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The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these
changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of
the gut microbiome to assess modifications to both bacterial community structure and transcrip-
tional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and
luminal RNA derived from the host, we have also characterised how host transcription relates to the
microbial transcriptional response in inflammation. In colitis, increased abundance and transcription
of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide
production and oxidative stress support an adaptation of multiple commensal genera to withstand a
diverse set of environmental stressors in the inflammatory environment. These data are supported by
a transcriptional signature of activated macrophages and granulocytes in the gut lumen during
colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9
(calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin,
Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater
extent at the level of transcription than would be predicted by DNA abundance changes, implicating a
role for increased oxygen tension and/or host-derived reactive oxygen species in driving
transcriptional changes in commensal microbes.
The ISME Journal (2016) 10, 2389–2404; doi:10.1038/ismej.2016.40; published online 22 March 2016

Introduction

Inflammatory bowel disease (IBD), which includes
ulcerative colitis (UC) and Crohn’s disease, is a
chronic and recurring inflammatory condition
of the gastrointestinal tract that has been linked to
dysregulated mucosal immunity and alterations in
gut microbial communities (Ott et al., 2004; Sokol
et al., 2008; Frank et al., 2007, 2011; Packey and
Sartor, 2009; Erickson et al., 2012; Morgan et al.,
2012). High throughput studies of the intestinal
microbiota using 16S rRNA sequencing or shotgun

metagenomics in IBD patients have consistently
shown a state of dysbiosis, which is characterised
by a reduction in biodiversity, a reduction in
members of the firmicutes phylum (particularly
short-chain fatty acid producing Ruminococcaceae,
Odoribacter, Leuconostocaceae, Phascolarctobacter-
ium and Roseburia) and an increase in Gammapro-
teobacteria (Kostic et al., 2014). Furthermore,
functional inference using 16S rRNA data has
revealed increased abundance of metabolic path-
ways related to metabolism in the presence of
oxidative stress as well as increases in nutrient
transport systems and decreased amino acid meta-
bolism (Morgan et al., 2012). Nevertheless, hetero-
geneity in IBD pathology and aetiology creates a
problem for generalising microbial associations
across the spectrum of disease.

Mouse models of IBD represent a valuable tool
to identify microbial pathways involved in
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inflammation as host genetics and environmental
influences can be easily controlled. However, differ-
ent models capture different aspects of human
disease and thus differential cross-talk between the
host and the microbiota. Comprehensive analyses
of microbial communities across multiple models of
IBD are therefore imperative to shed light on
different aspects of immune modulation of the
microbiota and vice versa. Community profiling
studies have been performed across multiple models
of IBD, with taxonomic changes being dependent on
the model under investigation (Gkouskou et al.,
2014). For example, mice deficient for the transcrip-
tion factor T-bet (T-bet− /−) develop spontaneous
colitis in the absence of an adaptive immune system
(T-bet− /− Rag2− /− UC (TRUC)), which is driven by
dendritic cell-derived tumour necrosis factor alpha
and is dependent on the commensal microbiota
(Garrett et al., 2007, 2010). In this model, aberrant
innate immune control of commensal microbes
results in increased abundance of colitogenic
bacteria, including an increased abundance of the
tetrathionate metabolising Enterobacteriaceae as
well as an inferred increase in potentially immuno-
genic flagellar components (Rooks et al., 2014). In
contrast, the dextran sodium sulphate (DSS) model
of colitis is driven by direct chemical perturbation of
the epithelium, resulting in microbiota-dependent
induction of inflammation (Perše and Cerar, 2012).
Although DSS colitis has also been linked to
increased abundance of multiple families of bacteria,
including the Enterobacteriaceae (Okayasu et al.,
1990; Schwab et al., 2014), in contrast to the TRUC
model, it is associated with a decreased abundance
of flagellin transcripts (Berry et al., 2012; Schwab
et al., 2014), suggesting differences in the pathogenic
mechanisms in these models.

Previous community profiling studies in colitis
have been carried out using 16s rRNA gene surveys,
shotgun metagenomics or metatranscriptomics.
However, to our knowledge there have been no
studies that combine community DNA sequencing
(metagenomics) with community RNA sequencing
(metatranscriptomics), which has limited interpreta-
tion of functional changes. To address the gap in our
knowledge of metagenome-wide transcriptional
responses in colitis, we have combined shotgun
metagenomic and metatranscriptomic sequencing in
the Helicobacter hepaticus (H. hepaticus) model of
colitis (Kullberg et al., 2006). This model reflects a
multi-factorial aetiology relying on a bacterial trigger
in combination with an impairment of immune
function through blockade of IL10 signalling. It is
highly relevant to the aetiopathogenesis of a subset of
IBD as loss of function mutations in IL10 receptors
(IL10R1 and IL10R2) and IL10 result in early onset
monogenic forms of the disease, manifesting as
aggressive forms of IBD in children (Glocker et al.,
2009; Kotlarz et al., 2012; Uhlig et al., 2014).
Furthermore, significant associations of variants at
the IL10 locus with Crohn’s disease and UC in

genome-wide association studies (Franke et al.,
2010; Doecke et al., 2013) support the role of IL10
signalling in contributing to polygenic risk of
disease. Our findings support data from human IBD
studies regarding changes in oxidative stress path-
ways in the microbiota and extend these findings to
include robust associations between colitis and
multiple pathways implicated in adaptations of
commensals to host defence responses, including
antimicrobial peptide (AMP) production.

Materials and methods
Mice
Wild-type C57BL/6 mice were bred and maintained
under specific pathogen-free conditions in accre-
dited animal facilities at the University of Oxford.
Colitis was induced by infection with H. hepaticus
and intraperitoneal injection of 1mg 1B1.2 anti-IL10
receptor antibody (aIL10R) on days 0 and 7 (Kullberg
et al., 2006; Izcue et al., 2008). Sixteen female pups
were co-housed in four cages with four mice per cage
from weaning onwards. From these four cages, two
cages were randomly assigned to the H. hepaticus
infection group and two to the uninfected group.
Within the H. hepaticus infection group, all mice
were infected with H. hepaticus and two mice per
cage were injected with aIL10R antibody on days 0
and 7 to induce colitis. Within the uninfected group
two mice per cage were injected with aIL10R
antibody on days 0 and 7 and two mice per cage
were left entirely untreated. Mice were fed irradiated
standard chow (BK001E product code 801965) from
Special Diets Services (www.sdsdiets.com). Mice
were killed on day 14 of the experiment and the
colon was removed for histology and collection of
colon contents. All procedures involving animals
were conducted according to the requirements and
with the approval of the UK Home Office Animals
(Scientific Procedures) Acts, 1986. Mice were nega-
tive for Helicobacter spp. and other known intestinal
pathogens and were 10 weeks old when experiments
were started.

Histological assessment of intestinal inflammation
Proximal, mid- and distal colon pieces were fixed in
10% buffered formalin solution. Paraffin-embedded
sections were cut and stained with haematoxylin
and eosin and inflammation was assessed using a
previously described scoring system (Izcue et al.,
2008).

Metagenomic and metatranscriptomic library
preparation and sequencing
Colon contents were immediately frozen on dry ice.
For simultaneous DNA and RNA extraction, pellets
were dissolved in 500 μl extraction buffer (200mM

NaCl, 20mM EDTA, 4 M guanidine thiocyanate and
1% (v/v) β-mercaptoethanol) and 210 μl 20% (w/v)
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SDS and lysed with a bead beater twice for 2min
using Lysing Matrix E tubes (MP Biomedicals, Santa
Ana, CA, USA; procedure modified according to
Turnbaugh et al., 2009, 2010; McNulty et al., 2011).
Samples were centrifuged at 8000 g for 5min and the
supernatant was diluted with three volumes of lysing
buffer (ZR-Duet DNA/RNA Miniprep kit, Zymo
Research). DNA and RNA were further extracted
using the ZR-Duet DNA/RNA Miniprep kit (Zymo
Research, Irvine, CA, USA) according to the manu-
facturer’s instructions. DNA libraries were prepared
using the PrepX ILM 32i DNA library kit (Wafergen
Biosystems, Fremont, CA, USA) and sequencing was
performed on the Illumina HiSeq 2500 (Illumina,
San Diego, CA, USA) resulting in an average of
51.10M (45.68–62.42 M) 150 bp paired-end reads per
sample. Total RNA was depleted of ribosomal RNA
using Epibio’s (Epicentre, Madison, WI, USA) uni-
versal bacteria ribo-zero kit, single version. Libraries
were constructed using the NEBNext Ultra direc-
tional RNA library prep kit (New England Biolabs,
Ipswich, MA, USA, E7420L). RNA sequencing was
performed on the Illumina HiSeq 2000 (Illumina)
resulting in an average of 45.38 M (17.75–84.46 M)
100 bp paired-end reads per sample.

Read processing
Illumina adaptor sequences were removed using
cutadapt (https://pypi.python.org/pypi/cutadapt/1.4.2)
and overlapping paired reads were combined using
Flash (version 1.2.6) (Magoč and Salzberg, 2011).

Metagenomic and metatranscriptomic sequence
analysis
Metagenomic and metatranscriptomic data sets were
aligned to the mouse genome (mm10) using the
Burrows-Wheeler aligner (BWA) (Li and Durbin,
2009; bwa mem –M –k 25 –t 12) to remove host
sequences from microbial analysis. RNA sequences
were further aligned to the SILVA database (www.
arb-silva.de/fileadmin/siva_databases) using BWA
(Li and Durbin, 2009; m –M –k 25 –t 12) to remove
any remaining ribosomal RNA sequences. Consistent
with successful depletion of rRNA in our metatran-
scriptomic samples, we observed an average 4.59%
(range 2.34–10.65%) of 16S rRNA contaminating
reads (Supplementary Table S1). For taxonomic
profiling, metagenomic and metatranscriptomic
sequences were aligned to the NCBI non-redundant
(NR) protein database (ftp.ncbi.nlm.nih.gov/blast/
db/FASTA/nr.gz) using DIAMOND (version 0.3.9;
Buchfink et al., 2014; http://ab.inf.uni-tuebingen.de/
software/diamond) with default parameters. The
lowest common ancestor approach implemented in
a pre-released version of MEGAN tools (http://ab.inf.
uni-tuebingen.de/data/software/megan5/download/
mtools.zip; Huson and Weber, 2013) was used to
assign reads at the level of genus (lcamapper.sh –ms
50 –me 0.01 –tp 50). Diversity and rarefaction
analyses were performed on genus-level counts

using the vegan package in R3.1.0 (https://www.
r-project.org/). Differential abundance of genera was
performed using the metagenomeSeq (Paulson et al.,
2013) package from R/Bioconductor (https://www.
bioconductor.org/). For functional analysis, the
integrated gene catalogue (IGC; Li et al., 2014) was
used as a reference. Metagenomic and metatran-
scriptomic sequences were aligned to the IGC gene
database using DIAMOND (version 0.3.9) with
default parameters. Each aligned read was assigned
a NOG identifier (using IGC annotated evolutionary
genealogy of genes: non-supervised orthologous
groups, eggNOG) based on the annotation of the
‘best hit’ (highest bit score). We validated the use of
the ‘best hit’ approach by showing that for 491% of
aligned reads, 450% of alternative hits matched the
annotation of the ‘best hit’ (Supplementary
Figure S1). This demonstrated that the ‘best hit’
was an appropriate representative in this setting.
Principal components analysis (PCA) was performed
at the level of genus and NOG using metagenomeSeq
normalised abundances using the prcomp function
in R3.1.0. Differential abundance analysis was
performed using the metagenomeSeq package from
R/Bioconductor on per NOG counts. NOGs were
called as differentially abundant at a Benjamini-
Hochberg adjusted P-value o0.05.

Replication metatranscriptomic data set
To increase power to detect significant changes in
genera transcript abundance in colitis and confirm
changes in NOG transcription, we generated a
replication metatranscriptomic data set. Eight wild-
type C57BL/6 mice were maintained under specific
pathogen-free conditions in accredited animal facil-
ities at the University of Oxford that were distinct
from those used in the previous experiment. Mice
were housed in two cages (five in one and three
in the other) and all mice were colonised with
H. hepaticus and treated with aIL10R antibody as
described for the previous experiment. Mice were
fed irradiated standard chow (RM3-P product code
801700) from Special Diets Services (www.sdsdiets.
com). Faecal pellets were collected from the mice on
day 0 of the model (before infection and treatment)
and on day 14 (after induction of colitis).
RNA extraction and library preparation was per-
formed as described for the previous experiment.
Sequencing was performed on the Illumina HiSeq
2500 platform (Illumina), generating an average of
34.12M (range 23.78M–46.27M) 150 bp paired-end
reads per sample. Data processing and analysis was
performed as described for the previous experiment.
Mice were killed on day 28 of the model and
histology scores were calculated using the same
method described for the previous experiment.

Gene set enrichment analysis (GSEA)
To determine whether genera found to be signifi-
cantly differentially abundant in the replication
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metatranscriptomic data set were enriched in the initial
data set, we performed GSEA (Subramanian et al.,
2005). Briefly, genera in the initial data set were ranked
according to fold change (increasing or decreasing in
colitis versus steady state) and we used an implementa-
tion of the GSEA pre-ranked function (https://github.
com/CGATOxford/proj029/blob/master/scripts/GSEA
Preranked.py) to assess enrichment of significant
genera at the top of that list. In total, 1000 permutations
of genus rank were used to derive a null distribution of
enrichment scores and this was used to determine
significance. This provided a measure of the equiv-
alency of genus changes across replicate metatranscrip-
tomic data sets in the absence of strong significant
changes observed in the initial data set.

Defining colitis-responsive NOGs
Fold changes in abundance between steady state and
H. hepaticusþ aIL10R were used as input into a
regression model using DNA log2(fold change) and
RNA log2(fold change) as predictor and dependent
variables, respectively (lm function in R3.1.0). NOGs
that were identified as being significantly higher/lower
in abundance using the previously described metagen-
omeSeq analysis (at the level of DNA or RNA) were
defined as colitis-responsive if they laid outside of the
95% prediction intervals of the linear model.

Microarray analysis of mouse colon
In a separate experiment to the sequencing experi-
ment, expression profiles for whole colon across
seven time points following H. hepaticus and aIL10R
treatment (the same protocol as described for the
sequencing experiment with the exception of con-
tinued weekly injections of aIL10R antibody) were
obtained using Illumina MouseWG-6-V2 microarrays
(n=4/5 at each time point). Probes were used for
downstream processing if they were expressed
significantly above background (detection P-value
o0.05) in at least four samples. This resulted in the
analysis of 24 065 probes (out of a total of 45 289).
Array signal intensities were background adjusted,
transformed using the variance-stabilising transfor-
mation and quantile normalised using Lumi
(Du et al., 2008) from R/Bioconductor. Differential
expression analysis was performed for each time-
point contrast using the empirical Bayes method in
LIMMA (Ritchie, 2015). Significance was defined as
a Benjamini-Hochberg adjusted P-value o0.05. The
union of significantly different probes was visualised
in a heatmap and probes were clustered into distinct
sets using k-means clustering (k=3) as implemented
in R (kmeans function in R3.1.0). Enriched Gene
Ontology (GO) biological processes were assessed for
each gene cluster using a hypergeometric test and
were called significantly enriched at a Benjamini-
Hochberg adjusted P-value o0.05.

Differential abundance of host genes in faecal samples
To assess the expression of host genes in faecal
contents, we used RNA sequence alignments to the

mouse genome. The gene counts (annotations from
mm10 Ensembl 74) were produced using gtf2table
(sum over exons per gene) from the Computational
Genomics Analysis Toolkit (CGAT; Sims et al., 2014)
and these were used as input to DESeq (Anders and
Huber, 2010; version 1.17.0) from R/Bioconductor.
Differentially expressed genes between steady state
and H. hepaticusþ aIL10R were identified at a
significance level of Benjamini-Hochberg adjusted
P-value o0.05.

Cell-type enrichment analysis
Cell-type enrichment analysis for genes overrepre-
sented in the faeces of colitic mice was performed
using the CTen web application (Shoemaker et al.,
2012). Cell types were considered significant at a
Benjamini-Hochberg adjusted P-value o0.01.

Results

Microbial community composition and
transcriptionally active members
We sequenced RNA and DNA from gut contents of
mice across four conditions (Figure 1a) that included
a group of colitic mice treated with H. hepaticus and
anti-IL10R antibody (aIL10R) and three different
groups of control mice (Figure 1b). Reads were
assigned to taxa using DIAMOND alignments fol-
lowed by classification with the lowest common
ancestor method. Sequence alignment statistics for
both DNA and RNA data sets are provided in
Supplementary Table S1. The metagenomic data
set was dominated by sequences from Firmicutes
(mean 56% (34–76%)) and Bacteroidetes (mean 29%
(11–48%)) phyla, with additional contributions from
Proteobacteria (mean 9% (7–15%)) and Actinobac-
teria (mean 3% (2–6%)). These four phyla thus
contributed an average of 97% of sequences to our
metagenomics data. Our metatranscriptomic data set
was also dominated by Firmicutes (mean 78% (63–
87%)) and Bacteroidetes (mean 12% (4–25%)),
together contributing an average of 90% of
sequences, with Proteobacteria and Actinobacteria
contributing an average 6% (5–10%) and 2%
(1–2%), respectively. These data confirm that the
dominant phyla are active in the community and
that the Firmicutes contribute the most to the
community transcript pool. At the genus level, our
metagenomic data set was composed of a few
dominant genera along with many at lower abun-
dance (Figure 1c), a feature that was consistent in our
metatranscriptomic data set (Figure 1d). Bacteroides
(mean 22% (8–37%)), Clostridium (mean 12% (6–
18%)), Eubacterium (mean 12% (6–19%)), Roseburia
(mean 6% (3–9%)), Lactobacillus (mean 4% (2–
9%)), Blautia (mean 5% (2–7%)) and Escherichia
(mean 1% (0.4–6%)) contributed 450% of assigned
reads, with 896 low abundance (o5% assigned
reads) genera making up the remainder (Figure 1e).
We observed the same dominant genera contributing
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to our metatranscriptomic data set (Figure 1f). How-
ever, the rank order of abundance was different
when compared with the metagenomic data set with
Eubacterium (mean 19% (11–24%) and Clostridium
(mean 18% (11–21%)) contributing the highest
proportion of assigned reads, followed by Bacter-
oides (mean 10% (3–21%)), Blautia (mean 8%
(5–10%)), Roseburia (mean 7% (4–10%)) and Lacto-
bacillus (mean 5% (1–17%)). The remainder was
made up of 881 low abundance (o5% assigned
reads) genera (Figure 1e). Together, these data
demonstrate that the dominant taxa in our data set
are transcriptionally active although the rank order
of genera based on DNA relative abundance is not
completely recapitulated at the level of community
transcription with Eubacterium and Clostridium
being the dominant contributors to the mouse gut
metatranscriptome.

Alterations to community structure and transcriptional
activity in colitis
In the H. hepaticusþ aIL10R model, colitis develops
progressively from day 6, peaking at day 14 with
high levels of cell infiltration, epithelial hyperplasia
and goblet cell loss, presence of crypt abscesses and
submucosal inflammation and a large area of affected
tissue (Kullberg et al., 2006; Schiering et al., 2014;
Arnold et al., 2015). As expected, these features of
inflammation were significantly higher in
H. hepaticusþ aIL10R mice in the present study as

compared to H. hepaticus alone, aIL10R alone and
steady state control groups (Figure 1b) demonstrating
colitis induction by day 14. Using our metagenomic
and metatranscriptomic data sets, we sought to
assess changes to microbial community composition
and transcriptional activity in the model. Our
analysis workflow is provided in Supplementary
Figure S2. Using DNA analysis at the genus level,
we found no differences in diversity or richness in
mice with colitis (H. hepaticusþ aIL10R) versus
those without (Supplementary Figure S3). There
was a strong overlap of detected genera between
data sets (Figure 2a) with differences attributed
to under-sampling of low abundance genera
(Figure 2b). Confirming the dependency of transcrip-
tional activity on DNA abundance, we observed a
strong correlation (r=0.98) between DNA and RNA
abundance for genera detected in both data sets
(abundance 40.1 reads per million (RPM), n=669;
Figure 2c).

To assess changes to community composition
and transcriptional activity in colitis, we used
only those genera that were present at 40.1 RPM in
both RNA and DNA data sets (n=669). PCA revealed
altered community structure and community tran-
scriptional activity in colitis with three out of four
colitic samples being clearly differentiated from non-
colitic control samples (that is, steady state, H.
hepaticus alone and aIL10R groups) with significant
clustering by condition found using metatranscrip-
tomics (Figures 2d and e; PERMANOVA Adonis test

Figure 1 Microbial community composition across samples. (a) Overview of the experimental setup and number of mice in each group.
(b) Histological assessment of mouse colon for mice in each group at day 14 of the model. (c) The average cumulative proportion of
metagenomic reads assigned to genera. (d) The average cumulative proportion of metatranscriptomic reads assigned to genera. (e) The
genera that constitute the majority of the metagenomic data (45% assigned reads). (f) The genera that constitute the majority of the
metatranscriptomic data (45% assigned reads). H. h=H. hepaticus.
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F=1.73, P=0.045). Although in our model, we
introduced an exogenous bacterium (H. hepaticus),
its presence or absence did not drive the clustering of
colitic samples as mice infected with H. hepaticus
alone (non-colitic) clustered with steady state and
aIL10R treated control mice (Figures 2d and e).
These data are consistent with observed low propor-
tions of H. hepaticus read assignments in infected
mice (Supplementary Figure S4) and reflects that the
colon is not the primary site of H. hepaticus
colonisation.

Differential abundance analysis using metagen-
omeSeq revealed few statistically significant (Benja-
mini-Hochberg adjusted Po0.05) changes in colitis
with 0 and 3 genera being differentially abundant in

metagenomic and metatranscriptomic analyses,
respectively. Wolinella, Erysipelothrix and Epulopis-
cium significantly altered in overall transcript
abundance in inflammation. As we had observed a
community shift during colitis (Figures 2d and e), we
reasoned that a lack of significant differences in
individual taxa abundance was due to low statistical
power, at least at the level of genus abundance.
To address this, we performed a replication experi-
ment whereby we sequenced faecal RNA from eight
mice prior to infection with H. hepaticus and
treatment with aIL10R (day 0) and following infec-
tion and treatment at the peak of colitis (day 14;
alignment statistics are given in Supplementary
Table S1). Histology scores for colitic animals in

Figure 2 Differentially abundant genera in colitis versus steady state. (a) Overlap of genera detected with ⩾1 read in ⩾1 sample in
metagenomic and metatranscriptomic analyses. (b) Distributions of reads per million (RPM) for genera detected in DNA-seq, RNA-seq or
both data sets (average across 16 samples). *Wilcoxon rank-sum test Po0.05. (c) Correlation between genus abundance estimates (log2) of
669 genera detected at abundance 40.1 RPM in both data sets. (d) PCA of metagenomeSeq normalised genus abundances (669 genera
detected at 40.1 RPM in both data sets) in metagenomic analysis. (e) PCA of metagenomeSeq normalised genus abundances (669 genera
detected at 40.1 RPM in both data sets) in metatranscriptomic analysis. (f) PCA of metagenomeSeq normalised genus abundances (652
genera detected at 40.1 RPM in both RNA-seq data sets) in a replication metatranscriptomic data set. (g) Gene set enrichment analysis
(GSEA) using the genera identified as significantly increased in abundance in the replication data set as the gene set for enrichment testing
in the initial data set. The initial data set was ranked by fold change (high to low) in the comparison between colitis and steady state and
tested for a significant enrichment at the top of the list using GSEA and permuted genus ranks with 1000 permutations as shown in (h). (i)
GSEA of genera significantly decreased in colitis in the replication data set with the initial data ranked by fold change (low to high).
Significance testing was again performed using 1000 permutations of genus rank as shown in (j). (k) Genera identified as being
significantly differentially abundant in the replication metatranscriptomic data set and that contributed to the enrichment at the top of the
ranked lists in (g) and (i) i.e. occurred in the ranked list before the maximum enrichment score was reached (the so-called ‘leading edge’
subset).
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this experiment were comparable to the original
experiment (mean =5.85, s.d. = 1.40). Again we
saw a significant shift in community composition
(Figure 2f; PERMANOVA Adonis test F=7.04,
P=0.001). We also observed significant changes
(adjusted P-value o0.05 and fold change 42) in
genus transcript abundance for 88 genera (48 up and
40 down) in colitis (Supplementary Table S2). Both
increased and decreased genera were significantly
enriched among those genera that had the greatest
fold differences between steady state and colitis
in the original data set (Figures 2g–j), confirming
equivalent community shifts in transcription
between the two data sets. A significant enrichment
was also observed for increased genera in the DNA
data set but not for decreased genera (Supplementary
Figure S5). Consistent increases in genus transcript
abundance were observed for multiple members of
lactic acid bacteria (LAB) that included Pediococcus,
Weissella, Lactococcus, Enterococcus and Strepto-
coccus (Figure 2k).

These data support reproducible community shifts
in LAB transcription during colitis that, at least in
part, are due to changes in genus abundance during
colitis.

Encoded and transcribed functions of the gut
microbiota
By combining metagenomics and metatranscrip-
tomics, we sought to compare the functional poten-
tial (that is, encoded functions) of the microbiota
with transcriptional activity of those functions, as
well as define the genera from which they derived.
To this end, we aligned both DNA and RNA reads to
the IGC and assigned them to orthologous genes
(NOGs). We aligned an average of 32.64M (68.3%)
and 8.9M (45.74%) of DNA and RNA pre-processed
reads, respectively. These alignment statistics are in
line with the maximum achieved in metatranscrip-
tomic analyses to date (Ishii et al., 2013), validating
our approach of using the IGC as the reference. At the
level of eggNOG functional categories and excluding
unknown and general functions, we observed that
the highest proportion of metagenomic reads were
assigned to replication, recombination and repair
(mean 12% (11–13%)) followed by carbohydrate
transport and metabolism (mean 8% (8–9%)), cell
wall/membrane/envelope biogenesis (mean 6% (6–
6%)), amino acid transport and metabolism (mean
6% (5–6%)), translation, ribosomal structure and
biogenesis (mean 5% (4–5%)) and signal transduc-
tion mechanisms (mean 4% (3–6%); Figure 3a).
Interestingly, we observed a different functional
profile using metatranscriptomic data. The highest
proportion of reads in these data were assigned to
carbohydrate transport and metabolism (mean 14%
(11–18%)), followed by translation, ribosomal
structure and biogenesis (mean 9% (6–14%)), energy
production and conversion (mean 8% (6–8%)),
replication, recombination and repair (mean 6%

(5–8%)), cell motility (mean 6% (3–11%)), amino
acid transport and metabolism (mean 6% (5–7%))
and post-translational modification, protein turn-
over, chaperones (mean 5% (3–10%); Figure 3b).
It is interesting to consider the observed differences
between encoded and transcribed functions. The
DNA abundance of any given function is determined
by the number and abundance of taxa encoding that
function. RNA abundance, however, is additionally
determined by the importance of that function at the
time of sampling. It is therefore unsurprising that
replication, recombination and repair is the most
abundant category at the DNA level as this category
is ubiquitous among genera with 470% of genera
expressing at least one NOG in this category
(Figure 3c). The observation that this is not reflected
in the RNA profile suggests that at least at the time of
sampling, replication was not the dominant activity.
Conversely, NOGs in the carbohydrate transport and
metabolism category are widely expressed (~60% of
genera express at least one NOG is this category)
and are likely to be an important function of
the community, particularly for those genera at
high abundance. Indeed, among the most highly
expressed NOGs are glycoside hydrolases (α- and
β-galactosidases, α- and β-glucosidases) that are
predominantly expressed from Eubacterium, Clos-
tridium, Bacteroides and Roseburia (Figure 3d),
which reflect the major function of these bacteria
in the breakdown of complex dietary carbohydrates.

NOGs increased in colitis are associated with
adaptations to environmental stressors
All NOGs identified in our metatranscriptomic data
set were identified in the metagenomics data
(Figure 4a). Those NOGs uniquely detected by DNA
analysis were low abundance (Figure 4b) and there-
fore likely represented NOGs that were below the
limit of detection in our metatranscriptomic data set.
We further analysed those NOGs that were present at
40.1 RPM in both data sets (n=14 211) and observed
a strong correlation of NOG abundances between
data sets, although in contrast to genus-level
abundances, NOG-level DNA abundance did not
fully predict transcript abundance (Figure 4c). PCA
of both data sets distinguished colitic samples from
non-colitic control samples (Figures 4d and e), with
clustering on NOG transcription providing the best
separation of conditions (Figure 4e; PERMANOVA
Adonis test; DNA F=1.35, P=0.23; RNA F=2.02,
P=0.02).

Given the clustering together of control samples,
we concentrated on differentially abundant NOGs
between steady state and H. hepaticusþ aIL10R
conditions. Differential abundance analysis revealed
1221 and 669 significantly differentially abundant
(metagenomics) and expressed (metatranscrip-
tomics) NOGs in colitis, respectively (Figure 4f and
Supplementary Table S3), and the overlap between
the two data sets was highly significant (overlap =
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331, hypergeometric test Po0.01). The set of genes
that were increased in colitis at the level of both
DNA and RNA displayed a trend towards a sig-

nificant enrichment for genes involved in inorganic
ion transport and metabolism (Figure 4g; hypergeo-
metric test FDR=0.07). Differentially abundant

Figure 3 Functional profiling of the gut microbiota using metagenomics and metatranscriptomics. (a) The eggNOG functional categories
that constitute the majority of the metagenomic data (45% assigned reads). (b) The eggNOG functional categories that constitute the
majority of the metatranscriptomic data (45% assigned reads). (c) Metatranscriptomic reads were selected that could be assigned to both a
genus and a NOG (average number of reads=6.3 M) and the proportion of genera that expressed any NOG in each of the eggNOG
functional categories was plotted. (d) A breakdown of the genera that contributed to the transcription of the top 10 most highly abundant
NOGs in the eggNOG functional category carbohydrate transport and metabolism. Only genera that contributed 41% of
metatranscriptomic reads to any given NOG are shown.

Figure 4 Identification of differentially abundant NOGs at the level of DNA and transcription. (a) Overlap of NOGs detected with ⩾ 1 read
in ⩾ 1 sample in metagenomic and metatranscriptomic analyses. (b) Distributions of reads per million (RPM) for NOGs detected in DNA-
seq, RNA-seq or both data sets (average across 16 samples). *Wilcoxon rank-sum test Po0.05. (c) Correlation between NOG abundance
estimates (log2) of 14 211 NOGs that were detected at an abundance of40.1 RPM in both data sets. (d) PCA of metagenomeSeq normalised
NOG abundances (14 211 NOGs detected in both data sets at 40.1 RPM) in the metagenomic data set. (e) PCA of metagenomeSeq
normalised NOG abundances (14 211 NOGs detected in both data sets at 40.1 RPM) in the metatranscriptomic data set. (f) Overlap of
NOGs called as differentially abundant (adjusted Po0.05 in H. hþ aIL10R (colitis) versus steady state) in metagenomic and
metatranscriptomic data sets. (g) Fold enrichment of NOG functional categories in the set of NOGs that were found to be more highly
abundant and transcribed in colitis versus steady state in both metagenomic and metatranscriptomic data sets. (h) Normalised RNA
abundance of NOGs in the inorganic ion transport and metabolism eggNOG functional category that were found to be more highly
abundant and transcribed in colitis versus steady state in both metagenomic and metatranscriptomic data sets. (i) The proportion of
metatranscriptomic reads from each genus that contributed to transcription of each NOG identified in (h). Only those genera that
contributed 41% of metatranscriptomic reads to any given NOG are shown. (j) Correlation of NOG abundance estimates (log2) across
replicate metatranscriptomic data sets. The mean abundance across samples is plotted in each case. (k) Overlap of NOGs called as
significantly differentially abundant (Benjamini-Hochberg adjusted P-value o0.05) across replicate metatranscriptomic data sets. The
significance of the overlap was calculated using the hypergeometric test.
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NOGs in this category were involved in multiple
different processes (Figure 4h), including sulphite
reduction to L-cysteine (COG0369), resistance to
oxidative stress through either peroxidase activity
(COG1858 and COG2837) or DNA protection
(COG0783), microcin transport (COG4174 and
COG4239) and nutrient transport (NOG09795,

NOG124943 and bactNOG13045). Of interest,
increases in cysteine (the precursor to glutathione)
metabolic processes have been observed previously
at the level of inferred function in human IBD and
have been linked to the antioxidant properties of
glutathione during inflammation (Morgan et al.,
2012). Notably, in addition to an increase in

g
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abundance of cysteine biosynthesis from members of
Akkermansia, Escherichia, Erwinia and Staphylo-
coccus (Figure 4i), we also observed significant
increases in DNA and transcript abundance of
glutathionylspermidine synthase (COG0754)
and glutathione-S-transferase (COG0435). These
enzymes are key in maintaining the redox environ-
ment and regulating glutathione-dependent peroxi-
dase activity in Escherichia coli during oxidative
stress (Kanai et al., 2006; Chiang et al., 2010) and are
consistent with increased glutathione metabolism in
human IBD (Morgan et al., 2012). Further evidence for
a role of oxidative stress on modulating the microbiota
was the significant increase in DNA and transcript
abundance of peroxidases (COG1858 and COG2837)
from Geobacter, Helicobacter, Nitrosomonas, Pseudo-
monas, Rhodobacter, Shewanella and Lactobacillus as
well as the DNA protection against starvation protein,
Dps/ferritin (COG0783) from Lactobacillus, Enterococ-
cus and Streptococcus (Figure 4i). We also observed
significant increases in DNA and transcript abundance
for ABC-type microcin transport systems (Figure 4i;
COG4174 and COG4239). These orthologues consti-
tute the YejB and YejE permease components of a
transporter system that are expressed as part of the
yejABEF operon in Salmonella enterica serovar
Typhimurium and act to protect the bacterium from
both bacteria- and host-derived AMPs (Eswarappa
et al., 2008). Our data support the expression of these
proteins across diverse bacteria (Figure 4i) and suggest
a mechanism through which these bacteria are able to
survive antimicrobial insult from other members of the
microbiota and the host during inflammation. Pre-
vious reports have linked upregulation of microbial
nutrient transport in human IBD (Morgan et al., 2012).
We observed an increase in DNA and transcript
abundance of components of the TonB-dependent
receptors (Figure 4h)—protein complexes important in
promoting active transport of rare nutrients including
iron complexes (Schauer et al., 2008). The major
contributors to the transcription of TonB-dependent
receptor components in our data were Lactobacillus
and Bacteroides (Figure 4i), suggesting that these
genera are able to effectively compete for key nutrients
in the inflamed environment. By using our replication
metatranscriptomic data set, we were able to demon-
strate reproducible estimates of NOG transcript abun-
dance (Figure 4j; r=0.92) and confirm 458/652 (70%)
of changes observed in the original metatranscrip-
tomic data set that included the pathways described
above (Figure 4k). A full list of differentially abundant
NOGs identified in the replication metatranscriptomic
data set is provided in Supplementary Table S4.

Together these data extend previous observations
of increased metabolic processes related to oxidative
stress and nutrient transport in human IBD by
showing that these pathways are also changed at
the level of transcription. We also reveal
diverse mechanisms through which members of the
microbiota may persist in the inflammatory
environment.

Colitis-responsive NOGs are involved in oxidative stress
resistance
Globally, changes in NOG DNA abundance predicted
changes in NOG transcription (Figure 5a; linear
model R2 = 0.57, Po2.2 ×10−16). However, we rea-
soned that a subset of NOGs that changed to a greater
extent transcriptionally than would be predicted
from changes in DNA abundance would be
important in the microbial response to inflammation
(colitis-responsive). Thus, we defined NOGs as
colitis-responsive if they were significantly
increased/decreased in colitis (DNA or RNA) and
laid outside of the 95% prediction interval for a
linear regression model using DNA log2(fold change)
and RNA log2(fold change) as the predictor and
dependent variables, respectively (Figure 5a). This
analysis revealed 139 NOGs that were increased and
colitis-responsive and a further 139 that were
decreased and colitis-responsive. Strikingly, NOGs
that were increased and colitis-responsive were more
likely to be dominantly expressed from a given genus
(Figure 5b), suggesting that certain taxa are more
responsive to changing environmental conditions.
Indeed, expression of these NOGs was dominated by
Lactobacillus and Bacteroides (Figure 5c).

NOGs that we previously identified as being
more highly abundant in colitis at both the DNA and
transcript level that were annotated as Dps/ferritin,
Fe-dependent peroxidase and glutathione S-transferase
—genes involved in resistance to oxidative stress—
were found to be increased and colitis-responsive
(Figure 5a). The major contributing genera to changes
in transcription of COG0783: Dps/ferritin were mem-
bers of LAB (Enterococcus, Lactobacillus and Strepto-
coccus), to COG2837: Fe-dependent peroxidase was
Lactobacillus and to COG0435: glutathione S-transfer-
ase was Brucella (Figures 5d–f).

These data suggest that among functions that are at
higher abundance in the colitic environment, those
involved in oxidative stress resistance are the most
responsive at the level of transcription.

Relating microbial expression changes to host
transcriptional responses in colitis
We aimed to determine inflammation-driven
changes to host pathways that may contribute to
the observed alterations to the microbiota. To this
end, we profiled colonic tissue transcriptional
responses from day 0 to day 28 in our colitis model
using microarrays (Figure 6a). Colitic mice (day 14)
in this experiment were of comparable severity to
samples used for metagenomic and metatranscrip-
tomic profiling (see Extended Data Figure 4a in
Schiering et al., 2014). Over time we observed
distinct patterns of mRNA regulation (Figure 6b
and Supplementary Table S5). By using k-means
clustering (k=3), we assigned each differentially
regulated gene to a distinct cluster and performed
pathway analyse of GO biological functions (all
significantly enriched pathways are available in
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Supplementary Table S6). We found an enrichment
of genes involved in innate immune responses as
upregulated at the onset of colitis at day 6. These
included multiple genes involved in bacterial
defence, such as AMPs including S100a8, S100a9,
S100a14 and Ltf and nitric oxide synthesis (Nos2).
To address the potential impact of host antimicrobial
responses on the observed transcriptional changes in
the microbiota, we next assessed the expression of
host transcripts in the gut lumen using RNA-seq data
from which the metatranscriptomic data were
derived (Supplementary Table S1). Consistent with
antimicrobial activity in the lumen of the gut during
colitis, we observed significantly higher expression
of the AMPs S100a8, S100a9, S100a14 and Ltf
as well as Nos2 (Figure 6c) in colon contents.
To predict the cell types that contributed to luminal
transcripts, we used cell-type enrichment analysis
among genes found to be increased in colitis. This
analysis supported the presence of innate cells such
as activated macrophages and granulocytes

(Figure 6d) in the lumen during inflammation.
An observed increased DNA and transcript levels
of TonB-dependent receptor components and genes
involved in resistance to oxidative stress from
members of the microbiota suggest an adaptation of
these microbes to withstand metal-ion sequestration
through the formation of calprotectin from S100a8
and S100a9 and the oxidative stress response
associated with activated macrophages and granulo-
cytes in the lumen of the gut.

Discussion

In this study, we have used shotgun metagenomics
and metatranscriptomics to describe changes to
community structure and function in colitis. In
contrast to human IBD studies, we did not see a
reduction in community diversity in mice with
colitis although this is consistent with other mouse
models of colitis—such as the DSS model (Berry

Figure 5 Transcription of upregulated, colitis-responsive NOGs is dominated by Lactobacillus and Bacteroides. (a) Correlation of fold
changes between metagenomic and metatranscriptomic analyses. The solid line represents the linear model fit and dashed lines represent
the 95% prediction intervals. NOGs lying outside of the 95% prediction intervals and that were called as differentially regulated in
metatranscriptomic analysis were defined as colitis-responsive. (b) Metatranscriptomic reads were selected that mapped to both a genus
and NOG (mean=6.3 M reads). The percentage of reads from each genus that contributed to NOG expression was calculated for all NOGs
and the cumulative proportion was plotted for each NOG set. Significant differences in distributions were assessed using the Kolmogorov-
Smirnov test for each set against the non-significant (NS) set of NOGs. (c) Heatmap displaying the percentage of metatranscriptomic reads
(average across all samples) derived from each genus contributing to NOGs defined as being upregulated and colitis-responsive. Only
those NOGs that have a major genus contributor (i.e.,450% contribution) are displayed. MetagenomeSeq was run on counts per genus per
NOG and genera/NOG fold changes (log2) from metagenomic and metatranscriptomic analyses were plotted for genera that expressed
(d) COG0783: Dps/ferritin (e) COG2837: Fe-dependent peroxidase and (f) COG0435: glutathione S-transferase. Points and text are scaled by
relative RNA abundance. The blue solid line represents y=x. Solid black lines are where log2 (fold change) is 0 and dashed lines represent
two fold changes.
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et al., 2012). At the level of both genus and NOG
abundances, we showed a high correlation of average
abundance estimates between DNA and RNA data
sets (r=0.97 and r=0.88, respectively), which is
consistent with previous analyses in healthy human
subjects (Franzosa et al., 2014) and reflects the
predictive power of DNA abundance on RNA
transcription. However, despite these high correla-
tions, we have shown that metatranscriptomics at the
level of NOG abundance is better able to discrimi-
nate between experimental conditions than DNA
data sets, suggesting that metatranscriptomics pro-
vides information above and beyond that provided at
the genomic level.

We observed significant community shifts at the
level of genus transcription with significant
increased transcript abundance from members of
LAB, including Pediococcus, Weissella, Lactococ-
cus, Enterococcus and Streptococcus. These findings
are of note as LAB are generally considered to have
anti-inflammatory properties through their ability to
reduce the impact of oxidative stress on the host

through superoxide dismutase and catalase activity
(LeBlanc et al., 2011). Furthermore, increased abun-
dance of Enterococcus and Streptococcus species
have been reported in Crohn’s disease patients with
recurring disease post surgery (De Cruz et al., 2015).
Our data suggest that the LAB are well adapted to
the inflamed environment although the influence of
increased LAB transcription on exacerbation or
resolution of disease remains to be determined.

Consistent with previously inferred microbial
functional changes in human IBD, we observed
higher abundance and transcription of genes
involved in glutathione synthesis, metabolism and
function in colitis (Morgan et al., 2012). An observed
increase of sulphite reductase (COG0369), glutathio-
nylspermidine synthase (COG0754) and glutathione
S-transferase (COG0435) support a role for glu-
tathione and glutathione conjugates (for example,
glutathionylspermidine (Chiang et al., 2010)) in
controlling oxidative damage during colitis. Further
supporting a role for resistance to oxidative stress
during colitis was the observed increase in

Figure 6 Luminal expression of host genes represents a signature of activated innate cells. (a) Experimental setup for characterising gene
expression changes over the course of the colitis model. (b) Heatmap of colonic tissue transcriptional changes (LIMMA adjusted Po0.05)
across time in the H. hþ aIL10R model of colitis. Colours on the left panel represent cluster assignments for genes using k-means clustering
(k=3). Gene Ontology (GO) biological processes that are significantly (Benjamini-Hochberg adjusted Po0.05) enriched for each cluster are
labelled. (c) Differential expression analysis of mouse genes detected using RNA-seq from faecal samples between steady state and
H. hþ aIL10R (colitic) mice. Genes annotated as being involved in the antimicrobial defence response (GO biological process) are labelled.
Dashed lines represent fold changes ⩽−2 and ⩾ 2. Blue=DESeq adjusted Po0.05. (d) Cell-type enrichment analysis of mouse genes
identified as being more highly abundant in H. hþ aIL10R (colitic) faeces compared to steady state. The top 10 enriched cell types
are shown.
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abundance and expression of Dps/ferritin (COG0783)
and Fe-dependent peroxidase (COG2837). These
genes, along with glutathione S-transferase (GST),
COG0435, were also defined as colitis-responsive,
suggesting that they are transcriptionally induced in
response to inflammation. In E. coli, Dps/ferritin
provides resistance to oxidative stress through its
ability to bind and protect DNA from oxidative
damage (Wolf et al., 1999; Martinez and Kolter,
1997) and by reducing the production of hydroxyl
radicals via its ferroxidase activity (Zhao et al., 2002)
while Fe-dependent peroxidases are vital for the
reduction of endogenously produced hydrogen per-
oxide by members of Lactobacilli (Martín and
Suárez, 2010). The ability of Proteobacteria to with-
stand oxidative stress has been proposed as a
mechanism through which they are able to expand
in human IBD (Morgan et al., 2012; Haberman et al.,
2014). Interestingly, while we observed a contribu-
tion from Proteobacteria—specifically Brucella—on
transcriptional changes in glutathione-S-transferase
(GST) (COG0435), changes in both Dps/ferritin and
Fe-dependent peroxidase were driven by transcrip-
tion from the LAB Lactobacillus, Enterococcus and
Streptococcus. Our analyses have therefore extended
previous observations to include the LAB as respon-
ders to an inflamed environment through the induc-
tion of oxidative stress-response pathways. These
data also provide an explanation for the observed
increases in LAB abundance—the LAB are able to
expand in the inflamed niche.

Transcriptomic profiling of gut tissue revealed an
expected induction of the innate immune response at
the onset of colitis. Interestingly, a transcriptional
signature of activated macrophages and granulocytes
was also observed in the lumen of the gut, implicat-
ing a role for these cell types in altering the luminal
niche during inflammation. Increased transcription
of AMP transcripts, such as S100a8, S100a9,
S100a14 and lactoferrin (Ltf) in the lumen of the
gut during colitis suggests a required ability for
commensal microbes to withstand antimicrobial
activity during inflammation. The mechanism of
action of these antimicrobials is to sequester key
nutrients, such as manganese and zinc and thus
limit their availability to bacteria (Diaz-Ochoa et al.,
2014). It is of particular interest therefore, that we
observed an increase in DNA and transcript abun-
dance of the TonB-dependent receptor complexes
from members of the microbial community that
would be predicted to facilitate the uptake of rare
nutrients as a result of sequestration by host proteins.

Direct antimicrobial activity can occur through
bacterial or host expression of antibacterial products
that are capable of inducing bacterial cell death
through membrane binding. An upregulation
of bacterial ABC-type transporters related to the
yejABEF operon of Salmonella enterica serovar
Typhimurium that are required for resistance to
both bacterial and host AMPs (Eswarappa et al.,
2008) suggests an adaptation of community members

to resist direct targeting of AMPs during
inflammation.

Nutrient availability is a feature that determines
metabolic function of the microbiota. Our microarray
data revealed a downregulation of genes involved in
xenobiotic and metabolic processes in colitic tissue
at day 6 and included multiple enzymes involved in
glycosylation of endogenous and exogenous sub-
strates, including glucuronidation (Ugt1a1), sialic
acid conjugation (St6gal1) and α(1,3) fucosylation
(Fut4). Glycosylated proteins potentially act as
substrates for a number of colonic microbes. Indeed,
altered glycosylation during colitis and its impact on
the microbiota is supported by recent evidence that
IL22-induced Fut2 expression on epithelial cells
of the small intestine increases the expression of
fucose-degrading enzymes in the microbiota—
changes which contribute to host recovery (Pickard
et al., 2014) and protection against invading patho-
gens (Pham et al., 2014; Pickard et al., 2014).
It is therefore of interest that we also observed a
downregulation of glycoside hydrolase family
30 (COG5520) enzymes in our microbiome experi-
ment. Although speculative at present, this is of note
as this family of enzymes have β-glucuronidase and
β-fucosidase activity (Cantarel et al., 2009), which
supports an hypothesis of transcriptional down-
regulation of these enzymes in response to down-
regulation of these moieties on host cells.

Both increased and decreased abundance of func-
tions related to flagellar assembly have been reported
previously in mouse models of colitis (Rooks et al.,
2014; Schwab et al., 2014). In our data, we observed
significant increased DNA abundance of three NOGs
associated with flagellar assembly including a basal
body-associated protein (NOG67631) and two flagel-
lar L-ring proteins (COG1706 and COG2063). We did
not observe any significant decreases in DNA or
transcript abundance of NOGs annotated as being
involved in flagellar assembly. Our results therefore
support an increase in the capacity for flagellar
assembly in colitis, a feature that is not supported at
the level of transcription in our data.

Previous metatranscriptomic analyses in DSS-
induced colitis (Berry et al., 2012; Schwab et al.,
2014) suggest that Lactobacillus, Enterococcus, Para-
bacteroides, Mucispirillum, Lachnospiraceae and
Enterobacteriaceae are indicator phylotypes of
colitis (Berry et al., 2012). Together with our data,
this suggests that changes in transcript abundance of
the LAB including Enterococcus are consistent
features across models of murine colitis.

Conclusions

We have provided the first description of the
transcriptional response of the gut microbiome in
colitis using a combination of metagenomics
and metatranscriptomics and have identified key
functions that change in transcription in response to
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an altered gut niche. Specifically, increased
abundance of NOGs involved in oxidative stress
resistance, rare nutrient uptake and defence against
AMPs from diverse members of the community
suggest that these are genomic features that
contribute to the success of these organisms in
withstanding innate immune responses during
inflammation.
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