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Background: Extremity fracture is frequently seen in multiple traumatized patients. Local

post-traumatic inflammatory reactions as well as local and systemic interactions have

been described in previous studies. However, trauma severity and its impact on the local

immunologic reaction remains unclear. Therefore, fracture-associated local inflammation

was investigated in a porcine model of isolated and combined trauma to gain information

about the early inflammatory stages.

Material and Methods: Polytrauma (PT) consisted of lung contusion, liver laceration,

femur fracture, and controlled hemorrhage. Monotrauma (MT) consisted of femur

fracture only. The fracture was operatively stabilized and animals were monitored under

ICU-standard for 72 h. Blood, fracture hematoma (FH) as well as muscle samples were

collected throughout the experimental period. Levels of local and systemic pro- and

anti-inflammatory as well as angiogenetic cytokines were measured by ELISA.

Results: Both groups showed a significant decrease in pro-inflammatory IL-6 in

FH over time. However, concentrations in MT were significantly higher than in PT.

The IL-8 concentrations initially decreased in FH, but recovered by the end of the

observation period. These dynamics were only statistically significant in MT. Furthermore,

concentrations measured in muscle tissue showed inverse kinetics compared to those

in FH. The IL-10 did not present statistical resilient dynamics over time, although a slight

increase in FH was seen by the end of the observation time in the MT group.

Conclusions: Time-dependent dynamics of the local inflammatory response were

observed. Trauma severity showed a significant impact, with lower values in pro- as

well as angiogenetic mediators. Fracture repair could be altered by these trauma-related

changes of the local immunologic milieu, which might serve as a possible explanation for

the higher rates of delayed or non-union bone repair in polytraumatised patients.
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INTRODUCTION

Trauma severity directly affects the pattern of injuries. Beside
injuries to the head, thorax and abdomen, extremity injuries are
common, and present in the majority of multiple traumatized
patients (1, 2). However, fracture incidence also increased in the
non-polytraumatised patient population during the past decade
(3). The severity of extremity injury and its negative impacts
on long-term outcome are well-documented (4–6). While pain
and limited range of motion are frequently seen in isolated
trauma (4, 5), previous clinical and experimental studies linked
multiple trauma to significantly longer fracture healing times
and higher incidences of non-unions in comparison to isolated
fractures (7–9). Overwhelming local and systemic inflammatory
responses with an associated negative influence on downstream
processes of bone repair are a potential pathomechanism for
this impaired fracture healing (10–13). Despite knowledge about
the connectivity between the systemic and local inflammatory
responses, information on the impact of trauma severity on
systemic and local immunologic interactions and responses is
scarce (14). Against this background, the purpose of this study
was to investigate and compare systemic and local inflammatory
responses in isolated and combined trauma. Within an
established long-term porcine model of combined trauma (femur
fracture, chest-, and abdominal injury, and hemorrhagic shock)
(15), post-traumatic immunologic responses were analyzed and
compared to those gained from a group with isolated femur
fracture. Early kinetics of systemic and local (fracture hematoma
and surrounding muscle tissue) immunologic response around
the fracture zone were investigated during a 72 h clinically
realistic study period.

MATERIALS AND METHODS

Animal Care
Official permission to perform the study was granted from
the governmental animal care and use office (Landesamt für
Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen,
Recklinghausen, Germany, AZ: 84.02.04.2014A265). All
experimental protocols were approved by the governmental
animal care and use office and performed in accordance with
the German legislation governing animal studies, following The
Principles of Laboratory Animal Care (16). The data presented
in this paper were collected in the context of a larger study
(15) for the benefit of the principles of the 3Rs (Replacement,
Refinement, and Reduction) (17).

In total 24 male pigs (German Landrace, Sus scrofa) weighing
30± 5 kg, aged 3 months were used. After arrival from a disease-
free barrier breeding facility all animals underwent clinical
examination by a veterinarian. Thereafter all animals were
housed for 7 days before experiments started. Polytrauma (PT)
was induced to 12 animals while 12 animals received isolated
femur fracture and were defined as monotrauma (MT). Animals
were housed in ventilated rooms and allowed to acclimatize to
their surroundings for a minimum of 7 days before start of the
experiment. All sections of this report adhere to the ARRIVE
Guidelines for reporting animal research (18).

Sample Size and Power Calculation
A sample size calculation was performed for the primary study
(15). The chosen sample sizes of 12 in the two groups (MT,
PT) show comparable effect sizes as observed in a previous
published study on hypothermia in a porcine trauma model
(19) and will provide at least 80% power at a significance level
of 5%. As all physiological, morphological and inflammatory
outcomes characterizing the long-term evolution of severe
multiple trauma are equally important to describe the intermodal
animal model, no distinction between primary, and secondary
outcome was made.

General Instrumentation and Anesthesia
The model was previously described in detail elsewhere (15). In
brief: premedication was induced by an intramuscular injection
of azaperone (4mg kg−1). During the 12-h fasting period
animals had free access to water. Anesthesia was induced
by propofol (3mg kg−1), followed by orotracheal intubation.
Volume-controlled, lung protective mechanical ventilation was
applied, and vital parameters were continuously monitored and
documented as previously described (20).

During the entire study period, general anesthesia was
maintained with propofol and sufentanil (40–90 µg Kg−1/h).
Continuous crystalloid infusion (Sterofundin ISO R©; 2 ml/kg
BW/h) preserved animals from dehydration (15).

Administration of fluids and anesthesia was done by a
central venous catheter which was placed in the external
jugular vein. Furthermore, this was used to monitor the central
venous pressure. The right femoral vein was instrumented via
a three-lumen haemodialysis catheter to perform hemorrhage.
Continuous monitoring of blood pressure, e.g., mean arterial
pressure (MAP) was performed via an arterial line, that was
placed in the femoral artery. Reference for intravascular pressure
measurements was the mid-chest level and at end of expiration.
Suprapubic catheter was applied. Finally, random allocation to
either the PT group or the MT group was performed (15).

Induction of Multiple Trauma and
Hemorrhage
Trauma was induced as previously described (15) and after
achieving stable baseline conditions (at least 120min after
instrumentation). During the 90-min period of shock animals
were not prevented from hypothermia to simulate the clinical
situation (in humans) after trauma and transport to the hospital.

A bolt gun machine (Blitz-Kerner, turbocut JOBB GmbH,
Germany) was used to induce femur fracture in mono- as well
as multiple trauma. Therefore the bolt hit a custom-made punch
positioned on themid third of the femur. Cattle-killing cartridges
(9× 17; DynamitNobel AG, Troisdorf, Germany) were used. The
PT group received blunt chest trauma, induced by a bolt shot
fired on a pair of panels that was placed on the right dorsal,
lower chest (20, 21). Lungs were inflated when the bolt shot was
applied. Moreover, a midline-laparotomy was performed and the
right upper liver lobe was explored in PT. A penetrating hepatic
injury was induced by a crosswise incision (4.5 x 4.5 cm) halfway
through the liver tissue (22, 23). Liver packing was carried out
with five sterile packs of 10× 10-cm gauze after a short period of
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uncontrolled bleeding (30 s). Thereafter, hemorrhagic shock was
induced by withdrawal of blood until a MAP of 40 ± 5mm Hg
was reached, with a maximum withdrawal of 45% of the total
blood volume. The MAP was maintained for 90min. The ISS
(Injury Severity Score) was calculated as 27 points in PT. One
investigator (KH) induced trauma, and the period of shock was
monitored by two experienced clinicians (KH, TPS) (15).

Animals were resuscitated at the end of the shock period in
accordance with established trauma guidelines (ATLS R©, AWMF-
S3 guideline on Treatment of Patients with Severe and Multiple
Injuries R©) by adjusting FiO2 to baseline values and re-infusing
the withdrawn blood and additional fluids (Sterofundin ISO R©;
2ml kg/BW/h) in PT (24). Furthermore, animals were rewarmed
until normothermia (38.7–39.8◦C)was reached using a forced-air
warming system (24).

According to established trauma guidelines, operative
stabilization of the femur fracture was performed after surgical
disinfection and sterile draping at the end of the resuscitation
(25). Fluoroscopy (Ziehm Vision, ZiehmImaging, Germany)
was used to guide reduction and operation of the femur
fracture. According to the clinical situation were internal as
well as external stabilization is used for fracture treatment, an
intramedullary nail (T2 System, Stryker) was applied to six
animals in each group while the remaining six animals received
external fixation (Radiolucent Fixator, Orthofix). Surgery was
performed by one experienced trauma surgeon. Before surgery
and then every 24 h until the end of the experiment antibiotics
(Ceftriaxon R© 2 g, i.v.) were administered (15).

Data Collection
Following parameters were measured every 30min by blood gas
analysis (BGA) for a period of 5.5 h after trauma: pH, lactate
(LAC), pCO2, pO2, hemoglobin (Hb), and base excess (BE).
From then on, BGA was performed every 6 h until observation
period came to an end. Time points of whole blood sampling are
paralleled by data on physiologic responses (MAP and heart rate;
HR) as well as BGA results. Results demonstrating severe signs of
shock were published earlier (15).

Blood samples used in this study were obtained after
resuscitation and operative treatment (3.5 h) and after 24, 48,
and 72 h (15). Samples were kept on ice. Subsequently, after
centrifugation at 2,000 × g for 15min at 4◦C, serum samples
were stored at −80◦C until analysis of IL-6, IL-8, and IL-10
concentrations (Quantikine R© porcine ELISA kit; R&D systems,
USA), according to the manufacturer‘s instructions. Muscle
tissue was obtained by biopsy after resuscitation and operative
treatment (3.5 h) and after 24, 48, and 72 h; samples were frozen
in liquid nitrogen. For protein analysis, 100mg of frozen muscle
tissue were thawed in 300 µL of lysis and extraction buffer
and immediately homogenized in an Eppendorf tube on ice
with a T10 basic ULTRA-TURRAX R© (IKA, Germany). Protein
concentrations were measured with commercially available
ELISA kits. Fracture hematoma was extracted under sterile
conditions by puncturing the fracture zone at 3,5, 24, 48,
and 72 h. Hematoma was collected in an EDTA monovette R©

(SARSTEDTAG&Co, Germany) and diluted with Sterofundin R©

1:1. After centrifugation, serum was removed and stored at

−80◦C for further analysis. Referring to higher concentrations,
all fracture hematoma samples were diluted oncemore (IL-6 1:10,
IL-8: 1:4, IL-10: 1:4).

Statistical Analysis
Statistics were performed with SPSS (Version 21.0.0.0) using
Mann-Whitney-U, Wilcoxon rank sum and Friedman tests
(including Chi2-Test) [illustrated as mean (SEM)]. For all
comparisons, the significance level was set at 5%. Graphics were
created using SPSS.

RESULTS

Physiological Response
In contrast to previously reported data from the PT group
(15), MT did not present with comparable shock parameters.
The mean arterial pressure (MAP) was significantly higher (p
< 0.001) in MT (69 ± 2.3 mmHg) than in PT (43 ± 1.9
mmHg) 90min after trauma induction. Additionally, heart rate
was significantly lower (p < 0.001) in MT (85 ± 7b/min)
compared to PT (170 ± 11b/min) at this time. Furthermore
pH (MT 7.51 ± 0.01 vs. PT 7.43 ± 0.01, p < 0.001), Lactate
(MT 1.2 ± 0.2 mmol vs. PT 4.4 ± 0.4 mmol, p < 0.001),
Base Excess (MT 4.8 ± 0.5 mmol vs. PT 0.4 ± 0.6 mmol, p
< 0.001) did prove severe haemorrhagic shock only in the PT
group. In regard to the reported time points during further
clinical course only Lactate was slightly increased after 3.5 h (MT
1.01 ± 0.12 mmol vs. PT 1.38 ± 0.11 mmol). Otherwise there
were no statistically significant differences found between the
groups. Due to interrupted warming during the trauma phase
body temperature was 36.7 ± 0.3◦C in MT and 36.7 ± 0.2◦C in
PT after 90min. These values were not statistically significant (p
= 0.887). After rewarming, animals presented with physiological
body temperature (MT 3.5 h: 38.2 ± 0.2◦C; D1: 38.7 ± 0.1◦C;
D2: 38.7± 0.3◦C and D3: 38.8± 0.1◦C, p < 0.001 resp. PT 3.5 h:
37.9 ± 0.1◦C; D1: 38.7 ± 0.1◦C; D2: 38.8 ± 0.1◦C and D3: 38.9
± 0.1◦C, p < 0.001). Although temperature changed statistically
significant during the clinical course in both groups, there were
no differences between the groups.

Interleukin-6
According to the post-traumatic phase, a decrease in serum
concentrations was observed in PT, while concentrations in
MT remained stable on a low level (Table 1). In both groups,
a statistically significant decrease in local IL-6 concentrations
in muscle tissue as well as fracture haematoma were observed
over time (Table 1 and Figure 1). Although fracture haematoma
concentrations were higher compared to serum concentrations in
both groups, local concentrations of IL-6 in fracture haematoma
were significantly lower in PT than in MT (Table 1). In
contrast to PT, haematoma concentrations in MT showed
statistically significantly higher levels compared to muscle tissue
concentrations (Table 1).

Interleukin-8
Serum IL-8 showed a slight increase over time in PT, while in
MT, there was a decrease in systemic concentrations. However,
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TABLE 1 | Systemic and local concentrations of IL-6 pg/ml; ap < 0.05 compared to serum concentrations, bp < 0.05 compared to muscle concentrations, cp < 0.05

compared to PT.

Time (h) Polytrauma (PT) Monotrauma (MT)

Serum Muscle Haematoma Serum Muscle Haematoma

3.5W 154 (24) 1,803 (535) 3,387 (927)a 65 (16)c 2,665 (377)a 6,286 (1,158)a,b

24W 81 (11) 1,244 (222)a 2,483 (463)a 56 (18) 1,347 (230)a 4,940 (932)a,b,c

48W 77 (19) 348 (42)a 671 (95)a 49 (24) 492 (120)a 2,228 (560)a,b,c

72W 63 (16) 170 (25) 485 (133)a 58 (20) 160 (54) 945 (318)a,b

p-valueF 0.002 0.011 <0.001 0.858 0.001 <0.001

Values are given in mean (SEM), FFriedman-Test and Chi2-Test, WWilcoxon-Test.

FIGURE 1 | IL-6 concentrations in fracture hematoma between groups and different time points (PT, Polytrauma; MT, Monotrauma; pg/ml, picogram per milliliter;

h, hours).

this finding in MT was statistically not significant (Table 2).
Interestingly, concentrations in muscle tissue showed opposite
trends compared to the systemic ones. Initially increasing
concentrations decreased by the end of the observation time
(Table 2). In contrast, concentrations measured in fracture
haematoma presented with inverse dynamics compared to those
seen in muscle tissue. IL-8 dynamics in haematoma described a
v-shaped curve, which was statistically significant in MT (Table 2
and Figure 2). At all measured time points, IL-8 concentrations
in fracture haematoma of MT were higher compared to those in
PT (Table 2).

Interleukin-10
While serum concentrations of IL-10 in PT slightly decreased
over time (Table 3), values in MT did not present statistically
significant changes over time. Although local concentrations
measured in muscle tissue and fracture hematoma remained

uneventful and were detectable only on a very low level,
haematoma concentrations in MT showed an increase by the end
of the observation period (Table 3 and Figure 3). However, this
finding was not statistically significant.

DISCUSSION

Fracture healing is significantly influenced by the local
inflammatory response after trauma (26–29). The impact
of trauma severity may lead to a different post-traumatic
response, which potentially influences the onset of fracture
healing (30, 31). However, information about local inflammatory
reactions regarding fracture repair are mostly gained from small
animal models with either limited observation time or conditions
that do not closely mimic a clinically realistic situation (32–36).
As pigs respond to trauma similar to humans, we used an
established long-term porcine model of isolated and multiple
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TABLE 2 | Systemic and local concentrations of IL-8 pg/ml; ap < 0.05 compared to serum concentrations, bp < 0.05 compared to muscle concentrations, cp < 0.05

compared to PT.

Time (h) Polytrauma (PT) Monotrauma (MT)

Serum Muscle Haematoma Serum Muscle Haematoma

3.5W 4 (1) 2,172 (400)a 405 (163)a 25 (11) 5,947 (2,116)a 1,582 (566)a,b,c

24W 11 (6) 8,115 (1,517) 127 (24)a 13 (5) 10,656 (2,116)a 448 (88)a,b,c

48W 12 (4) 6,704 (2,895)a 163 (30)a,b 12 (7) 9183 (2,711)a 471 (111)a,b,c

72W 13 (5) 1,782 (1,386)a 270 (86)a 15 (7) 555 (174)a 1,123 (658)a

p-valueF 0.01 0.026 0.05 0.514 0.011 0.022

Values are given in mean (SEM), FFriedman-Test and Chi2-Test, WWilcoxon-Test.

FIGURE 2 | IL-8 concentrations in fracture haematoma between groups and different time points (PT, Polytrauma; MT, Monotrauma; pg/ml, picogram per milliliter;

h, hours).

trauma to investigate the local and systemic inflammatory
responses in regard to extremity injury and trauma impact
(37, 38).

The main results might be summarized as follows:

- Local fracture haematoma concentrations of pro-inflammatory
IL-6 and angiogenetic IL-8, but not of anti-inflammatory
IL-10, exceeded the systemic values. Fracture haematoma
concentrations of IL-6 and IL-8 were higher in MT compared
to those in PT.

- In both groups, IL-8 concentrations in muscle tissue showed
contrary dynamics compared to those seen in fracture
haematoma. Concentrations in muscle tissue exceeded
haematoma concentrations. Dynamics of haematoma
concentrations described a v-shaped curve, implying
a temporary decrease before recovery. This trend was
statistically significant only in MT.

- Anti-inflammatory IL-10 presented increasing concentrations
in fracture haematoma of MT, but not in PT by the end
of the observation period, demonstrating a shift toward

an inflammatory milieu. However, this finding was not
statistically significant.

The Pro-inflammatory Phase
The early post-traumatic immunologic milieu of fracture
hematoma is characterized by inflammation and hypoxia
(28). During this early period of acute inflammation, pro-
inflammatory mediators such as IL-6 recruit cells needed for
tissue regeneration (39). As previously reported and confirmed
by others, IL-6 in fracture haematoma increases during the initial
post-traumatic phase, followed by a continuous decrease during
the further clinical course (20, 40, 41). While its early peak is
discussed to maintain the onset of bone healing, persistent high
values negatively influence osteogenic differentiation from stem
cells (42–44). In regard to multiple trauma commonly associated
with an advanced post-traumatic inflammatory response (45),
Recknagel et al. revealed that concomitant thoracic trauma
considerably enhanced the number of PMN, decreased the
number of macrophages and slightly increased IL-6 expression
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TABLE 3 | Systemic and local concentrations of IL-10 pg/ml; ap < 0.05 compared to serum concentrations, bp < 0.05 compared to muscle concentrations, cp < 0.05

compared to PT.

Time (h) Polytrauma (PT) Monotrauma (MT)

Serum Muscle Haematoma Serum Muscle Haematoma

3.5W 48 (25) 0 (0)a 38 (14) 85 (47) 5 (5) 37 (11)b

24W 39 (26) 18 (7) 38 (17) 92 (50) 15 (10) 28 (9)

48W 33 (30) 12 (7) 32 (14) 145 (86) 25 (20) 33 (11)

72W 25 (21) 0 (0) 38 (18) 86 (45) 0 (0) 72 (44)b

p-valueF 0.027 0.101 0.972 0.260 0.392 0.779

Values are given in mean (SEM), FFriedman-Test and Chi2-Test, WWilcoxon-Test.

FIGURE 3 | IL-10 concentrations in fracture haematoma between groups and different time points (PT, Polytrauma; MT, Monotrauma; pg/ml, picogram per milliliter;

h, hours).

locally at the fracture site, suggesting that post-traumatic
systemic inflammation altered the finely tuned inflammatory
balance during the early healing phase, leading to impaired
bone healing (31, 46). Accordingly, De Benedetti et al. showed
that overexpression of IL-6 resulted in severe osteopenia with
reduced osteoblast and increased osteoclast numbers and activity
(47). Thus, the observed time-dependent decrease in IL-6
concentrations seems to be a consistent step in the sequence
of fracture repair. Heiner et al. suggested IL-6-induced up-
regulation of the suppressor of cytokine signaling-3 (SOCS-
3) as a possible mechanism for the reduction of local IL-6
concentrations (40).

Although we found this decrease in both groups, significant
differences between concentrations of IL-6 in MT and PT were
observed, with higher values inMT. This dichotomy is interesting
as excessive trauma is known to increase systemic cytokine
concentrations (14). However, in contrast to lung contusion or
haemorrhagic shock, fracture associated soft tissue trauma was
found not to be the driving force leading to significant increase
of cytokine concentrations (36, 48, 49). Moreover, haemorrhagic

shock was discussed to reduce supply in the fracture zone (50),
which might explain the observed lower cytokine concentrations
in PT fracture hematoma compared to MT ones. Altered
immunologic reactions after bone injury with hemorrhage
compared to isolated bone injury were previously described and
support our findings (51–53). An altered immunologic milieu in
the early fracture hematoma also support the findings reported
by Lichte et al. who demonstrated impaired bone healing and a
significantly decreased number of osteoclasts, a decrease in bone
quality and more cartilage islands after hemorrhagic shock in
mice (53). Additionally, Wichmann et al. reported on a murine
model comparing isolated tibia fracture with tibia fracture
and combined hemorrhagic shock (51). The authors concluded
that severe hemorrhage after closed bone fracture depresses
osteoblast activity and increases osteocyte necrosis, which should
compromise fracture healing under those conditions (51). In
line with others, the authors discussed decreased blood supply
to the fracture zone to negatively influence fracture repair
(51–53). Thus, our observation of lower pro-inflammatory
concentrations in the PT group suggests the absence of important
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pro-inflammatory pacemakers in the very early phase of fracture
repair, leading to a delay in skeletogenic mesenchymal stem cell
differentiation, with consecutive non- or delayed bone healing
(54–56). This finding could serve as one possible explanation
why polytraumatised patients suffer from bony non-union more
often than patients with isolated injury (9, 30, 57). Against
this background, the value of traumatic hemorrhage and its
influence on the local immunologic milieu in fracture healing
must not be underestimated. Comparable to the benefit of typical
shock organs (58), it seems likely, that early resuscitation would
also improve the perfusion at the site of the fracture zone
supporting recovery to a physiological and immunological state
(59, 60). In this context, Augat et al. found that a transient
hemorrhagic shock situation followed by isovolumetric blood
volume resuscitation resulted in improved fracture healing. The
authors concluded that the positive healing response might be
associated with improved revascularization of the soft callus
adjacent to the fracture site (59, 60). Accordingly, Melnyk et al.
described that soft tissue damage without destruction of the
bone-soft tissue interface is likely to have only a limited effect on
fracture healing (61).

Beside its pro-inflammatory properties, IL-8 is well-known
for its angiogenetic characteristics. Accordingly, high local levels
were found in fracture haematoma in a previous clinical study,
which underlines the importance of IL-8 in the process of bone
healing (28). Our data revealed that IL-8 kinetics in muscle tissue
showed opposite trends to those seen in fracture haematoma.
While concentrations in muscle tissue increased initially and
decreased during the clinical course, haematoma concentrations
initially decreased and recovered during the later clinical course.
Comparable to the observations made in IL-6, the dynamics
of IL-8 in fracture haematoma may be explained by reduced
blood flow due to haemorrhagic shock in PT (62). Accordingly,
Heppenstall et al. report on a rabbit model with an inhibition
of fracture healing in hypovolaemia, which was attributed to
impaired delivery of oxygen to the fracture site (63). According to
our divergent findings in muscle tissue and fracture haematoma,
Schmidt-Bleek et al. reported differences in the immunologic
milieus of muscle haematoma and fracture haematoma in a
sheep model (64). The authors indicate that the inflammatory
processes differ due to a unique immune cell composition (64).
Although the authors report on a different animal model of
isolated trauma, investigating cell migration, our data also reveal
differences in the immunologic post-traumatic milieus of muscle
tissue and fracture haematoma within the MT, but not the PT
group. In regard to the concentrations measured in muscle
tissue, our findings are supported by Dragu et al. who proved
alterations in the gene expression level in human muscle free
flaps after ischaemia and reperfusion (65). The authors report
on IL8 as one of four genes that were significantly upregulated
after reperfusion of ischemic muscle tissue (65). Accordingly,
Huda et al. showed that a significantly elevated concentration
was measurable in blood plasma after 3–4 h of reperfusion (66).
Furthermore, Kukielka et al. investigated IL-8 expression after
ischemia and reperfusion in canine myocardium. The authors
found that IL-8 mRNA peaked in the first 3 h of reperfusion and

persisted at high levels beyond 24 h (67). Based on these findings,
Kukielka et al. speculated that surface-bound chemoattractants
may represent an effective mechanism of chemotactic agent
presentation and neutrophil activation wherever a reduced blood
flow prevents the establishment of a stable soluble chemotactic
gradient (67). The observation of increased IL-8 levels are in line
with our results frommuscle tissue analysis. Both groups showed
increased IL-8 concentrations 24 and 48 h after trauma. While
values in MT were doubled, concentrations in PT increased
even four times compared to initial values. As PT received
haemorrhagic shock, this finding might support Kukielka’s
speculation on the effect of surface-bound chemoattractants in
tissue with reduced blood flow. Thus, cell composition as well
as interaction of immunologic key players in the early local
inflammatory response after multiple trauma must be the focus
of further studies.

The Anti-inflammatory Phase
Interleukin-10 is known as an anti-inflammatory mediator
that also plays a central role in the fracture healing process
(28). It influences bone resorption and enhanced bone healing
(35, 68, 69), and a deficit results in osteopenia, mechanical
fragility of bones, and defects in their formation (70). While
some authors report increased IL-10 concentrations in fracture
haematoma during the early post-traumatic phase (71, 72), we
could not prove significant kinetics over time. Baker et al.
compared different trauma models and proofed that polytrauma
plus hemorrhage did not induce the systemic release of IL-
10 (49). The authors showed that an additional hemorrhage
component appears to attenuate the systemic release of IL-
10 after polytrauma (49). In line with Baker et al. and
Wichmann et al. proofed that a bone injury, coupled with
haemorrhagic shock, produces a more severe depression of
immune functions than a haemorrhagic shock alone (73).
The authors concluded that bone injury appears to play a
contributory role in further depressing immune functions in
trauma patients who experienced major blood loss (73). These
observations may further reflect that the combined insult leads
to the induction of a state of immune paralysis, which also
affects IL-10 concentrations within the fracture haematoma (49,
74). In contrast, Hauser et al. found significantly increased
IL-10 levels in fracture haematomas in the early phase after
trauma, whereas lower levels were observed in the later period
(>24 h) (71). However, the authors reported on isolated injures
with very heterogeneous entity and severity, which might not
realistically reflect the polytraumatised situation. Additionally,
Hoff et al. also reported elevated IL-10 concentrations in fracture
haematoma (72). However, these values were compared to IL-
10 concentrations gained from non-traumatic osteotomy in hip
replacement. Thus, the expressiveness of this early “increase”
might be also questioned against the background of traumatic
injuries. Delayed migration of IL-10-producing cells into fracture
haematoma, proved by Schmidt-Bleek et al. may be another cause
for time-dependent kinetics in local IL-10 concentrations (44).
This might allow a careful speculation about the observed IL-10
increase in fracture haematoma of the MT group, but not the
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PT group after 72 h, representing a possible shift from a pro-
inflammatory immunologic milieu toward an anti-inflammatory
and angiogenic one (28, 44, 75). Yet, literature about local
concentrations of IL-10 remains sparse, and further research is
warranted. However, the absence of IL-10 in the haematoma
of polytraumatised patients might be another explanation for
impaired bone regeneration in this patient cohort.

Limitations
The purpose of our study was to gain knowledge about
trauma impact and its effect on local inflammatory response
around the fracture zone in a clinically relevant, large animal
model of isolated vs. multiple trauma. Unfortunately, molecular
mechanisms that regulate local or systemic inflammatory
response could not be derived. Also, interaction of local
inflammatory response to osteo- and chondrogenesis remain
unlighted. Furthermore, testing of a relatively small sample
size yielded relatively large standard errors for each parameter.
Additionally, it would have been interesting to analyse individual
immunologic responses as well as financial restrictions led
to measurement of only three mediators which is regrettable
in the context of a vast immunologic system whereby
dozens of inflammatory mediators dynamically interact resulting
in a plethora of possible phenotypes. However, research
regarding this field is ongoing, and follow-up studies that
concentrate on cell migration, but also on bone healing,
are in preparation.

CONCLUSIONS

To the best of our knowledge, this is the first study that
characterizes and compares chronologic data of locally active
inflammatory mediators in regard to femur fracture and trauma
impact. Although inference of systemically circulating mediators
cannot be drawn from this study, it might be suggested that
concomitant injuries, such as haemorrhagic shock, significantly
influence local post-traumatic reactions in fracture/soft-tissue
haematomas. Combined trauma (or “severe trauma”) may cause
perturbations in local and/or systemic cytokines and chemokine
levels intimately involved in the early phases fracture healing,
which may influence adverse outcomes such as fracture non-
union. Based on the results of this study, further studies of our
group will focus on the role of inflammatory mediators in the
repairing process of injured tissue and their role in the systemic
process of responding to trauma.
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during early post-traumatic stages up to 72 h.
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