duration (CFD) of this stock is a function of the level, i.e. xi, but

not the variance of cycle i. In empirical applications, the CFD is calculated in such a way that

expected cash flows are discounted with the same discount rate over all periods and all assets.

Given this procedure, it is apparent that CFD is only a function of expected dividends, i.e.

the level of the cycles, but not of their variances. Thus, since xi and vi are assumed to be

uncorrelated, the model implies that IVD and CFD are not correlated either.19

5.2. Calibration

To exemplify the main mechanism, we choose a parsimonious specification of the model

with only two cycles, denoted by xtran and xpers, where the latter is more persistent than the

former. Our calibration follows Bansal et al. (2012), and the model parameters are shown in

Table 12. We choose φc,tran = φc,pers = 1√
2

to match the unconditional consumption growth

19Appendix B.5 discusses an alternative definition of the CFD that uses the price of the dividend strip for
a particular period, divided by the stock price, as a weight for that period. We find in a numerical application
that also for this version of the CFD it is true that the levels of the cycles have a significant influence on the
dynamic behavior of CFD, while the impact of variances is negligible.
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variance of Bansal et al. (2012). One notable difference is that the persistence of the variance

processes is lower than in their calibration which causes the variances to mean-revert more

quickly to their steady state. At the same time, the persistence levels of the growth rates are

high and vary across cycles with ρtran = 0.98 and ρpers = 0.99. These parameters allow us to

match the unconditional equity premium. Qualitatively, it is only important that the cycles

differ in terms of their persistence parameters.

For illustrative purposes, we consider two generic dividend claims, denoted by e and l. The

two claims differ with respect to their exposure to either the persistent or the more transitory

cycle. In particular, there is one “early” claim e, for which we set φe,pers = φc,pers/ψ. This

causes the price dividend ratio of this claim to only depend on shocks to the transitory cycle

(for details see Appendix B.2). Analogously, the price of the “late” claim l only moves with

innovations in the persistent cycle.

We now consider a situation in which the persistent cycle is currently in a rather calm

state, in particular vpers,t = 0.9 v̄. We set the time t variance of the transitory cycle to

vtran,t =
χl0,12 − χe0,12 + (χlpers,12 − χepers,12) vpers,t

χetran,12 − χltran,12

(9)

which makes the 12-month return variances of the two claims equal to each other.

The upper graph in Figure 4 shows the time t-conditional term structure of return volatil-

ities. By construction, the volatilities of one year returns on the late and early claim are the

same, but for shorter horizons, the return volatility of the early claim is higher. At time t,

the two claims are a candidate pair for the investment strategy described in Section 3. Taking

a look at the IVDs of the different claims, we find that the IVD of the early (late) claim is

lower (higher) than in the steady state to which both claims will eventually return. Our model

thereby highlights the important notion that IVD is a temporary characteristic of an asset.

Claim e is an early claim now at time t because of the currently high uncertainty about the

cycle that this claim is exposed to. With more cycles (i.e., when n � 2), there will always be
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a number of processes, for which the associated time-varying uncertainty is currently rather

high, while it is low for others.

We now take a closer look at the expected returns on the different claims. Expected

returns, conditional on vtran,t and vpers,t as described above, are shown in the lower graph in

Figure 4. We find that expected returns on the late claim clearly exceed expected returns on

the early claim. This is true for the 12-month horizon, over which the return volatilities are

equal, but also for shorter horizons, over which the return volatility of the early claim is higher

than that of the late claim.

It is of key interest to analyze how this early resolution premium depends on the investor’s

timing preferences. Panel A of Figure 5 shows the spread between expected returns on the late

and the early claim for different values of the risk aversion parameter, keeping the elasticity

of intertemporal substitution fixed at 1.5. For risk aversion coefficients below 1.1 (for annual

returns) and 2.2 (for monthly returns), the return spread between the late and the early claim

is negative. Given these parameters, the agent has a preference for late resolution (if γ < ψ−1)

or a (weak) preference for early resolution of uncertainty (if γ > ψ−1). In the latter case, she

still requires a higher expected return on the early claim because it is actually riskier over

short horizons. This effect is counterbalanced by the impact of the agent’s preference for early

resolution of uncertainty once the difference between γ and ψ−1 becomes larger, resulting in a

positive expected return on the LME portfolio.

Panel B Figure 5 shows the spread as a function of ψ−1, the inverse IES, keeping risk

aversion fixed at 10. The smaller the inverse IES, the stronger is the agent’s PERU, resulting

in a larger return spread between the late and early claim.20

Finally, Panel C of Figure 5 shows the spread between late and early resolution stocks as

a function of the return volatility of the two claims over 12 months. In our empirical analysis

in Section 4.2, we found a significant return spread only among volatile stocks. To analyze

the relationship between return volatility and return spreads in the model, we vary the return

20The model does not converge for values of the inverse IES larger than 1 and for very small values of γ. In
these cases, the price dividend ratio of one or several claims diverges.
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variance by varying the leverage parameter of the two claims. In particular, we leave φe,pers and

φl,tran unchanged but vary φe,tran ≡ φl,pers in Equation (6). Higher leverage parameters lead to

higher return variances, with the standard choices of the leverage parameters (see Table 12)

corresponding to an annual return variance of 17.8% (see Figure 4) for the two claims. We find

that the expected return spread between the late and early claim is almost linearly increasing in

the return volatility. For stocks with return volatilities below 15% annually, the return spread

is close to zero, just as in the data. When return volatilities exceed 30%, we find return spreads

as high as 7% per year.

Overall, the model is able to explain the return spread between late and early resolution

stocks, both qualitatively and quantitatively. It produces the empirical patterns that we have

documented in Section 4. The IVD of a stock is a temporary characteristic, it varies over

time and it is not related to the stock’s CFD. The return difference between late and early

resolution stocks is particularly pronounced among volatile stocks and disappears among less

volatile stocks. Most importantly, the model suggests that a preference for early resolution of

uncertainty is necessary to generate a positive return spread.

6. Conclusion

Using implied volatilities of different maturities, we categorize single stocks as exhibiting

late or early resolution of uncertainty. We find that late resolution stocks compensate investors

with a premium of more than five percent per year.

We introduce Implied Volatility Duration (IVD) as a novel measure for the timing of

uncertainty resolution. Portfolio double sorts with respect to the 365-day implied volatility

and IVD result in an average return of the long-short position of more than seven percent for a

holding period of one year in the highest implied volatility quintile. We interpret this differential

in average returns as a premium for early resolution of uncertainty, since stocks with a short IVD

can be interpreted as exhibiting early resolution of uncertainty, while the opposite is true for
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stocks with a longer IVD. Economically, this means that investors are willing to pay a premium

of around seven percent a year to know about the return on their investments earlier. The

return on the above long-short portfolio, which we call the ‘late-minus-early’ (LME) portfolio,

is larger in times of market downturns. In other words, it is particularly in bad times, when

investors require compensation for having to bear uncertainty for longer.

We propose a general equilibrium model to rationalize our findings. We show that in order

to generate a pronounced spread between expected returns on the late and early resolution claim

the investor must have a marked preference for early resolution of uncertainty, i.e., the risk-

aversion coefficient must exceed the inverse of the elasticity of intertemporal substitution by a

sizable amount.

We thus provide empirical evidence consistent with a substantial preference for early

resolution of uncertainty (PERU). As opposed to earlier work, we draw conclusions based on

prices of financial assets rather than the behavior of individuals in lab experiments or parameter

estimates based on macro or survey data. Because PERU on part of the marginal investor is of

great importance in asset pricing, and price data is inevitably linked to the preferences of the

marginal investor, we believe that our evidence is particularly valuable.
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Table 1: Returns on investment strategy

Low IV30 High IV30 Investment strategy

10.86∗∗ 5.70 5.17∗∗∗

(2.06) (0.97) (3.10)

The table shows the average returns on the trading strategy based on pairs. Pairs are formed such

that the values for IV365 of the two stocks in a pair do not differ by more than one percentage point,

while IV30 must differ by at least 25 percentage points. The positions are held over the subsequent

12 months. Numbers in parentheses are Newey-West t-statistics with 12 lags. The sample period is

01/1996 to 12/2014. The exact composition of the pairs and, consequently, the return of the strategy

depend on the order in which stocks are considered for the formation of pairs (see Appendix A for

details). We perform the strategy with 50,000 candidate permutations and report the median return

here. For all 50,000 permutations, the investment strategy yields significantly positive returns. For

more information about the distribution of returns across permutations, see Tables C.3 and C.4 in the

Internet Appendix.
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Table 2: Investment strategy: factor loadings and alphas

α MKT SMB HML RMW CMA R2

6.42∗∗∗ −0.15∗∗ 4.57%
(3.38) (-2.38)

6.54∗∗∗ −0.15∗∗∗ −0.11 0.07 5.64%
(3.59) (-3.07) (-0.82) (0.64)

7.71∗∗∗ −0.22∗∗∗ −0.15 0.15 −0.15 −0.00 6.36%
(3.30) (-2.67) (-1.12) (1.40) (-0.91) (-0.02)

The table shows the coefficients of a regression of 12-month returns on the investment strategy based

on pairs described in Section 3 and Table 1 on the corresponding 12-month overlapping returns of

the following factors: market excess return (MKT), size (SMB), value (HML), profitability (RMW),

and investment (CMA) (all taken from Kenneth French’s website). The sample period is 01/1996

to 12/2014. α denotes the regression intercept and is expressed in percentage points. Numbers in

parentheses are t-statistics according to Newey and West (1987) with 20 lags. ∗∗∗, ∗∗, and ∗ indicate

significance at the 1%, 5%, and 10% level, respectively.
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Table 3: IVD and IV365 for double-sorted portfolios

Panel A: IVD (in days)

Low IVD 2 3 4 High IVD
(early) (late)

low IV365 160.05 208.77 211.71 213.73 221.94
2 192.83 208.79 211.70 213.71 220.15
3 194.56 208.78 211.69 213.68 219.57
4 194.85 208.80 211.68 213.66 219.80

high IV365 192.95 208.80 211.67 213.69 218.99

Panel B: IV365

Low IVD 2 3 4 High IVD
(early) (late)

low IV365 0.2202 0.2442 0.2466 0.2461 0.2423
2 0.3345 0.3343 0.3339 0.3330 0.3310
3 0.4212 0.4209 0.4205 0.4197 0.4187
4 0.5336 0.5340 0.5342 0.5336 0.5334

high IV365 0.7809 0.7530 0.7705 0.7868 0.7905

The table shows implied volatility duration (IVD), computed according to Equation (1), and 365-day

implied volatility (IV365) for 25 portfolios sorted on IV365 and IVD. The values shown are the time-

series means of the equally weighted means computed at each portfolio formation date. Data are taken

from OptionMetrics. The sample period is 01/1996 to 08/2015.
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Table 4: Returns on IVD-IV365 sorted portfolios

Panel A: Value-weighted returns, holding period 12 months

low IVD 2 3 4 high IVD LME
(early) (late)

low IV365 9.17∗∗∗ 9.72∗∗∗ 10.25∗∗∗ 10.28∗∗∗ 9.18∗∗∗ 0.00
(3.13) (3.27) (3.59) (3.93) (3.27) (0.00)

2 11.01∗∗ 10.86∗∗∗ 12.34∗∗∗ 11.32∗∗∗ 10.95∗∗∗ −0.06
(2.4) (2.80) (3.49) (3.20) (3.01) (-0.04)

3 11.16∗ 12.78∗∗∗ 11.78∗∗∗ 12.95∗∗∗ 11.62∗∗∗ 0.46
(1.87) (2.65) (2.69) (2.96) (2.77) (0.17)

4 12.24∗ 10.92∗ 11.39∗ 11.48∗ 11.23∗∗ −1.01
(1.69) (1.72) (1.86) (1.93) (2.25) (-0.37)

high IV365 4.53 7.56 6.62 11.86 11.70 7.17∗∗

(0.55) (0.89) (0.92) (1.42) (1.43) (1.97)

Panel B: Equally-weighted returns, holding period 12 months

low IVD 2 3 4 high IVD LME
(early) (late)

low IV365 10.47∗∗∗ 11.47∗∗∗ 11.99∗∗∗ 11.90∗∗∗ 11.47∗∗∗ 1.00∗

(4.32) (4.12) (4.35) (4.40) (4.39) (1.65)

2 12.69∗∗∗ 12.63∗∗∗ 12.58∗∗∗ 13.24∗∗∗ 12.40∗∗∗ −0.29
(3.78) (3.78) (3.85) (4.22) (3.94) (-0.39)

3 12.42∗∗∗ 12.64∗∗∗ 12.77∗∗∗ 13.44∗∗∗ 13.39∗∗∗ 0.97
(2.93) (3.29) (3.42) (3.72) (3.72) (0.59)

4 10.89∗ 11.02∗∗ 11.93∗∗ 11.61∗∗ 11.40∗∗ 0.52
(1.93) (2.05) (2.26) (2.28) (2.52) (0.28)

high IV365 5.29 7.28 6.41 9.19 11.80 6.51∗∗∗

(0.67) (0.95) (0.91) (1.24) (1.59) (2.97)

The table shows average 12-month returns on value-weighted and equally weighted portfolios monthly

sorted independently on IVD and IV365. t-statistics are adjusted according to Newey and West (1987)

with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively. The sample

period is 01/1996 to 12/2014.
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Table 5: Returns on IVD-beta sorted portfolios

Panel A: Value-weighted returns, holding period 12 months

low IVD 2 3 4 high IVD LME
(early) (late)

low beta 8.94∗∗∗ 7.89∗∗ 7.95∗∗ 8.61∗∗∗ 8.58∗∗∗ −0.35
(2.87) (2.40) (2.54) (3.15) (3.29) (-0.27)

2 12.65∗∗∗ 11.57∗∗∗ 12.81∗∗∗ 12.31∗∗∗ 11.61∗∗∗ −1.04
(3.29) (3.49) (3.94) (4.01) (3.55) (-0.92)

3 12.23∗∗∗ 13.68∗∗∗ 13.23∗∗∗ 12.51∗∗∗ 11.71∗∗∗ −0.51
(2.63) (3.36) (3.30) (3.27) (2.92) (-0.30)

4 13.96∗∗ 12.86∗∗ 12.3∗∗ 13.72∗∗ 12.43∗∗∗ −1.53
(2.18) (2.33) (2.41) (2.54) (2.87) (-0.58)

high beta 6.96 9.06 9.74 11.92∗ 11.74∗ 4.78∗

(0.93) (1.21) (1.52) (1.66) (1.75) (1.78)

Panel B: Equally-weighted returns, holding period 12 months

low IVD 2 3 4 high IVD LME
(early) (late)

low beta 8.72∗∗∗ 8.86∗∗∗ 9.64∗∗∗ 10.01∗∗∗ 10.06∗∗∗ 1.35
(3.17) (2.78) (3.18) (3.61) (4.04) (1.35)

2 11.19∗∗∗ 10.77∗∗∗ 11.30∗∗∗ 11.88∗∗∗ 11.95∗∗∗ 0.76
(3.12) (3.10) (3.33) (3.69) (3.79) (0.68)

3 12.34∗∗∗ 11.81∗∗∗ 12.34∗∗∗ 13.26∗∗∗ 12.77∗∗∗ 0.44
(3.08) (2.97) (3.25) (3.47) (3.46) (0.42)

4 11.82∗∗ 12.51∗∗ 12.25∗∗ 12.67∗∗∗ 13.78∗∗∗ 1.96
(2.22) (2.45) (2.48) (2.62) (3.11) (1.24)

high beta 7.69 10.00 9.95 11.49 13.52∗∗ 5.83∗∗∗

(1.05) (1.43) (1.49) (1.62) (1.97) (3.24)

The table shows average 12-month returns on portfolios independently sorted into 5 × 5 portfolios

based on IVD and option-implied beta as suggested by Buss and Vilkov (2012). t-statistics are adjusted

according to Newey and West (1987) with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%,

and 10% level, respectively. The sample period is 01/1996 to 12/2014.
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Table 6: Returns on IVD-IV365 sorted portfolios

Panel A: Value-weighted, holding period 1 month

low IVD 2 3 4 high IVD LME
(early) (late)

low IV365 0.76∗∗∗ 0.90∗∗∗ 0.61∗∗ 0.72∗∗ 0.62∗∗ −0.14
(2.77) (3.09) (2.46) (2.52) (2.15) (-0.71)

2 0.95∗∗ 0.81∗∗ 1.10∗∗∗ 0.76∗∗ 0.79∗∗ −0.16
(2.33) (2.08) (3.12) (2.07) (2.00) (-0.78)

3 0.77 0.94∗∗ 1.19∗∗∗ 0.75 0.53 −0.24
(1.20) (2.04) (2.66) (1.57) (1.03) (-0.73)

4 0.99 0.97 0.73 0.52 0.80 −0.19
(1.47) (1.48) (1.07) (0.75) (1.06) (-0.58)

high IV365 −0.22 0.34 0.48 0.66 0.80 1.01∗∗

(-0.22) (0.44) (0.57) (0.74) (0.99) (2.16)

Panel B: Equally-weighted, holding period 1 month

low IVD 2 3 4 high IVD LME
(early) (late)

low IV365 0.93∗∗∗ 0.92∗∗∗ 0.86∗∗∗ 0.87∗∗∗ 0.73∗∗∗ −0.20∗∗

(3.77) (3.55) (3.27) (3.36) (2.83) (-2.04)

2 1.10∗∗∗ 0.99∗∗∗ 1.06∗∗∗ 0.97∗∗∗ 0.84∗∗∗ −0.26∗

(3.09) (3.15) (3.34) (3.33) (2.63) (-1.67)

3 1.00∗∗∗ 1.05∗∗∗ 0.94∗∗∗ 0.96∗∗∗ 0.74∗∗∗ −0.27
(2.27) (2.68) (2.66) (2.59) (1.88) (-1.46)

4 0.81 1.03∗∗ 0.82 0.80 0.66 −0.15
(1.48) (1.96) (1.53) (1.54) (1.16) (-0.77)

high IV365 0.13 0.31 0.43 0.38 0.83 0.70∗∗

(0.16) (0.42) (0.59) (0.49) (1.27) (2.16)

The table shows the one-month average returns on value-weighted and equally weighted portfolios

sorted on IVD and IV365. t-statistics are adjusted according to Newey and West (1987) with 12 lags.
∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively. The sample period is

01/1996 to 08/2015.
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Table 8: LME portfolio: alphas and factor loadings

α MKT SMB HML RMW CMA R2

1.19∗∗∗ −0.33∗∗∗ 4.64%
(2.80) (-3.09)

1.06∗∗ −0.29∗∗∗ 0.10 0.43∗∗ 8.51%
(2.57) (-2.59) (0.60) (2.32)

0.90∗∗ −0.20 0.14 0.24 0.19 0.29 9.18%
(2.13) (-1.46) (0.81) (0.79) (0.61) (0.84)

The table shows the coefficients of a regression of 1-month returns on the LME portfolio on the

following factors: market excess return (MKT), size (SMB), value (HML), profitability (RMW), and

investment (CMA) (all taken from Kenneth French’s website). α denotes the regression intercept

and is expressed in percentage points. Numbers in parentheses are t-statistics adjusted according to

Newey and West (1987) with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level,

respectively. The sample period is 01/1996 to 08/2015.
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Table 9: Stocks in the high IV365 quintile

Panel A: Characteristics

low IVD 2 3 4 high IVD full sample
(early) (late)

IVD 192.95 208.80 211.67 213.69 218.98 211.72
IV365 0.781 0.753 0.770 0.787 0.790 0.419
ME (in US-$ m) 924 657 610 560 662 1,234
BM 0.683 0.587 0.577 0.630 0.627 0.438
OP -0.093 -0.178 -0.099 -0.025 -0.0177 0.187
INV 0.510 0.448 0.433 0.386 0.351 0.091
ILLIQ×105 0.295 0.314 0.333 0.367 0.335 0.082
CFD 23.22 22.98 22.40 23.45 21.60 21.45
IVol 0.041 0.038 0.037 0.037 0.034 0.019
VRP30 (ex-ante) -1.089 0.156 -0.008 0.222 0.281 -0.161
VRP30 (realized) -1.380 -0.217 0.020 0.071 0.296 -0.395
SIRIO 0.413 0.450 0.434 0.392 0.438 0.054

Panel B: Portfolio betas

low IVD 2 3 4 high IVD
(early) (late)

MKT 1.694 1.685 1.493 1.377 1.481
SMB 0.555 0.748 0.750 0.836 0.688
HML -0.207 -0.121 -0.218 -0.346 0.047
RMW -1.488 -1.049 -1.307 -1.242 -1.315
CMA -0.566 -0.818 -0.500 -0.372 -0.274
LIQ -0.179 -0.205 0.072 -0.063 -0.117

The table shows characteristics of the stocks in the high IV365 quintile. All numbers in the columns “low IVD”,

2, 3, 4 and “high IVD” are equally weighted averages across stocks and time. ME is market equity, BM is the

ratio of book to market equity, OP is operating profitability as defined in Fama and French (2015) as revenues

minus cost of goods sold, interest expense, and selling, general, and administrative expenses (if available), all

divided by book equity at the end of the previous fiscal year, INV is investment as defined in Fama and French

(2015). ILLIQ is illiquidity in the sense of Amihud (2002) and Brennan et al. (2013) applied to monthly data,

in particular we have ILLIQt = |rt|
TOt

where TOt is the turnover in month t. CFD is Dechow et al.’s (2004)

estimate of stocks’ cash-flow duration using the parameter estimates from Weber (2018). IVol is idiosyncratic

return volatility relative to the Fama and French (1992) three factor model, computed as the daily standard

deviation of the residuals from the model in the preceding month. VRP is the equally weighted average of our

measure of the monthly variance risk premium, computed either ex ante as the difference Var(rt,30)−IV2
t,30

or realized as Var(rt+1,30)−IV2
t,30. SIRIO serves as a proxy for shorting fees and is the ratio of short interest

over institutional ownership as computed in Drechsler and Drechsler (2016). With the exception of LIQ, the

factors used for the computation of value-weighted betas are from Kenneth French’s website. Liquidity (LIQ)

is taken from Robert Stambaugh’s website. The column labeled ‘full sample’ shows the time series mean over

the monthly cross-sectional medians of the full sample. The sample period is 01/1996 to 08/2015.
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Table 10: IVD Portfolio migration

Panel A: All IV365 quintiles

to low IVD 2 3 4 high IVD
from (early) (late)

low IVD 0.4591 0.2085 0.1254 0.0983 0.1087
2 0.1892 0.2638 0.2374 0.1842 0.1253
3 0.1335 0.2250 0.2622 0.2394 0.1400
4 0.1071 0.1792 0.2386 0.2920 0.1831
high IVD 0.1115 0.1217 0.1325 0.1841 0.4502

Panel B: Top IV365 quintile

to low IVD 2 3 4 high IVD
from (early) (late)

low IVD 0.4428 0.2015 0.1452 0.1066 0.1040
2 0.1938 0.2626 0.2490 0.1791 0.1155
3 0.1620 0.2231 0.2691 0.2151 0.1308
4 0.1306 0.1748 0.2354 0.2883 0.1709
high IVD 0.1558 0.1370 0.1501 0.1997 0.3575

The table shows the relative frequency of a stock migrating from IVD quintile portfolio i in month t

to portfolio j in month t+ 1. Panels A and B show this quantity unconditionally and conditional on

a stock being in the top IV365 quintile portfolio before switching, respectively. The sample period is

01/1996 to 08/2015.
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Table 11: Fama-MacBeth regressions: characteristic

MKT ln(ME) ln(BM) OP Inv IV2×IVD R2

CAPM 0.45 0.85%
(1.32)

0.45 0.05∗∗∗ 1.09%
(1.32) (2.67)

FF3 0.47 0.10 0.14 3.05%
(1.34) (1.64) ( 0.85)

0.47 0.10∗ 0.14 0.06∗∗∗ 3.27%
(1.34) (1.65) (0.86) (3.57)

FF5 0.50 0.06 0.11 0.14∗∗ −0.25∗∗∗ 3.54%
(1.45) (1.10) (0.70) (2.39) (-4.40)

0.49 0.06 0.11 0.14∗∗ −0.25∗∗∗ 0.06∗∗∗ 3.80%
(1.44) (1.09) (0.69) (2.32) (-4.42) (3.19)

The table shows the coefficients from a second stage Fama-MacBeth-regression of individual stock returns on the

market excess return (MKT), log market capitalization (ME), log book-to-market equity ratio (BM), operating

profitability (OP) and asset growth (Inv), and the stock characteristic IVD×IV2
365. In using logs for ME and

BM, we follow the convention in Fama and French (1992). R2 is the time-series average of the cross-sectional

second-stage regressions. Numbers in parentheses are t-statistics adjusted according to Newey and West (1987)

with four lags. All characteristics are cross-sectionally demeaned.
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Table 12: Model parameters

Preferences δ ψ γ

− log(.998) 1.5 1-10

Cycles ρtran ρpers

.98 .99

Volatility v̄ ρv σv

(.044 · .0078)2 .9 .0442 · .23 · 10−5

Consumption µc φc,tran φc,pers σc

.0015 1/
√

2 1/
√

2 .0078

Market claim µm φm,tran φm,pers σm

.0015 3/
√

2 3/
√

2 4.5 · .0078

Early claim µe φe,tran φe,pers σe

.0015 6/
√

2− φc,tran/ψ φc,tran/ψ 4.5 · .0078

Late claim µl φl,tran φl,pers σl

.0015 φc,pers/ψ 6/
√

2− φc,pers/ψ 4.5 · .0078

The tables shows the parameters used in the analysis of our model as described in Section 5.
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Fig. 1. Late and early resolution claim
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Fig. 2. Returns on the market (computed on a rolling basis for each month and the subsequent
12 months) and on the investment strategy based on pairs. The areas shaded in gray denote
NBER recessions.
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Fig. 3. Graphical representation of IVD
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Panel B: Term structure of expected returns

Fig. 4. The figure shows model-implied term structures of return volatilities (Panel A) and
expected returns (Panel B). The return horizon on the horizontal axis is expressed in months.
Return volatilities and expected returns are expressed in annual terms. The figures show con-
ditional term structures, i.e. the time 0 values of the state variables are chosen as described in
Section 5.
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Panel C: Spread in expected returns between late and early claim as a function of the
12-months return volatility

Fig. 5. This figure shows the model-implied expected spread between the return on the late and
the early claim. Expected returns are expressed in annual terms. In Panel A, the elasticity of
intertemporal substitution is set to 1.5 and risk aversion γ varies from 1 to 20. In Panel B, risk
aversion is set to 10 and the inverse IES varies from 0.1 to 1. In Panel C, we choose γ = 10,
ψ = 1.5 and vary the leverage parameters. We vary φe,tran and φl,pers while leaving φe,pers and
φl,tran unchanged (see Table 12), and plot the return spread against the 12-months volatility of
the two claims. All other parameters are shown in Table 12.
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Appendix A. Details regarding the investment strategy

A.1. Selection of stocks, permuations, and variants of the strategy

This appendix provides further details on the trading strategy described in Section 3. To find pairs of
early and late resolution stocks, we proceed as follows:

1. We put stocks in our sample in a random order.

2. Starting with the first stock, we identify all stocks with an IV365 differing from the original stock’s IV365

by no more than 0.01 in absolute value.

3. From this set of stocks, we select the one whose IV30 differs most in absolute value from the original
stock’s IV30. If this difference is larger than 0.25, we add this pair to the sample of pairs for the given
month. We exclude the two stocks from the list of candidates.

4. We repeat step 2 with the second stock on the list of candidates and continue until all stocks have been
considered or excluded because of selection into pairs.

Obviously, putting stocks in a different order could result in a different set of pairs, since a stock excluded
previously is no longer available. Still, we do not want to allow a stock to appear in the sample for a given
month more than once, since otherwise a small number of stocks with special characteristics might drive our
results.

To make sure that the success of the strategy does not depends on the order in which we consider the
stocks in the base sample, we rerun the strategy 50,000 times with the order of the stocks being chosen randomly.
Tables 1 and 2 report the strategy with the median average return. In all of the 50,000 cases the average return
on the investment strategy is significantly positive. Table C.3 in the Internet Appendix contains means, medians,
and 95% confidence bounds from these 50,000 strategies.

We also vary the critical thresholds for the IV difference in the process of identifying pairs described
above. Table C.1 in the Internet Appendix shows the results of this robustness check. We show portfolio return
for minimum IV30 spreads of 5%, 10%, . . . , 35% and for maximum IV365 spreads of 1% (Panel A) and 0.1%
(Panel B). In general, the strategy is very robust and becomes more profitable when more extreme spreads are
chosen. For example, choosing a maximum IV365 difference of 1% and a minimum IV30 difference of 35% results
in average returns of 7.65% with a t-statistic of 3.46. Using only moderate short-end IV differences also yields
significantly positive (albeit smaller) average returns. The results are presented in Panel D of Table C.1.

In December 2003, there is no pair of stocks meeting the requirements of a difference in IV365 of less than
1% (or 0.1%), and a in IV30 difference of more than 35%. In this month, we assume that there is no investment,
and the strategy return is set to zero.

We also perform a placebo test by not imposing a restriction on the maximum spread in IV365 to see
whether our result is purely driven by the differences in IV30 (Panel C). This is not the case, since the strategy
returns for this specification are all insignificant.

Table C.5 in the Internet Appendix shows that the strategy is robust to variation in the endpoint of
the IV term structure used for our analysis. Using IV270 or IV180 yields results similar to the original strategy.
Using IV60 as the short term implied volatility even amplifies the original effect, while based on IV90, returns
are still large but lose significance.
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A.2. Weighting schemes

It is crucial to weight stocks equally within a pair. To see this, consider the following example: There is
a pair of stocks E1 and L1 (with matched one-year IV and markedly different 30 day IV) and another pair of
stocks, E2 and L2 (with a different matched one-year IV and markedly different 30 day IV). Assume E1 and
L2 have a large market capitalization, while L1 and E2 are small. Value-weighting of the early and late stocks
across pairs would effectively amount to comparing the returns of E1 and L2 whose one-year IVs can be entirely
different. According to our motivation, long-end IVs need to be matched to generate a return differential. As
we show in Table C.1, not matching the long-end IVs does not yield significant returns.

To be conservative with respect to the amount invested in small stocks, we also provide results where the
return on each long-short pair is weighted with the market capitalization of the smaller stock in the respective
pair. Results inTable C.8 show that the return differentials remain large and significant.

Appendix B. General Equilibrium Model

B.1. The pricing kernel

The general Epstein and Zin (1989) utility log pricing kernel that discounts cash flows at time t + 1 is
given by

mt→t+1 = −δθ − θ

ψ
∆ct+1 + (θ − 1)rwt+1 (B.1)

where rwt+1 denotes the return on the claim on total wealth (the claim that pays aggregate consumption as
dividend) and θ = (1 − γ)/(1 − ψ−1). We will use the convention that whenever there is only one time index
attached to the pricing kernel or a return, it denotes the one-period random variable that realizes at the indexed
point in time, i.e. mt+τ = mt+τ−1→t+τ and rt+τ = rt+τ−1→t+τ . The return on total wealth can be approximated
in terms of the yet unknown log wealth-consumption ratio wc, which we conjecture to be affine in the state
variables, i.e.,

wct = A0 +

n∑
i=1

Axixi,t +

n∑
i=1

Avivi,t. (B.2)

The Campbell-Shiller approximation for rwt is

rwt+1 ≈ κwc,0 + κwc,1wct+1 − wct + ∆ct,t+1 (B.3)

with

κwc,1 =
exp(wc)

1 + exp(wc)
(B.4)

and

κwc,0 = ln (1 + exp(wc))− exp(wc)

1 + exp(wc)
wc, (B.5)

where wc denotes the steady state log wealth-consumption ratio.

To determine wc, plug (B.1) and (B.3) into the Euler equation to get

1 = Et
[
emt+1+rwt+1

]
= Et

[
e−δθ−

θ
ψ∆ct,t+1+θ(κwc,0+κwc,1wct+1−wct+∆ct,t+1)

]
(B.6)

Using the conjecture (B.2) for the wealth consumption ratio in Equation (B.6) yields a system of linear equations
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with solution

A0 =
1

1− κwc,1

[
− δ + κwc,0 + (1− ρv)κwc,1 v̄

n∑
i=1

Avi + (1− ψ−1)µc

+
1

2
θ

(
κ2
wc,1σ

2
v

n∑
i=1

A2
vi + (1− ψ−1)2σ2

c

)]
, (B.7)

Axi =
(1− ψ−1)φci
1− κwc,1ρi

, (B.8)

Avi =
1

2
θ

(Axiκwc,1)2

1− κwc,1ρvi
. (B.9)

These coefficients then yield the pricing kernel representation

−mt+1 = m0 +

n∑
i=1

(mxixi,t +mvivi,t) + λcσcε
c
t+1 +

n∑
i=1

(λxi
√
vi,tε

i
t+1 + λviσvε

vi
t+1) (B.10)

with

m0 = δθ + γµc + (1− θ)

(
κwc,0 + (κwc,1 − 1)A0 + (1− ρv)κwc,1v̄

n∑
i=1

Avi

)
, (B.11)

mxi = (1− θ)Axi(κwc,1ρi − 1) + γφci = φci/ψ, (B.12)

mvi = (1− θ)Avi(κwc,1ρvi − 1). (B.13)

This implies the following market prices of risk:

λc = γ, (B.14)

λxi = (1− θ)κwc,1Axi , (B.15)

λvi = (1− θ)κwc,1Avi . (B.16)

B.2. Price-dividend ratios

As before with the return on wealth, we linearize the return rj on dividend claim dj using the Campbell-
Shiller approximation which yields

rjt+1 ≈ κpd,j,0 + κpd,j,1pdj,t+1 − pdj,t + ∆djt+1. (B.17)

where pdj,t denotes the time t price-dividend ratio of asset j. The coefficients are given by

κpd,j,1 =
exp(pdj)

1 + exp(pdj)
(B.18)

κpd,j,0 = ln
(
1 + exp(pdj)

)
−

exp(pdj)

1 + exp(pdj)
pdj , (B.19)
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where pdj is the steady state of pdj . We conjecture that the price dividend ratio is affine in the state variables:

pdj,t = Bj,0 +

n∑
i=1

Bj,xixi,t +

n∑
i=1

Bj,vivi,t (B.20)

Proceeding in the same fashion as before with the wealth-consumption ratio yields a system of linear equations
with solution

Bj,0 =
1

1− κpd,j,1

[
− δθ − (1− θ)

(
κwc,0 + (κwc,1 − 1)A0 + (1− ρv)κwc,1v̄

n∑
i=1

Avi

)
− γµc + κpd,j,0 + µj

+
1

2
(γ2σ2

c + σ2
j ) +

n∑
i=1

(
(1− ρv)κpd,j,1v̄Bj,vi +

1

2

(
κpd,j,1Bj,vi − (1− θ)κwc,1Avi

)2

σ2
v

)]
,

(B.21)

Bj,xi =
φji − ψ−1φci
1− κpd,j,1ρi

, (B.22)

Bj,vi =
1

2
θ

(Bj,xiκpd,j,1)2

1− κpd,j,1ρvi
+

1

2
(1− θ) (Axiκwc,1 −Bj,xiκpd,j,1)2

1− κpd,j,1ρvi
. (B.23)

Note that Bj,xi = 0 whenever φji = ψ−1φci, as argued in Section 5.2.

B.3. Term structure of expected excess returns

Using Equation (B.17), we write the log return on asset j as

rjt+1 = rj0 +

n∑
i=1

rjxi xi,t +

n∑
i=1

rjvi vi,t + σjε
j
t+1 +

n∑
i=1

βj,xi
√
vi,tε

i
t+1 +

n∑
i=1

βj,viσvε
vi
t+1 (B.24)

where

rj0 = κpd,j,0 + µj + (κpd,j,1 − 1)Bj,0 + (1− ρv)κpd,j,1v̄
n∑
i=1

Bj,vi (B.25)

rjxi = (κpd,j,1ρi − 1)Bj,xi + φji = φci/ψ = mxi (B.26)

rjvi = (κpd,j,1ρv − 1)Bj,vi (B.27)

βjxi = κpd,j,1Bj,xi (B.28)

βjvi = κpd,j,1Bj,vi (B.29)

We inductively calculate the coefficients πj0,τ and πji,τ of the term structure of expected returns on asset j
according to Equation 7. We start with

Et[r
j
t+1 − r

f
t+1] +

1

2
V art(r

j
t+1)] = Covt(−mt+1, r

j
t+1) =

n∑
i=1

βjxiλxivi,t +

n∑
i=1

βjviλviσ
2
v , (B.30)

such that πj0,1 =
∑n
i=1 β

j
viλviσ

2
v and πji,1 = βjxiλxi . For the induction step, note that

Et[r
j
t→t+τ − r

f
t→t+τ ] +

1

2
V art(r

j
t→t+τ ) = Covt(−mt→t+τ , r

j
t→t+τ ), (B.31)
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where mt,t+τ = mt+1 + · · ·+mt+τ and rjt→t+τ = rjt+1 + · · ·+ rjt+τ . Assume we already know

Covt(−mt→t+τ−1, r
j
t→t+τ−1) = πj0,τ−1 +

n∑
i=1

πji,τ−1vi,t. (B.32)

We can decompose the expected excess return over τ periods into

Covt(−mt→t+τ , r
j
t→t+τ ) =

τ∑
h1,h2=2

Covt(−mt+h1
, rjt+h2

) +

τ∑
h=2

Covt(−mt+h, r
j
t+1)

+

τ∑
h=2

Covt(−mt+1, r
j
t+h) + Covt(−mt+1, r

j
t+1).

(B.33)

The first term on the right-hand side of Equation (B.33) can be written as

τ∑
h1,h2=2

Covt(−mt+h1 , r
j
t+h2

)

=

τ∑
h1,h2=2

(
Et

[
Covt+1(−mt+h1

, rjt+h2
)
]

+ Covt

(
Et+1[−mt+h1

], Et+1[rjt+h2
]
)) (B.34)

where

τ∑
h1,h2=2

Et

[
Covt+1(−mt+h1 , r

j
t+h2

)
]

= πj0,τ−1 + (1− ρv)v̄
n∑
i=1

πji,τ−1 + ρv

n∑
i=1

πji,τ−1vi,t. (B.35)

For the second term on the right-hand side of Equation (B.34), assume that we already know

τ−1∑
h1,h2=2

Covt

(
Et+1[−mt+h1

], Et+1[rjt+h2
]
)

= ξj0,τ−1 +

n∑
i=1

ξji,τ−1vi,t, (B.36)

where we start at τ = 1 with ξj0,1 = 0 and ξji,1 = 0 for all i = 1, . . . , n. Then, we can calculate

τ∑
h1,h2=2

Covt

(
Et+1[−mt+h1

], Et+1[rjt+h2
]
)

=

τ∑
h1,h2=3

Covt

(
Et+1[−mt+h1

], Et+1[rjt+h2
]
)

+

τ∑
h=2

Covt

(
Et+1[−mt+h], Et+1[rjt+2]

)
+

τ∑
h=2

Covt

(
Et+1[−mt+2], Et+1[rjt+h]

)
− Covt

(
Et+1[−mt+2], Et+1[rjt+2]

)
= ρ2

vξ
j
0,τ−1 +

n∑
i=1

(
ρ2
i ξ
j
i,τ−1vi,t + 2

1− ρτ−1
v

1− ρv
σ2
vmvir

j
vi + 2

1− ρτ−1
i

1− ρi
mxir

j
xivi,t −mvir

j
viσ

2
v −mxir

j
xivi,t

)
.

(B.37)
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The remaining three terms in Equation (B.33) are

τ∑
h=2

Covt(−mt+h, r
j
t+1) =

n∑
i=1

(
λvir

j
vi

1− ρτ−1
v

1− ρv
σ2
v + λxir

j
xi

1− ρτ−1
i

1− ρi
vi,t

)
(B.38)

τ∑
h=2

Covt(−mt+1, r
j
t+h) =

n∑
i=1

(
mviβ

j
vi

1− ρτ−1
v

1− ρv
σ2
v +mxiβ

j
xi

1− ρτ−1
i

1− ρi
vi,t

)
(B.39)

and the latter term is given in Equation (B.30). Putting the pieces together gives

ξj0,τ = ρ2
vξ
j
0,τ−1 +

(
2

1− ρτ−1
v

1− ρv
− 1

) n∑
i=1

mvir
j
viσ

2
v (B.40)

ξji,τ = ρ2
i ξ
j
i,τ−1 +

(
2

1− ρτ−1
i

1− ρi
− 1

)
mxir

j
xi (B.41)

πj0,τ = πj0,τ−1 + (1− ρv)v̄
n∑
i=1

πji,τ−1 + ξj0,τ +
1− ρτ−1

v

1− ρv
σ2
v

n∑
i=1

(λvir
j
vi +mviβ

j
vi) +

n∑
i=1

βjviλviσ
2
v (B.42)

πji,τ = ρvπ
j
i,τ−1 + ξji,τ +

1− ρτ−1
i

1− ρi
(λxir

j
xi +mxiβ

j
xi) + βjxiλxi (B.43)

with initial values ξj0,1 = 0, ξji,1 = 0 for all i = 1, . . . , n, πj0,1 =
∑n
i=1 β

j
viλviσ

2
v , and πji,1 = βjxiλxi for all

i = 1, . . . , n.

B.4. Term structure of return variances and IVD

To calculate the term structure of return variances, we can proceed similarly to Appendix B.3. We can
decompose the variance of the return between time t and time t+ τ as follows:

V art(r
j
t→t+τ ) =

τ∑
h1,h2=2

Covt(r
j
t+h1

, rjt+h2
) + 2

τ∑
h=2

Covt(r
j
t+h, r

j
t+1) + V art(r

j
t+1), (B.44)

which is analogous to Equation (B.33). As above, we can inductively calculate the first term on the right-hand
side, while the other two are straight-forward. The coefficients χj0,τ and χji,τ , for i = 1, . . . , n referred to in
Section 5.1 are given by

ζj0,τ = ρ2
vζ
j
0,τ−1 +

(
2

1− ρτ−1
v

1− ρv
− 1

) n∑
i=1

(rjviσv)
2 (B.45)

ζji,τ = ρ2
i ζ
j
i,τ−1 +

(
2

1− ρτ−1
i

1− ρi
− 1

)
(rjxi)

2 (B.46)

χj0,τ = χj0,τ−1 + (1− ρv)v̄
n∑
i=1

χji,τ−1 + ζj0,τ + 2
1− ρτ−1

v

1− ρv
σ2
v

n∑
i=1

βjvir
j
vi +

n∑
i=1

(βjviσv)
2 + σ2

j (B.47)

χji,τ = ρvχ
j
i,τ−1 + ζji,τ + 2

1− ρτ−1
i

1− ρi
βjxir

j
xi + (βjxi)

2 (B.48)

with initial values ζj0,1 = 0, ζji,1 = 0 for all i = 1, . . . , n, χj0,1 =
∑n
i=1(βjviσv)

2 + σ2
j and χji,1 = (βjxi)

2 for all
i = 1, . . . , n.
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Using these coefficients, the volatility duration of asset j can be calculated according to Equation (1). In the
model, we are neither limited by the availability of options with a particular maturity, nor do we have to use
options to get information about the forward-looking P volatility. We can thus replace ∆IV 2

j,t,k in Equation (1)

by χj0,t+τk −χ
j
0,t+τk−1

+
∑n
i=1(χji,τk −χ

j
i,τk−1

)vi,t. In particular, this implies that the implied volatility duration
is only a function of the state variables vi, but not xi.

B.5. Cash-flow duration

The cash-flow duration can be calculated in closed form in our model. Instead of relying on approximations
as in empirical applications, we can directly generalize the Macaulay duration formula to stocks. More precisely,
we define

CFDj
t =

Et
[∑∞

τ=1Mt→t+τD
j
t+τ

]
P jt

τ (B.49)

The numerator in the above expression corresponds to the price of a dividend strip, i.e. a claim on the dividend
of stock j in period t+ τ . With this definition, the weights exactly add to 1 because of the sum of all dividend
strips is equal to the stock price at time t. We can reformulate the cash-flow duration as follows:

CFDj
t =

∞∑
τ=1

Et
[
Mt→t+τD

j
t+τ

]
P jt

τ =

∞∑
τ=1

Et
[
Mt→t+τ

Djt+τ
Djt

]
P jt /D

j
t

τ =

∞∑
τ=1

Et
[∏t+τ

s=t+1Ms
Djs
Djs−1

]
P jt /D

j
t

τ (B.50)

=

∞∑
τ=1

Et
[
exp

(∑t+τ
s=t+1(ms + ∆djs)

)]
exp(pdj,t)

τ (B.51)

The terms Et
[
exp

(∑t+τ
s=t+1(ms + ∆djs)

)]
can be calculated recursively in closed form. For τ = 1, we have

Et[exp(mt+1 + ∆dt+1)]

= Et
[

exp
(
−m0 −

n∑
i=1

(mxixi,t +mvivi,t)− λcσcεct+1 −
n∑
i=1

(λxi
√
vi,tε

i
t+1 + λviσvε

vi
t+1)

+ µj +

n∑
i=1

φijxi,t + σjε
j
t+1

)]
= exp

(
−m0 +

1

2

(
(λcσc)

2 + σ2
j +

n∑
i=1

λ2
viσ

2
v

)
+ µj +

n∑
i=1

(φji −mxi)xi,t +

n∑
i=1

(1

2
λ2
xi −mvi

)
vt,t

)
(B.52)

For a given τ > 1, assume we know

Et

[
exp

(
t+τ−1∑
s=t+1

(ms + ∆djs)

)]
= exp

(
ηj0,τ−1 +

n∑
i=1

ηjxi,τ−1xi,t +

n∑
i=1

ηjvi,τ−1vi,t

)
(B.53)
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for some coefficients ηj0,τ−1, ηjxi,τ−1, and ηjvi,τ−1 for i = 1, . . . , n. Then we can calculate

Et
[

exp
( t+τ∑
s=t+1

(ms + ∆djs)
)]

= EtEt+1

[
exp

(
mt+1 + ∆dt+1 +

t+τ∑
s=t+2

(ms + ∆djs)
)]

(B.54)

= Et
[

exp
(
mt+1 + ∆dt+1

)
Et+1

[
exp

( t+τ∑
s=t+2

(ms + ∆djs)
)]]

(B.55)

= Et
[

exp
(
mt+1 + ∆dt+1 + ηj0,τ−1 +

n∑
i=1

ηjxi,τ−1xi,t+1 +

n∑
i=1

ηjvi,τ−1vi,t+1

)]
(B.56)

= exp
(
ηj0,τ−1 −m0 + µj +

n∑
i=1

ηjvi,τ−1(1− ρv)v̄ +
1

2

(
(λcσc)

2 + σ2
j +

n∑
i=1

(ηjvi,τ−1 − λvi)2σ2
v

)
(B.57)

+

n∑
i=1

(ηjxi,τ−1ρi + φji −mxi)xi,t +

n∑
i=1

(ηjvi,τ−1ρv +
1

2
(ηjxi,τ−1 − λxi)2 −mvi)vi,t

)
(B.58)

This implies the following recursive formulas for the coefficients for horizon τ :

ηj0,τ = ηj0,τ−1 −m0 + µj +
1

2

(
(λcσc)

2 + σ2
j +

n∑
i=1

(ηjvi,τ−1 − λvi)2σ2
v

)
+

n∑
i=1

ηjvi,τ−1(1− ρv)v̄ (B.59)

ηjxi,τ = ηjxi,τ−1ρi + φji −mxi , for i = 1, . . . , n (B.60)

ηjvi,τ = ηjvi,τ−1ρv +
1

2
(ηjxi,τ−1 − λxi)2 −mvi , for i = 1, . . . , n (B.61)

with starting values

ηj0,1 = −m0 + µj +
1

2

(
(λcσc)

2 + σ2
j +

n∑
i=1

λ2
viσ

2
v

)
(B.62)

ηjxi,τ = φji −mxi , for i = 1, . . . , n (B.63)

ηjvi,τ =
1

2
λ2
xi −mvi , for i = 1, . . . , n (B.64)
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Appendix C. Internet Appendix

C.1. Additional Tables

Table C.1: Alternative investment strategies

Panel A: Maximum diff. IV365: 0.01

Min. diff. IV30 low IV30 high IV30 difference avg. number of stocks

0.05 11.66∗∗∗ 10.34∗∗ 1.33∗∗ 1641
(2.86) (2.35) (2.24)

0.10 11.60∗∗ 9.32∗ 2.28∗∗ 900
(2.57) (1.86) (2.50)

0.15 11.53∗∗ 7.85 3.68∗∗∗ 525
(2.35) (1.44) (2.98)

0.20 11.07∗∗ 6.83 4.24∗∗∗ 329
(2.16) (1.19) (2.83)

0.25 10.86∗∗ 5.70 5.17∗∗∗ 220
(2.06) (0.97) (3.10)

0.30 11.10∗∗ 4.96 6.15∗∗∗ 154
(1.99) (0.83) (3.30)

0.35 11.67∗∗ 4.03 7.65∗∗∗ 113
(2.06) (0.67) (3.46)

Panel B: Maximum diff. IV365: 0.001

Min. diff. IV30 low IV30 high IV30 difference avg. number of stocks

0.05 11.84∗∗∗ 10.71∗∗ 1.13∗ 1273
(2.94) (2.48) (1.95)

0.10 11.41∗∗∗ 9.50∗∗ 1.91∗∗ 649
(2.58) (1.97) (2.48)

0.15 11.41∗∗ 8.44 2.97∗∗∗ 354
(2.36) (1.59) (2.37)

0.20 11.39∗∗ 7.74 3.65∗∗∗ 210
(2.24) (1.40) (2.60)

0.25 11.99∗∗ 6.44 5.55∗∗∗ 134
(2.20) (1.14) (3.07)

0.30 13.45∗∗ 6.46 6.99∗∗∗ 91
(2.33) (1.08) (3.87)

0.35 12.48∗∗ 6.90 5.58∗∗ 65
(2.14) (1.11) (2.50)

Table continues on next page
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Continued: Alternative investment strategies

Panel C: Maximum diff. IV365: no restriction

Min. diff. IV30 low IV30 high IV30 difference avg. number of stocks

0.05 12.47∗∗∗ 10.11∗ 2.36 2299
(3.97) (1.95) (0.79)

0.10 12.44∗∗∗ 9.93∗ 2.52 2164
(4.02) (1.84) (0.75)

0.15 12.44∗∗∗ 9.68∗ 2.75 1977
(4.10) (1.72) (0.73)

0.20 12.46∗∗∗ 9.35 3.10 1770
(4.17) (1.59) (0.74)

0.25 12.42∗∗∗ 9.07 3.34 1557
(4.24) (1.47) (0.72)

0.30 12.25∗∗∗ 8.70 3.55 1351
(4.28) (1.35) (0.70)

0.35 12.22∗∗∗ 8.25 3.97 1160
(4.35) (1.23) (0.73)

Panel D: Difference Brackets IV30, Maximum diff. IV365: 0.01

Diff. IV30 low IV30 high IV30 difference avg. number of stocks

≤ 0.001 12.23∗∗∗ 12.32∗∗∗ −0.09 1160
(3.51) (3.53) (-0.84)

0.001-0.05 11.78∗∗∗ 11.13∗∗∗ 0.64∗∗∗ 1957
(3.00) (2.78) (2.69)

0.05-0.15 11.60∗∗∗ 10.34∗∗ 1.26∗∗ 1553
(2.82) (2.35) (2.36)

0.15-0.25 11.41∗∗ 8.24 3.17∗∗∗ 481
(2.31) (1.51) (2.92)

> 0.25 10.86∗∗ 5.70 5.17∗∗∗ 220
(2.06) (0.97) (3.10)

The table shows summary return statistics of the investment strategy for different maximum differences
between IV365 and minimum differences in IV30 for candidate stocks for pairs in the context of the
trading strategy described in Section 3. Numbers in parentheses are t-statistics adjusted according
to Newey and West (1987) with 12 lags. The results reported here refer to the median strategy (see
Appendix A). ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively. The right
column shows the average number of stocks that are assigned to pairs, rounded to the nearest integer.
The average absolute number of stocks in our sample is 2331. Note that the numbers in the right
column in Panel D need not add up to 2331 because while the sample of pairs is split up in disjoint
sets, stocks can simultaneously be part of several pairs in disjoint sets of pairs. The sample formation
period is 01/1996 to 12/2014.
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Table C.2: Returns on investment strategy based on pairs

Month Low IV30 High IV30 Investment strategy

1 0.79 0.35 0.44∗∗

(1.38) (0.54) (1.97)

2 0.99∗ -0.11 1.10∗∗∗

(1.67) (-0.16) (4.12)

3 0.78 0.26 0.51∗

(1.33) (0.40) (1.88)

4 0.74 0.05 0.69∗∗∗

(1.24) (0.07) (2.84)

5 0.82 0.42 0.40
(1.45) (0.67) (1.54)

6 0.80 0.23 0.57∗∗

(1.43) (0.38) (2.07)

7 0.87 0.52 0.36
(1.52) (0.83) (1.48)

8 0.82 0.50 0.32
(1.47) (0.81) (1.15)

9 0.83 0.73 0.10
(1.48) (1.15) (0.42)

10 0.79 0.65 0.15
(1.42) (1.11) (0.68)

11 0.93∗ 0.58 0.35
(1.66) (0.58) (1.50)

12 0.96∗ 0.70 0.26
(1.68) (1.17) (1.25)

The table shows the average returns on the trading strategy based on pairs for each of the months in

which stocks are held. Pairs are formed such that the values for IV365 of the two stocks in a pair do

not differ by more than one percentage point, while IV30 must differ by at least 25 percentage points.

The positions are held over the subsequent 12 months. The results reported here refer to the median

strategy (see Appendix A). Numbers in parentheses are t-statistics adjusted according to Newey and

West (1987) with 12 lags. The strategy depends on the order of stocks in our sample (see Appendix

A for details). We perform the strategy with 50,000 candidate permutations and report the median

return with its respective t-statistic in this table. The sample formation period is 01/1996 to 12/2014.
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Table C.3: Distribution of strategy returns - 12 months

Panel A: Return on low IV30 portfolio

mean 2.5% median 97.5%

mean 0.1091 0.0994 0.1091 0.1190
t-statistic 2.0427 1.8823 2.0422 2.2072
std 0.3172 0.3048 0.3170 0.3306

Panel B: Return on high IV30 portfolio

mean 2.5% median 97.5%

mean 0.0574 0.0550 0.0574 0.0598
t-statistic 0.9781 0.9409 0.9783 1.0152
std 0.3432 0.3402 0.3432 0.3462

Panel C: Return on investment strategy

mean 2.5% median 97.5%

mean 0.0517 0.0416 0.0517 0.0621
t-statistic 3.0018 2.3746 2.9875 3.7089
std 0.1436 0.1342 0.1434 0.1535

The table shows summary statistics for the returns on 50,000 repetitions for our investment strategy

based on pairs (see Section 3), where for each repetition, stocks are ordered randomly. Then, pairs

are formed according to the mechanism explained in Appendix A and held for twelve months. The

columns show the cross-sectional mean, 2.5% quantile, median, and 97.5% quantile of the respective

statistic across the 50,000 repetitions. In each repetition, t-statistics are adjusted according to Newey

and West (1987) with 12 lags. The sample formation period is 01/1996 to 12/2014.
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Table C.4: Distribution of strategy returns - 1 month

Panel A: Return on low IV30 portfolio

mean 2.5% median 97.5%

mean 0.0079 0.0064 0.0079 0.0095
t-stat 1.4205 1.1314 1.4191 1.7144
std 0.0854 0.0836 0.0854 0.0873

Panel B: Return on high IV30 portfolio

mean 2.5% median 97.5%

mean 0.0035 0.0028 0.0035 0.0041
t-stat 0.5594 0.4553 0.5597 0.6640
std 0.1002 0.0994 0.1002 0.1009

Panel C: Return on investment strategy

mean 2.5% median 97.5%

mean 0.0044 0.0027 0.0044 0.0061
t-stat 1.9984 1.2001 1.9899 2.8547
std 0.0416 0.0395 0.0416 0.0437

The table shows summary statistics for the returns on 50,000 repetitions for our investment strategy

based on pairs (see Section 3), where for each repetition, stocks are ordered randomly. Then, pairs are

formed according to the mechanism explained in Appendix A and held for one month. The columns

show the cross-sectional mean, 2.5% quantile, median, and 97.5% quantile of the respective statistic

across the 50,000 repetitions. In each repetition, t-statistics are adjusted according to Newey and West

(1987) with 12 lags. The sample formation period is 01/1996 to 08/2015.
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Table C.5: Strategy returns - different IV maturities

Panel A: Maturity IV long end: 365 days

Maturity IV short end returns low IV returns high IV investment strategy Avg number of stocks

30 days 10.86∗∗ 5.70 5.17∗∗∗ 220
(2.06) (0.97) (3.10)

60 days 11.91∗∗ 4.93 6.98∗∗∗ 144
(2.17) (0.79) (3.68)

90 days 12.42∗ 6.95 5.47 70
(2.03) (1.03) (1.63)

Panel B: Maturity IV long end: 270 days

Maturity IV short end returns low IV returns high IV investment strategy Avg number of stocks

30 days 11.32∗∗ 5.34 5.98∗∗∗ 206
(2.13) (0.93) (3.31)

60 days 12.69∗∗ 4.60 8.09∗∗∗ 130
(2.28) (0.77) (4.28)

90 days 13.52∗∗ 6.60 6.92∗ 57
(2.08) (1.02) (1.82)

Panel C: Maturity IV long end: 180 days

Maturity IV short end returns low IV returns high IV investment strategy Avg number of stocks

30 days 11.75∗∗ 5.69 6.06∗∗∗ 185
(2.09) (1.01) (3.25)

60 days 12.34∗∗ 4.84 7.51∗∗∗ 109
(1.96) (0.85) (2.95)

90 days 17.76∗∗ 10.45 7.31 40
(2.21) (1.58) (1.51)

The table shows average returns for our investment strategy based on pairs (see Section 3), when

implied volatility (IV) is taken from long- and short-term options with varying maturities. The results

reported here refer to the median strategy (see Appendix A). The minimum difference in short-end

IVs is 0.25. Numbers in parentheses are t- statistics adjusted according to Newey and West (1987)

with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively. The right

column shows the average number of stocks rounded to the nearest integer that are assigned to pairs.

The average absolute number of stocks in our sample is 2331. The sample formation period is 01/1996

to 12/2014.
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Table C.6: Strategy returns - Non-overlapping strategy

formation freq. /
inv. horizon (months)

returns
low IV

returns
high IV

returns
investment
strategy

avg. number
of stocks

1 0.0073 0.0031 0.0042∗ 230
(1.38) (0.51) (1.94)

2 0.0175∗ 0.0033 0.0143∗∗∗ 230
(1.71) (0.27) (2.97)

3 0.0235∗ 0.0031 0.0204∗∗∗ 232
(1.93) (0.22) (2.88)

6 0.0356∗ 0.0018 0.0339∗∗ 214
(1.82) (0.07) (2.25)

The table shows average returns for our investment strategy based on pairs (see Section 3), when

portfolios are not overlapping. With investment horizon of one month, this coincides with the usual

strategy with one-month holding period. The results reported here refer to the median strategy (see

Appendix A). Numbers in parentheses are t- statistics adjusted according to Newey and West (1987)

with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively. The sample

periods are 01/1996 to 08/2015 (to 06/2015 for 6 month horizon). The first formation period is always

January 1996, the second is February 1996 (1 month freq.) (March 1996 (2 month freq.), April (3

month freq.) 1996, July 1996 (6 month freq.), and so on.) The order of stocks is from the median

strategy (see Appendix A). The right column shows the average number of stocks rounded to the

nearest integer that are assigned to pairs. The average absolute number of stocks in this longer sample

is 2354 (2348 for the sample from 01/1996 to 06/2015).
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Table C.7: Investment strategy returns split up by type of pairs

low IV30 High IV30 strategy Avg. no of stocks

downward/downward 8.78 7.47 1.31 39
(1.51) (1.41) (0.47)

downward/flat 13.72∗∗ 7.00 6.72∗∗ 29
(2.09) (1.07) (2.20)

downward/upward 10.59∗∗ 5.96 4.63∗∗ 150
(2.13) (1.01) (2.57)

flat/upward 9.68 2.83 6.85 2
(1.04) (0.35) (1.48)

upward/upward 2.38 0.70 1.68 <1
(0.28) (0.09) (0.70)

The table shows summary return statistics of the baseline investment strategy split up according to

the shapes of the IV term structures within the pairs. For example, downward/flat means that the

implied volatility term structure of the High IV30 stock is downward sloping, while that of the Low

IV30 stock is flat. “Flat” means that the absolute distance between the 1-month and 1-year IVs is at

most 0.01. Long-end IVs within a pair still differ by at most 0.01. The results reported here refer to

the median strategy (see Appendix A). Numbers in parentheses are t-statistics adjusted according to

Newey and West (1987) with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level,

respectively. The right column shows the average number of stocks that are assigned to pairs. The

average absolute number of stocks rounded to the nearest integer in our sample is 2331. The numbers

in the fifth column add up to the total number of stocks in the baseline setting. The sample formation

period is 01/1996 to 12/2014.
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Table C.8: Returns on investment strategy, value-weighted using size of smaller stock

Low IV30 High IV30 Investment strategy

12.09∗∗ 7.94 4.15∗∗

(2.57) (1.44) (2.37)

The table shows the average returns on the trading strategy based on pairs where the weighting

between the pairs is value-weighted using the market capitalization of the stock in the pairs with the

lower market capitalization. Pairs are formed such that the values for IV365 of the two stocks in a

pair do not differ by more than one percentage point, while IV30 must differ by at least 25 percentage

points. The positions are held over the subsequent 12 months. Numbers in parentheses are Newey

and West (1987) t-statistics with 12 lags. The results reported here refer to the median strategy (see

Appendix A).
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Table C.9: Top IV quintile: Fama French Industry Classification

Panel A: Equally-weighted industry share

early 2 3 4 late sample
Consumer Non-durables 0.0213 0.0217 0.0200 0.0197 0.0211 0.0449
Consumer Durables 0.0163 0.0166 0.0156 0.0153 0.0154 0.0227
Manufacturing 0.0568 0.0653 0.0636 0.0599 0.0576 0.1168
Energy 0.0391 0.0465 0.0472 0.0430 0.0355 0.0495
High Technology 0.3447 0.3782 0.3880 0.3715 0.3536 0.2111
Telecom 0.0471 0.0392 0.0379 0.0397 0.0404 0.0345
Shops 0.0650 0.0690 0.0669 0.0712 0.0584 0.1046
Health 0.1929 0.1660 0.1663 0.1744 0.2188 0.1036
Utilities 0.0048 0.0029 0.0033 0.0029 0.0034 0.0311
Other 0.2120 0.1946 0.1913 0.2023 0.1958 0.2813

Panel B: Value-weighted industry share

early 2 3 4 late sample
Consumer Non-durables 0.0182 0.012 0.0118 0.0130 0.0138 0.0589
Consumer Durables 0.0135 0.0206 0.0146 0.0122 0.0196 0.0299
Manufacturing 0.0417 0.0667 0.0594 0.0548 0.0450 0.1162
Energy 0.0415 0.0521 0.0560 0.0465 0.0367 0.0844
High Technology 0.3871 0.3945 0.4124 0.3934 0.3468 0.1584
Telecom 0.0732 0.0547 0.0554 0.0556 0.0766 0.0497
Shops 0.0412 0.0477 0.0469 0.0488 0.0437 0.0852
Health 0.1299 0.1210 0.1132 0.1296 0.1671 0.1106
Utilities 0.0070 0.0049 0.0043 0.0030 0.0064 0.0355
Other 0.2466 0.2258 0.2258 0.2430 0.2443 0.2713

This table shows the share of stocks that are in the respective Fama-French 10 industry classification

in each of the five IVD-sorted portfolios in the top IV365 quintile. Panel A shows the equally weighted

share. Panel B shows the weights of each industry in terms of market capitalization. The column

“sample” shows the sample average. The industry classification is from Kenneth French’s website.
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Table C.11: Idiosyncratic volatility

low IVD 2 3 4 high IVD
(early) (late)

low IV 0.0138 0.0118 0.0115 0.0114 0.0108
2 0.0171 0.0159 0.0156 0.0152 0.0148
3 0.0219 0.0207 0.0202 0.0198 0.0192
4 0.0285 0.0269 0.0264 0.0258 0.0248

high IV 0.0408 0.0385 0.0372 0.0373 0.0342

The table shows idiosyncratic volatility relative to the Fama and French (1992) three factor model,

computed as the daily standard deviation of the residuals, for 25 portfolios sorted on IVD and IV365.

The sample formation period is 01/1996 to 08/2015.
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Table C.12: Fama-MacBeth regressions with variance risk premia

MKT ln(ME) ln(BM) OP Inv VRP30 VRP365 IV2×IVD R2

CAPM 0.48 −1.32 −0.82∗∗ 0.04∗∗ 2.23%
(1.36) (-0.95) (-2.54) (2.36)

FF3 0.48 0.08 0.09 -1.74 −0.91∗∗∗ 0.06∗∗∗ 4.19%
(1.39) (1.42) (0.59) (-1.30) (-3.22) (3.01)

FF5 0.50 0.06 0.07 0.13∗∗ −0.23∗∗∗ −2.28∗ −0.91∗∗∗ 0.06∗∗∗ 4.62%
(1.47) (0.97) (0.47) (2.40) (-4.25) (-1.70) (-3.31) (2.63)

The table shows the coefficients from a second stage Fama-MacBeth-regression of single stock returns

on market excess return (MKT), log market capitalization (ME), log book-to-market equity ratio

(BM), operating profitability (OP) and asset growth (Inv), the variance risk premia over 30 and 365

days, VRP30 and VRP365, (measured as the difference between realized and implied variance), and

IVD×IV2
365. R2 is the time-series average of the cross-sectional second-stage regressions. Numbers in

parentheses are t-statistics adjusted according to Newey and West (1987) with four lags. Character-

istics are demeaned. All factors are computed from the sample using the Compustat-CRSP merged

database. For the first stage regressions, the MKT-betas assigned to each stock are the average value-

weighted betas for the respective 5x5 size-and-book-to-market portfolio. FF3 and FF5 denote the

model specification from Fama and French (1992) and Fama and French (2015), respectively. ∗∗∗, ∗∗,

and ∗ indicate significance at the 1%, 5%, and 10% level, respectively. The sample formation period

is 01/1996 to 08/2015.
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Table C.13: Fama-MacBeth regressions with idiosyncratic volatility and the Stam-
baugh et al. (2015) mispricing measure

MKT ln(ME) ln(BM) OP Inv f(MISP) IVol f(MISP)×IVol IV2×IVD R2

0.62∗∗ −0.02 0.13 0.13∗∗ −0.18∗∗∗ −0.02∗∗∗ −11.51∗ 0.09∗∗∗ 5.45%
(1.94) (-0.48) (-0.86) (2.19) (-3.10) (-3.74) (-1.67) (3.18)

0.51 −0.01 0.04 0.13∗∗ −0.21∗∗∗ −21.43∗∗∗ 0.05∗∗∗ 5.03%
(1.51) (-0.22) (-0.30) (2.42) (-4.12) (-2.73) (2.84)

0.61∗∗ 0.05 0.11 0.18∗∗ −0.28∗∗∗ −1.08∗∗∗ 0.10∗∗∗ 4.12%
(1.95) (0.93) (0.69) (2.49) (-4.60) (-5.58) (3.02)

0.67∗∗ -0.00 0.13 0.13∗∗ -0.15∗∗∗ −0.02∗∗∗ −6.20 −1.10∗∗∗ 0.09∗∗∗ 5.64%
(2.09) (-0.05) (0.92) (2.13) (-2.74) (-4.04) (-0.91) (-5.15) (3.15)

The table shows the coefficients from a second stage Fama-MacBeth-regression of single stock returns

on market excess return (MKT), log market capitalization (ME), log book-to-market equity ratio

(BM), operating profitability (OP) and asset growth (Inv), IVD×IV2
365 and Stambaugh et al.’s (de-

meaned) mispricing characteristic MISP interacted with idiosyncratic volatility. The MISP data are

taken from Yu Yuan’s website. Numbers in parentheses are t-statistics adjusted according to Newey

and West (1987) with four lags. R2 is the time-series average of the cross-sectional second-stage regres-

sions. Characteristics are demeaned. For the first stage regression of MKT-betas, the betas assigned

to each stock are the average value-weighted betas for the respective 5x5 size-and-value portfolio. ∗∗∗,
∗∗, and ∗ indicate significance at the 1%, 5%, and 10%, respectively.
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Table C.14: Fama-MacBeth regressions with idiosyncratic variance and the Stam-
baugh et al. (2015) mispricing measure

MKT ln(ME) ln(BM) OP Inv f(MISP) IVar f(MISP)×IVar IV2×IVD R2

0.63∗ −0.01 0.14 0.13∗∗ −0.18∗∗∗ −0.02∗∗∗ −130.21∗∗ 0.09∗∗∗ 5.11%
(1.93) (-0.11) (0.94) (2.17) (-3.20) (-3.60) (-2.10) (3.08)

0.51 0.03 0.08 0.13∗∗ −0.23∗∗∗ −210.87∗∗∗ 0.05∗∗∗ 4.48%
(1.45) (0.51) (0.52) (2.36) (-4.29) (-3.79) (2.80)

0.59∗ 0.05 0.12 0.18∗∗ -0.29∗∗∗ −8.82∗∗∗ 0.10∗∗∗ 4.14%
(1.89) (0.84) (0.71) (2.51) (-4.67) (-3.70) (2.95)

0.68∗∗ 0.01 0.15 0.13∗∗ -0.17∗∗∗ −0.03∗∗∗ −51.26 −11.57∗∗∗ 0.09∗∗∗ 5.32%
(2.09) (0.26) (1.00) (2.16) (-2.93) (-3.93) (-0.75) (-3.47) (3.04)

The table shows the coefficients from a second stage Fama-MacBeth-regression of single stock returns

on market excess return (MKT), log market capitalization (ME), log book-to-market equity ratio

(BM), operating profitability (OP) and asset growth (Inv), IVD×IV2
365 and Stambaugh et al.’s (de-

meaned) mispricing characteristic MISP interacted with idiosyncratic variance. The MISP data are

taken from Yu Yuan’s website. Numbers in parentheses are t-statistics adjusted according to Newey

and West (1987) with four lags. R2 is the time-series average of the cross-sectional second-stage regres-

sions. Characteristics are demeaned. For the first stage regression of MKT-betas, the betas assigned

to each stock are the average value-weighted betas for the respective 5x5 size-and-value portfolio. ∗∗∗,
∗∗, and ∗ indicate significance at the 1%, 5%, and 10%, respectively.
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Table C.15: IV/IVD sorted portfolio returns, undervalued stocks

early 2 3 4 late LME
low IV365 0.75∗∗∗ 0.82∗∗∗ 0.61∗∗ 0.79∗∗∗ 0.66∗∗∗ −0.09

(3.48) (2.87) (2.51) (2.60) (2.78) (-0.39)

2 1.09∗∗∗ 1.20∗∗∗ 0.92∗∗∗ 0.68∗∗ 0.92∗∗∗ −0.18
(3.32) (2.78) (2.76) (2.16) (2.73) (-0.67)

3 1.29∗∗∗ 1.63∗∗∗ 1.34∗∗∗ 1.11∗∗∗ 1.17∗∗∗ −0.12
(2.76) (3.53) (3.12) (2.71) (2.83) (-0.26)

4 2.00∗∗∗ 1.25∗∗ 1.15∗∗ 0.95∗∗ 0.66 −1.34∗∗∗

(3.00) (2.38) (2.43) (2.18) (1.18) (-2.88)

high IV365 0.91 1.29∗∗ 1.12 1.24∗ 2.25∗∗∗ 1.34∗∗

(1.37) (2.41) (1.61) (1.95) (2.96) (1.97)

HML IV 0.16 0.48 0.51 0.46 1.59∗∗

(0.25) (0.83) (0.71) (0.69) (2.31)

One month average returns on value-weighted portfolios sorted on IV and Implied Volatility Duration

(IVD) that are undervalued according to Stambaugh et al.’s mispricing characteristic (values below

20%). Stambaugh et al. (2015) show that (roughly) for the 20 % of stocks that are most undervalued,

the sign of the effect of idiosyncratic volatility is positive. Numbers in parentheses are t-statistics

adjusted according to Newey and West (1987) with one lag. ∗∗∗, ∗∗, and ∗ indicate significance at the

1%, 5%, and 10% level, respectively. The sample formation period is 01/1996 to 08/2015.
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Table C.16: Fama-MacBeth regressions with E

MKT ln(ME) ln(BM) OP Inv E IV2×IVD R2

0.39 −1.31∗ 0.04∗∗ 2.28%
(1.14) (-1.84) (2.57)

0.38∗ 0.06 −0.12 −1.55∗∗∗ 0.06∗∗∗ 3.45%
(1.06) (1.07) (-0.91) (-2.98) (3.57)

0.42 0.03 −0.10 0.13∗∗ −0.24∗∗∗ −1.35∗∗ 0.06∗∗∗ 3.98%
(1.23) (0.63) (-0.79) (2.26) (-4.27) (-2.57) (3.20)

The table shows the coefficients from a second stage Fama-MacBeth-regression of single stock returns

on market excess return (MKT), log market capitalization (ME), log book-to-market equity ratio

(BM), operating profitability (OP) and asset growth (Inv), Drechsler and Drechsler’s Rf-expensive

(E) factor and IVD×IV2
365. Numbers in parentheses are t-statistics adjusted according to Newey and

West (1987) with four lags. R2 is the time-series average of the cross-sectional second-stage regressions.

Characteristics are demeaned. E is computed as in Drechsler and Drechsler (2016) from the stocks in

our sample as the portfolio return of the portfolio that is long the risk-free rate and short the highest

decile Short interest over institutional ownership ratio (SIRIO) portfolio. For the first stage regression

of MKT-betas, the betas assigned to each stock are the average value-weighted betas for the respective

5x5 size-and-value portfolio. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10%, respectively.

The sample formation period is 01/1996 to 08/2015.
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Table C.17: Fama-MacBeth regressions with CME

MKT ln(ME) ln(BM) OP Inv CME IV2×IVD R2

0.70∗∗ 1.16∗ 0.05∗∗∗ 1.87%
(1.98) (1.66) (2.65)

0.68 0.03 0.10 0.76 0.06∗∗∗ 3.38%
(1.61) (0.43) (0.64) (1.36) (3.60)

0.65 0.01 0.08 0.14∗∗ −0.25∗∗∗ 0.51 0.06∗∗∗ 3.91%
(1.57) (0.19) (0.53) (2.37) (-4.41) (0.93) (3.19)

The table shows the coefficients from a second stage Fama-MacBeth-regression of single stock returns

on market excess return (MKT), log market capitalization (ME), log book-to-market equity ratio

(BM), operating profitability (OP) and asset growth (Inv), a version of Drechsler and Drechsler’s

cheap-minus-expensive (CME) factor and IVD×IV2
365 as stock characteristics. Numbers in parenthe-

ses are t-statistics adjusted according to Newey and West (1987) with four lags. R2 is the time-series

average of the cross-sectional second-stage regressions. Characteristics are demeaned. CME is com-

puted analogously to the factor CME in Drechsler and Drechsler (2016) from the stocks in our sample

as the equally-weighted portfolio return of the portfolio that is long the lowest decile portfolio of stocks

sorted by the ratio of short interest over institutional ownership (SIRIO) and short the highest decile

portfolio. For the first stage regression of MKT-betas, the betas assigned to each stock are the average

value-weighted betas for the respective 5x5 size-and-value portfolio. ∗∗∗, ∗∗, and ∗ indicate significance

at the 1%, 5%, and 10%, respectively. The sample formation period is 01/1996 to 08/2015.
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