
Future Internet 2014, 6, 518-541; doi:10.3390/fi6030518
OPEN ACCESS

future internet
ISSN 1999-5903

www.mdpi.com/journal/futureinternet

Article

ARCOMEM Crawling Architecture
Vassilis Plachouras 1,*, Florent Carpentier 2, Muhammad Faheem 3, Julien Masanès 2,
Thomas Risse 4, Pierre Senellart 3, Patrick Siehndel 4 and Yannis Stavrakas 1

1 Institute for the Management of Information Systems, Athena Research and Innovation Center,
Artemidos 6 & Epidavrou, Maroussi 15125, Greece; E-Mail: yannis@imis.athena-innovation.gr

2 Internet Memory Foundation, 45 ter rue de la Révolution, 93100 Montreuil, France;
E-Mails: florent.carpentier@internetmemory.net (F.C.); julien.masanes@internetmemory.org (J.M.)

3 CNRS LTCI, Institut Mines-Télécom, Télécom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13,
France; E-Mails: muhammad.faheem@telecom-paristech.fr (M.F.); pierre@senellart.com (P.Se.)

4 L3S Research Center, University of Hannover, Appelstr. 9a, 30167 Hannover, Germany;
E-Mails: risse@L3S.de (T.R.); siehndel@L3S.de (P.Si.)

* Author to whom correspondence should be addressed; E-Mail: vplachouras@acm.org;
Tel.: +30-210-687-5413; Fax: +30-210-685-6804.

Received: 15 April 2014; in revised form: 11 July 2014 / Accepted: 14 July 2014 /
Published: 19 August 2014

Abstract: The World Wide Web is the largest information repository available today.
However, this information is very volatile and Web archiving is essential to preserve it for
the future. Existing approaches to Web archiving are based on simple definitions of the
scope of Web pages to crawl and are limited to basic interactions with Web servers. The
aim of the ARCOMEM project is to overcome these limitations and to provide flexible,
adaptive and intelligent content acquisition, relying on social media to create topical Web
archives. In this article, we focus on ARCOMEM’s crawling architecture. We introduce
the overall architecture and we describe its modules, such as the online analysis module,
which computes a priority for the Web pages to be crawled, and the Application-Aware
Helper which takes into account the type of Web sites and applications to extract structure
from crawled content. We also describe a large-scale distributed crawler that has been
developed, as well as the modifications we have implemented to adapt Heritrix, an open
source crawler, to the needs of the project. Our experimental results from real crawls show
that ARCOMEM’s crawling architecture is effective in acquiring focused information about
a topic and leveraging the information from social media.

Future Internet 2014, 6 519

Keywords: web archiving; crawling architecture; content acquisition

1. Introduction

The World Wide Web is the largest information repository. However, this information is very volatile:
the typical half-life of content referenced by URLs is of a few years [1]; this trend is even aggravated
in social media, where social networking APIs sometimes only extend to a week’s worth of content [2].
Web archiving [3] deals with the collection, enrichment, curation, and preservation of today’s volatile
Web content in an archive that remains accessible to tomorrow’s historians. Different strategies for Web
archiving exist: bulk harvesting, selective harvesting and combinations of both. Bulk harvesting aims
at capturing snapshots of entire domains. In contrast, selective harvesting is much more focused, e.g.,
on an event or a person. Combined strategies include less frequent domain snapshots complemented
with regular selective crawls. In the following we will focus on the technical aspects of selective crawls.

Selective crawls require a lot of manual work for the crawl preparation, crawler control, and quality
assurance. On the technical level, current-day archiving crawlers, such as Internet Archive’s Heritrix [4],
crawl the Web in a conceptually simple manner (See Figure 1). They start from a seed list of URLs
(typically provided by a Web archivist) to be stored in a queue. Web pages are then fetched from this
queue one after the other, stored as is in the archive, and further links are extracted from them. If newly
extracted links point to URLs that are in the scope of archiving tasks (usually given by a list or regular
expressions of URLs to consider), they are added to the queue. This process ends after a specified time
or when there is no interesting URL left to crawl. Due to this simple way of crawling, bulk domain
crawls are well supported while selective crawls necessitate additional manual work for the preparation
and quality assurance. It is the aim of the ARCOMEM project [5] to support the selective crawling on
the technical level by leveraging social media and semantics to build meaningful Web archives [6]. This
requires, in particular, a change of paradigm in how content is collected technically via Web crawling,
which is the topic of the present article.

This traditional processing chain of a Web crawler like Heritrix [4] has several major limitations:

• Only regular Web pages, accessible through hyperlinks and downloadable with an HTTP GET
request, are ever candidates for inclusion in the archive; this excludes other forms of valuable
Web information, such as that accessible through Web forms, social networking RESTful APIs,
or AJAX applications;

• Web pages are stored as is in the archive, and the granularity of the archive is that of a Web page.
Modern Web applications, however, often present individual blocks of information on different
parts of a Web page: think of the messages on a Web forum, or the different news items on a news
site. These individual Web objects can be of independent interest to archive users;

• The crawling process does not vary from one site to another. The crawler is blind to the kind of Web
application hosted by this Web site, or to the software (typically, a content management system)
that powers this Web application. This behavior might lead to resource loss in crawling irrelevant
information (e.g., login page, edition page in a wiki system) and prevents any optimization of the
crawling strategy within a Web site based on how the Web site is structured;

Future Internet 2014, 6 520

• The scope of a selective crawl is defined by a crude whitelist and blacklist of URL patterns;
there is no way to specify that relevant pages are those that are related to a given semantic entity
(say, a person) or that are heavily referenced from influential users in social networks;

• The notion of scope is binary: either a Web page is in the scope or it is not—on the other hand, it
is very natural for a Web archivist to consider various degrees of relevance for different pieces of
Web content; and ideally content should be crawled by decreasing degree of relevance.

Figure 1. Traditional processing chain of a Web crawler.

Queue
Management

Page
Fetching

Link
Extraction

URL
Selection

The crawling architecture of ARCOMEM aims at solving these different issues by providing flexible,
adaptive, intelligent content acquisition. This is achieved by interfacing traditional Web crawlers such
as Heritrix with additional modules (complex resource fetching, Web-application-aware extraction and
crawling, online and offline analysis of content, prioritization), as well as by adapting the internals of
the crawlers when needed (typically for managing priorities of content relevance). The objective of this
article is to present an overview of this crawling architecture, and of its performance (both in terms of
efficiency and of quality of the archive obtained) on real-Web crawls. This article extends [7].

The remainder of this work is organized as follows. We first discuss in Section 2 the related work.
Then we present in Section 3 a high-level view of the ARCOMEM architecture, before reviewing
individual modules in Section 4. We present evaluation results that highlight the effectiveness of
ARCOMEM’s crawling architecture in Section 5. Finally, we present our concluding remarks in
Section 6.

2. Related Work

While crawling appears to be a simple process, there are several associated challenges, especially
when the aim is to crawl a large number of Web pages [8], in order to create the index of a Web search
engine, or to archive them for future reference.

2.1. Web Crawling

Descriptions of early versions of Google’s and Internet Archive’s large-scale crawler systems
appeared in [9,10], respectively. However, one of the first detailed descriptions of a scalable Web crawler
is that of Mercator by Heydon and Najork [11], who provide information on the various modules of the
crawler and the design options. Najork and Heydon also describe a distributed crawler based on Mercator
in [12]. Shkapenyuk and Suel [13] introduce a distributed and robust crawler, managing the failure of
individual servers. Heritrix [14] is an archival-quality and modular open source crawler, developed at

Future Internet 2014, 6 521

the Internet Archive. In Section 4.4 we will describe how we have adapted Heritrix in order to fit in
ARCOMEM’s crawling architecture. Boldi et al. [15] describe UBICrawler, a distributed Web crawler,
implemented in Java, which operates in a decentralized way and uses consistent hashing to partition the
domains to crawl across the crawling servers. Lee et al. [16] describe the architecture and main data
structures of IRLBot, a crawler which implements DRUM (Disk Repository with Update Management)
for checking whether a URL has been seen previously. The use of DRUM allows IRLBot to maintain a
high crawling rate, even after crawling billions of Web pages.

As the Web evolves, and Web pages are created, modified, or deleted [17,18], effective crawling
approaches are needed to handle these changes. Cho and Garcia Molina [19] describe an incremental
crawler for optimizing the average freshness of crawled Web data. Olston and Pandey [20] describe
re-crawling strategies to optimize freshness based on the longevity of information on Web pages. Pandey
and Olston [21] also introduce a parameterized algorithm for monitoring Web resources for updates and
optimizing timeliness or completeness depending on application-specific requirements.

2.2. Focused and Deep-Web Crawling

Focused or topical crawlers [22] provide an effective way to balance the cost, coverage, and quality
aspects of data collection from the Web [23], by selectively crawling pages that are relevant to a set of
topics, defined as a set of keywords [24], by example documents mapped to a taxonomy of topics [25],
or by ontologies [26,27]. Recent approaches also address the crawling of information for specific
geographical locations [28,29].

The main challenges in focused crawling relate to the prioritization of URLs not yet visited, which
may be based on similarity measures [24,26], hyperlink distance-based limits [30,31], or combinations
of text and hyperlink analysis with Latent Semantic Indexing (LSI) [32]. Machine learning
approaches, including naïve Bayes classifiers [25,33], Hidden Markov Models [34], reinforcement
learning [35], genetic algorithms [36], and neural networks [37], have also been applied to prioritize
the unvisited URLs.

Focused crawlers and crawlers in general can harvest data from the publicly indexable Web by
following hyperlinks between Web pages. However, there is a very large part of the Web that is hidden
behind HTML forms [38]. Such forms are easy to complete by human users. Automatic deep-Web
crawlers, however, need to complete HTML forms and retrieve results from the underlying databases.
Barbosa and Freire [39] develop mechanisms for generating simple keyword queries that cover the
underlying database through unstructured simple search forms. Madhavan et al. [40] handle structured
forms by automatically completing subsets of fields, aiming to obtain small coverage over many hidden
Web databases.

2.3. Web Archiving

Web archiving refers to the collection and long-term preservation of data available on the Web [3].
Since archiving the whole Web is a very challenging task due to its size and dynamics, there have been
several national initiatives for preserving the Web of a country, based on full crawls in Sweden [41]
and on a selective collection of Web pages in the United Kingdom [42] and Australia [43]. The former

Future Internet 2014, 6 522

approach aims at providing complete snapshots of a domain taken at regular intervals. A drawback of
this approach is the lack of knowledge about changes of Web pages between crawls and the consistency
of the collected data [44]. The latter approach results in higher quality collections restricted only to
selected Web sites. Denev et al. [45] introduce a framework for assessing the quality of archives and
tune the crawling strategies to optimize quality with given resources. Gomes et al. [46] provide a survey
of Web archiving initiatives.

Focused crawlers, as described above, can be used for creating focused Web archives, by relying on
a selective content acquisition approach. The crawling process in the ARCOMEM architecture changes
the paradigm in how content is collected technically via Web crawling, by performing selective crawls
and also leveraging information found in online social media.

3. Crawling Architecture

The goal for the development of the ARCOMEM crawler architecture was to implement a socially
aware and semantic-driven preservation model [6]. This requires thorough analysis of the crawled Web
page and its components. These components of a Web page are called Web objects and can be the title,
a paragraph, an image, or a video. Since a thorough analysis of all Web objects is time-consuming,
the traditional way of Web crawling and archiving is no longer functioning. Therefore the ARCOMEM
crawl principle is to start with a semantically enhanced crawl specification that extends traditional
URL-based seed lists with semantic information about entities, topics or events. This crawl specification
is complemented by a small reference crawl to learn more about the crawl topic and intention of the
archivist. The combination of the original crawl specification with the extracted information from
the reference crawl is called the Intelligent Crawl Definition (ICD). This specification, together with
relatively simple semantic and social signals, is used to guide a broad crawl that is followed by a thorough
analysis of the crawled content. Based on this analysis a semi-automatic selection of the content for the
final archive is carried out.

The translation of these steps into the ARCOMEM crawling architecture foresees the following
processing levels: the crawler level, the online processing level, the offline processing level, and the
cross-crawl analysis that revolve around the ARCOMEM database as depicted in Figure 2. Since the
focus of this article is the crawling and the online analysis we will focus on these levels in the rest of the
article and give only a brief overview on the other levels. More details about the other processing levels
and the whole architecture can be found in [6].

3.1. Crawling Level

At this level, the system decides and fetches the relevant Web objects as these are initially defined
by the archivists, and are later refined by both the archivists and the online processing modules.
The crawling level includes, besides the traditional crawler and its decision modules, some important
data cleaning, annotation, and extraction steps (we explain this in more detail in Section 4). The Web
objects (i.e., the important data objects existing in a page, excluding ads, code, etc.) are stored in the
ARCOMEM database together with the raw downloaded content.

Future Internet 2014, 6 523

Figure 2. Overall architecture.

Crawler

Cross Crawl Analysis

Online
Processing

Offline
Processing

Queue
Management

Application-Aware
Helper

Resource Selection
& Prioritization

Resource
Fetching

Intelligent
Crawl

Definition

Consolidation
Enrichment

GATE Offline Analysis

Social Web Analysis

GATE Online Analysis Social Web Analysis

Named Entity
Evol. Recog.

Extracted
SocialWeb
Information

Crawler
Cockpit

ARCOMEM
Storage

URLs

Relevance Analysis
&

Priorization

Image/Video Analysis

Twitter
Dynamics

WARC Export

WARC
Files

Applications
Broadcaster
Application

Parliament
Application

3.2. Online Processing Level

The online processing is tightly connected with the crawling level. At this level a number of
semantic and social signals such as information about persons, locations, or social structure taken
from the intelligent crawl specification are used to prioritize the crawler processing queue. Due to
the near-real-time requirements, only time-efficient analysis can be performed, while complex analysis
tasks are moved to the offline phase. The logical separation between the online processing level and
the crawler level will allow the extension of existing crawlers at least with some functionalities of the
ARCOMEM technology. More details about the online analysis can be found in Section 4.2.

3.3. Offline Processing Level

At this level, most of the basic processing over the data takes place. The offline, fully-featured,
versions of the entity, topics, opinions, and events analysis (ETOE analysis) and the analysis of the
social contents operate over the cleansed data from the crawl that are stored in the ARCOMEM database.
These processing tools perform linguistic, machine learning and NLP methods in order to provide a rich
set of metadata annotations that are interlinked with the original data. In addition to processing of textual
content, multimedia content can also be analyzed and enriched with meta-information. The respective
annotations are stored back in the ARCOMEM database and are available for further processing and

Future Internet 2014, 6 524

information mining. After all the relevant processing has taken place, the Web pages to be archived
and preserved are selected in a semi-automatic way and transferred to the Web archive (in the form of
WARC files).

3.4. Cross-Crawl Analysis Level

Finally, a more advanced processing step takes places. It operates on collections of Web objects that
have been collected over time and can cover several crawls. Analysis implemented exemplary on this
level within the ARCOMEM system is used to recognize Named Entity Evolutions [47] and to analyze
the evolutions of associations between interesting terms and tweets (Twitter Dynamics) [48].

3.5. Applications

For the interaction with the crawler and exploration of the content a number of applications are used
around the ARCOMEM core system. The crawler cockpit is used to create the crawl specification, to
monitor the crawl activities, and to initiate the final export of crawled content to WARC files.

The end-user applications allow users to search archives by domain, time, and keywords.
Furthermore, browsing the archives via different facets such as topics, events, and entities, and
visualizing the sentiments of Social Web postings complement the end-user application. However, the
applications are not limited to the described examples. The ARCOMEM system is open to any kind of
application that wants to use it.

4. Module Description

The modular crawling architecture introduced in Section 3 enables the integration of a wide range
of functionalities and technologies in the same system. In this section, we describe in detail the
Application-Aware Helper, the online analysis module, as well as the two crawlers that can be used
to acquire content.

4.1. Application-Aware Helper

The goal of the application-aware helper (AAH) is to make the crawler aware of the particular kind
of Web application it is crawling, in order to adapt the crawling strategy accordingly. The presence
of the AAH in the crawling processing chain ensures Web content is crawled in an intelligent and
adaptive manner.

The AAH applies different crawling strategies for different types of social Web sites (Web forums,
blogs, social networks, photo networks, music networks, video networks, etc.), or for specific content
management system (vBulletin, WordPress, etc.). The AAH detects the Web application and Web page
type within the Web application before deciding which crawling strategy is best for the given
Web application.

More precisely, this module performs the following steps:

(1) it detects the Web application type (general type, content management system, etc.);

Future Internet 2014, 6 525

(2) it detects the Web page type (e.g., in a Web forum, if we are at the level of a list of forums, a list
of threads, or a list of messages);

(3) it executes the relevant crawling actions; extracting Web objects (e.g., comments, posts) on the
one hand, and adding only relevant URLs to the crawlers’ queue on the other hand.

The AAH is assisted by a knowledge base, which specifies how to detect a specific Web application
and which crawling actions should be applied. The knowledge base is written in a custom XML format,
so as to be easily shared, updated, and hopefully managed by non-programmers. The knowledge base
ensures that an appropriate crawling strategy is applied for a detected Web application. For instance,
the vBulletin Web forum CMS can be identified by searching for a reference to a specific script with
the detection pattern: script [contains(@src,“vbulletin_core.js”)]. The AAH distinguishes two main
kinds of Web application levels: intermediate pages, such as lists of forums, lists of threads, can
only be associated with navigation actions; terminal pages, such as the individual posts in a forum
thread, can be associated with both navigation and extraction actions. For intelligent crawling, our
AAH needs not only to distinguish among Web application types, but among the different kinds of
Web pages that can be produced by a given Web application type. For example, the expression
//h2[@class=“forumtitle”]/a/@href detects intermediate pages in vBulletin, whereas the expression
//table[@class=“post”] identifies terminal pages. Once the application type and level is detected, the
system executes the relevant crawling actions. The crawling actions are of two types: extraction actions
point to the individual Web objects to be extracted from a given Web page (e.g., comments, blog post);
navigation actions point to the URLs to be added in a crawling queue. For instance, the extraction action
//div[contains(@id,“post_message”)] extracts the post message.

To exploit the AAH in Web-scale crawling, a Web application adaptation module has been integrated.
The AAH deals with both Web content changes and Web structure changes. When Web content
changes, the AAH simply updates recently crawled versions with the new one. However, the Web
structure changes (i.e., changes in Web site template) are more complicated to identify and adapt to.
The AAH deals with this challenge. Structural changes with respect to the knowledge base come from
varying versions of the CMS, or alternative templates proposed by CMSs or developed for a specific
Web application. Here, we assume that Web application detection patterns never fail. In our experiments,
we did not see any instance where a Web application was not successfully detected.

The AAH deals with two different cases of structure adaptation: first, when (part of) a Web application
has been crawled before, but recrawl of Web application fails after template changes; second, when a
new Web application has been detected successfully, but (some of) the existing actions are inapplicable.
The adaptation module for recrawls of Web application relearns appropriate crawling actions for each
failed crawlable object. In ARCOMEM, crawled Web pages with their Web objects and metadata
are stored in the form of RDF triples in the ARCOMEM database. Therefore, we have proposed
an algorithm which utilizes the ARCOMEM database and first detects structural changes for already
crawled Web applications by looking for the crawled content in the Web pages with crawling actions
used during a previous crawl. If the system fails to extract the content, then it means that the structure
of the Web application has changed. In the presence of structural changes, the algorithm detects the
inappropriate crawling actions and performs updates by aligning them according to structural changes.

Future Internet 2014, 6 526

In the case of a new Web application whose template is slightly different from the one present
in the knowledge base, the adaptation module cannot be applied on previously crawled content.
Here, the adaption is applied for two different scenarios: Web application level detected and
Web application not detected. We consider two classes of Web application levels: intermediate
and terminal. The navigation actions are applicable for the intermediate level (e.g., list of blog
posts), whereas the terminal level may require both navigation and extraction actions (e.g., individual
post). When a Web application level is detected, but (some) crawling actions fail, a set of relaxed
expressions are generated by relaxing predicates, and tag names. The candidate tag names are
selected from the knowledge base as well as from the existing page DOM tree. For example,
if an expression div[contains(@class,“post”)]//h2[@class=“posttitle”] fails to extract the post title, and
div[contains(@class,“post”)] is the detection pattern that worked, then we will try several relaxations of
the second half of the expression, for instance, replacing @class with @id, “posttitle” with “posthead”,
h2 with div, etc. We favor relaxations that use parts from crawling actions in the knowledge base for
other Web application types of the same general category (e.g., bulletin boards). Any successful relaxed
expression will be still tested with a few more pages of the same Web application level.

When a Web application level is not detected then an appropriate crawling strategy cannot be initiated,
therefore the system first adapts the detection patterns. The idea here is the same as above: the
system first collects all the candidate attributes, tag names and values; and then creates all possible
combinations of relaxed expressions. For example, assume that the candidate set of attributes and values
are: @class=“post”, @id=forumlist, @class=“bloglist” with candidate set of tag names article, div, etc.
The set of relaxed expression will be generated by trying out each possible combination:

• //div[contains(@class,“post”)]
• //div[contains(@id,“forumlist”)]
• //div[contains(@class,“bloglist”)]

and similarly for other tag names. If the system detects the Web application with any relaxed expression
then the system will apply the crawling actions adaptation as described above.

The AAH has reduced bandwidth, time, and storage (by requiring fewer HTTP requests for
known Web applications, avoiding duplicates) using limited computational resources in the process.
Application-aware crawling also helps adding semantic information to the ARCOMEM database.
More details about the functioning and independent evaluation of the AAH are provided in [49,50].

4.2. Online Analysis

Within the online analysis, several modules analyze crawled Web objects in order to guide the crawler.
The purpose of this process is to provide scores for detected URLs. These scores are used for guiding the
crawler in order to obtain a focused crawl with respect to the intelligent crawl definition (ICD). The main
modules used within the online analysis are the AAH, the GATE platform for text analysis [51], and a
prioritization module. The actual online processing consists of three phases which are displayed in
Figure 3; within Figure 2 these phases are related to the connections between the online processing and
the crawler.

(1) The AAH performs preprocessing steps on the crawled Web pages;

Future Internet 2014, 6 527

(2) Online analysis modules run on relevant document parts;
(3) The output of online analysis modules is aggregated and a score for each URL is provided.

Figure 3. Interaction of online analysis modules.

A more detailed description of the these steps is provided in the remainder of this section.
In the first phase we run the AAH on the Web page to detect regions of interest in the document

and discard irrelevant parts. A detailed description of the functions provided by the AAH is given in
Section 4.1. The input document is split into one or more document parts. Each document part is
processed separately from now on.

In the second phase the online analysis modules are run on the content of the document part. Currently
we use textual analysis modules using GATE, a URL scoring module using URL patterns and a simple
spam link filter using a black list. Additional modules can be added easily. The textual analysis module
performs basic NLP pre-processing on the text and allows the extraction of relevant entities.

The version of GATE used within the Online Analysis is a lightweight version of GATE since the
performance and the processing time needs to be as fast as possible. The tasks carried out by the
GATE component comprise basic linguistic processing steps, language identification and Named Entity
Recognition (NER). In contrast to the use of the basic GATE functions which are needed to create word
vectors describing the crawled objects, the use of the NER module is optional. With the NER module
disabled the processing time of a Web document was reduced by about 70%. Based on these observations
we disabled the NER module in the online phase for most crawls and moved this part to the offline
analysis, where performance aspects are not as critical as during the online phase. Using the extracted
keywords and the given crawl specification we calculate a score based on the cosine similarity of the
term vectors. The matching is run at several granularities: whole document, paragraph around anchor,
and only anchor text. This allows us to boost link anchors that are closer to keyword or entity matches.

Each analysis module can produce a score for the current document and one for each out-link.
Some analysis modules (e.g., the URL analyzers) omit the document score, while others can only provide
document scores (e.g., the text analysis). In the latter case the document score is propagated to each
out-link contained in the analyzed document.

Future Internet 2014, 6 528

The final phase of the online analysis is the priority aggregation: The scores provided by the individual
analysis modules are aggregated into one final score for each out-link. Here we use a weighted average
over the individual scores using weights provided by the users.

4.3. Large-Scale Crawler

The large-scale crawler is a distributed crawler, implemented by the Internet Memory Foundation
(IMF). It retrieves content from the Web and stores it in WARC files, that can optionally be loaded into
an HBase repository. Its main initial aim was scalability: crawling at a fast rate from the start and slowing
down as little as possible as the amount of visited URLs grows to billions, all while observing politeness
conventions (rate regulation, robots.txt compliance, etc.). This objective is achieved by incorporating
recent developments in data structures and design options for crawlers [15,16]. It ran a crawl on 19 virtual
machines with 8 cores and 32 GiB of RAM each for three weeks. The rate was kept over 2000 HTTP
requests per second for the whole duration of the crawl for a total of close to four billion URLs crawled.

The crawler does not require distributing a static node list to all cluster instances nor does it require
external utilities to copy lists of URLs as they get discovered. It also detects nodes joining or leaving the
cluster and changes the URL distribution mapping to account changes without any manual intervention.

Figure 4 depicts the main processes on each cluster node. The rectangles depict many processes with
the same function. The ovals represent individual processes or subsystems made of many processes.

Figure 4. Crawler architecture.

crawl(URLs for a PLD)

URL store Fetcher controller
get_next_URL_batch()

Distribution

enqueue(URLs)

distribute(URLs)

http_get(URL)

analysis(content)

write(resource)

fetcher PLD 0

fetcher PLD 1

fetcher PLD n

HTTP client 0

URL extraction 0

WARC writer 0

The fetcher controller is in charge of spawning fetchers, limited to spawning as many as is allowed
by the configuration (mainly to respect memory constraints) and by the availability of URLs in the
URL store. It asks the URL store for a batch of URLs all belonging to the same pay level domain
(PLD, approximated by searching for the longest applicable public suffix and adding one more level),
resolves the domain name to an IP address and ensures no other fetcher in the entire cluster is crawling
this IP address. It then spawns a fetcher and passes it the URL batch. The fetcher gets the robots.txt file
and starts crawling all the allowed URLs, respecting the required delay between each fetch.

For each resource, three main steps are performed:

• Fetching (HTTP request);
• Analyzing the document according to its type in search of new URLs. It may also run other

analyses which may be useful at run time; for example, language identification;

Future Internet 2014, 6 529

• Writing the content plus extracted or derived information into a WARC file (depending on the
configuration and filtering settings);

• Filtering according to the scope configuration before sending to the distribution module.

When a fetcher has processed all of its URLs, it exits and the fetcher controller will try to replace it
with a new fetcher and a fresh batch of URLs.

The distribution module maintains a consistent hashing ring that reflects the current cluster topology.
It forwards URLs to the appropriate node for them to be queued in the local URL store.

The URL distribution being based on the pay level domain, it is easy to guarantee that no more
than one fetcher in the whole cluster will be crawling a specific host at any time. However, there is no
guarantee that different pay level domains are not mapped to the same IP address. To ensure rate control
for IP addresses, we use a global IP address registry.

The WARC files get copied asynchronously to a specific directory in a Hadoop file system (HDFS).
A periodic import task will insert the content from the HDFS into HBase. This makes the crawler quite
independent from the storage system. In particular, the crawler can continue to work without HBase for
as long as it has available disk space.

To follow the numerous events occurring inside the crawler as tens of thousands of concurrent
processes run, a flexible system is necessary. We have implemented node-local filtering of events by
subsystem and severity, and centralized storage in a full text index that allows complex queries and
advanced graphical representations.

The IMF crawler can perform multiple crawls concurrently, supporting one URL store and a
configuration (scope functions, archival functions, etc.) for each concurrent crawl, while having a single
fetcher pool. This feature guarantees that politeness is respected across all crawls while allowing to
crawl concurrently as many domains as possible.

The latest developments are geared towards greater flexibility to add ease-of-use and “archive quality”
to the crawler’s scalability.

The large-scale crawler supports HTTPS, can stream large files, retries on server failures, detects
the real MIME type and language of documents, extracts many metadata from HTML pages (such as
outlinks with type, anchor text, etc.). It has a fast C implementation of a comprehensive and configurable
URL canonicalization. It provides advanced scoping functions that can be combined at will, allowing,
for instance, to make decisions based on the language of a page or the whole path that led to it. It also
employs a fully-fledged and extensible per-domain configuration framework with parameters including
budget, minimum and maximum delay between two fetches. Crawler fetchers subscribe to updates of
parameter values and use the new configuration immediately. It detects traps by analyzing URLs and
checking for similar content.

4.4. Adaptive Heritrix

In addition to the large-scale crawler developed by IMF, we have also investigated to what extent
Heritrix, a widely-used open source crawler [14], can be adapted to ARCOMEM’s crawling architecture.
Heritrix implements a typical centralized crawling process, where a URL is prioritized only when it is
added to the frontier. In order to adapt Heritrix to the needs of ARCOMEM, we have implemented

Future Internet 2014, 6 530

a frontier that supports updating the priorities of already scheduled URLs and receiving scored URLs
from external processes, possibly running on different servers. As a result, Heritrix can be used as
a fetching service for selective Web harvesting. Overall, we have extended Heritrix with a range of
functionalities, regarding the storing of crawled content, the extraction of anchor text with links, etc.
All the modifications are available as open source software in the releases of the ARCOMEM project.
In this article we focus on the two main features mentioned above.

The default frontier of Heritrix employs a Berkeley DB backed hash table for storing URLs, typically
grouped according to the domain or host they belong to. The key of a URL’s record in the frontier is
computed based on its domain, a flag indicating whether the URL should be crawled immediately, its
priority (or precedence in Heritrix terminology), and a counter, which increases for every URL that is
inserted in the frontier (Figure 5). The frontier implementation provides a next method for obtaining
the next URL to crawl from a given domain or host, but there is no method to update the priority of an
already scheduled URL.

Figure 5. The structure of the key corresponding to an entry of a URL scheduled for crawling
in the default frontier of Heritrix.

Class Key
Scheduling
Directive

Precedence Ordinal

k bytes 1 byte 1 byte 6 bytes

To overcome this limitation, we have implemented a frontier that extends the default frontier of
Heritrix, adding a hash table that maps a URL already scheduled to the key with which it was scheduled.
When we need to update the priority of a URL already scheduled, we use this hash table to locate the
corresponding record from the frontier, update its priority, recalculate a key and insert it in the frontier
data structure at a new position. The fact that Heritrix employs an increasing counter to calculate the key
for each URL ensures that there are no collisions.

Figure 6 shows as an example the state of the frontier during a crawl for a domain example.com, where
there are three URLs queued for crawling. The first one is flagged for immediate downloading and has a
priority of 64, while the other two URLs have equal priority of 48. Upon an update of the priority of the
URL http://example.com/copyright.html from 48 to 32, the order of the two URLs is reversed, as shown
in Figure 7.

Figure 6. Example of Adaptive Heritrix frontier data structures and URL index.

http://example.com/index.html

http://example.com/copyright.html

http://example.com/products.html

example.com | 0 | 64 | 3

example.com | 3 | 48 | 5

example.com | 3 | 48 | 6

example.com | 0 | 64 | 3

example.com | 3 | 48 | 5

example.com | 3 | 48 | 6

example.com | 0 | 0 | 0

CrawllURI http://example.com/index.html

CrawlURI http://example.com/copyright.html

CrawlURI http://example.com/products.html

Future Internet 2014, 6 531

Figure 7. Example of updating the priority of a URL in the frontier of Adaptive Heritrix.

http://example.com/index.html

http://example.com/copyright.html

http://example.com/products.html

example.com | 0 | 64 | 3

example.com | 3 | 48 | 5

example.com | 3 | 32 | 6

example.com | 0 | 64 | 3

example.com | 3 | 32 | 6

example.com | 3 | 48 | 5

example.com | 0 | 0 | 0

CrawllURI http://example.com/index.html

CrawlURI http://example.com/copyright.html

CrawlURI http://example.com/products.html

In the frontier we have developed, when a URL u is scheduled for crawling, first we have to check
whether the hash table mapping URLs to entries in the frontier contains an entry for u. If u is found, then
we update the priority, otherwise we need to check whether u has already been crawled.

The second feature we discuss enables Heritrix to receive prioritized URLs from other processes.
Heritrix provides an action directory, where processes having access to the same filesystem can write files
with seeds or URLs to be crawled. In order to fit Heritrix into the ARCOMEM crawling architecture and
receive URLs with priority scores from the online analysis phase, we have implemented a Web service
which receives scored URLs in an ARCOMEM-specific JSON format. In the simplest case, the required
information is an identifier for the crawl, the URL, a score in the range [0, 1], and optionally a flag
indicating whether this URL should be blacklisted, i.e., not crawled at all. The developed Web service
enables Heritrix to receive links from any external process or even from other instances of Heritrix,
facilitating the distributed operation of the crawler. The URL score is transformed from the range [0, 1]

to an integer, as expected by Heritrix.

5. Evaluation

Since the ARCOMEM crawling architecture departs from the standard crawling architectures [8],
it is important to evaluate its impact on the effectiveness of a crawler. In this section we first evaluate
how adaptive and batch prioritization affects the performance of a crawler based on a set of simulation
experiments. Next, we compare a crawl performed by using the ARCOMEM crawling architecture to a
crawl performed by using the standard Heritrix crawler.

5.1. Adaptive and Batch Prioritization

We assume a baseline crawler implementing a best-first crawling strategy. We represent the topic
of the crawl with a topic vector, which is defined as follows. For each seed Web page, we download
its content and we create a term vector from it. The topic vector corresponds to the vector sum of
the seed page term vectors. We assume that URLs are prioritized according to their similarity to the
topic vector. More specifically, the priority of a URL u is computed as the average of: (a) the cosine
similarity between the content of Web page p in which u was found and the topic vector and; (b) the
cosine similarity between the anchor text of the out-link from p to u and the topic vector.

An adaptive crawler can update the score of an already scheduled Web page using a function such
as MAX, SUM, AVG. For example, the function MAX updates the priority of an already scheduled

Future Internet 2014, 6 532

Web page if the new priority was higher than the existing one. The function LAST always updates the
score to the most recently computed one and the function FIRST is equivalent to the baseline crawler.

A crawler supporting batch prioritization schedules links for crawling only after having downloaded
a batch of Web pages. In such a case, a URL can be discovered in many Web pages, so the cosine
similarities are computed between the topic vector and the sum of the vectors of Web pages in which the
URL was found, or the sum of the anchor text vectors associated with links pointing to the URL. In this
setting, we also simulate a crawler that fetches the k pages with the highest priority from each domain,
instead of fetching just one Web page with the highest priority.

To evaluate the focused crawler architectures, we perform simulated crawls on datasets created with
three topics of DMOZ. We create three random samples of 20 seeds for each of the topics and the results
we obtain for each configuration are the average of 9 simulations. For each set of seeds, we simulate
a crawl of 10,000 Web pages. The topic vector we use to compute similarities between each topic and
the crawled Web pages corresponds to the vector sum of the seed term vectors. For the evaluation of the
results, we employ three measures: (a) harvest ratio, which we define as the ratio of Web pages whose
cosine similarity with the topic vector is greater than 0.333 over all crawled Web pages; (b) average
similarity of crawled pages; and (c) fraction of DMOZ subtopics with at least one crawled page.

Table 1 shows the evaluation results for adaptive prioritization with different priority update functions.
The highest harvest ratio is achieved with the AVG function, while LAST achieves the highest fraction
of DMOZ subtopics.

Table 1. Results of simulated adaptive crawls.

Update Function Harvest Ratio Average Similarity DMOZ Topics

FIRST 0.3317 0.2945 0.4979
AVG 0.3609 0.3024 0.5779
MAX 0.3388 0.2967 0.5270
SUM 0.2679 0.2759 0.4650
LAST 0.3404 0.2961 0.5985

We also consider an additional parameter related to how the simulated crawler schedules links to
crawl. For each queue, which corresponds to a domain, the crawler selects the bl URLs with the highest
priority to crawl. In all previous experiments, bl = 1, meaning that each time the crawler selects the
URL with the highest priority. For efficiency reasons, crawlers use higher values for the parameter bl.
In the case of Heritrix, bl corresponds to the parameter balance per queue.

In our experiments, we test the values bl = 1 and bl = 5. The evaluation results for batch priority
updating are shown in Table 2. We can observe that when increasing the value of bl, the effectiveness of
the crawler drops, both in the case of a baseline crawler and an adaptive crawler (first 4 rows in Table 2).
However, the combination of a higher bl value with batch updating performs better than an adaptive
crawler with bl = 5 (rows 4 and 6 in Table 2).

Future Internet 2014, 6 533

Table 2. Results from simulated crawls with and without batch priority updating.

Batch bl Update Function Harvest Ratio Average Similarity DMOZ Topics

No 1 FIRST 0.3317 0.2945 0.4979
No 5 FIRST 0.2948 0.2819 0.4677
No 1 AVG 0.3609 0.3024 0.5779
No 5 AVG 0.3200 0.2897 0.5420
Yes 1 AVG 0.3556 0.3013 0.5260
Yes 5 AVG 0.3347 0.2952 0.5176

5.2. Comparison of ARCOMEM Versus Standard Crawl

For evaluating the quality of the crawls in terms of how focused the collected documents are,
we conducted a series of experiments. The main task of these experiments is to give an overview of
the number of the crawled documents match the keywords given by the ICD, and how similar the textual
content of the crawled documents is compared to the seed documents. Since there is no ground truth
for the actual relevance of a document we have investigated some alternatives on how to measure the
relevance of a document with respect to the given crawl definition. The dataset used for the experiment
consists of two different crawls in the financial domain. One crawl was performed using the described
ARCOMEM architecture while the other crawl is a standard Heritrix crawl.

The results we are presenting in this section are based on the document score generated by the Solr
scoring module [52]. This score is computed as follows. For each crawl, we create an inverted index
of the crawled documents. Next, we form a query with the keywords provided by the ICD, or the most
representative keywords from the textual content of the seed documents. The idea of these settings is to
find documents with similar textual content to the ICD keywords or to the content of the seed documents.
We assume that the documents matching the query are relevant and that their relevance is represented by
their similarity to the query, or in other words, their retrieval status value (RSV).

Since the standard Solr scoring is based on TF/IDF, the whole document collection is taken into
account for normalization. One drawback of this method may arise if all analyzed documents contain
the relevant keywords. The IDF score which is used for normalization will be relatively low if many
documents of the collection contain these words, and due to this, relevant documents may get a lower
similarity score. In order to deal with this factor we checked how many of the documents contained
our keywords. The results are shown in Table 3. The ARCOMEM crawl consist of 234,749 documents
and the Heritrix Crawl contained 366,806 documents. In order to make both crawls comparable we
analyzed the percentage of documents containing keywords from the ICD. The results show that most
of the keywords do not appear inside most documents which allows us to use a TF/IDF based scoring
approach. It becomes also visible that the percentage of occurrences of the keywords from the ICD in
the crawled documents is in nearly all cases higher when crawling with the ARCOMEM framework than
when crawling with Heritrix.

Future Internet 2014, 6 534

Table 3. Percentage of crawled documents containing keywords from ICD.

Keyword ARCOMEM Heritrix

Antonis Samaras 0.0175 0.0052
European Union 0.6011 0.4346

EU 1.7870 1.8986
financial crisis 0.8443 0.3645

Eurozone 0.3157 0.1238
bailouts 0.0826 0.0393
austerity 0.3838 0.1638
measures 1.4880 0.7993
strategy 1.9123 0.9362
growth 3.9319 1.9752
public 6.7357 3.5990

investments 1.3406 0.5545

The results of the experiments to assess the quality of the ARCOMEM and Heritrix crawls are shown
in Tables 4 and 5, respectively. We compared four different settings for describing what makes a
document relevant. These settings differ in how the terms are selected and the number of terms that
are used for calculating the similarity score of crawled documents to the topic of the crawl. For the
experiment in the first row (ICD), we use the terms from the ICD. For the experiments in the last three
rows, we choose the terms based on their TF/IDF value for the seed documents; maxQt = 10 indicates
that the 10 most representative keywords are taken into account, which gives a very narrow definition
of relevance. Additionally we used 50 and 100 words giving us a broader definition of relevance, since
more words are considered to be important.

Table 4. Statistics on ARCOMEM Crawl.

Ground Truth Relevant Documents (%) Average Similarity Maximum Similarity Standard Deviation

ICD 14.29 0.0178 0.8440 0.0426
Seeds maxQt = 10 10.81 0.0179 0.4830 0.0263
Seeds maxQt = 50 44.06 0.0049 0.4299 0.0149

Seeds maxQt = 100 48.63 0.0060 0.5279 0.0172

Table 5. Statistics on Heritrix Crawl.

Ground Truth Relevant Documents (%) Average Similarity Maximum Similarity Standard Deviation

ICD 7.61 0.0196 0.7580 0.0440
Seeds maxQt = 10 6.14 0.0175 0.2957 0.0264
Seeds maxQt = 50 56.26 0.0026 0.3401 0.0114

Seeds maxQt = 100 59.13 0.0021 0.3122 0.0099

When comparing the results of the two crawls we see some obvious differences. The maximum
similarity score per document was always the highest inside the ARCOMEM crawl, no matter which

Future Internet 2014, 6 535

ground truth was chosen. For the first two setups, with a limited number of relevant keywords, the
percentage of relevant documents was much higher inside the ARCOMEM crawl; when many different
keywords are taken into account this changes. In contrast to that, the average similarity of the documents
was higher for the Heritrix crawl when only few keywords are considered. This can be explained by
looking at the absolute number of relevant documents for the different setups. The focused crawler
found many more documents related to the small set of keywords. As a result, the average relevance has
dropped, since this is calculated based only on the relevant documents.

Beside the results describing the relevance of all the crawled documents, we also analyzed how the
relevance evolves over time. Figure 8 shows how the relevance of the crawled documents evolves over
time. The relative relevance is calculated using the average similarity over 1000 crawled documents and
dividing this value by the maximum of the averages.

Figure 8. Focused (ARCOMEM) and unfocused (Heritrix) crawling over time.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

R
e
la
ti
ve
 R
e
le
va
n
ce

Focused Crawling

Unfocused Crawling

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

R
e
la
ti
ve
 R
e
le
va
n
ce

Crawled Docs x 1000

Focused Crawling

Unfocused Crawling

We see that the relevance of the crawled documents exhibits large fluctuations during the crawl.
While the Heritrix crawl does not show a certain tendency over the crawl, we see that the relative
relevance of the documents of the ARCOMEM crawl increases up to the maximum after around
34,000 documents and then drops. Overall the relevance of the ARCOMEM based crawl was higher
for most of the time.

Since one of the ideas of the ARCOMEM architecture is to use social networks to get additional
content for the crawl we also used the described methods for analyzing the quality of links posted within
Twitter. For this experiment we collected a total of 14,703 tweets related to our topic, out of which
7677 contained at least one URL. The content of these URLs was crawled and indexed in the same way
as we did it with the standard Heritrix and ARCOMEM crawl. Overall we performed this experiment
on a set of 2.2 million crawled documents. The overall number of documents was much larger, but for
this experiment we only took documents with textual content into account. Table 6 shows some basic
statistics on the crawl.

Future Internet 2014, 6 536

Table 6. Statistics on Twitter based crawl.

Ground Truth Relevant Documents (%) Average Similarity Maximum Similarity Standard Deviation

ICD 8.16 0.2435 2.1465 0.2299
Seeds maxQt = 10 19.87 0.0348 1.7057 0.0805
Seeds maxQt = 50 58.51 0.0180 1.5738 0.0489

Seeds maxQt = 100 66.67 0.0193 1.6462 0.0493

We can see that the numbers for the percentage of relevant documents are comparable to the Heritrix
and ARCOMEM crawls, except the number of relevant documents for the top 10 words from the seeds
are much higher with 19%. The numbers for the average relevance and maximum relevance are not
directly comparable with the results from the two other crawls because this crawl was stored in a different
index and due to that the TF/IDF values are calculated based on different corpora. Nevertheless we can
still see some parallels between the crawls: the average relevance is still the highest for documents
related to the ICD and relative order of the other values is also comparable to the previous crawls.

Figure 9 shows the evolution of the relative relevance of the crawled documents based on the 50 most
representative terms from the seed set. Compared to the two previous crawls we cannot see the strong
tendency of a dropping relevance over time.

Figure 9. Twitter based crawl over time.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

R
e
la
ti
ve
 R
e
le
va
n
ce

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

5
1
4

5
4
1

5
6
8

5
9
5

6
2
2

6
4
9

6
7
6

7
0
3

7
3
0

7
5
7

7
8
4

8
1
1

8
3
8

8
6
5

8
9
2

9
1
9

9
4
6

9
7
3

1
0
0
0

1
0
2
7

1
0
5
4

1
0
8
1

1
1
0
8

1
1
3
5

1
1
6
2

1
1
8
9

1
2
1
6

1
2
4
3

1
2
7
0

R
e
la
ti
ve
 R
e
le
va
n
ce

Crawled Docs x 1000

6. Conclusions

The scale of the Web, the volatility of information found in it, as well as the emergence of social
media, require a shift in the way Web archiving is performed. Towards this goal, the ARCOMEM project
has developed a scalable and effective framework that allows archivists to leverage social media and
guide crawlers to collect both relevant and important information for preservation and future reference.

In this article, we have presented ARCOMEM’s crawling architecture, providing a detailed
description of its main modules for extracting structured information from Web applications and
prioritizing the URLs to be crawled. We have also outlined the main features of a large-scale distributed

Future Internet 2014, 6 537

crawler, which can collect the content from billions of URLs while maintaining a high download rate.
The architecture we have described enables us to use either the large-scale crawler or an enhanced version
of Heritrix, for which we have described the required modifications we have implemented to support the
adaptive prioritization of URLs and the scheduling of URLs from remote processes.

Our experimental results show that the adaptive and batch prioritization, which are employed in the
proposed crawling architecture, are effective in acquiring relevant content. When comparing the quality
of a crawl performed with the ARCOMEM architecture against a crawl performed with Heritrix, we have
seen that the ARCOMEM crawler has downloaded earlier more relevant content. Overall, the proposed
crawling architecture is both extensible, by adding new modules to expand the analysis, and scalable,
offering a new approach to crawling content for Web archiving.

Acknowledgments

This work was funded by the European Commission under grant agreement No. 270239 (ARCOMEM).

Author Contributions

P.Se. has contributed to Section 1. V.P. has contributed to Section 2. T.R. has contributed to Section 3.
M.F. and P.Se. have contributed to Section 4.1. P.Si. has contributed to Section 4.2. J.M. and F.C. have
contributed to Section 4.3. Y.S. and V.P. have contributed to Section 4.4. Finally, P.Si. and V.P. have
contributed to Section 5.

Conflicts of Interest

Thomas Risse is co-editor of the special issue on Archiving Community Memories.

References

1. Koehler, W. A longitudinal study of Web pages continued: A consideration of document
persistence. Inf. Res. 2004, 9, 174. Available online: http://www.informationr.net/ir/9-2/paper174.html

(accessed on 10 April 2014).
2. Historical Data Not Working. Available online: https://dev.twitter.com/discussions/2483 (accessed

on 10 April 2014).
3. Masanès, J. Web Archiving; Springer-Verlag: Secaucus, NJ, USA, 2006.
4. Sigurðsson, K. Incremental crawling with Heritrix. In Proceedings of the 5th International Web

Archiving Workshop (IWAW’05), Vienna, Austria, 22–23 September 2005.
5. ARCOMEM: Archiving Communities Memories. Available online: http://www.arcomem.eu/

(accessed on 10 April 2014).
6. Risse, T.; Dietze, S.; Peters, W.; Doka, K.; Stavrakas, Y.; Senellart, P. Exploiting the Social and

Semantic Web for Guided Web Archiving. In Theory and Practice of Digital Libraries; Zaphiris, P.,
Buchanan, G., Rasmussen, E., Loizides, F., Eds.; Springer: Berlin/Heidelberg, Germany 2012;
Volume 7489, pp. 426–432.

Future Internet 2014, 6 538

7. Plachouras, V.; Carpentier, F.; Masanés, J.; Risse, T.; Senellart, P.; Siehndel, P.; Stavrakas, Y. An
Architecture for Selective Web Harvesting: The Use Case of Heritrix. In Proceedings of the 1st
International Workshop on Archiving Community Memories, Lisbon, Portugal, 6 September 2013.

8. Olston, C.; Najork, M. Web Crawling. Found. Trends Inf. Retr. 2010, 4, 175–246.
9. Brin, S.; Page, L. The Anatomy of a Large-Scale Hypertextual Web Search Engine. In Proceedings

of the 7th International Conference on World Wide Web, Brisbane, Australia, 14–18 April 1998;
Elsevier Science Publishers: Amsterdam, The Netherlands, 1998; pp. 107–117.

10. Burner, M. Crawling towards eternity: Building an archive of the World Wide Web. Available
online: http://people.apache.org/ jim/NewArchitect/webtech/1997/05/burner/index.html (accessed
on 10 April 2014).

11. Heydon, A.; Najork, M. Mercator: A Scalable, Extensible Web Crawler. World Wide Web 1999,
2, 219–229.

12. Najork, M.; Heydon, A. High-Performance Web Crawling. In Handbook of Massive Data Sets;
Kluwer Academic Publishers: Norwell, MA, USA, 2002; pp. 25–45.

13. Shkapenyuk, V.; Suel, T. Design and implementation of a high-performance distributed Web
crawler. In Proceedings of the 18th International Conference on Data Engineering, San Jose, CA,
USA, 26 February–1 March 2002; pp. 357–368.

14. Mohr, G.; Kimpton, M.; Stack, M.; Ranitovic, I. Introduction to heritrix, an archival quality web
crawler. In Proceedings of the 4th International Web Archiving Workshop (IWAW’04), Bath, UK,
16 September 2004.

15. Boldi, P.; Codenotti, B.; Santini, M.; Vigna, S. UbiCrawler: A Scalable Fully Distributed Web
Crawler. Softw. Pract. Exp. 2004, 34, 711–726.

16. Lee, H.T.; Leonard, D.; Wang, X.; Loguinov, D. IRLbot: Scaling to 6 Billion Pages and Beyond.
ACM Trans. Web 2009, 3, 8:1–8:34.

17. Ntoulas, A.; Cho, J.; Olston, C. What’s New on the Web?: The Evolution of the Web from a
Search Engine Perspective. In Proceedings of the 13th International Conference on World Wide
Web (WWW ’04), New York, NY, USA, 17–22 May 2004; pp. 1–12.

18. Fetterly, D.; Manasse, M.; Najork, M.; Wiener, J. A Large-scale Study of the Evolution of Web
Pages. In Proceedings of the 12th International Conference on World Wide Web (WWW ’03),
Budapest, Hungary, 20–24 May 2003; pp. 669–678.

19. Cho, J.; Garcia-Molina, H. The Evolution of the Web and Implications for an Incremental Crawler.
In Proceedings of the 26th International Conference on Very Large Data Bases (VLDB ’00), Cairo,
Egypt, 10–14 September 2000; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2000;
pp. 200–209.

20. Olston, C.; Pandey, S. Recrawl Scheduling Based on Information Longevity. In Proceedings of
the 17th International Conference on World Wide Web (WWW ’08), Beijing, China, 21–25 April
2008; ACM: New York, NY, USA, 2008; pp. 437–446.

21. Pandey, S.; Dhamdhere, K.; Olston, C. WIC: A General-purpose Algorithm for Monitoring Web
Information Sources. In Proceedings of the 30th International Conference on Very Large Data
Bases, (VLDB ’04), Toronto, Canada, 29 August–3 September 2004; pp. 360–371.

Future Internet 2014, 6 539

22. Gouriten, G.; Maniu, S.; Senellart, P. Scalable, Generic, and Adaptive Systems for Focused
Crawling. In Proceedings of the 25th ACM Conference on Hypertext and Social Media, Santiago,
Chile, 1–4 September 2014.

23. Tang, T.T.; Hawking, D.; Craswell, N.; Griffiths, K. Focused Crawling for Both Topical
Relevance and Quality of Medical Information. In Proceedings of the 14th ACM International
Conference on Information and Knowledge Management (CIKM ’05), Bremen, Germany,
31 October–5 November 2005; pp. 147–154.

24. Menczer, F.; Pant, G.; Srinivasan, P.; Ruiz, M.E. Evaluating Topic-driven Web Crawlers.
In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’01), New Orleans, LA, USA, 9–12 September 2001;
pp. 241–249.

25. Chakrabarti, S.; van den Berg, M.; Dom, B. Focused crawling: A new approach to topic-specific
Web resource discovery. Comput. Netw. 1999, 31, 1623–1640.

26. Halkidi, M.; Nguyen, B.; Varlamis, I.; Vazirgiannis, M. THESUS: Organizing Web document
collections based on link semantics. VLDB J. 2003, 12, 320–332.

27. Ehrig, M.; Maedche, A. Ontology-focused Crawling of Web Documents. In Proceedings
of the 2003 ACM Symposium on Applied Computing (SAC ’03), Melbourne, FL, USA,
9–12 March 2003; pp. 1174–1178.

28. Ahlers, D.; Boll, S. Adaptive Geospatially Focused Crawling. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management (CIKM ’09), Hong Kong, China,
2–6 November 2009; pp. 445–454.

29. Gao, W.; Lee, H.C.; Miao, Y. Geographically Focused Collaborative Crawling. In Proceedings
of the 15th International Conference on World Wide Web (WWW ’06), Edinburgh, UK,
23–26 May 2006; pp. 287–296.

30. De Bra, P.M.E.; Post, R.D.J. Information Retrieval in the World-Wide Web: Making Client-based
Searching Feasible. In Proceedings of the 1st Conference on World-Wide Web, Geneva,
Switzerland, 25–27 May 1994; Elsevier Science Publishers B. V.: Amsterdam, The Netherlands,
1994; pp. 183–192.

31. Hersovici, M.; Jacovi, M.; Maarek, Y.S.; Pelleg, D.; Shtalhaim, M.; Ur, S. The shark-search
algorithm. An application: tailored Web site mapping. Comput. Netw. ISDN Syst. 1998, 30,
317–326.

32. Almpanidis, G.; Kotropoulos, C.; Pitas, I. Combining Text and Link Analysis for Focused
crawling—An Application for Vertical Search Engines. Inf. Syst. 2007, 32, 886–908.

33. Diligenti, M.; Coetzee, F.; Lawrence, S.; Giles, C.L.; Gori, M. Focused Crawling Using
Context Graphs. In Proceedings of the 26th International Conference on Very Large Data Bases
(VLDB ’00); Cairo, Egypt, 10–14 September 2000; Morgan Kaufmann Publishers Inc.: San
Francisco, CA, USA, 2000; pp. 527–534.

34. Liu, H.; Janssen, J.; Milios, E. Using HMM to Learn User Browsing Patterns for Focused Web
Crawling. Data Knowl. Eng. 2006, 59, 270–291.

Future Internet 2014, 6 540

35. Partalas, I.; Paliouras, G.; Vlahavas, I. Reinforcement Learning with Classifier Selection for
Focused Crawling. In Proceedings of the 2008 Conference on Artificial Intelligence, Chicago,
IL, USA, 13–17 July 2008; IOS Press: Amsterdam, The Netherlands, 2008; pp. 759–760.

36. Johnson, J.; Tsioutsiouliklis, K.; Giles, C.L. Evolving Strategies for Focused Web Crawling.
In Proceedings of the 20th International Conference on Machine Learning, Washington, DC, USA,
21–24 August 2003; Fawcett, T., Mishra, N., Eds.; AAAI Press: 2003; pp. 298–305.

37. Zheng, H.T.; Kang, B.Y.; Kim, H.G. An ontology-based approach to learnable focused crawling.
Inf. Sci. 2008, 178, 4512–4522.

38. Bergman, M.K. White paper: the Deep Web: surfacing Hidden Value. J. Electron. Publ. 2001,
7(1). Available online: http://dx.doi.org/10.3998/3336451.0007.104 (accessed on 10 April 2014).

39. Barbosa, L.; Freire, J. Siphoning Hidden-Web Data through Keyword-Based Interfaces.
In Proceedings of the 19th Brazilian Symposium on Databases, Brasilia, Brazil, 3–7 October 2004;
pp. 309–321.

40. Madhavan, J.; Ko, D.; Kot, L.; Ganapathy, V.; Rasmussen, A.; Halevy, A. Google’s Deep Web
crawl. Proc. VLDB Endow. 2008, 1, 1241–1252.

41. Arvidson, A.; Persson, K.; Mannerheim, J. The Kulturarw3 Project—The Royal Swedish Web
Archiw3e—An example of “complete” collection of web pages. In Proceedings of the 66th IFLA
Council and General Conference, Jerusalem, Israel, 13–18 August 2000.

42. Bailey, S.; Thompson, D. UKWAC: Building the UK’s First Public Web Archive. D-Lib
Mag. 2006, 12. Available online: http://www.dlib.org/dlib/january06/thompson/01thompson.html
(accessed on 10 April 2014).

43. Cathro, W.; Webb, C.; Whiting, J. Archiving the Web: The PANDORA Archive at the National Library

Australia. Available online: http://www.nla.gov.au/openpublish/index.php/nlasp/article/view/
1314/1600 (accessed on 10 April 2014).

44. Spaniol, M.; Denev, D.; Mazeika, A.; Weikum, G.; Senellart, P. Data Quality in Web Archiving. In
Proceedings of the 3rd Workshop on Information Credibility on the Web (WICOW ’09), Madrid,
Spain, 20–24 April 2009; pp. 19–26.

45. Denev, D.; Mazeika, A.; Spaniol, M.; Weikum, G. SHARC: Framework for Quality-conscious Web
Archiving. Proc. VLDB Endow. 2009, 2, 586–597.

46. Gomes, D.; Miranda, J.A.; Costa, M. A Survey on Web Archiving Initiatives. In Proceedings
of the 15th International Conference on Theory and Practice of Digital Libraries: Research and
Advanced Technology for Digital Libraries (TPDL’11), Berlin, Germany, 26–28 September 2011;
Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 408–420.

47. Tahmasebi, N.; Gossen, G.; Kanhabua, N.; Holzmann, H.; Risse, T. NEER: An Unsupervised
Method for Named Entity Evolution Recognition. In Proceedings of the 24th International
Conference on Computational Linguistics (COLING’ 12), Mumbai, India, 8–15 December 2012;
Kay, M., Boitet, C., Eds.; Indian Institute of Technology Bombay: Mumbai, India, 2012;
pp. 2553–2568.

Future Internet 2014, 6 541

48. Plachouras, V.; Stavrakas, Y.; Andreou, A. Assessing the Coverage of Data Collection Campaigns
on Twitter: A Case Study. In On the Move to Meaningful Internet Systems: OTM 2013 Workshops;
Demey, Y.T., Panetto, H., Eds.; Springer: Berlin/Heidelberg, Germany 2013; Volume 8186,
pp. 598–607.

49. Faheem, M.; Senellart, P. Intelligent and Adaptive Crawling of Web Applications for Web
Archiving. In Proceedings of the 13th International Conference on Web Engineering (ICWE),
Aalborg, Denmark, 8–12 July 2013; Daniel, F., Dolog, P., Li, Q., Eds.; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 7977, pp. 306–322.

50. Faheem, M.; Senellart, P. Demonstrating intelligent crawling and archiving of web applications. In
Proceedings of the 22nd ACM International Conference Information and Knowledge Management
(CIKM ’13), Burlingame, CA, USA, 27 October–1 November 2013; pp. 2481–2484.

51. Cunningham, H.; Maynard, D.; Bontcheva, K.; Tablan, V.; Aswani, N.; Roberts, I.; Gorrell, G.;
Funk, A.; Roberts, A.; Damljanovic, D.; et al. Text Processing with GATE (Version 6); Department
of Computer Science, University of Sheffield: Sheffield, UK, 15 April 2011.

52. Apache Lucene Core. Available online: http://lucene.apache.org/core/ (accessed on 10 April 2014).

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Related Work
	Web Crawling
	Focused and Deep-Web Crawling
	Web Archiving

	Crawling Architecture
	Crawling Level
	Online Processing Level
	Offline Processing Level
	Cross-Crawl Analysis Level
	Applications

	Module Description
	Application-Aware Helper
	Online Analysis
	Large-Scale Crawler
	Adaptive Heritrix

	Evaluation
	Adaptive and Batch Prioritization
	Comparison of ARCOMEM Versus Standard Crawl

	Conclusions

