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Envy, the inclination to compare rewards, can be expected to
unfold when inequalities in terms of pay-off differences are
generated in competitive societies. It is shown that increasing
levels of envy lead inevitably to a self-induced separation into a
lower and an upper class. Class stratification is Nash stable and
strict, with members of the same class receiving identical
rewards. Upper-class agents play exclusively pure strategies, all
lower-class agents the same mixed strategy. The fraction of
upper-class agents decreases progressively with larger levels of
envy, until a single upper-class agent is left. Numerical
simulations and a complete analytic treatment of a basic
reference model, the shopping trouble model, are presented. The
properties of the class-stratified society are universal and only
indirectly controllable through the underlying utility function,
which implies that class-stratified societies are intrinsically
resistant to political control. Implications for human societies are
discussed. It is pointed out that the repercussions of envy are
amplified when societies become increasingly competitive.
1. Background
Is it possible that societies separate on their own into distinct
social classes when everybody is otherwise interchangeable,
born equal? This is the question examined here. Being equal
means in a game-theoretical setting that agents have access to
the same options and pay-off functions. Starting with random
initial policies, strategies evolve according to the pay-off
received on the average. For our investigation, we assume that
three constituent features characterize the pay-off function.
Firstly, options come with a range of distinct pay-offs. Secondly,
competition for resources is present, which implies that agents
selecting the same option are penalized. Thirdly, players care
how they are doing with respect to others. We show that an
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endogenous transition to a strictly class-stratified society takes place when these three conditions

are fulfilled.
It is well established that people live not in isolation, but that social context influences memory,

cognition and risk taking in general [1–3], that it leads to accountability [4] and to group decision
making [5]. A key aspect of social context is the quest for social status [6,7], which has been modelled
using several types of status games [8,9]. Of particular relevance to our approach is the notion that
the satisfaction an individual receives from having and spending money depends not only on the
absolute level of consumption, but also on how this level compares with that of others [10]. This view
has seen widespread support from relative income theory [11,12]. Relative gauges are considered
similarly to be of relevance for the definition of poverty [13,14].

The outcome of a game may be considered fair in a social context when nobody has an incentive to
trade the reward received. For the problem of allocating multiple types of goods, which may be either
divisible or indivisible, like apples, banana and kiwis, the outcome is said to be free of envy when the
recipients are content with their bundles [15,16]. Here, we use envy in analogy to denote
the propensity to compare rewards between agents. When relative success is important it implies that
the pay-off function is functionally dependent on the outcome, the average pay-off received. A
feedback loop is such established. It is well known, e.g. from the theory of phase transitions in
physics [17], that feedback loops can lead to collective phenomena and hence to novel states. Indeed
we find that envy induces a new state, a self-induced class-stratified Nash equilibrium.

We examine here the interaction between social context and competition for scarce resources, which lies
at the core of many games. A typical example is the Hawks and Doves framework, for which the reward is
divided when both agents select the same behavioural option. In a society of agents, a range of options
yielding distinct pay-offs will be in general available. In this setting, competition may force agents to
select different strategies, for instance, to settle for the second best course of action when the option
with the highest prospective reward has already been claimed by somebody else. The outcome is a
multi-agent Nash state, forced cooperation, in which agents seemingly cooperate by avoiding each other,
but only because it pays off and not out of sheer good will. Other forms of cooperation [18], such as
reciprocal altruism [19] and indirect reciprocity [20], share this trait. A key aspect of forced cooperation
is that it is unfair in terms of reward differentials, the precondition for envy to take effect.

Forced cooperation can be argued to be a generic feature of real-world societies, both when agents are
differentiated or not. In ecology, for instance, non-uniform resource allocation is observed in competitive
population dynamics models when resources are scarce [21]. Envy has hence the potential to induce
novel societal states in which just the initial conditions, and not differences between agents per se,
determine in which class someone ends up. In previous studies, class structures have been presumed
to exist [22], or to be dependent on as-of-birth differences [8]. Clustering into distinct classes may
occur similarly for networks of agents when comparison is restricted to neighbours [23].

Outcome and input, the reward received and the structure of the pay-off function, are interdependent
when envy is present, a set-up that is typical for dynamical systems studied by complex systems theory
[24]. Key aspects of the present investigation, including in part terminology and analysis methods, are
hence based on complex systems theory. One could also ask if it would be feasible to optimize
properties of the stationary state considered desirable, such as fairness, as done within mechanism
design theory [25]. An example would be to set incentives for prosocial behaviour [26], with the overall
aim to optimize society [27]. This is a highly relevant programme. But what if the stationary state of the
society has in part universal properties that cannot be altered by changing the underlying utility
function, being independent of it? We find that this is precisely what happens when envy is relevant.

Our basic model is motivated by a shopping analogy. A clique of friends gathers for an exclusive
wine tasting, with everyone shopping beforehand. There are several wine outlets, each specialized in
a specific quality. In the wine cellars, a wide selection of vintage years are kept in storage, but only a
single bottle per year. Shopping in the same wine cellar as somebody else implies then that someone
has to be content with the second-best vintage year. At the gathering, the friends enjoy the wine,
becoming envious if somebody else made the better deal. Both extensive numerical simulation of the
shopping trouble model and an encompassing analytic treatment of the class-stratified state are
presented. An overview of the terminology used is given in §4.5.

2. Model
The shopping trouble model is defined directly in terms of strategies, which are given by the probabilities
pa(qi) that agent α selects option i. The quality qi corresponds to the numerical value associated with
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Figure 1. Forced cooperation. The shopping trouble model in the absence of envy, ɛ = 0. For κ = 0.3, M = 100 agents and
N = 100 options, the pay-offs Ea(qi) (connected by lines) obtained using evolutionary dynamics are shown. The underlying
utility function, v(qi) = 1− (1− qi)

2, has been included as a reference (black squares). Only pure strategies are played, which
implies that the rewards Ra correspond to the peaks of the respective pay-offs; compare (2.1). A total of 65 options are
selected, 30 by a single agent (red) and 35 by two agents (blue). Competition forces the agents to accept inequalities in
terms of a wide range of different rewards. (a) Two example strategies. For most qualities qi, the pay-offs Ea(qi) (red/blue
symbols) fall on top of each other. (b) All M strategies. In order to avoid overcrowding symbols are not shown.
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option i. For convenience, we consider equidistant qualities qi∈ [0, 2]. The support of a strategy is given
by the set of options for which pa(qi) . 0. A strategy is pure when the support contains a single option,
and mixed otherwise. In the model, M agents have N options to select from, where N may be either
smaller or larger than M.

The pay-off an agent receives when selecting qi is Ea
i . On average, agents receive the reward Ra,

Ra ¼
X
i

pa(qi)Ea
i and �R ¼ 1

M

X
a

Ra, (2:1)

where we have defined also the mean reward �R of all agents. For the shopping trouble model, the pay-off
Ea
i contains three terms

Ea
i ¼ v(qi)� k

X
b=a

pb(qi)þ 1 pa(qi) log
Ra

�R

� �
: (2:2)

The first term, v(qi) = 1− (1− qi)
2, is the underlying utility function; compare figure 1. Its functional form,

as an inverted parabola, is motivated by the shopping analogy. In this case, products having a bare utility
u(qi) can be acquired at a price qi in the ith shop. The bare utility should be concave, in view of the law of
diminishing utility [28], say u(qi) = a log (qi + 1). The utility entering (2.2), v(qi) = u(qi)− qi, is in this case
well approximated by an inverted parabola.

The second term in (2.2) encodes competition. A penalty κ(m− 1) is to be paid by all m agents when
these m agents decide on the same option. It is troublesome, in the shopping analogy, to buy something
in a crowded shop. Encoding competition directly in terms of the strategy, as done in (2.2), is an
adaptation of the framework used commonly for animal conflict models [29], such as the war of
attrition and all pay auctions.

The third term in (2.2) encodes the desire to compare one’s own success, the reward Ra, with
that which others receive. As a yardstick, the average reward �R has been taken, with the envy ɛ
encoding the intensity of the comparison. The log-dependency, log (Ra=�R), is consistent with the
Weber–Fechner Law, namely that the brain discounts sensory stimuli, numbers and time
logarithmically [30–32]. Equivalent logarithmic dependencies have been found for the production of
data [33], and decision-induced chart rankings [34]. For small relative deviations from the mean, when



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200411
4
dRa ¼ (Ra � �R)=�R � 1, the envy term becomes linear, log (Ra=�R) � dRa. Envy is then directly

proportional to Ra � �R, a functionality that is equivalently at the basis of status seeking games [35].
In effect, the rationale behind the envy term is straightforward. When happy, when log (Ra=�R) . 0,
the agent reinforces the current strategy, which is encoded by pa(qi), trying to change it instead when
log (Ra=�R) , 0.

The utility function (2.2) of the shopping trouble model can be considered to encode status seeking,
albeit indirectly. Agents try to maximize utility not only in absolute, but also in relative terms, with the
envy parameter ɛ determining the relative weight of the two contributions. Outperforming others
corresponds in this interpretation to increased levels of social status. In difference to standard status
seeking games [36], for which agents follow two separate objectives, utility and status maximization,
the shopping trouble model contains only a single, combined utility. The issue of Pareto optimality
does hence not arise.

The bare formulation of the here introduced shopping trouble game, as given by (2.2), is
supplemented by the concept of migration. One postulates that agents receiving negative rewards
leave the society in search of better opportunities. Better no reward at all than to engage with
detrimental returns. Negative rewards appear for large κ and elevated densities ν =M/N of agents
per options, e.g. necessarily when M = 2N and κ > 1. For M <N, there are in contrast always Nash
equilibria for which all individual rewards are positive. Migration is induced additionally by the envy
term, as log (Ra=�R) diverges negatively for Ra ! 0. Numerically, we solved the shopping trouble
model using standard replicator dynamics [37],

pai (tþ 1) ¼ pai (t)E
a
i (t)P

j p
a
j (t)E

a
j (t)

: (2:3)

For a smooth convergence, one adds a constant offset E0 to the pay-offs on the right-hand side. The offset
helps in particular to avoid the occurrence of negative rewards, which can arise intermediately when a
time evolution scheme is discrete in time, as for (2.3). Typically, we took E0 = 20, iterating 5 × 105 times.
A defining feature of the shopping trouble model is that all agents have functionally identical pay-offs.
Only the starting strategies, which we drew from a flat distribution, differentiate between agents.
3. Results
In the absence of envy, when ɛ = 0, agents just need to compare the pay-off v(qi)− κ of options already
taken by somebody else to the ones that are still available. For κ = 0.3, the outcome is presented in
figure 1. Qualities with larger utilities are doubly taken, lower returning options on the other hand
only by a single agent. The resulting Nash state is unique. Agents avoid each other, as far as possible,
which could be interpreted as cooperation. Cooperation is, however, not voluntary, but forced by the
penalty ∼κ incurring when not cooperating. A consequence of forced cooperation is that the pay-offs
received by individual agents vary considerably. This is notable, as all players start out equal,
differing only with respect to their initial strategies.

The forced cooperating state is modified once ɛ becomes finite, retaining, however, its overall
character for moderate envy. Altogether two types of multi-agent Nash equilibria are observed.

— Forced cooperation. The distribution of rewards is continuous. Pure strategies dominate. With
increasing envy, mixed strategies become more frequent. Stable for small to intermediate ɛ.

— Class separation. The society separates strictly into an upper and a lower class. Upper-class agents play
exclusively pure strategies, all lower-class agents the identical mixed strategy. Agents belonging to
the same class receive identical rewards. The number of upper-class agents decreases
monotonically with increasing envy, towards one, the monarchy state. Stable for larger ɛ.

For an initial illustration, we concentrate on a small system, withM =N = 20, as presented in figure 2. One
observes that forced cooperation dominates for ɛ = 0.5, but with some pronounced differences to the case
ɛ = 0; see figure 1. The support of pure and mixed strategies, which develop for finite envy, overlap at
times, which induces varied levels of competition. The supports of different mixed strategies are distinct.

3.1. Endogenous class stratification
A complete self-organized reorganization of the spectrum of policies is observed with raising strength of
envy. The society of agents separates on its own into two distinct classes, an upper and a lower class.
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The pay-off functions of all agents are identical, which implies that this transition, as seen in figure 2
when going from ɛ = 0.5 to ɛ = 0.7, is a collective effect. The initial state of the system determines
uniquely where a given agent ends up. The class-stratified state has several conspicuous properties.

— Upper-class agents follow exclusively pure strategies, avoiding competition in most cases.
— A single mixed strategy develops, played by the entirety of lower-class agents. The support of the

lower-class mixed strategy covers all upper-class pure strategies.
— Only two levels of rewards are present, one for each class.

That the pay-off function Ea(qi) of the lower-class is constant on the support of the lower-class mixed strategy
is a necessary condition for an evolutionary stable strategy [38]. It would be favourable to readjust the pa(qi) if
this was not the case. It is also not surprising that all lower-class agents receive the same reward RL, given
that they play identical strategies. Highly non-trivial is, however, that the rewards of all upper-class agents
coincide. This can be proven analytically, as done in the Methods section. For RL, the expression

RL ¼ 1
1� fL
ek=1 � 1

log
ek=1 � fL
1� fL

� �
(3:1)

is exact when upper-class policies are unique, viz. if no option is taken by more than one agent, which holds
for most instances. The only free parameter in (3.1) is the fraction of lower-class agents, fL, which needs to be
determined numerically. For the Nash state shown in figure 2, one finds fL = 13/20 for ɛ= 0.7. The resulting
prediction (3.1) for the reward RL of the lower class agrees remarkably well with numerics, as seen in figure 2.
The analytic prediction for the reward of the upper-class, RU, is

RU ¼ 1
1� fLe�k=1

1� e�k=1
log

ek=1 � fL
1� fL

� �
, (3:2)

as derived in the Methods section. Again, theory and numerical simulations are in agreement.
The underlying utility v(qi) enters the theory expressions for RL and RU only implicitly, via the fraction

fL of lower-class agents, but not explicitly. The properties of class-stratified states with the same κ, ɛ and fL
are hence identical and independent of the shape of the utility function. We tested this proposition
performing simulations using a triangular utility function, v(qi) = 1− |1− qi|, finding that (3.1) and
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(3.2) hold perfectly. Class-stratification leads as a consequence to a Nash state with universal properties,
the telltale sign of a collective effect.

That upper-class agents receive identical pay-offs is an interesting aspect of universality. It is possible
because the lower-class agents adapt their strategies such that the functional dependence of v(qi) on the
qualities is exactly compensated by the competition term ∼κ. Evidence for this mechanism can be seen in
figure 2 for κ = 0.7.

The transition from forced cooperation to a stratified society is found for all system sizes. In figure 3,
we present to this end simulations for M =N = 100. Below the transition, here for κ = 0.4, one observes
that individual mixed strategies start out at the fringes of the support regions of the pure strategies.
For ɛ = 0.8, a stratified society is present, with the vast majority of agents, 80%, playing one and the
same mixed strategy. These agents form the lower-class.

3.2. Lower-class mixed strategy
When forced cooperation is present, qualities qi with high utilities v(qi) are selected without exception by
agents playing pure strategies. This is not the case for the spectrum of upper-class policies, which may
have gaps in the class-stratified state, as evident both in figures 2 and 3. At first sight, this could seem a
contradiction to Nash stability. Lower-class agents are, however, more likely to visit a quality qi not
selected by the upper-class, as can be seen in figure 2, which leads to a competition block
proportional to the competition penalty κ. It is hence not favourable for upper-class agents to switch.
The occurrence of gaps implies in particular that the Nash state is not unique.

The lower-class mixed strategy has a well-defined functional form, pmix(qi) ¼ pa(qi), in the limit fU→
0, namely

pmix(qi) ¼ 1
k(M� 1)

h
v(qi)� Ec

i

and Ec ¼ 1� 3k
2

� �2=3 M� 1
N

� �2=3

,

9>>>=
>>>;

(3:3)
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an expression derived in the Methods section. The mixed strategy given by (3.3) is clearly non-universal,
being linear in the utility v(qi), in contrast to the lower- and upper-class rewards. The expression for the
reward Ec is specific to the utility function v(qi) = 1− (1− qi)

2, and hence equally non-universal.
The simulations presented in figure 4 for M =N = 20 and M =N = 100 show that (3.3) approximates

the data well when the system is large. Of interest are in particular the dips in the data for the mixed
strategy, which occur for qualities qi selected by upper-class agents. These dips are essential for
attaining universal RL and RU, as laid out in the Methods section. Note that pmix (qi) is normalized,P

i pmix(qi) ¼ 1, when the qualities are dense.
3.3. Monarchy versus communism
We performed numerical simulations for a wide range of parameters, mostly for N = 100 options. In order
to check for finite-size effects, we compared selected parameter settings with simulations for N = 500,
finding only minor effects. In figure 5, representative data for κ = 0.3 and M =N = 100 are presented.
Varying the filling fraction M/N and/or κ shifts the locus of the transition, leading otherwise only to
quantitative changes. We define with Npure the number of agents playing pure strategies and with
Nmix the number of distinct mixed strategies.
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For small ɛ, the fraction of mixed strategies Nmix/M raises monotonically, as shown in figure 5,

attaining a maximum when the transition from forced cooperation to class stratification starts to take
place, here at ɛ≈ 0.6. The width of the transition is finite, in the sense that either state may be reached
when starting from random initial conditions. As a test, we ran twenty independent simulations for
κ = 0.3 and ɛ = 0.65, finding that about half led to forced cooperation and half to class separation.
Overall, at least 10 random initial strategies have been used for the individual data points presented
in figure 5. The transition to class stratification is completed when the number of mixed strategies
drops to one, which is the case for κ = 0.3 for ɛ≈ 0.75.

The fraction of agents Npure/M playing pure strategies decreases monotonically for all ɛ, with the
decrease accelerating in the transition region from forced cooperation to class separation. For large
values of envy, roughly for ɛ > 2.2 a monarchy state is reached. The number of upper-class agents is
now minimal, mostly just one, occasionally also two. An alternative to monarchy would be
communism, namely that the entire society of agents adopts pmix(qi), as defined by (3.3). We find
communism never to be stable, both when starting with random initial condition and when starting
close to the communist state. For the latter, we performed simulations for which the initial strategies
of all agents was pmix(qi), plus a perturbation consisting of 1% relative noise.

Included in figure 5 is an approximate analytic prediction for the fraction fU = 1− fL of upper-class
agents, which is obtained from solving

1� 3k(M� 1)
2N

� �2=3

¼ 1
1� fL
ek=1 � 1

log
ek=1 � fL
1� fL

� �
, (3:4)

self-consistently for fL. Thederivationof (3.4),which is valid in the class-separated state for large ɛ,N andM, is
given in theMethods section. The agreementwith the numerical results for the fraction of agents playingpure
strategies, which coincides with the fraction of upper-class agents, is remarkable. Of interest is in particular
the observation that the theory and numerics stay close down to the transition to forced cooperation.

3.4. Reward versus real-world income
The three terms entering the pay-off function (2.2) of the shopping trouble model are distinct in character.
The underlying utility v(qi) and the penalty arsing from competition, ∼κ, are real-world monetary pay-off
terms. Envy, the propensity to compare one’s own success with that of others, could be classified in
contrast as being a predominately psychological component. Taking this view, we define with

Ia ¼ Ra � 1 log
Ra

�R

� �X
i

�
pa(qi)

�2, (3:5)

the monetary income Ia of agent α as the average pay-off minus the envy term. In the forced cooperation
phase, the average income �I in nearly constant as a function of envy, as shown in figure 5, dropping,
however, substantially once class stratification sets in. In this respect, the society is better off at low to
moderated levels of envy. Class separation does not help the general public. Also included in figure 5
are the minimal and maximal incomes, Imin ¼ minaIa and Imax ¼ maxaIa. In the class-stratified phase,
Imin and Imax correspond, respectively, to the income of the lower and of the upper-class. Both are flat,
which implies that the drop of the mean monetary return �I with increasing envy is due to the
simultaneously occurring decrease in number of upper-class agents.

At no stage are incomes increased when envy is present in a competitive society. This result holds for
the maximal, the minimal and the mean income, as evident from the data presented in figure 5. It is also
conspicuous that the monetary returns of both the lower and the upper-class are essentially unaffected by
the value of ɛ, once class separation sets in. This result is in agreement with the observation that the
lower-class mixed strategy is well approximated by the large ɛ limit, as shown in figure 4. Note that
the reward of the upper-class diverges for ɛ→∞, in contrast to the monetary income. Of interest is
also that �I remains flat during forced cooperation, despite the fact that both Imin and Imax drop. This is
due to the ongoing reorganization of the pay-off spectrum.

3.5. Phase diagram
In figure 6, the phase diagram as a function of κ and ɛ, competition and envy, is presented. Systems with
N = 100 options and M = 50/100/150 agents have been simulated numerically. For the onset of the
transition from forced cooperation to class separation, the maximum of the number of mixed
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strategies has been taken as an indicator. The level of envy needed for the society to phase separate
decreases with increasing competition, a somewhat intuitive result. The same trend holds when
increasing the density M/N of agents per available options, which makes it more difficult to avoid
each other.

Included in figure 6 are estimates obtained by solving the self-consistency condition (3.4) for fU = 1/2.
This rough estimate for the transition to class stratification tracks the numerical results surprisingly well.
Deviations are seen in particular for larger κ.
4. Methods
The penalty term of the shopping trouble model (2.2) can be written as

X
b=a

pb(qi) ¼ M�p(qi)� pa(qi) and �p(qi) ¼ 1
M

X
b

pb(qi), (4:1)

which demonstrates that agents interact via a quality-dependent mean field, the average strategy �p(qi).
The number of terms is N− 1, which could give the impression that the shopping trouble model is
not size consistent. This is, however, not the case, as both pure and mixed strategies contribute on
average of the order of 1/N to the sum of the κ-term. For a fixed occupation density ν =M/N, the
thermodynamic limit M, N→∞ is therefore well defined. Numerically, we find that the properties of
the Nash equilibria change only in minor ways when increasing N, but retaining κ, ɛ and ν.

4.1. Theory for the class-separated state
In the shopping trouble model, agents have functionally identical pay-off functions, which implies that
a priori distinctions between agents are not present. Where an agent ends up, in the lower or in the upper-
class, depends as a consequence solely on the respective initial conditions. For our analysis of the class-
separated state, we denote with qU and q:U qualities within the support of the lower-class that are taken/
not taken by upper-class agents. ML/MU are, respectively, the number of lower/upper-class agents. We
assume that upper-class agents are forced to cooperate fully, playing distinct options. Numerically, this
holds in most cases.

Central to our considerations are the properties of evolutionary stable strategies [38], in particular that
the pay-off is constant within the support. For the mixed strategy of the lower-class, pL(qi), this implies
that the pay-off function E(qi) is identical to the reward RL,

RL ¼ v(q:U)� k [ML � 1] pL(q:U)þ 1 pL(q:U) log (RL=�R): (4:2)

Playing against an evolutionary stable strategy entails to receive the same constant pay-off [38]. Outside
the support of their own pure strategies, upper-class agents play against the lower-class and against other
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upper-class agents. For qi for which pL(qi) > 0 and for which all upper-class policies vanish, pU(qi) = 0, the

consequence is that E(qi) =RL also for upper-class agents,

RL ¼ v(q:U)� kML pL(q:U):

Numerically small deviations from can occur. The reason is that the above relation enters the evolution
equation (2.3) multiplied by pU(q:U), which vanishes in the final state. The condition, that playing against
an evolutionary stable strategy must yield the pay-off of the strategy in question, can be enforced
consequently only while pU(q:U) is still finite. This is the case only during a transition period, while
iterating towards stationarity.

Equating the two relations for RL derived so far and dividing by pL(q:U), which is positive within the
support of the lower-class, yields the universal relation

log
RL
�R

� �
¼ � k

1
and RL ¼ �R e�k=1, (4:3)

which we verified numerically. Note that (4.3) is independent of the underlying utility function v(qi), of N
and of M. Denoting with fU =MU/M and fL =ML/M the relative fractions of upper- and lower-class
agents, one has

�R ¼ fURU þ fLRL and RU ¼
�R
fU

(1� fLe�k=1) (4:4)

for RU, when using (4.3) for RL. For (4.4) we assumed that the rewards Ra for upper-class agents are all
identical, which we will prove shortly. Together, one finds

RU � RL ¼
�R
fU

(1� e�k=1), (4:5)

for the gap in the rewards received by the upper and the lower-class.
The two relations for RL derived so far are conditions for the q:U, that is for options not taken

by upper-class agents. When playing an option qU occupied by an upper-class agent, the lower-class
pay-off function reads

RL ¼ v(qU)� k
�
(ML � 1) pL(qU)þ 1

�þ 1 pL(qU) log (RL=�R)
¼ v(qU)� kML pL(qU)� k ,

(4:6)

when using (4.3) and the precondition that there is exactly one upper-class agent with pU(qU) = 1. Note
that pay-off and reward coincide for lower-class agents. We now turn to the pay-off of upper-class agents,

Ea
U ¼ v(qU)� kML pL(qU)þ 1 log (Ra

U=
�R): (4:7)

Here, pU(qU) = 1 has been used. With (4.6) one obtains

Ea
U � RL ¼ kþ 1 log (Ra

U=
�R), Ea

U ! RU, (4:8)

which is manifestly independent of qU, and hence also of the bare utility function v(qi). The independency
of (4.8) with respect to the utility function implies that the pay-offs of all upper-class agents coincide,
namely that Ea

U ; RU. Equating (4.5) with (4.8) yields

RU � RL ¼
�R
fU

(1� e�k=1) ¼ kþ 1 log
RU
�R

� �
, (4:9)

and hence

�R
fU

(1� e�k=1) ¼ kþ 1 log
1� fLe�k=1

fU

� �

¼ 1 log
ek=1 � fL

fU

� �
,

(4:10)

when using (4.4) to eliminate RU=�R on the right-hand side of (4.9). With

�R ¼ 1
1� fL

1� e�k=1
log

ek=1 � fL
1� fL

� �
, (4:11)

we obtain a universal relation for the mean reward �R. It follows, as the argument of the logarithm is
larger than unity, that �R is strictly positive. The mean reward depends only implicitly on the utility
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function v(qi), through the fraction fL of lower-class agents, but not explicitly. Together with (4.8) and (4.5)

the lower- and upper-class rewards RL and RU are determined as (3.1) and (3.2).

4.2. Identical strategies
For the case that all M agents play the identical strategy p(qi) ; pa(qi), the expected pay-off Ei ; Ea

i is

Ei ¼ v(qi)� k(M� 1)p(qi) ! Ec: (4:12)

With p(qi) being evolutionary stable, the pay-off Ei is constant on the support, Ei≡ Ec. For qualities
outside the support, the pay-off Ei will be lower [38]. The probability p(qi) to select an option enters Ei

explicitly, which implies that p(qi) is obtained by a direct inversion of (4.12). One has therefore

p(qi) ¼ 1
k(M� 1)

h
v(qi)� Ec

i
: (4:13)

The maxima of the probability distribution p(qi) and of the utility function v(qi) coincide. The final pay-off
Ec is a free parameter which is determined by the normalization condition

1 ¼
X

i; p(qi).0

p(qi), p(qi) ! pi(Ec), (4:14)

where the sum runs over the support of the policy. For finite N the normalization condition (4.14) needs
to be solved numerically via (2.3). Results are shown in figure 4.

4.3. Large numbers of options
The normalization condition (4.14) reduces to an integral for large numbers of qualities N. The boundary
of the support is determined by

v(q) ¼ Ec q+ ¼ 1+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ec

p
, (4:15)

since v(q) = 1− (1− q)2. The normalization condition (4.14) takes then the form

k(M� 1) ¼
ð ffiffiffiffiffiffiffiffi

1�Ec
p

� ffiffiffiffiffiffiffiffi
1�Ec

p
�
1� x2 � Ec

� dx
Dx

, (4:16)

when using x = 1− q and Δx = 2/N. We obtain

2k
M� 1
N

¼ 2� 2
3

� �
(1� Ec)

3=2, (4:17)

which yields (3.3), or

1� Ec ¼ 3k
2

� �2=3 M� 1
N

� �2=3

: (4:18)

The resulting mixed strategy p(qi), as given (4.13), is in excellent agreement with simulations when only a
few upper-class agents are left, as illustrated in figure 4 for κ = 0.3 and ɛ = 2.

Migration occurs when Ec→ 0, that is when

1 ¼ 3k
2

M� 1
N

� 3kn
2

, n ¼ M
N

, (4:19)

where the last approximation holds for large M and N. The carrying capacity of the society, the maximal
possible density ν of agents, scales hence inversely with the strength of the competition, κ. It is
independent of ɛ.

The fraction fU of upper-class agents is small when envy is large. In this limit one can approximate the
lower-class reward RL with Ec, as determined by (4.18). This approximation, Ec≈RL, leads to (3.4), when
taking also (3.1) for RL into account.

4.4. Scaling for two agents
The result for identical strategies, equation (4.18), has a well-defined large-N limit for a constant filling
fraction ν =M/N. It is also of interest to consider the case of finite numbers of agents, M, say M = 2.
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In the limit N→∞, the policy p(q) converges in this case towards a pure strategy, viz. to a delta-function.

The scaling for the maximum pmax and the width Δq are

pmax � 1� Ec � 1
N

� �2=3

and Dq �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ec

p
� 1

N

� �1=3

, (4:20)

see (4.13) and (4.15). The width Δq of the support shrinks only slowly when increasing the number N of
options, remaining substantial even for large numbers, such as N = 103. This is a quite non-trivial result,
as one may have expected that the effect of competition between agents decreases faster, namely as 1/N.
Note that the scaling of the area, pmaxΔq∼ 1/N, is determined by the density of options, which is N/2.
journal/rsos
R.Soc.O
4.5. Terminology
For convenience, we present here an overview of the terminology used, including for completeness
selected key game-theoretical definitions. It follows that the shopping trouble model is a probabilistic
competitive evolutionary game based on undifferentiated but distinguishable agents.
pen
Sci.7:200411
4.5.1. Options/qualities

An option is a possible course of action, like going to a shop to buy something. For a game with a large
number of options, as considered here, it is convenient to associate a numerical value to an option. One
may either identify the option with its numerical value, as it is usual, e.g. for the war of attrition, or
distinguish them on a formal level, as done here. For an option i, we denote with the quality qi the
associated numerical value.
4.5.2. Pure/mixed strategies

In simple games, like the Hawk and Dove competition, options and strategies are often not distinguished.
Selecting an option, to fight or not to fight, is then identical to the strategy. On a general level, strategies
define how and when a player selects one of the possible options. A strategy is pure when the agent plays
the identical option at all times, and mixed otherwise.
4.5.3. Probabilistic game

For probabilistic games, strategies are defined in terms of probabilities. This is the case for the shopping
trouble model, where pa(qi) defines the probability that agent α selects at any time the quality qi
associated with the option i.
4.5.4. Support

A probabilistic strategy assigns a probability pa(qi) � 0 to all possible options. One often finds that the
pa(qj) are finite only for a subset of options, the support of the strategy. The size of the support is
larger than one for mixed strategies, and exactly one for pure strategies.
4.5.5. Undifferentiated distinguishable agents

Agents are differentiated when every agent is characterized by an individual set of parameters, and
undifferentiated when the same set of parameters applies to everybody. Strategies are specific to
individual agents, in any case, when they are distinguishable. Indistinguishable agents share in
contrast strategies.
4.5.6. Pay-off/reward

The pay-off function is a real-valued function of the qualities/options. The aim is to optimize the strategy
such that the average pay-off is maximized. For the average pay-off the term reward is used throughout
this study.
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4.5.7. Evolutionary game

Evolutionary games are played not just once, but over and over again. After each turn, agents update
their individual strategies according to the pay-offs received when selecting option i with the
probability pa(qi).

4.5.8. Competitive/cooperative game

In cooperative games, parties may coordinate their individual strategies, e.g. in order to optimize
collective pay-offs. Contracts (like I select option A if you go for B) are, on the other hand, not
possible for competitive games. Also possible are coalition formation or hedonic games focusing on
the formation of subgroups.

4.5.9. Nash equilibrium

For competitive games, an equilibrium in terms of the individual strategies may be attained. In this state,
the Nash equilibrium, rewards diminish when individual players attempt to change their strategies.
More than one Nash state can exist for identical parameter settings. Nash stable configurations of
strategies correspond to locally stable fix-points of the replicator dynamics (2.3) for evolutionary games.

4.5.10. Collective effect

In complex systems theory, a collective effect is present when the interaction of an extended number of
constituent elements gives rise to a new type of state. An example from psychology is the emergence of
mass psychology from individual behaviours. In the shopping trouble model, the transition from forced
cooperation to class stratification is a collective phenomenon.

4.5.11. Forced cooperation

Agents may agree to select different options in cooperative games, for example in order to optimize
overall welfare. Players may, on the other hand, be forced to avoid each other in competitive games,
because of the penalties that would incur otherwise on individual levels. To an outside observer the
resulting state has the traits of cooperation, which is in this case, however autonomously enforced.

4.5.12. Envy

In the context of the present study, envy is defined in terms of the pay-off function. For this, the pay-off a
given agent α receives, when selecting a certain option i, depends expressively on the rewards of the other
agents. Envy adds a non-monetary contribution to the reward of the player, which is positive/negative if
the overall reward of the player is larger/lower than that of others.
5. Discussion and conclusion
The process of class separation occurring in the shopping trouble model has several characteristic
features. One is that upper and lower-class engage in qualitatively different strategies. There are as
many different pure strategies as there are upper-class agents, one for each, but only one mixed
strategy for the entire lower-class. Individualism is lost when becoming a member of the masses, to
put it colloquially. Alternatively, one may view the common mixed strategy played by the lower-class
as an atypical group-level trait, namely one that does not come with an improved Darwinian fitness
[39]. For an understanding, we note that envy enters the shopping trouble model as 1pa(qi) log (Ra=�R),
which implies that the current probability pa(qi) to select a given quality tends to be suppressed when
Ra , �R. Envy has a self-reinforcing effect when the individual reward Ra is in contrast not smaller,
but larger than the population average. This argument explains why agents with modest/high
rewards play mixed/pure strategies.

Evolutionary stable strategies can have different rewards only when their supports are not identical,
which becomes increasingly difficult with the continuous increase in the number of mixed strategies that
is observed during forced cooperation with raising levels of envy, see figure 5. Policies merge once the
phase space for the support of distinct mixed strategies runs out and a single mixed lower-class
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strategy remains. Class stratification corresponds from this perspective to a strategy merging transition,

producing in consequence an atypical group-level trait.
A second feature characterizing class stratification is universality, namely that the underlying utility

function v(qi) affects the Nash equilibrium exclusively through the fraction fL of lower-class agents. An
interesting corollary is that is does not really matter which options the upper-class selects, as the reward,
and consequently also the monetary income, remains unaffected. One could call this freedom the luxury
of choice of being rich. Upper-class strategies tend to cluster, nevertheless, around the maximum of the
underlying utility function (compare figure 3), which is however a purely dynamic effect. Policies that
prefer qualities with large v(qi) have increased growth rates while iterating towards stationarity.

Beyond its original interpretation as a competitive shopping model, one can view the shopping trouble
model as a basic model for competition for scarce goods, in particular in a social context. The qualities qi
would correspond in this setting either to distinct social positions or to job opportunities, with the bare
utility v(qi) encoding, respectively, social status and salaries. It is presently unclear to what extent, and if
at all, human societies can be described in a first approximation by the shopping trouble model. In that
case, Western societies are presumable in the phase denoted here as forced cooperation, with varying
distances to the class stratification transition. A transition to the stratified phase would be equivalent to
a major socio-cultural paradigm shift [40], such as the possible incipient dynamic instability of modern
democracies due to growing mismatch between the built-in time delays, the election cycle and the
accelerating pace of political opinion dynamics [41]. This is a somewhat worrisome outlook, given that
the repercussions of envy are amplified, as shown in figure 6, when societies become more and more
competitive: a possible ongoing development [42].

The stratified phase found in the shopping trouble model is the result of a self-organizing process,
with the consequence that it has universal properties that can be controlled only indirectly by external
influences. Policy-makers lose part of their tools when a society class separates. Class-stratified
societies are in this sense intrinsically resistant to external influences. Overall our results show that
envy tends to cement class differences, instead of softening them. It may be tempting for people at
the bottom to compare what they have with the riches of the top, but it is actually counterproductive.
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