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1 Introduction

The impact of background electromagnetic fields on strongly interacting matter is relevant

for a range of physical situations including off-central heavy-ion collisions, magnetized

neutron stars and the evolution of the early universe [1]. In particular, the elementary

properties of magnetized hadronic degrees of freedom are important for cold astrophysical

environments. The masses of baryons and mesons enter the nuclear equation of state and

influence the mass-radius relations of magnetars. Together with hadronic decay rates, these

also affect stability of such compact objects and cooling mechanisms that characterize the

emitted neutrino spectra [2]. For heavy-ion collisions, the magnetic field is produced in the

very early stages and is expected to be short-lived [3, 4], primarily affecting heavy baryons.

A special role might be played by charged vector mesons that were conjectured to condense

for sufficiently strong magnetic fields [5].

Besides their phenomenological importance, magnetic fields also represent external

probes of strongly interacting matter i.e. of the underlying theory, quantum chromody-

namics (QCD). One particular feature of the magneto-response of QCD matter that re-

ceived great attention in the last decade is the phase diagram for nonzero temperatures and

static, spatially uniform background magnetic fields, see, e.g., the review [6]. This phase

diagram features a chiral symmetry restoration/deconfinement crossover [7, 8], where the

chiral condensate ψ̄ψ drops towards zero and, almost simultaneously, the Polyakov loop

P rises. According to lattice simulations, the pseudo-critical temperature Tc, where the

transition occurs, is reduced1 as the magnetic field strength B grows [10–12]. For physical

quark masses (i.e. such that the pion mass is Mπ = 135 MeV), this behavior emerges due

to the non-trivial dependence of ψ̄ψ on the temperature and on the magnetic field. On the

one hand, for temperatures well below Tc the magnetic field enhances ψ̄ψ (a phenomenon

referred to as magnetic catalysis [13]). On the other hand, for T ≈ Tc the opposite is ob-

served and ψ̄ψ is reduced by B (inverse magnetic catalysis [14]). While magnetic catalysis

1Early lattice simulations that observed an increase in Tc(B) suffered from large lattice artefacts [9].
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originates from the high degeneracy of the lowest Landau-level [15, 16], inverse magnetic

catalysis arises as a result of the rearrangement of gluonic configurations induced by the

magnetic field — it is thus a secondary effect that can be associated to the indirect inter-

action between B and electrically neutral gluons via sea quark loops [14]. This mechanism

is suppressed if quarks are heavy. Indeed, contrary to the situation at the physical point,

for sufficiently heavy quarks (Mπ & 500 MeV), inverse magnetic catalysis does not occur

anymore [17] — nevertheless, the transition temperature is still reduced by B [18].

The above summarized results are based on first-principles lattice QCD simulations.

Before these became available, a multitude of low-energy models and effective theories of

QCD were also employed to investigate the phase diagram for B > 0. Surprisingly, the

initial studies [19] observed the exact opposite of the lattice results: magnetic catalysis

at all temperatures and the enhancement of the transition temperature with growing B.

A prime example for this behavior was obtained in the Polyakov loop-extended Nambu-

Jona-Lasinio (PNJL) model [20], but various other models resulted in the same picture,2

see the reviews [6, 23]. The failure of these approaches was associated to the fact that

gluons merely enter as a static background in these models so that the indirect mechanism

behind inverse magnetic catalysis cannot be truly captured. Later it was recognized that

including a B-dependence in model parameters might improve the situation and bring

model calculations closer to the lattice results. While in the Polyakov loop-extended quark

meson model, this was shown to be insufficient to have a monotonically reducing Tc(B) [24],

other studies did profit from this strategy [25–34]. In particular a PNJL model study [26],

this was performed by tuning the coupling G(B) to reproduce the transition temperature

Tc(B) obtained on the lattice. While this shows that the model can be made compatible

with full QCD, in this example the predictive power of the effective approach is clearly lost.

Let us emphasize that effective models, albeit approximations to full QCD, are helpful

for identifying the relevant degrees of freedom and interaction mechanisms, and thus guide

our understanding of the physics of strongly interacting matter in extreme environments.

For large baryon chemical potentials, where lattice simulations are hindered by the sign

problem, low-energy models represent one of the few possibilities for the investigation of

the phase diagram. Therefore it is highly desirable to test the limitations of such models

in cases where importance sampling-based lattice investigations can be performed — like

the phase diagram at nonzero magnetic field or at nonzero isospin density [35].

In the present paper our aim is to develop a systematic approach to fix the param-

eters of the PNJL model utilizing magnetic field-dependent, first-principles input at zero

temperature.3 In particular we determine the baryon spectrum in three-flavor QCD using

continuum extrapolated lattice simulations with physical quark masses. From this analysis,

T = 0 constituent quark masses are inferred and used to set the model parameters in a

2It is worth mentioning that a decreasing transition temperature was observed in a few simple

models [21, 22].
3We note that the usual parameterization of the Polyakov loop potential, which we employ as well, relies

on temperature dependent data, however the novel magnetic field dependent corrections we use are derived

solely at vanishing temperature.
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magnetic field-dependent manner.4 According to our results, the phase diagram of the so

constructed lattice-improved PNJL model agrees with all features of the available lattice

findings. Our method may also be extended to further low-energy models of QCD. We note

that a similar idea was pursued in ref. [38], where temperature-dependent baryon masses

measured on the lattice [39] were used in an improved hadron resonance gas model. The

meson spectrum of NJL-type models was also the subject of lattice investigations [40].

Besides fixing free parameters of effective descriptions, our results constitute the first

lattice determination of magnetized baryon masses at the physical point. This complements

earlier lattice calculations of baryon masses with heavier-than-physical quarks [41–43],

meson masses [10, 44, 45] and decay rates [46], and properties of heavy quarkonia [47]

in strong magnetic fields. Our results might provide useful information for magnetized

compact stars and the early stages of heavy-ion collisions, as pointed out above.

This paper is structured as follows. In section 2 we describe our numerical setup and

measurement strategy and present the results for the baryon spectrum. This is followed by

section 3, where the definition of the constituent quark masses and the details of our PNJL

model are given. The results for the magnetic field-dependent model parameters and the

thermodynamics of the model is presented in section 4. Finally in section 5 we summarize

our findings and give an outlook for potential future research.

2 Baryon spectrum from lattice simulations

Our numerical simulations are performed on N3
s × Nt lattices with spacing a, using the

tree-level Symanzik improved gauge action and three flavors (u, d and s) of stout-improved

rooted staggered quarks [48]. The quark masses mu = md and ms are set to their physical

values along the line of constant physics [49]. The magnetic field is chosen to point in the z

direction and is implemented via U(1) phases ufµ satisfying periodic boundary conditions [9,

10, 41, 50],

ufy(n) = exp(ia2qfBnx), ufx(n) = exp(−ia2qfBNsnyδnx,Ns−1), ufz (n) = uft (n) = 1 ,

(2.1)

where n = (nx, ny, nz, nt) labels the lattice sites. The quark electric charges are set as

qu = −2qd = −2qs = 2e/3, where e > 0 is the elementary charge. This setup gives rise to

a quantized magnetic flux Nb ∈ Z, such that

eB = 6πNb · (aNs)
−2 . (2.2)

The lattice sizes and Nb-s used for each lattice spacing are listed in table 1. Note that the

magnetic field couples to sea as well as to valence quarks, i.e. it is taken into account in the

generation of configurations as well as in the calculation of fermionic observables. Further

details of our lattice ensembles can be found in refs. [10, 11].

4The B-dependence of effective couplings was also the subject of refs. [36, 37].
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243 × 32
β, a[fm] 3.45, 0.290

Nb 0,1,2,3,4,8,16,24,32

243 × 32
β, a[fm] 3.55, 0.215

Nb 0,4,8,16,24,32

323 × 48
β, a[fm] 3.67, 0.153

Nb 0,2,4,6,12,24

403 × 48
β, a[fm] 3.75, 0.125

Nb 0,2,4,6,12,24

403 × 48
β, a[fm] 3.85, 0.098

Nb 0,2,4,6,12,24

Table 1. Numerical parameters of the lattice simulations used in the measurments of the baryon

correlators.

The baryon masses can be extracted from the exponential decay of baryon correlators

Cb(t) at large Euclidean times.5 The correlator for the baryon b involving f1, f2 and f3
valence quark flavors is constructed from the corresponding staggered quark propagators,

contracting the color and flavor indices to obtain the correct quantum numbers [51]. The

quark propagators are obtained by inverting the Dirac operator containing the correspond-

ing U(1) links ufµ from eq. (2.1). We employ single-time-slice corner sources localized over

a spatial volume of about 1 fm3. To enhance statistics we average over sources living on

different time-slices as well as at different spatial locations. In addition, a sum over spatial

coordinates is performed at the sink (at B = 0 summing over the x and y coordinate com-

ponents achieves zero momentum projection px = py = 0, while for B > 0 it merely helps

to reduce fluctuations [45]). The single-time-slice baryon operators mix parity partners so

that the correlator takes the form [51],

Cb(t) = A
[

e−Mbt + (−1)t+1 e−Mb(Nt−t))
]

+A′
[

(−1)t+1 e−M′

b
t + e−M′

b
(Nt−t)

]

, (2.3)

requiring a four-parameter fit to extract the mass of the baryon, Mb, and of its parity

partner, M′
b. We consider members of the baryon octet, including baryons with strangeness

S = 0, −1 and −2. In the effective model study we will only use four of the baryons

b = p, n,Σ0 and Σ+, for reasons which will become clear later.

The determination of a baryon mass Mb at a certain lattice spacing a and at a certain

B is as follows: an effective mass (Meff
b ) as a function of the fitting region (labeled by

tmin) is obtained by fitting the function (2.3) to the measured correlator data in the region

[tmin, Nt− tmin]. A plateau is then extrapolated in tmin from the acquired Meff
b (tmin) as the

tmin → ∞ limit of a simple exponential decay. The statistical error is then estimated with

5We note that in the present study we do not aim for precision results for the magnetic moments (related

to the weak magnetic field-region), but concentrate on strong magnetic fields, which will be relevant for the

phase diagram, see below. Thus we do not consider spin-projected operators but look for the state that

minimizes the baryon energy.
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mass estimate 1
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Figure 1. Effective mass diagram of the proton at vanishing magnetic field. The parameter tmin

characterizes the fitting region for (2.3): the larger it is, the more points are excluded from the fit.

We estimate the tmin → ∞ limit by fitting exponential decays (type 1 — only even points, type 2 —

only odd points), and the deviation of the estimates is used as the systematic error of our method.

The grey band around the final mass estimate is the combined statistical and systematic error.

the jackknife method, while a systematic error is estimated from the exponential fit to find

the plateau. The example of the proton effective mass is shown in figure 1 along with the ex-

ponential fits and the mass estimates obtained, including statistical and systematic errors.

The continuum limit is carried out in two steps. First at vanishing magnetic field

the masses Mb(B = 0) are extrapolated to a = 0, then the magnetic field dependence

Mb(B)/Mb(B = 0) is separately extrapolated to the continuum. The latter step requires

interpolation for the magnetic field dependence, since at different lattice spacings we have

measurements at different physical magnetic field values. We carry out the continuum

limit of the B-dependence by fitting a Taylor-expansion with lattice spacing dependent

coefficients,

M2
b(eB, a)

M2
b(0, a)

= 1 + (c0 + c1a
2) · (eB) + (c2 + c3a

2) · (eB)2 + (c4 + c5a
2) · (eB)3 . (2.4)

This ansatz is motivated by the B-dependence of the mass of a point-like charged particle.

To estimate the systematic error of our approach we redo the fits excluding the B3

term to see how much the result changes. The statistical errors are estimated both for

the B = 0 and B 6= 0 cases by the bootstrap method. The continuum extrapolation of

the nucleon and Σ masses at B = 0 is shown in figure 2, comparing to their respective

experimental values. Notice that at zero magnetic field isospin symmetry is present, which

is reflected in our results as well. In the S = −2 channel, large lattice artefacts, together

with the closeness of excited states prevent us from reaching an acceptable continuum

limit for the Ξ baryons. (For precision results at B = 0 including further baryons we

refer the reader to ref. [52].) The continuum limit of the magnetic field dependence of the

remaining baryon masses is shown in figure 3. At low magnetic fields, a few outlier points

are visible, related to the fact that here the Zeeman-splitting cannot be fully resolved.

For strong magnetic fields this issue is absent. Notice furthermore that the behavior of

– 5 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
6

900

950

1000

1050

1100

1150

1200

1250

1300

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

M
b
[M

eV
]

a2 [fm2]

N
Σ

experimental value

Figure 2. Our continuum extrapolation of the masses of the nucleons and Σ particles at B = 0,

where isospin symmetry is not yet broken. Also shown are the respective experimental values.

The Ξ particles need a more careful analysis due to their masses being distorted by close higher

excitations and lattice artefacts therefore we disregard them here and in the rest of the paper.

the Σ− is completely different compared to the others. This might be explained within a

simplified quark model: for all other baryons, quarks can orient their magnetic moments

in an energetically favorable way with respect to the magnetic field in the lowest energy

configuration (i.e. in the lowest Landau-level), however in the case of the Σ− one of the

quarks is forced to be in an excited state (first Landau-level). Finally, a remark about

the neutral S = −1 baryon (flavor content uds) is in order. Here we consider an operator

that belongs to the octet at B = 0, thus this particle is labeled as Σ0. Nevertheless, at

non-vanishing B, isospin is not a good quantum number anymore and Σ0 mixes with the

singlet state Λ0, similarly to the mixing between ρ and π mesons [45]. In this case we

measure the lighter mixed state. Note furthermore that the Σ0 and Λ0 particles need not

be distinguished for the definition of our constituent quark masses, see below.

3 Construction of the PNJL model

As an application for the B-dependent baryon masses, we use them as input for the mag-

netic field dependent reparameterization of the two-flavor PNJL model, which in turn will

be used to explore the B − T phase diagram of strongly interacting matter. First of all,

since the PNJL model can only deal with constituent quark masses and not baryons, we use

a simple non-relativistic quark model (NRQM) based on ref. [53] to define B-dependent

u, d and s constituent quark masses. For this reason it is also advantageous to discuss

baryons instead of mesons — the latter receive their masses substantially from explicit

chiral symmetry breaking and not from constituent quarks.

Our working assumption is that the baryon masses can be obtained by merely summing

the masses of their constituents:

Mb={f1,f2,f3} = Mf1 +Mf2 +Mf3 , (3.1)

withMf being the constituent quark mass for flavor f . We determineMf as a function of B

by a least squares fit of the three quark masses to the results shown in figure 3. According

– 6 –



J
H
E
P
0
8
(
2
0
1
9
)
0
3
6

700

800

900

1000

1100

0 0.4 0.8
800

900

1000

1100

1200

1300

0 0.4 0.8
700

800

900

1000

0 0.4 0.8

800

900

1000

1100

1200

1300

0 0.4 0.8
1000

1100

1200

1300

1400

0 0.4 0.8

M
b
[M

e
V
]

eB [GeV2]

p

M
b
[M

e
V
]

eB [GeV2]

Σ+

M
b
[M

e
V
]

eB [GeV2]

n
M

b
[M

e
V
]

eB [GeV2]

Σ0

M
b
[M

e
V
]

eB [GeV2]

Σ−

a=1.47GeV−1

1.09

0.778

0.632
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Figure 3. Continuum extrapolation of the magnetic field dependent masses. The red bands are the

estimates of the Mb(B) functions obtained by fitting the functional form (2.4) to the data points

and evaluating at a = 0. The colored lines show the sections of the fitted surface at the respective

a 6= 0 values.

to ref. [53], in the Σ− baryon at least one quark is forced into a spin state for which the

Zeeman energy is added instead of subtracted. In the other four baryons, however, all

quarks can be in the energetically most favorable spin state. To avoid having to describe

excited states of the constituent quarks, we therefore disregard Σ− from the least squares

fit. The goodness of the fits are found to be satisfactory, χ2 < 1 for all magnetic fields.

The obtained constituent quark masses are shown in figure 4. The errors are propagated

by bootstrap resampling, while systematic errors of the NRQM model are estimated by

redoing the fits leaving out one baryon at a time. We note that the simplistic ansatz (3.1)

could be improved by including the contribution of a B-dependent binding energy. Here

we opted for including all B-dependence in the constituent quark masses, in order to make

the connection with the PNJL gap equation (where only Mf enters) more transparent.

We now briefly summarize the basic properties and equations of the PNJL model fol-

lowing ref. [54], except that we use Schwinger’s proper time method as the ultraviolet regu-

larization scheme, see e.g. ref. [55]. Errors are propagated over from the constituent quark

masses to all PNJL results by bootstrap resampling. The Lagrangian of the PNJL model is

L = ψ̄(iγµD
µ −m0)ψ +G

[

(ψ̄ψ)2 + (ψ̄iγ5τψ)
2
]

− U(P, T ) , (3.2)

– 7 –
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Figure 4. Magnetic field dependent constituent quark masses as inferred form the continuum

baryon masses shown in figure 3 using the NRQM based on ref. [53]. The systematic error is

generally small compared to the statistical up to about eB = 0.7GeV2.

where ψ is the constituent quark field coupled to the Polyakov loop P through the covariant

derivative and m0 is the bare current quark mass. The Polyakov loop potential U(P, T )

is a classical one constructed to reproduce pure gluonic lattice results for the temperature

dependence of the Polyakov loop expectation value [56],

U(P, T ) = T 4

{

−
a(T )P 2

2
+ b(T ) log

[

1− 6P 2 + 8P 3 − 3P 4
]

}

, (3.3)

with

a(T ) = a0 + a1
T0

T
+ a2

(

T0

T

)2

b(T ) = b3

(

T0

T

)3

. (3.4)

We adopt the usual choice of parameters a0 = 3.51, a1 = −2.47, a2 = 15.2, b3 = −1.75,

except for T0, which sets the transition temperature in the pure gauge theory. It is usually

set to 270MeV, however — following ref. [57] — we set it to T0 = 208MeV to include

corrections induced by the two quark flavors. We use the mean-field approximation for the

quarks, in which the thermodynamic potential at finite B reads

Ω=U(P,T )+
(M−m0)

2

4G
(3.5)

+
T 2

8π2

∑

f=u,d

|qfB|

∞
∫

T 2/Λ2

ds

s2
coth

(

|qfB|s

T 2

)

e
−M

2
s

T2

[

2θ3

(

π+ϕ

2
, e−

1

4s

)

+θ3

(π

2
, e−

1

4s

)

]

,

where M = Mu +Md is the dynamically generated average constituent quark mass for the

two flavors,

θ3(p, q) ≡
∞
∑

n=−∞

qn
2

e 2inp (3.6)

is the third elliptic theta function and ϕ marks the eigenvalue of the Polyakov loop matrix

L in the Polyakov gauge,

L = diag(eiϕ, e−iϕ, 1), P =
1

3
TrL =

1

3
(1 + 2 cosϕ) . (3.7)
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In the mean-field approximation, both M and P minimizes the thermodynamic potential.

We solve the model at every B and T by numerically searching for the two dimensional mini-

mum of Ω. Once the minimum is found, the quark condensate can be obtained by evaluating

〈ψ̄ψ〉=
M

4π2

∑

f=u,d

|qfB|

∞
∫

T 2/Λ2

ds

s
coth

(

|qfB|s

T 2

)

e
−M

2
s

T2

[

2θ3

(

π+ϕ

2
, e−

1

4s

)

+θ3

(π

2
, e−

1

4s

)

]

.

(3.8)

Note that we follow the convention, where 〈ψ̄ψ〉 is positive and therefore our (3.8) contains

an extra minus sign compared to most NJL studies.

The potential Ω depends on three model parameters: the bare current quark mass m0,

the four-fermion couplingG and the cutoff scale Λ of the theory (for different regularizations

of the NJL model, see ref. [58]). In mapping out the B − T phase diagram we first fix m0

and Λ at B = T = 0 by setting the predictions of the NJL model for the pion mass mπ,

0 = 1−2GΠπ(k
2 = m2

π) = −
6

4π2

∞
∫

Λ−2

ds

s2
e−M2s+

6m2
π

8π2

∞
∫

Λ−2

∞
∫

Λ−2

ds1ds2
(s1 + s2)2

e
−M2(s1+s2)+

s1s2m
2
π

s1+s2 ,

(3.9)

and for the pion decay constant fπ,

f2
π =

∞
∫

Λ−2

ds

s
e−M2s (3.10)

to their physical value, that is 138MeV and 93MeV, respectively, following ref. [55]. To

fully fix the parameters of the NJL model we prescribe M(B, T = 0) to take the value

which is consistent with the average of the u and d constituent quark masses inferred from

the baryon masses measured on the lattice for each B. More explicitly, at T = 0 we set

P = 0 and then the gap equation

∂Ω

∂M
=

M −m

2G
+ 〈ψ̄ψ〉 ≡ 0 (3.11)

together with (3.9) and (3.10) only depend on the model parameters and the value of M .

This latter is given at every B using the lattice results for the constituent quark masses.

At B = 0 we use all three equations to determine m0, Λ and G(B = 0) and then at B 6= 0

we only need the gap equation (3.11) to find the magnetic field dependent coupling G(B)

which reproduces M(B, T = 0). This procedure results in m0 = 3.50(5)MeV and Λ =

675(10)MeV and G(B) plotted in figure 5 (left) and listed together with the corresponding

average constituent quark masses in table 2.

We find that the coupling constant inferred from lattice baryon masses strongly de-

creases with increasing magnetic field. This reinforces studies which hand tuned the cou-

pling to a qualitatively similar function in order to achieve the correct Tc behavior. As a

consistency check, in the right panel of figure 5 we show a T = 0 consequence of includ-

ing the B-dependence in the coupling G(B). The magnetic field dependence of the quark

condensate is compared with lattice QCD results from ref. [11]. We see that our results

– 9 –
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eB [GeV2] G [GeV−2] M2 [GeV2]

0.0 12.8(9) 0.097(6)

0.1 12.4(8) 0.096(10)

0.2 11.4(9) 0.094(12)

0.3 10.1(8) 0.091(12)

0.4 8.9(8) 0.087(11)

0.5 7.7(7) 0.083(12)

0.6 6.7(7) 0.079(15)

Table 2. Values and errors of the magnetic field dependent four-fermion coupling and the average

constituent quark masses used to fix them.
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Figure 5. Left: the magnetic field dependent coupling inferred from the baryon masses of figure 3.

The significant deviation from a constant already signals a strong effect on this level. Right: the av-

erage quark condensate at T = 0 as a function of B compared to lattice results of ref. [11], to a stan-

dard PNJL calculation with B independent coupling and to one-loop chiral perturbation theory [59].

are consistent with lattice results in a broad range of magnetic fields, while in a standard

PNJL calculation where the coupling constant is a constant value (fixed to our G(B = 0))

the two curves diverge for larger magnetic fields.

4 Phase diagram

We now turn to the results on mapping out theB−T plane by minimizing the potential (3.5)

with respect to both M and P using G(B). The so obtained numerical solutions for

M(B, T ) and P (B, T ) are shown in the left and right panels of figure 6 respectively. While

at low temperature the dependence for different values of B hardly changes, around the

transition temperature larger B leads to an earlier transition. The same cannot be seen

in the standard PNJL results, where already at T = 0 the mass grows significantly with

B and the transition is pushed further out as well. The Polyakov loop expectation values

in the lattice-improved PNJL show the same behavior more pronounced, while in the

– 10 –
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Figure 6. The solutions of the PNJL model utilizing the magnetic field-dependent coupling as

functions of the temperature for different values of the magnetic field. Left: the average constituent

quark mass. Also shown are standard PNJL results with B independent coupling (errors are omitted

on these curves for better visibility). Right: the expectation value of the Polyakov loop. In this

case we do not show the results with B-independent coupling as they are indistinguishable from

the grey eB = 0 curve.

standard PNJL we did not plot the Polyakov loop expectation value as it remains practically

unchanged compared to the B = 0 curve.

We define two pseudo-critical temperatures: the inflection point of the quark conden-

sate, which is identified with the chiral transition temperature, and the inflection point of

the Polyakov loop, which in turn is typically associated to the deconfinement transition,

however we will only discuss in detail the one obtained from the quark condensate now.

In the left panel of figure 7 we show the quark condensate curves corresponding to the

solutions shown in figure 6, which display inverse magnetic catalysis around the transition

in the case of the lattice-improved PNJL model, however not in the standard PNJL model,

where magnetic catalysis can be seen at all temperatures. According to our results, the

transition remains an analytic crossover for all magnetic fields under consideration, just as

the lattice studies found [10, 12]. This is in contrast to the Polyakov loop-extended quark

meson model, where a B-dependent tuning of model parameters was observed to induce a

first-order phase transition already at low B [24].

In the right panel of figure 6 we compare the Tc(B) curves with lattice results from

ref. [10] where we see that after rescaling with the respective Tc(B = 0) values the lattice-

improved result is consistent with the lattice continuum limit as opposed to the standard

PNJL result. The pseudo-critical temperature at vanishing magnetic field in the lattice-

improved PNJL model is Tc(B = 0) = 204(3)MeV. The deconfinement temperature defined

from the Polyakov-loop seems to be lower (similar behavior was found in [20]) but the

disentanglement of the two transitions may need more in-depth analysis.

5 Summary

In this paper we performed the first lattice determination of the baryon spectrum in the

presence of strong magnetic fields B at the physical point, including a continuum extrap-

– 11 –
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Figure 7. Left: the quark condensate as a function of the temperature for different values of the

magnetic field along the solutions shown in figure 6 compared with the standard PNJL results (for

which errors are omitted again). While the lattice-improved PNJL model displays inverse magnetic

catalysis the standard one misses this feature. Right: the pseudo-critical temperature as a function

of the magnetic field from lattice simulations, the lattice-improved PNJL and the standard PNJL

model scaled by their respective B = 0 values.

olation. Using the B-dependence of the nucleon and Σ baryon masses and assuming a

simplistic quark model, we defined constituent quark masses that were employed as zero-

temperature inputs for the Polyakov loop-extended NJL model. The standard variant

of this model is known to qualitatively fail in describing the QCD phase diagram in the

magnetic field-temperature plane. We demonstrate that our lattice-improved PNJL model

reproduces all features of the lattice findings at B > 0, including the inverse magnetic catal-

ysis of the light quark condensate in the transition region as well as the reduction of the

chiral crossover temperature by B. This result reveals that the model can be substantially

improved if minimal information is fed to it at zero temperature — allowing it to capture the

non-trivial dependence of ψ̄ψ(B, T ) in a broad range of magnetic fields and temperatures.

An obvious extension of our results would be to include the strange quark flavor in the

PNJL model or isospin splittings as well as further channels that may emerge at B > 0 [60].

The ideas presented in this work might also be generalized to other low-energy models of

QCD.
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