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Abstract

Humans and other primates are highly visual animals. Our daily visual activities such
as recognizing familiar faces, interacting with objects, or reading, are supported by
an extensive system of interacting brain areas. The interactions between the many
individual nerve cells both within and between brain areas need to be coordinated.
One possible solution to achieve flexible coordination between cells in the network
is rhythmic activity, or oscillations. The focus of the thesis will be activity in the
largest visual area, V1, in non-human primates. In V1, high-frequency activity, so-
called gamma-band activity (“gamma”, ca. 30-90 Hz) can be frequently observed and
has been suggested to play a role in coordinating activity in the visual system. In
Chapter 1, the coordination problem, the primate visual system and gamma-band os-
cillations are introduced in detail. The following chapters explore the dependence of
gamma on contextual influences. Does V1 use contextual information to optimize co-
ordination? In the first part, the short-term consequences of repeated encounters with
visual stimuli on V1 responses are explored (Chapters 2 and 3). Inspired by results
from colored, naturalistic images in the first part, the second part tests the dependence
of gamma on spatial and chromatic stimulus aspects (Chapters 4 and 5).

Stimulus repetition is a simple yet powerful way to tap into our brains’ ability to
learn and adapt to our environment. Repeated presentation of a visual stimulus tends
to decrease responses to this stimulus. Is this accompanied by changes in the coordi-
nation of brain activity? In Chapter 2, the stimulus-specificity of repetition effects on
gamma was tested using naturalistic stimuli. V1 is most typically studied using black-
and-white, artificial stimuli that are very familiar to the animals. Here, colored natural
images were repeatedly presented that were initially novel to the animals, to provide
a wider and more naturalistic range of stimulation. Both multi-unit spiking activity
(MUA) and gamma showed stimulus-specific repetition effects. MUA responses de-
creased most strongly for initial repetitions and less for later repetitions. In contrast,
gamma could increase or decrease for initial repetitions, but tended to increase for
later repetitions. This points to the operation of multiple plasticity mechanisms. One
process may rapidly decrease MUA and gamma and be related to initial novelty or
adaptation. The other increases gamma, is active for more repetitions, and could con-
stitute a form of refinement of coordination over time. Morevoer, based on the spacing
of stimulus repetitions, stimulus memory in V1 persisted for tens of seconds.

In the following Chapter 3, the stimulus location specificity and persistence of the
repetition effects for longer timescales were tested. To this end, the observation that
the increase in gamma with repetition was strongest for the first tens of repetitions was
used to test for location specificity and memory. Using simple artificial stimuli that
were repeated many times at two alternating locations, both location specificity and
memory on the order of minutes was observed. Due to the structure of the primate
visual system, location specificity suggests that the repetition effects involve early to
mid-level visual areas such as V1. Memory for previous stimulus presentations on
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the order of minutes has not been previously reported for V1 gamma. Taken together,
these experiments demonstrate short-term plasticity of gamma that is stimulus- and
location specific and persists on the timescale of minutes.

In Chapter 2, the average gamma-band response to the large, naturalistic stimuli was
highly stimulus dependent. Relative increases in gamma-band activity scaled between
tens and thousands of percent change depending on the stimulus. Particularly the
color of the stimuli appeared to play a strong role, although the stimulus set was too
limited and uncontrolled to draw strong conclusions. In Chapters 4 and 5, underlying
mechanisms for the stimulus specificity of gamma were explored using more well-
controlled, artificial stimuli that varied in color and spatial structure.

Much of vision relies on the analysis of spatial structure. Each nerve cell in V1 only
responds to visual stimuli in a particular, small part of the visual field, its so-called “re-
ceptive field” (RF). Compared to isolated RF stimulation, nearby cells that are stim-
ulated by a similar structure from different parts of visual space can show response
decreases, commonly known as “surround suppression”, and may show coordinated
activity in the gamma band. In Chapter 3, responses to large, uniformly colored disks
are contrasted with responses to black or white (achromatic) disks. A first experiment
showed that gamma-band responses were stronger for colored than achromatic stim-
uli, whereas MUA responses could decrease below baseline for colored stimuli. To
test whether these phenomena were related to surround suppression, stimulus size was
manipulated in a second experiment. When stimuli were of sufficient size to induce
surround suppression, clear gamma-band responses emerged. Surround suppression
and gamma were stronger for chromatic stimuli. However, the change of stimulus
size could have changed not only surround suppression but also stimulus saliency.
Therefore, in a third experiment, the overall size of the stimulus was kept constant,
and the spatial structure of the stimulus was manipulated. In comparison to uniform,
predictable stimulus structure, mismatches between the center of the stimulus and the
surrounding visual space led to strong increases in MUA responses and strong de-
creases in gamma-band activity. These effects were restricted to the recording sites
with RFs at the mismatch location. These experiments underpin the strong role of
both spatial structure and color for gamma in V1.

In Chapter 4, responses to different color hues are studied in more detail. Gamma
response strength depended on hue, being strongest for red compared to blue and
green stimuli when measured with a gray background. To better understand the un-
derlying mechanisms of the differential responses, the spatio-temporal context in the
form of the background color was manipulated. Background color had a strong influ-
ence on gamma strength. Using differently colored backgrounds, different parts of the
color signaling pathways could be adapted. Response differences to different color
hues could be explained well with a model that incorporates differences in adaptation
between pathways involving long- compared to medium-wavelength cone signals.

Taken together, these experiments indicate a strong role of both spatial context
(stimulus size and structure) and temporal context and drive (repetition, adaptation)
for the generation of gamma-band activity in V1. Functional implications of these
dependencies are considered in the final Chapter 6, and a role for gamma-band syn-
chronization in a coding regime for visual inputs that generate strong drive and high
predictability is suggested.

Keywords:
gamma-band oscillations, stimulus repetition, surround suppression, color, V1
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Ausführliche deutsche Zusammenfassung

Menschen und andere Primaten verfügen über hervorragende visuelle Wahrnehmungs-
fähigkeiten. Diese basieren auf einem komplexen System interagierender Hirnarea-
le, welches uns zum Beispiel ermöglicht, Gesichter zu erkennen, mit Gegenständen
umzugehen oder zu lesen. Aufgrund der vielen Verbindungen zwischen Nervenzel-
len sowohl innerhalb eines Hirnareals als auch zwischen Arealen interagieren Zellen
stark miteinander, sodass die Aktivität verschiedener Zellen zeitlich koordiniert wer-
den muss. Eine mögliche Grundlage flexibler Koordination in einem Netzwerk von
Zellen ist ihre Synchronisierung mittels rhythmischer Aktivität (Oszillationen).

Diese Arbeit beschäftigt sich mit der Aktivität im größten visuellen Hirnareal, ge-
nannt V1, bei nicht-menschlichen Primaten (Rhesusaffen). In V1 ist hochfrequente
Aktivität im sogenannten Gamma-Band (ca. 30-90 Hz, ”Gamma“) ein häufiges Merk-
mal von neuronalen Antworten auf visuelle Stimuli. Da synchronisierte Aktivität im
Gamma-Band spezifisch zwischen Zellen auftreten kann, die den selben visuellen Sti-
mulus verarbeiten, wurde Gamma eine funktionelle Rolle in der Koordination von
Hirnaktivität zugesprochen. In Kapitel 1 werden das visuelle System des Primaten, das
Koordinationsproblem zwischen Zellen und Gamma-Band Oszillationen ausführlich
eingeführt.

Diese Dissertation behandelt die Abhängigkeit von Gamma in V1 von verschiede-
nen kontextuellen Einflüssen. Nutzt V1 kontextuelle Informationen, um seine Koordi-
nation zu optimieren? Im ersten Teil wird untersucht, inwiefern Stimuluswiederholun-
gen Veränderungen in den Antworten in V1 und insbesondere in Gamma hervorrufen
(Kapitel 2 und 3). Inspiriert von den starken Antworten im Gamma-Band auf farbi-
ge, natürliche Stimuli, wird im zweiten Teil der Zusammenhang von Gamma zu be-
stimmten Stimuluseigenschaften getestet, insbesondere ihrer räumlichen Struktur und
Farbe (Kapitel 4 und 5). Die Zusammenhänge zwischen räumlichen und zeitlichen
Einflüssen auf Gamma werden im letzten Kapitel 6 diskutiert und in den breiteren Zu-
sammenhang mit dem aktuellen Forschungsstand und vorherrschenden Theorien zu
visueller Kodierung gesetzt.

Einfluss von Stimuluswiederholung auf visuelle Gamma-Band
Aktivität

Unser Gehirn befindet sich in einem ständigen Prozess des Lernens und der Anpas-
sung an das momentane Umfeld. Zum Beispiel reagiert das Gehirn auf die wiederholte
Präsentation eines Stimulus nicht identisch, sondern vermindert typischerweise seine
Antworten in Form von Feuerraten. Erfolgt gleichzeitig eine verstärkte Koordination
der verbleibenden Antworten? Eine frühere Studie des Labors fand starke Hinweise
auf solche verbesserte Koordination spezifisch im Gamma-Band sowohl innerhalb als
auch zwischen Hirnarealen im Verlauf von hunderten Präsentationen von künstlichen
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Stimuli. Jedoch blieb unklar, inwiefern diese Verbesserung der Koordination spezi-
fisch für einen bestimmten Stimulus war. In Kapitel 2 wird die Stimulusspezifität von
Wiederholungseffekten auf Gamma mittels natürlicher Stimuli getestet. Antworten in
V1 werden meist mittels künstlicher Schwarzweißstimuli untersucht, welche die Tie-
re schon oftmals zuvor gesehen haben. In dieser Studie wurden farbige Fotografien
von Objekten verwendet, welche die Tiere zu Beginn des Experiments das erste Mal
sahen. Mit Hilfe dieser Stimuli kann getestet werden, ob der ursprünglich beobachtete
Wiederholungseffekt unter breiteren und natürlicheren Bedingungen auftritt.

Der Effekt von Stimuluswiederholung zeigte Stimulusspezifität, sowohl für die Feu-
erraten von Zellgruppen (Multi-Unit-Aktivität, MUA) als auch für Gamma-Band Ak-
tivität. Dies zeigte sich sowohl durch eine Korrelationsanalyse von Wiederholungs-
effekten über die Ableitetage hinweg als auch durch lineare Regressionsmodelle. Im
Gamma-Band zeigte sich die Stimulusspezifität der Wiederholungseffekte sowohl für
die Stärke der Antworten im lokalen Feldpotential (LFP, d.h. vor allem synchronisier-
te extrazelluläre Signale wie synaptische Aktivität), als auch in der Koordination der
MUA zum LFP. Niedrigere Frequenzen zeigten keine Stimulusspezifität.

Stimulus-spezifische Wiederholungseffekte in der MUA traten früh (< 100 ms nach
Beginn der Stimulation) auf und hielten für mehrere Hundert Millisekunden an. Die
geringe Latenz der Effekte spricht für eine Rolle von V1 oder seinen Inputs, und ge-
gen eine Rolle von höheren Arealen oder kognitiven Effekten wie Aufmerksamkeit
als Erklärung für den Wiederholungseffekt. Des Weiteren basierten die Wiederho-
lungseffekte nicht allein auf direkten Wiederholungen, sondern zeigten sich auch über
Unterbrechungen durch mehrere andere Stimuli hinweg.

MUA wurde generell durch Stimuluswiederholung vermindert. Dies galt insbeson-
dere für die ersten Wiederholungen. Dabei verringerten sich die Antworten in der
MUA für die Stimuli und Ableitestellen am meisten, welche anfänglich stärker waren.
Dies spricht gegen eine verbesserte Prozessierung durch selektiven Wegfall schwach
antwortender Zellen. Die Veränderung von Gamma-Band Aktivität durch Stimulus-
wiederholung zeigte dagegen ein komplexeres Bild. Für die ersten Wiederholungen
konnte die Stärke von Gamma-Band Antworten in Abhängigkeit vom Stimulus an-
steigen oder abfallen. Bei späteren Wiederholungen dominierten Anstiege die Antwor-
ten im Gamma-Band. Stimuli, die schon während der ersten Präsentationen Anstiege
zeigten, zeigten in der Tendenz auch für spätere Präsentationen stärkere Anstiege. Die-
ses Muster an Effekten weist auf zwei verschiedene unterliegende Plastizitätsprozesse
hin, die in Abhängigkeit vom Stimulus unterschiedlich stark wirken. Der eine Prozess,
der ähnlich wie bei der MUA am stärksten die anfänglichen Wiederholungen betrifft,
führt zu verminderten Gamma-Band Antworten. Starke Feuerraten und Gamma-Band
Antworten für die erste Präsentation könnten zum Beispiel die Neuheit eines Stimulus
reflektieren. Der zweite Prozess verstärkt Gamma-Band Antworten, nicht nur für die
ersten Wiederholungen, und könnte einer durch stärkere Koordination verbesserten
Prozessierung des Stimulus dienen. Es ist bemerkenswert, dass die alleinige Analyse
von Feuerraten wenig Hinweise auf anhaltende Plastizitätsprozesse nach den ersten
Wiederholungen lieferte, diese aber in der Veränderung der Koordination der Netz-
werkaktivität deutlich wurden.

Die Wiederholungseffekte von Gamma-Band Antworten hingen ebenfalls von der
anfänglichen Stärke der Antworten auf einen Stimulus ab. Wogegen die MUA für
einen Stimulus stärker abfiel, wenn dieser anfänglich starke Antworten induzierte,
zeigte sich das gegenteilige Bild für Gamma-Band Antworten: je stärker die anfäng-
lichen Antworten, desto stärker war auch der Anstieg der Antworten mit Stimulus-
wiederholung. Die Stärke der Veränderung der Koordination der V1-Antworten hing
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demnach vom Stimulus ab. Ein verbessertes Verständnis der generellen Stimulus-
abhängigkeit von Gamma-Band Antworten kann daher helfen zu verstehen, welche
Stimuli mit Wiederholung stärkere Plastizität in Gamma zeigen (siehe Kapitel 4 und
5). Da zwischen der Präsentation eines Stimulus und seiner Wiederholung ca. 2-20 Se-
kunden vergehen konnten (und unterschiedliche Stimuli gezeigt wurden), zeigt dieses
Experiment zudem, dass Information in V1 über mindestens solche Zeiträume inte-
griert werden kann. In Kapitel 3 wurde u.a. die Dauer des Effektes weiter untersucht.

In Kapitel 3 wurde zunächst getestet, inwiefern der Anstieg von Gamma-Band Ant-
worten durch viele Wiederholungen für einen bestimmten Ort im visuellen Feld spezi-
fisch ist. Das Experiment wurde gleichzeitig genutzt, um zu testen, ob V1 für längere
Zeiträume anhaltende Veränderungen aufgrund von Stimuluswiederholung zeigt. Da-
zu wurde die Tatsache genutzt, dass die Rate des Anstiegs von Gamma-Band Antwor-
ten sich bei sehr vielen Wiederholungen (>> 10) abschwächt. Durch die vielmalig
wiederholte Präsentation einfacher künstlicher Stimuli an zwei alternierenden Orten
wurde die räumliche Spezifität festgestellt, indem die Rate des Anstiegs bei vorhe-
riger Stimulation am gleichen mit bei vorheriger Stimulation an einem anderen Ort
verglichen wurde. Zudem zeigte sich, dass der Anstieg in Gamma-Band Antworten
bei einer Unterbrechung von mehreren Minuten erhalten blieb – Gamma reduzierte
sich nicht zurück auf das Niveau zu Beginn der Stimuluswiederholungen.

Da im visuellen System nur frühe Hirnareale räumlich spezifische Antworten ge-
ben, ist die räumliche Spezifität des Effekts ein Hinweis darauf, dass der Effekt aus
V1 selbst oder benachbarten Arealen stammt. Eine anhaltende Erhöhung von Gam-
ma trotz minutenlanger Unterbrechung ist ein bisher unbekannter Effekt, der darauf
hinweist, dass länger anhaltende Plastizitätsmechanismen involviert sind.

Zusammengenommen zeigen die Experimente in Kapitel 2 und 3 einen starken und
über mittlere Zeiträume anhaltenden Effekt von Stimuluswiederholung auf V1 Ant-
worten, sowohl in der MUA als auch in der Gamma-Band Koordinierung. Die un-
terschiedlichen Effekte von anfänglichen im Vergleich zu späteren Wiederholungen
auf Gamma deuten auf das simultane Wirken mehrerer Plastizitätsprozesse hin. Die-
se könnten beispielsweise der schnellen Prozessierung neuer, und der sich langsam
verbessernden Prozessierung sich stetig wiederholender Stimuli dienen.

Einfluss von räumlicher Struktur, Farbe und Kontext auf visuelle
Gamma-Band Aktivität

In Kapitel 2 fiel auf, dass die Stärke der Antworten im Gamma-Band auf natürliche
Stimuli stark vom individuellen Stimulus abhing. Der relative Anstieg von Gamma
durch Stimuli variierte zwischen ein paar wenigen bis ein paar Tausend Prozent. Ins-
besondere die Farbe der Stimuli schien dabei eine starke Rolle zu spielen. Allerdings
waren die Stimuli fuer eine eindeutige Untersuchung unzureichend. Dies lag insbeson-
dere an der unkontrollierten Kovarianz verschiedener Stimulusaspekte bei natürlichen
Stimuli. In Kapitel 4 und 5 wurden daher die Mechanismen, die Gamma stimulu-
sabhängig machen, näher untersucht. Dafür wurden stärker kontrollierte, künstliche
Stimuli verwendet, deren Farbe und räumliche Struktur systematisch verändert wur-
de.

Visuelle Wahrnehmung beruht auf der erfolgreichen Erfassung von räumlichen Be-
ziehungen und Strukturen zwischen verschiedenen Teilen der visuellen Welt. Jede
Nervenzelle in V1 ist auf einen bestimmten, kleinen Teil des visuellen Felds spezia-
lisiert, ihr sogenanntes ”rezeptives Feld“ (RF). Im Vergleich zur alleinigen Stimulati-
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on des RF sind die Feuerraten von Nervenzellen geringer, wenn benachbarte Zellen
gleichzeitig durch einen zusammenhängenden oder ähnlichen Stimulus angeregt wer-
den. Dieses Phänomen wird “Surround Suppression” (Unterdrückung von Antworten
durch das nahe visuelle Umfeld) genannt und wurde für Schwarzweißstimuli bereits
durch vorherige Forschung in Zusammenhang mit Gamma gestellt.

In Kapitel 3 wurden Antworten in V1 auf große, einheitlich farbige Stimuli mit
Antworten auf schwarze oder weiße (achromatische) Stimuli verglichen. In einem er-
sten Experiment zeigte sich, dass Gamma-Band Aktivität für farbige Stimuli deutlich
stärker war, wogegen die MUA noch unter Antworten auf einen grauen Hintergrund
abfiel. Diese geringe MUA könnte ein Hinweis auf eine Rolle von Surround Suppres-
sion sein. Um eine Verbindung zu Surround Suppression zu testen, wurde daher in
einem zweiten Experiment die Größe der Stimuli systematisch verändert. Sobald Sti-
muli groß genug waren um Surround Suppression in der MUA zu bewirken, wurden
auch Antworten im Gamma-Band deutlich. Sowohl Surround Suppression als auch
Gamma waren für farbige Stimuli stärker. Die Veränderung der Größe der Stimuli
brachte allerdings nicht nur Veränderungen in Surround Suppression mit sich, son-
dern aller Wahrscheinlichkeit auch Veränderungen in der Salienz und damit Aufmerk-
samkeit für die Stimuli. In einem dritten Experiment wurde daher statt der Größe die
innere Struktur der Stimuli verändert. Im Vergleich zur Stimulation mit einheitlicher
und daher räumlich vorhersagbarer Farbe führte eine uneinheitliche Stimulation von
einem RF und seinem Umfeld zu starken Anstiegen in der MUA, und gleichzeitig star-
ken Abfällen von Gamma. Diese Effekte waren sehr spezifisch für Antworten auf den
Ort einer Unstimmigkeit zwischen RF und dem Umfeld des RF. Die Experimente zei-
gen insgesamt eine starke Rolle sowohl von der Vorhersagbarkeit oder Einheitlichkeit
der räumlichen Struktur als auch der Farbe auf V1 Aktivität. Die starken Antworten
auf farbige im Vergleich zu achromatischen Stimuli werden aufgrund der bekannten
Physiologie des Farbsystems und der Mechanismen von Gamma für andere Stimuli als
eine Folge von stärkerem Input (Anregung) ausgelegt, unabhängig vom spezifischen
Farbton.

In Kapitel 4 wurden die unterschiedlichen Antworten auf verschiedene Farben ge-
nauer untersucht. Antworten auf farbige Stimuli über den gesamten verfügbaren Far-
braum des Monitors, und mit verschiedenen Helligkeiten, waren stärker als auf achro-
matische Stimuli. Verschiedene Kontrollexperimente zeigten, dass dies nicht durch
unterschiendlichen Luminanz- oder Farbkontrast bedingt war. Die Stärke von Gamma
war allerdings vom genauen Farbton abhängig. Auf grauem Hintergrund waren die
Antworten auf rote und blaue Töne am stärksten. Um die Ursprünge dieser Unter-
schiede besser zu verstehen, wurde das Experiment mit verschiedenen Hintergrund-
farben wiederholt. Diese Veränderung des Kontexts hatte große Auswirkungen auf die
Stärke der Antworten im Gamma-Band. Die Veränderung des Hintergrunds hatte den
experimentellen Zweck, verschiedene Kanäle der Farbverarbeitung gezielt zu adap-
tieren. Ein einfaches Modell konnte die Veränderungen von Gamma-Band Antworten
mit dem Hintergrund durch eine unterschiedlich starke Adaptation der Signale von
mittleren im Vergleich zu langen Wellenlängen erfassen.

Kapitel 2 bis 4 zeigen, dass Gamma stark vom Kontext sowohl räumlicher als auch
zeitlicher Natur abhängt. Die Zusammenhänge zwischen räumlichen und zeitlichen
kontextuellen Einflüssen auf Gamma werden im letzten Kapitel 6 diskutiert.
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Fazit

Insgesamt demonstrieren diese Experimente, dass Kontext sowohl räumlicher (Größe
und Struktur der Stimuli) als auch zeitlicher (Stimuluswiederholung, Adaptation) Form
eine große Rolle für Aktivität in V1 spielt, insbesondere für Gamma und damit für
die Koordination von Aktivität in V1. Im breiteren Zusammenhang mit dem aktuellen
Forschungsstand zeigen die vorliegenden Ergebnisse eine besondere Rolle von sowohl
räumlicher als auch zeitlicher Vorhersagbarkeit für Gamma. Dies setzt Gamma-Band
Aktivität in direkten Zusammenhang zu aktuellen Theorien visueller Kodierung, die
eine effiziente Kodierung vorhersagbarer Information postulieren.

Zusätzlich deuten die Effekte von Farbe, bekannte Effekte von Stimuluskontrast,
und eine Abhängigkeit der Widerholungseffekte von der ursprünglichen Stärke der
Gamma-Band Aktivität, auf eine Rolle der Stärke der Anregung von V1 durch visuel-
le Stimuli auf die Stärke der Gamma-Band Aktivität hin. Aufgrund der Abhängigkeit
von der Stärke der Anregung durch den Stimulus und vom Kontext lässt sich Gamma-
Band Synchronisierung als eine bestimmte Form von Kodierung visueller Stimuli in-
terpretieren, die insbesondere bei starken, vorhersagbaren Stimuli auftritt. Diese koor-
dinierte Form von Kodierung könnte sowohl besonders effizient als auch akkurat sein,
und somit besondere Auswirkungen auf die weitere Verarbeitung in späteren Hirna-
realen und letztlich auf die Wahrnehmung haben.

Stichworte:
Gamma-Band Oszillationen, Stimuluswiederholung, Surround Suppression, Farbe, V1
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Chapter 1

General Introduction

1.1 Acknowlegdements for Chapter 1

For this chapter, I produced some figures to illustrate basic properties of the laminar
structure of V1. For this, I used data collected by Eric Lowet and Mark Roberts
in the lab of Peter de Weerd. In particular, as part of this project I developed an
algorithm based on parallel tempering, a variant of Monte Carlo methods, to align
data collected with a laminar probe between days, and integrated this alignment with
a receptive-field based assignment of visual areas. The method is described in detail in
the resulting publication, Lowet, Roberts, Peter, Gips and De Weerd, eLife (2017). All
analyses and figures based on the collected data presented in this chapter are produced
by myself.

1.2 Vision as a complex coordination problem

“We’re least aware of what our minds do best” Minsky (1986), p.29

Much of our conscious experience, our memories and our interaction with the world
is shaped by vision. Imagine that you want to take a bottle that a friend offers you on
the other side of the room. This involves solving visual tasks like the recognition and
manipulation of objects (the bottle), navigation in space (find your way around the
room, avoiding obstacles), or judging a face as familiar (who is giving you the bot-
tle). Such tasks appear simple to us. Evidence that visual tasks are in fact not trivial
originally came from patients with particular brain lesions who show deficits in highly
specific tasks (Mishkin et al., 1983; Goodale and Milner, 1992). It is also evident from
the immense difficulty encountered when trying to teach machines how to see: Com-
puters could play chess long before they could tell apart a picture of a cat from that of
a turtle. Vision is therefore a difficult task that humans solve with surprising ease. The
discrepancy between perceived and true difficulty of the task may be resolved when
considering the sophistication of the underlying “machinery”. Our visual achieve-
ments are underpinned by an extensive and intricate system of dedicated brain areas.
Shaped by our evolution, this system suggests that humans, like other primates, are
“made for” vision. Brain areas dedicated to vision can be found both in the most
recently evolved structures of the brain, the neocortex (cortical structures) and older
structures that are enveloped by neocortex (subcortical structures). So-called “early”
or “lower” visual cortical areas receive information sent by the retina via subcortical
structures.
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1.2. VISION AS A COMPLEX COORDINATION PROBLEM

Area V1, the first and largest among these areas, will be the focus of this thesis.
Early areas are thought to “compute” relatively simple features and optimize inputs
to mid-level and late visual areas, for example by removing statistical redundancies
(e.g. homogeneous parts of an image). Mid-level visual areas compute more complex
features, and provide inputs to the final, “higher” stages of the visual system that serve
more specific goals such as face recognition or visually guided grasping. The areas
in this “hierarchy” are highly interconnected: connections from higher back to lower
areas, and connections within an area, far exceed those in the direction from low to
high (see section 1.3, Felleman and Van Essen 1991; Markov et al. 2014; DiCarlo et al.
2012; Serre et al. 2005; Salin and Bullier 1995). As a consequence of this anatomical
structure, the visual system (and the brain in general) needs to solve an impressive
coordination problem in order to function.

The basic “computational unit” of the brain is a highly specialized cell type, the
neuron. Neurons are cells that “communicate” with each other. They come in a va-
riety of shapes, but generally receive inputs from many other neurons, and also send
outputs to many other neurons. Consequently, they look a little bit like trees, with
branches on the top (dendrites) that receive information, a cell body (soma) that can
also receive information, and branches on the bottom (roots in the tree analogy) that
send information (axons). For a receiving neuron, the electro-chemical impulses ar-
riving both at the soma and dendrites affect its membrane potential (the difference
in electric potential between the inside and outside of the cell, a basic cell property
in animals). Given appropriate conditions, sufficient depolarization of the neuron’s
membrane potential generates an output in the form of an electrical impulse (action
potential or “spike”). The action potential travels along the axon, and in turn generates
electro-chemical impulses in targeted neurons1.

Neurons that can communicate with each other through their connectivity form a
network. The computational power of the network results from the concerted behavior
of its cells, and its capacity to exhibit many different concerted behaviors (Hinton,
2000; Maass, 2016). Since each neuron is influenced by many others, there are many
ways to generate an action potential in a given cell. Furthermore, many cells can be
active at the same time. This means that an individual spike is only meaningful in the
context of the rest of the network activity: information processing is a collective effort.
Crucially, interactions between neurons need to be well timed. Because individual
cells integrate their inputs only within relatively short time windows on the order of
milliseconds (and the world can change within milliseconds), relevant information
(related inputs) needs to arrive coordinated in time (Azouz and Gray, 2000, 2003;
Abeles, 1982; Softky, 1994; Salinas and Sejnowski, 2001; König et al., 1996; Koch
et al., 1996; Singer, 1999; Fries, 2005). (This is about the degree to which researchers
that stress integration and rate codes, and researchers that stress coincidence detection
and timing, will agree. See General Discussion section 6.5.) For example, different
V1 cells may receive related information that requires integration from different parts
of the same objects. They may also receive redundant information that should be
removed for an energy-efficient response.

How do cells, both within and between areas, coordinate their activity in time?
The optimization of this coordination is a central (or possibly the central) learning
goal of the brain. As a consequence, this coordination may be optimized on several

1The systematic study of neurons started in the late 19th century, with seminal work by Golgi and Cajal
(Cajal, 1894; Golgi, 1875). For a historic overview, see DeFelipe (2015), for a general introduction, see
Levitan and Kaczmarek (2015).
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CHAPTER 1. GENERAL INTRODUCTION

timescales and using several strategies. During development, a large number of con-
nections between cells that are present at birth will be removed in a use-dependent
manner. Connections that show the best coordination with other cells survive the so-
called “pruning” stage (Rakic, 1994; Scelfo and Buffelli, 2009). Another related and
life-long strategy the brain employs is the strengthening of connections that have use-
ful relationships in time (e.g. the famous “fire-together-wire-together” principle of
Hebbian learning, Caporale and Dan 2008; Hebb 1949). It also appears that cells ad-
just the conduction delays of their outputs: the branching axonal outputs of the same
cell arrive in their various destinations at the same time, despite strong differences in
the overall distance of the targets (isochronicity, Salami et al. 2003; Kimura 2009).

While powerful, all these strategies rest on structural changes. Structural changes
take time to implement and are no match for the timescales of behavioral flexibility.
For example, we can switch our focus of attention between simultaneous conversa-
tions at a party. Operating on faster timescales, another solution to the coordination
problem may be to make use of the natural propensity of neural circuits to oscil-
late. Neural circuits in a wide range of species from lobsters to pigeons to primates
show oscillatory activity (Buzsáki et al., 2013; Buzsáki and Draguhn, 2004). This
rhythmic activity occurs in a broad range of frequencies (speeds) and in various func-
tional systems, including the brainstem (breathing), motor system (walking, swim-
ming or flying) and also in the visual system (Buzsáki, 2006). Oscillatory synchrony
may enable the moment-by-moment coordination necessary for behavioral flexibility
(Buzsáki and Draguhn, 2004; Fries, 2005).

In primate V1, oscillations in the gamma-frequency range (ca. 30-90 Hz, see sec-
tion Gamma-band synchronization in V1) are a prominent feature. Interestingly, these
oscillations are highly dependent on both visual stimulation and task or state (Buzsáki
and Wang, 2012; Singer and Gray, 1995; Engel et al., 2001). Coordination in this
frequency range is also interesting because it matches the time window within which
different inputs need to arrive to sum effectively and drive a neuron to spike (Lisman,
2005; Börgers and Kopell, 2003; Harris et al., 2003). Consequently, it is widely be-
lieved that neurons that coordinate their activity in this frequency range will have a
strong impact on a target cell. Therein lies power: such coordination may be crucial
for reliable communication, for selecting competing inputs as in the case of selective
attention, and may also enable Hebbian or generally timing-based plasticity (Buzsáki
and Wang, 2012; Singer, 1999; Fries, 2009, 2005; Traub et al., 1998; Axmacher et al.,
2006; Singer, 2008). A better understanding of V1 gamma oscillations may there-
fore be key to understand how V1, and by extension possibly the brain, solves the
coordination problem, and is a main focus of this thesis.

Whereas the stimulus- and task-dependence of gamma oscillations is relatively well
known, changes in gamma oscillations both resulting from or resulting in plasticity
are much less studied. This is, however, a highly relevant question: The coordination
problem must be solved moment-by-moment, but is further amplified by the ongoing
need for the brain to learn and adapt. For example, we will meet new people that
we need to remember, and acquire expertise with objects we frequently encounter.
Whereas these are long-lasting changes, recent experiences with objects can also have
more transient effects. For example, we experience familiarity for things we recently
saw, discriminate better between similar objects, and we recognize an object faster if
recently seen (Kohn, 2007; Brady et al., 2008; Standing, 1973; Árni and Campana,
2010). On the level of V1, which provides inputs to the rest of the visual hierarchy,
responses to visual stimuli encountered repeatedly may be continually refined both
transiently and long-term (Lazar et al., 2018; Kohn, 2007; De Weerd et al., 2006;
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1.2. VISION AS A COMPLEX COORDINATION PROBLEM

Schoups et al., 2001; Fournier et al., 2011).
Does gamma activity play a role in this? In Chapter 2, this question will be pursued

by considering how visual responses in V1 change with stimulus repetition. Rep-
etition effects are a simple form of plasticity that may occur in early visual areas,
within seconds and during natural vision without instruction or task. This question
will be explored with a focus on colored natural images as stimuli, as an attempt to
study stimulus specificity of repetition effects using responses to naturalistic inputs.
In Chapter 3, the stimulus location specificity and persistence of repetition effects on
gamma-band activity will be explored.

Following the discovery of the stimulus specificity of both, repetition effects on
gamma-band activity and the average gamma-band activity in V1 itself, I will then
consider underlying mechanisms for stimulus specificity of gamma-band responses. I
will consider both spatial structure and chromatic aspects of the stimuli. Understand-
ing the stimulus specificity of gamma-band activity is both an important goal in its
own right, and an important step to better understand mechanisms of stimulus-specific
repetition effects.

To summarise, the following following questions will be considered:

In Chapters 2 and 3,

1. What are the effects of stimulus repetition on V1 neuronal responses, especially
gamma-band activity?

2. Are repetition effects stimulus specific?

3. Are repetition effects specific to the stimulus location?

4. Do repetition effects show persistence (memory)?

In Chapters 4 and 5,

1. What is the role of color for generating gamma oscillations?

2. What is the role of spatial predictability of an image for generating gamma
oscillations?

3. Do gamma-band responses to colored stimuli depend on context?

Compared to other mammals, humans share a long evolutionary history with other
primates, as well as similarities in lifestyle such as social structure and diet (Osorio
and Vorobyev, 1996; Changizi et al., 2006; Shepherd et al., 2010; Bernstein, 2005;
Kumar and Hedges, 1998). Consequently, our visual system is very similar to that of
other primates, which provide excellent model organisms to understand vision (Felle-
man and Van Essen, 1991; van Essen, 2004; Orban et al., 2004; Felleman, 2004; Gagin
et al., 2014; Vázquez et al., 2017; Vogels and Orban, 1990; De Valois et al., 1974b,a;
Mantini et al., 2012; Tootell et al., 2003). For this thesis, visual responses in rhesus
macaques were studied. In the following sections, relevant concepts regarding the pri-
mate visual system will be introduced that recur throughout the chapters. Namely, the
general structure and function of the visual system, and the early brain area that was
the focus of study, V1, will be briefly presented. For V1, color processing and spatial
contextual modulation will be addressed, followed by an introduction to gamma-band
oscillations in V1. More specific concepts, hypotheses and links between gamma
oscillations and stimulus repetition, color and spatial context, will be addressed in
chapter-specific introductions.
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CHAPTER 1. GENERAL INTRODUCTION

1.3 The primate visual system

“Nothing is easier than to familiarize one’s self with the mammalian brain. Get a
sheep’s head, a small saw, a chisel ...”

William James, The Principles of Psychology (1890), footnote to chapter 1.

The brain is a peculiar organ, on the one hand a part of an organism with biological
properties much like other organs, on the other hand handling the very special task
of generating intelligent, adaptive behavior: it is both mind and matter. The primate
visual system, like the rest of the brain, can be studied at different “levels of analysis”
as famously described by David Marr (1982):

1. Computational level: what problems does the system solve, and why? (e.g. face
recognition to interact with conspecifics, color discrimination to find ripe fruit)

2. Algorithmic level: what processes are used, what is the language (code) to
achieve the computational goals? (e.g there may be basic operations like fil-
tering, decorrelation, or averaging)

3. Implementational/physical level: how are algorithms implemented in brain cir-
cuitry (e.g. how do neurons need to be connected to compute an average?)

These levels are interfacing in such a way that describing processes in the brain
concisely yet accurately is notoriously challenging. For example, on the physical
level, the retina sends nerve pulses along the optic nerve, which on the other hand
is a specific pattern or “information” on the computational level. For the primate
visual systen, we will begin with the large-scale implementational level, i.e. anatomy,
because it is in some ways the easiest to measure, with challenges residing in the
technological rather than philosophical realm.

Vision in its simplest form only requires photoreceptors (i.e. elements of a cell or
cells that respond to light) whose responses are used to alter the behavior of an organ-
ism. This is already the case for single-celled algae that perform luminance change
detection (Foster et al., 1984). In animals with central nervous systems, the activation
of photoreceptors is still the first step, but followed by activity in specialized cells and
circuits of various form and complexity. A mammalian brain exhibits structure (or-
ganization) on 6 orders of magnitude, nested within each other (Lichtman and Denk,
2011). Structure spans from subcellular structures like dendrites, to different cell types
and morphologies, forming clusters and distinct brain areas. Different brain areas are
distinguished by their cytoarchitecture, functional responses, and in case of vision,
typically contain a representation of the entire visual field (Gattass et al., 2015, 1981,
1987; Felleman, 2004; Brodmann, 1909). On the largest scale of anatomical structure,
these brain areas form a densely interconnected network, sometimes referred to as the
“visual hierarchy” (Felleman and Van Essen, 1991; Markov et al., 2014; van Essen
and Maunsell, 1983; Rockland and Pandya, 1979). On this level, primates show great
similarity between species (in particular between larger old-world monkeys and hu-
mans), and possibly the greatest divergence to other mammals (Laramée and Boire,
2015; DiCarlo et al., 2012; Felleman and Van Essen, 1991; Tootell et al., 2003; Man-
tini et al., 2012).
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1.3. THE PRIMATE VISUAL SYSTEM

1.3.1 Visual hierarchy, yet distributed processing

“There is no a priori reason to restrict the notion of hierarchical processing to a
strictly serial sequence. In general, any scheme in which there are well-defined levels
of processing can be considered hierarchical.” Felleman and Van Essen (1991)

Primate vision begins with the stimulation of photoreceptors of the retina in the
eyes. The retina possesses a complex machinery of its own and is involved, for ex-
ample, in compression of the initial information and edge detection (Dowling, 1970;
Masland, 2012; Meister and Berry, 1999). From there, two pathways are sending vi-
sual information: information processing is parallel. The thalamo-cortical route, the
pathway that involves the vast majority of fibers in primates, is also the most direct
pathway to the visual cortex, starting in V1 (van Essen et al., 1992; Kaas and Huerta,
1988). Information is sent and transformed along the lateral geniculate nucleus of the
thalamus on to V1 and from there to higher brain areas (see Figure 1.1).

- Hierarchical level,
- complexity of 
  selectivity,
- receptive field size 

feedforward

feedback

LGN

Figure 1.1 — Illustration of processing along the ventral (“what”) visual stream. Images from the
outside world enter the eyes as patterned light (left). The retina in the eyes processes the image, and
sends output to LGN (red) and SC (not shown, see text). From there, inputs are sent all the way to the
back of the brain to V1, and on along the visual hierarchy (yellow arrows, higher areas in lighter blues,
see legend). Feedback information travels in the opposite direction. Note that for simplicity, not all
ventral stream areas are shown, neither is the dorsal stream. The brain is seen from the side (“sagittal”
view) and is that of a rhesus macaque. Other primates, including humans, have a similar organisation.
Eye is not to scale. Abbreviations: V1, V2, V4 (visual area 1/2/4), LGN (lateral geniculate nucleus), SC
(superior colliculi), TEO (temporal-occipital area), TEp and TEa (posterior and anterior temporal area).
Image credit: photograph of cheetah adopted from Malene Thyssen, distributed under a CC BY-SA
3.0 license. 3D rendering of brain with parcellation of ventral stream areas custom-made based on
Calabrese et al. (2015) for the MRI image, Paxinos et al. (2009) brain regions and the Scalable Brain
atlas composer tool (Rolf, 2011).

Visual information is also processed along a second route via the superior colliculi
(SC). This route is dominant in birds and reptiles, and plays a major role in vision
in tree shrews (an order closely related to primates, Petry and Bickford 2019). In
primates, it receives less inputs and is considered secondary (Kaas and Huerta, 1988;
van Essen et al., 1992). Nevertheless, it is involved in important functions: The SC
guide eye movements and gaze direction, also using direct retinal inputs. Whereas
the SC do not appear to be involved in the computation of object recognition or color
processing, they receive such and other information from visual and nonvisual cortex,
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likely instructing movements, as the direct visual inputs do. The SC also project to the
visual cortex via the thalamus (Kaas and Huerta, 1988; van Essen et al., 1992). Why
have two pathways that then end up instructing movements in the SC? The answer
may be that this enables fast responses based on basic stimulus properties, as well
as slower, but more informed responses based on the full cortical visual machinery
(Yoshida and Isa, 2011; Sparks et al., 2000; Edelman and Keller, 1996).

In the thalamo-cortical route, visual activity then cascades from V1 through the so-
called “visual hierarchy” (see Figure 1.1). This happens along two major streams, the
so-called “dorsal” or “how” stream of vision, involved in computations guiding motor
interactions with the visual world, and along the “ventral” or “what” stream, involved
in visual recognition (Goodale and Milner, 1992; Mishkin et al., 1983). While this di-
vision into dorsal and ventral provides some helpful intuitions, it should be noted that
these pathways involve neighboring and often highly interconnected areas. Inputs are
sent both in the direction from lower to higher areas (“feedforward”), and in the other
direction (“feedback”). Furthermore, neurons have strong connectivity with areas on
the same level of hierarchy and with other cells within their own respective area. Con-
sequently, visual activity spreads rapidly along the visual hierarchy, such that different
areas are engaged simultaneously, resulting in distributed processing (Felleman and
Van Essen, 1991; Markov et al., 2014; Lamme and Roelfsema, 2000; Serre et al.,
2005; Salin and Bullier, 1995).

Areas along the hierarchy show a gradual increase in the complexity of the visual
stimuli that their cells are maximally responsive to, as well as an increase in recep-
tive field size (Güçlü and van Gerven, 2015; Smith, 2002; Zeki, 1978; DiCarlo et al.,
2012; Hubel and Wiesel, 1962). A receptive field (RF), is the region of the visual field
where a stimulus elicits a response (see Figure 1.2). RF size increases along the hi-
erarchy because of increasing convergence of inputs from different parts of the visual
field. The hierarchical relationship between areas is also reflected in the termination of
feedforward inputs more strongly in superficial, and feedback inputs more strongly in
deep parts (layers) of each cortical area, an effect that becomes more pronounced with
hierarchical distance between areas (Markov et al., 2014; Salin and Bullier, 1995).

Before turning to a more detailed description of V1, the gateway to both ventral
and dorsal stream, we will consider to what degree we can expect specialized func-
tion versus general coding principles in different (visual) cortical areas. How special
can we expect V1 to be? In other words, we require some more perspective on the
algorithmic and computational level.

1.3.2 Current theory on sensory processing: specialization or general
principles?

”Computational theory is an intermediate level of abstraction between the underlying
mechanisms [...], and physiology and behavior [...]. The field of neuroscience might
benefit from the recognition, in other fields of science, that reductionism is inherently
limited, and that there are fundamental organizing principles at intermediate levels.”
Heeger (2017)

Currently, there is no consensus in neuroscience about a unifying theory of cortical
function, though a few proposals have been put forward (Marr and Brindley, 1970;
Grossberg, 2013, 1997; Grossberg and Pearson, 2008; Friston, 2005, 2012; Heeger,
2017; Valiant, 2014). The functional specialization of brain areas and highly specific
responses of individual neurons have inspired the ever-more detailed and sophisti-
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cated study of circuits serving a dedicated function, with attempts to build a theory
for a specific brain area (e.g. mid-level visual area V4, Roe et al. 2012) or a partic-
ular functional goal (e.g. a color system, Livingstone and Hubel 1984; Chang et al.
2017). Much work is devoted to describe “orientation cells”, “head direction cells”,
all the way to “grandmother cells” (famously referring to a cell responding when-
ever a person sees their grandmother, Gross 2002; Thomas and French 2017). This
approach emphasizes distinct computations in different circuits. This perspective is
certainly not wrong in the sense that vision (and the brain) has several distinct goals,
like recognizing a face or catching a ball.

On the other hand, it is fairly clear that there are more or less similar neurons with
more or less similar circuit motifs repeated over and over in visual cortex: whatever
the function of an area, the building blocks are the same (so-called “canonical mi-
crocircuits”, Douglas and Martin 1991; Douglas et al. 2008; Bastos et al. 2012; Fries
et al. 2012, but see van Hooser 2007). Differences must originate in the inputs (e.g.
sensory modality) and goals that may direct plasticity. Further, it has been suggested
that these physical circuits implement canonical computations on the algorithmic level
(e.g. Carandini and Heeger 2012; Dasgupta et al. 2017). Such a hierarchical repetition
of a few canonical operations is at the core of current machine vision (DiCarlo et al.,
2012).

Given such standardized building blocks, what are overarching general principles
and goals that need to be achieved? Adaptive behavior requires an appropriate model
of the world, in more sophisticated cases including oneself and other agents. A work-
ing model can be used to make inferences: given a combination of sensory input and
current context and expectations, what is currently most likely going on in the out-
side world? Such a model can explore different possible states of the world (finding
different alternative explanations for current sensory input, recall memories, generate
ideas) to make those inferences. It also makes predictions (inference about the fu-
ture, what is the future state of the world?). Note that given the delay between events
in the outside world and neuronal responses, prediction is a constant, rather than oc-
casional, task for the visual system (Nijhawan, 2008). Simultaneously to inference
and prediction, any implementation of these principle goals will also need to allow
for continuous learning. David Heeger (2017) recently put forward modeling work
suggesting that inference, prediction, exploration and learning can be achieved in the
same network depending on its current “state”. Given state parameters, the network
weighs sensory inputs, prior expectations, and context differently in different states.
Previous theoretical and empirical work has also put a strong emphasis on the inte-
gration of sensory evidence and expectation (e.g. Grossberg 2013; Friston 2005; Ma
et al. 2006; Körding and Wolpert 2004) and increasingly prediction of the future (e.g.
Palmer et al. 2015; Singer 2018; Wacongne et al. 2012; Hawkins et al. 2009)2. There
is therefore some agreement on these computational goals. Interestingly, different the-
ories make different predictions about the algorithmic and neuronal implementation
of these goals, with consequences including predictions about the mesoscopic neural
level like gamma oscillations. These will be considered in more detail in Chapter 4.

First however, we should note that there is a second set of goals to fulfill. This
is because the brain is biological organ and not an idealized computational machine.
Neural activity comes at a cost. Since there is a cost to both neural activity but also

2Prediction of the future may sound redundant. However, as pointed out by Heeger (2017), a lot of
theoretical work uses the word “prediction” or “predictive coding” describing a process of predicting the
current input from expectations and the past, rather than predicting the future.

8



CHAPTER 1. GENERAL INTRODUCTION

to errors in behavior, there will be complementary goals, some of which may require
a tradeoff. Specifically, an optimal code will be both efficient and reliable. Efficiency
here means that as little spiking (or generally neural) activity should be used as possi-
ble, to reduce metabolic cost. Reliability means that the goal of a specific computation
will be achieved repeatedly in the face of noise from the outside world and from neu-
ral activity. A major way to improve reliability is through redundancy. Reliability
and efficiency may be at odds with one another - although this is a central question
in neuroscience where neither theory nor evidence are fully developed (Pryluk et al.,
2019; Barlow, 1959, 2001; Kohn et al., 2016; Chang et al., 2017)3. Another goal of
the brain as a physiological organ must be homeostasis: many elements in the brain
need to remain at a physiological equilibrium (Tononi, 2009). This will for example
limit neuronal excitability levels to non-epileptic states, regardless of theoretically op-
timal ranges of firing responses. It is currently largely unknown how the brain solves
tradeoffs between different goals, under which circumstances the tradeoffs exist and if
the brain may use different strategies in different brain areas.

When studying V1, it is both interesting to ask what the unique contributions or
properties of this area may be, but also if we can infer any relationships to general
principles and goals. Given that a theory attempts to cover all of cortical function,
finding counterexamples even in just one area can be informative. We will explore
concepts of inference, prediction, efficiency and homeostasis further when consider-
ing why V1, and particularly V1 gamma-band activity, may behave the way it does
(section 1.4.2, Chapters 2, 3, and 4). First we will consider the overall layout of V1.

1.4 Area V1

“Given how little of V1 function we can currently claim to understand, we should be
prepared for some surprises as new data come in.” In: “Do we know what the early
visual system does?” Carandini et al. (2005)

V1 is a large cortical area at the bottom of the visual hierarchy. It is also called
primary visual cortex, or due to its special cytoarchitecture, “striate cortex”. Animals
(and in particular primates) with high visual acuity have a large V1 with small recep-
tive fields (Nienborg, 2004; Baker, 2013; Veilleux and Kirk, 2014; Srinivasan et al.,
2015). Tiny primates with high visual acuity devote an unusually large percentage of
their brain to V1, in line with the idea that visual acuity is at odds with compression
(Ho et al., 2019). Receptive fields in V1 are substantially smaller than in later parts of
the hierarchy (Harvey and Dumoulin, 2011; Smith, 2002; Zeki, 1978). Neurons with
similar spatial RF locations are nearby in cortex, such that the visual field is tiled into
a retinotopic map in V1 (see Figure 1.2).

This mapping is not 1:1 with the real world, however. The foveal region of the vi-
sual field (the central 2-5 degrees of visual angle, dva, in the visual field) is massively
overrepresented. The foveal region is the central point fixated by the eyes, where vi-
sual acuity is highest due to the least compression in the retina: Whereas peripheral
photoreceptors are pooled over a larger region of the visual field, foveal photorecep-
tors in the retina are very dense, and are mapped 1:1 (minimally) onto the output

3Reliability may also be increased through checks and balances via reafferent information or feedback.
In general, degeneracy can increase reliability. Degeneracy in a system means that different elements can
affect the output in a similar way, but crucially, at the same time can have independent effects (Tononi
et al., 2002). An example we encountered earlier is the thalamocortical versus retino-tectal pathway, both
affecting the SC.
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Figure 1.2 — Illustration of retinotopy in V1. Left: illustration of eccentricity and angle of a point of
an image with respect to the foveated point (endpoint of orange dotted line). In blue, the receptive
field (RF) coverage of example neurons from V1 (early) and V4 (higher up the hierarchy) are shown.
Right: Brain of Figure 1.1 seen more from the back, to illustrate the size of V1 and sketch its retinotopic
organization. The neurons with foveal RFs (or low eccentricity) are located at the most lateral part of
V1 (yellow part of bent arrow), the most eccentric RFs are going into the sulcus (cortical inward folding)
and below the part of V1 visible from the surface. Note that a disproportionate amount of V1 is devoted
to the fovea, or central vision. Neurons are also arranged such neurons with similar visual angles are
close to each other (straight arrow). Note the inversion of the representation: the lower visual field
(below fixation) is on the dorsal (upper) part of V1. Image credit: see Figure 1.1.

neurons of the retina (Wässle and Boycott, 1991). As a consequence, RF size also
changes with eccentricity, with the smallest RF at the fovea being well below 1 dva
in size.4 Due to the lack of compression, foveal regions encompass an extensive por-
tion of V1 (Wässle et al., 1989). This retinotopic map with a magnified fovea, where
nearby points change smoothly in eccentricity and elevation, has a third dimension:
the cortical layers.

Like other neocortical areas, V1 has a laminar structure with 6 layers from the outer-
most layer (1) to the innermost layer (6) adjacent to the white matter (i.e. axonal fiber
tracts, which are fatty and as a result appear white). Neurons across layers respond to
the same part of the visual field (see Figure 1.3).

Inputs from the thalamus arrive predominantly in so-called layer 4 (or due to its
cytoarchitecture, granular layer, roughly in the middle), as well as layers 5/6. Us-
ing laminar electrophysiological recordings, this can be detected with current source
density (CSD) analysis (e.g. Mitzdorf 1985; Maier et al. 2010, Lowet, Roberts, Pe-
ter, Gips and De Weerd (2017), see Figure 1.4). Figure 1.4 illustrates that whereas
RF location is constant across cortical layers, other features are not. For example, a
prominent source of gamma oscillations resides in superficial layers 2/3.

Layer 4 strongly projects to layers 2/3, which shows more complex and invariant re-
sponse properties than layer 4 (see below for an example of invariance). Layers 2/3 are
the primary output layers to the downstream visual hierarchy. Information also flows
from layers 2/3 and 4 to the deeper layers, which receive top-down feedback and com-
municate with the motor system. That is, even in V1, as at every other hierarchical
level, there is an output that affects behavior directly and cuts out of the feedforward

4One degree of visual angle, or dva, is about the size of the fingernail of your thumb if you hold your
arm outstretched right in front of you.
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Figure 1.3 — Example receptive field mapping with a laminar array of electrodes. Right: view of
the brain as in Figure 1.2. White square indicates approximate recording location. Middle: sketch of
cortical folding of V1 into V2 with main laminar compartments, including sketch of electrode position.
Electrode size is approx. to scale. Left: View of receptive fields along the array. Note a distinct jump
in RF position with the switch of the visual area. RFs were measured using a sparse-noise procedure
using both spiking responses and current source density (CSD), the second spatial derivative of the
local field potential (see Lowet et al. 2017 for methods details).
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lation. Data represents cross-session aligned average from an example animal (M2 of Lowet et al.
2017). Grey dashed lines indicate location of layers 5-6 based on the CSD reversal point (leftmost
panel). Next to CSD, the LFP coherence between all contact pairs is shown, which has been proposed
as an alternative for finding the layer 4/5 border (Maier et al., 2010). Next to this is the visual evoked
potential (VEP), which can also be recorded with single electrodes. Note the lack of spatial resolution
in the response pattern compared to CSD. This means that the laminar position of electrodes is difficult
to assert based on single electrodes in awake animals. The peri-stimulus time histogram (PSTH) of
each session was normalized to the maximum activity of the maximally active channel. Relative power
was computed as log(stimulus/baseline) for both local field potential (LFP) and CSD. Rightmost column
shows the number of contacts assigned to each depth and their assignment to V1 vs white matter or
V2 based on receptive field mapping alone, providing an estimate independent of the CSD reversal
point.
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cascade. Layer 1 contains mostly dendritic processes and some inhibitory neurons,
making this layer exceedingly difficult to study using awake primate physiology. Re-
cent rodent work suggests a role for these neurons in contextual gating of learning
(Letzkus et al., 2011).

What does V1 do? In primates, V1 cells are the first cells capable of detecting ori-
ented edges (in other species this can happen earlier). This is a crucial step in vision:
edges and their orientation provide an important part of the object information con-
tained in an image (Marr, 1982). Some cells display invariance to the direction of the
brightness difference that defines the oriented edge (the defining feature of complex
compared to simple cells). The development of complex cells is an example of a fea-
ture invariance computation that can be readily understood by a selective summation
of inputs (Hubel and Wiesel, 1962; Priebe and Ferster, 2012; Movshon et al., 1978)5.
First, inputs from LGN cells with receptive fields that are aligned along a particular
direction in the visual field are pooled, yielding a “simple cell”. A simple cell has sub-
regions in the RF that will only respond to a bright stimulus, which are neighboring
subregions that respond to a dark stimulus, defining the edge. Correct integration of
several simple cell responses (corresponding to an OR computation) yields complex
cells. Note that this is an entirely feedforward computation where inputs are inte-
grated from one stage to the next. Given the prevalence of simple cells in layer 4 and
complex cells in other V1 layers, it seems clear that this computation is achieved in
V1 (Yu and Ferster, 2013; Martinez et al., 2005).

Next to orientation, V1 cells seem to be detectors for other features like higher-order
spatial correlations and binocular depth (Yu et al., 2015; Cumming and DeAngelis,
2001). They typically respond within a certain range of contrast, motion direction and
spatial and temporal frequency, which form orthogonal axes with which to describe
visual images (“frequency space”, Mante and Carandini 2005). Collectively, neurons
in V1 are thought to tile this frequency space, just like they tile the visual field. In
addition, V1 is highly color selective (see section 1.4.1). Given the tiling of the visual
field and the “tuning” (combined response preference for various visual features) of
V1 cells, one can think of V1 as an array of feature detectors that are repeated across
the retinotopic map. This conceptualization is a major inspiration for current artificial
neural networks (ANNs, DiCarlo et al. 2012). However, this view is incomplete: For
example, V1 responses are modulated by task requirements and show evidence for
inference of missing information, in particular for edges (Kapadia et al., 1995, 1999;
Grosof et al., 1993; von der Heydt et al., 1984; Roberts et al., 2007; Chalk et al.,
2010). This inference relies on integration of information beyond the RF of any given
V1 cell. Such integration is a crucial feature of V1, likely related to gamma activity
and will be introduced in section 1.4.2.

We will first briefly consider color processing, as it is an important aspect of natural
vision and plays a role in Chapters 2, 4, and especially 5. We then turn to center-
surround integration mechanisms, a core feature of neocortical circuits. Finally, I give
a brief overview of gamma oscillatory activity in V1.

5Whether this is how it is actually achieved, and whether invariance is the actual goal, remains to be
established.
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1.4.1 Color in V1

“Colour is what the eyes see best.”
Title of paper by Chaparro et al., Nature, (1993), comparing luminance to color dis-

crimination.

A distinguishing feature of old-world primates compared to other mammals and
most new-world primate species is trichromatic vision (Surridge et al., 2003). Trichro-
macy in primates correlates with frugivory (i.e. a fruit focused diet, Osorio and
Vorobyev 1996). Notably, trichromatic individuals enjoy advantages in food retrieval
in species that have both dichromatic and trichromatic members (Melin et al., 2017).
In some primates, including the rhesus macaques studied here, color also plays an
important role as a social cue (Waitt et al., 2006; Gerald et al., 2007). Trichro-
macy is based on three specialized receptors in the retina (so-called cones) with sen-
sitivities for different parts of the wavelength spectrum of visible light. A fourth
type of receptor, the rods, is most responsive under dim light conditions. In con-
trast, cones are responsive under daylight brightness conditions (Wässle and Boycott,
1991). L-cones respond to the longest wavelengths, M-cones to intermediate wave-
lengths, and S-cones to short wavelengths. Color vision is based on response differ-
ences between these cones (color opponencies). This is likely because the absolute
value in responsiveness of any single cone type depends on the overall level of bright-
ness and is therefore uninformative about color on its own. Response differences are
computed already on the level of the retina and LGN and include L-M (“red-green”)
contrasts as well as S-LM (“yellow-blue”) contrasts. Red-green contrasts cannot be
computed by dichromats and are therefore essential for the trichromatic behavioral
advantages. Yellow-blue contrast responsive cells appear to be the minority of cells
in both retina and LGN, where L-M responses dominate (Wässle and Boycott, 1991;
Shapley and Hawken, 2011; De Valois, 1965). Nevertheless, the blue-yellow con-
tribution may be recovered in V1, where it appears considerably stronger than in its
inputs (De Valois et al., 2002). A do-it-yourself demonstration of color opponencies
can be enjoyed by prolonged fixation of a colored surface, followed by fixation on a
white surface (for example the dark blue surface of V1 in Figure 1.2, although red or
green surfaces may yield stronger results). Due to fatigue in one color channel, the
other cone response will dominate and the result is a visual afterimage in the color
opponent to that fixated.

Early studies have noted a distinct cytoarchitectonic patterning in V1 when stain-
ing with cytochrome oxidase, yielding cytochrome oxidase rich “blobs” and between
them, “interblobs”. It was found that blobs contain very high numbers of color-
selective cells, whereas interblobs were suggested to be more selective to orientation
(Livingstone and Hubel, 1984). Blobs and interblobs project onto specific parts of the
downstream area V2. This suggested that there are distinct color and shape systems
in V1 and subsequently in the visual hierarchy (Shapley and Hawken, 2011). Indeed,
there are some specific subregions of higher-order visual cortex that appear to be very
strongly responsive to colored stimuli (Chang et al., 2017; Conway and Tsao, 2006).
Despite this apparent specialization, more recent studies using a wider array of vi-
sual stimulus types have reported that V1 is highly color selective throughout both
blob and interblob regions (Shapley and Hawken, 2011; Schluppeck and Engel, 2002;
Wachtler et al., 2003).

What kind of computational function may V1 serve with respect to color? There
is currently no consensus on an answer to this question. One possibility is that V1
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provides a rotation of the “axes” of the color system from L-M and S-LM to axes
that match our perception (Lafer-Sousa et al., 2012; Wachtler et al., 2003; Horwitz
and Hass, 2012). Given the larger diversity of responses in V1 compared to its inputs
from LGN (De Valois et al., 2002; Wachtler et al., 2003), it may also be used as a larger
set of responses that higher order areas can draw on to support color computations.
Wachtler et al. 2003 make a link to general computational principles, suggesting that
the transformation from LGN to V1 corresponds to an implementation of an efficient
coding of natural image statistics.

One robust finding is that a particular new cell type emerges, called a double-
opponent cell (Shapley and Hawken, 2011). These cells are responsive to color-
defined edges rather than surfaces, whereas LGN cells respond most strongly to sur-
faces or spots. In analogy to complex cells for orientation, these cells are also emerg-
ing in the upper layers of V1. The predominance of color-selective cells in V1 attests
to the importance of color information for trichromatic primates like humans. An-
other line of evidence comes from the simple comparison of achromatic to chromatic
(colored) stimuli. Compared to achromatic (black-white) flashes of light, chromatic
flashes induce an additional response in V1 CSD responses. A similar chromatic ad-
vantage is seen across the ventral visual stream (Chen et al., 2007). Given the foveal
overrepresentation in V1 and the cone density of the fovea, this is not surprising but
emphasizes the strong role of color in natural vision for primates. Color responses in
V1 have been studied mostly on the level of single neuron tuning, and using fMRI.
In constrast, and inspite of the known stimulus-dependency of gamma oscillations
for other feature dimensions, mesoscopic signal like oscillatory activity have received
very little attention. Color-specific responses of gamma oscillations will be the topic
of Chapters 4 and 5.

1.4.2 Contextual modulation in V1

“The challenge facing the visual system is to extract the “meaning” of the image by
decomposing it into its environmental causes. For each local region of the image, that
extraction of meaning is only possible if information from other regions is taken into
account.” Albright and Stoner (2002)

Whereas trichromatic color processing concerns itself with a specifically visual fea-
ture, the integration of feedforward inputs with contextual information may be a fun-
damental mechanism that spans brain areas, species and sensory modalities (Spill-
mann et al., 2015; Nurminen and Angelucci, 2014; Sutter et al., 1999; Olsen and Wil-
son, 2008; Maffei and Fiorentini, 1976; Gilbert, 1992, 2013; Coen-Cagli et al., 2015;
Vega-Bermudez and Johnson, 1999; Hubel and Wiesel, 1965; van Den Bergh et al.,
2010; Sun et al., 2002; Albright and Stoner, 2002). In the visual system, it is present
already in the retina and the main input structure to V1, the LGN (Solomon, 2006;
Alitto and Usrey, 2008). From the perspective of a V1 neuron with a small receptive
field, spatial context is provided by neighboring neurons with neighboring receptive
field locations, and feedback from neurons with larger receptive fields: it is modulated
by its surround. Surround modulation has been suggested to constitute a form of gain
control. Gain control is a central mechanism in sensory systems to deal with the high
range of input variation. For example, luminance levels vary by around 9-10 orders of
magnitude between bright daylight and nighttime vision, and cones exhibit gain con-
trol (Korenbrot, 2012). In V1, surround modulation as gain control would normalize
firing rates by scaling the amount of drive to the RF with the amount of drive to the
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surround (Carandini and Heeger, 2012). However, gain control may not be the only
mechanism at play (Coen-Cagli et al., 2015). Some surround modulation effects seem
very useful. For example, surround modulation can be facilitatory for weak stimuli in
the RF. Crucially, this happens only if the surround information matches. For example,
a faint oriented bar in a RF will elicit a stronger response if the surround consists of a
matching bar that continues the bar outside the RF (Kapadia et al., 1995). This can be
interpreted as a signature of inference: the evidence from the RF for the presence of
a bar is strengthened by matching evidence in the surround. In contrast to weak stim-
uli in the RF, responses to stronger (higher contrast) stimuli are often reduced when
the RF surround is stimulated. This effect is called surround suppression (Nurminen
and Angelucci, 2014; Spillmann et al., 2015). Surround suppression, like surround
enhancement, is particularly pronounced if the surround information matches the RF
information (Cavanaugh et al., 2002; Sillito et al., 1995; Trott and Born, 2015). Sur-
round modulation may play an important role in different but related functions like
contour integration, figure-ground segregation, or perceptual filling in (Liang et al.,
2017; Wachtler et al., 2003; Zweig et al., 2015; Lamme, 1995; Li, 2002; Coen-Cagli
et al., 2012). Furthermore, models of efficient and predictive coding theories have
attempted to capture the various surround modulation effects based on general com-
putational goals (Schwartz and Simoncelli, 2001; Simoncelli and Olshausen, 2001;
Coen-Cagli et al., 2012, 2015; Rao and Ballard, 1999; Barlow, 1959, 2001; Vinje and
Gallant, 2000; Friston, 2005; Spratling, 2010). According to efficient coding theories,
surround suppression occurs to remove responses to image redundancies across space.
Predictive coding theories postulate that neuronal responses reflect a comparison be-
tween inputs to the RF and predictions generated by the surround. Predictable spatial
relationships will result in a lower firing response.

Surround modulation is typically studied with firing rate responses as the variable
of interest in mind. However, it is also possible that surround modulation affects tem-
poral aspects, such as correlated or synchronized responses in neuronal populations.
In Chapter 4, I will review the current literature on center-surround interactions in
relationship to gamma synchronization, and explore predictions made by predictive
coding theories on gamma synchrony using colored stimuli.

1.4.3 Gamma-band synchronization in V1

“The specific physiological functions of brain rhythms vary from the obvious to the
utterly impenetrable.” Buzsáki (2006).

Rhythmic or repeating activity is common in neuronal networks: they oscillate. The
ubiquity of oscillations across cortical and subcortical structures, as well as species
across the animal kingdom (including insects, arthropods, reptiles, birds and mam-
mals) suggest that the ability to generate oscillations arose early in evolution (Buzsáki
et al., 2013; Buzsáki and Draguhn, 2004). Oscillations occur at a wide range of fre-
quencies (speeds), from the very slow (taking several seconds, e.g. every 2 s or 0.5 Hz)
to the very fast (repeating e.g. 100 times per second, 100 Hz). A short taxonomy of
rhythms or band-limited activity commonly encountered in the brain is provided in
Table 1.1.

Oscillation research has a long history, with names largely following tradition be-
cause underlying mechanisms are not fully understood. The gamma-frequency range
is defined somewhat arbitrarily as 30-90 Hz following Buzsáki and Wang (2012) and
Freeman (2007). Here and in the following chapters, as is typical in the literature,
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Name Freq. (Hz) dominant state and brain regions

slow <1 cortex & thalamus, sleep, anaesthesia
delta 1-4 cortex & thalamus, sleep, anaesthesia
theta 3-10 cortex, cerebellum & HC, wakefulness
alpha 8-13 cortex & thalamus, wakefulness, drowsiness
beta 10-30 cortex & basal ganglia, wakefulness, stim.
gamma 30-90 cortex & HC, wakefulness, stim.
epsilon/high-gamma 80-250 cortex & hippocampus, wakefulness, stim.
ripple 140-200 HC, wakefulness, stim.
fast >250 cortex & cerebellum, sleep and wakefulness

Table 1.1 — List of some of the most common names for frequency bands of brain activity. stim. = sen-
sory stimulation. HC = hippocampus. See Buzsáki (2006); Freeman (2007); Wang (2010); Penttonen
and Buzsáki (2003).

the terms “gamma”, “gamma-band activity” (GBA) and “gamma oscillations” will
be used interchangeably. Gamma synchrony refers to synchronous activity between
cells or areas. Gamma synchronization, strictly speaking, refers to the process with
which gamma synchrony is achieved (see below), but can also be used to refer to
gamma synchrony. An important distinction needs to be made between band-limited
gamma-band activity and so-called high-gamma or epsilon activity (ca. 80-250 Hz).
This activity occupies a broad frequency range, and has been recently dissociated from
visual gamma-band activity based on pharmacological intervention and stimulus de-
pendence (Bartoli et al., 2019; Leszczynski et al., 2019). An excellent perspective on
the broader topic of brain rhythms is provided by Gyorgy Buszaki (2006).

Neural networks exhibit a range of different rhythms, and there are many ways for a
network to generate any given rhythm. Two main classes of origins of oscillations are
network oscillations and cell-intrinsic oscillations (Wang, 2010). The two classes will
be considered in turn, with a focus on the generation of gamma-band oscillations in vi-
sual cortex. Network oscillations arise from interactions between cells, typically with
opposing forces of excitation and inhibition. For example, let us consider a simplistic
network of one excitatory neuron reciprocally connected to an inhibitory neuron. In
response to a constant input, the excitatory neuron will fire an action potential once
its membrane potential is sufficiently depolarized. This will elicit a spike in the in-
hibitory neuron, which in turn suppresses further spiking in the excitatory neuron. As
a consequence, the inhibitory neuron loses its input and stops to suppress the excita-
tory neuron, which will then be able to respond again, restarting the cycle. Such a
mechanism, implemented on the level of a larger population, has been suggested to
underlie gamma-band synchronization (pyramidal-interneuron gamma or PING, e.g.
Tiesinga and Sejnowski 2009; Börgers and Kopell 2005). Indeed, stimulation of both
soma-targeting and dendrite-targeting subtypes of interneurons can generate gamma-
band responses in cortex (Cardin et al., 2009; Veit et al., 2017). (A more detailed
discussion of interneuron cell types, their function and gamma oscillations will follow
in the General Discussion, section 6.4, see also Buszaki and Wang (2012) for review
of gamma mechanisms.)

Oscillatory activity can also arise in single cells. Single cells, even in a disconnected
in vitro state, can generate oscillations from non-oscillatory input through counter-
acting membrane currents: the oscillatory activity is inbuilt. Such cells can act as
pacemakers that organize a network. They are prominent in subcortical structures
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including the thalamus (Buzsáki, 2006; McCormick and Pape, 1990) but also neocor-
tex (Sanchez-Vives and McCormick, 2000). They may also contribute to V1 gamma
oscillations, where so-called “chattering cells” show gamma-range burst firing (Gray
and McCormick, 1996). In addition to generating oscillations, single cells can also
resonate at particular frequencies (Buzsáki, 2006). In summary, from the perspective
of a single neuron, its dendritic inhibition, somatic inhibition, as well as its own phys-
iological properties may contribute to gamma oscillations in its membrane potential
or firing activity.

An additional source of difficulty for interpreting gamma-band activity is that it
can be measured at various spatial scales and using various measures, which differ
in sensitivity. Oscillations can occur at the level of the single cell membrane poten-
tial, single cell firing, local networks whose activity may be reflected in the local field
potential (LFP), all the way up to macrosopic signals that can be measured through
the intact scalp (electroencephalography, EEG, and its magnetic equivalent, MEG,
Buzsáki et al. 2012). LFP and EEG signals derive from the superposition of the ac-
tivity of many cells. The strength of the contribution of individual cells depends on
their spatial alignment with other cells and synchrony with those cells (potentials of
opposing directions can cancel each other out, Buzsáki and Wang 2012). The larger
the electrodes, and the further the electrodes are away from the tissue, the more ac-
tivity will be averaged across microcircuit rhythms. This means that with EEG or
LFP measurements using large (mm scale) electrodes as commonly used in human
epilepsy patients, the biophysics of the underlying signal may be very different from
that observed using local microelectrodes several orders of magnitude smaller.

Oscillations are characterized by their frequency (speed), amplitude (strength, its
square is referred to as power), and at a particular moment in time, their phase (po-
sition in the oscillatory cycle). In addition, oscillations are not necessarily sinusoidal
and are further characterized by their shape. Periodic components in a signal can be
detected using a Fourier analysis (named after its original developer Fourier 1822). A
given signal is decomposed into sinusoids of different frequencies and their respective
amplitudes and phases. This allows the description of the signal in the frequency-
rather than time-domain. A power spectrum (power spectral density, PSD) shows
which frequencies are represented with which strength in a signal. A white noise
signal will be flat in the frequency domain: all frequencies have the same power.

EEG and LFP signals typically follow a power law, their strength decreases in a
log-linear fashion with increasing frequency (Penttonen and Buzsáki, 2003). While
many natural phenomena follow power laws, the reason for this power-law behav-
ior is not understood and interpretations range from the trivial (filtered noise from
volume-conducted global network activity) to the fundamental (self-organized criti-
cality, Miller et al. 2009b; Pritchard 1992; Hesse and Gross 2014; Liu et al. 2014).
The presence of peaks away from the power-law relationship is typically considered
an indication of the presence of oscillations that contain a substantial part of the total
power of the signal. This can be indicative of coordination among larger parts of the
neuronal population.

In contrast, how is coordination between individual cells measured? Two neurons
(or recording sites) can be coherent when the phases of firing with respect to an os-
cillation in a particular frequency band show a reliable relationship (“locking”). In
visual cortex, this is typically not a constant phenomenon, but such coherence occurs
intermittently. Fluctuations in the individual frequencies of each neuron can reflect
mutual interactions that bring about intermittent coherence (Lowet, Roberts, Peter et
al., (2017)). This means that it is better to think of synchronization as an ongoing
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process rather than a state. Synchronization can bring about an average level of syn-
chrony (phase coherence) over a longer period of time. Phase coherence in the spiking
between two cells, or even oscillatory activity for a single cell, can be difficult to detect
if a cell fires relatively rarely. This is a common phenomenon in visual cortical exci-
tatory cells, which typically do not spike on every, or even most, cycles of a gamma
oscillation (“cycle skipping”, Nikolić 2009). Coherence between the spiking of a cell
and the local field potential can be a very powerful tool to overcome this problem and
uncover the oscillatory nature of seemingly random spikes of isolated cells (Vinck
et al., 2012)6. Regardless of its origins and measurement scale, it is clear that the
amplitude (strength) and frequency of gamma oscillations is strongly modulated by
visual stimulation (a small sample of examples: Hadjipapas, Lowet, Roberts, Peter
and De Weerd (2015), Roberts et al. 2013; Gray et al. 1989; Ray and Maunsell 2010;
Brunet et al. 2015). V1 gamma oscillations that are stimulus-related strongly increase
in amplitude both in layers 2/3 and 5/6, i.e. the output layers of V1 (Lowet, Roberts,
Peter, Gips and De Weerd (2017), see Figure 1.4). Early studies found that gamma
synchronization occurs when neighboring RFs are stimulated in a way that follows
Gestalt principles, for example by the same visual object (Gray et al., 1989; Singer
and Gray, 1995; Roelfsema et al., 2004; Singer, 1999; Milner, 1974).

The notion that neurons share a gamma rhythm when processing the same object
inspired theoretical proposals about the function of gamma-band synchronization. In
particular, it was thought that gamma oscillations could integrate object-specific in-
formation from disparate sources, be it different cells within an area or between areas,
thereby solving the “binding problem“ (Treisman, 1996) through “binding by syn-
chrony” (BBS, Singer and Gray 1995; Singer 1999; von der Malsburg 1994). The
crucial idea is that gamma activity can define cell ensembles.

A related proposal also suggests the existence of gamma-defined cell ensembles,
but focuses on competition between different ensembles (for example for different ob-
jects) and interareal interactions. The central idea is that gamma-coherent interactions
between brain areas may lead to selective routing of information about a particular
ensemble along the visual hierarchy (Fries, 2005). Selective, prioritized processing
of some stimuli versus others is considered important because it may underlie selec-
tive attention to one stimulus at a time. According to the “communication-through-
coherence” (CTC) hypothesis (Fries, 2005, 2015), the prioritized ensemble will align
its rhythm with the downstream, receiving area such that its inputs arrive when the
neurons in the receiving areas are depolarized. Such inputs should have a strong im-
pact on the receiving area. Some evidence for and criticism of BBS and CTC will be
discussed in Chapter 6.

Grouping (BBS) and communication (CTC) hypotheses concern themselves with
a situation where connections of the networks in question are stable. Another sug-
gested function of gamma-synchronized activity is the promotion of plasticity pro-
cesses. Synchrony in the millisecond range induced by gamma oscillations may fa-
cilitate spike-timing dependent plasticity (Wang, 2010). On the other hand, plasticity
may induce rapid changes in gamma responses themselves. In particular, repeated
presentation of a stimulus can induce changes in gamma-responses to this stimulus
(Brunet et al., 2014). The potential role of gamma-band activity in learning and in
particular for stimulus repetition will be explored in the next chapter.

6The advent of recording methods with very dense arrays, recording many nearby cells, may enable
another way to detect and visualize oscillations.
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Chapter 2

Stimulus specificity of repetition effects

2.1 Acknowlegdements for Chapter 2

The experiment described in this chapter reflects recordings performed in the labs
of Pascal Fries, Wolf Singer and Michael Schmid, and generous support from all
principal investigators. On the practical side, I am indebted to Johanna Klon-Lipok,
Liane Klein, Jarrod Dowdall, Marieke Schölvinck, Katharine Shapcott, and Kleopa-
tra Kouroupaki, for introducing me to their recording setups and animals. Prepro-
cessing pipelines to generate MUA and LFP estimates from broadband data were de-
veloped by Joscha Schmiedt. RF mapping procedures were developed by Katharine
Shapcott, Joscha Schmiedt, Cem Uran and previous members of the Singer lab (mon-
key A, H, K) and Jarrod Dowdall and Marieke Schölvinck (monkey T).

2.2 Introduction

The repeated encounter of a sensory stimulus typically changes how the brain re-
sponds to the stimulus. Across brain areas and paradigms, the repetition of an iden-
tical stimulus tends to lead to decreased neuronal firing rates (Solomon and Kohn,
2014; Vogels, 2016) and fMRI signal (Sawamura et al., 2005; Grill-Spector et al.,
2006). Stimulus repetition effects could reflect fatigue, or alternatively, an adaptation
of the visual system. For example, it could improve processing of the familiar, lead
to better detection of the novel, or both (Solomon and Kohn, 2014; Wissig and Kohn,
2012; Vogels, 2016; Gotts et al., 2012). Given the frequency of repeated encounters
in the sensory world, repetition effects may reflect common operations of the ner-
vous system. More generally, effects of stimulus repetition may give insight into the
computational goals of the brain by providing it with an opportunity to optimize its
responses under the experimenter’s watch. Repetition effects therefore have the po-
tential to reveal general goals of visual coding, such as improved efficiency, precision,
accuracy, discriminability or detection (see General Introduction, section 1.3.2).

Decreased responses with repetition could have many beneficial underlying reasons.
For example, responses could become more sparse, increasing SNR through removal
of irrelevant or redundant information, or become more transient. Another potential,
and not mutually exclusive, mechanism would be increased synchronization of the
remaining stimulus-related firing responses. This could enhance or at least maintain
their impact on downstream neurons, possibly while reducing metabolic cost.

Evidence for increased synchronization was reported in a previous study from our
lab. Strong changes in gamma-band synchronization within and between early vi-
sual areas were found with hundreds of repetitions of grating stimuli (Brunet et al.,
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2014). Fascinatingly, putative inhibitory interneurons in particular increased gamma-
band synchronization. In contrast, weakly, but not strongly stimulus-driven excitatory
cells dropped out of the rhythmic activity. This is suggestive of a particular form of
sparsening of the response through synchronization. However, since the stimuli in
this study never changed over the course of the session, it remained unclear to what
degree the observed effects were specific to a particular stimulus, or if the increased
synchronization would transfer to an arbitrary different stimulus. Moreover, the grat-
ing stimuli were well-known to the animals and designed to optimally drive visual
gamma-band responses. The current study therefore aimed to test for the stimulus
specificity of the repetition effect, using naturalistic stimuli that were initially unfa-
miliar to the animals. We asked whether

1. the repetition effect is stimulus specific

2. the repetition effect will generalize to a broader range of stimuli, which are more
naturalistic and less familiar.

To put the current experiment in a broader context, different theories on repetition
effects, common designs of repetition experiments and some of the most pertinent
experimental results will be introduced in the following sections.

2.2.1 Current theories of repetition effects

Several terms have been used to describe how the brain changes its responses with
stimulus repetition. The most common terms are “adaptation” and “repetition sup-
pression”, the latter is used predominantly in the higher levels of the visual hierar-
chy1. Unfortunately, adataption refers to a wide range of phenomena with a possibly
equally wide range of underlying mechanisms (Solomon and Kohn, 2014). Further-
more, adaptation can refer to phenomena where a stimulus is presented for a pro-
longed period of time, rather than repeatedly. Repetition suppression is an equally
problematic term, as it may be used interchangeably with “adaptation” to refer to phe-
nomena in the higher visual system, and further, it is not clear whether suppression of
responses (i.e. inhibition) underlies this group of phenomena (Vogels, 2016). I will
therefore use the umbrella term “repetition effect” to describe response changes with
stimulus repetition and “adaptation” for prolonged stimulation unless otherwise noted
(see also Discussion section 2.5.5 for a consideration of stimulus exposure duration
versus repetition).

Currently, there is no commonly accepted theory that encompasses all effects of
stimulus repetition, and links functional and mechanistic perspectives. Explicit com-
putational modeling and suggested mechanisms of particular effects exist, however
(see next section). Furthermore, there are some proposals about some potential gen-
eral mechanisms of stimulus repetition, a selection of which will be reviewed here.

Output fatigue. One group of proposals entails the idea of fatigue, and along with it
the notion that repetition effects can have detrimental effects on perception and behav-
ior, if any. According to the “output fatigue” hypothesis, neuronal responses reduce
proportionally to their amplitude. Neurons are stimulated so strongly that the mecha-
nisms that ensure their responsiveness to inputs cannot keep up. Artificial stimulation
of cells shows that output fatigue occurs on several timescales, with different under-
lying mechanisms, as well as layer and cell-type specificity (Sanchez-Vives et al.,

1Further alternatives include stimulus-specific adaptation, familiarity effect, adaptive filtering,
mnemonic filtering (Ringo, 1996).
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2000b; Ahmed et al., 1998; Sanchez-Vives et al., 2000a). For some paradigms, in par-
ticular for prolonged stimulation, this may be the underlying mechanism of repetition
effects. For other paradigms, there is substantial evidence that output fatigue cannot be
the reason for repetition effects, since they are stimulus specific. In early areas, a par-
ticular cell can show response reductions to one stimulus, but also response increases
to another (Solomon and Kohn, 2014). In higher order visual areas, two different im-
ages that lead to the same initial response magnitude will not cross-adapt, i.e. one
image decreases responses to a following presentation of the same image but not the
other (Sawamura et al., 2006). Similarly, optogenetic stimulation of a cell in IT has lit-
tle or no effect on image repetition effects (Fabbrini et al., 2019). Importantly, showing
stimuli repeatedly that do not evoke responses in an IT cell can increase its responses
to other stimuli, pointing to repetition effects as a network process (Kaliukhovich and
Vogels, 2016).

Input fatigue and synaptic depression. A related but distinct notion is that neurons
in a particular area respond less due to fatigue in their inputs (Vogels, 2016; De Baene
and Vogels, 2010). This includes inputs from upstream areas, i.e. an inheritance of
an effect generated earlier in the system. These may show output fatigue. However,
subcortical inputs tend to show substantially less repetition effects than cortical areas
(Solomon and Kohn, 2014; Sanchez-Vives et al., 2000b). In higher areas, a certain
degree of position invariance of the effect implies a local origin, since lower areas
have smaller receptive fields (De Baene and Vogels, 2010). It is also possible that
very small changes due to local output fatigue can be amplified in the network (Vogels,
2016).

In addition, the synapses between the inputs and the targeted neurons might depress.
This can be equally true for inputs deriving from the local network. Synaptic depres-
sion is variable between cells and exists in several forms with varying timescales, al-
though they are typically in the sub-second range (reviewed in Fioravante and Regehr
2011). Notably, this particular form of “fatigue” may have strong functional rele-
vance. Synaptic depression has been suggested to be a crucial form of gain control. It
enables a cell to detect changes in the input that are synchronous in time, regardless
of the input rates of different afferents (Abbott, 1997). This results in strong tran-
sient responses to synchronous input changes, even if the rates of the afferents are so
slow that they would normally be masked by noise in more active afferents. Func-
tionally, this translates to a sensitivity to changes in the visual stimulus, possibly at
the cost of some precision of the encoding. Additionally, once synaptic depression
is established, neurons may be able to compute multiplications, rather than just ad-
ditions of inputs (Rothman et al., 2009). Synaptic depression therefore qualitatively
changes the computational abilities of individual cells. Furthermore, it can facilitate
synchronization between cells (see below). Currently, little is known about synaptic
depression in awake animals. Its weakening during the “up-state” in anesthesia (Reig
et al., 2006) and its dependence on neuromodulation (Gil et al., 1997) suggests that
its role in awake animals could be less (or more) significant than expected based on
slice-based and anesthetized studies.

Input or output “fatigue” proposals concern themselves most directly with circuit
mechanisms (the implementational level), with any effect(s) on function seen as the re-
sult of such a low-level mechanism. Proposals that entail some benefit of stimulus rep-
etition include the concepts of “sharpening”, “facilitation”, “prediction”, “change de-
tection” and “synchronization” (Gotts et al., 2012; Grill-Spector et al., 2006; Solomon
and Kohn, 2014).

Sharpening. Sharpening refers to a selective reduction in responses that are least
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informative to downstream areas, resulting in more efficient responses, possibly with
an improved signal-to-noise ratio (Desimone, 1996; Wiggs and Martin, 1998; Grill-
Spector et al., 2006). In a rate-based sharpening scenario, neurons that are weakly
responsive to begin with should show stronger response reductions. There is substan-
tial evidence for sharpening in the case of prolonged training with particular stimuli
in the higher levels of the hierarchy (Rainer and Miller, 2000; Baker et al., 2002;
Freedman et al., 2006). In case of repetitions within a single day, a study that set
out to explicitly test the sharpening model found no evidence for this to occur in IT
(De Baene and Vogels, 2010). Rather, several studies have reported a “scaling” effect,
with larger response decreases when cells are more strongly driven, such that relative
responses are maintained (McMahon and Olson, 2007; De Baene and Vogels, 2010;
Miller et al., 1993).

Facilitation. Facilitation refers to a suggested mechanism that accelerates stimulus
processing, such that overall neuronal responses are decreased (James et al., 2000;
James and Gauthier, 2006; Henson, 2003). This proposal includes reductions in re-
sponse latency, and in response duration. Unlike the output fatigue and sharpening
models, there is no explicit prediction regarding any relationship between a neuron’s
responsiveness and later change. To date, decreases in response latencies have not
been observed with stimulus repetition in single neuron responses (reviewed in Gotts
et al. 2012). However, response reductions with stimulus repetition can have a char-
acteristic timecourse, with the largest reduction a few hundred milliseconds after the
reponse onset (Vogels, 2016). Arguably, this could be interpreted in line with a fa-
cilitation model, in particular the idea that the “resolution” time is reduced until the
activity reaches a stable state (Henson, 2012). In higher order visual cortex, object
identification may be slower and more reliant on recurrency for difficult images (Kar
et al., 2019). Interestingly, in a paradigm contrasting familiar to novel images, Meyer
et al. (2014) observed sharper temporal dynamics for familiar images, including a
“truncation” of the response (see also Peissig et al. 2007 and Manahova et al. 2019).
In summary, there is currently some evidence pointing to a potential role for faster pro-
cessing with stimulus repetition based on the timing of response reductions or changes
in the temporal profile of responses. A direct link to a faster resolution has yet to be
established.

Predictive coding. Prediction proposals constitute a variant of facilitation. Ac-
cording to a particular predictive coding framework, activity in lower areas reflects
prediction errors that are sent to higher areas, which generate predictions that can
suppress responses in lower areas (Friston, 2005; Henson, 2003; Grill-Spector et al.,
2006). With repetition, predictions could become more successful, reducing error
and therefore activity in lower areas (Auksztulewicz and Friston, 2016). The predic-
tive coding framework therefore suggests that response reductions in a particular area
should involve interactions with higher-order areas of a suppressive nature. Func-
tional interactions between higher and lower areas do appear to change with stimulus
repetition. However, it is unclear that these are of the nature or content suggested by
the hierarchical predictive coding framework (Ghuman et al., 2008; Chao et al., 2018;
von Stein and Sarnthein, 2000; Brunet et al., 2014).

Change detection. The above proposals suggest some benefit of stimulus repeti-
tion for the encoding of the repeated stimulus. Alternatively, stimulus repetition may
benefit other stimuli, or in other words, change detection - possibly even at the ex-
pense of precise encoding of adapted or repeated stimuli (Wissig and Kohn, 2012;
Vogels, 2016; Solomon and Kohn, 2014). This is in line with stronger responses for
stimuli other than the repeated stimulus, and increased disciminability between stim-
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uli (Solomon and Kohn, 2014; Hansen and Dragoi, 2011; Wang et al., 2011; Dragoi
et al., 2002). Wissig and Kohn (2012) suggest that surround modulation and adap-
tation have the same purpose: highlighting saliency. Similar suggestions have been
made by Hosoya et al. 2005, Sharpee et al. 2006 and Schwartz et al. 2007, relating
both adaptation and surround modulation to the efficient, predictive (not necessarily
in the Fristonian sense) encoding of a changing environment. Change detection is
therefore a particular function of circuits that implement efficient coding. Note that
this proposal is compatible with input fatigue or synaptic depression accounts on the
more mechanistic level.

Synchronization. Finally, synchronization proposals suggest that increased coordi-
nation of neuronal responses can compensate for reductions in response amplitude,
leading to more efficient processing (Gotts et al., 2012; Gotts, 2003; Gilbert et al.,
2010). Notably, this proposal resides on a more implementational level, but implies
some functional benefit. It is for example possible that a facilitation or sparsening is
brought about through synchronization. Changes in functional interactions between
higher and lower areas with repetition are often assessed with frequency-specific syn-
chronization measures (Ghuman et al., 2008; Chao et al., 2018; von Stein and Sarn-
thein, 2000). They are therefore in line with prediction as well as synchronization pro-
posals. Moreover, synchronization could both counterbalance and be brought about
by input fatigue. Several neural network models incorporating synaptic depression
exhibit rate reductions with simultaneous increases in synchrony (Gotts, 2003; Wang
et al., 2011). Similar behavior can also result from models incorporating facilitation of
inhibitory, or both inhibitory and excitatory synapses (Bazhenov et al., 2005). While
synaptic facilitation or depression in these models are short-term plasticity mech-
anisms, different mechanisms like long-term potentiation or depression (Andersen
et al., 2017; Malenka and Bear, 2004) would result in longer-lasting synaptic effects.
To summarise, synchronization proposals are compatible with other proposals such
as facilitation, sparsening, prediction, or input fatigue. Further evidence for the syn-
chronization proposal is reviewed below, together with an introduction of different
repetition designs that will aid in structuring the available literature.

2.2.2 Overview of repetition designs and relationship to gamma-band
synchronization

Stimulus repetition effects have a long history in sensory neuroscience and are stud-
ied with a variety of paradigms. Most studies focus on effects on either firing rates
or fMRI signal, and are reviewed for example in Solomon and Kohn (2014), Vogels
(2016) and Grill-Spector et al. (2006). Given the variety of paradigms, there is a cor-
responding variety of effects on gamma-band synchronization, which will be briefly
reviewed here (see Table 2.1).

Classical adaptation paradigms measure perceptual or neuronal responses before
and after the prolonged presentation of a stimulus (typically on the order of tens of
seconds to minutes, Kohn 2007; Solomon and Kohn 2014). Prolonged presentation
can lead to response fatigue in V1 (Sanchez-Vives et al., 2000b), and also in its inputs
(Zaidi et al., 2012). The do-it-yourself afterimage exercise described in the Gen-
eral Introduction (section 1.4.1) is an example of such adaptation. Jia and colleagues
(2011) showed that prolonged presentation can reduce gamma-band responses to the
identical grating stimulus, and increase responses to other grating stimuli under anes-
thesia. Similarly, we have shown in awake animals that continous presentation of a
colored background strongly reduces gamma-band responses to this stimulus, but in-
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creases responses to color-opponent stimuli (see Chapter 5). Prolonged presentation
paradigms can help to elucidate mechanisms of perception, using response fatigue as
a tool. However, they constitute an extreme and rather unnatural form of exposure,
and are difficult to study with awake animals.

Paradigm type Name of effect
or paradigm

Typical area
or mode of study Effect on GBA

Within session:
Prolonged
presentation

Adaptation Retina, LGN, V1, MT;
primate electrophys.,
psychophysics

Decrease: Jia et al.
(2011), Peter et al.
(2019)

Within session:
one-back or
within-trial
immediate, single
repetition

Repetition
suppression,
adaptation

IT, early sensory,
electrophys. and fMRI
MEG/EEG

decrease: IT high
gamma, Kaliukhovich
and Vogels (2011),
increase: V1/V4,
Hansen and Dragoi
(2011), Wang et al.
(2011)

Within session:
within-trial repetition
with intervening
stimuli

Working memory,
short-term memory

Prefrontal, IT, fMRI
MEG/EEG and
electrophys.

bursts in delay period
Lundqvist et al. (2016)

Within session:
between-trial single
repetitions with
intervening stimuli

Priming fMRI MEG/EEG and
rarely electrophys.

decrease: Friese et al.
(2012)

Within-session:
cumulative repetitions

Short-term memory,
adaptation

Rare. Within-session
learning effects in
sensory areas

increase: V1/V4
Brunet et al. (2014),
rodent/insect olfaction
Laurent et al. (2001)
van Wingerden et al.
(2010)

Between
session/long-term

Learning, SRP IT, more rarely early
sensory in primates.
V1 in mouse
electrophysiology.

precedes plasticity
Galuske et al. (2019)

Table 2.1 — Overview of repetition paradigms. LGN = lateral geniculate nucleus, MT= middle temporal
visual area (V5). SRP = stimulus-response potentiation. GBA = gamma-band activity. electrophys. =
electrophysiology.

Visual stimulus repetition in awake animals is often studied on the sub-second
timescale, with a lot of studies focusing on immediate and single repetitions within
a trial (Vogels, 2016; Hansen and Dragoi, 2011; Wang et al., 2011; Nikolić et al.,
2009). Rate decreases with repetition are widely reported for these paradigms across
areas and layers (Vogels, 2016; Solomon and Kohn, 2014; Kohn, 2007; Gutnisky and
Dragoi, 2008; Dragoi et al., 2002; Müller et al., 1999). In IT, high-frequency LFP
signals also reduce in amplitude (Kaliukhovich and Vogels, 2011; Kaliukhovich et al.,
2013; Kaliukhovich and Vogels, 2012), although it should be noted that the broad-
band nature of the responses means they are likely of a “high-gamma” nature (see
General Introduction, section 1.4.3). This contrasts with findings in V1 and V4 (mid-
level visual cortex). Wang et al. (2011) and Hansen and Dragoi (2011) studied the
responses to a briefly presented grating stimulus, when immediately preceded by a
random dot pattern or another grating stimulus within the same trial, in awake mon-
key V1 or V4 respectively. Somewhat unusually, responses were not compared be-
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tween the initial and later presentation of a grating, but only between gratings with a
different history earlier in the trial. Both in V1 and V4, a grating preceded by a grat-
ing could show increased spike-field coherence compared to a grating preceded by a
random dot pattern. In V1, effects were not specific to the gamma-band. Notably, co-
herence increases only occured when the repeated grating stimulus was similar to the
adapter, which was always chosen to be similar to the preferred LFP stimulus. Stim-
ulus specificity was also reported in V4. The average spike-field coherence and LFP
power spectra for gratings did not exhibit a peak in the gamma-band. However, when
nearby electrodes with similar stimulus tuning were chosen, a selective increase in the
gamma-band was shown for the repeated grating stimulus. Interestingly, only cells
that decreased their firing rate increased their gamma-band locking. In both V1 and
V4, increases in gamma-band activity were positively correlated with neuronal stimu-
lus discriminability. This contrasts with a lack of support for sharpening proposals for
similar paradigms from IT (De Baene and Vogels, 2010; Kaliukhovich et al., 2013).
Interestingly, discriminability in early visual areas improved specifically for highly
similar stimuli, an aspect that is harder to quantify for the more naturalistic stimuli
used in IT. The present evidence provides a tentative link between gamma-band syn-
chrony and discriminibality, in line with change detection and sharpening proposals of
stimulus repetition. This link may be specific for fine discrimination (see also General
Discussion).

In within-trial, rapid repetition designs, specific measures may be taken to attempt to
reset any cumulative repetition effects through intervening stimuli, masks and breaks
(Vogels, 2016). Cumulative effects of repetition, and memory effects past the within-
trial repetition, are expressly not of interest in such designs. Studies that are con-
cerned with some form of memory of stimulus repetition across trials or interfering
stimuli fall in the categories of 1) priming, 2) working memory studies, 3) long-term
(cross-day) learning, and 4) studies of short-term memory or within-session cumula-
tive response changes. Cases 1-3 will be considered relatively briefly, and case 4) will
be treated more elaborately, due to the similarity with the design in the current study.

Priming refers to behavioral advantages or changes after a second presentation of a
stimulus. A link between priming and repetition suppression (i.e. response reduction)
has been suggested repeatedly (Wiggs and Martin, 1998; Henson, 2003; Grill-Spector
et al., 2006; Gotts, 2003; Gotts et al., 2012). A paradigm that is favored in human
studies of priming uses several, sometimes many, intervening stimuli between iso-
lated (and thereby mostly just single) stimulus repetitions. Higher-order visual areas
in non-human primates have been reported to show memory in the form of decreased
rate responses even on these time-scales, which match human abilities to remem-
ber isolated encounters of visual stimuli with a lot of “interference” of other stimuli
(Meyer and Rust, 2018; Li et al., 1993; McMahon and Olson, 2007). Across a larger
population, such stimulus-specific response decreases could be used to determine the
familiarity of a stimulus (Meyer and Rust, 2018; Sugase-Miyamoto et al., 2008). Re-
ports of behavioral priming are very rare in non-human primates. In a remarkable case
where a behavioral effect was found and simultaneous IT recordings were avaliable,
no relationship to repetition suppression was observed (McMahon and Olson, 2007).
Using MEG in humans, Friese et al. (2012) reported a decrease in gamma-band ac-
tivity in visual areas for a single repetition of a line drawing for a paradigm with 2-3
intervening stimuli. No direct correlation to behavioral priming was tested.

Priming studies typically make no statement as to how a memory is maintained.
In contrast to priming studies, studies that attempt to do so typically study working
memory processes. In one typical variant of a working memory task, a stimulus has
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to be matched to an identical target stimulus shown earlier in the trial, and different
stimuli are shown in between. Such a task involves an active, within-trial maintenance
over some seconds. Such a process can have functional signatures, such as elevated
firing rates in higher-order brain regions (Constantinidis et al., 2018; Lundqvist et al.,
2018; Fuster and Alexander, 1971; Goldman-Rakic, 1995) or so-called gamma-band
bursts (Lundqvist et al., 2016), but may also rely on synaptic plasticity (Mongillo
et al., 2008). One of the most influential early studies on working memory reported re-
sponse reductions for repeated stimuli under such conditions (Miller et al., 1993). The
term “repetition suppression” was coined in the wake of these discoveries (Desimone,
1996). Notably, when the stimulus in memory was not the only stimulus that could
repeat, firing response increases were found upon target repetition, whereas other re-
peating stimuli still showed response reductions (Miller and Desimone, 1994). This
illustrates that the effects of stimulus repetition can depend on task demands. Working
memory is a complex process involving interareal coordination and various oscillatory
processes (Miller et al., 2018) that is historically linked to stimulus repetition, but de-
veloped into its own field of study.

On the other extreme, long-term learning is typically thought to involve many repe-
titions across many days, and require sleep (Schoups et al., 2001; Meyer et al., 2014;
Woloszyn and Sheinberg, 2012; Tononi, 2009; Huang et al., 2018). In primates, de-
creased responses with increasing long-term familiarity have been reported primar-
ily in IT, but also in prefrontal cortex and V2, an area directly downstream of V1
(Huang et al., 2018; Meyer et al., 2014; Woloszyn and Sheinberg, 2012; Rainer and
Miller, 2000). Effects of familiarity on synchronization are largely unclear. Recently,
gamma-band activity was linked to the reshaping of orientation preference maps in V1
(Galuske et al., 2019). In mice, massed exposure to high-contrast gratings increases
responses in V1 over days (Cooke and Bear, 2010, 2014; Kaplan et al., 2016; Cooke
et al., 2015). This stimulus-specific response increase requires NMDA receptor2 ac-
tivity. Again, its effects on synchronization are unclear. A different group reported
increases in low-frequency synchronization in V1 in response to a stimulus that had
been repeatedly paired with another stimulus in mice (Kissinger et al., 2018).

Finally, there are paradigms that consider short-term and cumulative forms of plas-
ticity within a session. In IT, responses to stimuli show a continuous decrease also in
such a case (Li et al., 1993; Sawamura et al., 2006). Sawamura et al. (2006) showed
that for continuous repetitions of an image with maximally one other image in be-
tween, responses decreased strongly for the first few repetitions in a trial and less
strongly thereafter. Changes in synchronization were not studied here, though very
similar paradigms with just one repetition reported decreases also in high-frequency
LFP responses (Kaliukhovich and Vogels, 2012; Kaliukhovich et al., 2013).

Recently, Wang and Dragoi (2015) reported that in mid-level area V4, during the
rapid orientation discrimination learning of natural images, low-frequency (theta) spi-
ke-field coordination (spike-field coherence, SFC) increased as discrimination thresh-
olds decreased. This effect was specific to stimuli that were not fully familiar, such
that discrimination learning was still taking place. Wang and Dragoi (2015) suggest
that this increase in theta SFC may be linked to memory formation or improved in-
terareal coordination during the learning phase, rather than the optimization of local
responses. Gamma-band synchronization was not reported to change with this task.
Of note, the SFC analysis was less fine-grained than in Wang et al. (2011), where the

2N-methyl-D-aspartate receptor, a ionotropic glutamate receptor associated with plasticity (Malenka
and Bear, 2004).
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same group suggested that gamma-band SFC in V4 is restricted to cells with similar
stimulus preferences.

In V1, Lazar et al. (2018) demonstrated that repeated stimulus exposure can lead to
changes in both response strength and stimulus discriminability. Briefly flashed, high-
contrast images of letters tended to induce increases in responses over the course of a
session. At the same time, response variability decreased, and discriminability both on
the single-cell and population level was improved. Interestingly, these changes were
confined to the later part of the response, rather than the initial response transient.
Furthermore, this study demonstrates that adaptive cumulative changes can occur in
V1 even under anesthesia, i.e. in the absence of changes in attention or intentional
learning.

Brunet et al. (2014) were the first to report cumulative gamma-band increases in
early and mid-level visual areas with stimulus repetition. Coordination between V4
and V1, V4 SFC as well as LFP power in both V1 and V4 increased with the massed
repetition of grating stimuli during an attentional change detection task. In V4, where
spiking activity was available, rates decreased while spike-field coordination in the
gamma-band increased. Putative inhibitory interneurons in particular increased gam-
ma synchronization, and in contrast to putative excitatory neurons, did not show a de-
tectable decrease in rate responses. Furthermore, whilst the spike-field coordination
of excitatory neurons dropped on average, the most driven cells showed this behavior
the least. In other words, weakly driven cells selectively dropped out of the rhyth-
mic activity. Responses were therefore more selectively gamma-synchronized with
repetition. The repetition effect built up over the course of the session in a log-linear
manner, such that initial repetitions resulted in the strongest response increases. At
the same time, the first 10 or so repetitions at the beginning of a session showed a rel-
atively weak increase. Since repetition number and session time were not dissociated,
it is possible that the animals showed a somewhat different behavior for the first few
trials in a session (for example a higher error rate), such that it is difficult to interpret
these first few trials (see also Discussion).

In insect and rodent olfaction, repeated stimulation has been reported to increase
high-frequency activity. In rodents, this activity was reported in orbitofrontal cortex
during a learning paradigm and correlated with behavioral performance (van Winger-
den et al., 2010). Odor-related gamma-band activity increased over the course of the
ca. 20 repetitions tested. Since attention is known to modulate gamma-band activity,
it is possible that this reflects a form of learning to attend. However, it could also be
related to the stimulus repetition effects observed in primates, where attentional con-
ditions were stable and stimuli had been overtrained (Brunet et al., 2014). In insects,
activity peaking at about 20 Hz increases with repeated odors (Laurent and David-
owitz, 1994; Laurent et al., 1999, 2001; Stopfer and Laurent, 1999; Stopfer et al.,
1997; Bazhenov et al., 2005). Spike-field coordination increases while spiking de-
creases simultaneously in a stimulus-specific manner. Interestingly, spike rates drop
more strongly for the initial than for later presentations, whereas LFP power linearly
increases and then asymptotes. Effects transfer between similar odors (“spill-over”,
Stopfer et al. 1997). Moreover, effects are independent of stimulus duration (between
a few hundred milliseconds to several seconds). The effect survives intertrial dura-
tions of tens of seconds and lasts for about (has memory for) half a minute after 10
repetitions (Stopfer et al., 1997). Due to the differences in species and sensory sys-
tem, and lack of knowledge of underlying mechanisms, it is unclear if these effects
are related. The prima facie similarity suggests the possibility of a preservation across
species and systems, which would indicate a fundamental mechanism.
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The present chapter will investigate the effects of stimulus repetition in V1, using a
broader set of stimuli than Brunet et al. (2014). Stimulus specificity of the effect will
be tested with stimuli initially novel to the animals. The number of repetitions will be
closer to that in previous insect and rodent studies, and dissociated from the beginning
of the session. In the following chapter, the effect of location and the persistence of
the effect (memory) will be investigated.

2.3 Methods

Since this study represents a collaborative effort of several labs, recording equipment,
implanted recording devices as well as task software differed somewhat between ani-
mals.

2.3.1 Animals

All procedures complied with the German and European law for the protection of an-
imals and were approved by the regional authority (Regierungspräsidium Darmstadt).
All animals were group-housed in enriched environments with access to an outdoor
space and continued to live in the facility post recording in their groups. Animal wel-
fare was monitored by veterinarians, technicians and scientists throughout the study.
Four male rhesus monkeys weighing between 12-16 kg aged 9-11 years were recorded
from for this task for 2-4 weeks. All monkeys had previous experience with other
forms of visual fixation and change detection tasks. Training for this particular task
was minimal (if any) and did not involve the stimuli analyzed here. All recordings
were from the foveal and parafoveal (up to about 8 dva eccentricity) regions of V1
(and dorsal V4 in monkeys T, H and K) and were made using chronically implanted
devices (see below).

2.3.2 Surgical procedures and implants

All surgeries were performed under general anaesthesia using standard techniques ac-
cording to authorized guidelines. This included peri-surgical analgesia and monitor-
ing. All animals received a titanium implant to immobilize the head during recordings.
Monkeys H and K also were implanted a recording chamber in addition to Blackrock
multielectrode arrays and a connector for these arrays (Blackrock Microsystems, Han-
nover, Germany, see also Peter et al. 2019). Data recorded for this experiment are from
64-channel arrays (Blackrock Microsystems, inter-electrode-distance 400 µm, tip size
3-5 µm, impedance 70-800 kOhm at 1000 Hz). A reference wire was inserted under
the dura towards parietal cortex. monkey A was implanted with a semi-chronic mi-
croelectrode array, with 32 electrodes (Gray Matter Research SC32-1, inter-electrode-
distance 1.4 mm, impedance 0.5-2 megaOhm). The microdrive chamber was used as
the reference. monkey T was implanted subdurally with a micromachined electocor-
ticographic electrode array (ECoG, IMTEK & BCF, University of Freiburg, Germany,
Rubehn et al. 2009) covering a large part of the lower right quadrant of V1 and dor-
sal V4. The 252-channel ECoG array consisted of 10 µm thick polyimide foils with
0.3 µm thick platinum electrodes in a polyimide grid. Global references were posi-
tioned over V1 and V4 in the same hemisphere.
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2.3.3 Neurophysiological recording setup

Monkeys performed a change detection task (see section Task) seated in a custom-
made primate chair in a darkened and (except monkey A) sound-attenuated booth.
The animals were positioned 64-80 cm in front of a 22 inch 120 Hz LCD moni-
tor (Samsung 2233RZ, Wang 2011; Ghodrati et al. 2015), backlit by a cold cathode
fluorescent lamp. Stimulus onsets and changes were recorded with a custom-made
photodiode. Eye movements from one or two eyes and pupil size (except monkey A)
were recorded using infrared illumination. To this end, eye signals were calibrated
before each recording session (in case of monkey A more rarely) using a standard-
ized fixation task. Eye data was recorded with an Eyelink 1000 system (sampling rate
1000 Hz for monkey T, 500 Hz for monkey H and K) or a Thomas Recording system
(ET49-B, 122 Hz, monkey A). In the case of monkey A, lever responses were addi-
tionally recorded. The animals head was restrained to allow both eye tracking and
stable neurophysiological recordings. LFP and (where possible) multiunit data was
collected using chronic or semi-chronic implants. Correctly performed trials were
rewarded with a drop of diluted fruit juice delivered with a solenoid valve system.
Recording sessions lasted ca. 1-2.5 hours depending on when the monkey stopped to
initiate trials.

2.3.4 Task

The task structure reflects a compromise between aiming for more naturalistic condi-
tions with the concomitant broader external validity and experimental control. Briefly,
monkeys performed a change detection task on isolated naturalistic images, with rep-
etitions of the images occurring only between trials, pseudorandomly interleaved with
presentations of other repeating images.

Stimuli

Stimuli were taken from Hemera Photo-Objects Vols. 1, 2, and 3 (Hemera Technolo-
gies, see also Woloszyn and Sheinberg 2012). These are high-resolution color images
of isolated objects (see Figure 2.3, no background, i.e. the background will be the
chosen monitor color). Stimuli were presented unaltered, i.e. without attempting
to equate the images basic statistics such as the average brightness. We refrained
from such control since for colored natural images, such manipulations resulted in
highly unnatural coloring that would impede image recognition. Preselecting images
with similar brightness (as an example) on the other hand would necessarily strongly
limit the color range that could be used, which would reduce their distinctiveness and
thereby reduce our ability to test for stimulus-specificity of our effects. Images were
selected to be perceptually distinct from one another for human observers, but no im-
age metrics were computed to ensure this. However, the eye movement behavior of
the animals strongly indicates that they were capable of both distinguishing and re-
membering the different images (see Results, Figure 2.4). The number of images, 25,
was chosen such that for the given number of repetitions (20 per image), it was highly
likely that the animals would complete at least one set on a recording day (500 correct
trials per set), so that data could then be compared across days. Given this compro-
mise between number of images, number of repetitions and likely performance, it was
impossible to select an image set of a sufficient size to be representative of the full
range of natural visual input. The stimulus set contained fruit, vegetables, leaves,
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flower blossoms and sweets whose predominant colors were either red, orange, yel-
low, green or “dark” (brown, black, dark blues and greens). Note that the category
of sweets was likely least familiar to the animals and is not necessarily recognized as
edible (although color is a strong predictor of edibility for primates for novel items,
Santos et al. 2001) There were 25 objects in total, 5 in each category and color in a
5x5 design (with the exception of monkey A, where some stimuli of the original set
were replaced with images that had more inner structure, see Figure 2.3). The chosen
colors reflected the dominant colors available for the categories in the stimulus set,
and also ensured that there were both stimuli darker and brighter than the background.
Stimuli were positioned such that they typically overlapped (slightly) with the fixation
point and therefore the fovea (Figure 2.1). The center of gravity of the images was
in the lower right quadrant, in accordance with the recorded receptive fields. Stimuli
overlapped in a region of about 8 dva diameter. Stimulus size and position were such
that all available receptive field positions in both V1 and V4 (where available) were
stimulated. This means that the stimuli were not optimized for a particular RF size or
location and therefore typically encompassed both the RF and its surround (see Fig-
ure 2.1), as would frequently happen during natural vision. Overlap with the fovea
was chosen to stimulate the foveal receptive fields that were available in monkey T.
Further, we were under the impression that the animals were better able to maintain
central fixation if they were thus enabled to foveate the object to be monitored. Lastly,
a foveated object may naturally attract attention (Cheung et al., 2016; Dowdall et al.,
2019), and given cortical magnification of the fovea (see General Introduction, Fig-
ure 1.2) engage large parts of the ventral visual stream. Since the relative position of
V1 and V4 receptive fields, as well as the average eccentricity of V1 receptive fields
and their dispersion, varied between animals/recording techniques, we did not attempt
to provide identical stimulation to certain receptive fields between monkeys. As a re-
sult, somewhat different parts of a stimulus will have stimulated receptive fields in
each area per monkey.

Single-trial structure

On a given trial, a single image of a natural object (see Stimuli) was presented after
a baseline fixation period of 1.3-1.4 s for a duration of 1.5-3 s, after which a small
local change occurred (see Figue 2.2; see Table 2.2 for parameters that had some vari-
ation between animals). The monkeys responded to this unpredictable change either
by lever release (monkey A) or a saccade to the change location (all others). Correct
responses were followed by a juice reward during the presentation of a grey back-
ground screen. The monkeys initialized trials by acquiring fixation, resulting in some
variability in the inter-trial interval. The variable stimulus time interval followed a
Weibull distribution ( f (t|a, b) = b

a ( t
a )b−1e−(t/a)b, a = 0.27, b = 2, all t > 0) with a peak

probability of a change occurring after around 2 s (for variability between animals,
see Table 2.2. This results in a linear increase in the hazard rate (chance of a change
occurring at any given moment) compared to the typical exponential increase with a
uniform distribution. The linearization was chosen to reduce known hazard rate ef-
fects in gamma-band activity (Schoffelen et al., 2005; Lima et al., 2011). There were
no so-called “catch” trials without changes, since the monkeys tended to produce few
responses that could be interpreted as false alarms possibly because uncertainty in
both space and time rendered a guessing strategy unsuccessful. After this variable
duration, a small Gaussian contrast decrement appeared at an unpredictable location
on the object. The possible change locations were constrained to positions outside the
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Figure 2.1 — (A) Illustration of stimulus position with respect to fixation (i.e. 0,0 refers to the fixation
point) and the receptive field centers of the V1 array for an examle animal (monkey H). Left panel:
Stimulus position on the monitor for an example stimulus. Right panel: Illustration of percentage of
overlap between all images, the 100% region is indicated with cyan outlines. (B) Illustration of overlap
of all stimuli with respect to fixation and the receptive field centers of the V1 recording sites for monkeys
K, A, T (from left to right).

fixation window where all objects overlapped, which was around their center of mass
in the lower right visual field and excluded the borders of the object (see Figures 2.3,
2.1). Overall task difficulty was adjusted to the performance of the individual animal
rapidly on the first recording day (see Table 2.2). For one animal that was highly
trained on contrast change detection for different tasks, contrast decrements were ini-
tially set for each object based on human psychophysical thresholds (monkey T, data
not shown). For the other animals, maximal contrast decrements for Gaussians of a
given size had to be used. Detection difficulty was therefore not equalized between
images. Investigating responses to objects novel to the animals precluded adjusting
difficulty per animal and object up front. This approach is in any case limited due to
changes in local image structure and eccentricity within each image, both of which
affect task difficulty.

Cross-trial structure

Repetitions of images were implemented across rather than within trials. Notably, this
means that repetitions had no direct behavioral relevance for the animals. Specifically,
on each day, the same 25 stimuli were repeated 20 times each in a pseudorandom way
with a constrained lag (maximally 4 other images between one stimulus and its repeti-
tion). This was implemented such that at a given moment, one of three possible stimuli
was shown (monkey A: two possible stimuli). The number of interleaved stimuli was a
direct result of the constrained lag. Lag was restrained because we assumed that in or-
der for the repetition effect to build up over trials, time between repetitions should not
be too long, particularly in early visual areas (Ringach and Shapley, 2004; Kim et al.,
2019; Nikolić et al., 2009). The pseudorandomly interleaved sequence of stimuli was
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M. Stimulus duration Change difficulty Fixation point,
radius

Display software,
response type

A 1.8-3 s, peak ca 1.9 s 100%, 1 dva (SD
0.2)

blue dot, ca. 1 custom software,
lever release

H 1.8-3 s, peak ca 1.9 s 100%, 1.27 dva (SD
0.22)

blue dot, 1.2 MonkeyLogic v.
2013/08 on
Matlab2011a,
saccade

K 1.8-3 s, peak ca 1.9 s 100%, 0.82 dva (SD
0.16)

blue dot, 1.2 MonkeyLogic v.
2013/08 on
Matlab2011a,
saccade

T 2.3-4 s, peak ca 2.5 s stimulus dependent white Gaussian, 1.2 Arcade (initial
version) on
Matlab2014a,
saccade

Table 2.2 — Task parameters that varied between animals. RT is reaction time. Fixation is in dva
(degrees visual angle). M. = monkey.

generated by randomly drawing from n (2-3) possible stimuli, with the constraints that
1) a stimulus reaching maximal lag was automatically shown and 2) the likelihood of
drawing the stimulus that occurred at the most recent two positions in the sequence
was reduced (weighted random sample). When an image completed its 20 repetitions,
another image was introduced into the group of stimuli that was drawn from. In this
way, new images were introduced pseudorandomly over the course of the session. The
sequence of each day started with two additional “dummy” stimuli with a randomly
drawn, reduced number of repetitions. Therefore, a sequence would start with one of
the stimuli of the set interleaved with the dummies. The dummies would in turn drop
out before the completion of the initial stimulus of the set, so that the next stimulus
of the set did not start its sequence simultaneously with the first. As a result, a given
image’s start in the session was dissociated from that of the other images. If the mon-
key completed 20 repetitions of each of the 25 images (“block”), the task seamlessly
proceeded with another sequence, such that the last images in the block were inter-
leaved with the first images of the second block (no dummies). The images chosen
for the second block were produced in an identical manner, with the constraint that
they were not identical to the last images in the first block. In cases where this second
block was also completed, the last images were interleaved with dummy images. On
the second block, a break of ca. 15 min was sometimes included at a pseudorandom
time at roughly 1/3, 1/2 or 2/3 of the span of block 2. This was done in an attempt
to investigate a possible reset of repetition effects as reported for a single session in
one monkey in Brunet et al. (2014). Since monkeys sometimes do not reinitiate the
task after a break, this was only attempted in the second block, which was not reached
by all animals. The number of repetitions was chosen as a compromise between a
large stimulus set and a number of trials that could be used to robustly estimate rep-
etition effects given the many other sources of trial-to-trial variability of activity in
neocortex. Errors were handled such that correct trials, misses, and responses where
the target change was initially saccaded to but not held in view, were all counted as
repetitions for the purpose of increasing the counter during the task. In all monkeys
except monkey T, fixation breaks during the stimulus period resulted in the stimulus
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turning off immediately to indicate the error. Since monkey T was well-trained on
similar tasks, the stimulus was left on the screen for 1 s which allowed the animal
to explore the image and which reduced overall fixation break behavior. In all mon-
keys except monkey T, trials where the monkey fixated correctly for > 1 s during the
stimulus period were also counted as repetitions. This rule was implemented because
most animals would otherwise occasionally show persevering fixation breaks toward
specific images (which differed between animals). Perseveration could have destroyed
the de facto lag structure between images and was often directly followed by a com-
plete cessation of trial initiation, even for other images. Achieving 20 correct trials
per block and image would have been desirable, but would probably have required
training with the images. For monkey A, due to limitations in the custom presentation
software in the respective laboratory and the strongest tendencies for perseverance,
pseudorandom draws occurred only between two possible stimuli, and the next two
stimuli were introduced after both these stimuli had completed 20 repetitions.

Cross-session structure

To dissociate stimulus-specific repetition effects from potential time-in-session ef-
fects, the order in which specific images appeared in the sequence of the day was
varied across days (Figure 2.2). For example, the image of the pepper would appear at
the beginning of the sequence on some days, toward the end on other days and toward
the middle in other sessions. To generate pseudorandom session sequences of images
(i.e. the order of appearance in the session), the first session sequence of images was
randomly drawn from the set of images. The following session sequences were drawn
pseudorandomly, with a reduced likelihood of positioning an image at the previously
used positions in the sequence as well as their neighbors. This procedure was applied
for the two blocks independently. This means that the same image occurred at differ-
ent points of the session on different days, and had different neighboring images on
different days. Additionally, the lag structure per image varied across days, such that
the lag was independent of repetition number and image.

2.3.5 Data analysis

All analyses were done in Matlab (The MathWorks) and using FieldTrip (Oostenveld
et al., 2011). All randomization or permutation tests were performed with 1000 per-
mutations. All log-transforms have a base of 10.

Data collection and preprocessing

For monkeys H and K, recording channels were amplified, filtered between 0.05 Hz
and 10 kHz and digitized at 30 kHz directly at the connector using a CerePlex E head-
stage (Blackrock Microsystems). Signals were then transfered out of the electrically
isolated booth via optic fiber and recorded using a CerebusTM Neural Signal Proces-
sor. MUA was estimated from the broadband signal by band-pass filtering (300 Hz-
30 kHz) with an 8th order zero-phase Chebyshev-filter, rectification, and low-pass
filtering and downsampling to 500 Hz using the Matlab function decimate (8th order
zero-phase Chebyshev-filter). LFP signals were estimated by only low-pass filtering
and downsampling. For monkeys A and T, data was acquired using Tucker Davis
Technologies (TDT) systems. Data were filtered between 0.35 and 7500 Hz (3 dB fil-
ter cutoffs) and digitized at 24,414.0625 Hz (TDT PZ2 preamplifier). For monkey A,
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MUA was estimated by band-pass filtering (300 Hz-12000 kHz) with a 4th order zero-
pass Butterworth filter, and filtering and downsampling to 1/24th of the original sam-
pling rate using an 8th order FIR filter. Similar prelimary analyses for monkey T
showed no stimulus-evoked responses in this signal, indicating that MUA could not
be detected with the ECoG array at this stage of the recordings. For both monkeys
A and T, LFP signals were estimated by only low-pass filtering and downsampling to
1/24th of the original sampling rate. The resulting MUA signal is a quasi-continuous
measure of high-frequency field power (MUA envelope) and has been used previously
by other labs (Schmid et al., 2013; Self et al., 2013; Xing et al., 2012; Legatt et al.,
1980). For the calculation of rate modulations, the MUA signal was smoothed with
a Gaussian kernel with an SD of 20 ms. Referencing is described in sections 2.3.2
(Surgical procedures and implants) and 2.3.5 (Electrode selection and definition of
“sites”).

Session selection

Monkeys A, K, and H were familiarized with a detection task on natural images us-
ing different stimuli for 1-2 days before the recordings, this data is not analysed. All
animals were familiar with detection tasks before the recordings. If a monkey worked
for more than 2 blocks (see Task description), any subsequent recording was excluded
from the current dataset. For monkeys T, A, and H, for 1-2 recording days per animal,
there were cases of either online data loss or a problem with the stimulus display soft-
ware. This left the following number of recording days(blocks) per animal: monkey A
10(10), monkey K 11(20), monkey H 10(19), monkey T 10(19).

Electrode selection and definition of “sites”

To be included in analysis, channels/sites had to fulfill the following minimal criteria.

1. The site had to have a clear receptive field in the MUA activity, or in the case
of the ECoG monkey, T, in the LFP responses. See section 2.3.5 (Receptive
field estimation) for a description of the mapping procedures and RF quality
estimates.

2. The RF had to overlap with the presented stimulus. This was ascertained a
priori for all experiments by stimulus positioning. In monkey A, this criterion
excluded some channels that were not positioned in foveal-parafoveal V1 (low-
ered below the first encounter of white matter) in an objective manner.

3. For the ECoG monkey T, some sites that showed non-physiological responses
during the recordings were excluded (9/196). These sites tended to show re-
duced SNR in the VEP compared to neighboring sites, but due to an overall
gradient in VEP strength in unipolar data, no overall threshold could be deter-
mined.

In case of bipolar derivations, we used only independent bipolar sites where both
unipolar sites met the above criteria. Bipolar derivations were used for monkey T, and
in explorative analyses also for the other animals (not reported here). For monkey T,
local bipolar derivatives were computed between LFPs from immediately neighbor-
ing electrodes, i.e., differences sample-by-sample in the time domain, as in previous
studies (Bosman et al., 2012; Bastos et al., 2015). This was done because the global
references were positioned over V1 and V4 in the same hemisphere. Specifically, if
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an electrode B had two direct neighbors A and C, it would only be paired with one
of these to generate a bipolar site. Therefore, no unipolar recording site entered more
than one bipolar site. Additionally, bipolar sites were required to both originate from
the same headstage during recordings. This criterion was added because the attempt
to provide an appropriate common reference across headstages failed at an unknown
time point due to failures of contacts or lanes in the implant. Even though we obtained
clear unipolar RFs and responses, we consider the bipolar derivation the most prudent
response to this problem. This selection procedure left 90 bipolar sites in monkey T,
62 unipolar sites in both monkey H and K, and 14 unipolar sites in monkey A. The
latter number is relatively low because some of the 32 electrodes were lowered into a
part of V1 that covers extremely peripheral regions of the visual field. To be included
in the spectral analysis for a given image, a reliable gamma peak had to be detected in
addition (see below).

Trial selection

Only correctly performed trials were included in the final analyses. Trials that were
part of a repetition sequence that was disrupted by a longer break (5 min) were ex-
cluded. Repetition number in a sequence could be counted in two ways: 1) counting
only correctly performed trials and 2) counting all trials. If incorrectly performed trials
have an influence, the second approach allocated the repetition to the “correct” posi-
tion. However, since the most common type of error was a rapid fixation break, this
results in missing data in the repetition sequence. We will therefore define repetition
here according to the first approach. Exploratory analyses confirmed that approach
(2) yields qualitatively similar results. We observed that although 20 correct repeti-
tions per stimulus could in theory be performed, substantially less data was present
after 15 repetitions according to definition 1) in many cases. We therefore restricted
our analyses to the first 15 repetitions. For the regression analyses, trials that occured
past a long, intentional break in the second block were also excluded, since this could
potentially artificially dissociate session time from gamma-band responses through a
reset (see also Chapter 3).

Behavioral analysis

Reaction times and correct versus incorrect responses were analysed using multiple
linear regression analyses similar to regression analyses for neuronal data (see below).
For the observation that the amount of rapid fixation breaks seemed to decrease with
the first few repetitions, an exponential of the form a + b ∗ exp(c ∗ iRep), with
iRep the repetition number, was fit to the data using nonlinear least squares fitting
(Matlab function fit with default settings). Confidence intervals were computed as
C = b ± t∗ sqrt(S ), where b is the coefficient, t is a threshold based on the confidence
level (95%) and the cumulative student’s t distribution, and S is the mean squared
error*variance of a coefficient estimate.

Spectral analysis

LFP power. For monkey H and K, activity was rereferenced to the average across
the V1 array for LFP power analyses. Unless otherwise noted, all spectra were com-
puted from a fixed part of the trial, namely from 0.5-1.5 s post stimulus onset, or
for the baseline, -1 to 0 s before stimulus onset. Note that the baseline period had
a duration of 1.3-1.4 s, such that the chosen baseline period omits the first 300 ms,
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avoiding potential nonlinearities in the response with fixation onset. The fixed length
during the stimulus presentation prevents any potential effects of changing trial lengths
with repetition. (Trial lengths were randomized, but since there can be dynamical
changes within the trial, especially later in the trial, including different lengths might
add unwanted variability). We excluded the first 500 ms after stimulus or fixation
onset to minimize effects of transients and non-stationarities on the metrics of rhyth-
micity and synchronization. The baseline and stimulus periods were then cut into
non-overlapping epochs. Two main types of spectral analyses were performed: 1)
Analyses focusing on low-frequency effects using 500 ms epochs that were Hann-
tapered, and 2) analyses focusing on gamma-band effects using 250 ms epochs, using
multitaper spectral estimation with 5 tapers taken from the discrete prolate spheroidal
sequence (Pesaran et al., 2018; Mitra and Pesaran, 1999), yielding ± 10 Hz smooth-
ing. The combination of epoch length and taper meant that Hann-tapered analyses
had a fundamental spectral resolution (Rayleigh frequency) of 2 Hz, and multitapered
analyses of 4 Hz. Epochs were tapered as described and then Fourier transformed.
For LFPs, relative power was computed as stimulus/baseline and then plotted on a log
scale, or for regression analyses and correlations, log-transformed before averaging
across sites.

MUA-LFP phase locking. For MUA-LFP phase locking, only electrodes selected
by the procedure described above were used. In addition, for MUA-LFP pairs, we re-
quired that the electrodes were direct neighbors in the array. MUA-LFP phase locking
was computed as follows. The cross-spectral density between LFP and MUA signal
for each trial (cross-spectra) was computed using the same spectral estimation pa-
rameters as for the LFP power spectra described above. The cross-spectrum per trial
was then normalized by its absolute values, resulting in cross-spectral phases (with-
out amplitude information). Normalized cross-spectra were then used to compute the
Pairwise Phase Consistency (PPC), using FieldTrip (Oostenveld et al., 2011). The
PPC is unbiased by the trial count (Vinck et al., 2010b). For a given MUA site, the
PPC values were then averaged across all the combinations with LFPs from the other
selected electrodes. MUA-LFP combinations from the same electrode were excluded
to avoid artifactual coherence due to bleed-in of spikes into the LFP (Ray and Maun-
sell, 2011; Buzsáki et al., 2012). Because of the distance between electrodes (at least
400 µm), this was not an issue for MUA-LFP combinations from different electrodes.
Single-trial PPC values were computed using non-overlapping epochs. Exploratory
analyses showed that computing PPC per repetition across sessions, or binning several
trials from a repetition sequence, did not show clearer effects for the stimulus-specific
correlation analyses (see below).

Determining gamma peak per image. Spectra were highly stimulus-specific, with
strong variations in gamma-band peak frequency and spectral shape (see Figure 2.5).
In addition, many spectra featured several distinct peaks for a single image and site
(these were not due to averaging across different sessions or repetition numbers).
These peaks showed up independently of doing a relative (to baseline) gamma power
normalization or a 1/fn correction (the latter procedure involves fitting an individual
regression slope to the stimulation period spectrum per image, then multiplying each
frequency bin by the slope estimate times the frequency of that bin). Frequently, they
were also visible in MUA-LFP PPC spectra (see Figure 2.5).

For each stimulus, the largest peak in the gamma-band response was determined for
relative power spectra (and with an identical procedure, for the MUA-LFP PPC during
the stimulus presentation time). Given that the peak frequency varied across images,
this could be used to determine a peak-centered gamma-band for each stimulus in
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which to average gamma-band activity. Local maxima were determined between 20
and 190 Hz. A peak was defined as a position in the spectrum where spectral power
was lower than the maximum on both sides of the peak as implemented in the Matlab
function “findpeaks”: First, the sign of the first derivative of the spectrum is computed.
Then, local maxima are locations where the derivative of the sign is < 0, identifying
the first point of the peak. The largest two peaks in the spectrum were collected for
each site and stimulus. To ensure that the identified peak reliably occurred across days,
we ran a one-sided permutation test (alpha = 0.05, n = 1000 permutations of all trials
across all sessions) of the average relative power around the identified peak frequency
(±8 Hz around the peak) against activity of ±8 Hz around 190 Hz for each channel
and image. Note that the p-value was used as a threshold rather than for any inference
about the population of peaks across sites and stimuli. The test against high-frequency
activity rather than baseline was chosen to identify peaks that are reliably larger than
any offset or spike leakage effects. For a given stimulus, the largest gamma peaks were
typically similar across recording sites (91% of sites shared a common peak, see Fig-
ure 2.6A). We used the identified peak frequency per site and stimulus to group chan-
nels with a similar peak and subsequently analyse repetition-related effects in these
channels and a frequency band ± 16 Hz around the peak. A relatively wide band was
used for grouping to allow for the variability in single-trial, single-site gamma esti-
mates (e.g. Lowet et al. 2017), potential repetition-related shifts in frequency (Brunet
et al., 2014), the generally often broad shape we observed in the data with the se-
lected multitapering (see e.g. Figure 2.5), the frequency resolution of the majority of
the analyses and the known peak-frequency dependence on eccentricity (van Pelt and
Fries, 2013). 49% ± 10%SD of sites with the largest peak exhibited a second peak
within ±16 Hz of most common second largest peak (Figures 2.5, 2.6A). This reduc-
tion compared to the largest peak is not due to a bimodal distribution where some
stimuli exhibit a reliable second peak across all sites and some show no sites with a
reliable second peak. Rather, some stimuli do exhibit common secondary peaks across
all sites, some exhibit very few sites with a common secondary peak, and many stimuli
show a substantial percentage of sites that show reliable common secondary peaks. It
is not unlikely that the detection of secondary peaks depends on signal-to-noise ratio
(SNR, this notion is supported by correlations between strength of the primary and
secondary peaks, data not shown). The occurrence of several gamma peaks has been
reported previously for artificial stimuli like gratings in both humans and non-human
primates (Hoogenboom et al., 2006; Murty et al., 2018; van Pelt et al., 2012). The
observed additional peaks could reflect additional, independent phenomena, or indi-
cate the presence of harmonics in the signal. Harmonics can occur when a signal is
not sinusoidal in shape as assumed by Fourier analysis (Scheffer-Teixeira and Tort,
2016), as would for example be the case with a periodic signal that has a sharp edge
when rising or falling. Harmonics occur at multiples of the fundamental frequency.
In the present dataset, some peaks occurred at frequencies that were clearly too close
together to be multiples of each other, whereas others likely constituted harmonics. In-
deed, conspicuously many secondary peaks occurred at about twice the frequency of
the largest peak (Figure 2.6). Interestingly, another, smaller group of secondary peaks
occured at about half of the frequency of the largest peak (see also Murty et al. 2018).
Preliminary NM-phase-coupling analyses showed that significant harmonics could be
detected for some stimuli, after appropriate correction for inherent filtering-induced
artificial coupling using trial randomization (Scheffer-Teixeira and Tort, 2016). Phase
coupling depended linearly on power, and significant peaks were therefore more likely
for stimuli with stronger gamma-band responses. This again points to a role for SNR,
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but clearly demonstrates that at least some stimuli show harmonics in their gamma-
band responses. Since the secondary peaks by definition had a lower SNR and seemed
to constitute an inhomogeneous group of harmonics and, on occasion, other processes,
all analyses involving peak detection will focus on the largest peak per stimulus.

Receptive field estimation

For all animals except the ECoG monkey T, receptive fields were mapped with moving
bar stimuli (spanning the entire monitor). Moving bars (width 1/1/0.1 dva, speed
8/8/17 dva/s, monkey K/H/A) were presented in 8 orientations for monkeys H, K and
8 - 16 orientations for monkey A, each for 10 - 20 repetitions. MU responses were
projected onto the stimulus screen, after shift-correction by the response latency that
maximized the back-projected response. MU responses were then fitted by a Gaussian
function. This Gaussian was used to extract the 10th percentile and the 90th percentile,
and this was done separately for each movement direction. Across the 8/16 directions,
this yielded 16/32 data points, which were fit with an ellipse. The center of the ellipse
was taken as the RF center.

For the ECoG monkey, a red circular stimulus (maximal brightness, RGB [255,0,0],
size: 1 dva radius) was presented on a gray background (RGB [128,128,128]) on a grid
of positions (with 1 dva steps, i.e. approximately 50% overlap) in the lower right vi-
sual field as well as the fovea and the first 1.5 dva above the horizontal meridian (after
an initial broader mapping that determined the coverage of the array). Since the ECoG
yielded no clear MUA or high-frequency responses, receptive fields were assessed us-
ing average relative gamma power from 30-90 Hz (centered approximately around the
peak in the spectrum, time window 0.3-4.5 s post-stimulus, power computed with the
same parameters as the LFP power described above). To obtain receptive fields, for
each channel and each location covered by the grid, relative power was computed by
averaging all trials where the stimulus overlapped with the grid location. The receptive
field maps of each channel were then normalized by the maximum value, smoothed
with a Gaussian (0.25 dva size, SD 0.1 dva), and z-scored. The grid location with the
maximal response was taken as the RF center.

For all monkeys, the backprojected data was thresholded with a z-score of 1, and ac-
tivity above the 85th percentile was used as the RF estimate when computing stimulus
attributes in the RF of a recording site.

Measuring shape of stimulus repetition effects on MUA responses

We observed that MUA responses showed a rapid decrease for the first few repeti-
tions, followed by a lesser decrease for further repetitions. To quantify this effect,
linear slopes were fit to the first 4 (“early”) and the later repetitions (“late”) for each
stimulus and animal. The cutoff of 4 was chosen somewhat arbitrarily, in an attempt to
do some justice to the stronger initial slope, and still allowing for a permutation test of
the fitted slopes. Slopes were fit either to the session average responses per stimulus,
or to each session individually and then averaged (both results reported in text). Sev-
eral ways of normalizing the average responses are explored in the Results section.
For significance testing, slopes were then averaged across stimuli, and the average
difference between early and late slopes was computed. Both the average slopes and
the difference in the strength of early vs late slope were then averaged across animals
and tested against a permutation test. For each stimulus, the early or late repetitions
were individually permuted randomly nPerm = 1000 times to generate a random dis-
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tribution. For a two-sided test, the minimal p value obtainable is therefore 0.002. The
reasoning for individually permuting early vs late repetitions was that a permutation
of the full 15 repetitions would have frequently resulted in the initial presentation to
be in the “late” part, yielding strong artificial negative slopes. In case of time-resolved
analyses, the same procedure was applied to all time bins and a multiple compari-
son correction was applied with an alpha and false discovery rate of respectively 0.05
(Korn et al., 2004).

Measuring dependence of stimulus repetition effects on stimulus response
strength

The degree to which a given recording site changes its response (e.g. MUA response)
to a stimulus may depend on the overall response strength to the stimulus. We there-
fore analyzed the dependence of the change with repetition on response strength, for
early and late repetitions separately. Several potential pitfalls have to be considered
in this analysis. 1) The mean response strength and change with repetition can show
trivial correlations due to circularity. For example, all other things being equal, a
site which shows increasing response strength with repetition will also show a higher
mean response. 2) In cases where the response strength is weak, changes in response
strength are potentially limited by a floor effect. In any case, overall SNR is lower and
estimates of relative changes in response will be noisier. To address the first problem,
we linearly fit the responses for each session, recording site and stimulus for the repe-
titions in question (early or late), in a cross-validated manner. The fit y = a+b∗ iRep,
with iRep indicating repetition number, yielded an estimate of the intercept at repe-
tition “zero”, as an estimate of response strength without any repetition-related in-
crease. The fit also yielded a slope. When slope and intercept estimates are based on
the same data, another bias occurs in finite data due to regression to the mean. We
therefore performed two linear fits, each based on a different half of the repetitions.
One half included every second repetition starting with the first, the other half every
second repetition starting with the second, resulting in two independent estimates of
slopes and intercepts. Simulation confirmed that this removed the bias. We then tested
whether the intercept was predictive of the slope through Spearman’s rank correlation.
For each stimulus and recording site combination, we obtained the median slopes and
intercepts across sessions. Across the stimulus-site combinations, we then correlated
slopes with independently estimated intercepts. We performed this procedure for the
two independent combinations of slopes and intercepts and averaged the two resulting
correlation values.

To address the second problem, a potential trivial correlation due to a floor effect
in stimulus-site combinations that were weakly responsive, we assessed the consis-
tency of the correlation values across a median split of the data by response strength.
For each animal, the stimulus-site estimates of the intercept as our estimate for re-
sponse strength were partitioned into two parts with equally many data points, and
the correlation was computed for each resulting half of the data. To test for statis-
tical significance, correlations were then averaged for each half across animals, and
the resulting correlation value tested against a permutation distribution (randomizing
intercepts 1000 times for each data half per animal, then averaging across animals)
using multiple comparison correction across halves (Korn et al., 2004).
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Measuring stimulus repetition effects on gamma-band responses

The shape of the repetition effects of gamma-band responses was measured similarly
to the analyses of MUA responses described above, and based on the gamma-peak
aligned responses per stimulus. Since gamma-band responses could show decreases
and increases with repetition, the distribution of early versus late slopes by the types
“early and late slope increases”, “early and late decreases”, “early decrease, late in-
crease” and “ early increase, late decrease” was investigated and tested against chance
using a chi square statistic. The observed distribution was also compared to MUA rep-
etition slope distributions using multiple-comparison corrected pairwise permutation
tests. Correlations between early and late slopes for gamma-band and MUA signals,
and combinations thereof, were tested using permutation tests.

Measuring stimulus-specific repetition effects through normalized correlation

We reasoned that any stimulus-specific trajectory of a given feature with repetition
(e.g. increase, rapid decrease followed by steady response, etc.) would be reflected
in correlations between the trajectories across sessions: the trajectory of stimulus x1
in session n1 should correlate more strongly with the trajectory of x1 in the other ses-
sions than with the trajectory of x2 to xN in the other sessions. The trajectory can be
computed for arbitrary features, such as LFP power in a specific frequency band, or
MUA responses in a given time bin. By repeating the process for different frequencies
or time bins, correlation spectra or time-resolved correlations are obtained. To com-
pute correlations, we first normalized the trajectory for each session, site and stimulus
using a z-score across the repetitions. This results in a trajectory that has a specific
shape, but is both demeaned and scaled by the standard deviation of the distribution
of repetitions of a stimulus in a session. The z-scored data was then concatenated
for each session with a fixed stimulus order (i.e. irrespective of the stimulus order in
the session), yielding a “fingerprint” vector of trajectories for each session (see Fig-
ure 2.13A for illustration). The normalization should remove effects that are caused
by both greater means and greater variance (that typically accompanies greater mean
responses) between different stimuli, in the feature of interest, for example in gamma-
band activity. Explorative analyses showed that results based on demeaned responses
were qualitatively similar to results based on z-scored responses. For a session to be
included in this analysis, it was required that at least 50% of the “fingerprint” vector
contained data (this excluded 0 - 2 session blocks per animal, which were incomplete
second blocks of the day, range thereafter 82 - 91% of the session fingerprint con-
tained data). Furthermore, for spectral analyses, it was required that at least 5 sites
showed a reliable gamma-band peak for a stimulus to be included (this excluded 0
stimuli for gamma power, 4, 0, or 13 stimuli for PPC per animal). The data was aver-
aged across sites after normalization. We then used a split-half procedure, where two
random halves of the sessions were averaged repeatedly (s = 100 times) and the two
average “fingerprint” vectors were correlated. These s split-half Pearson correlations
were then averaged to yield a final estimate of the correlation value per animal. Sub-
sequently, values were averaged across animals. To see whether this correlation value
was stimulus specific, we used a permutation test. Specifically, for nPerm = 1000
iterations for each of the s split-halves, we computed pairwise correlations between
the intact vector of one session half and the other session half with the trajectories re-
ordered in a randomized stimulus order. Using the same procedure as for the observed
data, the s split-halves were then averaged. Subsequently, the nPerm values were aver-
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aged across animals. The resulting distribution of nPerm correlation values was then
used for a two-sided test at alpha = 0.05. For spectra or time-resolved correlations,
we used a false discovery rate based multiple comparison correction (FDR = 0.05,
alpha = 0.05, Korn et al. 2004). Note that averaging values can lead to larger cor-
relation values compared to pairwise correlations of single sessions. The correlation
value reported here is between two average halves of all sessions.

Multiple regression analyses

Multiple linear regression models of the form y = b0 + b1 X1 + b2 X2 ... + bN XN
were fit to single-trial gamma-band or MUA responses (y) using N predictors X1 to
XN. Fits were performed using the Matlab function fitlm (or fitlme when including
random effects terms). Final analyses were based on models with fixed effects for
individual animals or sessions. Qualitatively similar results were obtained with ran-
dom effects models. The final model is based on pooled data from all animals, models
for individual animals also yielded qualitatively similar results for the effects of stim-
ulus repetition. Full models that can include non-significant results are reported in
text. Dropping these predictors did not change any effects qualitatively. Pairwise
correlations between predictors were performed, and in case of predictors with high
correlations, only one of the predictors was included in the model. Stimulus identity
and recording session number were treated as categorical predictors per animal.
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2.4 Results

2.4.1 Task and behavior

Central fixation 
baseline 1.3-1.4s

Stimulus 1.5-3s Local contrast          
decrement, response

Reward

A
Single trial structure

B Session n

Session n+1

trial 1 trial 2 trial 3

trial 183 trial 184 trial 185

Figure 2.2 — (A) Single trial task structure illustrated with a yellow pepper stimulus. After self-initiating
fixation, 1.3-1.4 s of gray background stimulation followed. Then, a single stimulus was flashed on.
After 1.5-3 s (see also Table 2.1), a local contrast decrement occured at a random position on the stim-
ulus. Monkeys responded to the change either with eye movement (monkeys T, H, K) or lever release
(monkey A) and were rewarded for correct responses during a gray background screen. (B) Between-
trial and session task structure. Within a session, stimuli could repeat immediately or with up to 4 inter-
vening stimuli. A given stimulus (e.g. the yellow pepper in this example) could occur in different parts
of the session on different days, and with different intervening stimuli.

We repeatedly presented colored natural images to monkeys performing a change
detection task (Figure 2.2A). On each trial, one stimulus overlapping both the fixation
spot and the receptive fields was presented (for 1.5-3 s, unpredictable change location
and timing, see Methods, Table 2.2 for details, Figure 2.1 for receptive field locations).
Repetitions occurred between trials. Stimuli could repeat immediately or with up to
four intervening other stimuli (the so-called lag, Figure 2.2B, see Methods). This order
was pseudo-random, effectively making it unpredictable whether the next trial would
constitute a stimulus alternation or repetition. 25 different stimuli were presented
20 times each in this interleaved manner. To dissociate stimulus-specific repetition
effects from 1) more general effects occurring over the course of a session, and 2) from
effects arising from the precise sequence of stimulation, especially the neighboring
stimuli, we ensured that 1) the position of a particular stimulus in the overall sequence
varied between days and 2) the neighboring stimuli and lags between repetitions for a
given stimulus varied randomly between days (Figure 2.2B, see Methods). The stimuli
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were images of isolated objects, chosen to be perceptually distinct from one another
in the eyes of the authors (see Methods and Figure 2.3). Stimuli could have more or
less inner structure, but were always images of a single object. They roughly fell into
5 categories (leaves, flowers, sweets, fruit, vegetables) and 5 chromatic groups (dark,
green, yellow, orange, and red).

A  monkey H, K, T   B  monkey A

Figure 2.3 — (A) Stimuli used for monkeys H, K and T. Stimuli were selected from a large library
(Hemera Photo-Objects, Hemera Technologies). (B) Stimuli for monkey A. Cyan outlines on each
stimulus illustrate the overlap with all other images used for a given animal, and thereby the area
where a change could occur.

The stimuli were novel to the animals on the first recording day. Although the
animals were not required to memorize images and stimulus repetition was not task-
relevant, there were clear indications of stimulus memory in the animals’ spontaneous
behavior. Specifically, the animals were more likely to respond with rapid fixation
breaks during the first few presentations of a stimulus. This is indicated by a sig-
nificant exponential fit to the correct trial rate (Figure 2.4A, exponential fit indicat-
ing a rapid increase in hit rate with repetition, a = 0.70, b = -0.32 , c = -0.48,
r-squared = 0.95; all confidence intervals excluding zero, see Methods). By con-
trast, the correct trial rate was flat across repetitions when rapid fixation breaks were
excluded (fit parameters not different from zero other than offset). This behavior re-
duced over the course of the recording days (Figure 2.4B), indicating some memory
also across days. Note that due to the design of the experiment, session-novel stim-
uli were introduced over the entire course of the session, so this behavior cannot be
explained by increased fixation breaks at the beginning of the session.

Nevertheless, a “repetition” versus a “total trial number” explanation for this be-
havior was also explicitly tested using a multiple regression approach. We built re-
gression models that included monkey identity, stimulus identity and the eccentricity
of the stimulus change, and as a final step included either repetition number, or total
trial number in the session (see Methods). A model including repetition number out-
performed models including total trial number (theoretical likelihood ratio test, final
model r-squared = 0.173). By contrast, when fixation breaks were excluded, repetition
number no longer had a significant effect on behavior. Taken together, these analyses
indicate that the animals would transiently forego reward for attempted visual explo-
ration. This behavior also indicates that monkeys experienced the stimuli as perceptu-
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ally distinct. Based on similar regression models, reaction times showed no significant
relationship to stimulus repetition, nor to total trial number (all P > 0.3). This could be
expected given that the change location and timing was not related to stimulus repeti-
tion. Multiple regression modeling indicated “stimulus change eccentricity”, “change
timing” and “stimulus identity” as significant predictors of reaction times, though ex-
plained variance was low (5.4% in total, all P < 0.002, all r-squared < 0.03). Monkeys
were slower when changes were more eccentric, and faster later in the trial on average
(eccentricity, beta = 0.0032, change timing, beta = -0.01, reaction time and change
time in seconds). Reaction times were demeaned for each individual session per an-
imal. Note that the dependence on eccentricity is not an artifact of a longer time for
a longer saccade, since reaction time was defined as the time point when the animal
crossed the fixation boundary for all animals responding with eye movements.
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Figure 2.4 — (A) Development of behavior across stimulus repetitions. Percentage of trials that were
hits, misses, cases where the change location was first acquired but not fixated for long enough, or
fixation breaks that were slow (> 1 s) or fast (< 1 s). Standard error is across animals. Regression
modeling indicated that there was a significant influence of repetition number on correct responses, due
to increased rapid fixation breaks for initial repetitions. There was no significant influence of repetition
number on reaction times. (B) as in (A), but development across days for the first presentation only.
Standard error is across animals.

2.4.2 General properties of V1 responses to chromatic natural images

Before turning to repetition-related changes in responses, some understanding of the
range and stimulus specificity of the typical (average) responses in V1 is required. The
use of naturalistic stimuli is still relatively rare, in particular for studies of stimulus
repetition (Schwartz et al., 2017), and the prevalence of gamma-band responses for
such stimuli has been questioned (Hermes et al. 2014, 2019, but see Brunet et al.
2015; Brunet and Fries 2019). We therefore first describe the average V1 responses in
our data, before turning to the effects of stimulus repetition. Note that due to the
involvement of different labs and recording methods, LFP responses are available
from four animals, MUA responses from three animals, and pupil responses from
three animals.

In Figure 2.5, we illustrate the cross-site average responses to four stimuli for mon-
key H. MUA responses are characterized by transients of varying strength, followed
by responses that can either show sustained elevated responses above the pre-stimulus
responses (top row), or sustained reduction below baseline responses (middle rows).
In this post-transient period (0.5-1.5 s), LFP spectra exhibited clear gamma-band re-
sponses, which however varied strongly both in overall amplitude as well as peak fre-
quency and spectral shape. The post-transient period was chosen to minimize effects
of stimulus onset transients and thereby non-stationarities on metrics of rhythmicity
or synchronization. Spike-field locking spectra (pairwise phase consistency, PPC, see
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Figure 2.5 — Cross-session, cross-site average responses to four example stimuli in monkey H.
Shaded area indicates standard error of the mean across sessions. Left column: MUA response
(stimulation/baseline). An initial transient could be followed by sustained responses above baseline,
or reductions below baseline. Central column: Average change in LFP power (stimulation/baseline).
Low-frequency power spectra (≤ 18 Hz) were estimated using a Hann taper based on non-overlapping
500 ms windows. High-frequency power spectra (≥ 20 Hz) were estimated using a multitaper method
based on non-overlapping 250 ms windows (see Methods). Right column: Average MUA-LFP lock-
ing, estimated using pairwise phase consistency (PPC). Frequency cutoffs and spectral estimation
parameters as for LFP power. Gray line indicates average baseline activity for the stimulus. Note the
similarity in the shape and strength of LFP power spectra and PPC spectra.

Methods, Vinck et al. 2010b, 2012) behaved similarly to the LFP spectra. Notably, we
found clear PPC inspite of low MUA responses.

The averaging of spectra presupposes that the different sites are similar in overall
spectral shape, including e.g. similar peak frequencies. This is indeed the case, as
quantified in Figure 2.6A. On average across stimuli and animals, 91% (SD 2.9%
across animals) of sites had their largest gamma peak within ±16 Hz of the most com-
mon largest peak across sites (see Methods). Conclusions were similar when grouping
only sites with the peaks within ±8 Hz of the largest peak (87%± 4.6% overlap). This
justifies the use of a common gamma band of interest per stimulus. 49% ± 10% of
sites that showed the largest peak also exhibited a second peak within ±16 Hz of
most common second largest peak (Figures 2.5, 2.6A). This apparently included both
harmonics and non-harmonic secondary peaks (see Methods for longer discussion).
Peak-aligned analyses will focus on the largest gamma peak per stimulus. The vari-
ability in average peak frequency and peak gamma-band power between stimuli is
shown for each animal in Figure 2.6B-C.

What are the underlying causes for this variability? A variety of stimulus attributes
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Figure 2.6 — (A) Prevalence of shared LFP gamma-band peaks (within ±16 Hz, see Methods) be-
tween sites across stimuli and animals. Largest peak refers to the largest peak most common across
recording sites. Second peak refers to the most common second largest peak among recording sites
exhibiting the largest peak. Horizontal lines refer to median, 25th and 75th percentile. (B) Peak fre-
quency of the largest peak versus second largest peak. Each symbol indicates average responses for
a stimulus and animal. Dashed lines indicate the ratios 1:2, 1:1 and 2:1. There is a cluster centered
around 2:1, indicative of harmonics (see also Methods). However, other peaks are clearly not har-
monic in nature. (C) Fold change in power at the gamma-band peak and second largest peak for all
stimuli. (D) Dependence of relative gamma-band power on L-M cone contrast for an example animal
(monkey H). Each symbol shows average gamma-band power around the largest peak per stimulus
across sessions and sites. Color of the symbol is an approximation of the stimulus color (yellow stimuli
are shown in a darker hue) to give an intuition of the color dependence. Correlation between positive
L-M cone contrast and gamma power was r = 0.88 for this animal. (E) Average MUA fold change
responses (stimulation/baseline) during the initial transient and responses during the post-transient
period for each recording site and stimulus. Dashed lines indicate equality line and regions below
baseline activity (prestimulus gray screen).

are known to influence the strength of gamma-band responses for artificial stimuli
(e.g., Jia et al. 2011, 2013a; Roberts et al. 2013; Gieselmann and Thiele 2008). Some
of these attributes, such as contrast, are more difficult to define for natural images
(Peli, 1990). Interestingly, in natural images, contrast is strongly related to image
structure, which has been recently related to gamma-band responses for grayscale
natural images (Brunet and Fries, 2019). Given the small set of stimuli used here,
and that no attempt was made to dissociate different stimulus attributes such as bright-
ness, contrast and color, the question of underlying causes is difficult to pursue in this
dataset. However, one effect was so prominent that it should be mentioned inspite
of these caveats. As illustrated for an example animal in Figure 2.6D, positive L-M
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contrast (relative redness) strongly correlated with average gamma-band responses for
individual stimuli. Correlations were r = 0.85 (Pearson’s r) on average across mon-
keys (range 0.72-0.93, all P < 0.001 using a t-test). As can be seen from Figure 2.6D,
too few data points were present to investigate negative L-M cone contrast on this
level, and the general lack of blue stimuli precluded any meaningful analysis of the
other color axis. Inspired in part by the findings from this dataset, the topic of color
will be investigated using more controlled stimuli in Chapters 4 and 5. Other stimulus
attributes are the topic of an ongoing project using a larger stimulus set that is beyond
the scope of this thesis (Uran, Peter et al., in preparation.) Figure 2.6E contrasts the
transient and post-transient MUA responses for each site and stimulus, illustrating dif-
ferences in the overall response strength between animals. Furthermore, it can be seen
that responses were frequently reduced below baseline in the post-transient period. In
summary, average responses to the stimulus set show a diverse range of responses
both in terms of MUA responses and in gamma-band responses. Gamma-band peaks
were detectable for all stimuli, albeit with strongly varying magnitude.

2.4.3 Stimulus repetition effects on MUA responses show a
characteristic shape

We observed a repetition-related effect on MUA responses across recording sites and
stimuli of a particular shape. Responses decreased most strongly for the first few
repetitions, followed by more weakly decreasing responses for later repetitions. All
analyses are restricted to the first 15 repetitions, since the amount of correct trials was
low thereafter (see Methods). Figure 2.7A shows the site- and trial-averaged responses
relative to baseline for a few stimuli of an example session. Note that the first presen-
tation of a stimulus occurred at a random time point within a session, such that the
comparatively strong decrease for the first few repetitions likely indicates that these
effects are stimulus specific. Further below, stimulus specificity of the repetition effect
will be tested explicitly (Figure 2.13). The initial rapid decrease followed by a later,
slower decrease with repetition was consistently observed across stimuli and animals
for cross-site average responses. Responses averaged across trial time were relatively
low. This poses some challenges for normalizing the data appropriately and can result
in floor effects for repetition effects for individual stimulus-site combinations. Several
approaches to quantify the repetition effect follow here.

In the first approach, the change in response with repetition was computed for each
stimulus, site and session (i.e. individual trials, average of entire stimulation period)
by dividing each response (relative to baseline) by the mean across repetitions. Cross-
site and cross-session averaged responses of individual stimuli for each animal are
shown in Figure 2.7B. An analysis by site will follow in Figure 2.9. A value of 1.02
denotes an increase of 2 percentage points over the mean across repetitions on the
average across sites for the first presentation. Note however, that response increases
computed over the entire trial and site-averaged were low (ca. 10 % above baseline
on the grand average, see e.g. Figure 2.7A and Figure 2.6D), such that this value is
dominated by the baseline of 1. As a consequence, a change in percentage points of
this scale can be relatively large when considering the change relative to the stimulus-
induced response. In Figure 2.7C, responses were log-transformed to remove the
strong weight by the baseline (log (stim./base.)). Additionally, responses were aver-
aged across sites before normalization across repetitions, weighing the analysis to-
ward more responsive sites. Furthermore, since a response ratio generates outliers
when values in numerator and denominator are similar (e.g. both close to baseline),
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Figure 2.7 — Stimulus repetition effects on MUA responses show a characteristic shape. (A) Cross-
site and trial time average responses relative to baseline to some example stimuli in one session of
monkey K. Different color-symbol combinations indicate different stimuli. For some stimuli, a strong
decrease from the first to the second presentation can be observed. (B) For each stimulus and ani-
mal, the change in response with repetition was computed by dividing each response by the average
across repetitions. This was done for each site and session individually across the entire stimulation
duration. Note that all sites were weighted equally, independently of their responsiveness to the stimu-
lus, and that responses could be weak or even suppressed during larger parts of the trial (Figure 2.6).
Cross-site, cross-session averages are shown for each stimulus (light gray lines), as well as the cross-
stimulus, cross-animal mean and standard error across animals. Gray dashed line indicates the cutoff
from the “early” to the “late” repetitions for slope estimations. Linear regression slopes were fit to the
early (repetition 1:4) or late (repetition 5:15) responses (see Methods). Results are reported in the
main text. (C) Same as (B), but for the initial response transient (0.05-0.15 s post-stimulus onset),
log-transformed and averaged across sites and sessions before normalizing by the average response
across repetitions. This de-emphasizes weakly responding sites compared to (B). (D) Sketch of the
slope fitting procedure. (E) Same as (B) but for data z-scored across repetitions on the level of each
individual site and session. (F) Analysis of the effect of lag. Same analysis as in (E) but with repetitions
constituting a particular delay (1-5) from the previous stimulus presentation left out. Neither the early
nor the late slope for the immediate repetition (lag 1) is significantly different from the slope where no
lag has been removed (all P ≥ 0.15).

only the stronger, transient response period was considered. Computed in this way,
responses decreased by about 25% from the initial to later presentations on average.
The effect size will be further discussed in the Discussion, section 2.5.2.

Both computations of effect size described so far consider only changes in mean,
without considering the variance in response across repetitions. In Figure 2.7E, a final
normalization, the z-score, is therefore considered. Z-scores are a commonly used
measure of effect size and more robust than response ratios when responses are low.
Here, for each stimulus, site and session individually, responses are normalized by
subtracting the average response and then dividing by the standard deviation across
repetitions. This analysis shows the degree of reliability of the repetition effect with
respect to the within-session and within-stimulus single trial variance - even when
averaging across the entire stimulation period and weighing all sites equally.

Fitting linear slopes to the early versus late repetitions (early till repetition 4, Fig-
ure 2.7D, see Methods) showed that responses decreased both for early and for later

48



CHAPTER 2. STIMULUS SPECIFICITY OF REPETITION EFFECTS

slope early rep. < 0 slope late rep. < 0 slope early < late rep.

0 0.5 1 1.5

M
U

A 
(s

tim
./b

as
e.

) Repetition #
1
2
3

10
15

0 0.5 1 1.5
-0.2

0

0.2

0.4

M
U

A 
z-

sc
or

ed
 a

cr
os

s 
re

p.

monkey H

Time from stim. onset (s)

all animals

Time from stim. onset (s)

A B

1

1.2

1.4

1.6
1.8

2

Figure 2.8 — (A) Cross-site, cross-session, cross-stimulus time-resolved MUA response for monkey
H. Shaded region indicates standard error across sessions. (B) Cross-animal, cross-site z-scored
time-resolved responses. Colored bars indicate multiple-comparison corrected tests for a negative
early, late, or late vs. early slope across repetitions as defined in Figure 2.7D. Shaded area indicates
standard error of the mean across animals. Horizontal bars indicate multiple-comparison corrected
significance (Korn et al., 2004).

repetitions, but more strongly for early repetitions (all P < 0.002, permutation test, see
Methods). Similar results were obtained using other normalizations. The differences
between early and late slopes held consistently across stimuli (early slope z-scored
data avg. -0.22, 98.7% of stimuli showed negative slopes across animals, late slope
-0.01, 74.6% of stimuli) based on the slopes of the average repetition effect across
sessions. Conclusions were also similar when based on the average of the slopes fit to
individual sessions per stimulus. This indicates that the effect was consistent across
stimuli and recording days. Note that a linear fit to early and late repetition trajecto-
ries was chosen because this is an easily implemented method that performs well on
small amounts of potentially noisy data, such as single-trial data for individual stimuli
and sessions. Furthermore, the current division can also be applied to gamma-band
responses, which can show more complex repetition effects. It does not reflect an
interpretation in the form of a genuine discontinuity between early and late repeti-
tions. A log-log transformation did not fully linearize responses, indicating a very
rapid decrease for initial repetitions (transformed data not shown).

Did the repetition effect derive only from immediate repetitions of the stimulus? Re-
moving repetitions with a particular delay from the analysis did not appear to change
the shape of the effect (Figure 2.7F). This held true even for removing immediate rep-
etitions. Early and late slopes for the data excluding immediate repetitions were not
significantly different from the slopes for all data (all P ≥ 0.15). When considering
averaged time-resolved responses, the repetition effect appeared rapidly after stim-
ulus onset and lasted throughout the stimulation period (Figure 2.8A-B). The effect
apparently decreased in strength around 750 ms. Around this time in the trial, MUA
responses were frequently close to or even below baseline, potentially decreasing the
sensitivity to detect repetition effects. Note that the short onset latency of the repeti-
tion effect excludes differences in eye movements or top-down cognitive modulations
such as attention as the underlying cause for this effect (Lamme and Roelfsema, 2000;
Poort et al., 2012).
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Figure 2.9 — Stimulus repetition effects and MUA response strength. (A) Initial response strength
(stimulation/baseline, repetitions 1:4, see Figure 2.7) versus later response strength (repetitions 5:15)
for individual site-stimulus combinations during the initial transient response period (0.05-0.15s post
stimulus onset), averaged across recording sessions. Thick lines indicate robust regression linear
fits for the individual animals, indicated by their respective colors. (B) Dependence of change in re-
sponse (slope fit, see Methods and description in text) on initial response (intercept of linear fit) based
on log(stim./base) responses, for an example animal, otherwise as (A). Vertical line indicates cutoff
between the two data halves (median split), dashed black line indicates least squares fit to the data
halves. (C) Average across-monkey correlation of change in response to initial response based on
slope fits, with fits based on all, only the early or only the late repetitions. All correlations are tested for
significance using permutation tests.

So far, the analyses focused on the average effects across sites. Next, we consid-
ered how the individual MUA site’s response strength related to the repetition effect.
Different models of stimulus repetition make different predictions about the depen-
dence of repetition effects on the response strength. In particular, the output (and also
the input) fatigue model would predict stronger reductions in responses with stronger
drive. A rate-based sharpening model predicts stronger reductions with weaker re-
sponses. Figure 2.9A shows the average responses of each site to each stimulus for
the early repetitions versus later repetitions, for the time period of the initial tran-
sient response (0.05-0.15 s after stimulus onset). Any repetition effects resulting from
fatigue should be visible already during the initial response. For all animals, there
was a clear positive relationship between initial and later repetitions (Spearman’s rho
0.96-0.99 per animal), indicating that overall stimulus preference was maintained.
Responses were also consistently stronger for the early presentations (Figure 2.9A).
Furthermore, robust linear regression resulted in slopes below 1, which would indicate
stronger decreases in response strength for stronger initial responses. However, note
that this result may be driven by a floor effect, because stimulus-site combinations that
show responses close to baseline to begin with cannot decrease their responses much.
To test for a relationship between the response strength and its change with repeti-
tion, we used linear fits to all, or only the early or late repetitions (Figure 2.9B). The
slopes of the linear fits were used as an indicator of change in response strength, and
the intercept was used as an estimate of drive. Slopes and intercepts were estimated
independently and in a cross-validated manner. Compared to a correlation between re-
sponse magnitude and change in response, this analysis avoids circularity (see Meth-
ods for details). Correlations between slope and intercept estimates were computed
for the lower and upper halves of the intercepts (i.e. response strength) independently
(median split). This was done separately for each animal, and then averaged across
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animals. The reasoning was that any correlation that persists in the upper half of re-
sponse strength is unlikely to result from a floor effect. Figure 2.9B illustrates the
correlation of upper versus lower halves of intercepts with the slopes, estimated based
on all repetitions, for the animal with the largest range in response strength. The cor-
relation was still negative for high response strengths. Across animals, correlations
were consistently significantly negative. This held true when estimating slopes and
intercepts based on all, or only the late or early repetitions (Figure 2.9C). Notably,
the correlation between two random Gaussian variables is substantially higher than
the correlation between a variable and the higher or lower median split of the other.
Therefore, the correlation values here might underestimate the true underlying values.
Though this property of the procedure is undesirable, we consider a too conservative
estimate of the effect preferable to a “false alarm” due to the influence of a floor effect.
The negative correlation between response strength and the repetition effect is in line
with fatigue, but less so with sparsening proposals (see also Discussion).

2.4.4 Stimulus repetition effects on gamma responses differ from MUA
in shape

G
am

m
a 

po
w

er
  (

st
im

./b
as

e.
)

Trial number in session

A B

650 700 750 800

2

3
4
5
6
7

Repetition number

 G
am

m
a 

po
w

er
 z

-s
co

re
d 

ac
ro

ss
 re

p.

2 4 6 8 10 12 14

0.8

1

1.2

1.4

5 15

1

2

3

5 15

1

2

3

5 15

1

2

3

50 100 150 50 100 150 50 100 150

D

G
am

m
a 

 (s
tim

./b
as

e.
)

Repetition #
1
2
3

10
15

Frequency (Hz)

G
am

m
a 

po
w

er
di

vi
de

 b
y 

re
p.

 a
vg

.

2 4 6 8 10 12 14

-1

0

1

Repetition number

C
monkey K

monkey H

Figure 2.10 — Stimulus repetition effects on gamma-band responses. (A) Cross-site average gamma-
band responses to some example stimuli in one session of monkey K. Gamma power is averaged
around the largest peak defined per stimulus. Different color-symbol combinations indicate different
stimuli. For some stimuli, a strong decrease from the initial to the later presentations can be observed.
Some stimuli show an increase, across all or later repetitions. Note the log-scaling of the gamma
power axis de-emphasizes changes for more strongly gamma-inducing stimuli. (B) For each stimu-
lus and animal, the change in response with repetition for each site and session as in Figure 2.7B.
Cross-site, cross-session changes with repetition are shown for each stimulus (light gray lines), as
well as the cross-stimulus, cross-animal mean and standard error across animals. Gray dashed line
indicates the cutoff from the “early” to the “late” repetitions for slope estimations. (C) Same as (B)
but for data z-scored across repetitions on the level of each individual site and session. (D) Spec-
trally resolved cross-site, cross-session average repetition effect for example stimuli from monkey H
(non-normalized). Shaded error represents the standard error over sessions. Frequency cutoffs and
tapering as in Figure 2.5. Left panel shows increase, right decrease, middle combined pattern with
repetition. Left panel also shows some broadband, high-frequency changes that might be related to
changes in spiking activity or high-gamma.
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We observed that repetition effects on gamma-band responses were more varied than
effects on MUA. In particular, some stimuli showed decreasing responses with the first
repetitions on average, whereas others did not. The direction of the repetition effect
could change between the first few and later repetitions, which were dominated by
response increases. Figure 2.10A illustrates a single-session example where different
response patterns such as continuous increases, initial decreases and mixed responses
can be observed. Figure 2.10B-C illustrates the average repetition effect for all stimuli
and animals overlaid, based on, respectively, a division by the average response across
repetitions per stimulus and site, or based on a z-score, similar to Figure 2.7. In
Figure 2.10D, some spectrally resolved examples of the average repetition effect (non-
normalized) across recording days for monkey H are shown.

We then quantified the repetition behavior of the gamma responses for early versus
late repetitions. In Figure 2.11A, changes for early versus late repetitions are illus-
trated in a coordinate system. Each symbol corresponds to the average slope3 of early
versus late repetitions for a stimulus (across sessions and sites), for the z-scored data
in Figure 2.10C. For example, a dot in the first quadrant corresponds to a stimulus that
showed gamma increases for both early and late repetitions. A random distribution of
slopes would cluster around zero and be equally distributed across all four quadrants.
In contrast, the distribution of the data is biased towards the upper quadrants (late
slopes tend to be positive) and somewhat less to the third quadrant (both early and
late repetitions are related to decreases on average). A chi square test based on the
pooled data across animals rejected the null hypothesis that the slope combinations
are equally likely (chi squared value 39, df = 3, P = 1.7e-8). Furthermore, stimuli
that showed a larger slope for initial presentations also tended to show a larger slope
for later presentations (correlation between slopes r = 0.56, P < 0.002 based on a
permutation test across animals).

For comparison, effects in MUA responses were evaluated in a similar manner, first
for the entire trial period and then for the time period that the gamma-band power
estimation is based on (0.5-1.5 s post-stimulus onset, Figure 2.11B-C). Results are in
line with findings in the previous section: In contrast to the gamma-band slopes with
repetition, MUA slopes are clustered in quadrants 2-3, more strongly than expected
by chance (in both cases chi square ≥ 62, df = 3, P<= 2e-13). This indicates that
especially early, and to a lesser degree late slopes, are typically negative. Regardless
of the two time windows tested, there were no significant correlations between early
and late slope for MUA responses (all Pearson’s r < 0.17, all P > 0.08). Note that the
pattern of MUA response slopes becomes even more concentrated when analysing the
initial transient, where responses are strongest (84% ± 4% SEM of data in the third
quadrant).

Comparing the pattern of gamma-band repetition effects with MUA repetition ef-
fects (computed on the same time window) showed that there were more gamma-band
repetition effects in the first quadrant (early and late repetition effects are both in-
creases) and more MUA repetition effects in the third quadrant (both early and late rep-
etition effects are decreases, first quadrant difference -0.28, third quadrant 0.29, both
P < 0.008 (Bonferroni corrected, two-sided permutation test), all other comparisons
P > 0.32). The pattern of repetition effects is therefore both different from chance, and
different between gamma-band and MUA responses. In particular, gamma-band re-
sponses are more likely to increase with repetition. Interestingly, stimuli that exhibited
positive repetition effects already during early repetitions showed more positive rep-

3rather than the slope of the average response
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etition effects also during later repetitions. Taken together, this indicates that gamma
repetition effects may reflect two underlying and opposing processes. One process,
which decreases gamma-band responses, may settle faster, such that later repetitions
more strongly reflect the process that leads to gamma-band increases. This notion will
be discussed further (Discussion sections 2.5.3 and 2.5.4).

Is there a relationship between the early (or late) slopes in MUA responses across
stimuli with the early (or late) slopes in gamma-band power based on these average
stimulus slopes? We tested these correlations for the gamma-band slopes with both
MUA responses across the entire trial time and the same time window as used for
gamma-band power estimation. We did not find significant correlations in either case,
nor with slope estimates based on the initial MUA transient (all r < 0.14, all P > 0.08,
uncorrected for multiple comparisons).
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Figure 2.11 — Comparison of slopes fit to early vs late stimulus repetitions for gamma-band and MUA
responses. (A) Each color-symbol combination represents the average early and late repetition slopes
of a stimulus for z-scored data (see also Figure 2.10C). Different columns show results for gamma-
band power, the MUA response (stim./base.) for the entire trial time as in Figure 2.7, and for the time
used for the computation of gamma-band responses (0.5-1.5 s post stimulus onset). Colored lines
indicate least squares linear fit of early to late slopes. Dashed line indicates the unity line. Note that
the x- and y-axes have a different range to aid visibility of the late slope effects. (B) Proportion of stimuli
occupying each quadrant. See inset for quadrant identity. Error bars denote standard deviation across
animals. Statistical tests for both (A) and (B) are reported in the main text.

In Figures 2.5 and 2.6, it was shown that gamma-band responses to the natural im-
ages were stimulus specific and varied strongly in magnitude. Is there a relationship
between the strength of the repetition effect in gamma-band responses to the over-
all response strength? Similarly to the analysis for MUA responses in Figure 2.9,
Figure 2.12A shows the relationship between initial response strength (early repe-
titions) and later response strength. Overall correlations between early and late re-
sponse strength were high, indicating that similar to MUA responses, overall stimulus
preference was maintained (Spearman’s rho 0.96-0.98). Since there was a mixture
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2.4. RESULTS

of stimulus decreases or increases with repetition, responses clustered on both sides
of the equality line. To test for a relationship between the response strength and its
change, we used linear fits to all, or only the early or late repetitions, as in Figure 2.9
(see Methods).
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Figure 2.12 — Stimulus repetition effects and gamma-band response strength. (A) Initial response
strength (stimulation/baseline, repetitions 1:4, see Figure 2.7) versus later response strength (repe-
titions 5:15) for individual site-stimulus combinations, averaged across recording sessions. (B) De-
pendence of change in response (slope fit, see Methods and description in text) on initial response
(intercept of linear fit) based on log(stim./base.) responses, for an example animal, otherwise as (A).
Vertical line indicates cutoff between the two data halves (median split), dashed black line indicates
least squares fit to the data halves. (C) Average across-monkey correlation of change in response to
initial response based on slope fits, with fits based on all, only the early or only the late repetitions. All
correlations are tested for significance using permutation tests.

Based on fits to all repetitions, there was a small but significant positive correlation
between initial gamma-band response strength (intercept) and its change with repeti-
tion (slope) both for the more weakly driven and the more strongly driven data half
(Figure 2.12B-C). No such relationship was visible when considering only early rep-
etitions, or for the more strongly driven stimulus-site combinations when considering
only the late repetitions. As discussed in the corresponding section on the depen-
dence of MUA repetition effects on response strength, the reported correlation values
are likely underestimating the effect size due to the median split. Furthermore, note
that data were log-transformed to reduce the influence of the strongest gamma-band
responses on the correlation value (similarly to the MUA responses). Correlations
were substantially higher without this log-transform. Overall, the pattern of responses
indicates some positive correlation between stimulus-induced gamma-band response
strength and a later increase. Fits for early repetitions are necessarily based on less
data, which may have decreased sensitivity to detect an effect. An alternative expla-
nation would be that gamma-band responses during early repetitions reflect a mixture
of several processes. As shown in Figure 2.11, stimulus repetition led to mixed ef-
fects for early repetitions, and more consistently increases for later repetitions. If
the mixed effects for early repetitions reflect the superposition of two different pro-
cesses, one of which decreases gamma-band responses and settles faster, and another
which increases gamma-band responses and is still ongoing during later repetitions,
any dependence of the repetition effect on response strength could be masked for early
repetitions (see also Discussion section 2.5.3).
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2.4.5 Stimulus-specific changes in average gamma and MUA responses
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Figure 2.13 — Cross-session correlation of repetition effects indicate stimulus specificity. (A) Illus-
tration of procedure (see Methods for full details). For each stimulus in each session, activity was
z-scored across repetition for each recording site. Z-scored values were then averaged across sites,
and across random halves of the recording sessions, yielding average repetition trajectories. Two split-
half average repetition trajectories were correlated repeatedly across random partitions of sessions,
and the correlation values compared to a permutation distribution based on randomly shuffling the
stimulus identities. This was done for each frequency or time bin, and tests were multiple comparison
corrected. (B) Spectra of LFP power correlations. (C) MUA-LFP PPC correlations. (D) Time-resolved
MUA correlations. (E-F) Gamma-peak aligned versions of (B-C) respectively. (B-F): Thick green line
indicates correlation for the entire repetition trajectory, based on responses relative to baseline (B,D,E)
or on the stimulation period (C,F). Thin, bright green line indicates correlation values based on the
first four stimulus repetitions. Thin, dark green line indicates correlation values based on the late rep-
etitions (5-15). (B,C,E,F) Corresponding gray lines of different brightness indicate correlations during
the baseline period. Horizontal bars at the bottom of each panel indicate significance, using multiple
comparison correction (Korn et al., 2004).

Cross-session correlations indicate stimulus specificity. A stimulus-specific repeti-
tion effect should be reflected in correlations of the trajectory or shape of the repetition
effect over days (Figure 2.13A). For example, a stimulus showing an increase on day
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one should correlate more strongly with its own trajectory on the other days, than
with trajectories of other stimuli (see Methods and Figure legend). We created z-
scored repetition trajectories for each stimulus and each day, and ordered stimuli in
a fixed order irrespective of appearance during the session, creating one vector per
session. Session vectors were randomly split into two halves, and the averages of the
two halves were correlated. Using a permutation test, we observed stimulus speci-
ficity in the form of between-session correlations of vectors of repetition trajectories
that exceeded chance levels. For LFP power, these were strongest in the gamma-band
and during visual stimulation (Figure 2.13B). Frequencies below 20 Hz showed no
significant correlations with stimulus repetition. For correlations across all or just the
late repetitions, a peak in the gamma-band was visible, but correlations remained sig-
nificant also above 90 Hz. For correlations for early repetitions, the correlation was
broader and more pronounced (differences between early only, late only or all repe-
titions not tested). This indicates that the significant correlation above 90 Hz could
be partially the result of spiking (or high-gamma)4 activity, which was stronger dur-
ing initial trials. Furthermore, with the exception of late repetitions only, there were
smaller yet significant correlations in the baseline activity. Interestingly, these were
restricted to the gamma band.

Analyses that were aligned on the individual gamma-band peak per stimulus showed
similar results (Figure 2.13E). For correlations including all or just early repetitions,
the correlations seemed to be somewhat stronger for frequencies just below the peak.
Possible reasons for this include asymmetries in the gamma-band spectra around the
peak, or shifts in peak frequency with repetition.

Furthermore, the gamma-band peak-aligned correlations were of similar magnitude
compared to the unaligned responses. A possible reason for this is that different stim-
uli show different correlation strengths over sessions. An unaligned spectrum will
be biased towards the gamma-band peaks of stimuli showing the strongest correla-
tions. Indeed, computing single-stimulus correlations on the average gamma-band
peak aligned activity for all repetitions showed that correlations were positive on av-
erage (mean r = 0.29, SEM across animals 0.015), but could be close to zero - or even
negative for some stimuli (12% of stimuli). In contrast, baseline activity was cen-
tered close to zero (mean r = 0.017, SEM 0.011, 45% of stimuli negative). Note that
the approach of constructing vectors from all stimuli avoids the multiple comparison
problem inherent in testing the many stimuli individually and allows to very specif-
ically assess the stimulus-specificity of the correlation at the same time. Given that
some stimuli contributed more to the overall positive correlation between session, we
tested how many stimuli could be removed before correlations were no longer signifi-
cant, for the average gamma-band peak aligned activity for all repetitions. To this end,
we removed cumulatively stimuli from the overall repetition vectors, starting with the
stimuli adding the most to the average correlation. Using multiple comparison correc-
tion, we found that up to the ten most positive stimuli (out of 25) could be dropped
on average across animals before effects were no longer significant. In contrast, drop-
ping even the single most positively correlated stimulus in the baseline reduced the
correlation below the significance threshold. Is the vector-based correlation analysis
driven by the stimuli with the strongest responses? There was a significant correla-
tion between the stimuli with the most positive correlations and average gamma-band

4The “sculpting” of correlations from broadband more to the gamma-band for later repetitions was
visible also in monkey T, whose ECoG implant did not show stimulus-evoked responses in the MUA. Also,
note that with a cutoff of 4 trials, correlations were still significant for higher frequencies, with a cutoff of 5
trials, correlations were restricted to the gamma-band.
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responses to the stimulus on the average across monkeys (r = 0.13, P < 0.05). Note,
however, that this effect was driven by a single animal with a strong relationship be-
tween gamma-band response strength and correlation (monkey A r = 0.7, all others
r = -0.1 to 0.14). We conclude that the cross-session correlations in repetition trajecto-
ries during stimulation are not the result of a few isolated stimuli showing correlations.

Next, we considered correlations for MUA-LFP phase locking (specifically, PPC,
see Methods). MUA-LFP PPC correlations were lower overall compared to LFP
power correlations, likely because single-trial estimates of PPC are noisy (Figure
2.13C and F). In the higher frequencies, there was a significant peak in the gamma-
band when including all repetitions, and during the stimulation period only. In the
lower frequencies, activity at 4 Hz during stimulation and at 10-12 Hz during the
baseline showed significant positive and negative correlations. Note that negative cor-
relations would mean that trajectories are anticorrelated between sessions more than
expected by chance. The 4 Hz peaks are of similar absolute magnitude as these neg-
ative peaks. Whereas the peak in the gamma-band coincides with the peak in the
LFP power correlations, there is no such correspondence for these lower-frequency
findings. Given the small size of the PPC correlation values, these effects will not
be considered further. The peak in the gamma-band was further supported by the
gamma-peak aligned analyses, showing significant effects for all and also just the
early repetitions. Interestingly, the correlations were shifted somewhat away from the
PPC gamma peaks, similarly as in the LFP gamma-band aligned analyses. Note that
the MUA-LFP PPC may suffer from several biases, which limit the interpretation on
the PPC-based correlations. Firstly, PPC based on thresholded rates does not suffer
from a spike-rate bias (Vinck et al., 2010b). However, the MUA signal employed here
likely suffers from this effect, such that PPC values may be stronger for stronger rates,
similarly to other measures of spike-field locking (Zeitler et al., 2006). Additionally,
since the reliability of phase estimates will depend on the amplitude of the underly-
ing activity, PPC estimates could also be affected by changes in power. Since both
LFP power and MUA responses change, the effects on PPC and subsequently PPC
repetition trajectories are difficult to estimate.

Finally, MUA activity showed significant correlations in the repetition trajectories.
The time-courses of the effects are in agreement with Figure 2.8, but were only signif-
icant during the initial transient response after multiple-comparison correction. This
indicates that inspite of a similar shape of the repetition effect between stimuli, cor-
relations were significantly stronger between the repetition trajectories of the same
stimulus than between stimuli. Overall correlation strength dropped when includ-
ing all rather than just the initial 4 repetitions. Given the much smaller slopes of
the repetition effect for later repetitions (Figure 2.7), effects for later repetitions were
likely noisier, reducing overall correlation values. Single-stimulus correlations across
the entire time window were r = 0.44 (SEM across animals 0.04) during stimulation
and r = 0.06 (SEM 0.01) during the baseline period. There was no significant cor-
relation between the correlation values and average MUA responses to the stimulus
(r = 0.13, P = 0.14). Correlations of baseline-subtracted pupil responses averaged
over the stimulus duration, computed based on all repetitions, showed no stimulus
specificity (P = 0.49).

Multiple regression analysis of repetition effects. The correlation analyses above
demonstrate that both MUA and gamma-band responses showed stimulus specificity
in their repetition effects. The analysis was optimized to remove variance unrelated
to stimulus repetition (by z-scoring across repetitions in a repetition sequence per
stimulus, session and site, and by then averaging across session halves). Averaging
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effects across session halves can reduce the effects of various sources of noise, includ-
ing measurement noise and, given the design, the effects of varying the neighboring
stimuli to a given stimulus, and effects of varying lag between repetitions. A dif-
ferent approach is to develop multiple regression models to fit single-trial responses
directly. An advantage of this approach is that the effects of other variables of interest,
such as reaction times, stimuli or pupil responses, can be incorporated. Any effect
of stimulus repetition that remains will be independently predictive of the neuronal
responses, at least to the degree that the contributions of other predictors are appropri-
ately captured by a linear model. We therefore fit multiple linear regression models
to single-trial MUA responses and single-trial gamma-band peak aligned responses,
averaged across sites.

For the MUA responses, analyses focused on the initial transient response period
(0.05-0.15 s post stimulus onset), though qualitatively similar results were obtained
for analyses averaging across the entire stimulus time period, or across the time pe-
riod for which gamma-band responses were computed (0.5-1.5 s post stimulus onset).
Results for a fixed effect (monkey and session) model of transient, log-transformed
relative MUA responses based on all 15 repetitions is shown in Table 2.3, including
the proportion of variance explained and p-values based on an ANOVA (see Methods).

Sum Sq. df Mean Sq. F Var. expl. p

Stim. ID 10.8829 24 0.4535 2372.51 0.6156 0.0000

Lag 0.0783 1 0.0783 409.92 0.0044 0.0000

RT 0.0016 1 0.0016 8.39 0.0001 0.0038

Session:monkey 0.9777 46 0.0213 111.20 0.0553 0.0000

log(iRep) 0.2600 1 0.2600 1360.53 0.0147 0.0000

log(TrialInSess) 0.0201 1 0.0201 104.99 0.0011 0.0000

Stim. ID:Lag 0.0171 24 0.0007 3.72 0.0010 0.0000

Stim. ID:RT 0.0047 24 0.0002 1.03 0.0003 0.4161

Stim. ID:Monkey 3.2127 48 0.0669 350.19 0.1817 0.0000

Stim. ID:log(iRep) 0.0279 24 0.0012 6.09 0.0016 0.0000

Stim. ID:log(TrialInSess) 0.0384 24 0.0016 8.38 0.0022 0.0000

Error 2.1569 11285 0.0002 0.1220

Table 2.3 — Results of regression model for MUA responses for the transient time window,
log10(stim./base.) average across sites. Stim. ID = stimulus identity, RT = reaction time, iRep =
repetition number, TrialInSess = total trial number in the session, Session:monkey = session number
per animal.

Single-trial log-transformed MUA responses ranged between -0.005 and 0.25 (i.e.
0.99 - 1.78 fold increase with respect to baseline on this cross-site average, log-
transformed before averaging). Stimulus identity (and its interaction with monkey,
i.e. stimulus identity fit per animal) explained about 80% of variance. There was
a significant effect of the log-transformed stimulus repetition number, capturing ca.
1.5% of variance, which showed significant modulation by stimulus identity (signif-
icant interaction term). The beta coefficients across stimuli were negative and are
illustrated in Figure 2.14. There was a smaller and consistently positive effect of lag,
indicating that more intervening stimuli led to somewhat stronger MUA responses
(Figure 2.14). In addition, there was a significant effect of total trial number of the
session, indicating a tendency for responses to decrease over the course of the session

58



CHAPTER 2. STIMULUS SPECIFICITY OF REPETITION EFFECTS
be

ta
 c

oe
ffi

ci
en

t
m

ai
n+

in
te

ra
ct

io
n 

ef
fe

ct

stimulus identity

-0.02

0

0.02

log(rep. #)

0 25

Lag

-0.02

0

0.02

stimulus identity

0 25

Figure 2.14 — Beta coefficients of the multiple linear regression model for MUA for the predic-
tors log(repetition number) and lag, resolved by stimulus identity. Stimulus repetition had negative,
and increasing lag smaller, positive effects on MUA responses. For comparison, beta values of
stimulus identity ranged between -0.08 and 0.08. This model did not include a higher order mon-
key:stimulus:repetition interaction, but note that models based on individual animals were qualitatively
similar.

(mean beta = -0.003, range -0.015 to 0.006 across stimuli). MUA responses tended to
be higher when subsequent reaction times were faster (RT in seconds, beta = -0.006,
no significant interaction with stimulus identity). Additionally, there was a significant
effect of session, which as a categorical predictor captured individual offsets between
recording sessions. The present model based on log-transformed repetition numbers
and all repetitions was chosen to capture the repetition effect in MUA responses in a
single model, weighing the effect approximately by the observed shape. The qualita-
tive pattern of results, and the significant effect of repetition number, remained when
analyses were performed for individual animals, for the non-log-transformed repeti-
tion number, when including the pupil response for animals where it was available,
and when models were fit only to the initial 4 or only on the later repetitions (log-
transformed or not). Models fit on only the later repetitions still showed significant
effects of repetition. These explained less variance by a factor of ca. 10 compared to
models based on early or all repetitions.
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Figure 2.15 — Beta coefficients of the two multiple linear regression models (early or late repetitions
only) for the predictor repetition number, for the gamma-band activity. The stimulus repetition predictor
changed qualitatively between early and late repetition models, from largely negative to more positive,
but smaller effects.
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Sum Sq. df Mean Sq. F Var. expl. p

Stim. ID 78.1083 24 3.2545 620.78 0.5170 0.0000

Lag 0.2156 1 0.2156 41.13 0.0014 0.0000

RT 0.0083 1 0.0083 1.58 0.0001 0.2090

Session:monkey 11.6089 65 0.1786 34.07 0.0768 0.0000

iRep 0.2756 1 0.2756 52.58 0.0018 0.0000

log(TrialInSess) 1.0562 1 1.0562 201.46 0.0070 0.0000

Stim. ID:Lag 0.1803 24 0.0075 1.43 0.0012 0.0789

Stim. ID:RT 0.1255 24 0.0052 1.00 0.0008 0.4649

Stim. ID:Monkey 34.6634 72 0.4814 91.83 0.2294 0.0000

Stim. ID:iRep 0.3187 24 0.0133 2.53 0.0021 0.0001

Stim. ID:log(TrialInSess) 0.7098 24 0.0296 5.64 0.0047 0.0000

Error 23.8225 4544 0.0052 0.1577

Table 2.4 — Results of regression model for peak-aligned gamma-band responses for the first 4 repeti-
tions, log(stim./base.) average across sites. Stim. ID = stimulus identity, RT = reaction time, iRep = rep-
etition number, TrialInSess = total trial number in the session, Session:monkey = session number per
animal.

Sum Sq. df Mean Sq. F Var. expl. p

Stim. ID 212.3025 24 8.8459 1895.90 0.5238 0.0000

Lag 1.4217 1 1.4217 304.71 0.0035 0.0000

RT 0.0047 1 0.0047 1.00 0.0000 0.3167

Session:monkey 35.8398 64 0.5600 120.02 0.0884 0.0000

iRep 0.2251 1 0.2251 48.25 0.0006 0.0000

log(TrialInSess) 1.6012 1 1.6012 343.17 0.0040 0.0000

Stim. ID:Lag 0.3368 24 0.0140 3.01 0.0008 0.0000

Stim. ID:RT 0.1049 24 0.0044 0.94 0.0003 0.5500

Stim. ID:Monkey 98.4373 72 1.3672 293.02 0.2428 0.0000

Stim. ID:iRep 0.2026 24 0.0084 1.81 0.0005 0.0090

Stim. ID:log(TrialInSess) 1.1674 24 0.0486 10.43 0.0029 0.0000

Error 53.7038 11510 0.0047 0.1325

Table 2.5 — Results of regression model for peak-aligned gamma-band responses for the late (5-15)
repetitions, log(stim./base.) average across sites. Stim. ID = stimulus identity, RT = reaction time,
iRep = repetition number, TrialInSess = total trial number in the session, Session:monkey = session
number per animal.

We then performed similar analyses for log-transformed gamma-band responses,
with single-trial responses estimated around the gamma-band peak per stimulus, aver-
aged across sites showing this peak in their spectrum (see Methods). Single-trial log-
transformed gamma-band responses ranged between 0.015-1.36 (i.e. 1.03-22.9 fold
increase with respect to baseline on this cross-site average, log-transformed before av-
eraging). In contrast to the MUA responses, and in line with the previous analyses on
the gamma-band, models fit to the early compared to later repetitions showed a qual-
itative change in the repetition effect, such that two models will be presented here.
Both models were based on non-log-transformed repetition number. Both models
showed small but significant effects of stimulus repetition. In the model for early rep-
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etitions (Table 2.4 and Figure 2.15A), repetition effects were predominantly negative.
In contrast, effects were smaller and predominantly positive for late repetitions. As for
the MUA response model, most variance was explained by stimulus identity (ca. 75%
when taking differences between animals into account) and offsets between individual
sessions. There was no significant effect of reaction times in either model. Increasing
lag tended to have positive effects on gamma-band power overall (early rep. model:
mean beta = 0.005, range -0.004-0.016; late rep. model: mean beta = 0.009, range
0.0015-0.020). For both models, there was a significant effect of the log of the total
trial number in the session, which tended to be positive, and explained more variance
than the stimulus repetition number (both models highly similarly: mean beta = 0.05,
range -0.002-0.11)5. It is possible that this effect is explained by a general shift in
arousal with the session. An interesting alternative is that repetition effects could to
some degree “spill-over” between stimuli, possibly between more similar ones, even
with substantial delay. This notion is supported by significant interactions between
stimulus identity and the trial number in the session, which could indicate that some
stimuli are influenced more by other stimuli than others. Both the qualitative pattern
of results and the significant effect of repetition number, were unchanged when analy-
ses were performed for individual animals, and when including the pupil response for
animals where it was available.

2.5 Discussion

A set of 25 natural images was presented repeatedly in a pseudorandom fashion to
monkeys performing a change detection task. The natural images induced a wide
range of MUA and gamma-band responses in V1. Upon repeated presentation within a
recording session, both MUA and gamma-band responses showed stimulus repetition
effects.

There are several motivations behind measuring repetition effects in LFPs and spike-
field synchronization and comparing them to effects in spiking activity. First, it has
been proposed that synchronization of responses may implement adaptive effects of
stimulus repetition, by increasing the effectiveness of interareal or within-area co-
ordination (Brunet et al., 2014; Gotts et al., 2012; Gotts, 2003). Second, stimulus
repetition will affect networks of neurons, and possibly properties of the network (e.g.
balance between excitation and inhibition or interneuronal correlations, De Baene and
Vogels 2010; Natan et al. 2017; Gutnisky and Dragoi 2008), which may be reflected
in altered gamma-band responses. Third, gamma-band responses can be measured
non-invasively in humans using MEG, and can be more strongly correlated with the
fMRI signal than spiking activity, thereby providing a crucial link between human
and animal studies of plasticity (Niessing et al., 2005; Logothetis and Wandell, 2004;
Ekstrom, 2010; Maier et al., 2008; Thomsen et al., 2004; Viswanathan and Freeman,
2007; Nir et al., 2007; Scheeringa et al., 2016; Bartolo et al., 2011).

5For both MUA and gamma-band responses, a log(TrialInSess) predictor outperformed predictors of
total trial time or linear predictors of trial number in session.
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2.5.1 Stimulus specificity of repetition effects and generalization to
natural images

A central question of the current experiment was whether the previously observed
repetition effects with grating stimuli (Brunet et al., 2014) were stimulus specific. If
a stimulus is presented repeatedly with different neighboring stimuli and in different
parts of a session, is the repetition effect preserved? Furthermore, we asked whether
the observed phenomena would generalize to a broader range of more naturalistic
stimuli that were initially novel to the animals, rather than using stimuli that were
highly overtrained and designed to generate strong responses. We indeed found that
there was stimulus specificity of the repetition effect in the MUA responses, as well as
gamma-band LFP and PPC responses, but not in responses in lower frequency bands
(Figure 2.13). Cross-session correlation values were stronger for initial repetitions,
which induced stronger changes overall, than for later repetitions, probably reflecting
changes in SNR (see below for a discussion of the shape of repetition effects). For
gamma-band power, smaller but significant correlation values were also observed for
the baseline period. This could reflect some stimulus-specific memory trace, since
stimulus repetitions had a constrained lag, such that baseline activity was associated
with a specific stimulus well above chance level. However, sequentially dropping
out stimuli that contributed to this correlation showed that baseline effects may have
been limited to some very few stimuli, in contrast to effects during the stimulus pe-
riod. For both MUA and gamma-band analyses, correlation values were below r = 0.5
(sometimes much lower, depending on the exact signal and range of repetitions in
question). Similarly, regression analyses showed that stimulus-specific repetition ef-
fects explained significant, but small amounts of variance for both MUA responses and
gamma-band power when compared to the size of the effects of stimulus identity. To
better understand these effect sizes, one should consider several aspects of the current
design, namely 1) the choice of stimuli, 2) the within-session and between-session
design and 3) resulting challenges for the analysis, of synchronization in particular.

1. In order to test stimulus specificity and the generalization of the effect to more
naturalistic conditions, we chose a set of 25 different natural images, with pre-
viously unknown response properties in V1, especially with regard to gamma-
band responses. This allowed the present conclusion that repetition effects gen-
eralize to a broader range of stimuli. It also induced strong variance in the
response strength, with stimuli inducing response increases from tens of per-
cent to thousands of percent in the gamma-band and strong differences in MUA
responses (Figure 2.6). Such variance is interesting as such and in this specific
experiment, was a part of the question. However, it goes against the basic de-
sign principle in experiments to minimize variance of any effect that is not the
main effect of interest. For example, Vogels (2016) reviews studies that typi-
cally first identify two stimuli driving a cell equally well, before proceding with
repetition tests. In regression models, reducing the overall variance induced by
different stimuli will increase the overall percentage of variance explainable by
a repetition effect.

2. Both the within-session and across-session design introduced “noise” or vari-
ance to the stimulus repetition effects, by randomly changing both the immedi-
ate neighbors and timing between repetitions (lag). Stimulus repetition effects
are sensitive to such contextual variation (e.g. Solomon and Kohn 2014 and
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Kim et al. 2019), which will reduce the detectability of stimulus specificity in
this design.

3. A further consequence of 2. is that responses could not always be averaged,
and a lot of analyses required single-trial, and thereby noisy, estimates of re-
sponses. For example, MUA-LFP PPC, though unbiased by trial number, ben-
efits strongly from increasing trial numbers in terms of accuracy (Vinck et al.,
2012, 2010b). The effect size for MUA responses will be discussed further in
the next section.

To summarise, both MUA and gamma-band responses showed stimulus-specific
repetition effects for natural images, initially novel to the animals. The effects were
detectable and therefore to some degree robust against variations in neighboring stim-
uli in time and the precise timing of the repetitions, both within a session (lag) and
between sessions (position in the session).

2.5.2 Effect size, timing and shape of MUA repetition effects

Effect size of MUA repetition effects. MUA responses decreased most rapidly for
initial presentations, and more weakly for later presentations. On average across the
entire stimulus duration and all recording sites regardless of their stimulus responsive-
ness, repetition decreased responses only by a few percentage points (Figure 2.5B).
However, overall MUA responses to the stimuli were not increasing much over the
gray background baseline when computed this way. There are likely multiple reasons
for this low responsiveness, four of which will be discussed here. 1) Responses were
low, or even dropped below baseline, in later parts of the trial. If responses were only
dropping toward baseline, the underlying reason for this may be the relatively long
trial durations and subsequent adaptation. The drop of activity below baseline, which
could occur relatively rapidly (see Figure 2.5), indicates that inhibitory mechanisms
may also be at play. This is not unlikely because 2), due to the size of the stimuli, in-
dividual V1 sites likely exhibited surround suppression. Surround suppression occurs
both in V1 and in its inputs, such that large stimuli may induce both weaker initial and
weaker later MUA responses. The topic of surround suppression for large, colored
stimuli will be investigated in Chapter 4 and then discussed at length. 3) Stimuli were
not designed to drive V1 or particular V1 sites strongly. In contrast, a long history of
visual neuroscience has relied on identifying stimuli that drive individual cells well
(Solomon and Kohn 2014, Wissig and Kohn 2012, see General Discussion). 4) The
recording arrays yielded MUA but not single-unit responses. Since different neurons
may show different repetition effects, it is conceivable that these average out to some
degree. In addition, given that arrays are in long-term use, the overall SNR in chronic
recordings tends to be lower than in acute recordings.

Notably, analyses focused on the initial transient response period and biased toward
more strongly responsive sites showed larger effect sizes (ca. 25 percentage points on
average, Figure 2.5B). For comparison, in V4, a single, rapid stimulus repetition re-
sulted in a 30 percent reduction in response rate for optimally driven cells (Wang et al.,
2011). We therefore conclude that V1 may show repetition effects at least on a simi-
lar order of magnitude compared to mid-level and higher areas. Given differences in
design to previous studies, a more accurate comparison will require multi-area record-
ings under matched conditions (e.g. stimulus eccentricity, duration, size with respect
to the receptive field).
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Timing of MUA repetition effects. Time-resolved analyses showed that the repeti-
tion effects had a rapid onset (Figure 2.8). This excludes factors such as top-down
modulation by attention or eye movements as the main contributing factors to the rep-
etition effect (Lamme and Roelfsema, 2000; Li et al., 2004; Lee and Nguyen, 2001;
Supèr et al., 2003; Poort et al., 2012). In terms of absolute or percentage changes, the
effects were strongest sometime after the initial transient (> 100 ms). This timescale
is reminiscent of the timing of the largest effects in IT for immediate repetitions, and
the timing of response reductions through long-term exposure in V2 and IT (Vogels,
2016; Huang et al., 2018; Freedman et al., 2006). Such timing has been interpreted
as an indication that the repetition effects depend on changes in recurrent processing
within or across brain areas (Vogels, 2016; Huang et al., 2018). This interpretation
is also supported by the present finding of changes in gamma-band responses, which
were computed over a late part of the trial, and are thought to depend on recurrency
(see General Discussion 6.4). We also observed a change in the very early response
strength, that was smaller in percent change, as can also be observed in higher-order
areas (Vogels, 2016; De Baene and Vogels, 2010). Interestingly, when assessed with a
z-score, which scales the size of the effect with its reliability, early response changes
had an effect size similar to the later changes. For a neuron in a downstream area
receiving many inputs, the effect may therefore be of similar detectability early on.
Since relative response changes are in frequent use compared to z-scores, a compari-
son of this perspective across areas is currently not possible. Such an immediate effect
of stimulus repetition on MUA responses is in line with both an output fatigue and an
input fatigue account of stimulus repetition.

Duration of MUA repetition effects.We also observed the repetition effect occured
irrespectively of lag (Figure 2.5F, regression models indicated a small, modulatory ef-
fect), indicating that it was robust against several intervening stimuli and had a mem-
ory of several seconds6. This exceeds previously reported durations of history effects
in rodent and cat V1 (Kim et al., 2019; Nikolić et al., 2009; Patterson et al., 2013). It
has been suggested that the duration of repetition effects is related to their intensity
(duration-scaling, Bao and Engel 2012). Since the current stimulus durations were
on the order of several seconds, which is longer than in most other studies, it is pos-
sible that the history effect observed here resulted from such aspects of the design.
Patterson et al. (2013) showed that for large stimuli, V1 peak response changes under
anesthesia showed little dependence on stimulus durations of 0.4, 4 and 40 s. In con-
trast, time to recovery from adaptation was clearly dependent on stimulus duration.
It is therefore possible that the history effects in the present data reflect the stimulus
duration. However, Patterson et al. (2013) showed that effects of 4 s stimulation were
recovered after 4 s of delay (without interfering stimuli). It is therefore also possible
that the memory effects seen here rely on plasticity mechanisms that are only at work
during the awake state. Recently, a similar stimulus duration to the current case (3 s)
was tested and directly compared to shorter stimulus durations in IT of awake animals
(Kuravi and Vogels, 2017). It was found that the number of repetitions, rather than
stimulus duration, was determining repetition effects. However, only immediate rep-
etition effects were explored, such that it is conceivable that repetition effects did not
affect MUA responses more strongly, but did leave a longer memory trace nonethe-
less, in line with Patterson et al. (2013). The question of memory in V1 for stimulus
repetition will be explored further in the next chapter.

6The term memory here refers to a persistent effect in the system, i.e. V1, and not a memory in the
psychological sense.
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Shape of MUA repetition effects. The decrease in MUA responses with repetition
was stronger for initial repetitions compared to later repetitions. This is reminiscent
of the shape of repetition effects for repetitions within a trial in IT that are stimulus-
specific (Sawamura et al., 2006; Kaliukhovich and Vogels, 2014), and on a very dif-
ferent time scale, repetition effects in IT for cases with very many intervening trials
(Li et al., 1993). In monkey V1, rapid decreases for the initial repetition within a trial
have been shown, although the stimulus-specificity of the effect is unclear in this case
(Westerberg et al., 2019). Given the design in this particular study, the first stimulus
in a sequence will have experienced a larger inter-stimulus-interval to the preceding
stimulation, and thereby be disadapted more strongly (or as a different perspective,
more strongly adapted to the gray background). In contrast, in the current design,
repetitions occured between trials, such that any general form of disadaptation should
affect all trials equally. We will turn to a discussion of potential underlying reasons
for the observed shape after also considering the repetition effects in the gamma-band.

2.5.3 Shape of gamma repetition effects suggests two underlying
processes

Using the same fitting procedures as for MUA responses, we found that the aver-
age repetition effect for gamma-band responses was more diverse across stimuli than
the average MUA effect. Whereas MUA responses were dominated by response de-
creases, gamma responses could show both increases or decreases during the initial
repetitions. During later repetitions, most stimuli showed increases. On average
across sites and sessions, these changes were on the order of a few (ca. 10) percent-
age points increase in response for the late repetitions, or about 0.5 z-scores. Effects
could be more pronounced but were also more varied for initial repetitions. Interest-
ingly, there was a positive correlation of r = 0.56 between the slope for initial and later
repetitions on average.

The shape and distribution of the repetition effects in gamma-band power sug-
gests that there may be two repetition-related processes that affect gamma-band power
in opposing ways, with different time constants, and different stimulus-dependence.
From the MUA responses, at least one repetition-related process with stronger effects
for initial presentations can be inferred. It is possible that such a process also de-
creases gamma-band responses, for example by reducing overall drive in the network
(see General Discussion 6.2). At the same time, the dominance of increases with late
repetitions, in line with previous work (Brunet et al., 2014), suggests that stimulus
repetition can increase gamma-band responses. This process remains strong for more
repetitions, showing a log-linear relationship on the scale of hundreds of binned repe-
titions, with the first bin containing about 4 times the repetitions as tested here in total
(Brunet et al., 2014). (This feature is used as part of the experimental design in the
next chapter.) We can therefore speculate that there are two processes, one fast and one
slow in terms of repetition numbers to asymptote. Depending on the relative strength
of the first and second process, the repetition effects could add up to both response
decreases and increases (or also no apparent change) in the first repetitions, whereas
later repetitions may be dominated more strongly by the second process. This scenario
is supported by the correlation between initial and later slopes of repetition effects in
the gamma-band response, which could result from the second process dominating
already initial responses when it is strong (see Figure 2.16 for illustration).

In contrast to the present study, Brunet et al. (2014) did not report an initial de-
crease with stimulus repetition, which in that study coincided with the beginning of
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Figure 2.16 — Illustration of opposing effects of two underlying, stimulus-dependent repetition pro-
cesses for two example stimuli. Depending on the relative strength of the two processes, the net
repetition effect can be positive or negative for the initial repetitions. Gamma-band power values are
arbitrary.

the recording session. Based on the current results, this could have several reasons.
1) The first few presentations in a recording session were “special” and masked the
initial decrease, potentially if the animal made mistakes on the first few trials, or
experienced similar stimulation before the start of the recordings. 2) The stimulus
employed, a moving, colored grating, was optimized to induce strong gamma-band
oscillations. Therefore, the second, slower process that increases gamma-band re-
sponses could dominate already during the first repetitions, or balance to a net effect
close to no change. Notably, Figure 1J of Brunet et al. (2014) shows little response
change in the first few repetitions.

2.5.4 Repetition effects, fast and slow

The shape of the repetition effect in the MUA is decreasing monotonically, such that
a single underlying mechanism may be the most parsimonious explanation. There
is also some psychological appeal to the notion that a single experimental manipula-
tion results in a single effect. However, adaptation or stimulus repetition paradigms
can induce plasticity through a variety of mechanisms, and on different time scales,
which may be involved simultaneously (Solomon and Kohn, 2014; Patterson et al.,
2013). Based on theoretical considerations of the “predictive coding” framework, it
has been suggested that stimulus repetition effects involve (at least) two processes, one
of them acting very rapidly (Auksztulewicz and Friston, 2016; Friston, 2005, 2008).
The fast process was suggested to reflect a decrease in precision of prediction errors
after the presentation of a novel stimulus (confidence about prediction is lost with a
novel stimulus, and recovered with first repetition). The slower process is interpreted
as a cumulative reduction in error signaling. In line with this notion, Garrido et al.
(2009) showed that there is a faster and a slower process reflected in EEG responses
to repeated tones.

The initial, rapid response decrease could also be seen as a response increase for
novel stimuli. The distinction between a novelty increase and familiarity decrease re-
quires specific designs and can show stimulus- and brain area (and possibly species)
dependence (Amado and Kovács, 2016; Vinken et al., 2017; Kaliukhovich and Vogels,
2014). The present experiment was not designed to distinguish these possibilities. An
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interpretation in terms of a novelty response7 allows another functional interpreta-
tion of an initial fast process. The relatively indiscriminate response increase across
recording sites observed here is in line with the idea that when a change occurs, a
robust response for detection may be more important than accurate but possibly slow
processing. In a natural environment, a sensory stimulus may then be sampled repeat-
edly for refined processing (e.g. with eye movements for vision, Zhaoping 2019, or
breathing for olfaction, both processes occur rhythmically several times per second).
From a mechanistic perspective, it is known that some forms of synaptic depression
can act upon a single stimulation (Abbott, 1997), whereas other processes may ac-
cumulate over a number of repetitions (Fioravante and Regehr, 2011; Malenka and
Bear, 2004). An initially strong response (and strong decrease with a first repeti-
tion) is therefore in line with change detection proposals, possibly based on input
fatigue mechanisms. A second process could be engaged to refine responses to the
repeated stimulation, for example through synchronization-based sharpening (Brunet
et al., 2014) and/or improved discriminability of fine differences (Hansen and Dragoi,
2011; Wang et al., 2011).

From the perspective of gamma-band responses, the notion of (at least) two compet-
ing processes with different time scales (and with different strength depending on the
stimulus, Figure 2.16) may reconcile some apparent contradictions in the literature.
Some previous studies using single repetitions have reported decreases in the gamma-
band with repetition (Friese et al., 2012; Kaliukhovich and Vogels, 2012). Since the
achromatic stimuli used may not have induced strong gamma-band responses, the
decreasing, fast process observed in the current paradigm may have dominated the
results in Friese et al. (2012). In the case of IT, the activity resided in what could
be considered high-gamma (Kaliukhovich and Vogels, 2012). High-gamma activity
has recently been shown to be dependent on NMDA receptors, which are implicated
in learning and plasticity, and changes in dendritic processing (Bartoli et al., 2019).
Therefore, such a finding is in line with the notion of a rapid novelty-related response
and subsequent synaptic changes. The more broad-band stimulus-specific correlations
for initial repetitions (Figure 2.13) further support the notion that initial repetitions
may induce high-gamma activity (see also next chapter). Hansen and Dragoi (2011)
and Wang et al. (2011) reported gamma-band increases for a single repetition of a
grating stimulus, when compared to a previous presentation of a random dot stimulus,
and restricted to gratings that generated strong gamma-band responses to begin with.
Given the design, i.e. using the same grating stimuli often, stimuli were only novel
at the very beginning of a session. Moreover, the restriction in the stimulus set may
have masked an initial decrease in gamma-band activity, with a similar reasoning as
for Brunet et al. (2014). Such a design could therefore unmask the second process
even with a single, within-trial repetition paradigm.

Interestingly, it is possible that both the rapid and the slow process are prevalent
(in some related form) across species and systems. In the insect and rodent olfactory
system, high-frequency oscillatory responses increase over the course of a few to tens
of repetitions (van Wingerden et al., 2012, 2010; Laurent and Davidowitz, 1994; Lau-
rent et al., 1999; Stopfer and Laurent, 1999). In insects, the firing rates upon stimulus
repetition decrease most strongly for the first repetition, whereas the oscillatory re-
sponses show a more steady increases for about 10 odor repetitions. It is possible that
differences between insects and mammals, including the lower frequency of the odor-
induced oscillation, prevent an overlap of the two processes in the LFP responses. In

7This also applies to temporally local novelty, even if stimuli have been seen on previous days.
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rodents, careful inspection of van Wingerden et al. (2010) shows that the initial 2-3
repetitions are characterized by a small decrease or flat response in the gamma-band
on average (Figure 3A-B). Interestingly, a strong decrease in response for the first rep-
etition of an odor stimulus has also been shown in zebrafish telencephalon, where the
imaging technique used prevented the study of oscillations (Jacobson et al., 2018).

2.5.5 Stimulus repetition versus prolonged exposure

The preceding discussion assumed that stimulus repetition underlies the observed ef-
fects, rather than an increase in total exposure duration to the stimulus. In other words,
do we need to repeat a stimulus to see effects, or would prolonged exposure suffice? It
is likely that prolonged exposure results in a third form of plasticity, a form of adap-
tation that may begin at the level of the retina with genuine output fatigue (Kohn,
2007; Solomon and Kohn, 2014). Jia et al. (2011) showed that prolonged exposure
to a grating stimulus decreased gamma-band responses specifically to this stimulus,
and could increase responses to other stimuli. In line with this, in a following chapter,
we will show that prolonged exposure reduces responses to colored stimuli (Chapter
5), which was also observed for some of the natural stimuli (data not shown). For
grating stimuli, a within-trial increase in gamma-band responses has been observed
that matched the hazard rate of trial duration (Lima et al., 2011). However, this was
not observed here, possibly because the hazard rate was kept more linear, possibly
because of fundamentally different ways these grating stimuli adapt compared to col-
ored stimuli (Spyropoulos et al., 2019). Kuravi and Vogels (2017) showed that in IT,
repetition effects strongly depended on an actual repetition, but showed no detectable
difference between a preceding stimulus of 300 ms vs 3 s duration in the MUA re-
sponse. A stimulus repetition (which entails a break in stimulation) may allow for
disadaptation of upstream signals, including receptors. Repetitions also bear closer
resemblance to sampling behavior during vision. It therefore seems that the stimulus
repetition effect is indeed related to repeated presentation per se. Compared to pro-
longed stimulation, repetition also entails a relatively unpredictable, typically flashed
stimulus onset that induces a transient response, which could be important for repe-
tition effects. Although eye movements also cause strong shifts in visual inputs, it is
unclear to what degree such a flashed onset sufficiently mimicks processes in natural
vision.

2.5.6 Dependence of repetition effects on initial response strength

We observed a dependence of both MUA and gamma-band effects on the initial re-
sponse strength, in opposing directions. In order to avoid circularity, response strength
and change in response with repetition were estimated using the intercept and slope,
respectively, of a linear, cross-validated fit to the repetition trajectory. In order to avoid
conclusions based on a floor effect due to poorly responsive sites, we then tested cor-
relations between response strength and change with repetition for two data halves
independently, median split by response strength. This is a conservative procedure
that can underestimate the true underlying correlation present, in cases where there is
no floor effect.

Stronger MUA responses for a given stimulus and site tended to decrease more
strongly with repetition. The dependence of MUA repetition effects on response
strength held true both for early and for late repetitions. This finding, similar to the
timing of the MUA repetition effects, is in line with both output fatigue and input fa-
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tigue proposals. It is not in line with a rate-based sharpening account - unless some
very highly responsive and selective cells carry the effect, which may not be visible in
MUA responses. Similar results have been reported previously for single units in IT
for paradigms relying on short-term rather than long-term plasticity (McMahon and
Olson, 2007; De Baene and Vogels, 2010; Miller et al., 1993). De Baene and Vogels
(2010) explicitly tested for a sharpening account in IT for both spiking and high-
gamma activity, and found that there was scaling rather than sharpening of responses,
independently of the task the animals were performing. Wissig and Kohn (2012)
reported that for a prolonged stimulation paradigm in anesthetized V1, response re-
ductions were stronger for more strongly driven cells. However, for large stimuli,
response reductions were weaker overall than for small stimuli, such that the depen-
dency was relatively small for large stimuli (similar to the correlation values observed
in this experiment). Given that in the present study, 1) responses were low overall, 2)
the role of lag between repetitions was small, and 3) the effect was stimulus-specific,
the overall evidence tends to support input fatigue (e.g. synaptic plasticity) rather than
output fatigue. This would imply that stimulus repetition involves a network effect,
which is also supported by the change in gamma-band responses with repetition.

Stronger gamma-band responses for a given stimulus and site tended to increase
more strongly with repetition. This relationship was the most pronounced when tak-
ing all repetitions into account, and apparently absent for early repetitions. As dis-
cussed above, this may be related to two opposing processes affecting early repeti-
tions, whereas effects for later repetitions are dominated by the effect that tends to
increase gamma-band responses. The correlation between response strength and in-
crease with repetition is in line with Brunet et al. (2014). They reported that for the
same stimulus, the most responsive sites showed the strongest increases with repeti-
tion. We extend this finding, demonstrating that the strongest increases tend to result
from stimuli that drive a site most strongly. Furthermore, the effect generalizes to a
larger class of visual stimuli. Importantly, Brunet et al. (2014) also report that for pu-
tative pyramidal cells specifically, the increase in spike-field locking with repetition
was strongest for the most strongly driven cells. This finding is difficult to replicate
in the current dataset, since only MUA was available and there were relatively few
trials to estimate changes in spike-field locking. Assuming that the effect reported
by Brunet et al. (2014) generalizes, it would imply a stronger synchronization-based
sharpening of responses to stimuli that generate strong gamma-band response to begin
with. In future experiments, it would be interesting to contrast changes in perception
with repetition for stimuli that do or do not generate strong gamma-band responses.

2.5.7 Advantages and limitations of the stimulus set

We presented colorful images of isolated objects. The objects were similar to those
naturally encountered and relevant in the animals’ daily environment (vegetables, fruit
and brightly colored toys). We reasoned that this choice of stimuli might provide an
engaging task for the animals and ensure that the visual input was not at odds with the
natural image statistics their brains deal with normally (Fiser et al., 2010; Berkes et al.,
2011). Importantly and in stark contrast to Brunet et al. (2014), next to being colored,
naturalistic photographs, the stimuli were also novel for the animals on the first day
of presentation. This way, it was possible to investigate the nature of repetition effects
for images that are not overtrained. Overtrained stimuli may have considerably re-
structured visual cortex (Schoups et al., 2001; Woloszyn and Sheinberg, 2012; Cooke
et al., 2015), such that a generalization of the effect to novel stimuli is not trivial.
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The images were chosen such that they were likely to be perceived as a single unified
object by the animals according to Gestalt laws. For example, a blossom of a rose was
included, but not a potted flower. The latter may be perceived as either one object, or
separated into the pot, the flower and possibly even the different leaves and blossom.
This selection of images should therefore prevent or reduce possible rapid alterations
in the monkeys attentional allocation that can occur naturally when several objects are
present in the visual scene (e.g. Re et al. 2019; Landau and Fries 2012), which may
have unknown influences on potential stimulus repetition effects.

Stimuli were large and typically overlapped with the fixation spot as well as larger
parts of the lower right visual field. This enabled spatial uncertainty for the change
detection task, and covered the RFs as well as their surround. Surround stimulation
typically decreases MUA responses (see previous sections) and likely contributed to
the relatively strong gamma-band responses observed for these stimuli (Gieselmann
and Thiele 2008 and Peter et al. 2019, which will be discussed at length in Chapter
4). The highly colorful nature of the stimuli, intended to make stimuli easily discrim-
inable, very likely also contributed to strong gamma-band responses and relatively
weak rate responses (see Chapter 5, Rols et al. 2001; Shirhatti and Ray 2018; Pe-
ter et al. 2019). As a consequence, the dependence of repetition effects on response
strength observed here may result from the particular class of stimuli studied. In
particular, large, colorful, and high-contrast stimuli appear ideal to generate strong
gamma-band responses, and as a consequence, strong increases in the gamma-band
with repetition (see also General Discussion 6.2). Interestingly, this appears to con-
trast with effects for MUA responses. Large stimuli induce very little adaptation in V1
or LGN spiking, in particular when their contrast is high (Camp et al. 2009; Wissig
and Kohn 2012, and citations therein). Both size- and contrast-dependence of adapta-
tion speak to an intricate link with surround suppression. It has even been suggested
that surround effects serve to protect responses from adaptation (Camp et al., 2009).
Repetition effects in gamma-band activity may therefore be most pronounced when
MUA responses change the least, in terms of stimulus space. Observing gamma-band
synchronization can therefore tap into mechanisms that may be very subtle in terms
of MUA responses. These observations put gamma-band activity at the crossroads of
spatial and temporal context (surround suppression and repetition effects/adaptation)
and their interaction. The interaction of spatial and temporal context may be central
to vision (e.g. Schwartz et al. 2007). This topic will be explored further in the General
Discussion and Chapters 4 and 5.

2.5.8 Role of attention, reward and behavior

The present experiment engaged the animals in a change detection task. Since stimuli
were initially novel to the animals, task difficulty could not be equated between stim-
uli. Even if that had been achieved, it would be difficult to demonstrate conclusively
that the animals perceived stimuli as equally relevant and that top-down processing
was equal. Regression analyses that took reaction times and pupil responses (as indi-
cators of stimulus-specific difficulty or arousal) into account still showed significant,
stimulus-specific repetition effects for both MUA and gamma-band responses. Re-
gression analyses focused on behavior showed no dependence of reaction time on rep-
etition. Furthermore, the observed repetition effects were limited to MUA responses
and gamma-band (or higher) frequencies, but did not affect lower frequencies. This is
an important distinction, since lower frequencies have been related to top-down feed-
back effects, whereas higher frequencies have been related to feedforward processing
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(Bastos et al., 2015; Michalareas et al., 2016). We further note that gamma-band re-
sponses for a given stimulus could first decrease, and then increase, whereas changes
in attention with stimulus repetition are presumably unidirectional. Taken together,
these results speak against a purely feedback (or top-down, attentional) account of
the observed effects. A purely top-down, attentional effect may also show position
invariance (see next chapter).

For V1 rate responses, adaptation or repetition effects are frequently studied under
anesthesia (Solomon and Kohn, 2014; Kohn, 2007; Wissig and Kohn, 2012). In IT
firing rates, no task-dependence was observed comparing passive viewing and change
detection (De Baene and Vogels, 2010). Notably, rate increases can be observed when
the repetition itself becomes task-relevant, and a repeated target stimulus has to be
discriminated from other stimuli that also occur repeatedly (Miller et al., 1993; Miller
and Desimone, 1994; Vogels and Orban, 1994; Eskandar et al., 1992). Vogels (2016)
notes that differences in attention with respect to repetition resemble a chicken-and-
egg problem: a decrease in response may reflect decreased saliency, or decreased
saliency may result in response changes. In our data, we note that repetition effects
occur rapidly, excluding an interpretation in terms of attention of these effects.

Finally, as is common in awake monkey electrophysiology, successful task perfor-
mance was rewarded (in this case with fruit juice). On the one hand, even passive,
non-rewarded visual stimulation can induce plasticity in awake rodents and insects
(Cooke and Bear, 2010; Stopfer and Laurent, 1999), and stimulus repetition effects
exist in primates under anesthesia (Solomon and Kohn, 2014; Kohn, 2007; Wissig
and Kohn, 2012). On the other hand, reward (or the expectation thereof) can gate
plasticity (Roelfsema et al., 2010), especially for long-term learning, such that its role
in the current paradigm is unclear.

2.5.9 Current limitations and outlook

A number of limitations of the present study have been named throughout the pre-
ceding sections of the discussion. In particular, the precise stimuli and experimental
design chosen show a generalization of the stimulus repetition effect to more natu-
ralistic conditions. However, large and colorful stimuli are only a specific subset of
natural stimuli. Furthermore, stimulus durations and other aspects such as prolonged
fixation, and the pairing of visual stimulation with reward, limit the generalization of
the observed effects to natural vision.

The chronic array recordings employed here allowed the current experimental de-
sign, comparing the effects of stimulus repetition for a given stimulus across days,
with varying neighbors in time. However, single-unit recordings could provide im-
portant additional insights into the phenomenon. For example, Brunet et al. (2014)
showed that putative interneurons play a fundamental role in increasing gamma-band
synchrony with stimulus repetitions. What is the role of interneurons versus excita-
tory cells for the initial few repetitions? Furthermore, if a single cell participates in
gamma-band synchronous encoding of several stimuli, will it show increasing locking
selectively for stimuli that it “prefers” in terms of firing rate? Could a single cell par-
ticipate in several gamma-defined ensembles depending on the stimulus, and change
its locking behavior accordingly?

The simultaneous multi-unit recordings from arrays have the advantage that not only
changes in single sites, but coordinated changes in the population of recording sites
can be analysed. Preliminary analyses using Naive Bayes decoding suggest that later
repetitions are more self-similar both in MUA and gamma-band responses, such that
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training on later repetitions shows better transfer across repetitions, whereas responses
to the first presentation are more poorly decodable from other presentations (data not
shown). However, MUA responses for initial presentations are stronger overall, and
decoding stimulus identity among only first presentations was not weaker than decod-
ing identity from only one specific later presentation. This illustrates the difficulty
of assessing changes with repetition using population decoding, since such measures
can be affected by signal-to-noise ratio. Kaliukhovich et al. (2013) report that a sin-
gle, immediate repetition reduces classification accuracy of the repeated stimulus in
a small population of IT neurons. However, repeating one stimulus could enhance
classification of another stimulus. The possible functional benefit of repetition will
likely depend on the frequency of repeated versus novel stimulus encounters in natural
vision, and the amount of cross-adaptation between these stimuli. Given the complex-
ities of stimulus repetition effects, including several mechanisms with different time
constants, it is likely that repetition effects on population decoding measures depend
on stimulus choice and experimental design.

Furthermore, the current design revealed some long-term memory in the fixation
behavior of the animals. It will be very interesting to see if changes observed within
a session translate to some form of long-term plasticity. Since the present design
maximized differences in stimulation between days, it is not designed to be sensitive to
detect long-lasting response changes. A test for long-term effects should also include
control stimuli that are not repeatedly presented across days.

We found that gamma-band increases with repetition depended on initial response
strength. Given the strong stimulus-dependence of gamma-band activity, this suggests
that gamma-band increases are particularly pronounced in a regime that involves large,
high-contrast stimuli linked to surround suppression. The link between surround sup-
pression and gamma-band activity will be explored further in Chapter 4. Such a link
would predict that repetition effects in the gamma-band will be strongly dependent
on stimulus size, in a way that may be inversely related to the size-dependence of
repetition effects in MUA responses. Furthermore, it suggests that, for example, a
weakening of the RF surround could weaken gamma-band repetition effects.

Finally, note that the overall strengthening of gamma-band responses for large stim-
uli is not a balanced plasticity process, with some sites showing decreases and other
sites showing decreases in responses. This suggests that the effect for a given stimulus
may asymptote to a ceiling, and may require homeostatic mechanisms such as sleep
to restore responses back to a lower level. In the following chapter, these aspects
will be considered when testing for stimulus position specificity and memory of the
gamma-band repetition effect.
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2.6 Chapter summary

1. Large, colorful, naturalistic stimuli induced a wide range of MUA and gamma-
band responses in macaque V1.

2. Both MUA and gamma-band repetition effects were stimulus specific. No sig-
nificant repetition effects were observed in lower frequency bands.

3. Stimulus repetition effects in the gamma-band generalize to naturalistic and pre-
viously novel images.

4. MUA repetition effects were characterized by decreases in particular for the
first repetition(s). Reliable response reductions could be observed already in
the initial transient response (< 100 ms).

5. Gamma-band activity could decrease or increase for the first few repetitions,
and typically showed increases for later repetitions. This indicates that stimulus
repetition induced multiple plasticity effects, operating at different time scales.

6. The dependence of gamma-band increases on initial response strength, and
the stimulus-dependence of gamma-band activity, suggest that gamma-band
increases are particularly pronounced in a regime that involves large, high-
contrast stimuli linked to surround suppression.
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Chapter 3

Location specificity and persistence of repetition effects

3.1 Acknowlegdements for Chapter 3

The data in this chapter was obtained from two animals originally trained and im-
planted (in cooperation with Richard Saunders) in the lab of Michael Schmid (see
also previous chapter), that could be used for these experiments based on a new per-
mit. I am particularly indebted to Dr. Michael Schmid, who enabled these experiments
through a generous long-term loan of recording equipment.

3.2 Introduction

3.2.1 Location specificity as a signature of lower visual areas

Preliminary remarks: This chapter focuses on gamma-band responses, excluding a
discussion of MUA. One reason is that in one animal, there was a sudden, chronic
loss in signal from the V1 array. Given that in this animal, there were no reliable
differences between average MUA responses when the RFs were stimulated compared
to when they were not, the MUA data was excluded. In the second animal, there
were clear MUA differences between the stimulated and non-stimulated condition on
average. However, single-trial fluctuations were so high that the distributions of stim-
ulated and non-stimulated responses overlapped (in contrast to single-trial gamma
power estimates, as illustrated below). The likely reason for this is that a large stim-
ulus was used, inducing surround suppression and consequently very low response
magnitudes. See Chapter 4 for an extensive discussion of the relationship of surround
suppression to gamma-band responses and rate responses. Further note that changes
in gamma-band power are not displayed on log-scales, because in this design, stimuli
induce more similar amounts of average gamma power.

In the previous chapter, it was shown that stimulus repetition affects both V1 firing
rates and synchronization, in particular in the gamma-band, and in a manner specific to
the stimulus. In theory, these effects could originate either 1) within V1, or 2) derive
from upstream inputs (LGN or retina) or 3) result from feedback from downstream
areas. Distinguishing between the first two possibilities is beyond the scope of the
current study (see also Discussion). The possibility of feedback as a source of the
effect will be addressed using recordings in V1, making use of the fact that visual
areas high in the hierarchy have very large receptive fields that cover large parts of the
visual field (see General Introduction, Figure 1.1). An effect that originates in area
IT or a similarly higher area can therefore show invariance to a change in stimulus
position (Sawamura et al., 2006; De Baene and Vogels, 2010). Conversely, an effect
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that is sensitive to changes in position points to the involvement of lower to mid-level
areas with smaller receptive fields. Adaptation in one part of the RF did not transfer
to another part of the RF, suggesting that the effect was inherited from an earlier
area. The following experiment will therefore test for a transfer of the repetition effect
across stimulus location.
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A    block of 50 trials on RF
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Figure 3.1 — (A) Illustration of the task. Top, positioning of the stimuli on the monitor and approximate
RF locations of the recording sites of the array (red). Stimuli were shown in blocks of 50 trials either
on the RFs (condition A) or away from them at the same distance from the fixation point (condition
B). Bottom: Illustration of the task sequence of one day. One task block consisted of 4x50 trials, e.g.
ABAA, followed by a break, another task block, and so on. (B) Illustration of alternative hypotheses.
Based on the known fall-off of the rate of repetition increases in gamma-power over time with more
reptitions (left), a location invariant mechanism would predict that after repeated stimulation at another
location, the rate of repetition increase is low. The slope of the increase should depend on the total
number of repetitions. In contrast, a location specific mechanism would predict a higher rate of increase
when the local number of repetitions is lower than the total number of repetitions.

Specifically, a single, large grating stimulus was repeatedly presented in a blocked
fashion at two alternating locations, with blocks in specific sequences (see Figure
3.1A). A large stimulus (4.25 dva radius) was chosen in order to cover all receptive
fields that were recorded from the chronic arrays (see Methods of previous Chapter
2) as well as the receptive field surrounds. Coverage of RF surrounds is a necessary
condition to generate strong gamma oscillations in V1 (both in case of grating stimuli
and otherwise, see Chapter 4). Block presentation was used to make use of a particu-
lar property of the stimulus repetition effect: its dependence on the repetition number
in a log-linear way. In other words, repetition effects are strongest for the initial pre-
sentations, and then taper off to ever-smaller increases or steady responses (see also
Discussion). Consequently, fitting a slope to gamma-band responses with repetition
will yield a large slope at the beginning and a smaller slope with later repetitions (see
Figure 3.1B for an illustration, Figure 3.7 for example of effect of rest). Therefore,
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concrete predictions about the rate of gamma-band increases with repetition can be
made, based on the hypothesis that repetition effects are originating in lower visual
areas and hence are location specific. Namely, assuming location specificity, the slope
of the gamma-band repetition effect should be unaffected by previous stimulation at a
different location (Figure 3.1). The location specific, rather than total repetition num-
ber, should determine the slope of the increase. This allows a comparison of the slope
of the repetition effect given previous stimulation at either the same, or a different
location. This equates passage of time, the task, and the number of experienced re-
wards, manipulating only the stimulation history. Given location specificity, the slope
in a later stage of the experiment should be lower if the previous stimulation was at
the same location, but high if this is the first time this location was stimulated.

3.2.2 Persistence of repetition effects

Another open question regards the duration of the effects of stimulus repetition. In
Chapter 2, we saw that repetition effects can build up inspite of intervening stimuli
on the timescale of seconds. This in itself could be considered a remarkable feat for
V1, which is often thought to integrate information only on sub-second timescales
(Ringach and Shapley 2004; Kim et al. 2019, see Discussion). It has also been shown
that a break in the task of several minutes, during which the animal rests, can induce
a reset in the repetition effect, such that gamma-band responses decrease to the level
of the beginning of the experiment (see Brunet et al. 2014 for a break initiated by the
animal, see Figure 3.7 for an example of planned breaks as part of the experiment).
Similarly, some reset of the repetition effect most likely occurs over night, which ar-
guably involves a much longer rest. Here, we ask whether the repetition effect can last
at least on the timescale of minutes, rather than seconds, making use of the location
specificity paradigm (Figure 3.1). Given a blocked presentation of a stimulus at two
alternating locations, and a location specificity of the effect, one can ask what happens
after a return to a stimulus location after a “break” in the form of stimulation at the
other location for several minutes. Again making use of the change of slope of the
repetition effect, one can test if the stimulus history several minutes back still matters.
Alternatively, there may be a full reset to the initial gamma-band response strength
similar to a resting break of a few minutes (see Figure 3.2 for illustration).
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Figure 3.2 — Illustration of alternative hypotheses for a memory effect. Based on the known fall-off
of the rate of repetition increases in gamma-power over time (left), a mechanism involving memory
inspite of prolonged stimulation at a location away from the RFs would predict that gamma-band power
remains at the level achieved by previous location-specific stimulation, rather than reducing to the level
at the beginning of location-specific stimulation.
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This question is interesting because rest and sleep have been proposed to enable
homeostatic mechanisms that concurrently allow a refinement of sensory responses
(Vyazovskiy et al., 2008; Huber et al., 2013; Kuhn et al., 2016). Rest could involve
a homeostatic normalization of overall excitability that respects recently potentiated
connections, and thereby “convert” current changes on the functional level, such as
strong gamma responses, to a structural change. This would require a “memory” of
recent stimulus repetitions, possibly leaving a trace in functional responses as e.g. in
the form of stronger gamma responses, until such rest can be experienced (see Dis-
cussion). Consequently, a survival of a repetition effect on the timescale of minutes,
even if not visible across days, could serve an important function.

3.3 Methods

3.3.1 Task

Recordings were obtained in monkeys H and K as described in the previous chap-
ter. The monkeys performed a change detection task on colored, square-wave grating
stimuli (static, spatial frequency 2 cycles per dva, radius 4.25 dva). The stimulus was
either centered on the V1 receptive field locations in the lower right visual quadrant,
or on an equi-eccentric location near the horizontal meridian. In monkey H, the fix-
ation spot was moved up 2 dva from the monitor center, since receptive fields were
relatively eccentric and this allowed the placement of the stimulus on the RFs. Mon-
keys maintained fixation on a white, circular fixation spot 0.2 dva in size, for 1.3 s
of gray background stimulation followed by 1.5-2.3 s of grating stimulation. In this
variable interval, a circular stimulus change of 0.4 dva diameter could occur at a ran-
dom location on the stimulus. The random locations were restricted such that the full
changed spot remained within the stimulus. Monkeys reported the change by an eye
movement toward the change location within maximally 1 s to obtain a juice reward.
Task difficulty was maintained at a level that was not challenging to the animals. The
change detection task only had the purpose of keeping the animals engaged and was
not in itself of interest. From extended experience with the animals, it was clear that
a more challenging task will lead to an increase in the variability of inter-trial inter-
vals over the session. As the animal becomes more sated or less aroused over time,
self-initiation of trials becomes more variable. Additionally, more and more errors are
made if the task is difficult, inducing changes in block lengths. This variability would
be reflected in the neuronal data. As an additional measure to maintain a steady en-
gagement during stimulation blocks, a ten minute break with a dark monitor followed
every 200 trials (a “task block”) of stimulation. This encouraged steady responses dur-
ing task blocks. A further purpose of this break was to use the known reset effect of
such breaks on gamma-band responses (see also Figure 3.7). This enabled more data
collection on the same recording day. In an additional attempt to ensure independent
data in different task blocks, the stimulus was altered on every block. Specifically, a
cyan grating stimulus of 45 degree orientation, a green vertical stimulus and a yellow
60 degree oriented stimulus was used. Note that these stimuli were not equally bright,
nor did they have equal luminance contrast. Response differences between stimuli
are not of interest in this experiment, and all comparisons are made within-stimulus.
All three stimuli elicited robust gamma-band responses. The stimulus order in the
blocks was fixed across days, in order to compare responses to the same stimulus in
the same part of the session across days. The central manipulation of the experiment
was that within each task block, stimulus position could change every 50 correct trials
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(“miniblock”). The design was counterbalanced, such that the overall probability of
stimulation occurring at one location or the other was 50%. With locations A and B,
A being on the V1 receptive fields, 8 possible sequences were used in a task block: all
A, AABB, ABAA, or BAAA (4 types of A-Blocks), and their inverse (all B,... 4 types
of B-Blocks). On a day, A-Blocks and B-blocks alternated, and the starting block
alternated between days. The sequence type was assigned in a pseudorandom manner.

In a single session in monkey H, it was investigated whether the repetition increase
would show memory after “interference” with rapid, repeated stimulation with stimuli
of different orientations. An achromatic, maximal contrast, moving square wave grat-
ing (1.0 dva spatial frequency, 0.5 dva temporal frequency, 7 dva diameter, position
centered on V1 receptive fields) was shown in a passive fixation task. A stimulus of
vertical orientation was repeated 150 times, followed by the “interference” sequence,
and another 150 trials of the vertical stimulus to test for disruption of the repetition
effect. After this, a 10 minute break followed, and a new repetition-interference-
repetition sequence started. The interference block consisted of trials with either other
orientations (30, 60, 90, 120, 150 degrees angle, first and last interference block in the
session) or of trials including those other but also the repeated orientation (middle in-
terference block). Each trial in the interference block consisted of 200 ms individual
grating presentations with 100 ms interstimulus interval, equating the total trial dura-
tion to the trial duration of the repeated stimulus (1.4 s, baseline duration 1.3-1.4 s).
Individual interference trials contained a randomly permuted sequence of orientations.
The interference block contained 25 trials, or 125 stimulus presentations.

3.3.2 Data analysis

Preprocessing and trial selection. For both animals, these recordings were made us-
ing the implants described in the previous chapter. However, instead of recording
using the CerebusTM Neural Signal Processor, data was acquired using Tucker Davis
Technologies (TDT) systems using an adapter from the connector to the TDT PZ2
preamplifiers. MUA was estimated by band-pass filtering (300 Hz-12000 kHz) with
a 4th order zero-pass Butterworth filter, and filtering and downsampling to 1/24th of
the original sampling rate using an 8th order FIR filter.

LFP signals were rereferenced through subtraction of the mean across recording
sites. Single-trial average gamma power estimates were obtained as described in the
previous chapter, using single-trial (instead of a common) baseline correction, and a
window of ± 8 Hz around the cross-site gamma peak (simple maximum across fre-
quencies) per stimulus. Power was expressed as fold change from baseline (stimu-
lus/baseline), “relative gamma power”. Since stimuli were chosen to induce similar
gamma-band power, the data is no longer plotted in a log-transformed fashion as in
the previous chapter (the log-transform de-emphasizes changes with repetition).

Because of the possibility of a reset of repetition effects when the animal took a
break, interruptions in performance of more than one minute led to the exclusion of
all further miniblocks of a task block, and the exclusion of the current miniblock if
less than 80% of it was completed (for the purpose of slope fitting). Additionally, the
very first presentations of a task block, as well as location changes, could induce a
transient decrease in gamma-band (and broad-band) activity (see Figure 3.4, see also
the previous chapter). The first 10 trials of a block were therefore excluded from
analysis (in monkey H, similar results were obtained when not excluding any trials,
because the initial decrease was more pronounced in monkey K, see Figure 3.4).
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Slope fitting and statistics. For the analyses in Figure 3.5 and 3.6, the 5 sites per
animal with the strongest gamma-responses were selected and averaged. Similar con-
clusions (with significant results) were reached when slopes were evaluated for the
cross-site grand average, and also in case of a bipolar derivation of the LFP signals
(with bipolar pairs chosen from neighbors of different depths). For each 50 trial block,
a simple first-order fit of the data was computed, yielding a slope and an offset. Since
the design required comparisons across recording days, and the overall mean gamma-
band activity induced by a stimulus can vary between days, a comparison of slopes
was the focus of most analyses. Only slopes of the same time in the session and the
same stimulus were compared. Significance of differences of slopes was assessed with
a Welch’s t-test, i.e. an unpaired t-test that does not assume equality of variances be-
tween distributions. On some occasions for slope comparisons, there were a few more
slopes of one type than the one it was being compared to. In such cases, the slopes
closest to each other in time are plotted. All slopes were used to compute the unpaired
t-tests. Conclusions based on the plotted slopes only were equally significant.

Regression analyses were performed using Matlab’s functions fitlm or fitlme, fol-
lowed by an ANOVA to identify significant predictors, and a theoretical likelihood
ratio test to compare different models. For regression analyses, only trials with the
stimulus position covering the RFs were modeled. This was done because gamma
power is trivially absent in the other case, and including the regression variable “lo-
cation” would mean that other terms of interest would need to be modeled as interac-
tions. Regression models predicting single-trial gamma-power were constructed using
the predictors “monkey identity”, “session”, “stimulus identity”, “reaction time”, “eye
position eccentricity”, “eye position variance”, and “pupil response” (response during
the time that LFP power was estimated, divided by baseline pupil response), and the
main predictors to test the hypotheses, the “log(total repetition number)” versus the
“log(local repetition number)”. The log transform was used because it yielded better
fits, in line with previous findings by Brunet et al. (2014). Similarly to the slope fitting
procedure, the first 10 trials of a block were excluded from analysis.

3.4 Results

3.4.1 Location specificity of repetition effects

Grating stimuli were presented at two possible locations, one of which overlapped
with the RFs. Consequently, clear gamma-band responses were induced only in case
of RF stimulation (Figure 3.3). 24 session were recorded in monkey H and 18 sessions
in monkey K, each session typically contained at least 3 task blocks (i.e. 600 trials).

Stimulus repetition led to clear increases in gamma-band responses (Figure 3.4).
In one animal (monkey K), the initial ca 10 repetitions induced a transient decrease
in the gamma-band response, along with a downward shift in peak frequency. The
downward shift in frequency is also observable in the second animal. As illustrated in
Figure 3.4A, the effect was broad in frequency, but dominated by gamma-band activity
similar to that induced by the stimuli later. Conclusions were similar regardless of the
alignment of the trial axis to correct or all trials (including fixation breaks).

This means that the lack of the decrease in monkey H is not due to a mixing of trials
at different parts of the session, and that the time to a switch to an increase truly was
on the order of ca 10 repetitions for monkey K. Visual inspection of pupil responses
and eye position variance developments with repetitions indicated that the transient
decrease can be present without a change in pupil or eye position variance, although
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the pupil showed stronger constriction for initial presentations of some stimuli, and for
1-3 presentations only (data not shown). The transient decrease most likely reflects a
separate phenomenon from the typical increase in gamma-band responses with repe-
tition (see also previous chapter). For the following slope and regression analyses, the
first 10 trials of each block were therefore excluded.
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Figure 3.3 — Average LFP power spec-
tra in response to visual stimulation with
the three different types of grating stim-
uli for monkey H. Clear gamma-band re-
sponses occur only when the stimulus is
on the RFs.

To test for location specificity, the slope of
the repetition effect was compared for the sec-
ond (mini)block in each sequence, where the first
block could have consisted of stimulus repeti-
tions at the RF location (total repetition number
= local repetition number) or of stimulus rep-
etition outside the RF location (total repetition
number > local repetition number). As illus-
trated in Figure 3.1B, a location-specific effect
suggests that the slopes in the latter case will be
higher - as only the local repetition number deter-
mines the rate of the increase. As illustrated by
an example in Figure 3.5A, and then evaluated
for all session pairs, the repetition effect indeed
showed location specificity. The slopes were sig-
nificantly stronger when the second block was
the first in which stimulation occured at this loca-
tion (P < 0.05). A similarly strong increase could
also be observed if the third (rather than second) block in a task block was the first
with stimulus presentation in the RFs (sequence BBAA, see next section on memory
below).

The location specificity of the repetition effect was corroborated by a regression
analysis. A regression analysis predicting relative gamma-band power in case of
stimulation of the RFs (see Methods) showed that a model that included both local
and total repetition number significantly outperformed a model that included only to-
tal repetition number1 (theoretical likelihood ratio test, P < 0.001). Furthermore, a
model that included only local repetition number significantly outperformed a model
that included only total repetition number (P < 0.001). However, both local and total
repetition number were found to have a significantly predictive effect on gamma-band
power, with both repetition effects explaining similar amounts of variance on aver-
age (log(local repetition number) beta = 69.36, r-squared = 0.006, log(total repetition
number), beta = 65.48, r-squared = 0.005, both P < 0.001). When restricting the anal-
ysis to the miniblocks that were explicitly compared during the slope fitting, (i.e. data
which maximally decorrelates total versus local repetition number), effects became
more pronounced. Pooled across animals, there was no longer an effect of total trial
number (P = 0.53), and the amount of variance explained by local repetition num-
ber increased (beta = 164.68, P < 0.001, r-squared = 0.047). The regression models
included further control predictors for “pupil responses”, “eccentricity”, “variance of
the eye position”, and “reaction time” (the available measures of overt behavior), as
well as “stimulus identity” and “monkey identity”. Apart from stimulus and monkey

1In both total and local cases, the predictor was log(repetition number). Note that this repetition number
here refers to the number in the task block. Given the 10 minute break and switch of stimulus identity
between task blocks, the local repetition number across the entire session should play little or no role.
Indeed, a regression model including the total versus local number of repetitions across the entire session
showed no significant effect of local stimulus repetition, P > 0.3.
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Figure 3.4 — Analysis of repetition effects in a miniblock. (A) Cross-session average spectra of the
first 50 trials of RF stimulation of each task block for stimulus 1. Left panel: monkey K. Right panel:
monkey H. Note the transiently strong responses in monkey K, and the upward shift in peak frequency
with repetition. (B) Top panels: Cross-session average gamma-band power (averaged around peak
of each stimulus, see Methods) of the first 50 trials of RF stimulation for all three stimuli. An initial
decrease is clearly visible in monkey K. Bottom panels: Cross-session average peak frequency (in
the range 25-80 Hz) of the first 50 trials of RF stimulation for all three stimuli. Gray dashed lines
indicate cutoff for slope fitting analyses. Fitting slopes to the increase in peak frequency with repetition
after trial 10 yielded significantly positive slopes in 5 out of 6 stimuli in the two animals based on a
permutation test and multiple comparison correction.
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predictors, these predictors typically captured less variance then the predictors of in-
terest, and were not always significant in individual animals. The conclusions about
the local vs. total repetition number held both with and without inclusion of these
control predictors in the model, indicating that the repetition effects are not a spurious
effect of changes in behavior. Taken together, these results indicate that gamma-band
repetition effects show location specificity. The regression analyses indicate that some
additional effect of the total repetition number may be present (see Discussion).
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Figure 3.5 — Test for position specificity. (A) The first 100 trials from two example task blocks from
two separate recording days. Left panel: example of continuous repetitive stimulation on the position
covering the RFs (sequence AA). Right panel: example of the first 50 presentations away from the RF
locations, followed by repetitions on the RF locations (sequence BA, see Figure 3.1). (B) Comparison
of slopes for the second block of a sequence of continuous repetitions on the RF (AA), versus slopes for
the second block, where this is the first block with stimulation on the RF (BA). Slopes were significantly
stronger in case BA (P < 0.05).

3.4.2 Persistence of repetition effects

Having established location specificity, the same paradigm could be used to test for
memory effects of stimulus repetition. Since the repetition increase on gamma-band
power was location specific, a repeated stimulation of the RFs, interrupted by a block
of repeated stimulation away from the RF, effectively constituted a break of several
(ca. 5) minutes. A break that is self-initiated by the animal and constitutes some form
of rest has been shown to reset gamma-band responses to levels similar to initial repe-
titions (Brunet et al., 2014). Here, it is tested what happens when the animal continues
to be engaged in a visual task, which includes a maintained level of arousal and re-
ward, but an interruption of the local visual stimulation. Specifically, the possibility
of a reset of the gamma-band response, resulting in a stronger rise in gamma-band re-
sponses with repetition, is tested against a memory effect of the gamma-band response
and therefore maintained gamma-band response with little further increase with rep-
etition (see Figure 3.2 for an illustration). Note that this test requires that location
specificity is established first, because if stimulus repetition showed transfer across
positions, the change in location would not constitute a break. Lower slopes after
a stimulation at another location would be expected in such a case due to transfer
from the other location. To compare the situation of a return to a previously stim-
ulated position (a sequence starting with ABA) with a situation of equated time in
the session, experienced rewards and therefore arousal, the third block of a sequence
without previous stimulation (BBA) was used. Figure 3.6 shows an example session
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Figure 3.6 — Test for persistence of repetition effects. (A) The first 150 trials from two example task
blocks from two separate recording days. Left panel: example of repetitive stimulation on the position
covering the RFs, with an intermittent block at the other position (sequence ABA). Right panel: example
of the first 100 presentations away from the RF locations, followed by repetitions on the RF locations
(sequence BBA, see Figure 3.1). (B) Comparison of slopes for the third block of a sequence ABA,
versus slopes for the third block, where this is the first block with stimulation on the RF (BBA)). Slopes
are significantly higher in case BBA than ABA. (C) Comparison of differences in mean gamma power
responses for the initial trials of the third block in sequence ABA, to either the initial trials or the last
trials of the first block in the sequence. The initial trials of the third block are significantly more similar
to the last trials than the first trials of the first block, indicative of a memory effect. Significance holds
for monkey H or pooled data, data points for monkey K all go in the same direction, but not significantly
so. Initial trials are defined as trials 5 to 10 (see also Methods), and last trials as trials 45 to 50 in a
block of 50. Note that because these comparisons are made within-session, a comparison of mean
responses is feasible. Also note that compared to the between-session comparisons in (B), this results
in additional data points (see also Methods).

of type ABA, demonstrating a clear memory effect, and an example session of type
BBA, showing location specificity (by the clear increase despite prolonged previous
stimulation). Similar effects could be observed across the session pairs per animal, as
illustrated in the scatter plot in Figure 3.6B, and were significant (P < 0.05). In con-
trast, slopes of sessions of type ABA and BAA, compared for the last A block, were
not found to be significantly different in either animal (data not shown). While one
should be careful not to overinterpret the absence of an effect (which could be due to
lack of sensitivity), a reset hypothesis would suggest that a difference should be found
in this situation, and this was therefore tested here.
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A further complementary analysis is to compare the strength of gamma-band re-
sponses at the beginning of the third block in the ABA sequence (i.e. first responses
after the return to the original position) with the beginning versus end of the initial
block. Given a memory effect, the responses should be more similar to the end, rather
than beginning, of the first block. Indeed, mean responses at the start of the third block
are on average significantly more similar to the mean responses at the end, rather than
beginning, of the first block (Figure 3.6C). Note that a comparison of mean responses
is a sensitive analysis here because it is performed within a task block, rather than
across days.

Finally, regression analyses were performed also for the memory effect. Namely,
the same miniblocks (ABA and BBA) as for the slopes were analysed in the model.
These represent cases where the total repetition number is the same, and the difference
in local repetition number is resulting only from a miniblock not directly preceding
the current block. Therefore, any significant effect of the local repetition number is
indicative of a memory effect (because if we had started the counting of local repeti-
tions up to 50 trials before the current block, it would be identical). As expected from
the slope analyses, the regression models showed a significant effect of local repetition
number. Similar to the regression analyses for the location specificity effect, there was
an additional effect of the total trial number (both P < 0.006, local repetition number
r-squared = 0.017, total repetition number r-squared = 0.006).
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Figure 3.7 — Test of reset with stimulus interference and illustration of reset with breaks. Single ses-
sion from monkey H testing a “reset” or disruption of the gamma-band increase with repetition through
rapid presentation of other grating stimuli. 150 presentations of a moving, achromatic grating stimulus
were followed by an “interference” block of either only other orientations (light gray) or also the re-
peated orientation (dark gray). After this, another 150 presentations of the repeated grating orientation
followed. Visual inspection suggests that the interference blocks of 125 stimulus presentations in 25
trials (see Methods) did not result in a reset of gamma-band responses. In contrast, the breaks of
10 min in between the repetition-interference-repetetition sequences did result in a reset of gamma-
band responses.

A memory effect for the gamma-band increase while the animal is performing a task
at a different location is a powerful proof of memory, because no other stimulus at
the location could have maintained the (then necessarily stimulus-unspecific) gamma-
band response increase. On the other hand, the network, after repeated stimulation,
is not exposed to patterned stimulation during the time when the stimulus is at the
position outside the recorded RF position2. It could be that memory is maintained
only in such a special situation. In one recording session in monkey H, this notion
was tested by attempting to interfere with the repetition effect (Figure 3.7). After
150 initial repetitions of a single stimulus, rapid, massed repetition of stimuli with

2Note that the monkeys moved their eyes freely between trials, i.e. some form of patterned stimulation
did occur.
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different orientations from the repeated one followed for 25 trials (i.e. 150 stimulus
presentations) or about 2 minutes. Another 150 presentations of the initially repeated
stimulus followed. It was visible that the gamma-band responses maintained the level
acquired during the initial repetition block inspite of the attempted interference. In
contrast, a ten minute resting break did result in a disruption of the repetition effect
(Figure 3.7).

3.5 Discussion

The above experiments used massed repetition of a simple grating stimulus to in-
vestigate the position specificity and memory effects of the increase of gamma-band
responses with repetition. This design was used because the previously observed tra-
jectory of the repetition increase, namely a stronger increase for the first presentations
compared to a later, more stable period, allowed straightforward tests of the position
and memory hypotheses, and effect sizes that allowed direct observation of the ef-
fects even during the recordings. Clear position specificity and memory for previous
repetitions were observed. These effects will be discussed in turn.

3.5.1 Location specificity of repetition effects

Studies of stimulus repetition in high-level visual area IT have used the (partial) po-
sition invariance of repetition effects there to argue for an involvement of IT-level
visual areas. The reasoning is that the much smaller size of receptive fields in lower
visual areas prevent position invariance there (De Baene and Vogels, 2010; Sawamura
et al., 2006). Here, the argument is inverted: any general top-down feedback effect
impinging on V1 from higher-order visual areas should show position invariance. Po-
sition specificity is not expected in such a case. The above analyses show that the
gamma-band repetition effect was strongly, though not exclusively, position specific.
In particular, the regression analyses indicated that some additional effect of the total
repetition number may be present. This general effect was not specific to the task
blocks (and therefore stimuli), but even present throughout the entire session. It is
therefore possible that this “global” repetition effect captures unspecific effects, such
as aspects of arousal that are not captured by the pupil response changes (which can
reflect, among other factors, arousal levels, Ebitz et al. 2014; Bradley et al. 2008)3.
The current design can detect position specific effects, but cannot determine the origin
of any further, non-specific effect.

Taken together, the present results indicate that the gamma-band increase with rep-
etition shows a substantial degree of position specificity. This excludes higher-order
visual areas as the sole source of the effect. Consequently, this increases the likelihood
that the repetition effects have an origin in plasticity processes within V1. However,
alternatives to this scenario are plasticity processes in structures that provide feedfor-
ward input to V1 (predominantly retina, LGN) or in mid-level visual areas like V2
or V4 that also provide feedback to V1. Indeed, Brunet et al. (2014) showed that
not only V1 but also V4 showed increased gamma responses with stimulus repetition,

3Furthermore, the regression analyses should be interpreted with caution. Since the local and total
repetition number only decorrelates across certain miniblocks, but not within miniblocks, regression models
that include both total and local repetition number could split up variance between those factors in some
way. Conversely, a model that only includes the total repetition number will invariably fit any existing local
effects to some degree. It is therefore difficult to rule out or confirm definitively any modulatory effects of
the total repetition number.
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and that coherence between the two areas in the gamma-band was increased. These
findings are compatible with a scenario where effects in V4 are driven by plasticity in
V1, or the other way around. It is also not unlikely that both areas show coordinated
plasticity. V1-V2 gamma-band synchrony has been demonstrated for these types of
stimuli as well, although not in the context of stimulus repetition (Roberts et al., 2013).
It is therefore possible that this phenomenon encompasses (or coordinates) lower to
mid-level visual areas.

Could all these effects result from changes to the input in V1, possibly cascading
down the visual system? Such a cascade could derive from two different changes in
the input. Either the input is in itself gamma-rhythmic, or it changes in some way that
is translated into gamma-rhythmic responses within V1. Evidence that speaks against
the former possibility exists in an indirect form. Based on the current state of the litera-
ture, thalamic inputs to V1 or other sensory areas are not themselves gamma-rhythmic
(Bastos et al., 2014; Bessaih et al., 2018) and therefore not directly entraining V1. The
laminar distribution of stimulus-induced gamma-band responses in V1 away from the
input layers (see General Introduction, 1.4, Lowet et al. 2017; Xing et al. 2012) also
speaks against a rhythmic entrainment via the input structures.

Some more general changes in V1 input, such as changes in LGN firing rates or
changes in the thalamocortical synapse also deserve consideration. One way to in-
crease gamma-band responses is an increase in input drive, for example through in-
creasing stimulus contrast (e.g. Börgers and Kopell 2005; Lowet et al. 2017; Ray
and Maunsell 2010). Due to the complexity of the circuitry, there are several ways
this could come about. It should be noted that in general, a system with several net-
work and single-cell time constants (i.e. V1) can bring about changes in the balance
between inhibition and excitation that in some ways could increase gamma-band re-
sponses in many ways.

The following will illustrate one particular scenario as an example. Repeated stim-
ulation tends to lead to steady or decreasing responses in the thalamus (Camp et al.,
2009; Dhruv et al., 2011; Solomon et al., 2004). Intuitively, one would assume that
this would result in decreases in V1 responses to these inputs. However, one should
note that thalamocortical synapses may be in a continuous state of synaptic depression
from high spontaneous activity in the thalamic input (Boudreau, 2005; Stoelzel et al.,
2015; Castro-Alamancos, 2002). This would constitute a case for “less is more”: when
thalamic cells decrease their response rate, the effect of any given spike may increase,
because the synapse is released from depression. Indeed, Stoelzel et al. 2015 have
shown evidence for such an effect, using prolonged stimulation with a (small) moving
grating that was optimized to maximally drive single LGN cells in the rabbit. LGN
firing rates were reduced, but the layer 4 LFP response evoked by an individual spike
was increased. One could imagine that fewer, but more effective LGN spikes (i.e.
with greater depolarization in the receiving cells) could drive layer 4 (i.e. the input
layer) of V1 more strongly, yielding a “paradoxical” rate increase. This would require
that the increase in efficacy of a given thalamic spike outweighs the overall reduction
in spikes. Assuming a generalization of this effect to large, surround-suppression in-
ducing stimuli as used here, and a bias in our recordings as well as those of Brunet
et al. (2014) to upper layers, it could be that the hypothetical rate increase is not de-
tectable, yet driving gamma-band increases. The likelihood of this scenario is difficult
to estimate, because adaptation effects in V1 for similar stimuli depend in a strong and
qualitative way on stimulus size (see also previous chapter). This scenario was dis-
cussed in detail here to acknowledge the existence of adaptation effects on timescales
studied here in V1 inputs, and illustrate that their effects on V1 may not be intuitive.
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Finally, it should be noted that the LGN inputs to V1 receive strong feedback from
V1, which has size-dependent effects (Sillito and Jones, 2002; Murphy et al., 1999;
Andolina et al., 2012; Jones et al., 2012). Therefore, although V1 inputs such as
LGN may change their responses with repetition, these effects may ultimately origi-
nate from V1 feedback. Adaptation effects in the retina and LGN are believed to be
relatively stimulus-unspecific (Solomon and Kohn 2014 – but see Stoelzel et al. 2015).
If this holds true, it would make a precortical origin of the repetition effect less likely,
given its stimulus specificity.

An interesting test for a future study would be interocular transfer, i.e. whether
gamma-band increases with repetition experienced in just one eye will be maintained
if one switches to the other eye. This is because binocular cells to a large extent first
appear in V1. Using such interocular tests, within-trial rate decreases with repetition
show laminar signatures of a cortical origin in primates (Westerberg et al., 2019). This
finding is also supported by optogenetic silencing of V1 in mice (King et al., 2016).
Collectively, these considerations point to a retinothalamic or cortical locus of the
repetition effect, anywhere from the first thalamocortical synapses to mid-level visual
areas (and quite possibly on more than one level of the hierarchy).

Testing for location specificity of the repetition effect is a useful tool to constrain
the mechanism behind the observed effect. Another question is under which circum-
stances location specificity is a useful property for any adaptive or plasticity process.
After all, visual objects can occur anywhere in the visual field. The repetition effect
may therefore reflect an adaptation to a temporally location-specific situation. For a
person, this could be sitting at a desk, where parts of the scene will have a relatively
constant position. Another possibility is that the massed repetition paradigm itself
encourages a locally specific plasticity process. The blocked paradigm generates very
strong predictions about the next stimulus position, which the visual system could use.
To summarise, for the current massed repetition paradigm, the present results and cur-
rent state of the field indicate that the most likely source of the repetition effects on
gamma-band activity reside within V1 up to mid-level visual cortices. An inheritance
of the effect from upstream input to V1 that is translated into a gamma-band increase
cannot be excluded, however. Further insights into the origin of the effect could be
gained by recording and manipulating other brain areas, and employing a greater va-
riety of task designs, testing in particular for interocular transfer.

3.5.2 Persistence of repetition effects

The current experiment investigated the effects of prolonged repetition of a stimulus
on visual gamma-band responses. It was shown that 50 repetitions of a stimulus (cor-
responding to a total of about 1.5 min of visual stimulation) can result in a memory
effect over several minutes (> 5 min). This represents an understudied timescale, with
many studies on repetition focusing on either very few repetitions, or long-term learn-
ing across days (see Introduction of previous chapter). In contrast to these types of
paradigms that either are concerned with different timescales, actively prevent mem-
ory effects, or try to examine particular processes such as encoding or working mem-
ory, other paradigms explicitly use massed repetitions and look for repetition effects
on an intermediate timescale. These typically concern themselves with either “adap-
tation”, or simple forms of learning such as synaptic potentiation.

The observed transient decrease in gamma-band responses with initial repetitions
(Figure 3.4) may reflect a simple form of adaptation due to, for example, input fa-
tigue, and the later repetition increase (here: repetition effect) another form of adap-
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tation due to synaptic changes or changes in inhibition-excitation balance. The size
and persistence of repetition effects for massed repetitions of simple stimuli depends
on many factors, chiefly among them the type of stimulus used and the amount of
adaptation in form of prolonged and/or repreated presentation. The latter has been
formalized in the so-called duration-scaling law, where the strength and persistence
of repetition effects increases with the amount of repetition (or stimulus duration), but
does not change in quality (Bao and Engel, 2012). Duration-scaling captures some
strong effects in the adaptation literature (Bao and Engel, 2012; Solomon and Kohn,
2014). Given that gamma-band repetition effects are clearly cumulative, and that the
current design employs relatively many repetitions, this means that the observed per-
sistence of the gamma-band increase over minutes is likely the result of this particular
design. Fewer or more interleaved repetitions could show shorter persistence. Fur-
ther, we used large stimuli which induced strong gamma-band responses. Given that
stimuli that generate stronger gamma-band responses initially also show stronger in-
creases (see previous chapter), it is conceivable that the persistence of the effects also
depend on the strength of gamma-band responses. The persistence of an adaptation ef-
fect does not necessarily show a positive relationship to stimulation intensity, however
(Ganmor et al., 2010).

Many previous studies have used small stimuli, targeted to isolated single cells
(Giaschi et al., 1993; Kohn and Movshon, 2003; Albrecht et al., 1984; Priebe and
Lisberger, 2002; van Wezel and Britten, 2002; Movshon and Lennis, 1979). Given
the strong, qualitative difference in effects dependent on stimulus size, this limits the
comparibility to the current design. Furthermore, a lot of studies of adaptation or rep-
etition are performed under anesthesia, which could eliminate some repetition effects
altogether.

Studies concerned with changes in coordination rather than rates are rare. Pairwise
neuronal correlations can be affected in ways that are poorly understood (reviewed in
Solomon and Kohn 2014). An adaptation experiment by Jia and Kohn (Jia et al., 2011)
in anesthetized monkeys specifically investigated adaptation of V1 gamma-band re-
sponses. Here, a prolonged presentation of a large, moving grating followed by re-
peated “top-up” presentations of the adapter yielded response decreases in response to
the repeated grating when the grating direction was preferred by the recorded V1 lo-
cation, or no change when it was not preferred. Effects recovered fully within minutes
and no cumulative repetition increases were reported. Major differences compared
to the repetition paradigms employed here and in Brunet et al. (2014) are the initial
prolonged, uninterrupted exposure and the anesthesia.

In one of the few studies using awake animals, Stoelzel et al. (2015) reported a
long-lasting effect of minutes of visual stimulation (for up to an hour) in the LGN on
rate responses, of passively observing rabbits. As discussed above, the stimulation
paradigm was different compared to the present study, in particular the stimulus size.
However, since tests on this timescale are rather rare in awake animals, it illustrates
that visual stimulation in awake animals (and across species) can result in plasticity
on this timescale. Furthermore, particular forms of repetitive, artificial stimulation
can lead to long-term potentiation (LTP) or depression of synapses, and consequently
increased or decreased rate outputs also on a similar timescale. The observed effects
strongly depend on the timing used in the stimulation protocols (Bliss and Lomo,
1973; Malenka and Bear, 2004). Particular forms of repetition effects in mice, with
increased VEP and rate responses in V1 , have been linked to LTP (Cooke and Bear,
2010; Cooke et al., 2015; Cooke and Bear, 2012; Frenkel et al., 2006). However, the
effects in mice only become apparent across days, likely involving sleep.
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The opposite direction of observed rate effects and the reset of the observed gamma-
band response strength with rest (Brunet et al. 2014 and Figure 3.7) suggests that the
present form of plasticity differs from this exposure-based increase in mice. In the
current paradigm, effects of rest (with a black background, and animals frequently
closing their eyes) could be differentiated from effects of a local break in stimulation.
Only a “proper” rest period resulted in a reset of gamma-band response strength. Such
rest in a darkened environment, either by design or through the natural behavior of eye
closing, means that the retina and thereby the entire visual system receives less input,
and could show various forms of disadaptation. It is therefore unclear whether the
effect of rest observed here is purely cortical, purely in the input structures, or both.

The repetition effect in the present study was also robust to “interference”. Rapid,
repeated presentation of grating stimuli different from the repeated stimulus did not re-
sult in a reset to an initial gamma-band response for the repeated stimulus (Figure 3.7).
This is interesting because it certain forms of repetition effects, such as repetition sup-
pression in monkey IT or the fly olfactory system, can be easily undone with such in-
terference (Vogels, 2016; Hattori et al., 2017). Repetition suppression in flies can last
on the order of 20 min to an hour after just 15 odor presentations. The presentation of
other stimuli is thought to “normalize” responses, through a well-described dopamin-
ergic synaptic modulation (Hattori et al., 2017). The current “interference” paradigm
only constitutes a first attempt at this design. In the future, it would be interesting to
extend this paradigm to include interference with stimuli that are more dissimilar to
the repeating stimulus, and prolong the duration of the interference further. Similarly,
the persistency after several minutes of stimulation at a different location only provides
a lower bound for the duration of this effect, and longer breaks require testing. In sum-
mary, the present experiment demonstrated persistence of the repetition effect given
several minutes of stimulation at a different location, or a few minutes of intervening
stimuli. This is indicative of some form of plasticity, since V1 normally integrates in-
formation only on the sub-second timescale (Kim et al., 2019; Ringach and Shapley,
2004). The current study used a massed repetition design, without intervening stimuli
as in the previous chapter. This maximized the number of blocks obtainable for slope
fitting, and allowed a relatively straightforward interpretation, because repetition ef-
fects could not have been influenced by another stimulus. It is possible that this form
of massed, uninterrupted form of repetition is optimal to strengthen repetition effects,
such that effects observed here may be unusually strong or able to generate strong
memory effects. On the other hand, it is possible that a counteraction by a temporally
local form of adaptation was particularly strong in this case, so that repetition effects
and their persistence could be even stronger with a different paradigm.

3.6 Chapter summary

In this chapter, it was shown that with the massed repetition (50 times and more) of a
stimulus, the gamma-band increase with repetition

1. is position specific and therefore likely not the result of top-down feedback from
higher-order areas and

2. shows memory on the timescale of minutes, given continuous task engagement.
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Chapter 4

Opposing effects of spatial predictability on gamma and firing

4.1 Acknowlegdements for Chapters 4 and 5

The following two chapters are based on Peter et al. (2019). The publication reflects
a collaborative effort between the labs of Martin Vinck (Martin Vinck, Cem Uran),
Pascal Fries (Pascal Fries, myself (Alina Peter), Rasmus Roese, Jarrod Dowdall), and
Wolf Singer (Wolf Singer, Johanna Klon-Lipok, Sylvia van Stijn and William Barnes).
I, Cem Uran and Martin Vinck conceived of the idea of the study and designed the ex-
periments. I, Cem Uran, Johanna Klon-Lipok and Rasmus Roese performed record-
ings. I, Johanna Klon-Lipok, Rasmus Roese, Sylvia van Stijn and William Barnes
performed initial behavioral training. Johanna Klon-Lipok, Sylvia van Stijn, William
Barnes and Wolf Singer planned and performed surgical implants. For this I wish to
acknowledge also Michael Schmid and Richard Saunders. Martin Vinck and Pascal
Fries provided supervision.

I, Cem Uran and Martin Vinck performed data analysis. In particular, I performed
all LFP- and MUA-LFP analyses and preliminary versions of the spiking analyses.
Cem Uran produced final spiking analyses, developed the final algorithm for receptive
field analyses, and developed the peak-fitting algorithm with the help from Martin
Vinck and me. Martin Vinck performed the regression analyses for Figure 5.9. All
figures presented here were produced by me, with input from Cem Uran and Martin
Vinck for the indicated analyses.

All introduction and discussion sections in these chapters were written by me. The
introduction and discussion in Chapter 5 is more elaborate compared to the original
paper, which stressed the spatial prediction component. The methods are taken over
verbatim from the paper, since these require precision rather than interpretation or
contextualization. Similarly, the results are largely taken over verbatim, with the ex-
ception that supplemental figures were integrated into the main text, which required
some small changes in the order of paragraphs and naming of figures. I will reiterate
this fact at each respective section, but I will avoid self-citations in-text as would be
common for smaller or less frequent text sections for the sake of readability.

Note that the publication Peter et al. (2019), available on
elifesciences.org/articles/42101, was published under a Creative Commons License
(CC BY 4.0, creativecommons.org/licenses/by/4.0/), which allows to share, copy or
redistribute the material in any medium or format, and adapt, remix, transform or build
upon the material for any purpose, even commercially. See the bibliography for the
full reference.
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4.2 Introduction

In Chapter 2 (Stimulus specificity of repetition effects), natural images induced highly
stimulus-dependent levels of both gamma-band activity and firing rates. Gamma-
band amplitude for the large, colorful natural images employed in Chapter 2 was
prominently related to hue in all animals, with red colors inducing particularly strong
responses (Figure 2.6C). Additionally, repetition effects were stronger for stimuli that
induced relatively strong gamma (Figure 2.12). To better understand these gamma
repetition effects and gamma in general, the underlying stimulus aspects determining
gamma response strength need to be identified.

One central determinant of gamma appears to be stimulus size: gamma-band activ-
ity for achromatic grating stimuli is jump-started as soon as the stimulus starts to cover
not just the classical RF of a particular neuron, but also its surround (Gieselmann and
Thiele, 2008). Similarly, long achromatic bars that stimulate both RF center and sur-
round induce gamma in V1 LFPs, whereas short ones do not (Chalk et al., 2010).
Compared to the dependence of gamma on other stimulus features, this dependence
on the surround may be a qualitative, instead of quantitative change.

Based on these findings, it has been theorized that gamma crucially depends on
contextual interactions that yield surround suppression and sparse coding (Jadi and
Sejnowski, 2014). Given the relationship between surround suppression magnitude
for rates and the homogeneity between the stimulus falling on the classical RF and the
surround (Coen-Cagli et al., 2015), it has been further suggested that gamma may cru-
cially depend on predictable center-surround relationships (Vinck and Bosman, 2016).
Besides stimulus size, gamma strength also depends on various other stimulus features
such as contrast, orientation, motion speed and spatial frequency for well-controlled,
achromatic stimuli such as gratings and bars (e.g. Hadjipapas et al. 2015; Henrie and
Shapley 2005; Ray and Maunsell 2010; Frien et al. 2000; Jia et al. 2011; Orekhova
et al. 2015; Muthukumaraswamy and Singh 2013). This means that the observed vari-
ance of gamma for different natural images is not entirely unexpected. For natural
images and during natural vision, both presence and strength of gamma-band activity
is a matter of an ongoing debate (e.g. Hermes et al. 2015; Brunet et al. 2015; Hermes
et al. 2019). Chromatic (i.e. colored) compared to achromatic (black-and-white) nat-
ural images in the study of Brunet et al. (2015) seemed to yield stronger responses,
although no systematic comparison was made in this study. Another study employ-
ing only achromatic natural images reported high variance in induced gamma-band
amplitudes between images, and weak or absent gamma-band responses for many of
the images (Hermes et al. 2015, but see Brunet and Fries 2019). In contrast, Rols
et al. (2001) and Shirhatti and Ray (2018) reported prominent gammaband oscilla-
tions in the LFP for uniform chromatic stimuli. Together with the present natural
image data (Chapter 2), this indicates an important role of color for gamma. This
chapter studies determinants of gamma-band activity using uniform surface stimuli as
a vehicle. Chromatic and achromatic stimuli are contrasted, and the role of contextual
surround interactions for the interplay between gamma response strength and firing
rates is studied. The immediately following Chapter 5 will then investigate the depen-
dence of gamma-band amplitude on particular hues and develop an understanding of
hue-dependency based on hue-dependent adaptation mechanisms.
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4.2.1 Relationship between gamma, surround modulation and sparse
coding

Vision requires the integration of information over space, and insight into relationships
between information in space. In part, this integration is purely feedforward, because
neurons with small RFs converge onto neurons with larger RFs along the visual hi-
erarchy (Felleman and Van Essen, 1991; Serre et al., 2005; Lamme and Roelfsema,
2000; DiCarlo et al., 2012). However, even in V1, neuronal responses to sensory in-
puts depend strongly on their spatio-temporal context (see also General Introduction,
section 1.4.2). In many visual areas and V1 in particular, firing rates to a stimulus in
a neuron’s classical RF (CRF) can be increased or decreased by stimuli presented in
their surround. Its surround is of approximately circular shape surrounding the CRF,
and does not elicit responses when stimulated in isolation, i.e. without also stimulat-
ing the CRF (Spillmann et al., 2015; Vinje and Gallant, 2000; Rao and Ballard, 1999;
Angelucci et al., 2017; Gilbert, 1992). Surround modulation is the result of lateral and
feedback network interactions, which may inform a given V1 neuron about a larger
image region than covered by its CRF (Lund et al., 2003; Gilbert, 1992; Angelucci
et al., 2017). A rate decrease with surround stimulation is typically referred to as
“surround suppression” and occurs for a wide range of stimuli. Numerous related
computations have been linked to surround modulation, among them normalization
(Carandini and Heeger, 2011), contour integration (Liang et al., 2017), perceptual
filling-in (Zweig et al., 2015; Land, 1959; Wachtler et al., 2003), figure-ground sep-
aration (Lamme, 1995), and the computation of a saliency map (Coen-Cagli et al.,
2012; Li, 2002). Importantly, a lot of these computations and their associated signa-
ture neuronal phenomena can be captured using the overarching goal of sparse coding.
Sparse coding refers to the generation of informative neuronal responses that are as
rare or low as possible in terms of the percentage of the neuronal population involved
or the overall rates produced over time (Zhu and Rozell, 2013).

A sparse code is elementary to both efficient and predictive coding operations (Rao
and Ballard, 1999; Vinje and Gallant, 2000). Theories of efficient coding propose that
surround modulation removes image redundancies (e.g. homogeneous parts) across
space from neuronal representations (Schwartz and Simoncelli, 2001; Simoncelli and
Olshausen, 2001; Coen-Cagli et al., 2012, 2015; Rao and Ballard, 1999; Barlow, 2001;
Vinje and Gallant, 2000; Zhu and Rozell, 2013). Theories of predictive coding in turn
interpret the resulting neuronal response as a prediction error signal (Friston, 2005;
Rao and Ballard, 1999; Spratling, 2010). Feedback and lateral connectivity, and there-
fore coordination, is required in any of these interpretations of surround modulation.
Consequently, surround modulation may also affect temporal correlations among neu-
ronal responses (Singer and Gray, 1995).

Whereas many theoretical frameworks typically focus on explaining firing rate mod-
ulations, recent work on efficient and predictive coding also includes considerations on
the modulation of neuronal synchronization (Bastos et al., 2012; Jadi and Sejnowski,
2014; Chalk et al., 2016; Vinck and Bosman, 2016). Neuronal synchronization is rel-
evant to the encoding and transmission of information (e.g. Buzsáki and Wang 2012;
Vinck et al. 2010a; Havenith et al. 2011; Salinas and Sejnowski 2001; Sejnowski and
Paulsen 2006; Fries 2005; Fries et al. 2007; Fries 2009; Börgers and Kopell 2008;
Varela et al. 2001; Wang 2010; Buzsáki 2006; Singer 1999; Singer and Gray 1995;
Bressler et al. 1993; Bernander et al. 1994; Abeles 1982; Azouz and Gray 2000;
Akam and Kullmann 2014). Therefore, it could play an important role in contextual
integration. V1 gamma-band synchronization in particular appears linked to surround
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modulation because of the repeated finding that the amplitude of V1 gamma oscilla-
tions increases with stimulus size (Gieselmann and Thiele, 2008; Ray and Maunsell,
2011; Jia et al., 2013b; Chalk et al., 2010; Perry et al., 2013; Jia et al., 2011; Gray
et al., 1990). For a detailed discussion, refer to Vinck and Bosman 2016. Perspectives
differ on the relationship between gamma oscillations and predictive or efficient cod-
ing operations and, consequently, center-surround relationships (Jadi and Sejnowski,
2014; Bastos et al., 2012; Arnal and Giraud, 2012; Vinck and Bosman, 2016; Chalk
et al., 2016; Korndörfer et al., 2017). Some modeling studies suggest neuronal syn-
chronization as a hallmark of an efficient code (Jadi and Sejnowski, 2014; Chalk et al.,
2016).

Bastos et al. (2012) and Arnal and Giraud (2012) hypothesized that whereas lower
frequency bands carry feedback predictions from higher areas, gamma-band activity
aides in the encoding and feedforward transmission of prediction error signals (Bas-
tos et al., 2012, 2015; Arnal and Giraud, 2012). In accordance with this hypothesis,
based on multi-area recordings along the visual hierarchy, it was found that bottom-
up directional influences are strongest in the gamma, but top-down influences in the
lower alpha/beta (≈10-20 Hz) band, respectively (Bastos et al., 2015; Richter et al.,
2018; van Kerkoerle et al., 2014; Bressler et al., 2006; Bosman et al., 2012; Michalar-
eas et al., 2016). From this hypothesis, it follows that a mismatch between center
and surround stimuli should lead to an increase in both firing rates and gamma-band
amplitudes, signaling prediction errors to higher areas.

Alternatively, Vinck and Bosman (2016) recently hypothesized that the amplitude
of gamma oscillations reflects the degree to which classical RF inputs are predictable
from the surround. Gamma synchronization between mutually predictable neuronal
populations could provide a mechanism for orchestrating interactions between dis-
tributed neuronal populations (see Discussion). According to this “predictability hy-
pothesis”, a mismatch between center and surround stimuli should result in an increase
of firing rates but a decrease of gamma-band responses. Of note, the two hypotheses
cannot be distinguished based on the rate responses. To distinguish between these
conflicting views, center-surround predictability was manipulated in the following ex-
periments. As a starting point to test the relationship between center-surround pre-
dictability, gamma synchronization and rate responses, uniform surfaces were used.
Uniform surfaces contain identical, and therefore redundant, information across a rel-
atively large part of the image.

4.2.2 Processing of chromatic versus achromatic stimuli

Uniform surfaces are defined by their hue, luminance and saturation. Surfaces can
be chromatic or achromatic (black and white). In either case, such surfaces have
a high degree of predictability at the physical image level. Nevertheless, there are
likely substantial differences in the way these surfaces are processed by area V1. As a
consequence, their “predictability” on the neuronal level may also differ strongly. In
particular, there are two different ways through which V1 surface responses may arise
(Zweig et al., 2015).

1. Local: Neurons with RFs at the uniform center of a surface may be driven by
direct feedforward inputs. These may generate redundant (predictable) signals
locally. Specifically for chromatic surfaces, a particular type of hue-selective
neuron with RFs at the uniform surface region may directly encode color and
luminance information. These are so-called single-opponent neurons (in LGN
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and/or V1). They possess L+/M-, M+/L-, or blue (S) and yellow (L and M)
color opponencies that respond to chromatic surfaces rather than edges (Shapley
and Hawken 2011; Livingstone and Hubel 1984, for an introduction to color,
see General Introduction, section 1.4.1, Color in V1). Moreover, Chen et al.
(2007) reported that there is an additional, strong source of drive for chromatic
compared to achromatic brief flashes of homogeneous light.

2. Edge-derived: Surface information could be initially derived by neurons with
RFs at the edge of the surface, and via lateral interactions inform neurons with
RFs more toward the center (Zweig et al., 2015; Land, 1959; Wachtler et al.,
2003).

The relative contributions of these two pathways (local vs. edge-derived) remain
largely unknown. Importantly, they likely differ between chromatic and achromatic
surfaces (Zweig et al., 2015; Zurawel et al., 2014). In particular, Zweig et al. (2015)
compared responses at the surface’s center to the edge. Responses to achromatic sur-
faces were consistent with an edge-derived “fill-in” mechanism. In contrast, this was
not observed for chromatic surfaces (Zweig et al., 2015). Possibly, this was precluded
by the availability of surface-based information provided by single-opponent cells.
This indicates that contextual interactions likely have a different nature for achromatic
than chromatic stimuli. The following section will test for differences in contextual
modulation of firing activity and gamma-band synchronization between chromatic and
achromatic surfaces, using stimuli of different sizes and a center-surround mismatch
paradigm.

4.3 Methods

Preliminary remarks: Since the description of methods requires precision and leaves
little room for variations in expression, the methods section is taken over verbatim
from the respective publication, Peter et al. (2019). See Chapter 4, section 4.1 for
acknowledgement of methods development. Note that monkey A in this study is not
the same animal as monkey A in the previous chapters (but comes from the same lab),
whereas monkey H is the same animal.

All procedures complied with the German and European regulations for the pro-
tection of animals and were approved by the regional authority (Regierungspräsidium
Darmstadt).

4.3.1 Surgical procedures

Two male adult macaque monkeys (Macaca mulatta) were used in this study (age 9-10
years, 15-17 kg). All surgeries for implantations were performed under general anes-
thesia and were followed by analgesic treatment post-operatively. A head post was
implanted in both monkeys to allow for head fixation. In monkey H, we implanted
CerePort (“Utah”) arrays with 64 microelectrodes (inter-electrode distance 400 µm,
tip radius 3-5 µm, impedances 70-800 kOhm at 1000 kHz, half of them with a length
of 1 mm and half with a length of 0.6 mm, Blackrock Microsystems). One such array
was implanted into area V1, another one in V4, both in the left hemisphere. The V4
array is not considered here. For array implantation, a large trepanation covering both
areas was performed, the dura was cut open and reflected, arrays were inserted using
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a pneumatic device (Blackrock Microsystems), and both dura and bone were surgi-
cally closed. A reference wire was inserted under the dura towards parietal cortex. In
monkey A, we implanted a semi-chronic microelectrode array Microdrive into area
V1 of the left hemisphere (SC32-1, Gray Matter Research, containing 32 indepen-
dently movable Alpha Omega glass insulated Tungsten electrodes with an impedance
range of 0.5-2 MegaOhm and an inter-electrode distance of 1.5 mm). The microdrive
chamber was used as the reference during recordings. The precise layers/depths that
were recorded from could not be identified based on histological verification, which
is the current gold-standard, because the animals are still alive. However, based on
the observation that all sites in monkey H and the vast majority of sites in monkey A
do not show the typical inversion of the event-related potential as is found in the deep
layers (Li et al., 2015), we estimate that our recordings mainly sample activity from
layers 2-4. Sites in monkey A and monkey H behaved qualitatively in a consistent
manner across depths, such that all recording sites were pooled.

4.3.2 Behavioral task

Both monkeys were trained on a fixation task. Monkeys were seated in a custom-made
primate chair in a darkened booth. The two animals were positioned 83 (monkey H)
or 64 cm (monkey A) in front of a 22 inch 120 Hz LCD monitor (Samsung 2233RZ,
Ghodrati et al. 2015; Wang 2011). Both monkeys self-initiated trials by fixating on a
small fixation spot, which was presented at the screen center. Monkey H performed a
pure fixation task. For monkey H, the fixation spot was a Gaussian with a white center,
tapering smoothly into the background. For recordings with white background, the
fixation spot color was changed to red. Note that the pattern of results for gray and
white backgrounds was very similar despite this difference (Chapter 5, Figure 5.8),
and that receptive fields were not covering the fovea. The task of monkey A was to
report a change in the fixation spot from red to green or blue (randomly) with a lever
release. The change in the fixation spot occurred only after the stimulus period and
an additional 700 ms of background stimulation, during which the animal maintained
fixation. For the recordings with colored backgrounds in monkey A, fixation colors
were changed to remain visible, with a magenta fixation spot during the baseline and
stimulus period. For both animals, trials during which the eye position deviated from
the fixation spot by more than 0.8-1.5 dva radius were aborted. Correctly performed
trials were rewarded with diluted fruit juice delivered with a solenoid valve system.

4.3.3 Recordings

Data acquisition was performed using Tucker Davis Technologies (TDT) systems.
Data were filtered between 0.35 and 7500 Hz (3 dB filter cutoffs) and digitized at
24.4140625 kHz (TDT PZ2 preamplifier). Stimulus onsets were recorded with a
custom-made photodiode. Eye movements and pupil size were recorded at 1000 Hz
using an Eyelink 1000 system (Eyelink Inc.) with infrared illumination. Eye signals
were calibrated before each recording session using a standardized fixation task. Be-
havioral control and stimulus presentation was done using in-house custom software
running in Matlab, including ARCADE (Dowdall et al., 2018).
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4.3.4 Visual stimulation paradigms during recordings

For all paradigms, stimuli were circular, did not have overlap with the fixation spot,
and typically spanned a region from ca. 3-9 dva of eccentricity (monkey H) or 2.5-
8.5 dva (monkey A, maximum: 1.6-9.6 dva for Dataset 4) in the lower right visual
quadrant, matching RF locations. Trials always started with a baseline that lasted 0.5-
0.6 s (monkey H) or 0.5-0.8 s (monkey A), and during which only the FSB and the
fixation spot was shown. We used the following stimulus paradigms:

Dataset 1: For Figures 4.2, 5.1B and 5.6, we presented large uniform stimuli of
6 dva diameter on a gray FSB. For the chromatic condition, we used stimuli that were
either green, red, or blue, at three different luminance levels (which are shown in
Figure 5.1). For Figure 4.2, only the chromatic conditions with the highest available
luminance level were used, approximately corresponding to the maximum possible
luminance level for the blue primary. For the achromatic condition, we used either
black (minimum luminance) or white (maximum luminance) stimuli.

The background was of an intermediate gray value that allowed for good eye track-
ing quality (see Supplementary Table 5.5 at the end of Chapter 5 for all luminance
and CIE values). Stimulus duration was 3.3 s. This dataset included 3 sessions from
monkey H and 2 sessions from monkey A. There were 20±0 (H) and 20±0 (A) trials
in each session for each of the 11 conditions (2 color hues * 3 luminance levels +

black and white).
Dataset 2: For Figure 4.5, i.e. the size tuning paradigm, we presented a smaller

(either 0.5, 1, or 2 dva) stimulus and a larger (6 dva) surface stimulus in the same
trial sequentially, with each stimulus presented for only 0.6 s. In each trial, either the
smaller (“small-first”) or largest (“large-first”) surface was presented first. In addi-
tion, we used an “edge” condition in which the selected multi-unit’s RF was centered
around the vertical edge of the 6 dva stimulus, again followed or preceded by the
standard full condition (Figure 4.8). The colors used were red, blue and green (at
the same luminance intensities shown in Figure 4.2), black and white, and in case of
monkey H, also orange, cyan and magenta hues. This dataset included 5 sessions from
monkey H and 4 sessions from monkey A. There were 12.78±4.3 (H, 64 conditions)
and 12.86±5.4 (A, 40 conditions) trials in each session for each of the conditions (4
stimulus sizes * 2 presentation orders * 8/5 colors (H/A)).

Dataset 3: For Figure 4.7, we used only red, green and blue hues (with the same
luminances as the maximum luminant red, green and blue used in Dataset 1, Fig-
ure 4.2). We presented three stimulus conditions: The uniform surface, the “annulus”
and the “blob” condition (Figure 4.7). Stimuli in annulus or blob conditions were of
the same size as the uniform surface, but the center 1 dva of the surface was either
surrounded by a thin (0.25 dva) annulus of one of the other, equiluminant, hues, or
filled completely with one of the other hues (Figure 4.7). For each surface of a given
hue, there were therefore two “annulus” and “blob” conditions with the two remain-
ing colors (Figure 4.7). In the analysis, we averaged over all the color combinations
for a given condition, and compared the three main conditions. For monkey H, we
additionally recorded two sessions with maximally luminant instead of equiluminant
hues. Note that this generated strong luminance contrast changes between the colors,
but yielded qualitatively similar results. This indicates that the observed effects do
not depend on equiluminance, a condition that may occur rarely in nature. Because
results were qualitatively similar, we pooled these sessions with the remaining 5 ses-
sions of this animal. We used stimulus presentation times of 1.3-3.3 s. The first 1.3 s
were analyzed, as in Figure 4.2. This dataset included 7 sessions from monkey H and
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1 session from monkey A. There were 15.88±0.21 (H) and 18.87±0.34 (A) trials in
each session for each of the 15 conditions (3 color hues * 2 color hues for mismatch
* 2 (annulus vs blob mismatch) + 3 uniform conditions).

Dataset 4: For Figure 5.1A, we recorded “rainbow” sessions in which surfaces
(again 6 dva diameter size) of different colors were presented at the maximum pos-
sible luminance. We sampled the visible light spectrum linearly in 15 steps of equal
size in terms of wavelength, with the MATLAB (MathWorks, Inc.) internal function
spectrumRGB.m. Note that the monitor cannot produce line spectra, but can only
approximate the corresponding hues through mixing of RGB channels (see e.g. Fig-
ure 5.9A for a yellow hue). We additionally included brown and pink (extra-spectral)
hues and achromatic stimuli (see Table 5.5 and 5.2). This dataset included 3 sessions
from monkey H and 2 sessions from monkey A. There were 12.1±6.9 (H) and 20±0
(A) trials in each session for each of the 22 conditions. For the analyses shown in
Figure 5.1B, we used Dataset 1.

Dataset 5: For Figures 5.7 and 5.9, we used FSBs of various hues. The backgrounds
used were red, green, blue and yellow at maximum possible luminance, as well as
black, white and gray, presented at the same luminance intensities as in the other
datasets. Surface stimuli of 6 (monkey H) or 8 (monkey A) dva diameter in size were
used. The size was slightly increased for monkey A to place the edge of the surface
stimulus further from the most peripheral RFs. The hues used for the surface were
identical to the ones used for the FSBs. In addition, we presented chromatic surfaces
with reduced values, namely red, green and blue with the same luminance levels as in
Figure 4.2, and a brown surface. All possible combinations of surface and FSB hues
were shown. All other presentation parameters were kept as for Dataset 1.

For all stimulus paradigms for monkey A, and in Dataset 5 for monkey H, there
was a post-stimulus period of 0.7 s (0.5 s in monkey H) after the offset of the stimu-
lus, during which the monkey was required to maintain fixation. For monkey A, the
fixation color would change after this period and the monkey Had to respond to this
change with the release of a lever, whereupon the fixation spot was removed. Pre-
sentation of different stimulus conditions was in a pseudo-random order. This dataset
included 16 sessions from monkey H and 9 sessions from monkey A (1-2 per FSB).
There were 17.89±0.17 (H) and 19.00±0.08 (A) trials in each session for each of the
11 conditions.

4.3.5 DKL Color Space

In order to calibrate the monitor outputs, the luminance of the RGB monitor primaries
were measured with Konica Minolta CS-100A chroma meter and look-up tables were
generated. Monitors were gamma-corrected to linearize the dependence of luminance
on RGB values. The Derrington-Krauskopf-Lennie (DKL) Color Space was intro-
duced as a color-opponent modulation space (Krauskopf et al., 1982; Derrington et al.,
1984). DKL color space is based on a cone-contrast representation, where cone activa-
tion to a color stimulus is quantified as the relative change of the cone activations with
respect to the background color (Brainard, 1996). Weber cone-contrasts are computed
in three steps: 1) The change in cone-activation relative to the full-screen background
is computed, 2) This change in cone-activation is normalized (divisively) by the extent
to which the background differentially activates the different cones. These cone con-
trasts are then transformed into 3 primary axes of the DKL space, which correspond
to the mechanisms of L+M (luminance), L-M (red-green opponency), and S-(L+M)
(blue-yellow opponency) as described in Brainard (1996). Along the L-M axis, max-
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imum L/M cone contrasts were 9.60% and 14.81% respectively, along the S-(L+M)
axis, S cone contrast was 79.35%. These values were found to be similar to previous
studies (Hansen and Gegenfurtner, 2013; De Valois et al., 2000).

4.3.6 Data analysis

Preprocessing. Data were analysed in Matlab using the FieldTrip toolbox (Oosten-
veld et al., 2011). Only correctly performed trials were analyzed. LFPs were derived
from the broadband signal using Matlab’s decimate.m function, by low-pass filter-
ing with a cutoff frequency of 24414.0625/24/2 Hz (FIR Filter with order 30) and
downsampling to 24414.0625/24 Hz. Line noise was removed using two-pass 4th or-
der Butterworth bandstop filters between 49.9-50.1, 99.7-100.3 and 149.5-150.5 Hz.
LFPs had a unipolar reference scheme described in Recordings. Explorative analyses
with local bipolar derivations, obtained by subtracting the signals from immediately
neighboring electrodes from each other, yielded comparable results (data not shown).
MU (multi-unit) signals were derived from the broadband signal through bandpass
filtering between 300 and 6000 Hz (4th order butterworth), rectification, and applying
low-pass filtering and downsampling the same way as for the LFPs. For the calcula-
tion of rate modulations, this MU signal was smoothed with a Gaussian kernel with
an SD of 20 ms. This signal is called MUA in previous chapters, but will be typically
referred to as MU signal or MU firing in these chapters, in keeping with the original
publication and the figures. This was deemed preferable to making small changes to
a number of figures, and cluttering the text with pointers to this. Qualitatively similar
results were obtained using thresholded multi-unit data. We used this MU signal for
all analyses in the main text, as in previous studies by other labs (Schmid et al., 2013;
Self et al., 2013; Xing et al., 2012; Legatt et al., 1980).

Receptive field estimation. Receptive fields were mapped with moving bar stimuli
(spanning the entire monitor). Moving bars (width 0.1 dva, speed 10/17 dva/s) were
presented in 8 orientations for monkey H and 8-16 orientations for monkey A, each
for 10-20 repetitions. Mapping sessions were intermittent for monkey H and typi-
cally daily for monkey A, to confirm stability of the recordings. MU responses were
projected onto the stimulus screen, after shift-correction by the response latency that
maximized the back-projected response. MU responses were then fitted by a Gaussian
function. This Gaussian was used to extract the 10th percentile and the 90th percentile,
and this was done separately for each movement direction. Across the 16 directions,
this yielded 32 data points, which were fit with an ellipse. This ellipse was defined
as that MU’s RF. The RF size is defined as the diameter based on (area of the el-
lipse/pi)*2.

Electrode selection. We included all electrodes for analysis that met the following
criteria: (1) the MU showed a response to RF stimulation that was at least two SDs
above stimulation outside the RF. (2) The MU response during the response period
(0.05-0.15 s) of at least one condition of the respective dataset was at least 2 SD above
the corresponding baseline (-0.1-0 s). In case of Figures 4.5-4.7, it was additionally
required that the RF center of the MU was within 0.5 dva of the stimulus center. In the
remaining figures, it was required that the RF center was within the surface stimulus.

Estimation of LFP power spectra. For Figures 4.2, 4.7-5.1 and 5.7-5.9, the baseline
period was the last 500 ms before stimulus onset, and each stimulation period yielded
two non-overlapping epochs of 500 ms (0.3-1.3 s period). For Figure 4.5, due to the
short presentation times, we used epochs of 300 ms (300-600 ms after the onset of
the stimulus, and for baseline 300 ms before stimulus onset). LFP epochs were multi-
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plied with discrete prolate spheroidal sequences (multi-tapers for ±5 Hz smoothing),
Fourier transformed and squared to obtain LFP power spectral densities (for a recent
discussion on spectral estimation see Pesaran et al. 2018). For Figure 5.6, we used
windows of 0.3 s length, slid over the data in steps of 50 ms. Data were multiplied
with a Hann taper before Fourier transformation.

Normalization of LFP power spectra. To show LFP power changes, we computed
relative power spectra by dividing single-trial power spectra from the stimulation pe-
riod by the average power spectra across conditions and trials from the baseline. This
was shown as a fold-change in all figures showing relative changes except for Fig-
ure 5.6, the time-frequency representations (TFRs), where for visualization purposes,
we transformed this into dB units.

To investigate absolute LFP power (without reference to the baseline), we normal-
ized power spectra per electrode by the total power above 25 Hz in the baseline condi-
tion. This normalization reduced variance or scaling in the LFP power spectra across
sessions and animals before averaging. By normalizing both the baseline and the
stimulus period by the same normalization factor, we could still examine changes in
raw LFP power across conditions, for each frequency bin separately. This would not
have been possible if we had normalized the LFP power spectrum in a given condi-
tion by the total power across frequencies in the same condition. These power spectra
were averaged across the selected channels (except for single-channel analyses as in
Figure 4.4).

Quantification of LFP gamma-band amplitude. Quantification of the differences in
gamma-band amplitude between conditions is in general a difficult problem because
changes in firing rate can cause broad-band shifts in the LFP power spectrum, and
because spikes can “bleed-in” at higher LFP frequencies (Miller et al., 2009a; Ray
and Maunsell, 2011; Pesaran et al., 2018; Buzsáki et al., 2012). We developed an
algorithm to extract gamma-band amplitude in order to address these problems (see
Figure 4.1 for an illustration). We present two versions of this algorithm that are
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Figure 4.1 — Illustration of fitting procedure. (A) Average LFP power spectra for a large chromatic
condition of an example session used in Figure 4.5. LFP spectra for all conditions were normalized to
the summed power (> 25 Hz) for the baseline condition. (B) Log-transformed, 1/Fn corrected spectra
(solid line) and their fit (dashed line). Peak height was determined as the difference between the peak
value at location Fmax and a baseline estimate based on the average of the power at location Fmin
and Fmin+2*(Fmax-Fmin), the estimate of peak width.
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used for separate figures, and are based on constructing a polynomial fit of the LFP
spectrum which was detrended in two separate ways. The first algorithm had the
following structure:

1. Power spectra were log-transformed and the frequency axis was also sampled
in log-spaced units to avoid over-fitting of high-frequency datapoints. All sub-
sequent polynomial fits were performed on the 20-140 Hz range.

2. We used the change in stimulus-induced LFP power versus the common base-
line (see above), expressed as ∆P = log(Pstim) − log(Pbase).

3. To determine the polynomial order, we used a cross-validation procedure to
prevent overfitting. A random half of the trials was used for the fitting and
deemed the “training set”. The remaining trials were the “test set”. Polynomials
of order 1-20 were fit to ∆P as a function of frequency for the “training set”,
minimizing the mean squared error. We then computed the mean squared error
using the same polynomial fit on the “test set” for each of the 20 orders. This
procedure was then repeated for multiple (50) iterations, with a random half of
the trials selected for each iteration, and for each iteration, the best-performing
order was retained.

4. A polynomial with the median of the best-performing orders was then fit to the
complete set of trials.

5. On the polynomial fit, local maxima and minima in the 30-80 Hz range were
identified. The peak gamma frequency was the location of the maximum. The
band-width of gamma was estimated as twice the distance between the fre-
quency of the maximum (Fmax) and the frequency of the first local minimum
to the left of the maximum (Fmin), i.e. b = 2Fmax − Fmin (see Figure 4.1 ). The
gamma amplitude was then assessed from the difference between the value of
the polynomial fit at the maximum and the average of the polynomial fit at Fmin

and Fmax + Fmin (Figure 4.1).

6. This difference was taken in log-space (because the power spectra were origi-
nally log-transformed) and then transformed to a fold-change.

As in previous chapters, log refers to a base of 10. If firing rate changes relative
to baseline (or between conditions) were very strong, e.g. with small stimuli, this
fitting procedure occasionally ran into problems, because relative LFP power spectra
showed broad increases that were likely due to non-rhythmic processes like spikes or
postsynaptic potentials (see Figure 4.7C for an example of this effect). In addition, in
Figure 5.7 and 5.9, because we used background stimuli of different hues, a “neutral
baseline” like the gray background screen was not always available. In these cases we
modified the second step of this algorithm. Instead of computing the change in LFP
power relative to baseline, we performed a 1/Fn correction on the raw LFP power spec-
trum. The 1/Fn correction was performed by fitting an exponential to the LFP power
spectrum, excluding data points in the typical gamma range of 30-80 Hz. Note that
we fitted an exponential function because in many cases, bleed-in of spiking energy in
the LFP caused a departure from a linearity in the log(power) versus log(frequency)
graph (see also Haller et al. 2018; Shirhatti and Ray 2018). We visually inspected the
fits for a large number of spectra and compared this also to a procedure with a mixture
of a linear fit and a Gaussian fit to the log(power) versus log(frequency) graph, which
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had substantially more problems in dealing with spike-bleed at high frequencies, as
well as with additional peaks (potentially harmonics) at higher frequencies (e.g. for
the red surfaces, data not shown).

Spike-field coherence. For spike-field coherence, we used only electrodes selected
by the procedure described above. In addition, for MU-LFP pairs, we required that
the electrodes were direct neighbors in the grid, and in the case of monkey H, given
that the microelectrode array had two fixed depths, were of the same depth. Spike-
field phase-locking was computed as follows. We estimated the cross-spectral density
between LFP and MU signal for each trial separately (cross-spectra) using the same
spectral estimation settings as for the LFP power spectrum. This yielded one cross-
spectrum per trial. We then normalized the cross-spectrum per trial by its absolute
values, to obtain the cross-spectral phases (without amplitude information). We used
those normalized cross-spectra to compute the Pairwise Phase Consistency (PPC),
using FieldTrip (Oostenveld et al., 2011). This measure has the advantage that the bias
by trial count, inherent to e.g. the spectral coherence, is avoided (Vinck et al., 2010b).
For a given MU site, the PPC values were then averaged across all the combinations
with LFPs from the other selected channels. Note that MU-LFP combinations from
the same electrode were excluded to avoid artifactual coherence due to bleed-in of
spikes into the LFP (Ray and Maunsell, 2011; Buzsáki et al., 2012). Because of the
distance between electrodes (at least 400 µmeter), this was not an issue for MU-LFP
combinations from different electrodes. The standard error of the PPC was estimated
across sessions. This was different from SE estimation for power and rate, which
used the bootstrap (see below). Bootstrap estimates are problematic for PPC because
bootstraps contain repetitions of identical trials, which trivially yield high coherence
values.

Rate modulation. Rate modulation was computed as log(Mstim/Mbase), where Mstim

and Mbase represent the MU firing activity in the stimulus and baseline period, re-
spectively. To quantify surround suppression, we took the differences of these rate
modulation indices between small and large stimulus size conditions.

Modulation index of fold-changes. To quantify the modulation of LFP gamma-
amplitude (expressed as fold-change) between conditions (Figure 5.6, 5.7), we com-
puted a modulation index as (A−B)/(A+B), where A and B are the gamma-amplitudes
in the two conditions, taken as the fold-change minus 1. Note that the fold-change was
extracted using the polynomial fitting procedure described above, and a fold-change
of 1 indicated the absence of a gamma peak.

Microsaccade detection and subsequent LFP analysis. For microsaccade detection,
we smoothed horizontal and vertical eye signals (rectangular window of ±5 ms) and
differentiated the signals over time points separated by 10 ms to obtain robust eye
velocity signals. For monkey H, for whom data from both eyes were available, data
were averaged across eyes. We then used the microsaccade detection algorithm de-
scribed in Engbert and Kliegl (2003) with a velocity threshold of 6*c, where c is the
criterion defined as c = Median[v2] − (Median[v])2. Threshold crossings in either
the horizontal or vertical direction were considered as microsaccades. We tested sev-
eral threshold levels and obtained qualitatively similar results. We then removed data
epochs of 100 ms after each microsaccade and recomputed our analyses (based on
Lowet et al. 2016; 100 ms is approximately the duration of microsaccade effects in
V1). Removing 200 ms after each microsaccade yielded qualitatively similar results
but fewer remaining epochs. For the analysis of LFP gamma amplitude, we switched
to analyzing epochs of 100 ms using a Hann taper, instead of the 500 ms time bins
used before. This is sacrificing some frequency resolution and limiting the results to
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frequencies > 20 Hz, in order to obtain a large number of microsaccade-free epochs.
Epochs were zero-padded to 1 s, effectively smoothing the spectra. Note that we show
the results for the data including microsaccades with the identical epoch length and
taper to allow a fair comparison.

Pupil responses. Pupil signals across the two eyes were averaged for monkey H.
Pupil size during the comparatively stable period 200 ms to stimulus onset was used as
a baseline. Pupil size was then computed as percent change from the average response
during this time (A-B)/B, where A is the pupil response at each time point and B is
the average response during the baseline period. Note that since the Eyelink system
gives outputs with arbitrary units, and these were negative during the baseline period,
we took the absolute value for the denominator such that pupil size decreases are
indicated by negative values.

4.3.7 Statistics

Error bars or shaded error regions correspond to ± one SEM. SEM was estimated
using a bootstrap procedure, with the exception of spike-field coherence (see above).
For the b-th bootstrap out of B = 1000 bootstraps, b = 1, . . . , B, the following was
done. For each condition in a given session, with a set of N trials T , we took a
random set of N trials from T with replacement. For that sample of N trials Sb,
we then computed the statistic of interest. For LFP signals, we then computed the
average statistic in a given session over all channels, then averaged over sessions, and
then monkeys. The rationale behind averaging across all LFP channels was that these
signals are likely highly statistically dependent because of volume conduction among
the relatively closely spaced electrodes. For MU signals, we computed the average
statistic of interest across sessions per MU site separately, and then averaged across
all recording sites. The standard error of the mean was then defined as the standard
deviation over the B average statistics, as is common with bootstrapping procedures.

We used the bootstrap distributions for inference on fold-change estimates or fold-
change modulation indices between conditions, as well as differences in peak gamma
frequency. In this case, we computed for each bootstrap the difference between aver-
age statistics for two conditions, and then tested whether this distribution was different
from zero (with Bonferroni correction for number of comparisons).

For frequency- or time-resolved differences (in absolute and relative LFP power
spectra and rate modulation scores), we used multiple-comparison corrected permuta-
tion tests: In this case, we shuffled the trials between two conditions per permutation P
times, and then constructed a permutation distribution of average absolute differences
between conditions. We equalized trial numbers for each comparison, for example
between chromatic/achromatic conditions or the different stimulus sizes. We then
compared the observed difference between average statistics against this permutation
distribution. For multiple-comparison correction, we used the procedure from Korn
et al. (2004), which is based on the sorted distribution of absolute differences, with
alpha and false discovery rate values of 0.05. In this iterative procedure, values in the
observed distribution exceeding the 95th percentile of the P maximal values of each
permutation distribution (critical value) are deemed significant. Significant values are
removed from the observed distribution, and the same positions are removed from all
P permutation distributions. Values in the observed distribution exceeding the criti-
cal value based on these permutation distributions are then iteratively collected until
no value in the observed distribution exceeds the critical value. Note that statistical
parameters are reported mostly in the figure captions.
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4.3.8 Quantitative model for dependence of gamma-band amplitude on
background stimulus

Cone data (bleaching difference corrected spectra) were extracted from Hárosi (1987).
Polynomials of order 7 were fit to these curves. The cone response curves were then
normalized to the maximum. We measured the spectral energy of each color as well as
black, white and gray (Ocean Optics WaveGo; XWAVE-STS-VIS-RAD). The spectral
energies of the colors were normalized to unit mass. For gray, we added the normal-
ized energies of R, G and B and multiplied with the energy ratio of gray over white.
We then convolved the cone response curves with the normalized spectral energies to
determine how strongly each background adapts the three cones. Regression mod-
els were then fit as explained in the Results text and caption of Figure 5.9. SEM for
regression coefficients were obtained by the same bootstrap procedure as described
above.
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4.4 Results

Preliminary remarks: This result section is based in large part, directly and verbatim
on the results section of the respective paper, Peter et al. (2019). Some exceptions
exist because the paper was subdivided into two chapters, i.e. 4 and 5. Furthermore,
supplementary figures from the paper were either integrated into the text or omitted,
with respective adjustments to the text. Figure numbers do not match those of the pub-
lication. It will become apparent to the reader that the experiments follow a logical
order, building on each other, such that there is little point in changing the overall
order. Similar to the methods section, there is only very limited choice in wording for
large parts of these results, with little intellectual achievement if this were done. I
therefore decided to quote the results section in its original form.

We recorded multi-unit (MU) activity and local field potentials (LFP) from the pri-
mary visual cortex (area V1) in two macaque monkeys, while they performed a fix-
ation task. These recordings were made using a 64-channel chronic microelectrode
array in monkey H and a 32-channel semichronic microelectrode array in monkey A
(see Methods). Classical receptive fields (RFs, referring to classical RFs unless oth-
erwise mentioned) of the MU activity were estimated using moving bar stimuli (see
Methods; monkey H: median RF eccentricity 6.2 dva, range 5.2-7.1 dva, median RF
diameter 0.48 dva, range 0.26-1.88 dva; monkey A: median eccentricity 5.4 dva, range
3.2-8.5 dva, median RF diameter 0.91 dva, range 0.46-2.3 dva). Compared to a sur-
face stimulus of 6 dva diameter, receptive fields had a median proportional diameter
of 0.08 (0.04-0.31, monkey H) or 0.15 (0.08-0.38, monkey A). We first studied LFP
and MU responses to the presentation of stationary surface stimuli, namely large uni-
form disks covering the cluster formed by all RFs (6 dva diameter, flashed on and then
maintained on screen; Figures 4.2A-B; Dataset 1, see Methods). The stimuli did not
overlap with the fixation spot. Note that the stimuli were much larger than the RFs
of the multi-units, such that they covered a large portion of the multi-units’ respective
surround regions.

In this chapter, we analyzed differences between chromatic and achromatic surface
stimuli (Figures 4.2 and 4.5). In the following Chapter 5, we describe the specific
differences among responses to distinct color hues and achromatic stimuli. Note that
statistical parameters are largely described in the figure captions.

4.4.1 Characteristics of firing activity and LFP signals in response to
uniform surface stimuli

We examined the effect of uniform surface stimuli on LFP power spectra. The presen-
tation of large, chromatic surface stimuli (equiluminant red, green and blue; see Meth-
ods) induced prominent, narrow-band gamma oscillations in LFP power spectra (Fig-
ure 4.2C-D). These oscillations were clearly visible in the LFP traces (Figure 4.2B).
In comparison, gamma-band oscillations were significantly weaker for achromatic
surface stimuli (black or white, maximal contrast to background; Figures 4.2C-D).

To test whether V1 spiking activity was synchronized with the induced LFP gamma
oscillations, we computed spike-field phase locking spectra (Pairwise Phase Con-
sistency, Vinck et al. 2010b) between MU and LFP activity obtained from nearby
but separate sites (Figure 4.2E; see Methods). Spike-field phase-locking spectra for
chromatic surface stimuli showed a prominent peak in the gamma-frequency band
consistent with the gamma peak in the LFP power spectrum (Figure 4.2D), whereas
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chromatic conditions (having gamma power close to the median of the respective condition). (C) Av-
erage LFP power spectra for chromatic (turquoise), achromatic (black) and baseline (gray) conditions.
LFP power was estimated using Discrete Fourier Transform of non-overlapping epochs of 500 ms, with
multi-tapering spectral estimation (± 5 Hz). LFP spectra for all three conditions were normalized to the
summed power (> 25 Hz) for the baseline (gray) condition (see Methods). (D) Average change in LFP
power, expressed as fold-change, relative to baseline. (E) Average MU-LFP locking, which was esti-
mated using the pairwise phase consistency (PPC, see Methods). (F) Modulation of firing rate relative
to baseline, expressed as log(stim/base). (C-F) Shadings indicate standard errors of the means (see
Methods). (D-F) Gray bars at bottom of figure indicate significant differences between chromatic and
achromatic stimuli, obtained from permutation testing with multiple comparison correction across all
frequencies and time points (see Methods).

phase-locking was significantly weaker for achromatic surface stimuli (Figure 4.2E).
This demonstrates that gamma-synchronization for chromatic stimuli is not merely
observed at the level of synaptic currents within V1, but also at the level of V1 output
spikes.

Next, we examined the way in which the presentation of uniform surface stimuli
affected MU firing activity. The presentation of chromatic and achromatic surface
stimuli induced short-latency onset transients of similar magnitude (Figure 4.2F).
However, we observed a stronger decrease in MU firing activity over time during
continuous stimulus presentation for chromatic than achromatic surface stimuli, start-
ing around 200 ms after the stimulus onset. Strikingly, for chromatic surface stimuli,
MU firing activity fell below baseline levels (Figure 4.2F). Note that in the following
chapter, Figure 5.1D, we show that the decrease in MU firing below baseline only
occurred for a subset of colors. The reduction in MU firing rates (0.3-1.3 s period)
for chromatic as compared to achromatic surface stimuli was observed for 92% of
recording sites. Control analyses in which 100 ms data epochs after microsaccades
were removed indicate that the late decrease in MU firing was not due to microsac-
cades. We also found that the LFP results on gamma oscillations were qualitatively
unchanged (Figure 4.3).

Our main LFP analyses were performed with smoothing in the frequency domain
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Figure 4.3 — Control analysis for microsaccades. (A) Average LFP power spectra and rate modula-
tion for chromatic (turquoise), achromatic (black) and baseline conditions, separately for data epochs
defined irrespective of microsaccades (top) and epochs excluding 100 ms after each microsaccade.
Microsaccade detection was based on the algorithm of Engbert and Kliegl (2003) (see Methods). Anal-
ysis was based on same dataset as in Figure 4.5. Analyses were performed as for Figure 1, except
that the Fourier spectra were computed based on 100 ms epochs that were Hann-tapered and zero-
padded to 1 s. (B) Modulation of firing rate relative to baseline, expressed as log(stim/base), separately
for data with microsaccade epochs included (top) and excluded (bottom).

and analyzed from 20 Hz onwards (see Methods). In Figure 4.4A, we show log-
log LFP spectra down to 2 Hz. Figure 4.4B shows the corresponding relative power
spectra with tests for differences between chromatic and achromatic conditions. The
effects are specific to the gamma-band. The chromatic-achromatic difference was
also highly consistent across sites. For each site and chromatic/achromatic condition,
we determined the peak power change in the gamma-frequency range (30-80 Hz)
using a polynomial fit (see Methods). Gamma peak power changes were stronger for
chromatic than achromatic surface stimuli at 97.8% (45 out of 46) of LFP recording
sites (Figure 4.4C).

The LFP power spectra had similar frequency profiles in the two monkeys (i.e. the
peaks were well aligned), and the MUs showed similar temporal profiles (Figure 4.4D-
I). Therefore, we pooled the data from the two animals in Figure 4.2 and the remaining
figures, unless otherwise indicated (the main results are typically also shown per ani-
mal).

Note that in the next chapter, section 5.2.2 (Controls for luminance- and cone-
contrast), we will describe the results of control experiments in which the chromatic
and achromatic stimuli are matched in terms of luminance-contrast and DKL cone-
contrast (see Methods) to the full-screen background. We find that the difference in
gamma-band oscillations between chromatic and achromatic stimuli is not explained
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Figure 4.4 — Additional analyses of LFP and multi-unit activity in response to large, uniform sur-
faces. (A) Average LFP power spectra for chromatic (turquoise), achromatic (black) and baseline
(gray) conditions. LFP power was estimated as in Figure 4.2, but with a Hann taper (see Methods).
(B) Average change in LFP power, expressed as fold-change, relative to baseline. (C) Scatter-plot
for all the LFP recordings sites in two monkeys, showing the gamma-band amplitude (expressed as
fold change) in chromatic and achromatic conditions. (D) Average LFP power spectra for chromatic
(turquoise), achromatic (black) and baseline (gray) conditions for monkey A, using same estimation
settings and normalization for power spectral density as in Figure 4.2. (E) Average change in LFP
power, expressed as fold-change, relative to baseline. (F) Modulation of firing rate relative to baseline,
expressed as log(stim/base), for monkey A. (G-I) as (D-F), but now for monkey H. (A-I) Shadings and
error bars indicate standard errors of the means (see Methods). Gray bars at bottom of figure indi-
cate significance bars, obtained from permutation testing with multiple comparison correction across
all frequencies and time points.

by either luminance or cone-contrast to the full-screen background.
These findings demonstrate that large, uniform, chromatic surface stimuli induce

low firing activity yet highly gamma-synchronous V1 responses, whereas achromatic
surface stimuli induce much weaker gamma-band synchronization but relatively more
vigorous firing activity (for further interpretation of this finding, see Discussion).

4.4.2 Dependence of firing activity and LFP signals on stimulus size

The results shown in Figure 4.2 are consistent with the predictability hypothesis (Vinck
and Bosman, 2016) outlined in section 4.2.1. Yet, they do not demonstrate directly that
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the enhancement in gamma-band synchronization observed for large uniform colored
surfaces is due to contextual surround modulation, because we did not manipulate
the surround input. Furthermore, it remains unclear whether the observed differences
between chromatic and achromatic surfaces can be explained by a difference in con-
textual surround modulation or other factors like stimulus drive. To address these
questions directly, we used a paradigm that varied the stimulus size across trials (Fig-
ure 4.5A; see Methods). We selected one site (or a few nearby sites with RF centers
within 0.5 dva of the target site) per session and centered the stimulus on the multi-
unit’s RF, which was previously mapped with moving bars. In each trial a stimulus of
a particular size (0.5, 1, 2 or 6 dva diameter) was presented for 600 ms (Figure 4.5A).
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Figure 4.5 — Dependence of LFP power spectra and MU firing activity on surface size. (A) Illustra-
tion of experimental paradigm (Dataset 2, see Methods; n = 9 sessions, 59.75±0.09/25.64±0.12 trials
chromatic vs achromatic trials per condition in each session). Uniform surfaces of four different sizes
were presented on a gray background screen. Fixation spot is enlarged for visibility. Right: Receptive
field estimated with bar stimuli for a representative target channel, with the outline (orange dashed
line) of the largest size stimulus (see Methods). Note that the activation outside the RF is due to the
use of large bar stimuli sweeping over the monitor. (B) LFP power spectra for different sizes and chro-
matic/achromatic conditions. LFP power spectrum estimated and normalized as in Figure 4.2C, but
now using 300 ms epochs. Right panel shows the gamma-band amplitude as a function of size, esti-
mated using a polynomial fitting procedure between 30-80 Hz (see Methods). The difference between 6
and 0.5 dva stimuli was significantly larger for chromatic than achromatic condition (P < 0.05, bootstrap
test, see Methods). (C) Modulation of firing rate relative to baseline, expressed as log(stim/base), for
different sizes and chromatic/achromatic conditions. Right panel shows surround suppression, which
was defined as the difference in firing rate modulation between the 0.5 degree size and the other sizes.

We first examined how the characteristics of LFP power spectra depended on stim-
ulus size. Analysis of LFP power spectra revealed a strong dependence of gamma
power on stimulus size for chromatic stimuli, and by comparison a much weaker de-
pendence for achromatic stimuli (Figure 4.5B). To quantify this size dependence, we
determined the gamma peak power between 30-80 Hz (as described for Figure 4.2).
For chromatic stimuli, increases in stimulus size resulted in increases in induced
gamma peak power as soon as the stimulus also covered the surround (i.e. from 2 dva
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onwards, Figure 4.5B). By contrast, for achromatic stimuli, a gamma peak in the 30-
80 Hz band emerged from 2 dva stimulus size onwards and showed no further increase
with stimulus size.
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Figure 4.6 — Dependence of LFP power spectra and MU firing activity on surface size: additional
analysis. (A) Gamma-band peak amplitude and peak-frequency as a function of size, estimated using
a polynomial fitting procedure between 30-150 Hz. A wider range instead of the standard 30-80 Hz
range was used here, to also capture peaks >100 Hz, which is far outside the typical range of clas-
sical visual gamma. This activity may reflect spike bleed-through, which is beyond the scope of the
present study. (B) Average gamma-band peak height in 30-80 Hz range, shown separately for the two
monkeys. The difference between 6 and 0.5 dva stimuli was significantly larger for the chromatic than
achromatic condition for both animals (P < 0.05, bootstrap test). (C) Each trial contained a sequence
of two stimuli, either the small stimulus first for 600 ms, or the large stimulus first for 600 ms (see Meth-
ods). Here we show the first type of sequence to illustrate the onset of a surround when the stimulus
covering the classical RF is already present. Modulation of firing rate relative to baseline, expressed
as log(stim/base), for different sizes and chromatic/achromatic conditions. Note rapid firing suppres-
sion after onset of the large stimulus following the 0.5 dva stimulus, with a significant difference arising
already after ≈100 ms.

We then considered the way in which MU firing was modulated by surround stim-
ulation. We observed that for both achromatic and chromatic stimuli, MU firing ac-
tivity was highest for 0.5-1 dva stimulus sizes (Figure 4.5C). This was consistent with
the estimates obtained from RF mapping and the fact that we centered the presented
stimuli on the MUs’ estimated RFs. For small stimuli (0.5-1 dva), only the initial
transient in MU firing activity showed a difference between chromatic and achromatic
conditions, with slightly higher firing activity for achromatic than chromatic stimuli
(Figure 4.5C). In contrast, the presentation of a 2 or 6 dva stimulus, increasingly cov-
ering the surround, induced strong suppression of MU firing activity as compared to
the 0.5 dva stimulus (Figure 4.5C, rightmost panel). This surround suppression was
stronger for chromatic than achromatic stimuli (Figure 4.5C).

Furthermore, we analyzed responses during a later period in the trial, when the small
stimulus had been presented for 600 ms, and a large (6 dva) surface stimulus of the
same color was added for another 600 ms period (4.6C). We found that this addition of
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the surround stimulus alone induced a rapid suppression of MU firing activity, which
was significantly more pronounced for chromatic than achromatic stimuli (4.6C).

Given the relatively broad increase in >100 Hz LFP power seen in Figure 4.5B, we
also determined gamma peak power and peak frequency in a wider range (30-150 Hz).
This analysis revealed LFP power peaks >100 Hz for the sizes below 2 dva, and again
the strong size dependence for chromatic compared to achromatic stimuli (4.6A; also
see 4.6B for an analysis per animal in the original frequency window).

These findings suggest that the relatively strong decrease in firing over time ob-
served for large, chromatic surfaces (Figure 4.2) is at least partially explained by sur-
round suppression. They furthermore indicate that for the small RF stimuli, there are
no substantial differences on average between chromatic and achromatic surfaces in
terms of MU and LFP responses. Yet, we find a prominent difference in the way
chromatic and achromatic stimuli are affected by surround stimulation.

4.4.3 Modulation of firing activity and LFP signals by center-surround
predictability

A potential explanation for the results shown in Figure 4.2-4.5 may be the center-
surround predictability hypothesis outlined in section 4.2.1 (Vinck and Bosman, 2016).
Yet, the employed paradigm used stimuli of different sizes, which may have recruited
different neuronal circuits and may also have changed stimulus salience. We therefore
used an additional stimulus paradigm in which surround influences were modified,
while stimulus size was held constant. Specifically, we created three sets of equally
sized stimuli. In one set, the surround was fully predictive of the RF stimulation, be-
cause it used a uniform surface (called “uniform” stimulus). In the second set (called
“blob mismatch”), the surround was not predictive of the RF stimulation, because the
surround stimulus and the 1 dva RF stimulus had different colors (which were phys-
ically equiluminant). In the third set (called “annulus mismatch”), the surround had
the same color as the RF stimulation, but the two were separated by an annulus ring of
a different, physically equiluminant color. This annulus ring had 0.25 dva thickness
and an inner diameter of 1 dva).

We found that compared to the uniform surfaces, stimuli with a chromatic (blob or
annulus) mismatch had higher MU firing activity (Figure 4.7C). This held true both for
the initial transient period and the subsequent sustained response period. At the same
time, we observed a marked decrease in the amplitude of LFP gamma oscillations for
the chromatic mismatch compared to the uniform surface stimuli (Figures 4.7B-C).
This result was consistent across animals (Figure 4.8A).

We further investigated whether this pattern of changes was specific to the sites hav-
ing RFs near the center of the stimulus. To this end, we examined sites with RFs on the
outer uniform regions of the stimulus (with RF centers 1.5-2 dva from the stimulus
center; Figure 4.7D). For these sites the MU firing responses did not differ signif-
icantly between conditions during the initial transient period (Figure 4.7D). During
the later sustained response phase, however, MU firing activity was reduced for the
chromatic mismatch stimuli compared to the uniform surface stimulus (Figure 4.7D).
Note that whenever the RF center covered a large uniform surface region, either in the
uniform stimulus condition or when it covered the surround region of the mismatch
stimuli, sustained firing levels were below baseline. This confirmed the respective
finding reported in Figure 4.2.

These results suggest that a mismatch between stimuli at the RF center and the
surround can dramatically change the surround influence on responses to the center.
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Figure 4.7 — Dependence of LFP power spectra and firing rates on spatial predictability. (A) Illustration
of the paradigm (Dataset 3, see Methods; n = 8 sessions, 16.26±0.19 trials in each of the 15 conditions
per session). We grouped stimuli intro three types. In the “uniform surface” group of conditions, stimuli
of 6 dva diameter were presented with either a red, blue or green hue (R B G, equiluminant). In the
second “blob mismatch” group, the central 1 dva of the stimulus had a different (equiluminant) color
than the rest of the stimulus. In the third “annulus mismatch” group, we presented an annulus ring
(of 0.25 dva) of another color on top of the uniform surface (at equiluminant intensity) around the
inner 1 dva from the stimulus center. All combinations of hues and stimulus types were presented,
yielding a total of 15 individual conditions. (B) Representative LFP traces (having gamma power close
to the median of all trials for the respective condition) for the three stimulus types. (C) Analysis for
target channels with RFs at the center of the stimulus. Shown from left to right are: (1) The change
in MU firing activity relative to baseline expressed as log(stim/base). (2) LFP power spectra for the
three stimulus conditions and the baseline. LFP power spectrum estimated and normalized as in
Figure 4.2C. (3) The change in LFP power relative to baseline, expressed as a fold-change. (4) The
gamma-band amplitude, estimated using a polynomial fitting procedure (see Methods). Gamma-band
amplitude was significantly higher for uniform surface than blob and annulus conditions (P < 0.05,
bootstrap test, see Methods). (D) Same as (C), but now for target channels with RFs between 1.5
and 2 dva from the stimulus center, i.e. close to the central region of the larger, uniform region of
the stimulus. Gamma-band amplitude did not significantly differ between conditions (bootstrap test, all
P>0.08).
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Figure 4.8 — Dependence of LFP power spectra and firing rates on spatial predictability: additional
analyses. (A) Comparison of gamma-band power between full surface and mismatch conditions, sep-
arately for the two monkeys. For both monkeys, gamma-band amplitude was significantly higher for
uniform surface than blob and annulus conditions when the RF was at the center of the surface stimu-
lus (P < 0.05, bootstrap test, see Methods). (B) Illustration of paradigm (Dataset 2). Uniform surfaces
were either centered on the unit’s RF, or the edge of the surface was centered on the unit’s RF. (C) Mod-
ulation of firing rate relative to baseline, expressed as log(stim/base). (D) Average LFP power spectra,
using the same analysis time window and spectral estimation parameters as in Figure 2 of main text,
comparing “RF-on-center” and “RF-on-edge” conditions. Dashed gray line corresponds to baseline
(gray background screen). Right: Gamma-band amplitude (expressed as fold-change) for the two
conditions. Gamma-band amplitude was significantly higher for “RF-on-center” condition (P < 0.05,
bootstrap test). (E)-(H): Single session (from monkey H) illustrating responses to Gaussian surface
stimuli. Stimuli were otherwise the same as Dataset 1. Gamma oscillations were not abolished by
removal of the sharp stimulus edge. (E) Example Gaussian stimulus that had a blurred edge. (F) Av-
erage LFP power spectra for chromatic (turquoise), achromatic (black) and baseline (gray) conditions,
computed as in Figure 4.2. (G) Average change in LFP power, expressed as fold-change, relative to
baseline. (H) Modulation of firing rate relative to baseline, expressed as log(stim/base), for monkey A.

We wondered whether the surround influence on gamma oscillations originates from
the uniform surface region or rather from the edge of the surface. To this end, we
analyzed sessions in which we compared two sets of trials: First, trials with a full
surface stimulus centered on a site’s RF (“RF-on-center” condition; Figure 4.8B).
Second, trials with a full surface stimulus positioned such that its edge fell into the RF
center, i.e. with the surface shifted by 3 dva horizontally (“RF-on-edge” condition;
Figure 4.8B. We found that the amplitude of gamma oscillations was significantly
higher at the center (“RF-on-center”) than at the edge of the surface stimulus (“RF-
on-edge”), whereas the opposite was observed for MU firing activity (Figure 4.8B).
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In one session (monkey H), we also showed disk stimuli that had their edge blurred
with a Gaussian (2.5 dva size, 1 dva standard deviation). There were clear gamma
responses also in this case (Figure 4.8C).

Together, these results indicate that for colored surfaces the amplitude of gamma-
band oscillations is commensurate with the “chromatic” predictability among visual
inputs in space, and that gamma-band oscillations are not a mere consequence of
input drive to a larger cortical region. Furthermore, these results suggest that gamma
strength can be dissociated from stimulus salience, because the chromatic mismatch
condition provided a highly salient stimulus in the RF, but resulted in weaker gamma.

4.5 Discussion

4.5.1 Differences between chromatic and achromatic surfaces

We found large differences in V1 gamma-band activity and firing responses between
chromatic and achromatic stimuli. A previous voltage-sensitive dye imaging study
has shown differences in V1 responses to chromatic compared to achromatic surfaces
(Zweig et al., 2015), but did not (and could not) consider gamma or rate responses
due to the imaging method employed. This study found that, specifically for achro-
matic but not chromatic surfaces, the dynamics of V1 responses was in line with a
fill-in process (from the edge of the surface toward the center). This is in line with
the notion that chromatic surface responses are dominated by single-opponent LGN
inputs to V1 and responses of V1 neurons with RFs within the uniform surface (Zweig
et al., 2015; Livingstone and Hubel, 1984; Shapley and Hawken, 2011). Indeed, some
neurons with chromatic opponencies in LGN and V1 show rate increases for large
chromatic surfaces, but do not respond to large achromatic surfaces (Ts’o and Gilbert,
1988). Therefore, it is possible that LGN and/or layer 4 drive within V1 is stronger for
chromatic than achromatic stimuli. This view is also supported by the strong source of
drive for chromatic compared to achromatic stimuli in LFP signals reported by Chen
et al. (2007). On the other hand, some neurons will be driven for achromatic stimuli
when there is a temporal luminance change (Xing et al., 2010). The fill-in process
from the edge described above is also a form of (indirect) drive (Zweig et al., 2015).
Therefore, chromatic and achromatic stimuli likely differ in input drive, but could also
be processed in fundamentally different ways.

fMRI signals tend to be stronger in response to chromatic compared to achromatic
stimuli (for review, see Schluppeck and Engel 2002, Shapley and Hawken 2011).
Given the complexity of the biophysics of the fMRI signal, this could reflect stronger
rate responses in the input layers, but also the strong gamma responses reported here.
Several studies have reported that the fMRI signal can correlate not only with spiking
activity, but also (and sometimes more strongly), with gamma-band activity (Logo-
thetis and Wandell 2004; Ekstrom 2010; Maier et al. 2008; Thomsen et al. 2004;
Viswanathan and Freeman 2007; Nir et al. 2007; Scheeringa et al. 2016, for visual
gamma in particular Bartolo et al. 2011; Niessing et al. 2005).

Here, we observed stronger gamma-band oscillations yet more suppressed firing
responses for chromatic surfaces. A possible interpretation of this is the direct ac-
tivation of neurons with RFs in the “predictable” part of the surface for chromatic
surfaces, which is subsequently “explained away” and converted into gamma-band
activity through network interactions. This suggests that one could think of color as
a “feature” (like orientation or motion), and that this feature space is used for pre-
diction in space. In cases where the surrounding spatial contexts correctly predicts
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the central stimulus, there will be strong gamma. In contrast, predictability based on
luminance, as given for achromatic (and chromatic) stimuli, may not be treated as a
“feature” by cortex. Luminance by itself, in the absence of color information, may
not be sufficient for inducing strong gamma-band synchronization. Speculatively, this
may be related to the fact that illumination can generate large luminance “surfaces”
that are object-unrelated, whereas hue continuity may be informative about visual
objects. One should note that, prominent gamma-band synchronization can be gen-
erated in response to achromatic stimuli. This tends to occur when they have spatial
structure (orientation, frequency, phase) that is highly predictable, e.g. bars and grat-
ings (Gieselmann and Thiele, 2008; Gray et al., 1989; Chalk et al., 2010; Gail, 2000;
Singer, 2018).

4.5.2 Drive and predictability as ingredients for gamma-band
synchrony

The present data suggest that V1 gamma-band activity requires both sufficient drive
and spatial predictability. The necessity of drive is indicated by the weak gamma re-
sponses to achromatic stimuli, and is supported by previous findings that low-contrast
stimuli generate weak gamma-band activity (e.g. Ray and Maunsell 2010; Roberts
et al. 2013, Hadjipapas, Lowet, Roberts, Peter and De Weerd, (2015) ). In the fol-
lowing chapter, we will see that prolonged adaptation also results in weak gamma
responses (Figure 5.7).

Note that in several experiments, V1 gamma-band amplitudes and firing rate (our
best available proxy for drive) show opposite effects. In particular, Figure 4.7 shows
strong gamma oscillation decreases along with large rate increases for mismatch com-
pared to uniform conditions. Similarly, gamma-band activity was stronger at the stim-
ulus center, but rate responses were stronger at the edge of chromatic surfaces (Fig-
ure 4.8B). These strong responses to edges may derive from double-opponent cells
that are driven by chromatic edges and are found in superficial layers (Shapley and
Hawken, 2011; Johnson et al., 2008; Friedman et al., 2003; Shapley and Hawken,
2002). Our recordings were biased toward supercifial layers (see Methods). Notably,
strong gamma generators appear to exist in these layers (see General Introduction, Fig-
ure 1.4). Taken together, the current experiments show strong gamma and weak firing
at predictable locations in visual space, and the opposite at unpredictable locations.
This is in line with the “predictability hypothesis” outlined in Relationship between
gamma, surround modulation and sparse coding. The discussion of both functional
and mechanistic interpretations will be continued in the General Discussion (Chapter
6).
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4.6 Chapter summary

This chapter demonstrated that V1 responses to chromatic and achromatic surfaces
are differentially modulated by spatial context.

1. Compared to achromatic surfaces, chromatic surfaces induced strong gamma-
band synchronization of both LFP and multi-unit responses (Figures 4.2 and 4.5).

2. Initial firing transients between chromatic and achromatic surfaces were similar
(Figure 4.2 and 4.5), yet in the sustained stimulation period, firing responses to
chromatic surfaces were lower. This was a result of a stronger decrease in firing
over time, due to an increase in surround suppression (Figures 4.2 and 4.5).

3. For colored stimuli, those with a “chromatic mismatch” between the stimulus
covering the RF center and the surrounding surface evoked high firing activity,
yet a very prominent reduction of gamma-band activity compared to uniform,
“predictable” surfaces (Figure 4.7). This effect was localized only to the mul-
tiunit sites whose RFs covered the mismatch.
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Chapter 5

Stimulus-hue and background-hue dependence of gamma

5.1 Introduction

5.1.1 Hue

In the previous chapter, we found that chromatic, but not achromatic surfaces induce
strong gamma-band synchronization yet low firing rates when they 1) cover both the
RF and its surround and 2) have a predictable center-surround relationship. In these
analyses, all chromatic conditions were pooled irrespective of the hue, because there
appeared to be a qualitative difference between responses to black or white compared
to colored stimuli. However, it is reasonable to assume that different color hues may
elicit different responses. Color hues are a central feature for object recognition and
visual search, and have high ethological relevance in social interactions and forag-
ing (Santos et al., 2001; Waitt et al., 2006; Gerald et al., 2007; Bichot et al., 2005;
D’Zmura, 1991; Corso et al., 2016). In particular, many primate species, includ-
ing macaques and irrespective of their own sex, have a viewing preference for red-
dish/pink facial and/or genital regions (Waitt et al., 2006; Corso et al., 2016; Dubuc
et al., 2014). Red-green differences as established by trichromacy are also relevant for
food retrieval (Melin et al., 2017).

Several studies, using fMRI or extracellular recordings, have studied responses to
different hues in V1. (For an introduction to color processing in V1, see Chapter 1 sec-
tion Color in V1). Different V1 cells exhibit a large variety of tuning to different hues,
with response peaks at different hues, different degrees of selectivity for a particular
hue, etc. (Shapley and Hawken, 2011; Solomon and Lennie, 2007; Livingstone and
Hubel, 1984; Wachtler et al., 2003; Johnson et al., 2001). Responses are more com-
plex than in the input structure, the LGN (Shapley and Hawken, 2011; Livingstone and
Hubel, 1984; Wachtler et al., 2003; De Valois et al., 2000), and seem to undo some of
the strong bias toward more frequent red-green than blue-yellow responses observed
in its input (De Valois et al., 2000; Wachtler et al., 2003). There can be nonlinear
interactions between hue and luminance (Horwitz et al., 2004). V1 single cells cover
all possible hues with their response peaks, but they do not do so uniformly. Wachtler
et al. (2003), using surface stimuli, report several over-represented hues, among them
yellow-orange and a greenish hue that is maximally off the L-M axis. De Valois
et al. (2000) find other hues to be over-represented using other stimuli. Overall, the
literature agrees that hues representation is non-uniform, also assessed with fMRI
(Lafer-Sousa et al., 2012), but substantially more continuous than in LGN, where re-
sponses are strongly clustered along the red-green and blue-yellow axes (Wachtler
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et al., 2003; De Valois et al., 2000). Despite the importance of the color domain in vi-
sion, hue differences have rarely been studied with respect to gamma synchronization
(Rols et al., 2001; Shirhatti and Ray, 2018). Rols and colleagues (2001), using elec-
trocorticography, reported stronger responses to red than green stimuli across a range
of luminances, with intermediate values for yellow stimuli (their Figure 6c). Sim-
ilarly, Shirhatti and Ray (2018), working independently from the results presented
here, found strong gamma LFP power for full-screen uniform chromatic stimulation,
particularly for red, but also for blue hues.

5.1.2 Contextual dependence of chromatic responses

Local spatial context plays a strong role in vision (see previous chapter and Chap-
ter 1 section 1.4.2). So does temporal context on various timescales (see Chapter 2).
More broadly, the overall context matters. For color, this is particularly true in terms
of background illumination. For example, we are able to discriminate a red from a
green apple1 under various lighting conditions, to the degree that the red apple in one
lighting condition may have the same objective spectral properties as the green ap-
ple under different illumination. How is this possible? The answer is that the color
percept is based on the current context. V1 seems to be involved in this computation
(Wachtler et al., 2003) and related perceptual consequences. A more extreme example
of contextual effects on perception are the visual aftereffects after adaptation through
prolonged viewing, as decribed in the Introduction, section 1.4.1. The visual system
will therefore show adaptation specific to the background. In the current study, this ef-
fect can be used as a tool to explore the robustness of differences in responses to hues
across contexts, and illuminate its underlying mechanisms. After considering differ-
ences between colors under standard viewing conditions, we will therefore explore
the effects of different contexts.

5.2 Results

5.2.1 Differences in gamma-band activity between color hues

Preliminary remarks: The methods for this chapter are identical to the ones in the
previous chapter, see Chapter 4 Methods. Similarly to the previous chapter, results
are largely taken over verbatim from the respective publication, Peter et al. (2019),
see also Acknowlegdements for Chapters 4 and 5.

The results in the previous chapter showed prominent differences between chro-
matic and achromatic surfaces in terms of gamma-band synchronization. The respec-
tive analyses pooled different chromatic conditions (equiluminant red, green and blue)
together. However, there may exist further differences in gamma-band synchroniza-
tion within the chromatic conditions, i.e. between different hues. To investigate this
we used two types of stimulus sets, which were presented in separate sessions. In the
first stimulus set (Figure 5.1A), we presented each surface color at its maximum pos-
sible luminance level (given the limits of the employed monitor), and sampled from
the entire spectrum of hues available with the monitor (see 4.3 Methods). In the sec-
ond stimulus set, we presented surface stimuli with different color hues at equated
luminance levels (Figure 5.1B-C).

1unless we happen to be colorblind
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Figure 5.1 — Dependence of LFP power spectra and MU firing activity on surface hue and luminance.
(A) We presented uniform surfaces of 6 dva diameter at maximum possible luminance levels, sam-
pling from the available spectrum of wavelengths (Dataset 4, see Chapter 4 Methods; n = 5 sessions,
15.24±0.1 trials per condition in each session). In addition, we presented black and white surfaces.
Shown is the change in LFP power relative to the baseline (gray screen), expressed as a fold-change.
(B) Three hues (red, green and blue) were presented at three different luminance levels (approximately
2.5, 5 and 10 cd/m2, Dataset 1, see Chapter 4 Methods; n = 5 sessions, 19.8±0.45 trials per condition
in each session). Shown are LFP power spectra, estimated and normalized as in Figure 4.2C. (C)
Average change in LFP power, expressed as a fold-change, relative to the baseline (gray screen). The
dependence of gamma amplitude on stimulus luminance was greater for G than for R or B (difference
between high versus low: P < 0.05, bootstrap test). Gamma oscillations amplitude R>B or G across all
three luminance conditions, and B>G for low and intermediate luminance conditions (P < 0.05, boot-
strap test). (D) Modulation of firing rate relative to baseline, expressed as log(stim/base). Horizontal
bars at bottom of panel represent significant differences between stimuli at P < 0.05 (permutation test,
multiple comparison corrected for time bins). (B-D) Color hues were adjusted for better discriminability,
panel A of Figure 5.3 shows actual hues.

Using the first stimulus set, we found that gamma-band LFP oscillations were reli-
ably induced across the entire spectrum of hues (Figure 5.1A, Figure 5.2AB, see also
supplementary Table 5.5 for all luminance and CIE values). In addition, we found
that gamma-band responses were reliably induced by surfaces with “extra-spectral”
colors, i.e. colors resulting from a mixture of blue and red primaries (Figure 5.1A), as
well as brownish hues (Figure 5.2B).

Furthermore, we replicated our finding that gamma oscillations were relatively weak
for both black and white surface stimuli as compared to all colored surfaces (Fig-
ure 5.1A). In one monkey (A), we found that gamma-band activity was stronger for
black than for white stimuli, consistent with previous results showing stronger firing
rate responses to black than white stimuli (Xing et al., 2010; Yeh et al., 2009). How-
ever a trend in the opposite direction was observed for monkey H (Figure 5.3D).

For the first stimulus set (Figure 5.1A), the different colors were presented at their
maximum possible luminance levels, which might confound the effects of hue and lu-
minance. We therefore used a second stimulus set in which we presented surface stim-
uli with different color hues at three levels of equal physical luminance, i.e. different
color values (Figures 5.1B-C). For all three hues, gamma amplitudes were greater for
the highest compared to the lowest luminance condition (P < 0.05, bootstrap test, see
Chapter 4 Methods; Figure 5.1B-C). The dependence of gamma amplitude on stim-
ulus luminance was greater for green than for red or blue surface stimuli (difference
between high versus low, Figure 5.1B-C). Gamma oscillations had a higher amplitude
for red than for blue or green surface stimuli across all three luminance conditions
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(Figure 5.1B-C), whereas gamma amplitude was higher for blue than green surface
stimuli for low and intermediate luminance conditions (Figure 5.1B-C). Another dif-
ference between the hues was that the gamma peak had a significantly lower frequency
for green compared to red or blue surface stimuli (P < 0.05, bootstrap test; Figures
5.1B-C and 5.3). The results of these analyses were consistent across both monkeys
(Figure 5.3).
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Figure 5.3 — Dependence of gamma LFP power on the surface hue: further analyses in relation to
Figure 5.1B. (A) Representation of hues used for Figure 5.1B in DKL space (see Chapter 4 Methods).
(B) Peak frequency estimates (Hz) based on cross-validated fitting procedure (see Methods) for the
surface stimuli of Figure 5.1B. (C) A regression of absolute luminance contrast (Michelson contrast)
against gamma peak height (fold-change) showed no significant relationship (p=0.23). Note that since
there was relatively little gamma power for achromatic, high-contrast stimuli, if anything there would be
a negative relationship between luminance contrast and gamma power, the very opposite of findings
about gamma power for achromatic gratings. Also note that for red stimuli, gamma power appears
to follow a U-shape with decreasing luminance and increasing contrast (see also Figure 5.1A, 5.2).
(D) Gamma power (fold change) and peak frequency estimates (Hz) for the data of Figure 5.1B, per
animal. For both animals, the brightest stimuli showed stronger gamma-responses than the darkest
stimuli. The difference in fold-change gamma amplitude as a function of luminance was greater for
green than for red for both animals and significantly greater than blue in monkey A. Moreover, red
responses across luminances were stronger than green or blue responses, with the exception of the
brightest blue responses in monkey H. (B-D) Color hues were adjusted for better discriminability given
the small dot sizes, (A) shows actual hues.

Given the relationships between MU firing activity and LFP gamma-band oscilla-
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tions shown in the previous chapter in Figures 4.2-4.7, we asked how these differences
in LFP gamma oscillations were related to changes in firing activity. During the ini-
tial transient, MU firing activity was higher for red and blue rather than for green
surface stimuli, with slightly stronger responses for red than blue surface stimuli (Fig-
ure 5.1D). Yet, we found that the post-transient decrease in MU firing activity over
time was particularly pronounced for red and particularly weak for green stimuli (Fig-
ure 5.1D). In agreement with the data shown in Figure 4.2, we observed that MU firing
activity fell below baseline levels for red and blue surface stimuli (Figure 5.1D).

Together, these results indicate that surfaces of all color hues tend to induce gamma-
band oscillations with a higher amplitude than achromatic surfaces, and that the am-
plitude of gamma oscillations is relatively high for red surfaces.

5.2.2 Controls for luminance- and cone-contrast
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Figure 5.4 — Dependence of gamma LFP power on the surface hue: control experiment for luminance-
contrast and pupil responses. (A) Single session from monkey H with luminance match between
achromatic and chromatic surface stimuli. Each color, including gray, was shown at 5 luminance levels,
namely equiluminant to the background gray, or in two steps of 10cd/m2 brighter or darker than the
background. Blue and red hues at higher luminances were obtained by adding luminance from the
green channel to maximal blue or red output, respectively. Note that achromatic responses are weaker
than chromatic responses also in this luminance-matched case. (B) Dependence of gamma-band
power on pupil responses. Pupil responses represent the maximal percent change from baseline
during the stimulus period. The correlation over all hues was not significant (r = 0.38, p = 0.1). Note
that gamma responses for achromatic stimuli were poor regardless of the degree of pupil change,
which spanned a large part of the range occupied by the chromatic stimuli. Error bars are included but
typically smaller than the dot size.

In the analyses above and the previous chapter, we observed a strong difference
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in gamma-band power between chromatic and achromatic surfaces. We performed
several control analyses and experiments to investigate whether this observed differ-
ence was explained by differences in DKL cone contrast or luminance contrast be-
tween chromatic and achromatic surfaces. Firstly, a linear regression of gamma peak
height against absolute Michelson luminance contrast ((luminance stimulus - lumi-
nance baseline) / (luminance stimulus + luminance baseline)) across the surface stim-
uli shown in Figure 5.1B showed no significant relationship (r = -0.44, P = 0.16,
F-test, Figure 5.3; note that the relationship, if any, was negative). Secondly, in
an additional control experiment, we directly matched the luminance (and thereby
luminance-contrast) of the achromatic and chromatic stimuli across 5 brightness val-
ues, including the full-screen background brightness and two steps of positive and
negative contrast. We found that achromatic gamma-responses were much weaker
than chromatic gamma-responses regardless of overall luminance level, also under
these matched conditions (Figure 5.4A). We additionally used this experiment as a
control for the effect of pupil size (see Chapter 4 Methods) on gamma-band ampli-
tudes (Figure 5.4B). Note that gamma responses for achromatic stimuli were weak
regardless of the degree of pupil change.

Thirdly, in another experiment, which is part of the data shown in Figure 5.7, we
matched cone-contrasts between chromatic and achromatic stimuli. Specifically, we
compared gamma-responses to a colored surface on an achromatic full-screen back-
ground with its “inverse”, gamma responses to a corresponding achromatic surface on
a chromatic full-screen background (e.g. red on a gray background versus gray on a
red background). These comparisons keep the changes in cone-activation relative to
the background the same. Note that this does not mean that the cone-contrasts are
matched in the DKL space, because this space contains an additional normalization
step, which incorporates the extent to which the full-screen background itself activates
the different cones. Nevertheless, although only the non-normalized changes in cone-
contrasts are matched, it can be seen that e.g. the white stimuli have very strong DKL
cone-contrast to the chromatic full-screen backgrounds along the L-M and S-(L+M)
axes. This cone-contrast for white surfaces on chromatic backgrounds exceeds that of
chromatic stimuli on the white background (see supplemental Figure 5.11). Our anal-
yses reveal that for each tested color (except for red on a black surface), gamma was
much stronger for chromatic than achromatic surfaces of matched cone contrast (Fig-
ure 5.7F). Together, these data indicate that the difference in gamma-band response
between chromatic and achromatic surfaces was not due to luminance- or DKL cone-
contrast relative to the full-screen background.

In the previous section, colored stimuli were either presented at maximum bright-
ness or presented at the same physical luminance. This leaves open the possibility
that differences observed between hues are due to differences in cone contrast (see
Chapter 4 Methods). We performed additional experiments in which colored surfaces
were matched in terms of DKL space coordinates in units of Weber cone contrast
(see Chapter 4 Methods, Figure 5.5). These coordinates were the L-M (red-green op-
ponency), S-(L+M) (blue-yellow opponency) and L+M (luminance) cone-contrasts
relative to the gray full-screen background. In the first experiment (Figure 5.5A), we
selected three luminance steps (L+M cone-contrast was -0.25, 0, or +0.25). For each
luminance step, we then took an equal step in the positive and negative L-M direction.
This step was taken as the maximum possible step for which the magnitudes were
equal in both directions. Similarly, we took a step of equal magnitude in the positive
or negative S-(L+M) direction. In the second experiment (Figure 5.5B), we sampled
from 8 different angles in the DKL plane at an equiluminant level to the gray back-
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designed to present stimuli with equal cone-contrast in L-M (red-green opponency) and S-(L+M) (blue-
yellow opponency) directions, separately for three luminance (L+M) steps of -0.25, 0 and +0.25 relative
to the gray background (having RGB values of 175, 175, 175) (N=1 session in Monkey H). These
luminance intensities corresponded to 54.7± 7.9 cd/m2. The spectra and bar plots below show the
resulting gamma-band responses. Gamma-band oscillations were stronger for reddish than greenish
stimuli and very weak or non-detectable for the blue/yellow and achromatic stimuli. Note however that
the blue/yellow components were perceptually very faint at these S-(L+M) values that were matched to
the L-M cone-contrast values. In (B) we therefore used a normalization of the S-(L+M) axis to the most
negative S-(L+M) value obtainable (along the L-M=0 axis). (B) Top: Gamma-band activity for stimuli
with equal cone-contrast in positive and negative L-M directions, and equal cone-contrast in positive
and negative S-(L+M) directions (N=1 session in monkey H). Stimuli were equiluminant relative to the
gray background, which was the same as in (A). Gamma was stronger for reddish than greenish hues.
In addition, with a stronger S-(L+M) cone-contrast as compared to panel (A), prominent gamma-band
activity was now generated in the absence of a cone-contrast in the L-M direction. This gamma-band
activity was stronger in the yellow (positive S-(L+M) values) than the blue direction. Bottom: Same as
top, but now for a darker gray background (the same as used for Figure 4.2 in the previous chapter)
and darker surface stimuli (of matched luminance to background, N = 1 session in Monkey H).
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ground. Note that this yields stimuli that are highly desaturated as compared to the
stimuli shown in Figure 5.1.

The data from these control experiments show that gamma-band responses were
stronger for reddish than greenish hues. This is consistent with the results shown in
Figure 5.1A (see Figure 5.2D). Achromatic stimuli did not induce detectable gamma-
band response peaks, neither in the positive nor negative luminance-contrast (L+M)
step, consistent with the findings of the previous chapter, Figures 4.2-4.5, and also
Figure 5.1 and 5.4A. Furthermore, these data suggest that increasing S-(L+M) cone-
contrast (blue-yellow opponency) independently (or in absence) of L-M cone-contrast
also boosts gamma oscillations (Figure 5.5B). This contrasts with the study of Shirhatti
and Ray (2018), who reported no correlation of strength of gamma-band power with
blue-yellow contrast in their stimulus set (see Discussion). These results provide fur-
ther support for the notion that gamma-band oscillations for uniform surfaces are
mediated by color-opponency signals. They indicate that hue (i.e. the angle in the
DKL-plane) itself is a determinant of gamma-band oscillation strength, and that the
dependence on hue is not explained by the magnitude of cone-contrasts as a con-
founding influence. This is also consistent with the finding that the magnitudes of the
DKL cone-contrasts for the chromatic surface stimuli shown in Figure 5.1A are not
significantly correlated with gamma-band power (Figure 5.2C). Note that this lack of
a correlation might be due to the use of stimuli with largely very high brightness and
therefore cone contrasts, such that the effects of hue differences dominate. These ex-
periments were not designed to detect the effect of variations of cone-contrasts within
a particular hue (see Discussion).

5.2.3 Temporal evolution of gamma-band responses

The observed differences in gamma oscillations between the color hues (Figure 5.1)
might reflect a static and context-independent property of visual cortex to respond
differently to distinct hues. Yet, the continuous presentation of a uniform surface
stimulus for the duration of an entire trial (several seconds) likely induces substantial
adaptation at many levels of the nervous system. We thus wondered whether different
hues might adapt at different rates. To address this, we examined the temporal evo-
lution of LFP power spectra over a longer time period, i.e. up to 3 s after stimulus
onset.

Time-frequency representations showed that qualitative differences between hues
and between luminance levels tended to be relatively stable over time (Figure 5.6A).
However, we found that the amplitude of gamma-oscillations decreased more rapidly
over time for green than for blue or red surface stimuli (Figure 5.6A-B). This re-
sult held true also for both animals individually (monkey H/A red change over time
-0.07±0.05/-0.12±0.04, green -0.51±0.06/-0.36±0.04, blue -0.23±0.05/-0.10±0.04).
The main effect of decrease with time, as well as stronger decreases for green com-
pared to both red and blue, were significant in both animals individually (all P < 0.05
corrected for multiple comparisons). This suggests that there may be differences in
the time course and strength of adaptation between color hues, specifically stronger
adaptation for green surface stimuli.
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Figure 5.6 — Within-trial temporal dynamics of LFP power spectra during viewing of uniform surfaces.
(A) Time-frequency representations of log-transformed change in LFP power relative to baseline (dB),
using Dataset 1 (N = 5 sessions, 19.8±0.45 trials per condition in each session). Shown are the
three (equiluminant) different color hues at three different luminance levels. (B) Change in LFP power
relative to 0.3-0.6 s period (third time point), separately for different color hues and luminance levels,
shown as fold-change modulation index (see Chapter 4 Methods). The first two points correspond to
0.05-0.35 and 0.1-0.4 s and are whitened out because these points are strongly influenced by initial
firing transient and associated bleed-in of spiking activity at high frequencies. Right panel shows
the modulation of LFP power in early (0.3-0.6 s) versus late (2.7-3.0 s) period, averaged over three
luminance levels. The decrease in gamma peak amplitude over time was significantly larger for green
than blue and red surfaces (peak amplitude estimated as described in Methods, main effect across
luminance levels: P < 0.05, bootstrap test), and did not differ between blue and red conditions. This
also held true for the modulation of LFP power for the highest luminance condition only (P < 0.05,
bootstrap test).

5.2.4 Dependence on full-screen background hue

One potential source of adaptation, other than the surface stimulus of a given trial, is
the color composition of the continuously presented background. In the experiments
described above, all surface stimuli were displayed on a gray full-screen background
(FSB). Gamma-band responses to achromatic and chromatic surface stimuli may have
been affected by the use of this gray FSB, given that the FSB itself may induce adap-
tation at many levels of the nervous system. We therefore asked how gamma-band
responses to surface stimuli depend on the color of the FSB. To answer this question,
we performed experiments in which we used different FSBs in separate, adjacent ses-
sions (gray, white, black, blue, green, yellow and red, Figure 5.7A and Figures 5.11
and 5.8; see Chapter 4 Methods). The FSB was continuously presented during the
entire session, i.e. remained on both during the pre-stimulus period, post-stimulus pe-
riod and the period during which the surface stimuli were displayed (Figure 5.7A). In
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Figure 5.7, we analyze LFP responses to the presentation of chromatic surface stimuli
of different hues presented at the maximum possible luminance level (see Figure 5.8
for equiluminant red, green and blue as well as achromatic surface stimuli).

We first examined how the responses to surface stimuli with specific hues (e.g.
green) were altered by using an FSB with the same hue (e.g. green), comparing them
to the sessions with a gray FSB (Figure 5.7B). Surprisingly, we found that when the
FSB had the same hue as the surface stimulus, there was a nearly complete abolish-
ment of gamma oscillations for blue, green and yellow stimuli (Figure 5.7B and Fig-
ure 5.8). This was observed both when the surface stimulus had the same luminance
as the background (Figure 5.7) and when the surface stimulus had a lower luminance
(Figure 5.8). Interestingly, red stimuli could still induce detectable gamma oscillations
when presented on a red FSB, although the gamma amplitude was strongly reduced
compared to the gray FSB condition (Figure 5.7B and Figure 5.8).

The reduction in gamma-band oscillations for the same-hue FSB condition may
have been an effect of stimulus size, because the background is effectively a very large
surface. Alternatively, it may have been an effect of stimulus history. To investigate
these possibilities, we analyzed the post-stimulus period immediately following the
offset of a gray surface stimulus that was displayed on a colored FSB. We found that
the reappearance of the FSB after the offset of the colored surface induced prominent
gamma-band oscillations (see supplemental Figure 5.12).

This indicates that the decrease in gamma-band oscillations with the same hue FSB
condition was not due to the large size of the background color stimulation, but that
it was due to the continuous presence of the same-hue background. This is also con-
sistent with a previous report showing strong gamma with full-screen color stimuli
that change color across trials (Shirhatti and Ray, 2018), similar results from our own
recordings (data not shown) and with the positive relation between gamma and stim-
ulus size shown in Figure 4.5C.

Next, we considered interactions between distinct hues. We wondered whether
gamma oscillations can not only be reduced by same-hue FSBs, but also enhanced
by FSB hues that are different from the stimulus hue, in particular when FSB and
stimulus assume opponent colors. The organization of color vision around color-
opponency axes, namely the red-green and the blue-yellow axes, is a key principle
found both at the neurophysiological and psychophysical level (Wachtler et al., 2003;
Livingstone and Hubel, 1984; Solomon and Lennie, 2007; Tailby et al., 2008a). These
color opponencies are thought to result from the computation of differences among
signals deriving from L and M cones (red-green), and S cones versus L and M cones
(blue-yellow). We found that for all surface hues, gamma oscillations were ampli-
fied when stimuli and FSBs were of opponent color hues (Figure 5.7C). This suggests
that gamma oscillations are dependent on opponency signals along the red-green and
the blue-yellow axes (Figure 5.7C). Given the strong dependence of gamma-band os-
cillations on the FSB, we asked whether the use of a gray FSB may have induced
differences in gamma-band amplitude among distinct hues. To examine this possi-
bility, we used a black FSB, which should induce minimal adaptation for all cones.
Quite surprisingly, the difference among red, green and blue hues that we had ob-
served with a gray FSB could not be replicated when we presented the stimuli on a
black FSB (Figure 5.7D). Compared to the gray FSB condition, gamma-band ampli-
tudes were significantly lower for red and blue surface stimuli and significantly higher
for yellow and green surface stimuli (Figure 5.7D). As a consequence, for the black
FSB condition, gamma-band power was no longer highest in response to red stimuli,
but showed a different dependence on hue (Figure 5.7D; Figure 5.8). Specifically,
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Figure 5.7 — Dependence of LFP power spectra on background stimulus. (A) Illustration of paradigm
(Dataset 5, see Chapter 4 Methods; n = 25 sessions, 18.64±0.11 trials per condition and session).
In a given session, a fixed background stimulus was used, and a set of chromatic and achromatic
surfaces (6 or 8 dva) were presented in separate trials (see Chapter 4 Methods). (B) Average LFP
power spectra for the different color conditions during gray background versus same-hue background
sessions. We show analyses for blue, green, yellow, and red surfaces, presented at maximum possible
luminance. Right: modulation index of LFP gamma-amplitudes (see Chapter 4 Methods). Main effect:
P < 0.05, bootstrap test. R versus G, B or Y, and G versus B: P < 0.05, bootstrap test. (C) As (B) for
comparison of opponent color background and black background condition. Main effect: P < 0.05. B
versus R, G or Y, P < 0.05. (D) Black background versus gray background. Main effect not significant.
All color differences significant (P < 0.05, bootstrap test). (E) Modulation of gamma-band amplitude for
same-hue vs black background condition (left), as well as opponent-hue vs black background condition
(right). Left: P < 0.05: R versus G, B or Y; B versus G or Y. Right: P < 0.05: all combinations
except G versus Y. (F) Comparison of gamma-band responses between chromatic surfaces shown on
achromatic background and achromatic surfaces shown on the same respective chromatic background
(using the data shown in Figure 5.8).
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gamma-band power was higher for green and yellow than red and blue surface stim-
uli (Figure 5.7D). The resulting pattern could not be explained by luminance contrast
differences, because contrast increased for all hues on the black compared to the gray
FSB, whereas gamma increased for some hues and decreased for others (Figure 5.7D).

In Figure 5.7B-C, we compared stimulus responses in the same-hue and opponent-
hue background conditions with stimulus responses in the gray background condition.
However, because of the evidence that the gray FSB may not have affected all stim-
ulus hues equally, we also directly compared the same-hue and opponent-hue FSB
conditions with the black FSB condition. This analysis revealed a marked difference
between red and the other hues (Figure 5.7E). First, when an FSB of the same hue
as the stimulus was compared to a black FSB, gamma was almost abolished for blue,
green and yellow, but not for red stimuli. Second, when an FSB of the opponent hue
was compared to a black FSB, gamma was enhanced for all colors, but particularly
strongly for red (Figure 5.7E). The full matrix of gamma responses for different FSB
conditions in Figure 5.8 shows that for all non-red chromatic FSBs, gamma oscilla-
tions were strongly amplified for red surface stimuli.

Frequency (Hz)

Backgrounds

e w k b g y r
0
10
20

0

1

0

1

0

1

0

1

0

1

0

1

50 100
0

1

50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100

LF
P 

po
w

er
 (a

.u
.)

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

Stimuli

Figure 5.8 — Dependence of gamma LFP power on the combination surface hue and background
stimulus. We show here all the condition combinations for Dataset 5. Different rows correspond to
different stimulus background conditions. The color of the background is indicated by the background
stimulus shown on the left. The second row corresponds to a white background. Different columns
correspond to different stimulus hue conditions, which are indicated by the color of the lines in each
graph. Each graph depicts the average LFP power spectrum, using the same estimation parameters
as in Figure 5.7. Bar graphs on the bottom show the gamma peak amplitude (fold-change) for the
different backgrounds, separate for each surface hue. Bar graphs on the right show the gamma peak
amplitude (fold-change) for the different surface hues, separate for each background condition.

We also analyzed the gamma-responses to achromatic stimuli on colored back-
grounds, and asked in particular whether responses of achromatic stimuli on colored
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surfaces were as strong as responses of colored stimuli on achromatic surfaces (Fig-
ure 5.7F). Achromatic responses on colored backgrounds were substantially weaker
than the reverse (see Section 5.2.2 Controls for luminance- and cone-contrast). These
data demonstrate that gamma oscillations depended strongly on the FSB, in a way
that followed the color opponencies. Furthermore, a commonly used “default” of the
display, namely gray, introduced adaptation effects that were color-specific.

5.2.5 A quantitive model relating hue dependence of gamma-band
oscillations to adaptation

To explain how gamma-band responses to surface stimuli depend on the FSB, we
constructed a quantitative model by estimating the degree to which each FSB differ-
entially adapts the S-, M- and L-cone pathways. Note that this model is agnostic to
the neuronal locus at which adaptation of the distinct cone pathways occurs, e.g. it
might occur in the retina, LGN or V1.

We hypothesize that gamma-band oscillations for colored surface stimuli are medi-
ated by the activation of cells that are to some degree sensitive to color opponency,
in a large spatial region by the same color input. The combination of bottom-up
drive at each point of the surface and strong surround modulation may then lead to
gamma oscillations. The result that gamma oscillations are particularly strong in the
opponent-hue background condition (Figure 5.7) further suggests that when this cir-
cuit is more strongly activated (leading to stronger input drive as well as stronger
surround modulation), gamma oscillations increase.

Following this reasoning, we further hypothesized that the dependence of gamma-
band oscillations on the FSB can be explained by adaptation of specific cone pathways
(see Discussion for further argumentation). As an example, a green FSB should lead
to stronger adaptation of the M-cone compared to the L-cone pathway. This should
increase the degree to which single-opponent cells with L+/M- color-opponencies are
activated by red surface stimuli, which may in turn increase the amplitude of gamma-
band oscillations.

To capture this intuition in a quantitative manner, we constructed a model in which
we aimed to predict the difference in gamma-band amplitudes between red and green
surface stimuli (for blue and yellow surface stimuli see further below). The variable
to be predicted was the red/green gamma-ratio, defined as γratio = log(γred/γgreen),
where γred and γgreen are the respective gamma-amplitudes for red and green surface
stimuli. This γratio was computed separately for all the different FSBs. We estimated
the degree to which each FSB adapts the M- and L-cones, using the known response
curves of the three cones as a function of wavelength from macaque monkeys (Hárosi
(1987), see Chapter 4 Methods, Figure 5.9A).

We then measured the physical wavelength spectrum for each FSB as realized on
our monitor. We multiplied the FSB spectra of the different color primaries with the
response functions of each cone and summed over wavelengths. This yielded for
each FSB stimulus two parameter values, Madapt and Ladapt. We then fitted a multiple
regression model predicting γratio from Madapt and Ladapt plus a constant regression
intercept (Figure 5.9B). For this model, we used response data for both green and red
surfaces presented at maximum possible luminance, as well as equiluminant red and
green surfaces, across the different FSBs.

The regression analysis reveals that γratio can be highly accurately predicted by
the way in which each FSB adapts the L and the M cones (Figure 5.9B; R2=0.91,
P < 0.05, F-Test). The regression coefficients for Madapt and Ladapt were positive and
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Figure 5.9 — Quantitative model for dependence of gamma-band amplitude on background stimulus.
(A) With a multiple regression model, we predicted the ratio of gamma amplitude for red over green
surface stimuli. Shown are the LFP gamma power spectra for red (top) and green (bottom) surface
stimuli, with a yellow FSB. Normalized cone responses for macaque monkeys are shown on the right,
constructed by fitting polynomials to bleaching difference spectra data (Hárosi, 1987). For each full-
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to (B), but now for blue-yellow. In this case we used S adapt and Ladapt as prediction parameters. A
model using Madapt in addition did not yield a significant coefficient for Madapt.
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negative, respectively. This indicates that adaptation of the M-cone increases γratio,
whereas adaptation of the L-cone decreases γratio (Figure 5.9B). We also found that
the γratio could not be significantly predicted when using S adapt and Ladapt as predic-
tors (P = 0.23), consistent with the idea that the neuronal mechanisms underlying the
red-green opponency are dependent on the M versus L cone contrast. The regression
intercept of the model (on the γratio axis) was not significantly different from zero.
This indicates that green and red tend to generate gamma oscillations of similar am-
plitude when the FSB does not adapt the cones, consistent with the findings shown for
the black FSB (Figure 5.7). Strikingly, we found that the Madapt coefficient had an ab-
solute magnitude approximately twice as large as the Ladapt coefficient (Figure 5.9B).
This suggests that uniform surfaces tend to adapt the M-cone pathway more strongly
than the L-cone pathway, or that adaptation of the M-cone pathway has a stronger
effect on gamma-band oscillations than adaptation of the L-cone pathway.

The model further explains some non-trivial findings that would have been unex-
pected if FSBs had affected the M- and L-cone pathway in a similar way: We ob-
served that the yellow FSB strongly amplified γratio (Figure 5.9B). Given its wave-
length spectrum, the yellow FSB is expected to adapt the L-cones more strongly than
the M-cones, which would predict a reduced γratio, i.e. red responses being weaker
than green responses. By contrast, we found that γratio was enhanced. The models
explain this by the fact that the stronger L-cone than M-cone activation by the yellow
background is more than compensated by the much greater Madapt than Ladapt coeffi-
cient. Similarly, the γratio increased for a gray compared to a black FSBs, even though
gray FSBs should in principle adapt the M- and L-cone pathways to a similar degree
(Figure 5.7). This was again compensated by the much greater Madapt than Ladapt

coefficient.
We performed a similar analysis for the yellow-blue (L+M-S) opponency axis, aim-

ing to predict the gamma ratio of blue over yellow (Figure 5.9C). We first fitted
a model with the S, L and the M cone parameters, and γratio was now defined as
γratio = log(γblue/γyellow). This regression model explained a large degree of vari-
ance (R2 = 0.99), with almost equal magnitude of S (negative, -1.23) and L (positive,
1.24) coefficients, but a much smaller and non-significant coefficient for the M cone
(-0.29). The finding that the model fit included a highly positive L-cone coefficient
and non-significant (and negative) M-cone coefficient seems prima facie to contradict
the canonical idea that the perceptual blue-yellow opponency axis is mediated by an S
versus (L+M) opponency. However, neurophysiological data has shown that the main
opponency for LGN cells on the yellow-blue axis is the L versus S cone (Tailby et al.,
2008b). We further simplified our model using two predictive parameters, equating
the blue axis to the S cone and the yellow axis to the L cone (Figure 5.9C). Again,
we found a highly predictive relationship with negative weight for the S cone and a
positive weight for the L cone (Figure 5.9C), with only a small and non-significant
difference in the magnitude of the adaptation coefficients.

The results were qualitatively highly similar between animals and individually sig-
nificant (Figure 5.10). These findings indicate that gamma oscillations are mediated
not only by opponency signals along the red-green axis, but also along the blue-yellow
axes (consistent with the data shown in Figure 5.5). They also indicate differential
adaptation of the M- compared to the L-cone.
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5.3 Discussion

5.3.1 Gamma-band amplitude depends on hue of both stimulus and
full-screen background

In the previous chapter, we found a prominent difference in gamma-band synchro-
nization and firing activity between chromatic and achromatic surfaces. Here, we de-
scribe prominent differences between hues. A priori, these differences may constitute
a constant characteristic of the primate visual system that holds true independently of
context. Alternatively, they could emerge from contextualized processing. One major
form of such context is the adaptation to the background illumination, in case of the
experimental environment the full-screen background (FSB) on which the surfaces
were displayed.

Our findings when using a “standard” gray FSB were consistent with previous work
using a gray FSB (Shirhatti and Ray, 2018; Rols et al., 2001). Surface stimuli with
red (and in our case also pink or brown) hues induced stronger gamma oscillations
compared to blueish or greenish colors. Of note, this effect occured in addition to a
“main effect” of chromatic versus achromatic stimuli: with a gray FSB, gamma os-
cillations were reliably induced by all surface stimuli as long as they were chromatic.
This is in line with our other findings pointing to contributions of both red-green,
but also blue-yellow opponencies to V1 gamma responses (Figure 5.5, Figures 5.7
and 5.9). The study by Shirhatti and Ray (2018) did not report any dependency of
gamma-band power on blue-yellow cone contrast. Of note, the stimuli used were not
designed to isolate such a cone contrast, and the stimuli varied widely in luminance,
similar to our experiment shown in Figure 5.1A. This means that some confounding
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covariation of the stimuli in luminance or L-M contrast could have masked any effect
of the blue-yellow opponency2. Analogously, in our current experiments, we did not
find an effect of overall cone contrast (or the related measure of hue saturation). In
contrast, the study by Shirhatti and Ray (2018) explored a wider range of hue satu-
ration, and found weaker gamma for perceptually faint stimuli. This is in line with
our incidental finding of Figure 5.5A, when attempting to equate stimuli in the red-
green and blue-yellow contrast direction simultaneously. This yielded perceptually
faint stimuli for the blue-yellow direction, that indeed resulted in very weak gamma
responses. In summary, current evidence points to a role for both red-green and blue-
yellow contrast, as well as the absolute amount of such contrast for gamma response
strength.

The major difference between chromatic and achromatic surfaces and the involve-
ment of color opponencies is also supported by our experiments with changing FSB
contexts. In contrast, the particular differences among the specific hues in gamma-
band amplitude were highly dependent on the FSB context. Of particular relevance,
with a black FSB, and presumably the least adaptation by the FSB through back-
ground illumination, red stimuli no longer induced the strongest responses. Gamma
to yellow and green increased compared to the gray FSB condition, and gamma to red
and blue decreased, despite an increase of luminance and cone-contrast. The pattern
of differences among hues elicited for different FSBs was captured well with a quan-
titative model (Figure 5.9) that allowed differential adaptation of the different cone
pathways. The resulting fit suggests that the M-cone pathway adapts more strongly or
more quickly than the L- and S-cone pathways. This applied even in cases when the
context was perceptually “neutral” (gray FSB).

5.3.2 Is red special?

We infer that background hues during natural vision play a similar adapting role as
the FSB did in our experiments. During natural vision, the dominant background
hues can vary, and are likely not gray most of the time. In their natural environment,
primates typically experience principally green and yellowish stimuli like leaves and
trees (Mizokami et al., 2003).

Any claims about a ’special’ hue, like strong responses to red, would need to be
found robustly across different contexts. In Figures 5.7, 5.8 and 5.9, red shows strong
gamma responses in a variety of contexts - as long as some adaptation is involved, i.e.
not with a black background. Red stimuli induced the least adaptation, and profited
the most from an opponent background (Figure 5.7E). If red is indeed special, how
is this achieved? A possible account may be that uniform surfaces induce stronger or
faster adaptation of the M-cone than L- and S-cone pathways. This could occur within
V1 or in any upstream input, including the retina itself.

The “differential adaptation hypothesis” suggests that if red is special, so will be
green due to the red-green opponency. Consistent with this interpretation, gamma-
band amplitude decreased more rapidly for green than red or blue surfaces on a time-
scale of seconds (Figure 5.6). Additionally, other specific response features of green
surfaces are supporting this hypothesis. Namely, a) the luminance dependence was
stronger for green stimuli, b) the peak frequency was lower and c) firing rate transients
were weaker, but there was no suppression below baseline (Figure 5.1B). This could

2In theory, such uncontrolled stimuli can also suggest effects that are the result of underlying con-
founds.
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be interpreted as weaker drive for green stimuli in a gray background condition due
to stronger M-cone adaptation. Such a situation would require higher luminance to
overcome this adaptation. Similarly, lower peak frequencies are associated with lower
stimulus drive for other types of stimuli (Ray and Maunsell, 2010; Hadjipapas et al.,
2015; Roberts et al., 2013; Jia et al., 2013b). In the same vein, a weaker transient
response could be interpreted as weaker drive, and less suppression as less redundant
signal that requires surround interactions involving gamma-band synchronization.

Taken together, these results suggest a mechanism that amplifies the difference be-
tween reddish and greenish hues. This has at least two implications that stand out.
First, there are considerations for experimental design. Surprisingly, a gray FSB may
differentially change neuronal responses to surfaces of different color hues.3 More
generally, a particular design or sampling of hues and backgrounds may greatly af-
fect the results. Hue can interact nonlinearly with luminance (Horwitz et al., 2004).
Contrary to a feature space like orientation, it may not be clear how to sample the
spectrum of hues evenly: what constitutes a balanced set of conditions? For example,
due to the composition of cone spectral sensitivities in old world primates, a larger
part of the visible light spectrum will be perceived as green than yellow. Therefore,
a simple linear sampling of the light spectrum may induce specific adaptation effects
(by cross-adaptation across trials). Another sampling space is suggested by the known
color opponencies in the retina and LGN, as implemented in the DKL space (e.g. Fig-
ure 5.5). However, this is not identical to the space of perceptual color differences
(Wachtler et al., 2003). Given these complexities, experimental designs that purpose-
fully vary the context and/or hue composition, as in Figures 5.1, 5.5 and 5.7, instead
of keeping it constant, can provide stronger insights.

Secondly, differential adaptation may affect color perception. Interestingly, at the
behavioral level, it has been shown that perceptual after-effects emerge more rapidly
after viewing green than viewing red stimuli (Werner et al., 2000). What are the
ultimate underlying reasons for the amplification of red-green differences that we hy-
pothesize? Speculatively, this amplification may reflect an ethological need. Given
that the visual environment of primates is dominated by green and yellowish stimuli
(Mizokami et al., 2003), detection of food such as fruit with relatively high energy in
red hues may be an important behavioral task for many primates (Melin et al., 2017).
Trichromacy provides behavioral advantages for such detection (Melin et al., 2017),
which may be supported by differential adaptation.

5.3.3 Possible limitations and open questions

Given the strong ethological relevance of some hues, is it possible that stronger re-
sponses to these hues are a result of stronger salience and therefore attention toward
these stimuli? Several lines of evidence speak against this interpretation. First, in
Chapter 4, we observed weak gamma responses for sites with RFs covering a salient
mismatch position (Figure 4.7). Second, brighter and thereby much more salient hues
of red could induce weaker gamma responses than dark red hues (Figure 5.2), point-
ing toward more stimulus-related mechanisms. A similar argument could be made
based on the experiments with changing FSB context, where some highly salient con-
ditions like a black stimulus on a red background nevertheless induce relatively weak
gamma-band synchrony.

3This surprise is a psychologically interesting phenomenon. A gray FSB hardly gets noticed as a design
property, possibly due to its common use and apparent “neutrality”, possibly also because such stimuli do
not generate strong responses in our visual system.
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The present study develops a new “differential adaptation” hypothesis based on a
quantitative model of the data. This should have perceptual consequences, and al-
though there is some evidence for such a differential adapting effect on perception
(Werner et al., 2000), further studies are required to directly relate behavioral conse-
quences to the neuronal phenomena described here. Further, there could be multiple
sources of this adaptation, from the retina to LGN to V1, which require further inves-
tigation. Likewise, it is unclear how or if this finding in V1 will transfer throughout
the rest of the color system. Given that there seems to be substantial transformation
away from red-green dominance from LGN to V1 (De Valois et al., 2000; Wachtler
et al., 2003), areas higher up in the visual hierarchy might compensate for the effects
in V1. On the other hand, in one of the few studies of this type, it has been shown
that adaptation effects in V1 apparently do transfer and affect a downstream visual
area (area MT, Patterson et al. 2014). Furthermore, such a compensation higher up in
the hierarchy should then likely lead to compensation on the behavioral or perceptual
level.

A clear limitation of this chapter is the exclusive focus on surface stimuli. Similar
surfaces were used by Wachtler et al. (2003) and Zweig et al. (2015). They are not
only of interest from the perspective of their predictability (see Chapter 4), but are
also the kind of surface typically used to judge the color of a natural object (Wachtler
et al., 2003). Such surface stimuli by definition contain no or very little high spatial
frequency (SF) information (i.e. local structure). As discussed in the previous chap-
ter, achromatic stimuli with local, predictable structure, such as a black bar, do induce
substantial gamma-band synchronization. What about chromatic, structured stimuli?
The data from the chapter 2 show that natural images with color and local structure do
induce gamma-band synchronization. On the other hand, using magnetoencephalog-
raphy (MEG) in humans, Adjamian et al. (2008) showed that gamma-band power was
weak or absent for gratings defined purely by their red-green color contrast, i.e. with-
out any luminance contrast. One possible answer to this apparent conundrum is that
color is processed in a low-pass fashion, i.e. there is strongest sensitivity to color
modulation over a large area of the visual field (Shapley, 2019). Additionally, strictly
equiluminant stimulation may be an unnatural condition resulting in weak responses,
which reduces detectability of gamma power in MEG, where this detection requires
careful stimulus design (Hoogenboom et al., 2006). Further research is needed to
establish the spatial-frequency dependence of the hue effects described here.

Finally, the findings described in the last two chapters rely on rather artificial, con-
trolled stimuli under fixation conditions (see also the General Discussion 6). However,
in this particular case, these findings are supported by the strong red responses for nat-
ural images in Chapter 2. Furthermore, Brunet et al. (2015) studied gamma responses
under free-viewing conditions. Although the chromatic/achromatic comparison could
not be made in a controlled way with these stimuli, the occurence of clear gamma
responses to natural, colored images under free viewing speaks to the relevance of the
present findings for natural vision. Remarkably, the strongest gamma observed during
free-viewing was for a large orange, an image that has a strong red component with
high spatial predictability.
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5.4 Chapter summary

This chapter demonstrated that V1 gamma-band responses are hue-dependent and
modulated by context in the form of an adapting background.

1. Differences in gamma-band responses among hues exist across a range of lumi-
nance differences, and there are strong gamma responses both for stimuli that
have red-green (L-M) cone contrast and those that do not (Figures 5.1, 5.5).

2. Red stimuli tend to generate strong responses. This also holds true when cone
contrasts are equal to green stimuli, and across a variety of background color
contexts.

3. The pattern of hue dependence on the background can be captured by a model
that suggests that both color opponent axes (red-green and blue-yellow) are
required to predict the pattern of gamma responses.

4. Crucially, the model also suggests stronger adaptation for M- than L-cones,
which would generate (as observed) strong red responses under many, but not
all, viewing conditions.

5.5 Supplemental for Chapters 4 and 5

(see following pages)

137



5.5. SUPPLEMENTAL FOR CHAPTERS 4 AND 5

−7.1 −3.5 0 3.5 7.1
−4.5

−2.3

0

2.3

4.5

L−
M

S−(L+M)
−6.4 −3.2 0 3.2 6.4

−0.31

−0.16

0

0.16

0.31

S−(L+M)
−19 −9.4 0 9.4 19

−8.9

−4.5

0

4.5

8.9

S−(L+M)

−7.6 −3.8 0 3.8 7.6
−0.19

−0.096

0

0.096

0.19

S−(L+M)

−7.6 −3.8 0 3.8 7.6
−1.9

−0.95

0

0.95

1.9

S−(L+M)

−6.4 −3.2 0 3.2 6.4−1.9

−0.95

0

0.95

1.9

S−(L+M)
−19 −9.4 0 9.4 19−8.1

−4.1

0

4.1

8.1

S−(L+M)
−7.1 −3.5 0 3.5 7.1

−13

−6.6

0

6.6

13

L+
M

S−(L+M)

Blue background Green background Red background

Yellow background

−0.77 −0.39 0 0.39 0.77
−0.17

−0.085

0

0.085

0.17

S−(L+M)

−0.77 −0.39 0 0.39 0.77
−1.8

−0.9

0

0.9

1.8

S−(L+M)

White background

−3.5 −1.8 0 1.8 3.5
−0.77

−0.39

0

0.39

0.77

S−(L+M)

−3.5 −1.8 0 1.8 3.5
−6.8

−3.4

0

3.4

6.8

S−(L+M)

Gray background

L−
M

L+
M

Figure 5.11 — DKL-space representation for Figure 5.7 and Figure 5.8
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Dataset Figure Hue Lum CIEx CIEy

all all Background Gray 27.5 347 357
1, 2, 4, 5 1, 2, 4, 6, 7 White 127 343 372
1, 2, 4, 5 1, 2, 4, 6, 7 Black 0.55 315 358

1, 2, 3, 5 all Red 9.69 624 340
1, 2, 3, 5 all Green 10 272 555
1, 2, 3, 5 all Blue 10.7 161 125

1 4, 5 Red 4.77 608 311
1 4, 5 Green 4.41 273 532
1 4, 5 Blue 4.97 163 121
1 4, 5 Red 2.54 574 341
1 4, 5 Blue 2.83 287 513
1 4, 5 Green 2.54 169 129

4 4 Purple 1.35 207 129
4 4 Purple 13.4 206 119
4 4 Purple 12.6 198 114
4 4 Blue 9.42 153 91
4 4 Blue 14.8 162 135
4 4 Cyan 49.4 218 356
4 4 Green-Blue 85.1 277 573
4 4 Green 86.2 281 589
4 4 Green-Yellow 89.8 293 581
4 4 Yellow 110 430 486
4 4 Orange 58.5 520 417
4 4 Red 32.3 641 343
4 4 Red 14.1 631 341
4 4 Red 4.01 593 338
4 4 Red 1.12 494 349
4 4 Brown 28 457 453
4 4 Brown 20.1 510 417
4 4 Purple 13.3 411 218
4 4 Purple 28.2 406 215

5 6, 7 Red 32.3 641 343
5 6, 7 Green 86.2 281 590
5 6, 7 Blue 9.42 153 92
5 6, 7 Yellow 115 425 493

Table 5.1 — Luminances (cd/m2) and CIE values (*1000) used in this study. Luminances and CIE
values were measured with a Konica Minolta CS-100A chromameter, CIE values refer to the 1931
2 degree standard observer. Standard black, white and gray used across datasets are in rows 1-3.

139





Chapter 6

General Discussion

6.1 Acknowledgements for Chapter 6

A part of this chapter (sections 6.2-6.5) is based on the discussion in Peter et al. (2019),
though these sections are more elaborate and integrate information from the previous
chapters, and involve solely my own wording, similar to the introductions and discus-
sions of Chapters 4 and 5. The discussion in Peter et al. (2019) was originally written
by myself and Martin Vinck, involving extensive discussions. This means that isolat-
ing contributions of ideas is not an easy task. I have indicated all ideas that originate
from Vinck and Bosman (2016) through appropriate citations, and wish to acknowl-
edge the origin of the notion that gamma-band responses may be poor in a state of
inference to Martin Vinck. Some of my own contributions in these sections include
the contrasting of evidence from the perspective of predictability versus predictive
coding, the notion of gamma-band activity as the reflection of a high-SNR coding
regime, the extension of predictability along the temporal domain and the visual hier-
archy, the discussion of network mechanisms of gamma-band activity, and pointers to
new experiments.

Introductory remarks

A distinguishing feature of V1 activity, induced by many stimulus conditions, is syn-
chronization of neuronal activity in the gamma-frequency band (Vinck and Bosman,
2016; Fries, 2009; Gray et al., 1989; Ray and Maunsell, 2010; Gieselmann and Thiele,
2008). In Chapter 4, the strength of gamma-band power was related to a predictable
center-surround relationship, or spatial context. In Chapter 5, prolonged stimulation
in time resulted in strong reductions in gamma-band responses. In contrast, repeated
stimulation with an identical stimulus could also strongly increase gamma-band re-
sponses, as seen in Chapters 2 and 3.

In the following sections, the role of both spatial predictability and drive in the
generation of gamma-band oscillations will be considered first. Thereafter, the role
of temporal and spatial context will be compared. Underlying generative mechanisms
and the functional role of gamma-band oscillations will be considered in the light of
the new findings. The chapter concludes with some methodological considerations,
the role of technological advance and an outlook.
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6.2 Gamma synchronization, spatial predictability and drive

“The amount of information being fed to the central nervous system must be enor-
mous. [...] Storage and utilization of this enormous sensory inflow would be made
easier if the redundancy of the incoming messages was reduced. [...] Physiological
mechanisms [...] appear to have arisen by evolutionary adaptation of the organism to
types of redundancy which are always present in the environment of the species. Much
of the sensory input is not shared by all individuals of a species [...] so a device for
’learning’ to reduce redundancy is required.” Barlow (1959)

Gamma oscillations have been related to sensory predictions and prediction errors
based on at least two opposing hypotheses (Chalk et al., 2016; Jadi and Sejnowski,
2014; Vinck and Bosman, 2016; Bastos et al., 2012; Arnal and Giraud, 2012): 1) Bas-
tos et al. (2012) and Arnal and Giraud (2012) posited that gamma-band activity me-
diates the encoding and transmission of prediction error signals from lower to higher
areas. In line with this notion, feedforward influences among visual areas are strong
in the gamma band (Bastos et al., 2015) and gamma-band activity has been reported
for mismatches of auditory and visual information (Arnal et al., 2011). 2) In con-
trast, Vinck and Bosman (2016) postulated that the emergence of gamma oscillations
depends on predictable relationships between the RF and the surround. Using the con-
cepts of RF and surround, the “predictability hypothesis” thereby links gamma oscil-
lations to theories of efficient and (some variants of) predictive coding, which suggest
that feature-specific surround modulation serves to generate a sparse but informative
response to the visual input (Rao and Ballard, 1999; Barlow, 1959; Coen-Cagli et al.,
2015; Schwartz and Simoncelli, 2001).

In Chapter 4, it was shown that a chromatic mismatch at the center of a uniform
surface strongly reduced the amplitude of gamma oscillations for sites with RFs at
the mismatch location, yet led to a strong increase in their firing activity. In contrast,
gamma oscillations remained strong at nearby sites with RFs in the uniform regions
of the surrounding surface (Chapter 4, Figure 4.7). In other words, when the stimulus
input at the center of the stimulus (e.g. a red blob) was not predicted from the sur-
round (a green surface), gamma oscillations were weak at the center, but firing activity
was strong. This is in line with the “predictability” hypothesis, rather than the notion
that gamma-band activity carries prediction errors. Similarly, stronger gamma-band
responses with increasing stimulus size (see Chapter 4) are interpretable from the per-
spective of center-surround interactions, whereas it is less clear why a larger stimulus
should be less predictable and therefore produce prediction errors. The seminal stud-
ies of Gray et al. (1989) showed that a bar stimulating two distant receptive fields
synchronized neuronal responses, whereas two smaller, aligned bars targeted on the
two individual RFs did not. This result is also more in line with the idea of predictable
relationships, rather than prediction error, generating gamma-band synchronization.
As a last example, Jia et al. (2013b) demonstrated that the superposition of dynamic
noise on a grating stimulus can reduce gamma-band responses. It therefore seems that
“predictability” of center-surround relationships may constitute a necessary ingredient
for gamma-band synchrony, both locally and between distant RF locations.

Recently, Auksztulewicz and Friston (2016) interpreted the gamma-band increases
with repetition (Chapters 2 and 3, Brunet et al. 2014) as reflecting “precision” of pre-
diction errors in terms of “predictive coding” (Friston, 2005). Since gamma-band
increases were related to increased synchronization of putative interneurons, whereas
most putative excitatory cells decreased their locking to the gamma-band, they rea-
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soned that gamma-band increases reflected gain control. Increased gain control is
related to increased precision. One should note that “precision” reflects the confi-
dence in a prediction, which seems conceptually close to a notion of “predictability”,
but focused on the temporal domain. This also suggests that an overall increase in
gamma-band activity, visible in the LFP or noninvasive recordings, can reflect both
increases and decreases in prediction error in this “predictive coding” framework, and
cannot be interpreted without knowledge of the behavior of different cell types. In
any case, this indicates that gamma-band repetition effects can be interpreted along
the lines of temporal predictability (see also next section).

Next to “predictability”, a second central element that has been previously related
to the strength of gamma-band responses is input drive. The dependence of gamma-
synchronization on input drive is a feature of many computational models and is il-
lustrated by the dependence of gamma-band power and peak frequency on luminance
contrast (Börgers and Kopell, 2008; Roberts et al., 2013; Lowet et al., 2015; Had-
jipapas et al., 2015; Ray and Maunsell, 2010; Jia et al., 2013b; Henrie and Shapley,
2005; Tiesinga and Sejnowski, 2009; Whittington et al., 2011). Two factors which had
strong influences on gamma-band power in the previous two chapters could be inter-
preted in terms of drive. Namely, 1) whether the surface was chromatic or achromatic,
and 2) the full-screen background on which the surface was displayed. As discussed in
Chapter 4 (section 4.5.1), differences in gamma-band response strength for chromatic
versus achromatic stimuli may be related to different processing strategies. However,
these stimuli likely also differ in overall input drive. For example, Chen et al. (2007)
described a stronger source of drive for chromatic stimuli in LFP signals along the
ventral stream, including V1.

Responses to chromatic stimuli could be weakened considerably by prolonged adap-
tation with a full-screen background of the same hue (Figure 5.7). Gamma oscillations
could also be strongly amplified, namely by using a full-screen background of an op-
ponent hue (Figure 5.7). The quantitative model (Figure 5.9) captures these findings
with respectively a decrease (same-hue background) or increase (for opponent-hue
background) in the activity of a cone-specific pathway, i.e. changes in drive. While
previous modeling and experimental work has considered the role of drive, it was
not part of the original proposal of the “predictability” hypothesis, and constitutes a
refinement of the original proposal by Vinck and Bosman (2016).

It therefore seems that gamma-band oscillations depend on both spatial “predictabil-
ity” and sufficient drive. Notably, these two factors have opposite correlations with
neuronal firing rates. Taking into consideration both center-surround relationships
and the input drive may help to better understand previous reports that gamma-band
responses can be both positively and negatively related to firing rate (Jia et al. 2013b;
Gieselmann and Thiele 2008; Hadjipapas et al. 2015; Roberts et al. 2013, see Jadi
and Sejnowski 2014 and Jia et al. 2013b for examples of related modeling work).
Intuitively, sufficient drive will generate enough signal that has the potential to be ex-
plained away if predictable. This relates gamma-band activity to a particular stimulus
regime and also a particular goal from the perspective of predictive coding. As de-
scribed in the General Introduction (sections 1.3.2 and 1.4.2), an understanding of the
visual world that uses spatial context can entail either inference of ambiguous informa-
tion, or efficient coding through explaining away of redundancies. These two aspects
are related, since both have been suggested to require a generative model of the sen-
sory data (Rao and Ballard, 1999; Friston, 2005; Coen-Cagli et al., 2012). However,
inference has been related to facilitation from a predictive surround, whereas efficient
responses are related to surround suppression. These two operations, statistical infer-
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ence and coding efficiency, could therefore rely on distinct circuit mechanisms.
In a high signal-to-noise regime, the removal of redundant (predictable) informa-

tion should lead to an efficient code, likely involving inhibitory mechanisms (Jadi and
Sejnowski, 2014; Vinck et al., 2013b) accompanied by gamma-synchronization (see
Mechanisms section below). If the local signal is weak, inference of the stimulus in-
put at one location using contextual surround information may rely predominantly on
excitatory surround influences (De Lange et al., 2018; Rao and Ballard, 1999; Coen-
Cagli et al., 2012). An excitatory influence of the surround has been shown in cases
where the input into the classical RF provides a weak drive, e.g. collinear facilita-
tion of low-contrast but not high-contrast bars by a matching surround (Kapadia et al.,
1995, 1999), and responses to illusory contours (von der Heydt et al., 1984; Grosof
et al., 1993). Given the strong role of inhibition in the generation of gamma, this
regime may not be conducive for the emergence of gamma. It might be very infor-
mative to explicitly measure gamma-band synchrony in stimulus situations like the
collinear facilitation experiment to test the notion that gamma is absent in the case
of inference. Notably, successful inference entails some surround predictability. It
should also be noted that in the case of a large, highly predictable grating stimulus,
Michelson contrasts below 10% yield detectable gamma-band responses (e.g. Hadji-
papas et al. 2015): the effect of drive appears more graded than the rather qualitative
change in gamma-band responses for center-surround relationships and stimulus size.

Taken together, this suggests a predictability-and-drive regime for gamma. Notably,
there are species differences in the expression of gamma in the visual system. Could
a predictability-and-drive regime be species-specific? First, can there be higher pre-
dictability of the same environment for different species? Gamma-band activity is
strong in humans, other primates and carnivores, in particular cats (reviewed in Vinck
and Bosman 2016). All these species have high visual acuity, and small receptive
fields. The visual world is highly redundant, or predictable, at nearby locations (Bar-
low, 1959; Marr, 1982; Field, 1987). As pointed out by Vinck and Bosman (2016),
for species with small RFs and high visual acuity, “predictability” will therefore be a
frequent occurence, in particular in early visual areas. Notably, high-acuity species,
including humans, also share highly structured horizontal connectivity patterns and
long-range connections in V1, which may aid in “predictability”-related computations
(Kaschube et al. 2010, see Mechanisms section).

What about differences in drive? Speculatively, it is worth noting that a major de-
terminant of a high signal-to-noise environment in vision is sufficient lighting. Color
perception is a hallmark of daylight vision, which generates strong drive to the visual
system and strong gamma-band responses (Chapters 4 and 5). Free-viewing of colored
natural images can generate strong gamma-band responses (Brunet et al., 2015). This
hints to the fascinating possibility that species with high-acuity visual systems that
experience high-SNR regimes may adapt either phylogenetically or on shorter time-
scales to generate synchronized, highly efficient responses. This may possibly even
involve specialized cell types (see Mechanism section below). For a predictability-
and-drive regime, the drive aspect could therefore stem from diurnal activity. Alterna-
tively, relatively poor drive could be amplified, as in crepuscular species like cats that
possess a tapetum lucidum1.

In summary, gamma-band synchronization shows dependencies on both “predict-
ability” and drive. The combination of these two factors relates gamma to a particular

1A tissue in the eyes that lies behind the retina and acts as a reflector. It should be noted that cats
studied in the laboratory, like other cats interacting with humans, will be active during the day.
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stimulus and coding regime, characterized by surround suppression and efficient cod-
ing. Species with high visual acuity will likely experience this regime frequently, such
that gamma-band synchronization may be optimized on phylogenetic or developmen-
tal timescales.

6.3 Effects of spatial and temporal context on gamma
synchronization

“No sensory stimulus is an island unto itself; rather, it can only properly be interpreted
in light of the stimuli that surround it in space and time.”

Schwartz et al. (2007)

The previous chapters relate to both spatial and temporal contextual effects on
gamma-band synchronization. In Chapter 4, it was shown that when the RF stimu-
lus is part of a larger uniform surface, and the spatial context allows a prediction of
RF content, gamma oscillations are enhanced. What about temporal predictability?
In Chapter 5, in the adaptation paradigm, the RF stimulus was part of a longer uni-
form stimulation period, and temporally predictable. However, gamma oscillations
were strongly reduced. In contrast, the repeated (and therefore to a certain degree pre-
dicted) presentation of a stimulus, as another form of temporal context, can increase
gamma-band oscillations (Chapters 2 and 3).

Taken together, this suggests that these effects are brought about by different mech-
anisms. The case of continuous stimulation will be considered first. As discussed in
Chapters 2 and 5, prolonged stimulation with an identical stimulus can lead to adapta-
tion (reduction) of the drive to V1. In this case, there is insufficient signal to engage the
interaction between excitatory and inhibitory cells that underlies gamma-band oscilla-
tions, and there is likely less redundancy in the remaining signal. In contrast, previous
studies have measured responses to stimuli with varying temporal predictability that
are not adapting the inputs as strongly. In cases where continuous stimulus motion
has a large degree of jitter or randomness, V1 gamma-band synchronization tends to
be weak. In contrast, it tends to be strong in cases where stimulus motion is pre-
dictable (Kayser et al., 2003; Kruse and Eckhorn, 1996; Gray et al., 1989; Besserve
et al., 2015a), as is V1-V4 gamma-band coherence (Bosman et al., 2012; Grothe et al.,
2012). The stimuli that generated strong gamma-band responses had a predictable
spatial structure and a high SNR, and additionally showed some predictable tempo-
ral behavior. They may therefore constitute a temporal extension of the drive-and-
predictability regime. More generally, these findings are in line with a role also for
temporal predictability in the generation of gamma-band responses.

However, previous work using MEG and EEG recordings in humans have suggested
that when stimuli were unexpected given the immediate temporal or cross-modal con-
text, MEG/EEG gamma power increases (Todorovic et al., 2011; Arnal and Giraud,
2012). This led to the suggestion that gamma-band activity mediates the transmis-
sion of feedforward error signals (Bastos et al., 2012). Several possible explanations
for these phenomena can be put forward. Firstly, as discussed in Chapter 2, some
form of rapid adaptation and thereby a decrease in drive might occur for a stimu-
lus repetition. This rapid process has opposite effects on gamma-band power com-
pared to the repetition effects with repeated stimulation described by Brunet et al.
(2014). Therefore, in some cases, gamma-band increases for expectation violations
may reflect rapid adaptation to matches, rather than stronger responses to mismatches

145



6.3. EFFECTS OF SPATIAL AND TEMPORAL CONTEXT ON GAMMA
SYNCHRONIZATION

(Kaliukhovich and Vogels, 2014). A second possibility is that expectation violations
elicit so-called high-gamma activity. High-gamma activity has been reported for vari-
ous stimuli and cognitive tasks. It tends to be transient rather than sustained, has been
related to learning and plasticity by its NMDA dependence, and may reflect dendritic
processes (Bartoli et al., 2019; Leszczynski et al., 2019; Ray and Maunsell, 2011).
Broadband high-gamma responses are therefore likely to be observed during cogni-
tive processing, including prediction errors. Thirdly, another interesting possibility
is that a top-down feedback error signal may be generated for expectation violations,
possibly as a teaching signal to improve responses in lower visual areas. Compared
to predictive coding theories, error signals would travel in the other direction in this
scenario (Heeger, 2017). Evidence for such error signals originating from higher vi-
sual areas has been reported recently for interactions between higher and lower-order
areas within IT (Schwiedrzik and Freiwald, 2017; Issa et al., 2018). Speculatively,
this feedback could generate drive in superficial layers in the lower area of IT, that
may be sufficient to generate a gamma-band response. Areas in IT no longer possess
a clear spatial surround, but feedback drive may stimulate the “effective surround” in
a higher visual area, i.e. neighboring, connected cells, possibly sharing feature pref-
erences. Interestingly, temporally stimulating such a feature-based surround in IT can
show similar effects for rates as a spatial surround in V1 (Kaliukhovich and Vogels,
2016).

At first glance, spatial and temporal context might appear as separate aspects of vi-
sion. However, natural vision contains simultaneous dependencies in space and time,
for example for any moving object. Kaliukhovich and Vogels (2016) elegantly showed
that concepts developed for surround modulation in early visual cortex could be ex-
tended to IT in the temporal domain. Similarly, temporal and spatial context may
interact strongly within V1 (Aschner et al., 2018; Schwartz et al., 2017). Recent mod-
eling work show that a normalization of responses by predictable spatial context can
be extended to a predictable temporal context. This captures adaptation and surround
modulation with a similar operation, and with a similar result of redundancy reduction
(Snow et al., 2016). I therefore suggest that a full understanding of of gamma-band re-
sponses may require a concept of a surround that applies all along the ventral stream,
as well as in space and time. Based on this extension of the “predictability hypoth-
esis”, I suggest that using naturalistically moving or transforming stimuli may be a
way to generate stronger gamma-band responses in higher visual areas. Possibly, this
might overturn the current state of the literature that suggests a decrease of gamma-
band response strength with increase in hierarchical position along the ventral stream
(reviewed in Vinck and Bosman 2016).

The temporal surround will integrate information on short timescales. Immediate,
single repetitions or constant stimulation can easily lead to input fatigue, and are par-
ticularly easy cases to predict that do not require additional computation after some
point. In contrast, predictable stimulus motion as during natural vision allows for
some useful computation of future events, which may be a key operation of the visual
system (Hénaff et al., 2019). Since areas higher along the ventral stream can detect
higher-order correlations compared to V1 (Yu et al., 2015; Freeman et al., 2013), it is
possible that more complex forms of “predictability” drive higher areas in the ventral
stream (Barlow, 1959).

On a longer timescale, a predictable center-surround stimulation via repeated pre-
sentations might encourage an optimization of responses to these stimuli (Brunet et al.
2014, Chapter 2). With regard to gamma-band responses, increases with stimulus rep-
etition may reflect a short-term learning process in which center-surround interactions
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are modified by experience. This could involve strengthening the effective connec-
tivity between cells that have strong responses to the stimulus between center and
surround. It would be interesting to test this hypothesis using targeted stimulation of
cells in the center or surround, or possibly by the analyses of millisecond timescale
interactions using coupled oscillator theory (see Mechanism section below).

To summarize, current evidence is compatible with an extension of the drive-and-
predictability regime for gamma-band activity into the temporal domain. Prolonged
stimulation may lead to fatigue and reductions in drive, whereas naturalistic motion
combines drive and predictability in time. Moreover, repeated stimulation could result
in both short-term and long-term learning of spatially predictive relationships.

6.4 Mechanisms of gamma synchronization

“Theorizing at this stage is like skating on thin ice - keep moving or drown.”
Hebb (1949), p.xii

The previous chapters and discussion point to some of the principles underlying
the stimulus- and contextual dependence of gamma synchronization. Yet, the precise
neuronal mechanisms generating V1 gamma synchronization, and in particular its de-
pendence on spatial and temporal context, remain unclear. These mechanisms include
their origin, cellular substrates, and network synchronization principles.

Origins. Previous work indicates that in primate and cat V1, gamma-band oscilla-
tions are generated cortically, with especially strong generators in the superficial lay-
ers of the cortex (Xing et al. 2012; Buffalo et al. 2011; Livingstone 1996; Herculano-
Houzel et al. 1999; Bastos et al. 2014, see also General Introduction, Figure 1.4). Both
lateral connectivity and top-down feedback is strong in superficial layers (Lund et al.,
1993; Barone et al., 2000; Markov et al., 2014). Early reports in anesthetized animals
suggested the presence of gamma-band oscillations in the LGN that had a distinct fre-
quency profile from cortical oscillations, pointing to independent cortical generators
(Castelo-Branco et al., 1998; Neuenschwander and Singer, 1996). However, a recent
study did not detect gamma-band oscillations in the LGN of awake primates (Bastos
et al., 2014). In Chapter 4, the dependence of gamma-band synchronization on a pre-
dictable center-surround relationship was illustrated, in line with previous findings of
the size dependence of gamma-band oscillations and the emergence of gamma-band
oscillations for bar stimuli that continue in a predictable manner into the surround
(Gieselmann and Thiele 2008; Jia et al. 2011; Chalk et al. 2010; Gray et al. 1989, re-
viewed in Vinck and Bosman 2016). Taken together, this suggests gamma oscillations
emerge in superficial layers, given the integration of bottom-up inputs with contextual
information mediated through lateral and top-down feedback.

Cellular underpinnings. Assuming therefore that the origin of gamma-band oscilla-
tions is within cortex, we can next consider the role of different cell types. Currently,
it is common consensus that the interaction between inhibitory and excitatory neurons
likely plays a central role (Jadi and Sejnowski, 2014; Veit et al., 2017; Hasenstaub
et al., 2005; Buzsáki and Wang, 2012; Kopell et al., 2000; Whittington et al., 1995;
Tiesinga and Sejnowski, 2009; Perrenoud et al., 2016; Cardin et al., 2009; Bartos
et al., 2007; Sohal et al., 2009; Womelsdorf et al., 2014; Vinck et al., 2013a). How
such interactions could generate oscillations was introduced in the General Introduc-
tion, section 1.4.3. Both computational and experimental work has implicated fast-
spiking basket cells in the generation of cortical gamma oscillations (Moore et al.,
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2010; Cardin et al., 2009; Vinck et al., 2013a; Buzsáki and Wang, 2012; Bush and
Sejnowski, 1996; Wang, 2010). Interestingly, it has been shown that surround mod-
ulation increases the firing of fast-spiking interneurons in cat visual cortex (Haider
et al., 2010). Stimulation of PV interneurons, a type of inhibitory cell that expresses
parvalbumin and provides highly effective inhibition directly to the soma of excitatory
neurons, can generate gamma-band responses in cortex (Cardin et al., 2009). PV neu-
rons have long been suggested to be central for gamma-band activity, and have been
related to gain control due to their perisomatic inhibition.

However, for V1 in particular, the views on which interneuron type may be most
crucial for gamma oscillations have been evolving in recent years. Cell-type specific
manipulations are increasingly feasible, particularly in rodents. In mice, somatostatin-
positive SOM interneurons, targeting dendrites rather than soma of excitatory neurons,
were found to better correlate with visually induced gamma-band activity (Moore
et al., 2010; Chen et al., 2017; Veit et al., 2017). Not only did driving these cells in-
duce gamma as in PV neurons, suppressing SOM cells reduced gamma-band activity,
an effect not seen for PV cells (Veit et al., 2017). This is interesting because SOM
interneurons target dendrites, where gamma rhythms could gate computations or plas-
ticity more flexibly than at the soma, by targeting specific inputs. SOM interneurons
have long-range horizontal connections and stimulus size-dependent firing properties
that are pointing to a role in contextual integration. Since driving both PV and SOM
neurons can increase gamma-band responses, inasmuch as a function can be mapped
onto a neuron type, gamma-band activity could reflect both contextual integration and
gain control (related to “predictability” and drive, respectively). Notably, the oscil-
lations in mice occur at frequencies below 30 Hz, and it is currently unclear which
types of stimuli and possibly learning histories result in these responses, since studies
with relatively similar stimuli do not always report these oscillations (Veit et al., 2017;
Perrenoud et al., 2016; Vinck et al., 2015).

An apparently specialized class of excitatory neuron, the “chattering” (i.e. fast-
rhythmic bursting) cell, deserves special consideration for V1 gamma rhythmogene-
sis. These cells generate gamma-range burst firing when artificially depolarized with
a current injection (Gray and McCormick, 1996) and show resonant properties in the
gamma-frequency band (Gray and McCormick, 1996; Cardin et al., 2005; Nowak
et al., 2003). Such cells were reported to be highly prevalent in V1 in the 1990s and
early 2000s, but this research field was largely dormant until recently (Onorato et al.,
2019). However, it may be that a large portion of V1 cells are “chattering”, also in
awake primates (Onorato et al., 2019). These cells show stronger stimulus selectivity
(in terms of orientation preference) as well as stronger locking to the gamma rhythm
compared to other cell types. Interestingly, this cell type may be specific to cats and
primates and appears absent in rodent V1, where gamma oscillations typically have a
frequency about half of that in primates. Important future questions include whether
“chattering” cells show similar properties for chromatic stimuli, what their surround
modulation behavior is, particularly with respect to spatial predictability, and how
they might behave for repeated stimuli.

To summarise, various cell types have been associated with the generation of gamma-
band activity. These include two types of interneurons whose activity has been related
to contextual integration. Recent findings of a very stimulus-informative, gamma-
locked excitatory cell type in highly visual carnivores and primates support the pro-
posal that that may reflect a specialization to a predictability-and-drive regime these
animals are likely to experience.

Network mechanisms. Regardless of the underlying cell types, it is necessary to
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consider gamma-band activity as a network phenomenon. Many computational mod-
els can account for the generation of local gamma oscillations (Börgers and Kopell,
2005; Whittington et al., 2011; Börgers and Kopell, 2008; Tiesinga and Sejnowski,
2009). These models capture the general necessity of sufficient input drive, and also
drive as one explanatory factor for the stimulus dependence of gamma-band oscilla-
tions (Börgers and Kopell, 2008; Lowet et al., 2015). However, a strong drive alone
is apparently insufficient to generate narrow-band gamma oscillations, as discussed
above. It remains largely unknown what mechanisms are underlying gamma-band
synchronization between more distant V1 columns with non-overlapping RFs. Re-
cently, it has been shown for awake primate V1 that a lot of the apparent stochasticity
and fluctuations in gamma-band frequency that occur on a millisecond time scale can
be captured using the well-established theory of weakly coupled oscillators (TWCO,
Lowet, Roberts, Peter, Gips and de Weerd, (2017)). TWCO describes synchronization
as a dynamic process, where oscillators that show sufficient coupling strength modu-
late one another’s instantaneous frequency. Moment-to-moment interactions between
distant V1 sites could be captured using this approach, and a dependence on two main
parameters of TWCO, coupling strength and difference in frequency between sites,
was established. Since stimulus drive can modify oscillation frequency, for example
via luminance contrast (Ray and Maunsell, 2010; Roberts et al., 2013; Hadjipapas
et al., 2015; Jia et al., 2013a), desynchronization between distant sites may occur
when visual inputs provide a different stimulus drive. Next to frequency tuning, cou-
pling strength (e.g. existing connectivity strength) will determine synchronization.
Tangential, excitatory connections linking columns with similar feature preferences
(e.g. color or orientation) may play a crucial role in synchronizing neuronal assem-
blies coding for related features by coupling local oscillators (Vinck and Bosman,
2016; Gray et al., 1989; Korndörfer et al., 2017; Lowet et al., 2017). This suggests
that “predictability” on the level of V1 requires horizontal connectivity, or coupling.
For example, the experiment by Gray et al. (1989) showed that a bar connecting dis-
tant RFs generated gamma-synchronized spiking, whereas – arguably predictable –
aligned, small bars in the individual RFs did not.

A stimulus with high spatial predictability may simultaneously activate a large
number of excitatory horizontal connections, which could then give rise to gamma-
synchronization via the recruitment of local excitatory and inhibitory neurons. In ad-
dition, feedback from higher visual areas could be critical, considering that the spatial
spread of tangential connections is somewhat limited and covers a smaller surround
region than cortical feedback (Angelucci et al., 2017). Currently, the relative contri-
butions of local, horizontal connectivity compared to top-down feedback are unclear.

Importantly, there is evidence that predictable patterns are learned from natural in-
put statistics and reflected in network connectivity strength (Fiser et al., 2010; Berkes
et al., 2011). Speculatively, less predictable patterns might tap into less strongly cou-
pled populations, which are unable to synchronize even given similar input strength.
Stimulus repetition could affect effective connectivity strength, for example through
synaptic depression or facilitation, resulting in stronger gamma-band responses with
repetition if the structure of the image can be learned by the circuit. By extension,
long-term learning could change structural connectivity in response to stimuli to al-
low more efficient, cooperative encoding. This predicts the emergence of stronger
gamma-band responses for novel stimulus classes over the course of days, if stimuli
are sufficiently novel to require a restructuring of cortical responses, and endowed
with structure that cortex is able to extract.

Finally, one alternative view to the idea of coupled oscillators is that gamma-band
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responses behave like a traveling wave (Besserve et al., 2015b; Muller et al., 2018).
This traveling wave may only emerge when there are predictable input relationships
over a large region in space, with a locally measured oscillation being a snaphot of
such a wave (Muller et al., 2018).

To summarise, the origins, cellular basis and network mechanisms all point to a
role of gamma-band synchronization for contextual integration in a predictability-
and-drive regime.

6.5 Functions of gamma synchronization

“Cortical computation cannot be understood without the consideration of cortical
dynamics, and cortical dynamics cannot be understood without the consideration of
cortical computation.” Vinck and Bosman (2016).

The study of visual gamma-band oscillations encompasses not only a dissection of
the mechanisms as described above, but from its earliest days also ideas about its
functional relevance. What are the functional implications of the previous chapters?

Binding by synchrony interpretations. Early theories maintained that gamma syn-
chronization could overcome the so-called “binding problem” (Singer and Gray, 1995;
Singer, 1999). This refers to the problem of segmenting images into objects, with dif-
ferent features and parts of the objects grouped together. Given the distributed activity
in the visual system in response to a stimulus, it was suggested that the activity can
be dynamically grouped together through synchrony according to perceptual Gestalt
principles (Milner, 1974; Engel et al., 1992; Singer and Gray, 1995; Singer, 1999;
von der Malsburg, 1994; Singer, 2018). However, it was soon found that some stimuli
that follow Gestalt principles do not induce gamma-band synchrony, for example be-
tween connected sites that exceed the maximal horizontal connectivity in V1 (Roelf-
sema et al., 2004). Simple stimulus manipulations have strong effects on gamma-
band responses (Lima et al., 2010; Jia et al., 2013b, 2011; Hadjipapas et al., 2015;
Ray and Maunsell, 2010; Peter et al., 2019), such that neurons responding to different
parts of the same object do not necessarily show synchrony. Therefore, binding-by-
synchrony cannot be the general solution as originally proposed. However, notably,
some operations that may contribute to perceptual grouping and underlie some of the
Gestalt principles, such as contour integration (Liang et al., 2017), perceptual filling-
in (Zweig et al., 2015; Land, 1959; Wachtler et al., 2003), and figure-ground segre-
gation (Lamme, 1995), have been linked to surround modulation. A link between
center-surround predictability and gamma-band synchronization as discussed above
may therefore relate gamma-band synchrony to proto-operations for object recogni-
tion.

Communication through coherence. Whereas early work focused on the binding
problem, some later work switched the emphasis to flexible coordination (“regula-
tion of communication”) between neuronal populations, especially between brain ar-
eas (Fries, 2005; Salinas and Sejnowski, 2001; Palmigiano et al., 2017; Akam and
Kullmann, 2010; Knoblich et al., 2010; Colgin et al., 2009; Jia et al., 2013a). For ex-
ample, the communication-through-coherence (CTC) hypothesis states that cognitive
demands can selectively adjust coherence between neuronal populations to enable or
prevent information transmission (Fries, 2005, 2015, 2009). This involves the gating
of inputs to downstream areas by the ongoing rhythm in the downstream areas, or
coordinated rhythms between areas. Indeed, recent studies have shown that distant
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visual areas show selective gamma-band coherence, primarily when they process an
attended stimulus (Gregoriou et al., 2009; Bosman et al., 2012; Grothe et al., 2012;
Buschman and Miller, 2007). The level of coherence could predict reaction time (Ro-
henkohl et al., 2018). Furthermore, Jia et al. (2013a) directly measured the influence
of spiking activity in V1 on the highly connected, downstream area V2 in the pres-
ence of stimulus-induced gamma band oscillations. Impressively, they showed that for
a doubling of pairwise synchrony in V1 responses, a V1 action potential was about
twice as likely to elicit a spike in V2. However, they also reported that this effect
seemed to mainly depend on synchrony within V1, and not a coordination between
V1 and V2. Of note, these data were recorded under anesthetized conditions, possibly
preventing the top-down coordination suggested by findings in attention paradigms.
The current work cannot add directly to this line of research, as interareal coordination
was not studied. Rather, the preceding chapters emphasize the strong stimulus depen-
dence, and the role of spatial and temporal context in the generation of gamma-band
responses. To the extent that the observed increases in gamma-band power and LFP-
MUA locking are reflecting pairwise synchrony, the findings by Jia et al. (2013a) do
suggest that the nature of the stimulus and spatial or temporal contextual modulations
in gamma-band responses will have strong effects on downstream areas. Any flexible
coordination based on rhythmic synchronization will need to accommodate for these
effects. One pathway to address these challenges may be to actively manipulate stimu-
lus attributes, in particular center-surround relationships, whilst recording interareally
during an attention task.

Recently, Vinck and Bosman (2016) proposed two, largely untested, functional roles
of V1 gamma-band activity in the context of efficient and predictive coding. The first
relates to interareal coordination. Vinck and Bosman (2016) suggest, in line with
previous suggestions and Jia et al. (2013a), that gamma synchronization may be a
mechanism to increase the effective synaptic gain of V1 neurons on post-synaptic tar-
gets (e.g. V2) - crucially, when a stimulus is efficiently encoded (Vinck and Bosman,
2016). This may ensure reliable transmission of V1 outputs in circumstances when
firing is sparse. For example, a large, colored stimulus can suppress neuronal firing
below baseline levels (Chapter 2, Chapter 4). Nevertheless, the increase in gamma-
synchronization might ensure that stimulus information is still transmitted with high
fidelity. In other words, some stimuli may elicit a synchronization-based, and other
stimuli a rate-based encoding strategy in V1. An effective strengthening of gain from
lower to higher areas would also accommodate the finding that gamma-band influ-
ences tend to be directed in a feedforward direction (Bosman et al., 2012; van Kerko-
erle et al., 2014; Bastos et al., 2015). In contrast to previous suggestions (Bastos
et al., 2012), these interactions would involve the feedforward tansmission of sparse,
informative stimulus responses rather than errors.

Gamma-band activity as a coding regime. As a second proposal, Vinck and Bosman
(2016) suggested that gamma synchronization could also play an important role in
coordinating the interactions between distributed parts of V1 receiving related, and
thereby redundant, visual inputs. Evidence for this, though a direct test has yet to be
conducted, has been reviewed in Vinck and Bosman (2016). Recently, and in line with
the hypothesis, Lowet, Roberts, Peter, Gips and De Weerd (2017) have demonstrated
that synchronization is a dynamical process between distant V1 regions receiving sim-
ilar inputs. To the degree that predictable inputs generate a similar drive and thereby
similar local oscillation frequency, TWCO predicts stronger synchronization.

In an excitatory-inhibitory network, this could lead to coordinated inhibition and
redundancy removal. Furthermore, small differences in input are converted from a
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rate to a phase code: slightly stronger inputs spike earlier within the oscillation cy-
cle (Lowet et al., 2017). This resonates well with evidence that gamma-modulated
cells show stronger stimulus selectivity and that strongly driven cells fire early in the
gamma cycle (Womelsdorf et al., 2012; Onorato et al., 2019; Vinck et al., 2010a).
Notably, this provides additional evidence that gamma-synchronized responses may
constitute a specific type of coding regime. Similarity and predictability are related
concepts. Highly similar (but not identical) inputs, would yield similar output rates,
that are not easy to discriminate in a downstream area. In contrast, gamma synchro-
nization may convert such activity into efficient, sparse and, by virtue of phase dif-
ferences, discriminable responses. In line with this idea, Markowitz et al. (2008)
have demonstrated in vitro that only cells with similar firing rates exhibited gamma-
band synchrony. They suggested that this allows a many-are-equal computation and
indicates the coexistence of rate- and spike synchrony coding. Interestingly, these
considerations result in the prediction that gamma-band synchrony may be relevant
for fine but not coarse stimulus discrimination. Preliminary evidence supporting this
prediction are the increased neuronal disciminability of specifically similar stimuli
observed with gamma-band increases in macaque V1 (Hansen and Dragoi, 2011) and
the observation that bees can perform coarse but not fine odor discriminations when
odor-induced oscillations are blocked (Stopfer et al., 1997).

Gamma-band activity and plasticity. The repetition effects studied in Chapters 2
and 3 are short-term plasticity effects that span the order of seconds to minutes. These
could be brought about by changes in synaptic strength (Wang et al., 2011; Bazhenov
et al., 2005), which can strengthen gamma-band activity. In a high-SNR regime with
very strong input drive, synchronization might be prevented if the cells are in such a
depolarized state that oscillatory membrane potential fluctuations no longer influence
spike timing. Synaptic depression could therefore increase synchrony, especially for
strong inputs, and sharpen stimulus responses. Synaptic depression could be instru-
mental in converting inputs from a rate-based to a phase-of-firing based coding regime
as predicted by TWCO and reported e.g. by Womelsdorf et al. (2012), Lowet et al.
(2017), Onorato et al. (2019) and Vinck et al. (2010a). This may aid stimulus dis-
criminability (Markowitz et al., 2008). Crucially, oscillation phase-based codes may
be easily learned by downstream networks, using spike timing-dependent plasticity
mechanisms (Masquelier et al., 2009). In other words, rapid plasticity mechanisms
may aid in the generation of gamma-band synchrony, which may be conducive to
more long-term forms of learning.

Criticism. Criticisms of claims of a functional role for gamma-band oscillations
quickly followed initial proposals (Shadlen and Movshon, 1999). Here, the ques-
tions of the causal role and volatility of gamma-band synchronization are briefly dis-
cussed. More extensive discussions that also involve considerations of effect size or
the general problem of neuronal coordination can be found in, for example, Fries
(2015); Singer (2018); Jia et al. (2013a,b); Burns et al. (2011); Merker (2013); Rolls
et al. (2012). A major ongoing point of debate is the question of a causal role versus
epiphenomenal quality of gamma-band activity. Does gamma-band synchronization
implement computational functions, for example by a phase-of-firing code, or is it
merely a signature of functional processes, such as interactions between excitatory
and inhibitory cells, without any functional role?

Questions of causality are difficult to address in complex systems. Since gamma-
band activity is a network phenomenon, there are many ways to influence gamma
synchronization. However, such manipulations will inevitably influence other net-
work properties, such as neuromodulation or the function of a particular cell type.
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In an ideal scenario, an identical, subtle change in gamma-band oscillation behavior
would be brought about through very different mechanisms, but lead to an identical
functional consequence. Ideally, this would involve both the gain and loss of function
through bidirectional manipulation of the different mechanisms. This would require
an excellent understanding and fine-grained manipulation of the underlying circuit
mechanisms. Until this challenge is mastered (if ever), it should be noted that gamma-
band activity has influences on the membrane potential (Atallah and Scanziani, 2009),
and thereby on spiking behavior, whose causal role is rarely questioned. Since oscilla-
tory activity in cortex varies between areas and states and is therefore not unavoidable
(Buzsáki and Wang, 2012; Buzsáki, 2006), and V1 gamma-band activity seems to
involve specialized cell types that are highly informative about visual stimuli (Ono-
rato et al., 2019; Gray and McCormick, 1996), it is at least possible that gamma-band
activity plays a functional role by coordinating neuronal activity.

Another question regards the plausibility of a functional role for gamma-band activ-
ity given its volatile behavior. Specifically, gamma-band oscillations appear stochas-
tic, with strong fluctuations in amplitude and frequency (Atallah and Scanziani, 2009;
Spyropoulos et al., 2019; Lowet et al., 2017; Burns et al., 2011; Ray and Maunsell,
2010). However, recent experimental and modeling work has shown that the ap-
parent stochasticity of gamma-band activity can be understood from the perspective
of an ongoing synchronization process (Lowet et al., 2017). Furthermore, modeling
work suggests that interareal neuronal networks can 1) spontaneously generate brief
gamma-bursts which are 2) matched between areas, and 3) selectively route informa-
tion flow in a flexible manner, since small modulation can switch between different
routing states (Palmigiano et al., 2017). Frequency- and amplitude variation can en-
able synchronization. In summary, some aspects of gamma-band activity that could
be considered problematic for function have the potential, upon closer examination,
to reveal functional processing.

6.6 Methodological considerations and the psychology of
technology

“It will have occured to the reader [...] that the science [...] must be in a very primitive
condition, if it is still concerned with clarifying its fundamental notions at the stage
we have been discussing. [...] This may be partly due to the sheer magnitude of
the programme, [...], partly due to an intuitive confidence, [...], that, by amassing
sufficient statistical material, all difficulties may ultimately be overcome.”

R. A. Fisher (1936), ”The Coefficient of Racial Likeness” and the Future of Cran-
iometry.

Visual systems neuroscience, based on electrophysiology and particularly of the
early visual system, provides a particular perspective on understanding vision that
comes with specific limitations and biases. Olshausen and Field (2005) list some of
the major limitations in the field, including biased sampling, biased stimuli, biased
theory, and ignoring contextual influences and dynamics. How does this apply to the
experiments in the preceding chapters?

Biased sampling. Visual neuroscience has been relying on recordings from single
electrodes, inserted anew for each recording, for much of its existence. This has biased
the recordings toward neurons that are visually responsive (also biasing stimuli to
make responsiveness more likely). The use of chronically implanted recording arrays
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with many electrodes, as in all experiments here, helps against this particular bias. The
analysis of data that is not based on highly responsive cells brings new perspective,
but also its own challenges (as discussed in Chapter 2). Moreover, chronic recording
methods often do not provide single-cell resolution long-term, though this problem
might be solved in various ways, in particular with miniaturization (Hong and Lieber,
2019). Even if this is solved, electrophysiology is still biased towards larger cells
(since they are easier to detect) and particular layers (e.g. layer 1 is sparsely populated
and right at the surface, i.e. easily damaged, Buzsáki et al. 2012). Newly developed
imaging methods that can record from thousands of neurons regardless of their activity
provide new perspectives on cortical function (e.g. Stosiek et al. 2003). Unfortunately,
these come with their own biases, such as poor temporal resolution and bias towards
upper layers, and the methods that make imaging possible might alter properties of
neuronal responses themselves (McMahon and Jackson, 2018; Stosiek et al., 2003).

Biased stimuli. Technological constraints, such as attempts to detect responsive
single neurons, can lead to biased stimuli. As an example, in the field of stimulus
repetition, the advent of multielectrode recording arrays that covered wider parts of the
visual field encouraged the use of larger stimuli. This change revealed both previously
unknown coding principles, and similarities between areas that had been thought to
engage in different computations with respect to repeated or prolonged stimulation
(Wissig and Kohn, 2012; Solomon and Kohn, 2014). On the other hand, one could say
that a desire to make optimal use of such arrays induces a bias towards larger stimuli,
and in attempt to treat different sites the same, homogeneous ones. This choice has
dramatic effects on contextual processes such as surround modulation and stimulus
repetition effects, both of which are linked to gamma-band oscillations (Chapters 2
and 4).

Such observations have led to increasing attempts to study “natural” stimulation,
typically in the form of achromatic still images (photographs). This paradigm shift,
together with increasingly parallel recordings, has led to important new insights, and
emphasized the power of theories inspired by optimal encoding of natural statistics
or particular goals, such as object recognition, compared to ever-more detailed de-
scriptive models (Schwartz and Simoncelli, 2001; Schwartz et al., 2017; Coen-Cagli
et al., 2015; Stringer et al., 2019; DiCarlo et al., 2012). However, our world is nei-
ther static nor black-and-white. As seen in Chapters 2, 4 and 5, introducing color
can have strong effects on both rate responses and gamma-band oscillations. Together
with the ethological value of color information (Osorio and Vorobyev, 1996; Santos
et al., 2001; Waitt et al., 2006; Gerald et al., 2007; Bichot et al., 2005; Corso et al.,
2016; Melin et al., 2017), this suggests that a full understanding of primate vision will
have to integrate color processing in efficient or predictive coding models (Wachtler
et al., 2003). Similar arguments can be made for using naturalistic moving stimuli and
self-motion (Hénaff et al., 2019; Britten, 2008).

The preceding chapters illustrated that using more naturalistic stimuli brings new in-
sights but also new challenges (Chapter 2, Uran, Peter et al., in preparation). Generat-
ing controlled stimuli does not come without its own reasoning and advantages (Rust
and Movshon, 2005). For example, a good theory is falsifiable with even a single
carefully constructed counter-example. Due to the dependencies of different stimulus
aspects in natural images (Barlow, 1959; Marr, 1982), this appears easier with artifi-
cial stimuli. Similarly, an artificial stimulus that provides a strong manipulation in line
with a hypothesis can provide at least a quick initial test that can complement and be
further elaborated with more extensive experiments using natural images (e.g. Chap-
ter 4 provides an initial test for the “predictability” hypothesis for naturalistic input,
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Uran, Peter et al., in preparation). Artificial stimulation can isolate aspects that tend
to co-vary in natural stimulation, such as the red-green and blue-yellow color axes
(Chapter 5). It can also be a powerful confirmation of models derived from natural
stimulation (Bashivan et al., 2019). Clearly, an interactive use of both more naturalis-
tic and artificial stimulation will be most informative (Stringer et al., 2019; Olshausen
and Field, 2005; Rust and Movshon, 2005; Bashivan et al., 2019).

Biased theories. Theories tend to be strongly inspired by observable phenomena,
which result from stimulus choice and the technology in use. In case of isolated
recordings from a single cell, this restricts theories largely to rate-based encoding.
Simultaneous recordings brought about an increasing recognition for the role of neu-
ronal correlations, coordination and dynamics (Kohn et al., 2016; Solomon and Kohn,
2014; Gray et al., 1989; Singer, 2018; Fries, 2015; Olshausen and Field, 2005; Muller
et al., 2018). Similarly, whole-brain imaging methods like fMRI were powerful in
emphasizing the large network that underlies any cortical function or behavior. At the
same time, these technologies de-emphasized the less visible aspects of cortical func-
tion, such as fast dynamics and input- versus output selectivity of a system (Sawamura
et al., 2006; Logothetis and Wandell, 2004). It is always tempting to look for answers
based on questions that can currently be tested, and challenging to be aware of blind
spots of the current approach. Both the stimulus choice and change in perspective
through new methods have been, and continue to be, transformative.

Approaches that can predict a relatively wide range of neuronal responses to natural
stimuli currently are either based on artificial neuronal networks that are driven by
large amounts of naturalistic training data and particular task goals (Kar et al., 2019;
DiCarlo et al., 2012; Turner et al., 2019), or based on theories about the optimal en-
coding of naturalistic input (Schwartz and Simoncelli, 2001; Schwartz et al., 2017;
Coen-Cagli et al., 2012; Barlow, 1959; Rao and Ballard, 1999). Since natural vision
may involve goals both on the level of naturalistic tasks such as object recognition, and
energy-efficient yet robust processing, the increasing integration of these approaches
has the potential to move the field away from bias (Turner et al., 2019).

Contextual influences and dynamics. Arguably, all preceding Chapters have shown
some awareness of this issue. For example, Chapters 2 and 3 have considered devel-
opments with a few stimulus repetitions, Chapter 4 tested spatial contextual influences
on gamma-band responses, and the adaptation experiments in Chapter 5 were inspired
by the observation of within-trial dynamics. Other important dynamical aspects have
been beyond the scope of this work, including for example the dynamical interactions
between different recording sites within a trial, the potential for traveling waves, the
structuring of activity by rhythmic microsaccades, or a better understanding of the
dynamics in the transient stimulus onset response (Lowet et al., 2017; Spyropoulos
et al., 2019; Muller et al., 2018; Bosman et al., 2009; Lowet et al., 2016).

From a broader perspective, contextual influences are the core of efficient and pre-
dictive coding theories of visual processing (Rao and Ballard, 1999; Schwartz and
Simoncelli, 2001; Schwartz et al., 2017; Coen-Cagli et al., 2012; Barlow, 1959). Re-
currency, and thereby dynamics, are increasingly improving artificial neural network
approaches (Kar et al., 2019; Turner et al., 2019; Kubilius et al., 2018; Quax and Van
Gerven, 2018).
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6.7 Conclusion and outlook

“The future is already here - it is just not very evenly distributed.”
William Gibson.

The preceding chapters and discussion link gamma-band activity in V1 to contex-
tual integration and recurrent processing as well as short-term plasticity. This think-
ing relates gamma-band activity to processes that can be described on different and
equally valid levels. On one level of abstraction, gamma-band activity may reflect
“predictability” in a high-SNR regime. This gives an intuitive unerstanding of the
kind of stimuli that can generate strong gamma responses, and that might benefit the
most from stimulus repetition. Moreover, “predictability” is a property that can be
quantified for natural images in various ways, using for example algorithms that pre-
dict missing image information (Uran, Peter et al., in preparation). This could allow
the generation of quantitative predictions for V1 responses to arbitrary stimuli.

“Predictability” by V1 results in surround suppression, which could be seen as the
implementation of prediction in the circuit. Surround suppression requires sufficient
drive and horizontal connectivity. From the perspective of gamma-band synchroniza-
tion, this strongly links surround suppression to network dynamics, such as described
using TWCO, where synchronization is the result of sufficient coupling (connectiv-
ity) and sufficiently similar inputs (drive). The dynamics reflect interactions in the V1
network, composed of various specialized cell types that may predispose the circuit
for gamma-rhythmic stimulus processing. Network dynamics can be optimized by
short-term plasticity through synaptic depression or facilitation, as is likely the case
for stimulus repetition. Once established, a gamma-rhythmic phase-of-firing coding
regime could result in consequences back on the functional level, such as increased
fine discrimination.

An integration of efficient-coding and goal-oriented approaches to vision, incorpo-
rating contextual influences and recurrency, appears on the horizon. Such an approach
links different levels of description, and given the strong dependence of V1 gamma
on stimulus properties, context and recurrency, bears promise also for understand-
ing gamma-band synchronization. The degree to which this promise can be fulfilled
remains to be seen, and will most likely depend greatly on an understanding of the
brain’s powerful and plentiful mechanisms to learn and adapt.
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Hárosi, F. I. (1987). Cynomolgus and rhesus monkey visual pigments. application
of fourier transform smoothing and statistical techniques to the determination of
spectral parameters. Journal of General Physiology, 89(5):717–743.

Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsáki, G. (2003). Organiza-
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