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Abstract

We show that High Frequency Traders (HFTs) are not beneficial to the stock market
during flash crashes. They actually consume liquidity when it is most needed, even
when they are rewarded by the exchange to provide immediacy. The behavior of HFTs
exacerbate the transient price impact, unrelated to fundamentals, typically observed
during a flash crash. Slow traders provide liquidity instead of HFTs, taking advantage
of the discounted price. We thus uncover a trade-o↵ between the greater liquidity and
e�ciency provided by HFTs in normal times, and the disruptive consequences of their
trading activity during distressed times.
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1 Introduction

The existing academic literature on high-frequency trading intermediation suggests, al-

most unanimously, that High Frequency Traders (HFTs) are beneficial to market liquidity,

see, e.g., Hendershott, Jones, and Menkveld (2011) and Jones (2013), as well as to mar-

ket e�ciency, see, e.g., Chaboud, Chiquoine, Hjalmarsson, and Vega (2014). This paper

shows that their role reverses during flash crashes, which HFTs contribute to either cause or

magnify. They indeed consume liquidity during flash crashes, which is instead provided by

“traditional” slow traders, and generate a transitory price impact which is unrelated to the

permanent impact. Even HFT designated market makers1 do not provide enough liquidity

to avoid flash crashes when they happen in isolated stocks, and they actually significantly

contribute to the over-reaction leading to the crash when it a↵ects several stocks simulta-

neously. Their behavior can be explained by the fact that, in exceptional situations, the

fear of trading against informed traders overcomes the foreseen compensation for liquidity

provision.

The very existence of flash crashes casts doubts on the orderliness of the financial market

architecture. The data, however, support the presence of a substantial number of such

events. The importance of flash crashes in the financial literature exploded after the infamous

event of May 6, 2010 (Easley, de Prado, and O’Hara, 2011; Madhavan, 2012; Andersen

and Bondarenko, 2014; Andersen, Bondarenko, Kyle, and Obizhaeva, 2015; Menkveld and

Yueshen, 2019). However, this was not an isolated event at all. Commenting on the Sterling

flash crash of October 7, 2016, Bank for International Settlements (2017) writes: “This

event does not represent a new phenomenon but rather a new data point in what appears to

be a series of flash events occurring in a broader range of fast, electronic markets than was

previously the case in the post-crisis era, including those markets whose size and liquidity

used to provide some protection against such events.” But how can we define a flash crash?

1We use the term “designated market makers” in this framework to emphasize the fact that such traders
enter into a written agreement with the exchange, although their exact role in the market, and the details
of such agreements may vary across time.
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According to Bank of England (2019), “Flash episodes are large and rapid changes in the price

of an asset that do not coincide with – or in some cases substantially overshoot – changes in

economic fundamentals, before typically retracing those moves shortly afterwards.”. These

events are sometimes called “mini flash crashes” (Biais and Foucault, 2014). Based on a

formal implementation of this definition, Christensen, Oomen, and Renò (2017) provide

evidence of frequent flash crashes in the futures markets on S&P 500, gold, oil, EUR/USD,

Treasury notes, and corn, a result also echoed in Golub, Keane, and Poon (2017) for the

US equity market. Thus, even supposedly liquid markets are subject to these occurrences.

Invariably, automated trading is indicated as a potential culprit for these events, even if the

evidence is, at most, anedoctical.

We use the methodology proposed by Christensen et al. (2017) to detect flash crashes in

order to investigate in detail the behavior of HFTs during these events. The peculiar feature

of the methodology is its power to detect flash crashes from transaction prices. This allows

the collection of a large sample of genuine flash crash events, which can then be scrutinized.

We apply this methodology to a unique data-set, obtained from the BEDOFIH database,2

of tick-by-tick order-level data on 37 liquid French stocks belonging to the CAC40 index and

traded on NYSE-Euronext Paris in 2013. Order and trade data come with a flag indicating

the trader class (slow or high-frequency trader3), determined by the French market authority

(AMF, 2017), and the trader account (owner, client or market maker), determined by NYSE-

Euronext. This categorization allows us to uncover the role of di↵erent market participants

during distressed events. In particular, the behavior of designated market makers is not what

is expected by the market authority. Our policy implication is thus that the compensation

scheme o↵ered by the exchange is not a su�cient incentive for them to prevent, halt or even

attenuate flash crashes.
2www.eurofidai.org/en/high-frequency-data-bedofih.
3In the literature, there is often a distinction between algorithmic trading and high-frequency trading.

For example, HFTs of investment banks and their clients could be considered algorithmic traders. While
the distinction makes perfect sense from an economic standpoint, in this paper we stick to the taxonomy
adopted by the AMF and described in Section 2.

2
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Our paper relates to the literature analyzing the behavior of HFTs during distressed

events. Kirilenko, Kyle, Samadi, and Tuzun (2017) and Menkveld and Yueshen (2019)

investigate in detail the flash crash of May 6, 2010. Hautsch, Noè, and Zhang (2017) study

news-driven events, while Megarbane, Saliba, Lehalle, and Rosenbaum (2018) focus on the

releases of macroeconomic information on the same market we analyze (stocks belonging

to CAC40). Brogaard, Carrion, Moyaert, Riordan, Shkilko, and Sokolov (2018) look at

extreme price movements. We instead use flash crashes, identified from transaction data,

as a measure of market distress. There are several advantages in doing so. First, flash

crashes are, by construction, periods during which the price moves suddenly and largely,

often absent any news on fundamentals. The highly directional and sustained price trends

experienced during these events cannot be ascribed to large market volatility or jumps,

since the latter interpretation merely implies a wider price dispersion, but not a directional

move. Second, flash crashes are not compatible with “normal” market behavior, and are

typically attributed to market frictions, such as large trading imbalances with low market

depth (Grossman and Miller, 1988), asymmetric information (Barlevy and Veronesi, 2003),

costly market presence for market makers (Huang and Wang, 2009), or predatory trading

(Brunnermeier and Pedersen, 2005). Third, using flash crashes allows to identify a large

sample of distressed events in a relatively short time period that did not trigger any trading

halt. In our sample, this amounts to 148 flash crashes. This feature is common to the

extreme price movements of Brogaard et al. (2018). However, as we show in Section 3 and

Appendix A, extreme price movements are a largely di↵erent distressed sample with respect

to flash crashes. So, our results can be considered complementary to their approach. Fourth,

our procedure identifies the exact crash peak time and disentangles di↵erent phases of a flash

crash, such as the beginning of the price drop and the subsequent recovery.

The granularity of our data set, which allows to discriminate the trading styles of di↵erent

groups, allows to identify the sources of the crash, as well as of the transient price impact.

We indeed show that flash crashes are mostly originated by HFT trading from investment

3
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banks and their clients, and that this trading is informed. The crash is then magnified by

the reaction of market makers, especially when crashes are systematic, that is when they

a↵ect several stocks simultaneously. Market makers of investment banks start selling during

the crash, fearing to supply liquidity to informed sellers. Market makers of pure HFT firms

mostly contribute to the price decline with their quoting activity. These results are largely

di↵erent with respect to the previous literature. For example, Kirilenko et al. (2017) find

that the trading pattern of HFTs did not change when prices of the E-mini S&P 500 stock

index futures fell sharply during the Flash Crash on May 6, 2010. On our data, we show the

opposite. In particular, HFT marker makers are found to strongly enhance the crash with

their trading and quoting activity, especially during systematic events. Brogaard et al. (2018)

find that HFTs provide liquidity during extreme price movements, on average, even if they

switch to the demand side if several stocks experience a simultaneous swing. However, they

have neither evidence of HFTs causing price crashes, nor of the ambiguous role played by

designated liquidity providers which are documented here. They indeed conclude that HFTs

do not appear to cause extreme price movements; we instead show that HFTs are responsible

for originating and exacerbating flash crashes. Our findings are finally broadly consistent

with the results in van Kervel and Menkveld (2019), who document a similar “leaning-with-

the-wind” behavior of HFTs during institutional orders, which are also proved to be mostly

informed. With respect to their contribution, we provide at least three additions: first, we

document this behavior without having to resort to orders of “institutional” type; second,

given the granularity of our dataset, we show that this behavior is mainly due to investment

bank HFTs trading on their own account. Third, we show that this mostly happens during

systematic flash crashes. Finally, we show that market makers of pure HFT firms also

contribute to the crash with their quoting activity.

The rest of the paper is organized as follows. Section 2 describes the data and presents

the classification of market participants. Section 3 is dedicated to the methodology of flash

crash detection and identification. The empirical results are presented in Section 4. Section

4
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5 concludes. An Appendix contains additional results and comparisons.

2 Data description

2.1 Institutional structure

The Euronext stock market operates as an order-driven market with a limit order book.

Euronext Paris is the division of the exchange that includes all the French instruments,

including equities and derivatives. The daily schedule for the most liquid stocks is divided

into di↵erent segments. The trading session starts at 7:15 a.m with a pre-opening phase,

followed by an auction at 9:00 a.m. The main trading phase, where most of the trading

activity takes place, starts at 9:00 a.m. and ends at 5:30 p.m. (this is the trading period

we analyze). The daily schedule is then followed by a closing auction and a further trading

session called “trading-at-last,” where additional trades can take place at the closing price.

The focus of this study is on the main trading phase, thus opening and closing activity are

excluded from the analysis.

According to the Rule 4403/2 of Rulebook I (Euronext, 2014), during the continuous

trading, Euronext has in place a set of trading safeguards that prevents price movements

outside certain thresholds. Specifically, traded prices are constrained into a “collar,” defined

by a reference price plus/minus a percentage price change. If the execution of an order causes

the breach of the collar, two outcomes are possible: 1) the order is partially executed inside

the collar, without halting the continuous trading; 2) the trading process is halted, and the

market is put in “reservation mode.” Continuous trading resumes after an auction. None

of the detected events in our sample triggers any of these measures. Thus, the collars are

ine↵ective against preventing the occurrence of flash crashes.

The market model of Euronext Paris relies on the provision of liquidity by electronic

market makers. Since 2011, NYSE Euronext have in place a program, called Supplemental

Liquidity Provision (SLP), where electronic traders agree to post two-sided quotes during

5
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the day and to provide a minimum passive execution volume. Liquidity provision is rewarded

with a rebate, whereas aggressive executions benefit from a reduction in the trading fee for

SLP members.4 The orders sent by SLP members have to be electronic, using only their

own funds and excluding the customer orders.

2.2 Data

The database is provided by the Base Européenne de Données Financières à Haute

Fréquence (BEDOFIH), and it is composed of tick-by-tick data for 37 liquid stocks that

are included in the CAC40 Index in 2013.5 We can track the entire history of the orders,

from the initial submission to the execution or the cancellation, with a timestamp at the

microsecond level. One interesting feature of the database is that the data from the stock

exchange are complemented by an identification flag, provided by the French stock market

regulator (the Autorité des Marchés Financiers, AMF), that categorizes each trader into

three groups: pure HFTs companies (PURE-HFT) such as Citadel or Virtu; Investment

Banks with HFT activity (IB-HFT) such as Goldman Sachs, and all the remaining traders

(NON-HFT). This classification is revised yearly, and the groups are mutually exclusive.6

In addition, each trader is required to flag every order, in compliance with the Rulebook,

according to the following list of possible accounts (see NYSE-Euronext, 2012): own account

or own account for client facilitation (OWN); own account of an a�liate, or when operating

from a parent company of the stock (PARENT); account of a third party, or client account

(CLIENT); orders submitted pursuant to a liquidity provision agreement (MM); orders sub-

mitted for retail liquidity provider (RLP) or retail matching facility (RMO). Finally, each

4The details of the scheme are available in NYSE-Euronext (2012). Bellia (2017) provides a detailed
description of the SLP scheme and the role of electronic market makers in the NYSE Euronext.

5The three stocks of the CAC40 that are not included in our analysis are Arcelor Mittal, Gemalto, and
Solvay. We exclude them from consideration, since their main trading venue is not the Paris branch of
Euronext.

6See AMF (2017) for a description of the methodology applied to identify the traders. The identification
algorithm is based on the median lifetime of an order (including both modifications and cancellations), plus
a threshold based on the total number of cancellations. A further check is carried out by the AMF, taking
into account the identity of the trader.
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trade struck during the main trading phase has a flag that indicates the trade initiator,

allowing to unambiguously identify on the one hand which trader-account is trading aggres-

sively (demanding liquidity) and on the other hand which trader-account is trading passively

(supplying liquidity).

Figure 1 shows important features of the trading activity for each aggregated trader

category. The left panel shows how many times the inventory of a particular trader, on

average for each stock-day, crosses the value of zero. We expect this number to be higher for

high-frequency traders, and smaller for traders taking positions in the market. The figure

shows, indeed, that PURE-HFTs manage inventories more often close to zero, as expected

for typical market making activity. The center panel shows the percentage of trades done by

a particular trader type. The absolute majority of trades (61%) are conducted by IB-HFTs,

while 21% and 18% of trades are due to PURE-HFTs and NON-HFTs respectively. Hence,

IB-HFTs is the most active category in this market. The right panel shows the cancellation

ratio that is defined as the percentage of the total number of submitted orders that are

cancelled prior to execution. The average number of cancellations is high for both PURE-

HFTs and IB-HFTs (94% and 93% respectively), while it is relatively low for NON-HFTs

(43%).

INSERT FIGURE 1 HERE

Note that IB-HFTs may be classified as HFTs with regards to the number of messages

or cancellations, but not regarding the inventory position, for instance. The common data-

driven methodologies to identify HFT activity (see Hasbrouck and Saar, 2013) or the labeling

provided by the exchange usually identify only PURE-HFTs (Brogaard et al., 2018). This

highlights a distinctive advantage of our data set, since it allows to track also the behavior

of the investment banks with HFT activity and to discriminate them from the PURE-HFT

group, since their behavior di↵ers in terms of strategies and capital constraints.

According to Megarbane et al. (2018), who have the regulatory database with traders’

identities, all members of the SLP program are pure High Frequency Trading companies

7
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or Investment Banks with HFT activities. No market making activity is carried out by

Non-High Frequency traders in our sample.

3 Identification of flash crashes

In this section, we describe how we build our flash crashes database. We detect flash

crashes using a novel econometric approach, proposed by Christensen, Oomen, and Renò

(2017), which supports the notion that a flash crash is (in relative terms) a large downtick

in the price over a short time horizon. As we will show, this is typically accompanied by a

reversion in the price.

INSERT FIGURE 2 HERE

Before explaining the mechanics of the procedure in detail, we look at an example of a

distressed event, reported in Figure 2. The top panel of the figure shows the evolution of

the price of Technip on June 25, 2013. Around 11:50am the price starts to decline rapidly

until it reaches its minimum a few seconds after 12:05. The total return over the 15-minutes

is �2.35 %. After the crash, the price partially recovers. This is an example of what we

consider a “flash crash”: a large price drop in a short time followed by a partial recovery.

The intermediate panel shows the novel test statistics we use to detect the flash crash. As

it can be seen, the peak of the test statistics coincides with the peak of the crash.

Figure 2 highlights the di↵erence between our flash crash detection technique and those

based on volatility (or jumps) such as, for example, Extreme Price Movements (EPMs)

considered by Brogaard et al. (2018). Indeed, the basic method of EPMs detection consists

of simply labelling all 10-second intervals that belong to the 99.9th percentile of 10-second

absolute midpoint returns for a stock as EPMs. However, despite of the cumulated price

drop being large, the individual high-frequency (10-second) returns observed during the

crash, displayed in the bottom panel of Figure 2, are actually compatible with the overall

volatility of that day. In fact, the largest negative 10-second return of the day (�0.25%)

8
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occurred inside the volatility cluster before 11:00am. Notwithstanding with being volatile,

the price level did not change significantly in the 30-minutes around that time. Hence, EPMs

identify the intervals of high volatility (or jumps), e.g., as shown by the pink shadow area in

Figure 2. In this case, they would not identify the crash.

To lay down our flash crash identification procedure precisely, we need a minimal amount

of notation. Let (pt)t�0 be the log-price process of an asset, which is defined on a filtered

probability space (⌦,F , (Ft)t�0,P). We assume pt evolves according to the model:

dpt = µtdt+ �tdWt + dJt, (1)

where µt is the instantaneous drift, �t is the associated spot volatility, Wt is a standard

Brownian motion, and Jt is a jump process. The log-price pt is observed on [0, T ] at irregular

time points 0 = t0 < t1 < . . . < tn = T , such that maxi(ti � ti�1) ! 0 as n ! 1. The

discretely sampled log-return is defined as:

rti = pti � pti�1 , i = 1, . . . , n. (2)

In model (1), the price changes, dpt, include three components: �tdWt and dJt are responsible

for volatility clusters and jumps, while the drift term µtdt represents the local trend. As

discussed, our methodology relies on the drift term. A natural estimator of µt is the kernel

estimator:

µ̂
n

t
=

1

hn

nX

i=1

K

 
ti�1 � t

hn

!
rti , (3)

where K is a kernel (a localizing function) and hn is a bandwidth (approximatively, the

localization window). The estimator (3) is asymptotically unbiased, however, its variance

does not decrease as hn ! 0, hence the estimator is inconsistent (Bandi, 2002; Kristensen,

2010) .

To circumvent this issue, it is su�cient to rescale the drift estimator properly, as shown
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by Christensen et al. (2017) who propose the following test statistics:

T
n

t
=

r
hn

K2

µ̂
n

t

�̂
n

t

, (4)

where

�̂
n

t
=

vuut 1

hn

nX

i=1

K

 
ti�1 � t

hn

!
r
2
ti

(5)

is a consistent estimator the spot volatility andK2 =
R
R K(x)2dx is a kernel-specific constant.

The measure µ̂
n

t
/�̂

n

t
can be interpreted as the current velocity of the market. Under

“normal” market conditions (in particular, if the instantaneous drift is locally bounded) the

ratio is small (see, again, Figure 2). If the price is moving fast relative to the volatility (i.e.,

price changes are directional), the ratio is large. Christensen et al. (2017) formalize the later

condition by assuming that there exists a “drift burst” time point ⌧db, where µt ! ±1 as

t ! ⌧db. They prove that, in such points, |T n

t
| ! 1 as t ! ⌧db. In points in which the drift

µt is bounded, the test statistic is instead standard normal. Therefore, the test statistic T
n

t

can be used for identifying a flash crash around time t by rejecting the “normal” market

conditions in favour of the presence of a drift burst, when |T n

t
| is larger than a quantile of

standard Normal distribution.

The drift burst test statistic is robust to compound Poisson jumps, infinite activity small

jumps, autocorrelated market microstructure noise and pre-announced jumps which occur

at a pre-determined time, e.g. as a consequence of dividends or macro announcements.

Further, the test is robust to volatility explosions. Thus, our distress measure is not picking

up neither jumps nor large volatility episodes, but just genuine exploding “trends”.

How good is this test in identifying the typical V-shape behavior of a flash crash? Chris-

tensen et al. (2017) show that the test is e↵ective along several dimensions. First, the test

statistics is able to easily detect all the flash crashes that have been popularized in the press

(such as the Treasury flash crash of October 15, 2014 or the Twitter flash crash of April
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23, 2013), and many more. Second, extensive Monte Carlo simulations show that the test

is correctly sized, and that for events with a su�ciently large t-statistics, the probability of

contamination by false positives is essentially zero. We refer the reader to Christensen et al.

(2017) for details.

To implement the test, we compute the estimator of the drift and volatility based on

a kernel-weighted average of observations in the vicinity of t, as defined in Eq. (5). The

bandwidth hn determines how fast we down-weight observations further away from t, with

weights decided by the kernel function. We set K(x) = exp(�|x|) (x  0), such that µ̂n

t
and

�̂
n

t
are computed with a left-sided exponential moving average (based on backward-looking

data) to avoid look ahead bias. We employ a 5-minute bandwidth for the mean and a 25-

minute bandwidth for the volatility. This means that, by construction, we are interested

in flash crashes which develop on a time span of roughly 10 minutes. Transaction prices

are pre-averaged (Jacod, Li, Mykland, Podolskij, and Vetter, 2009) to soften the impact of

market microstructure noise, and the volatility estimator in (5) is robustified with an HAC

correction. This setup is consistent with Christensen et al. (2017) to which the reader is

again referred for details.

We compute the above test statistic every second during the course of a trading session.

To account for multiple testing, we exploit the simulation-based algorithm from Christensen

et al. (2017) to set an appropriate critical value. We use a 99.9% confidence interval. The

average threshold value is �4.9: values of the drift burst test statistics below this threshold

are labelled as flash crashes. We only consider crashes after 9:30am. Appendix A is devoted

to the comparison of the events detected by the drift burst test statistics with those detected

with the EPM methodology of Brogaard et al. (2018), showing that the flash crashs we detect

and EPMs are a largely di↵erent sample with limited overlap.
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4 Empirical results

4.1 Anatomy of flash crashes

Table 1 reports summary statistics of events identified by the procedure explained in

Section 3. The average crash duration is 9.5 minutes. An average price drop during a flash

crash is �1.35%. During the largest crash, which occurred in ST Microelectronics on March

12, 2013, the price fell by �5.18%, while during the smallest one, which occurred in Pernod

Ricard on October 2, 2013, the price declined by �0.37%. Table 1 also shows that while

the crash duration represents only 1.87% of the duration of the trading day, on average, the

crash accounts for 5.43% of daily trading volume (in days with a flash crash), nearly 6% of

the number of trades, and roughly 21% of total selling volume in that day.

INSERT TABLE 1 HERE

A detailed summary of all 148 identified flash crashes is provided in Table F.1 and F.2 in

the Internet Appendix. Additionally, Table F.3 in the Internet Appendix reports a summary

of the detected flash crashes grouped according to each stock. It shows that in our sample

flash crashes occur in 34 di↵erent stocks. For one stock, flash crashes occur only once. The

largest number of crashes per year (10) corresponds to Alstom (ISIN FR0010220475). There

is no visible relation between the number of flash crash occurrences and stocks’ market

capitalization, volatility and average return.

A pictorial representation of the temporal distribution of the 148 crashes over the year

and the trading hour during the day is provided in Figure 3. The figure shows that crash

events are scattered across the year and the time of the day uniformly, without a clear pattern

emerging, for example around a specific time of the day. This rules out the hypothesis that

crashes are due, for example, to macroeconomic announcements, which tend to happen at

specific times of the day. In two prominent cases, clearly visible in the figure, we have crashes

a↵ecting multiple stocks simultaneously: on April 17, 2013 (with 14 stocks involved) and
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on September 3, 2013 (with 13 stocks involved).7 From now on, we label these 27 events as

“systematic”. The remaining 121 events will be labelled as “non-systematic”. The behavior

of HFTs is very di↵erent for these two groups.

INSERT FIGURE 3 HERE

For each event, we denote by tcrash the point in time associated with the lowest value of

the t-statistics after crossing the significance threshold. The beginning of the crash, labelled

tstart is identified by the first crossing time of the t-statistics with �1 before tcrash. The

di↵erence ⌧ = tcrash� tstart is the crash duration. The end of the recovery period is identified

by the time tend = tcrash + 3⌧ . We also consider a pre-crash period, starting at the time

tpre = tstart�2⌧ . The analysis in this paper is based on price and order information, for each

crash, from time tpre to time tend. In order to harmonize information coming from crashes

with di↵erent duration, we use harmonized time units in which the crash duration is used

as the time unit for each event.

INSERT FIGURE 4 HERE

Figure 4 shows the average cumulative return for systematic and non-systematic crashes,

together with 10% and 90% quantiles for all events. This figure clearly illustrates the output

of our identification strategy, described in Section 3, and also allows for a qualitative descrip-

tion of the average price process. The overall pattern of the detected events is the typical

“skewed V” displayed by a flash crash. While on average the market price moves towards

a new price level, it substantially over-reacts and declines to a price which is lower than

the new fundamental level. This picture is consistent with informed trading conveying new

7The collective flash crashes of April 17, 2013 are likely due to the announcement, that morning, of new
austerity budget measures due to the pessimistic revision of growth figures by the French government, see
e.g. https://lexpansion.lexpress.fr/actualite-economique/ce-qu-il-faut-retenir-du-nouveau-plan-budgetaire-
de-la-france 1404490.html; the event of September 3 cannot instead be associated to any news, to the best of
our knowledge. However, flash crashes in several stocks with no news can be explained by the phenomenon
of liquidity spillovers, see e.g. Cespa and Foucault (2014). The behavior of the 37 stocks around the two
crashes is shown in Figure B.1 in the Appendix B.

13

Electronic copy available at: https://ssrn.com/abstract=3560238



information into a permanent price impact (from the beginning to the end of the recovery

period). The V-shape is deeper and more pronounced for systematic events, indicating more

over-reaction than for non-systematic events on average. We can define formally, for each

event, the permanent price impact (PPI) as:

PPI = log ptend � log ptpre ,

that is the logarithmic return from beginning to recovery8, while the crash price impact is

defined as:

CPI = log ptcrash � log ptpre ,

and the transient price impact is defined as:

TPI = CPI� PPI = log ptcrash � log ptend .

To better understand who is contributing to the transient and permanent components of the

crash return, we further subdivide the crash period (from tstart to tend) in three stages with

equal duration: early, intermediate and late crash, as shown in Figure 4.

Figure 5 shows the relation between PPI and TPI, as well as the relation between CPI

and crash duration. From Panel A, we can see that both the average PPI and the average

TPI are highly significant in our detected sample, and this is true for both systematic and

non-systematic events. The fact that PPI is mostly negative (with few exceptions) is a clear

indication of informed trading. The fact the TPI is always negative (with one exception)

is a clear indication of over-reaction. In particular, the transient component of systematic

events is �0.78% on average, half of the average permanent component, and it is still �0.33%

(and significantly negative) for non-systematic events, roughly one third of the permanent

8Our choice of using the price after, on average 27 minutes, is in line with the typical approach of the
market microstructure literature when estimating e↵ective spreads, see e.g. Glosten (1987). Alternatively,
we could use the price observed at the end of the day, or in the next day, as in van Kervel and Menkveld
(2019). No di↵erences would emerge in the subsequent analysis.
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component in this case. Panel B shows that the typical duration of the crash event ranges

from a few minutes to 45 minutes, with an average duration of 9.5 minutes. The longer the

crash, the more negative the CPI.

INSERT FIGURE 5 HERE

4.2 Liquidity during a flash crash

Supplied liquidity evaporates during flash crashes. We report, in Figure 6, average vol-

ume, market depth, bid-ask spread and executed order age for the 121 non-systematic flash

crashes. The corresponding figures for systematic events (which are qualitatively very simi-

lar) are reported in Figure B.2 in Appendix B. Market depth is the total number of shares

o↵ered across the first ten price levels on the bid and the ask side. The bid-ask spread is

calculated as the logarithmic di↵erence between the one minute average of the best bid and

the best ask price. The executed order age is the time between trade and the time stamp

at which the order was posted (or last modified). The mean cumulative return shown in

Figure 4 is superimposed in all the figures to be used as a visual landmark of the average

crash development.

INSERT FIGURE 6 HERE

Panel A of Figure 6 shows that the crash is associated with a large selling pressure,

as expected, and that recovery starts after selling stops. The fact that selling produces a

permanent price change is consistent with informed trading.

Panel B shows that the bid-ask spread steadily increases during a flash crash, indicating

increasing cost of transacting during these events, as well as the increased uncertainty on

market fundamentals which is indeed typically accompanied by a widening of the bid-ask

spread. Panel C shows that market depth, that is the ability of the market to absorb

orders, is strongly reduced during a crash, recovering slower than the price itself, in line
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with the finding in Kirilenko et al. (2017) during the Flash Crash of May 6, 2010. This

is again consistent with Grossman and Miller (1988), since the price change in their model

is predicted to be deeper in illiquid market conditions. Panel D shows that average order

duration increases along selling, since on its way down the price is hitting orders which were

posted before the crash started. Overall, Figure 6 suggests that a flash crash occurs when

selling pressure increases and not enough liquidity is provided to the sellers.

Figure 7 shows the average euro volume traded per minute, divided in buyer-initiated

(panel A) and seller-initiated (panel B) trades for the non-systematic events (Figure B.3 in

Appendix B reports the average for systematic events, which is qualitatively the same). The

two patterns are similar even if the trading intensity of selling is much higher. We observe a

sudden peak in average trading activity clearly associated with the beginning of the crash.

This behavior in correspondence of the initial price drop is compatible with a large selling

order which is executed in a series of child trades. Then trading slows down, to strongly

accelerate again before the end of the crash. During recovery, the intensity of trading reverts

back to normal activity. Figure 7 suggests that there are two distinct phases of the crash: an

initial phase, triggered by sudden selling pressure, and a final phase, which occurs in a more

illiquid market and precipitates the price much more. The observed trading volume in the

first part of the crash is consistent with standard economic theory of immediacy demand,

as in Grossman and Miller (1988), which predicts a V-shaped behavior for the price process

when market makers accommodate the need for immediacy of a large seller. However, the

second peak is not predicted by this theory, and could be due to the strategic intermediation

of market makers facing the usual adverse selection problem, that is trying to disentangle

whether selling is information-based or liquidity-based. We will turn to this fundamental

point later, showing that the second peak generates the transient price impact.

INSERT FIGURE 7 HERE
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4.3 Trade analysis

We now turn to the analysis of the trading behavior of di↵erent trader groups during a

flash crash, answering the following questions: who is responsible for the permanent price

impact? Who is responsible for the transient price impact? And what motivates the trading

behavior of di↵erent traders?

We analyze net trade imbalances (or net inventories) of each trader group. We split

imbalances in initiating and liquidity supplying trades as follows. For each trade, denote by

i the category which is initiating the trade with its demand, and by j the category who is

accepting the o↵er (i and j may coincide). The quantity of money exchanged in the trade t

is Qt · Pt, where Qt is the number of stocks exchanged and Pt is the stock price. Thus, for

category i, the imbalance on initiating trades on a given period is computed as:

I(i),init
period =

X

t2period

st ·Qt · Pt · I{t initiated by (i)},

where st = +1 for buy orders, and st = �1 for sell orders, while I{·} is the indicator function.

The imbalance on liquidity supplying trades for category j in a given period is similarly:

I(j),liq
period =

X

t2period

st ·Qt · Pt · I{t accepted by (j)}.

The monetary net imbalance for category i in a given period is computed as:

I(j)
period = I(i),init

period + I(j),liq
period. (6)

This measure is similar to that used by Brogaard et al. (2018), except for the fact that, in

their paper, they use number of traded shares instead of euro volume.

INSERT FIGURE 8 HERE

Figure 8 reports average net imbalance, computed as in Eq. (6), and prices for systematic
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flash crashes (in Panel A) and non-systematic flash crashes (in Panel B). In both cases it is

clear that IB-HFT OWN (followed by IB-HFT CLIENT for non-systematic events) initiate

the crashes by acting as large sellers. This is informed selling since it moves the price toward a

new fundamental level. By market design, the order imbalance generated by sellers should be

absorbed by market makers, which are all HFTs (PURE-HFT and IB-HFT) in this market.

Figure 8 focuses on IB-HFT MM only since the total inventory of PURE HFT MM is almost

zero at all the crash stages (even if they a↵ect the price with their quoting activity, see

Section 4.4). For non-systematic events, IB-HFT MM do provide liquidity during the crash,

somehow backed by NON-HFT traders, even if not su�cient to avoid price over-reaction.

Then, already long the stock, they need to restore zero inventory so they do not help with

the recovery, which is left to NON-HFT. This behavior is roughly consistent with standard

theories of financial intermediation, as in the theory of immediacy provision of Grossman

and Miller (1988), and their role as liquidity providers. Nevertheless, when the flash crash

a↵ects several stocks simultaneously (systematic events), they do not provide liquidity on

average. Actually, they sell during the crash, and even more intensely than IB-HFT OWN

in the late phase of the crash. The order imbalance of systematic flash crashes is actually

absorbed, especially in the late phase of the crash, by “slow” NON-HFT traders, who buy

at a discount price mostly through limit orders posted far before the crash started. Not only

these traders, who do not use extensively algorithmic trading strategies, absorb the selling

generated by “sellers” and market makers, but they also mostly contribute to the partial

recovery of the price. Thus, HFTs generate the crash (through informed selling, mostly

from OWN and CLIENT), and, when crashes are systematic, they precipitate it in its later

stages because of additional selling by HFT market makers. Figure 8 displays averages.

A statistical assessment of these results, which is possible given the large number of flash

crashes we analyze, is contained in Appendix C, Table C.1. It shows that the pattern in

Figure 8 is statistically significant.

Figure 9 shows the average trading imbalance changes per minute for the two most
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important trading categories (all trading categories are shown in Appendix B, Figures B.5

and B.6), that is IB-HFT MM and IB-HFT OWN. The intensity of imbalance change is

further dissected into initiated buy, initiated sell, supplying buy and supplying sell. A

positive value of the average means that the net imbalance is increasing; a negative value

means that net imbalance is decreasing.

INSERT FIGURE 9 HERE

Panel B and D show that the IB-HFT OWN are, on average, originating crashes, both

systematic and non-systematic ones. Their increase in the intensity of selling is strongly

correlated with the decline in price, and their selling accelerates till the peak of the crash.

They also provide some liquidity (of course, each group consists of several individual traders),

but their net e↵ect is strongly negative, especially at the beginning and the end of the crash.

Panel A and C point again at the ambivalent behavior of IB-HFTMM. For non-systematic

events, they provide liquidity either at the beginning or at the end of the crash. However,

a fraction of them starts selling intensely just before the peak of the crash, as indicated in

Panel A, thus consuming liquidity instead of providing it. For systematic events, there is no

average liquidity provision at the beginning of the crash. Even if some liquidity is provided

at the end of the crash, as shown in Panel C, the net e↵ect is strongly negative, and almost

as intense as that produced by IB-HFT OWN. As for Figure 8, a statistical assessment of

Figure 9 is the subject of Appendix C, Tables C.2 and C.3, showing that the described

patterns are statistically significant.

INSERT FIGURE 10 HERE

To further investigate this issue, Figure 10 shows the distribution, across events, of trading

imbalances changes of IB-HFT MM and IB-HFT OWN in the di↵erent phases of the crash

and during recovery (Figure B.7 in Appendix B shows the same for non-systematic events).

The Figure makes clear that, while IB-HFT OWN mostly sell at the beginning of the crash,
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IB-HFT MM start selling immediately after. In particular, they are always selling in the

late phase of the crash.

Why do IB-HFT MM sell when flash crashes a↵ect several stocks, instead of providing

liquidity (when it is needed the most)? Their change in the trading strategy, clearly visible

in Panel A of Figure 9, could be motivated by a series of rationales. First, they need to

buy to restore zero inventory. Grossman and Miller (1988), however, predict that they

should buy after price recovery. A most likely explanation provided by economic theories is

that these traders face the problem that selling could not be motivated by pure immediacy

demand, but could be informed (as it actually is, on average). Thus, they could start selling

opportunistically to profit from this information, as postulated e.g. by the back-running

theory of Yang and Zhu (2019). Another opportunistic reason to sell is predatory trading

(Brunnermeier and Pedersen, 2005): realizing that the seller is in distress, they could push

the price even more downward to buy later at an even lower price (and also restore zero

inventory). Indeed, we do observe a surge in initiated buying from this category immediately

before the crash peak, which is consistent with both back-running and predatory trading.

Indeed, a mixed behavior has to be expected since market makers do not know if the price

is going to recover or not (see the discussion in van Kervel and Menkveld, 2019).

INSERT TABLE 2 HERE

Support to the conjecture that IB-HFT MM sell during the crash fearing the initial selling

they observe is informed is provided by Table 2, which reports the average profit (in e) during

flash crashes for each category, together with standard errors. It is clear that IB-HFT MM

lose a significant amount of money, on average 2799.72 euros, by providing liquidity during

non-systematic crashes. They transfer this money, as expected, to IB-HFT OWN, who trade

on information by selling at a higher price. By a simple back-of-the-envelope calculation,

the average monetary profit they would obtain by providing all the required liquidity to

the sellers in the French market would be just 28 euros,9 therefore not enough to cover the

9This rough estimate is obtained by multiplying the total liquidity need, taken from Panel A in Figure 6
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losses. One may argue that they still do make profits on average, since providing liquidity in

tranquil times should be enough to cover these losses. However, if they have the option to

still satisfy the requirements as liquidity providers without facing large losses in these cases,

it is perfectly rational not to provide liquidity during distress. That is exactly what they

do, since Table 2 show that IB-HFT MM are able to avoid losses during systematic events,

passing the “hot potato” to slow traders. Our results thus question the e↵ectiveness of the

compensation scheme adopted by AMF.

The final aspect that we investigate is whether HFTs change their trading behavior during

flash crashes. We perform this analysis using the methodology of Kirilenko et al. (2017),

applied to the 148 flash crashes that we have in the sample. The full analysis is reported in

Appendix D. Analyzing multiple crash events, we find that HFTs modify substantially their

behavior, contrary to what found on the single May 6, 2010 event.

Summarizing, our results on trades point out the limited willingness of IB-HFT MM to

provide liquidity during a flash crash. They provide some liquidity during non-systematic

crashes, but during systematic crashes all IB-HFT MM are selling in the late phase of the

crash. Thus, the role of market makers loses e↵ectiveness exactly when the market mostly

needs it, which exacerbates the crash. The role of liquidity providers is instead played by

slow traders, especially those classified as “clients”, through passive trades that they posted

before the flash crash took place and which were not repositioned fast enough in the market.

4.4 Quoting activity analysis

We finally evaluate the impact of order submissions and cancelations on the price changes,

in line with the recent literature suggesting that quotes play a relevant role for price discovery

(Brogaard, Hendershott, and Riordan, 2019). We start by looking, in Figure 11, at the

to be 1.4 millions of Euro, times the compensation per Euro, taken to be 0.20 bps per Euro (in 2013, this
number changed from 0.20 to 0.22 to be back to 0.20). This estimate does not include the standard gain
from market making activity, i.e. the bid-ask spread, which is included in the net monetary profit in Table
2.
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average volume of cancelled orders (Panel A) and the average volume of new orders (Panel

B), both being proxies of the level of activity of the traders, especially for HFTs. The Figure

is for non-systematic events, the corresponding Figure for systematic events is reported in

Appendix B, Figure B.4. Cancellations and new orders follow an almost identical pattern,

indicating that limit orders are heavily used to change the positioning of traders in the

book. The pattern displays the same two-peaks structure of volume intensity in Figure 7.

The first peak corresponds to the beginning of the crash. Then the cancellation volume

declines, to spike up again at the end of the crash. It then slowly reverts back to normal

levels. Quote revision is almost exclusively used by HFTs. In particular, PURE-HFT MM

are cancelling and revising most of the orders. This pattern also supports the presence of two

distinct phases for a flash crash: an initial one, in which selling pressure is accommodated

with a price drop, and an accelerating one which exacerbates the price decline. Results are

confirmed also for systematic events, as documented in Appendix B.

INSERT FIGURE 11 HERE

This suggests orders are a primary channel to impact the price for HFTs. To assess

the impact of quoting activity on the price, we estimate the impulse responses of mid-price

changes on unit shocks in “trader specific mid-prices”, computed as the average between

best bid and best ask of each trader group. The impulse-response functions (IRFs) are

estimated for each flash crash event in four periods: pre-crash, crash, late crash and recovery.

The IRFs are estimated with the local projection methodology developed by Jordà (2005),

which constitutes a robust alternative to standard VAR models. The methodology is briefly

reviewed in Appendix E. Figure 12 shows estimated IRFs, averaged across systematic and

non-systematic events, of the changes of mid-price on unit shocks in the changes of the

average between best bid and best ask of di↵erent trader groups. The results are compelling

in showing that market makers (both PURE-HFT and IB-HFT) play a dominant role in

determining, through their quote revisions, mid-price changes during crash and recovery.

Their role is particularly strong during systematic crashes, and this is especially true for
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PURE-HFT MM. This suggests market makers are actively moving the market through

their quote activity instead of transactions. The role played by other market participants is

not visible in the average impact. Further, the impact of PURE-HFT MM is stronger in the

late phase of the crash and for systematic events, signaling that they are mostly responsible

for the transient price impact with respect to quoting activity.

INSERT FIGURE 12 HERE

Altogether, the evidence presented in this section about quoting activity provides statis-

tical support to the main themes of this paper. First, quoting activity presents the same

pattern of trading volume. Second, quoting activity has an impact on prices, most promi-

nently impacted by market makers, in particular PURE-HFT MM. Again, their impact is

stronger for systematic events than from non-systematic ones. And, again, the pattern can

explain the over-reaction causing the transient price impact.

5 Conclusions

In this paper we investigate the role of high frequency trading during flash crashes, and

we show that HFTs do not play a beneficial role to market e�ciency and liquidity during

periods of pronounced market distress. Using a novel econometric methodology proposed by

Christensen et al. (2017) we detect 148 flash crashes in one year (2013) of blue-chip French

stocks. The granularity of our database allow us to distinguish HFTs vs non-HFTs, as well

as di↵erent trading groups. Importantly, PURE-HFT firms have been largely investigated in

the literature, while IB-HFT to a much lesser extent. Our analysis shows that HFTs, and in

particular IB-HFTs, do play a significant role in causing flash crashes. IB-HFT Owners push

the price down with informed selling at the beginning of the crash; IB-HFT Clients follow

to profit opportunistically on this information, especially during non-systematic crashes; IB-

HFT Market Makers also follow, especially when the crash is systematic; PURE-HFT Market

Makers use intense quote revision which brings the price down during crashes, contributing to
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the over-reaction in the late phase. The behavior of market makers in a market that became

already illiquid creates overshooting and a transitory price impact. Even if IB-HFT Market

Makers during systemic crash contribute to overshooting, their behavior is still rational.

When crashes a↵ect several stocks, they sell increasingly as the crash develops to avoid big

losses against informed traders. This behavior is very di↵erent from what they are usually

doing in “tranquil” phases. The main category that stops crash and supports the recovery

is the NON-HFT, who receive a compensation from buying at discount.

Our conclusion, based on a large set of crashes, is that none of the trader categories

considered here fits the hall of shame or the walk of fame completely. For example, even

if IB-HFT MM, which should provide liquidity on the market under a designated market

making agreement, actually intensify systematic crashes considerably, they do so just to avoid

big losses against informed trading. Our paper documents that in diverse market situations of

distress, traders react rationally but unfortunately not necessarily in the direction of e�cient

market functioning. Thus, our empirical findings can be informative for market design, to

provide the right incentives or a di↵erent market structure (see, e.g., the discussion in Budish,

Cramton, and Shim, 2015).

Our paper has also important policy implications. Electronic liquidity providers can

indeed recover zero net inventory and provide liquidity on average, even if not enough to

prevent flash crashes to happen. Our study recommends a deeper evaluation of the recent

MiFID II regulation. In fact, MiFiD II recognized algorithmic liquidity provision as pivotal

to the sound functioning of financial markets. The new regulation specifically endorses

the automatic liquidity provision by electronic market makers, imposing specific binding

agreements between the exchange and the trading firms. What our analysis shows is that

this rule, already in place at the NYSE Euronext Paris stock exchange, is not su�cient to

prevent flash crashes, and could be revised in light of this objective. Possible solutions to this

problem are: change in their compensation scheme; or a change in the mechanism of trading

halts, which, as it is, does not work with flash crashes since these cannot be associated with
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excess volatility.

References

AMF (2017). Study of the behaviour of high-frequency traders on Euronext Paris: Risks

and trends. Technical report.

Andersen, T. G. and O. Bondarenko (2014). VPIN and the flash crash. Journal of Financial

Markets 17, 1–46.

Andersen, T. G., O. Bondarenko, A. S. Kyle, and A. A. Obizhaeva (2015). Intraday trading

invariance in the E-mini S&P 500 futures market. Working paper, Northwestern University.

Bandi, F. (2002). Short-term interest rate dynamics: a spatial approach. Journal of Financial

Economics 65, 73–110.

Bank for International Settlements (2017). The sterling ’flash event’ of 7 october 2016.

Technical report.

Bank of England (2019, July). Financial Stability Report.

Barlevy, G. and P. Veronesi (2003). Rational panics and stock market crashes. Journal of

Economic Theory 110 (2), 234–263.

Bellia, M. (2017). High-frequency market making: Liquidity provision, adverse selection,

and competition. Working paper.

Biais, B. and T. Foucault (2014). Hft and market quality. Bankers, Markets & In-

vestors 128 (1), 5–19.

Brogaard, J., A. Carrion, T. Moyaert, R. Riordan, A. Shkilko, and K. Sokolov (2018). High

frequency trading and extreme price movements. Journal of Financial Economics 128 (2),

253–265.

Brogaard, J., T. Hendershott, and R. Riordan (2019). Price discovery without trading:

Evidence from limit orders. Journal of Finance 74 (4), 1621–1658.

25

Electronic copy available at: https://ssrn.com/abstract=3560238



Brunnermeier, M. and L. Pedersen (2005). Predatory trading. The Journal of Finance 60 (4),

1825–1863.

Budish, E., P. Cramton, and J. Shim (2015). The high-frequency trading arms race: Frequent

batch auctions as a market design response. The Quarterly Journal of Economics 130 (4),

1547–1621.

Cespa, G. and T. Foucault (2014). Illiquidity contagion and liquidity crashes. Review of

Financial Studies 27 (6), 1615–1660.

Chaboud, A. P., B. Chiquoine, E. Hjalmarsson, and C. Vega (2014). Rise of the machines:

Algorithmic trading in the foreign exchange market. The Journal of Finance 69 (5), 2045–

2084.
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Table 1 Summary statistics of Flash Crash events

mean std min max quantile(0.1) quantile(0.5) quantile(0.9)

return -1.35 0.80 -5.18 -0.37 -2.42 -1.11 -0.62
duration (min) 9.53 8.45 0.07 41.60 2.12 7.32 19.34
duration (%) 1.87 1.66 0.01 8.16 0.42 1.44 3.81

N. trades during crash 582.10 442.32 89.00 2612.00 182.90 452.50 1191.70
N. trades daily 10337.07 5710.67 2501.00 44264.00 5258.50 8823.00 19025.90

N. trades during crash (%) 5.99 4.29 1.07 35.98 2.46 5.01 9.66
Signed volume during crash -1276.37 1347.86 -9291.14 1722.17 -2942.18 -1049.13 -19.78

Signed volume daily -4848.60 15259.88 -128877.88 42409.70 -16296.97 -3218.63 4980.44
Signed volume during crash (%) 21.07 182.75 -667.12 1592.26 -58.15 9.19 64.44
Absolute volume during crash 4598.60 3789.11 537.53 18268.03 1210.75 3521.45 9530.02

Absolute volume daily 93943.52 69076.44 16946.98 435185.60 34809.38 75966.21 183647.23
Absolute volume during crash (%) 5.43 4.06 0.71 34.71 2.02 4.50 9.03

Note. This table reports summary statistics of the price drop during Flash Crashes, flash crash duration and the characteristics
of the stocks in which flash crashes occur: returns during the crash (per cent), duration of crashes in minutes and as a fraction
of length of the trading session, number of trades, signed and absolute trading volume (in thousands of euros) over the whole
trading session and during the crash period in the same units and relative to the whole trading day (per cent). The full database
is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and
trade data, with trader group and account flags, are from BEDOFIH.
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Table 2 Net monetary profit (e) during flash crashes.

Systematic Non-Systematic

PURE-HFT CLIENT 24.36 11.07
(25.94) (124.21)

PURE-HFT MM �377.78 �164.09
(541.03) (444.22)

PURE-HFT OWN �60.17 �27.52
(108.69) (312.32)

IB-HFT CLIENT �1024.37 241.62
(889.47) (774.40)

IB-HFT MM �75.61 �2799.72⇤⇤⇤

(959.95) (706.58)

IB-HFT OWN 5396.13⇤⇤ 2239.13⇤

(2713.46) (1204.43)

IB-HFT PARENT �208.34 �423.07⇤

(484.79) (238.88)

NON-HFT CLIENT �3164.53 �438.11
(2250.18) (996.79)

NON-HFT OWN �765.22 1375.07⇤⇤

(1457.17) (690.90)

Note. This table presents the average monetary profit during flash crashes, divided into systematic and non-systematic events.
Standard errors are in parenthesis. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the
CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure 1. Trading activity by category

Panel A Panel B Panel C

Note. This figure presents the average number of times per stock day when the inventory of a trader crosses the zero value
(panel A), trading activity (panel B) and the cancellation ratio (panel C). The full database is composed of 37 stocks traded
on NYSE Euronext Paris that belong to the CAC40 index, for the entire year 2013. Order flow and trade data, with trader
group and account flags, are from BEDOFIH.

Figure 2. An example of a crash event

Note. This figure reports the evolution of the price of Technip over a flash crash events on June 25, 2013, which is detected
using the methodology of Christensen, Oomen, and Renò (2017), but not detected by the extreme price movement approach of
Brogaard et al. (2018). The upper panel reports the time-series traded price sampled at the 10-seconds grid. The middle panel
reports the drift burst (DB) test statistics we use to detect flash crashes in our sample. The lower panel shows the basic test
used to detect extreme price movement (EPM), that is 10-second returns. Dashed-red lines represent 99.9% confidence bands.
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Figure 3. Temporal distribution of crash events in the data
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Note. This figure presents, for each of the 148 crash events which are analyzed in the empirical application, on the x axis, the
time of the crash start t0 (with a cross) and the time of the crash end t1 (with a circle) connected by a segment. The y axis
report the day of the year. For each crash, the ticker of the corresponding stock is also reported. Tickers are connected by a
“+” sign when the crash is simultaneous. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to
the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure 4. Average cumulative return dynamics during a crash event
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Note. This figure reports the average of the price evolution over systematic and non-systematic flash crash events, as well as
the 10-90% quantiles for all the 148 events. The vertical lines separate the di↵erent periods in the evolution of the crash as
labelled in the figure and described in the text. The sample is composed of 37 stocks traded on NYSE Euronext Paris that
belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.

Figure 5. Average cumulative return dynamics during a Flash Crash

Panel A: Permanent vs. Transitory price impact Panel B: Crash price impact vs crash duration
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Note. This figure presents the permanent and transitory price impact. Panel A reports the scatter plot of the Transient Price
Impact (negative log-return from peak to end) with the Permanent Price Impact (log-return from beginning to end). Means and
standard deviations (in parenthesis) are reported for both systematic and non-systematic events. Panel B reports the scatter
plot of the Crash Price Impact (log-return from beginning to peak) with the duration of the crash. A longer duration implies a
deeper crash. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the
year 2013. Order flow and trade data are from BEDOFIH.
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Figure 6. Liquidity measures during non-systematic flash crashes

Panel A: Signed volume. Panel B: Bid-ask spread.
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Panel C: Market depth. Panel D: Executed order age.
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Note. This figure reports four measures of liquidity averaged across the 148 flash crash events considered in this study. Panel A:
cumulative signed monetary volume (negative volume = sell). Panel B: bid-ask spread. Panel C: market depth (di↵erence from
beginning). Panel D: the age of the executed orders (we exclude orders with age less than 0.1 seconds and those coming from
the previous day). On each panel, we superimpose the average price evolution for visual comparison. The sample is composed
of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data
are from BEDOFIH.
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Figure 7. Volume per minute for initiated buyer and initiated seller trades (non-
systematic)

Panel A: buyer-initiated volume Panel B: seller-initiated volume
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Note. This figure depicts the average euro volume traded per minute during crash events, separated in buyer-initiated trades
(Panel A) and seller-initiated trades (Panel B). On each panel, we superimpose the average price evolution for visual comparison
The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order
flow and trade data are from BEDOFIH.

Figure 8. Average trading imbalance of di↵erent trading categories during a
flash crash
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Note. The figure reports the average monetary net imbalance (negative corresponding to selling, positive corresponding to
buying) of Investment Bank HFT Market Makers, the sum of IB-HFT CLIENT and IB-HFT OWN, and the sum of NON-HFT
CLIENT and NON-HFT OWN. We superimpose the average cumulative return during the events for visual comparison. In
Panel B, the average is applied to the 27 systematic events of April, 17 and September 3. In Panel A, the average is applied to
the remaining 121 events. For NON-systematic events a↵ecting single stocks individually, the behavior of HFT MM is roughly
consistent with their designated role and with standard theory of market making, as e.g. in Grossman and Miller (1988),
which implies buying as price declines and selling after price recovery. Later in the paper, we also provide some evidence of
back-running (Yang and Zhu, 2019) for some traders in the IB-HFT group. For systematic events, IB-HFT market makers
contribute to the selling originating the flash crash together with IB-HFT CLIENT and OWN. The role of liquidity providers
for the systematic flash crashes is left to the NON-HFT traders. The sample is composed of 37 stocks traded on NYSE Euronext
Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure 9. Average trading imbalance changes per minute

Panel A: NON-systematic flash crashes. Panel B: NON-systematic flash crashes.
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Panel C: systematic flash crashes. Panel D: systematic flash crashes.
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Note. The figure displays the trading imbalance change per minute for IB-HFT Market Makers and IB-HFT Owners. separated
in buyer initiated, seller initiated, buyer passive and seller passive trades. Only non-systematic events are averaged. Panel A
and B report averages for non-systematic flash crashes. Panel C and D report averages for systematic flash crashes. The y-units
are not uniform across di↵erent trader categories. Back-running in Panel A refers to the theory of Yang and Zhu (2019). The
sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order
flow and trade data are from BEDOFIH.
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Figure 10. Monetary net imbalances changes per minute of systematic events
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Note. The figure depicts the empirical distribution of monetary net imbalances changes for IB-HFT MM and IB-HFT OWN at
di↵erent stages of the crash for systematic events. Column A is for IB-HFT MM. Column B is for IB-HFT OWN. We can see
that IB-HFT MM sell more intensely as price declines, causing substantial over-reaction. In particular, during the late phase
of the crash, they are always selling. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the
CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.

37

Electronic copy available at: https://ssrn.com/abstract=3560238



Figure 11. Cancellations and new orders volume by trader category (non-
systematic)

Panel A: cancellations Panel B: new orders
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Note. This figure displays the average per minute euro volume of cancelled orders (Panel A) and new orders (Panel B). On
each panel, we superimpose the average price evolution for visual comparison. The sample is composed of 37 stocks traded on
NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure 12. Average Estimated Impulse Response Functions

Column A: NON-systematic flash crashes Column B: Systematic flash crashes.
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Note. The figure shows impulse response functions of the changes of mid-price on unit shocks in the changes of the average
between best bid and best ask of di↵erent trader groups, for non-systematic (Column A) and systematic (Column B) events,
in four di↵erent phases of the crash/recovery. Impulse response functions are estimated using the local projection methodology
developed by Jordà (2005).
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A Appendix: A comparison with the EPM method

In Brogaard et al. (2018), distress events are mainly identified using Extreme Price Move-

ments (EPMs). EPMs are detected with one of the following methods. The first methods

simply labels all 10-second intervals that belong to the 99.9th percentile of 10-second abso-

lute midpoint returns for each stock as EPMs. The second method identifies EPMs based on

the residuals from the return autoregression. We apply the same methodology to our data

set.

Table A.1 compares the identified (negative) EPMs with the flash crashes detected using

our methodology. On average, for each stock, both EPM detection methods label 0.05% of

10-seconds intervals as EPMs. However, only a little fraction of our flash crashes is identified

as EPMs: the first method detects roughly 26.35% of flash crashes, while the second one –

only 18.92%. The pure power of the EPM approach is rather natural, as the typical flash

crash episodes are not exhausted by a few large price movements, but represent a “dense”

series of di↵erent magnitude price changes leaning to the same direction. On the other hand,

EPM approach exhibit a large number of false-positives due to oversampling periods of high

volatility, as also admitted by the authors. Summarizing, we compute that the overlap

between flash crashes and EPMs is limited, and thus that our distressed sample is di↵erent

from that analyzed by Brogaard et al. (2018).

Figure A.1 is the same as Figure 4, now computed with events identified with EPMs.

While there is a slight evidence of extreme price movement, on average, it is clear that EPMs

are not capturing the V-shapes of a flash crash. The Figure makes clear that EPMs look more

at “volatility”-induced price changes, while our methodology looks more at “drift”-induced

price changes. This explaines why the two samples identified by EPMs and the flash crash

test of Christensen et al. (2017) are substantially di↵erent.
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Figure A.1. Average cumulative return dynamics around an Extreme Price
Movement.
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Note. This figure reports the average of the price evolution around extreme price movements (EMPs), as well as the 10-90%
quantiles for all the events. The EPMs are detected detected by labelling the 10-second intervals that belong to the 99.9th
percentile of 10-second absolute midpoint returns for each stock as EPMs.

Table A.1 Compares detected EPMs and flash crashes

# of EPMs per stock Detected flash crashes

First method 286.48 (0.05%) 39 (26.35%)
Second method 282.19 (0.05%) 28 (18.92%)

Note. This table reports in the first column the average (across stocks) number of EPMs detected in a single stock in absolute
value and as a fraction (per cent) of the total number of the 10-second returns in our sample. The second column reports the
number of our flash crashes episodes identified as EPMs according to the methodology presented by Brogaard et al. (2018). The
sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order
flow and trade data are from BEDOFIH.
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B Appendix: Additional figures

Figure B.1. Price evolution during systematic flash crashes.

Panel A: April, 17. Panel B: September, 3.
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Note. This figure shows the price evolution of the 37 blue-chips French stocks during the systematic flash crashes of April 17,
2013 (Panel A) and September 3, 2013 (Panel B). 6 for systematic events. The sample is composed of 37 stocks traded on
NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure B.2. Liquidity measures during a flash crash (systematic).

Panel A: Signed volume. Panel B: Bid-ask spread.
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Panel C: Market depth. Panel D: Executed order age.

0 10 20 30 40 50

Average elapsed time (minutes)

-50

-40

-30

-20

-10

0

10

20

M
a
rk

e
t 
D

e
p
th

 C
h
a
n
g
e
 (

%
)

Market Depth change (%), mean
Market Depth change (%), median
Cumulative return

0 10 20 30 40 50

Average elapsed time (minutes)

0

10

20

30

40

50

60

70

O
rd

e
r 

d
u

ra
tio

n
 (

se
co

n
d

s)

Order duration, median
Order duration, mean
Cumulative return

Note. This figure reports four measures of liquidity averaged across the systematic flash crash events (compared to Figure 6 for
non-systematic events). Panel A: cumulative signed monetary volume (negative volume = sell). Panel B: bid-ask spread. Panel
C: market depth (di↵erence from beginning). Panel D: the age of the executed orders (we exclude orders with age less than
0.1 seconds and those coming from the previous day). On each panel, we superimpose the average price evolution for visual
comparison. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the
year 2013. Order flow and trade data are from BEDOFIH.
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Figure B.3. Volume per minute for initiated buyer and initiated seller trades
(systematic).

Panel A: buyer-initiated volume Panel B: seller-initiated volume
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Note. This figure shows the average euro volume traded per minute during crash events, separated in buyer-initiated trades
(Panel A) and seller-initiated trades (Panel B) only for systematic events (compared to Figure 7 for non-systematic events) The
sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order
flow and trade data are from BEDOFIH.

Figure B.4. Cancellations and new orders volume by trader category (system-
atic).

Panel A: cancellations Panel B: new orders
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Note. This figure display the average per minute euro volume of cancelled orders (Panel A) and new orders (Panel B) only for
systematic events. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for
the year 2013. Order flow and trade data are from BEDOFIH.
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Figure B.5. Cumulative net trading imbalances per minute of di↵erent trader
groups (non-systematic).
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Panel C. Panel D.
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Note. This figure reports inventory change per minute for the most active trading categories not considered in Table 9 during
non-systematic events, separated in buyer initiated, seller initiated, buyer passive and seller passive trades. The y-units are not
uniform across panels. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index,
for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure B.6. Cumulative net trading imbalances per minute of di↵erent trader
groups (systematic).
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Note. This figure reports inventory change per minute for the most active trading categories not considered in Table 9 during
systematic events, separated in buyer initiated, seller initiated, buyer passive and seller passive trades. The y-units are not
uniform across panels. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index,
for the year 2013. Order flow and trade data are from BEDOFIH.
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Figure B.7. Monetary net imbalances per minute of non-systematic events.
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Note. Same as Figure 10 for non-systematic events.
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C Appendix: A statistical assessment

This section contains a statistical assessment of the trading behavior of di↵erent categories

during a flash crash. Having 148 di↵erent crash events allows us to assess whether what we

observe is statistically significant, i.e. that the observed trading behavior are precise trading

strategies which are constantly implemented, and not the artifact of statistical fluctuations.

Table C.1 reports the cross-sectional average and standard deviation of net trade im-

balances I(j)
period in the five di↵erent periods of a flash crash, for the trading categories for

which this number is non-negligible and divided into systematic and non-systematic flash

crashes. The numbers are expressed in thousands of euros, and reported with their standard

deviation below. We only report significantly active categories.

Substantial heterogeneity emerges in the behavior of trader groups, showing the statistical

significance of the results illustrated in Figure 8. PURE-HFTs do not accumulate any

significant inventory during the crash, which is consistent with their trading mandate. The

only exception is the liquidity they provide to recovery for non-systematic events. However,

they do not stop trading, as concluded in Kirilenko et al. (2017) by looking at the Flash

Crash of May 6, 2010 only. This result also complements the findings in Bellia (2017), who

instead shows that in “normal” market periods, PURE-HFT MM activity improves market

liquidity significantly. This conclusion does not hold anymore in distressed times.

Regarding the remaining HFT categories, IB-HFTs, we observe more heterogeneity. The

imbalance of IB-HFT OWN is largely negative across the whole crash, consistent with their

role of big sellers, and selling is particularly massive and prolonged during non-systematic

events. IB-HFT CLIENT are also net sellers, but they follow IB-HFT OWN and mostly sell

in the late crash for non-systematic events, while their net inventory is non-significant during

systematic events. This shows that informed trading seems to originate from the IB-HFT

OWN, and then propagates to the IB-HFT CLIENT. The attempt of clients to profit from

the information coming from owners generates the big part of the second wave of selling

which, in a liquidity deprived market, contributes to the transient price impact crash.

Regarding IB-HFT MM, the table shows that they do provide significant liquidity dur-

ing the price drop and (mildly) during price recovery, but only for non-systematic events.

However, the liquidity they provide is not su�cient to prevent the transitory price impact.

For systematic events, they are significant big sellers along all stages. They also increase
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their net inventory as the IB-HFT OWN decrease their selling pressure. In the late phase

of the crash and during recovery, they are the largest sellers. This is the main result of the

paper and is shown here to be strongly statistically significant. IB-HFT Parents are also

particularly active in becoming big sellers in the late phase of the crash. Analyzing the

flash crash of May 6, 2010, Menkveld and Yueshen (2019) argue that it has been caused

by large investors. However, they do not provide information on whether large investors

employ HFTs or NON-HFTs for placing their orders, whether they split their orders or not,

the reason why large investors sell, and whether large investors are the investment banks or

the clients on their accounts, nor they clarify the role of market makers in providing liquidity

during the crash. Our analysis supplies this information.

Importantly, Table C.1 also shows that NON-HFTs play an important role in reducing

the negative e↵ects of the crash and in helping the price recovery afterwards. The trade

imbalance of NON-HFT CLIENT is positive and highly significant during both price drop

and recovery, and especially for systematic events, where they play the role of liquidity

providers in place of the market makers. Their net inventory becomes increasingly positive

as the crash develops and then price recovers. NON-HFT OWN instead contribute mildly

to the non-systematic crashes, while they also become significant net liquidity providers in

the late phase of systematic crash.

Now, in order to separate liquidity provision from aggressive trading, we analyze the

monetary imbalances, invested by a trader who is initiating a trade separately from the

money invested when providing liquidity (I(i),init
period and I(j),liq

period, respectively). The aim of this

analysis is to investigate whether the net imbalance is due to a low activity (i.e. low initiated

trading and low liquidity provision) or to a significant large activity (i.e. high initiated

trading and high liquidity provision). To add information with respect to Table C.1, we now

report net imbalance per minute, to measure the intensity of accumulated inventory. This

also allows to compare fairly among periods with di↵erent duration.

Table C.2 reports average amounts of money (per minute) invested in initiating trades

(I(i),init
period ) by di↵erent trader categories at di↵erent stages of a flash crash, again divided

for systematic and non-systematic crashes. The role of IB-HFT OWN and CLIENT as

aggressive sellers is confirmed. In particular, owners start the process and remain aggressive

across the whole crash, while clients become increasingly aggressive. In the late crash, we
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also see significant selling by NON-HFT CLIENT (for non-systematic events only); NON-

HFT OWN for non-systematic events, while they are aggressively buying during the late

phase of systematic crash; IB-HFT CLIENT; and IB-HFT MM, especially for systematic

events where they are the largest aggressive sellers.

Table C.3 complements Table C.2 by showing the euro volume of passive trades per

minute, which is the flip side of the aggressive order. NON-HFT Clients are the big liquidity

suppliers, especially in the late crash phase and especially for systematic crashes. The fact

that they provide liquidity is always significant. The second-best liquidity supplier during

the late phase of systematic crashes are NON-HFT OWN. IB-HFT MM provide significant

liquidity only for non-systematic events. They are the first liquidity providers in the initial

phase of the crash, which is in line with their contractual role. As the crash develops, their

relative role as liquidity providers declines, and in the late phase of non-systematic crash they

are even surpassed by NON-HFT CLIENT. As said, they do not provide any liquidity through

limit orders during systematic crashes. PURE-HFT MM are mildly significant as liquidity

providers, but the net amount is small compared to other trader groups. For example, IB-

HFT OWN also provide a large amount of liquidity. IB-HFT MM do provide significant

liquidity at the beginning of the crash. Overall, Table C.3 confirms and complements the

previous finding on categorized traders activity during flash crashes.
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Table C.1 Average trade imbalances (ke).

Panel A: Systematic flash crashes.
pre-crash early crash intermediate crash late crash recovery

PURE-HFT CLIENT �1.11 0.00 6.17 10.90 13.12
(1.11) (0.00) (5.80) (10.90) (8.83)

PURE-HFT MM 44.55 �4.67 �26.43 �17.27 137.12
(31.31) (31.34) (28.10) (34.33) (84.56)

PURE-HFT OWN �20.02 3.34 18.98 4.46 �3.83
(14.97) (2.57) (12.33) (9.26) (7.36)

IB-HFT CLIENT 28.58 52.73 27.81 �24.47 63.41
(32.60) (72.55) (46.09) (72.98) (63.21)

IB-HFT MM �127.32⇤⇤⇤ �105.36⇤⇤ �117.98⇤⇤⇤ �274.55⇤⇤⇤ �491.03⇤⇤⇤

(34.88) (44.97) (39.24) (49.16) (94.87)
IB-HFT OWN �94.98 �168.84⇤ �265.59⇤⇤⇤ �59.06 165.76

(67.02) (88.80) (90.44) (85.93) (206.97)
IB-HFT PARENT �53.57⇤⇤ �1.52 �86.08⇤⇤⇤ �224.09⇤⇤⇤ �197.01⇤⇤⇤

(23.23) (19.36) (31.48) (60.60) (56.69)
NON-HFT CLIENT 195.74⇤⇤ 226.00⇤⇤⇤ 308.02⇤⇤⇤ 372.75⇤⇤⇤ 74.32

(91.39) (74.38) (72.49) (83.01) (85.02)
NON-HFT OWN 28.09 27.46 134.87⇤ 209.58⇤⇤⇤ 194.80⇤⇤

(39.45) (35.85) (74.83) (65.23) (97.68)

Panel B: NON-systematic flash crashes.

pre-crash early crash intermediate crash late crash recovery

PURE-HFT CLIENT 5.93 �4.80 15.44⇤⇤ 4.38 �1.44
(8.49) (8.14) (7.20) (11.07) (19.64)

PURE-HFT MM �37.96 27.01 �12.64 �0.80 �108.51⇤⇤⇤

(23.72) (17.03) (13.15) (20.07) (29.86)
PURE-HFT OWN �28.41 2.55 5.27 4.91 27.89

(30.68) (5.31) (4.20) (4.62) (18.84)
IB-HFT CLIENT �84.77⇤⇤ �39.52⇤ �58.51⇤⇤⇤ �137.66⇤⇤⇤ �57.33

(35.12) (22.36) (20.48) (36.75) (88.78)
IB-HFT MM 93.29⇤⇤⇤ 143.54⇤⇤⇤ 85.04⇤⇤⇤ 127.89⇤⇤⇤ �55.14

(24.16) (29.56) (16.29) (20.01) (42.87)
IB-HFT OWN �16.27 �117.70⇤⇤ �31.21 �73.52 �86.56

(53.84) (49.69) (30.65) (52.83) (132.57)
IB-HFT PARENT 3.79 13.85 19.17⇤⇤ 42.87⇤⇤⇤ �20.73

(14.37) (9.29) (9.35) (10.67) (52.54)
NON-HFT CLIENT 87.81⇤ 38.79⇤⇤ 31.60⇤ 107.58⇤⇤⇤ 309.31⇤⇤⇤

(50.25) (19.62) (19.00) (35.08) (104.48)
NON-HFT OWN �23.45 �63.92⇤⇤ �54.14⇤⇤ �73.83⇤⇤⇤ �1.02

(25.18) (28.09) (27.34) (28.41) (58.19)

Note. This table reports the cross-sectional average, and standard errors in brackets, of the trade imbalances measured in ke,
in the five di↵erent periods of the crash described in Figure 4. Panel A: reports averages on the 27 flash crashes which happen
in several stocks on April 17 and September 3, 2013. Panel B: reports averages on all the other flash crashes.The significance
of the mean is evaluated with a standard t-test. One star denotes 90% significance, two stars 95% significance and three stars
99% significance. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for
the year 2013. Order flow and trade data are from BEDOFIH.51
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Table C.2 Average money invested in initiated trades (market orders) per minute
(keper minute).

Panel A: Systematic flash crashes.

pre-crash early crash intermediate crash late crash recovery

PURE-HFT CLIENT 0.00 0.00 1.15 0.00 1.88
(0.00) (0.00) (1.83) (0.00) (1.43)

PURE-HFT MM 8.80 �82.56⇤⇤ �52.58 �49.17 31.46⇤⇤

(7.25) (41.02) (36.36) (49.26) (14.66)
PURE-HFT OWN �3.71 5.45 12.65 8.01 �0.28

(3.38) (3.75) (8.40) (12.53) (1.13)
IB-HFT CLIENT �0.38 �62.09⇤⇤ �57.53⇤⇤ �177.58⇤⇤⇤ �5.77

(6.56) (28.53) (24.10) (63.58) (7.40)
IB-HFT MM �12.70⇤⇤ �88.20⇤⇤ �92.82⇤⇤⇤ �289.78⇤⇤⇤ �49.32⇤⇤⇤

(5.08) (37.27) (33.81) (50.58) (10.72)
IB-HFT OWN �16.68 �289.84⇤⇤ �360.62⇤⇤⇤ �257.31⇤⇤⇤ �55.52⇤⇤

(14.79) (128.60) (119.34) (97.71) (26.85)
IB-HFT PARENT �10.60⇤⇤ �5.19 �122.89⇤⇤⇤ �251.31⇤⇤⇤ �21.82⇤⇤⇤

(5.12) (21.57) (41.58) (68.09) (7.66)
NON-HFT CLIENT 6.57 45.53⇤ 11.51 �10.16 �0.39

(5.11) (24.59) (25.29) (42.15) (8.75)
NON-HFT OWN 4.42 �12.73 8.97 103.23⇤⇤⇤ 2.80

(3.46) (38.32) (23.04) (38.24) (7.44)

Panel B: NON-systematic flash crashes.

pre-crash early crash intermediate crash late crash recovery

PURE-HFT CLIENT �0.55 �10.96 4.49 �11.72 �0.42
(1.30) (10.17) (3.15) (8.72) (3.15)

PURE-HFT MM �11.47⇤⇤⇤ �26.61 �23.30 �59.86⇤⇤ �8.27⇤

(3.67) (17.63) (20.38) (25.27) (4.33)
PURE-HFT OWN �2.89 �4.13 �3.42 �3.42 1.36

(2.99) (6.56) (4.35) (4.25) (2.65)
IB-HFT CLIENT �19.49⇤⇤⇤ �96.54⇤⇤⇤ �88.27⇤⇤⇤ �220.47⇤⇤⇤ �9.94

(6.08) (27.41) (19.79) (34.26) (7.82)
IB-HFT MM 2.46 �12.27 1.80 �24.59⇤ �2.78

(3.05) (10.08) (10.92) (14.67) (4.22)
IB-HFT OWN �28.47⇤⇤⇤ �270.30⇤⇤⇤ �122.30⇤⇤⇤ �297.83⇤⇤⇤ �33.91⇤⇤

(10.20) (63.15) (37.85) (67.28) (14.64)
IB-HFT PARENT �0.30 8.57 11.09 26.93⇤⇤ �1.87

(2.35) (7.61) (7.48) (10.52) (6.52)
NON-HFT CLIENT �10.80⇤⇤⇤ �78.65⇤⇤⇤ �62.80⇤⇤⇤ �157.72⇤⇤⇤ 17.75⇤⇤

(3.39) (14.17) (14.04) (31.14) (8.79)
NON-HFT OWN �4.23 �87.91⇤⇤⇤ �77.53⇤⇤⇤ �131.56⇤⇤⇤ 0.67

(2.67) (24.69) (28.18) (28.69) (4.11)

Note. This table reports the cross-sectional average, and standard errors in brackets, of the money invested in initiating trades
through market orders measured in ke, in the five di↵erent periods of the crash described in Figure 4. Panel A: reports averages
on the 27 flash crashes which happen in several stocks on April 17 and September 3, 2013. Panel B: reports averages on all the
other flash crashes. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for
the year 2013. Order flow and trade data are from BEDOFIH.
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Table C.3 Average money invested in liquidity supplying trades (limit orders)
per minute (keper minute).

Panel A: Systematic flash crashes.

pre-crash early crash intermediate crash late crash recovery

PURE-HFT CLIENT �0.27 0.00 7.88 15.94 0.25
(0.27) (0.00) (8.30) (15.94) (0.17)

PURE-HFT MM 2.07 75.72⇤⇤⇤ 13.89 23.90 �9.16⇤⇤⇤

(2.99) (21.55) (16.15) (27.36) (3.54)
PURE-HFT OWN �1.17 �0.55 15.13 �1.49 �0.35

(1.03) (1.30) (14.33) (2.62) (0.39)
IB-HFT CLIENT 7.35 139.26 98.22 141.77⇤⇤ 16.08

(5.96) (100.16) (68.75) (70.91) (11.06)
IB-HFT MM �18.35⇤⇤ �66.00⇤ �79.84⇤⇤ �112.01⇤⇤⇤ �30.52⇤⇤⇤

(7.44) (35.46) (35.82) (42.01) (10.87)
IB-HFT OWN �6.48 42.75 �28.04 170.89⇤⇤ 82.48⇤⇤

(15.51) (48.06) (55.44) (84.86) (33.57)
IB-HFT PARENT �2.47 2.96 �3.07 �76.63⇤⇤ �10.21⇤⇤⇤

(1.52) (10.22) (10.90) (31.17) (3.02)
NON-HFT CLIENT 41.17⇤⇤ 285.20⇤⇤⇤ 439.25⇤⇤⇤ 555.66⇤⇤⇤ 12.48

(20.93) (103.10) (107.23) (135.89) (10.96)
NON-HFT OWN 2.43 52.91⇤⇤ 188.40⇤ 203.47⇤⇤⇤ 28.87⇤⇤

(8.21) (23.33) (103.49) (75.10) (12.41)

Panel B: NON-systematic flash crashes.

pre-crash early crash intermediate crash late crash recovery

PURE-HFT CLIENT 1.99 3.95 18.11⇤ 18.12 0.19
(1.47) (3.94) (9.24) (12.00) (0.58)

PURE-HFT MM 2.22 66.13⇤⇤⇤ 4.80 58.69⇤⇤⇤ �9.37⇤⇤⇤

(3.73) (16.80) (10.82) (17.41) (3.25)
PURE-HFT OWN �4.04 7.86⇤⇤⇤ 11.13⇤⇤ 10.60⇤⇤ 3.17⇤⇤

(4.64) (2.98) (4.63) (4.72) (1.61)
IB-HFT CLIENT �1.19 38.70 2.64 19.01 0.62

(4.73) (24.48) (17.40) (32.84) (9.58)
IB-HFT MM 20.29⇤⇤⇤ 222.33⇤⇤⇤ 122.65⇤⇤⇤ 211.75⇤⇤⇤ �6.18

(4.65) (40.89) (19.48) (24.99) (6.18)
IB-HFT OWN 24.50⇤⇤ 98.06⇤⇤ 76.62⇤ 190.24⇤⇤⇤ 19.83

(11.14) (39.77) (41.77) (48.79) (20.26)
IB-HFT PARENT 1.22 11.70 16.96⇤⇤ 35.80⇤⇤⇤ �1.50

(1.62) (8.06) (7.84) (7.95) (3.03)
NON-HFT CLIENT 32.22⇤⇤⇤ 135.42⇤⇤⇤ 109.04⇤⇤⇤ 315.15⇤⇤⇤ 32.55⇤⇤⇤

(11.03) (26.45) (29.04) (49.38) (10.10)
NON-HFT OWN �1.49 �5.62 �1.70 23.52 �0.83

(4.54) (23.25) (16.95) (26.28) (7.08)

Note. This table reports the cross-sectional average, and standard errors in brackets, of the money invested in liquidity supplying
trades through limit orders measured in ke, in the five di↵erent periods of the crash described in Figure 4. Panel A: reports
averages on the 27 flash crashes which happen in several stocks on April 17 and September 3, 2013. Panel B reports averages
on all the other flash crashes. The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40
index, for the year 2013. Order flow and trade data are from BEDOFIH.
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D Appendix: Change of trading behavior

This section addresses the question of whether HFTs change their trading behavior during

flash crashes by estimating the Kirilenko et al. (2017) model for inventory changes of di↵erent

trader groups. Kirilenko et al. (2017) answered in the negative by using data from the flash

crash of May 6, 2010 only. We instead answer in the positive, and this is made possible by

the fact that we analyze 148 crashes instead of a single one.

The model reads:

�yt =↵ + ��yt�1 + �yt�1 +
3X
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(7)

where D
D is a dummy which is activated during the crash period (from tstart to tcrash,

according to our definitions), DU is a dummy which is activated during the recovery period

(from tcrash to tend), yt is the net inventory of each category (measured in million euros and

starting at the beginning of each day) at time t, and �yt is the change in inventory over

the period from t � 1 to t; (� log p)t is the logarithmic return of mid-prices from t � 1 to

t.10 We estimate model (7) for each day in which one of the 148 crash events occurs, and

for each trading category separately. The inventories and prices are recorded on grids of

10 seconds. Significance of the variables associated with the crash (recovery period) would

imply a di↵erent trading behavior during that phase. Average coe�cients, together with

their associated t-statistic (robustified to account for heteroskedasticity using the White

correction) are reported in Table D.1 for non-systematic flash crashes, and Table D.2 for

systematic flash crashes.11

The first thing we immediately notice is that, in the crash and recovery periods, the

10The model here is slightly modified with respect to Kirilenko et al. (2017). Specifically, we use 3 ten-
seconds lags (instead of 20 one-second lags) and we regress on logarithmic returns instead of price changes,
since we consider di↵erent stocks and days and we need to guarantee uniformity across di↵erent price levels.

11To compute the t-statistic on average coe�cients, we assume that coe�cient estimates are independent
across di↵erent events.
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Table D.1 Non-systematic flash crashes

PURE-HFT PURE-HFT IB-HFT IB-HFT IB-HFT NONHFT NONHFT
MM OWN MM OWN CLIENT CLIENT OWN

constant �0.000⇤⇤⇤ 0.000 0.000⇤ 0.000 �0.000⇤⇤⇤ 0.000 0.000
(�4.62) (0.73) (1.74) (1.09) (�4.85) (1.22) (1.34)

�yt�1 0.004 0.029⇤⇤⇤ 0.065⇤⇤⇤ 0.091⇤⇤⇤ 0.099⇤⇤⇤ 0.081⇤⇤⇤ 0.080⇤⇤⇤

(1.15) (3.73) (15.01) (19.59) (13.81) (14.70) (8.35)
yt�1 �0.002⇤⇤⇤ �0.001 0.000 0.000 �0.000 �0.001⇤⇤⇤ �0.000

(�13.82) (�1.37) (0.91) (1.12) (�0.77) (�7.44) (�1.55)
�pt 0.181⇤⇤⇤ 0.002 �0.227⇤⇤⇤ �0.064⇤⇤ 0.050 �0.107⇤⇤⇤ 0.061⇤⇤⇤

(11.34) (0.13) (�14.12) (�2.37) (1.60) (�3.99) (2.61)
�pt�1 �0.086⇤⇤⇤ �0.020⇤⇤ 0.030⇤⇤⇤ 0.097⇤⇤⇤ 0.018 �0.054⇤⇤⇤ 0.020

(�9.13) (�2.22) (3.82) (5.24) (1.39) (�2.88) (1.20)
�pt�2 �0.041⇤⇤⇤ �0.008 �0.011⇤ 0.003 0.039⇤⇤⇤ �0.004 0.004

(�4.79) (�1.06) (�1.75) (0.13) (3.81) (�0.20) (0.28)
�pt�3 �0.050⇤⇤⇤ �0.003 �0.011⇤ 0.045⇤⇤⇤ 0.025⇤⇤ �0.012 �0.006

(�5.84) (�0.49) (�1.74) (2.93) (2.34) (�0.73) (�0.30)
DD*constant �0.000 0.000 0.001⇤⇤⇤ 0.001 0.003 0.006⇤⇤⇤ �0.000

(�0.26) (0.27) (4.47) (0.81) (0.86) (2.90) (�0.21)
DD�yt�1 �0.029⇤ �0.063⇤⇤ �0.076⇤⇤⇤ �0.051⇤⇤⇤ �0.040⇤ �0.061⇤⇤⇤ �0.032

(�1.87) (�2.08) (�4.37) (�3.04) (�1.85) (�3.85) (�1.37)
DDyt�1 �0.092⇤⇤⇤ �0.047⇤⇤⇤ �0.040⇤⇤⇤ �0.061⇤⇤⇤ �0.035⇤⇤⇤ �0.027⇤⇤⇤ �0.036⇤⇤⇤

(�9.86) (�3.22) (�7.38) (�7.68) (�4.35) (�3.73) (�4.88)
DD�pt 0.045 0.012 �0.676⇤⇤⇤ 1.034⇤⇤⇤ 0.076 �0.834⇤⇤⇤ 0.205⇤

(0.47) (0.14) (�7.47) (7.04) (0.63) (�4.45) (1.91)
DD�pt�1 �0.063 0.068 �0.088 �0.282⇤⇤ 0.148 0.001 0.307⇤⇤⇤

(�0.91) (1.40) (�1.40) (�2.36) (1.48) (0.00) (2.70)
DD�pt�2 0.014 0.059 0.040 0.085 0.095 0.030 �0.084

(0.25) (1.49) (0.79) (0.80) (1.06) (0.28) (�1.07)
DD�pt�3 0.054 0.025 �0.113⇤⇤ �0.164⇤ 0.046 �0.045 0.127⇤

(0.91) (0.60) (�2.20) (�1.74) (0.59) (�0.48) (1.73)
DU*constant �0.001⇤ �0.001⇤ 0.003⇤⇤⇤ 0.001 �0.003⇤⇤ 0.003⇤⇤⇤ �0.001⇤⇤⇤

(�1.78) (�1.94) (6.70) (0.82) (�2.35) (2.96) (�3.68)
DU�yt�1 �0.019 0.042⇤ �0.043⇤⇤⇤ �0.037⇤⇤⇤ �0.013 �0.022 �0.029

(�1.60) (1.66) (�3.05) (�2.83) (�0.82) (�1.59) (�1.27)
DUyt�1 �0.052⇤⇤⇤ �0.071⇤⇤⇤ �0.054⇤⇤⇤ �0.047⇤⇤⇤ �0.033⇤⇤⇤ �0.036⇤⇤⇤ �0.037⇤⇤⇤

(�12.37) (�5.59) (�9.18) (�11.21) (�9.89) (�8.67) (�6.37)
DU�pt �0.303⇤⇤⇤ 0.226⇤⇤ �0.222⇤⇤⇤ 0.167⇤ �0.107 0.424⇤⇤⇤ �0.101

(�4.99) (2.10) (�4.30) (1.84) (�1.40) (3.67) (�1.45)
DU�pt�1 0.090⇤⇤ 0.023 �0.058⇤ �0.129⇤ �0.017 �0.024 0.006

(2.31) (0.24) (�1.74) (�1.85) (�0.26) (�0.37) (0.12)
DU�pt�2 0.010 0.205⇤ 0.023 �0.061 0.123⇤⇤ �0.052 �0.071

(0.31) (1.89) (0.81) (�1.10) (2.14) (�0.89) (�1.45)
DU�pt�3 0.086⇤⇤ 0.167 �0.017 0.015 �0.069 �0.004 0.027

(2.02) (1.29) (�0.52) (0.25) (�1.32) (�0.05) (0.50)

Note. The significance of the mean is evaluated with a standard t-test, adjusted for heteroskedasticity. One star denotes 90%
significance, two stars 95% significance and three stars 99% significance. The sample is composed of 37 stocks traded on NYSE
Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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Table D.2 Impulse-response function on logarithmic returns during crash and
recovery.

PURE-HFT PURE-HFT IB-HFT IB-HFT IB-HFT NONHFT NONHFT
MM OWN MM OWN CLIENT CLIENT OWN

constant �0.000⇤⇤⇤ �0.000 0.000 0.000⇤⇤ 0.000 0.000 �0.000
(�4.11) (�1.11) (0.46) (2.17) (1.51) (1.18) (�0.13)

�yt�1 �0.006 0.011 0.060⇤⇤⇤ 0.083⇤⇤⇤ 0.037⇤ 0.058⇤⇤⇤ 0.097⇤⇤⇤

(�0.73) (1.21) (5.60) (6.23) (1.93) (5.98) (4.29)
yt�1 �0.005⇤⇤⇤ 0.000 0.000⇤⇤⇤ 0.000 0.000 �0.000 0.000

(�8.43) (0.20) (5.16) (0.08) (1.56) (�1.06) (1.34)
�pt �0.036 0.006 �0.038⇤ 0.021 0.081⇤⇤⇤ 0.025 �0.072⇤⇤

(�1.19) (0.69) (�1.87) (0.43) (3.78) (0.59) (�2.35)
�pt�1 �0.067⇤⇤⇤ �0.004 0.040⇤⇤⇤ 0.050⇤⇤ 0.010 �0.005 �0.030⇤

(�4.35) (�0.97) (3.95) (1.97) (0.52) (�0.46) (�1.92)
�pt�2 �0.048⇤⇤⇤ �0.003 0.012 0.007 0.029⇤⇤⇤ 0.019 0.003

(�3.73) (�1.17) (1.29) (0.34) (2.64) (1.64) (0.14)
�pt�3 �0.038⇤⇤⇤ 0.001 0.014 �0.006 0.022⇤ 0.009 0.026

(�2.82) (0.23) (1.47) (�0.27) (1.70) (0.66) (1.24)
DD*constant 0.000 �0.000 0.000 0.000 �0.000⇤ 0.001⇤⇤⇤ 0.000

(1.02) (�0.99) (0.19) (0.06) (�1.89) (2.71) (1.53)
DD�yt�1 �0.039 �0.043 �0.075⇤ �0.020 0.045 �0.048 �0.010

(�1.06) (�1.19) (�1.77) (�0.64) (1.17) (�1.48) (�0.19)
DDyt�1 �0.089⇤⇤⇤ �0.055⇤⇤⇤ 0.006 �0.060⇤⇤⇤ �0.032⇤⇤⇤ �0.025⇤⇤⇤ �0.017

(�5.14) (�2.71) (0.48) (�3.25) (�2.71) (�2.67) (�1.51)
DD�pt 0.341⇤⇤⇤ 0.036 0.119⇤⇤ �0.019 0.029 �0.652⇤⇤⇤ �0.397⇤

(3.50) (0.90) (2.05) (�0.11) (0.25) (�4.45) (�1.65)
DD�pt�1 �0.095 0.016⇤ 0.079⇤ 0.128 �0.080 �0.138⇤ 0.032

(�1.27) (1.76) (1.88) (1.07) (�1.10) (�1.88) (0.24)
DD�pt�2 �0.052 0.020 �0.008 0.016 0.050 �0.118 0.198

(�0.79) (1.22) (�0.17) (0.09) (0.61) (�1.24) (1.28)
DD�pt�3 �0.038 0.010 �0.061 0.211⇤ �0.033 �0.039 �0.037

(�0.74) (0.98) (�1.44) (1.85) (�0.59) (�0.56) (�0.53)
DU*constant �0.001⇤⇤⇤ �0.000⇤⇤ �0.001⇤⇤⇤ 0.001 0.000 0.001 0.005⇤⇤⇤

(�4.67) (�2.45) (�4.46) (1.12) (0.52) (0.77) (6.50)
DU�yt�1 �0.001 �0.013 �0.068⇤⇤⇤ �0.021 0.002 �0.037 �0.037

(�0.03) (�0.52) (�2.59) (�0.81) (0.05) (�1.20) (�1.14)
DUyt�1 �0.085⇤⇤⇤ �0.036⇤⇤⇤ �0.023⇤⇤⇤ �0.050⇤⇤⇤ �0.059⇤⇤⇤ �0.016⇤⇤ �0.119⇤⇤⇤

(�6.42) (�3.91) (�4.55) (�4.61) (�4.59) (�2.09) (�10.76)
DU�pt 0.153⇤⇤⇤ �0.006 �0.052 �0.072 �0.089 �0.062 �0.010

(2.70) (�0.60) (�1.27) (�0.68) (�1.47) (�0.82) (�0.14)
DU�pt�1 �0.000 0.010⇤ 0.078⇤⇤⇤ �0.055 0.007 0.082 �0.101

(�0.00) (1.90) (2.64) (�0.67) (0.13) (1.35) (�1.18)
DU�pt�2 0.073⇤⇤ 0.011⇤⇤ 0.016 0.012 0.007 0.014 �0.056

(2.00) (2.22) (0.66) (0.15) (0.19) (0.26) (�1.18)
DU�pt�3 0.089⇤⇤ 0.002 0.074⇤⇤⇤ �0.077 0.033 �0.004 �0.147⇤⇤

(2.38) (0.38) (2.62) (�0.73) (0.87) (�0.08) (�2.10)

Note. The significance of the mean is evaluated with a standard t-test, adjusted for heteroskedasticity. One star denotes 90%
significance, two stars 95% significance and three stars 99% significance. The sample is composed of 37 stocks traded on NYSE
Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade data are from BEDOFIH.
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regression model yields significant di↵erences in many instances, for both systematic and

non-systematic events. For example, Kirilenko et al. (2017) report a significant negative

coe�cient on the lagged inventory level in the pre-crash period (and interpret this as an

indication of mean-reversion), but no significant changes in the crash and recovery period. We

instead see that mean-reversion is much stronger for all categories during crash and recovery,

with respect to the pre-crash and post-recovery period. There is only one exception to this

regularity: the positive (but insignificant) coe�cient of IB-HFT MM during the crash period

(and normal periods, in this case significant) for systematic events, denoting lack of mean

reversion for these traders which, instead, should hold a capacity limit. This is consistent

with their reported behavior during systematic events, see Figure 8, panel A.

In Kirilenko et al. (2017), HFT inventory changes are positively related to contempo-

raneous and lagged price changes for the first few seconds, then they become negatively

correlated, while Market Makers are negatively related to contemporaneous price changes

and positively to lagged ones. We broadly confirm this finding, which has just to be special-

ized to our trader groups. For example, IB-HFT MM and IB-HFT OWN inventory changes

behave like the Market Makers of Kirilenko et al. (2017), while PURE-HFT MM behave like

the HFTs of Kirilenko et al. (2017). The main di↵erence with their finding is the signifi-

cant changes for the price/inventory coe�cients during the crash and recovery period. For

example, while IB-HFT Market Makers become more significantly negatively correlated to

contemporaneous price changes during non-systematic crashes (signalling more inventory ab-

sorption), the opposite holds for systematic crashes, since they become net sellers (see again

Figure 8). Slow traders (NON-HFT CLIENT and NON-HFT OWN) turn the correlation of

their inventory changes with contemporaneous price changes to negative during systematic

crashes, consistent with the fact they have been shown to be the main liquidity providers

for these events.

Summarizing, the analysis of the regression model (7) yields two conclusions. The first

one is to provide further statistical significance on the results on net inventories, by showing

significant changes in inventory management of di↵erent traders during flash crashes at an

alternative frequency and with a fully blown statistical model. The second conclusion is

that the significant change in the management of net inventory is robust to the interaction

with prices: when price changes are added to the model, the behavior of the traders is still
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di↵erent during flash crashes with respect to normal times, and in line with what shown

in the previous sections. In particular, the estimated model parameters confirm that IB-

HFT Market Makers consume liquidity during systematic crashes, and the role of liquidity

providers is left to slow traders, who buy at a discount with respect to the fundamental

price.
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E Appendix: the local projection methodology

Let yt be a (7 ⇥ 1)-vector with the first component being the mid-price at time t, and

the other components representing the averages between best bid and best ask for the six

trader groups: PURE HFTMM, IB-HFT CLIENT, IB-HFT OWN, IB-HFTMM, NON-HFT

CLIENT and NON-HFT OWN. yt is a non-stationary vector with cointegrated components,

where cointegrating equation represent the long-run equilibrium between “mid-prices” of dif-

ferent trader group (the presence of cointegration is revealed using Johansen’s methodology).

Hence, �yt is a stationary process following a vector error correction model of the form:

�yt+1 =  1�yt + . . . p�yt�p+1 + 0yt + ✏t+1, (8)

where  1, . . . , p are the parameter matrices,  0 = ��(1), with �(1) being a reduced-rank

(with rank 1 as we have single cointegrating relation) matrix which can be expressed as

�(1) = BA
0, where B is an (7⇥ 1) parameter matrix and zt = A

0
yt is a stationary variable

representing cointegrating relationship. Equation (8) can be rewritten in the state space

form:

2

66666664

zt+1

�yt+1

�yt

...

�yt�p+1

3

77777775

=

2

66666664

I � A
0
B A

0 1 . . . A
0 p�2 A

0 p�1

�B  1 . . .  p�2  p�1

0 I . . . 0 0
...

... . . .
...

...

0 0 . . . I 0

3

77777775

2

66666664

zt

�yt

�yt�1

...

�yt�p+2

3

77777775

+

2

66666664

A
0
✏t+1

✏t+1

0
...

0

3

77777775

, (9)

or more compactly, as

⇠t+1 = G⇠t + e✏t+1. (10)

Notice that the state-space representation implies that, for for h = 1, . . . , H, linear forecasts

of �yt+h can be computed as:

8
<

:
�yt+h = G

h

[2,1]zt +G
h

[2,2]�yt +
P

p�2
j=3 G

h

[2,j]�yt�j+2 + vt+h,

vt+h = ✏t+h + C1✏t+h�1 + · · ·+ Ch�1✏t+1,

(11)
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where Gh

[i,j] denotes the [i, j] block of the matrix G raised to the h-th power and C1, . . . Ch�1

are (7⇥ 7) matrices from the Wold representation �yt =
P1

j=0 Cj✏t�j. This implies that the

impulse response at lag h of �yt on a shock ✏t = � can be calculated as:

IR(�yt+h, �) = E(�yt+h|✏t = �; yt�1, . . . )� E(�yt+h|✏t = 0; yt�1, . . . ) = G
h

[2,1]A
0
� +G

h

[2,2]�.

(12)

Following Jordà (2005) and Chong, Jordà, and Taylor (2012) we first estimate the cointe-

grsting equation by OLS and then directly estimate the impulse responses as:

cIR(�yt+h, �) = bGh

[2,1]A
0
� + bGh

[2,2]�, (13)

with 0

BB@

bG1
[2,1]

bG1
[2,2]

...
...

bGH

[2,1]
bGH

[2,1]

1

CCA = Y
0
H
MWX(X 0

MWX)�1
, (14)

where the matrices ZH , YH , X and W collect respectively the observations {z0
t+1, . . . z

0
t+H

},
{�y

0
t+1, . . .�y

0
t+H

}, {z0
t
,�y

0
t
} and {1,�y

0
t�1, . . .�y

0
t�p+2}, with t = p + 1, . . . , T � H, and

MW = I � W (W 0
W )�1

W . We use p = 2 and take � = �j to be a vector with unit j-th

element and the other elements being zero, for j = 2, . . . , 7.
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F Additional tables

Tables F.1 and F.2 provides the detailed list of the 148 flash crash events in our sample.

For each event it shows the date and time (of the crash beginning and the peak) of a flash

crash occurrence, the duration of a flash crash and the name and isin code of a corresponding

stock.

Table F.3 reports a summary of the detected flash crashes groped according to each

stock. It shows that in our sample flash crashes occur in 30 di↵erent stocks. The number of

flash crashes per year ranges from 1 to 5 with an average rate of 2.2 events per year. For

9 stocks flash crashes occur only once. The largest number of crashes per year (five events)

correspond to Société Générale.
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Table F.1 Flash Crash Events constituting the distressed sample (i)

Date Isin Company Time Begin Time Peak Duration (min:sec) Date Isin Company Time Begin Time Peak Duration (min:sec)

4-Jan FR0000131708 Technip 10:19:27 10:29:29 0:10:01 10-Apr FR0000125338 Cap Gemini 13:11:55 13:13:52 0:01:57

8-Jan FR0010220475 Alstom 14:47:54 15:03:40 0:15:46 15-Apr FR0000130577 Publicis Groupe SA 14:46:08 14:56:04 0:09:56

9-Jan FR0000120172 Carrefour 10:07:42 10:25:18 0:17:36 16-Apr FR0010208488 ENGIE 12:36:04 12:47:55 0:11:51

11-Jan FR0000130809 Société Générale 10:53:06 10:57:35 0:04:30 17-Apr FR0000131906 Renault 9:30:08 9:51:45 0:21:37

11-Jan FR0000131708 Technip 10:39:28 10:54:05 0:14:37 17-Apr FR0010220475 Alstom 9:30:01 9:51:26 0:21:24

14-Jan FR0000125338 Cap G\’emini 16:45:52 16:52:20 0:06:28 17-Apr FR0010208488 ENGIE 9:44:54 9:51:34 0:06:41

14-Jan FR0000125007 Saint-Gobain 15:21:35 15:27:45 0:06:10 17-Apr FR0000073272 Safran 9:29:55 9:51:56 0:22:00

14-Jan FR0000120354 Vallourec 15:48:07 15:52:15 0:04:08 17-Apr FR0000127771 Vivendi Universal 9:42:54 9:51:24 0:08:30

15-Jan FR0010307819 Legrand 12:04:25 12:08:24 0:03:58 17-Apr FR0000125486 Vinci 9:30:09 9:51:45 0:21:36

22-Jan FR0000127771 Vivendi Universal 13:46:51 13:50:10 0:03:19 17-Apr FR0000120628 Axa 9:42:50 9:51:45 0:08:56

22-Jan FR0000121261 Michelin 9:54:07 10:06:05 0:11:58 17-Apr FR0000120354 Vallourec 9:30:02 9:51:25 0:21:23

23-Jan FR0010220475 Alstom 15:59:27 15:59:30 0:00:04 17-Apr FR0000120578 Sanofi Synthelabo 9:42:55 9:51:30 0:08:35

29-Jan FR0000120537 Lafarge 9:52:51 10:05:06 0:12:15 17-Apr FR0000120172 Carrefour 9:42:34 9:51:29 0:08:55

29-Jan FR0000045072 Credit Agricole 10:02:42 10:15:25 0:12:43 17-Apr FR0000120073 Air Liquide 9:41:34 9:51:30 0:09:56

31-Jan FR0000120644 Danone 11:54:52 12:12:21 0:17:28 17-Apr FR0000121261 Michelin 9:42:50 9:51:40 0:08:50

4-Feb FR0000131104 BNP 14:08:05 14:15:11 0:07:06 17-Apr FR0000120271 Total 9:30:09 9:51:34 0:21:26

11-Feb FR0000120578 Sanofi Synthelabo 15:31:45 15:36:10 0:04:25 17-Apr FR0000121972 Schneider 9:30:00 9:51:29 0:21:29

20-Feb FR0000133308 Orange 9:32:28 9:49:00 0:16:33 23-Apr FR0000120404 Accor 16:50:24 17:14:07 0:23:43

22-Feb FR0000131906 Renault 14:59:51 15:15:05 0:15:14 26-Apr FR0000120693 Pernod Ricard 10:18:56 10:27:19 0:08:23

26-Feb NL0000235190 EADS 16:29:03 16:38:35 0:09:32 29-Apr FR0000127771 Vivendi Universal 13:55:11 14:02:29 0:07:19

1-Mar FR0000045072 Credit Agricole 13:17:21 13:20:15 0:02:54 30-Apr FR0000127771 Vivendi Universal 15:48:25 15:57:40 0:09:15

6-Mar FR0000133308 Orange 15:22:29 15:24:25 0:01:56 7-May NL0000235190 EADS 15:46:36 16:01:39 0:15:03

6-Mar FR0000120404 Accor 15:23:22 15:34:03 0:10:41 7-May FR0000121972 Schneider 12:17:56 12:27:00 0:09:04

7-Mar FR0000130809 Société Générale 10:42:26 10:49:45 0:07:19 10-May FR0010220475 Alstom 10:01:03 10:12:20 0:11:17

8-Mar FR0000125338 Cap G\’emini 13:59:34 14:10:35 0:11:01 22-May FR0000125338 Cap Gemini 15:44:54 15:47:05 0:02:11

12-Mar NL0000226223 STMicroelectronics 17:18:25 17:24:55 0:06:30 23-May FR0000120172 Carrefour 15:46:17 15:48:51 0:02:34

12-Mar FR0000121261 Michelin 16:22:32 16:28:04 0:05:33 29-May FR0000120271 Total 16:13:10 16:17:20 0:04:10

15-Mar FR0000130809 Société Générale 11:51:19 11:55:10 0:03:52 5-Jun FR0000120172 Carrefour 11:23:47 11:26:35 0:02:48

20-Mar FR0000073272 Safran 15:17:00 15:45:28 0:28:28 7-Jun FR0000121485 Kering 12:02:29 12:09:09 0:06:41

21-Mar FR0000125338 Cap Gemini 15:15:37 15:33:26 0:17:49 14-Jun FR0010220475 Alstom 15:01:31 15:02:23 0:00:52

25-Mar FR0010220475 Alstom 16:00:55 16:20:45 0:19:49 14-Jun FR0000127771 Vivendi Universal 15:39:05 15:51:09 0:12:05

25-Mar NL0000235190 EADS 16:14:00 16:23:06 0:09:05 19-Jun FR0010220475 Alstom 13:08:27 13:10:54 0:02:27

26-Mar FR0000073272 Safran 12:50:52 13:06:22 0:15:30 24-Jun FR0000130809 Soci\’et\’e G\’en\’erale 10:15:26 10:33:25 0:17:59

4-Apr NL0000235190 EADS 16:19:32 16:29:26 0:09:54 24-Jun FR0000125007 Saint-Gobain 10:15:02 10:33:25 0:18:23

5-Apr FR0000131104 BNP 11:49:35 11:53:15 0:03:39 1-Jul FR0000120537 Lafarge 16:39:15 16:41:45 0:02:30

5-Apr FR0010242511 EDF 14:53:00 14:54:55 0:01:55 11-Jul FR0010242511 EDF 11:13:35 11:18:55 0:05:20

5-Apr FR0000120073 Air Liquide 11:47:43 11:53:20 0:05:37 18-Jul FR0000130577 Publicis Groupe SA 13:51:35 13:51:56 0:00:21

Note. The table reports the detailed list of the 148 flash crash events in our sample. For each event it shows the date and time (of the crash
beginning and the peak) of a flash crash occurrence, the duration of a flash crash and the name and isin code of a corresponding stock. The
sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index, for the year 2013. Order flow and trade
data are from BEDOFIH.
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Table F.2 Flash Crash Events constituting the distressed sample (ii)

Date Isin Company Time Begin Time Peak Duration (min:sec) Date Isin Company Time Begin Time Peak Duration (min:sec)

23-Jul FR0010220475 Alstom 11:18:39 11:22:57 0:04:18 2-Oct FR0000121261 Michelin 14:34:11 14:45:30 0:11:19

25-Jul FR0000131708 Technip 11:52:35 12:05:16 0:12:41 2-Oct FR0000120693 Pernod Ricard 17:21:58 17:25:05 0:03:08

31-Jul FR0000120404 Accor 13:59:14 14:03:35 0:04:21 2-Oct FR0010220475 Alstom 15:39:45 15:43:00 0:03:15

31-Jul NL0000235190 EADS 16:54:15 17:01:15 0:07:00 2-Oct FR0000121667 Essilor International 15:21:32 15:28:50 0:07:18

16-Aug FR0000120578 Sanofi Synthelabo 15:30:00 15:35:45 0:05:45 3-Oct FR0010220475 Alstom 9:29:40 9:48:00 0:18:20

20-Aug FR0000120537 Lafarge 9:54:11 10:07:20 0:13:09 9-Oct FR0000120172 Carrefour 14:01:46 14:05:45 0:04:00

23-Aug FR0000124141 Veolia Environnement 14:48:18 14:48:39 0:00:21 9-Oct FR0000120537 Lafarge 12:30:21 12:38:28 0:08:07

27-Aug FR0000120578 Sanofi Synthelabo 9:39:30 9:51:30 0:12:00 18-Oct FR0000120172 Carrefour 11:23:12 11:34:48 0:11:35

27-Aug FR0000125007 Saint-Gobain 9:44:07 9:51:35 0:07:28 23-Oct NL0000226223 STMicroelectronics 16:16:06 16:24:16 0:08:10

27-Aug FR0000120537 Lafarge 9:44:47 9:51:56 0:07:09 24-Oct FR0000073272 Safran 14:29:39 14:42:41 0:13:02

27-Aug FR0000121667 Essilor International 9:44:59 9:51:29 0:06:30 25-Oct FR0000120628 Axa 15:31:14 15:47:16 0:16:02

29-Aug FR0000120693 Pernod Ricard 12:25:04 12:59:15 0:34:12 28-Oct FR0000120628 Axa 13:00:01 13:11:11 0:11:11

29-Aug FR0000121667 Essilor International 15:01:36 15:04:20 0:02:44 28-Oct FR0000125486 Vinci 17:25:06 17:29:35 0:04:29

2-Sep FR0000131906 Renault 16:44:04 16:44:31 0:00:26 28-Oct FR0000125007 Saint-Gobain 13:02:45 13:15:25 0:12:39

3-Sep FR0000121485 Kering 10:52:46 10:54:56 0:02:10 29-Oct FR0000124141 Veolia Environnement 9:29:59 9:40:05 0:10:06

3-Sep FR0000121014 Lvmh Moet 10:52:45 10:54:54 0:02:09 30-Oct FR0000131708 Technip 12:29:41 12:31:48 0:02:07

3-Sep FR0000131104 BNP 10:53:21 10:55:15 0:01:55 5-Nov FR0000120693 Pernod Ricard 14:55:14 15:10:07 0:14:53

3-Sep FR0000130809 Société Générale 10:53:18 10:55:10 0:01:52 5-Nov FR0000130809 Société Générale 14:46:45 14:50:15 0:03:30

3-Sep FR0000120628 Axa 10:53:09 10:55:10 0:02:01 5-Nov FR0000120628 Axa 14:40:25 14:48:38 0:08:13

3-Sep FR0000125486 Vinci 10:52:56 10:55:14 0:02:18 7-Nov FR0000130809 Société Générale 16:32:20 16:36:35 0:04:15

3-Sep FR0000120073 Air Liquide 10:51:15 10:54:55 0:03:40 20-Nov FR0000131708 Technip 15:37:23 16:09:40 0:32:17

3-Sep FR0000120578 Sanofi Synthelabo 10:52:54 10:54:55 0:02:01 21-Nov NL0000226223 STMicroelectronics 13:56:25 13:58:30 0:02:06

3-Sep FR0000120271 Total 10:53:00 10:54:55 0:01:55 22-Nov FR0000133308 Orange 12:17:19 12:27:59 0:10:41

3-Sep FR0000125007 Saint-Gobain 10:51:03 10:55:04 0:04:01 22-Nov FR0000127771 Vivendi Universal 12:16:49 12:22:49 0:06:00

3-Sep NL0000235190 EADS 10:52:56 10:54:55 0:01:59 25-Nov FR0000125338 Cap Gemini 10:08:52 10:13:24 0:04:32

3-Sep FR0000120537 Lafarge 10:52:40 10:54:59 0:02:19 26-Nov FR0000120404 Accor 11:49:31 11:59:05 0:09:34

3-Sep FR0000121972 Schneider 10:52:38 10:55:07 0:02:29 26-Nov FR0000121667 Essilor International 16:37:43 16:41:02 0:03:18

6-Sep FR0000121014 Lvmh Moet 15:39:26 15:47:35 0:08:09 27-Nov FR0000120404 Accor 13:27:19 13:47:55 0:20:36

6-Sep FR0000124141 Veolia Environnement 15:24:16 15:43:00 0:18:44 3-Dec FR0000133308 Orange 9:58:45 10:03:55 0:05:10

9-Sep FR0000125338 Cap Gemini 16:45:34 17:12:40 0:27:07 3-Dec FR0000131906 Renault 10:09:54 10:13:25 0:03:30

10-Sep FR0000120354 Vallourec 14:47:32 14:50:04 0:02:32 3-Dec FR0000131708 Technip 9:53:52 10:03:48 0:09:56

16-Sep FR0000120644 Danone 11:23:54 11:30:20 0:06:26 5-Dec FR0000130577 Publicis Groupe SA 15:31:10 15:43:04 0:11:55

17-Sep FR0000120354 Vallourec 16:37:51 16:40:15 0:02:24 17-Dec FR0000120404 Accor 11:05:41 11:16:16 0:10:35

20-Sep FR0010208488 ENGIE 10:37:10 10:40:05 0:02:55 18-Dec FR0000120354 Vallourec 9:30:00 9:46:41 0:16:41

24-Sep FR0000121485 Kering 15:37:05 15:44:04 0:06:58 19-Dec FR0000045072 Credit Agricole 14:48:57 14:53:20 0:04:23

24-Sep FR0000121261 Michelin 15:25:05 15:30:00 0:04:55 19-Dec FR0000131906 Renault 16:54:09 17:07:10 0:13:01

24-Sep FR0000120693 Pernod Ricard 16:18:15 16:25:20 0:07:05 23-Dec FR0000133308 Orange 10:46:27 11:02:27 0:16:00

Note. The table reports the detailed list of the 148 flash crash events in our sample. For each event it shows the date and time (of the crash
beginning and the peak) of a flash crash occurrence, the duration of a flash crash and the name and isin code of a corresponding stock.
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Table F.3 Summary of Flash Crashes grouped by stocks

Isin Name Market Cap
(M Euro)

Average
daily

trading (N.
trades)

Average
daily

volume (M
Euro)

No.
DBs

Mean
return

Median
return

Std
return

Mean
Dura-
tion

Median
Dura-
tion

Std Du-
ration

FR0000045072 Credit Agricole 23’221 12’774 88 3 -1.13 -0.89 0.47 0:06:40 0:04:23 0:05:17

FR0000073272 Safran 21’064 8’569 60 4 -1.11 -0.98 0.53 0:19:45 0:18:45 0:06:56

FR0000120073 Air Liquide 32’047 12’821 128 3 -0.99 -0.99 0.30 0:06:24 0:05:37 0:03:12

FR0000120172 Carrefour 20’858 13’152 116 6 -1.53 -1.57 0.74 0:07:55 0:06:27 0:05:58

FR0000120271 Total 145’995 26’025 348 3 -1.23 -1.01 0.49 0:09:10 0:04:10 0:10:40

FR0000120354 Vallourec 5’035 9’902 51 5 -1.18 -0.78 0.60 0:09:26 0:04:08 0:08:57

FR0000120404 Accor 7’822 7’872 49 6 -1.10 -1.07 0.48 0:13:15 0:10:38 0:07:21

FR0000120537 Lafarge 15’652 11’512 76 6 -1.12 -0.97 0.40 0:07:35 0:07:38 0:04:37

FR0000120578 Sanofi Synthélabo 101’851 27’238 400 5 -0.94 -0.87 0.57 0:06:33 0:05:45 0:03:52

FR0000120628 Axa 48’784 19’042 200 5 -1.24 -1.02 0.71 0:09:16 0:08:56 0:05:05

FR0000120644 Danone 30’688 14’526 176 2 -1.40 -1.40 0.02 0:11:57 0:11:57 0:07:49

FR0000120693 Pernod Ricard 21’799 10’385 96 5 -0.88 -0.69 0.59 0:13:32 0:08:23 0:12:18

FR0000121014 LVMH Moet Henessy 66’353 13’133 200 2 -1.27 -1.27 0.33 0:05:09 0:05:09 0:04:14

FR0000121261 Michelin B 14’350 12’618 99 5 -1.50 -1.77 0.72 0:08:31 0:08:50 0:03:13

FR0000121485 Kering 19’395 6’899 83 3 -0.89 -0.84 0.29 0:05:16 0:06:41 0:02:42

FR0000121667 Essilor International 16’592 10’950 86 4 -0.98 -0.93 0.15 0:04:58 0:04:54 0:02:17

FR0000121972 Schneider 35’628 16’767 164 3 -1.79 -1.43 1.15 0:11:01 0:09:04 0:09:39

FR0000124141 Veolia Environnement 6’338 10’989 68 3 -2.46 -2.79 1.21 0:09:44 0:10:06 0:09:12

FR0000125007 Saint-Gobain 22’193 13’639 116 5 -1.36 -1.34 0.33 0:09:44 0:07:28 0:05:47

FR0000125338 Cap Gémini 7’876 9’677 61 7 -0.87 -0.87 0.28 0:10:09 0:06:28 0:09:20

FR0000125486 Vinci 28’713 14’361 124 3 -1.25 -1.18 0.79 0:09:28 0:04:29 0:10:34

FR0000127771 Vivendi Universal 25’660 13’320 143 6 -1.39 -1.34 0.66 0:07:45 0:07:54 0:02:59

FR0000121667 Essilor International 16’592 10’950 86 3 -1.52 -1.26 0.54 0:07:24 0:09:56 0:06:11

FR0000130809 Société Générale 33’722 32’204 317 7 -1.62 -1.52 0.83 0:06:11 0:04:15 0:05:27

FR0000131104 BNP 70’354 33’015 364 3 -1.14 -1.03 0.28 0:04:13 0:03:39 0:02:38

FR0000131708 Technip 7’942 10’665 75 6 -1.17 -1.08 0.48 0:13:36 0:11:21 0:10:06

FR0000131906 Renault 17’064 14’722 118 5 -1.57 -1.33 0.88 0:10:46 0:13:01 0:08:41

FR0000133308 Orange 23’630 21’114 167 5 -1.47 -1.25 0.82 0:10:04 0:10:41 0:06:28

FR0010208488 ENGIE 40’349 13’831 148 3 -2.02 -1.68 0.81 0:07:09 0:06:41 0:04:29

FR0010220475 Alstom 8’126 11’838 81 10 -1.45 -1.47 0.67 0:09:45 0:07:47 0:08:29

FR0010242511 EDF 47’729 9’368 64 2 -1.40 -1.40 0.67 0:03:37 0:03:37 0:02:25

FR0010307819 Legrand 10’633 6’387 45 1 -1.08 -1.08 0:03:58 0:03:58

NL0000226223 STMicroelectronics 7’098 8’668 44 3 -2.60 -1.41 2.16 0:05:35 0:06:30 0:03:08

NL0000235190 EADS 43’550 20’886 212 6 -0.88 -0.96 0.25 0:08:46 0:09:19 0:04:15

Note. This table reports summary of Flash Crashes, which occurred in 30 di↵erent stocks during the year 2013. For each stock,
which experienced a flash crash, the table reports average yearly market capitalization, average daily number of trades and
trading volume, the number of detected events, mean, median and standard deviation of flash crash durations and of the price
drop during the crash.The sample is composed of 37 stocks traded on NYSE Euronext Paris that belong to the CAC40 index,
for the year 2013. Order flow and trade data are from BEDOFIH. Market capitalizations are from Bloomberg.
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