
Brown, T, et al. 2018 PyPSA: Python for Power System
Analysis. Journal of Open Research Software, 6: 4.
DOI: https://doi.org/10.5334/jors.188

Journal of
open research software

SOFTWARE METAPAPER

PyPSA: Python for Power System Analysis
Tom Brown, Jonas Hörsch and David Schlachtberger
Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, DE
Corresponding author: Tom Brown (brown@fias.uni-frankfurt.de)

Python for Power System Analysis (PyPSA) is a free software toolbox for simulating and optimising
modern electrical power systems over multiple periods. PyPSA includes models for conventional generators
with unit commitment, variable renewable generation, storage units, coupling to other energy sectors, and
mixed alternating and direct current networks. It is designed to be easily extensible and to scale well with
large networks and long time series. In this paper the basic functionality of PyPSA is described, including
the formulation of the full power flow equations and the multi-period optimisation of operation and
investment with linear power flow equations. PyPSA is positioned in the existing free software landscape
as a bridge between traditional power flow analysis tools for steady-state analysis and full multi-period
energy system models. The functionality is demonstrated on two open datasets of the transmission
system in Germany (based on SciGRID) and Europe (based on GridKit).

Keywords: Power system simulations; energy system simulations; Load flow calculations; optimal power
flow; security-constrained optimal power flow; unit commitment; renewable energy
Funding statement: This research was conducted as part of the CoNDyNet project, which is supported
by the German Federal Ministry of Education and Research under grant no. 03SF0472C. The responsibility
for the contents lies solely with the authors.

(1) Overview
1. Introduction
Power system tools model the interactions between the
electrical grid and the consumers and generators which
use the grid. The importance of software modelling of
the grid has risen in recent years given the increase in
distributed and fluctuating wind and solar generation,
and the increasing electrification of all energy demand.
On the generation side, variable renewable generation
causes loading in parts of the grid where it was never
expected, and introduces new stochastic influences
on the flow patterns. On the demand side, the need to
decarbonise the transport and heating sectors is leading
to the electrification of these sectors and hence higher
electrical demand, replacing internal combustion engines
with electric motors in the transport sector, and replacing
fossil fuel boilers with heat pumps, resistive heaters
and cogeneration for low-temperature space and water
heating. In addition, the increasing deployment of storage
technologies introduces many network users which are
both consumers and generators of energy.

The increasing complexity of the electricity system
requires new tools for power system modelling. Many
of the tools currently used for power system modelling
were written in the era before widespread integration of
renewable energy and the electrification of transport and
heating. They therefore typically focus on network flows

in single time periods. Examples of such tools include
commercial products like DIgSILENT PowerFactory [1],
NEPLAN [2], PowerWorld [3], PSS/E [4] and PSS/SINCAL
[5], and open tools such as MATPOWER [6], PSAT [7],
PYPOWER [8] and pandapower [9] (see [10] for a full list of
power system analysis tools).

The consideration of multiple time periods is important
on the operational side for unit commitment of
conventional generators and the optimisation of storage
and demand side management, and on the investment
side for optimising infrastructure capacities over
representative load and weather situations. Several tools
have subsets of these capabilities, such as calliope [11],
manpower [12], MOST [13], oemof [14], OSeMOSYS [15],
PLEXOS [16], PowerGAMA [17], PRIMES [18], TIMES [19]
and urbs [20], but their representations of electrical grids
are often simplified.

Python for Power System Analysis (PyPSA), the tool
presented in this paper, was developed at the Frankfurt
Institute for Advanced Studies to bridge the gap between
power system analysis software and general energy
system modelling tools. PyPSA can model the operation
and optimal investment of the energy system over
multiple periods. It has models for the unit commitment
of conventional generators, time-varying renewable
generators, storage units, all combinations of direct and
alternating current electricity networks, and the coupling

https://doi.org/10.5334/jors.188
mailto:brown@fias.uni-frankfurt.de

Brown et al: PyPSAArt. 4, p. 2 of 15

of electricity to other energy sectors, such as gas, heating
and transport. It can perform full load flow calculations
and linearised optimal load flow, including under
consideration of security constraints. It was written from
the start with variable renewables, storage and sector-
coupling in mind, so that it performs well with large
networks and long time series.

Given the complexity of power system tools and the
different needs of different users, it is crucial that such
tools are both transparent in what they do and easily
extendable by the user. To this end, PyPSA was released
as free software under the GNU General Public Licence
Version 3 (GPLv3) [21]. This means that the user is free
to inspect, use and modify the code, provided that if they
redistribute the software, they also provide the source
code. Free software and open data also guarantee that
research results can be reproduced by any third party,
which is important given the large investment decisions
that will need to be made on the basis of energy system
modelling to reduce greenhouse gas emissions and
combat global warming [22], [23].

PyPSA is available online in the Python Package Index
(PyPI), on GitHub [24] and is archived on Zenodo [25].
Documentation and examples are available on PyPSA’s
website [26]. PyPSA is already used by more than a dozen
research institutes and companies worldwide, 70 people
are registered on the forum [27] and the website [26]
has been visited by people from over 160 countries. As of
October 2017 it has been used in six research papers [28,
29, 30, 31, 32, 33]. Users have already extended PyPSA for
integer transmission expansion [28, 34] and in the grid
planning tool open_eGo [35].

This paper describes version 0.11.0 of PyPSA [25].
In Section 2 the mathematical functionality of PyPSA
is described, while in Section 3 the focus shifts to the
implementation in software. Quality control is discussed
in Section 4; the computational performance of PyPSA
is described in Section 5; and then its functionality is
compared with other software in Section 6. Several
example applications are given in 7 before conclusions
are drawn in 8.

2. Functionality
In this section the basic components, power flow,
linear optimal power flow, energy system optimisation,
unit commitment, contingency modelling and other
functionality of PyPSA are described. The definitions of
the main variables used in this section can be found in
Table 1, along with units where applicable.

2.1. Components
PyPSA’s representation of the power system is built by
connecting the components listed in Table 2.

Buses are the fundamental nodes to which all other
components attach. Their mathematical role is to enforce
energy conservation at the bus at all times (essentially
Kirchhoff’s Current Law).

Loads, generators, storage units, stores and shunt
impedances attach to a single bus and determine the
power balance at the bus. Loads represent a fixed power

demand; a generator’s dispatch can be optimised within
its power availaiblity; stores can shift power from one
time to another with a standing loss efficiency for energy
leakage; storage units behave like stores, but they can also
have efficiency losses and power limits upon charging
and discharging; finally shunt impedances have a voltage-
dependent power consumption.

Lines and transformers connect two buses with a given
impedance. Power flows through lines and transformers
according to the power imbalances at the buses and the
impedances in the network. Lines and transformers are
referred to collectively as ‘passive branches’ to distinguish
them from controllable link branches. The impedances
of the passive branches are modeled internally using
the equivalent PI model. The relation between the series
impedance z = r + jx, the shunt admittance y = g + jb, the
transformer tap ratio τ, the transformer phase shift θ shift,
and the complex currents I0, I1 and complex voltages V0, V1
at the buses labelled 0 and 1 is given by

	

shift

shift

0 0

1 1
2

1 1 1
2

1 1 1 1
2

j

j

y
z zI Ve

yI V
z ze

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎟ ⎟⎜ ⎜⎜ ⎟⎟ ⎟⎜ ⎜⎜ ⎟⎟ ⎟⎜ ⎜⎟⎜ ⎛ ⎞⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜⎝ ⎠

θ

θ

τ

ττ

+ −

=
− +

� (1)

(For lines, for which neither the tap ratio or the phase
shift are relevant, set τ = 1 and θ shift = 0 in this equation.)
The equivalent circuit is shown in Figure 1. This circuit
is for the case where the tap-changer is on the primary
side; a similar equation and figure for the case where
the tap-changer is on the secondary side is given in the
documentation [26]. The line model defaults to the PI
model, while the transformer model defaults to the more
accurate T model, which is converted to the PI model using
the standard delta-wye transformation. For convenience
standard types for lines and transformers in networks at
50 Hz are provided following the conversion formula from
nameplate parameters to impedances and the typical
parameters provided in pandapower [9], so that the user
does not have to input the impedances manually. The
typical parameters in pandapower are based on [36, 37,
38].

Links connect two buses with a controllable active power
dispatch that can be set by the user or optimised by PyPSA.
Links can be used to represent point-to-point high voltage
direct current (HVDC) lines, import-export capacities in
transport models such as Net-Transfer-Capacity (NTC)
models, or general energy conversion processes with a
given efficiency, such as resistive heaters or heat pumps
(from electricity to heat) or gas boilers (from gas to heat).
Their efficiency can also be time-varying (e.g. to represent
the ambient temperature dependence of a heat pump’s
coefficient of performance). Networks of links implement
Kirchoff’s Current Law (energy conservation at each
bus), but not Kirchoff’s Voltage Law, which is obeyed by
networks of passive branches.

A generator can also be represented in terms of more
basic components: a bus is added for the fuel source with
a store to represent the amount of fuel available. It is then

Brown et al: PyPSA Art. 4, p. 3 of 15

Table 1: Nomenclature.

Variable Units Definition

n, m Bus labels

r Generator energy carrier labels (e.g. wind, solar, gas, etc.)

s Storage energy carrier labels (e.g. battery, hydrogen, etc.)

k, ℓ Branch labels

c Cycle labels

t Snapshot/time point labels

er/s tCO2eq/MWhth CO2-equivalent emissions of energy carrier r or s

wt h Weighting of snapshot in objective function

gn,r,t MW Dispatch of generator at bus n with carrier r at time t

Gn,r MW Power capacity of generator n, r

g–n,r,t MW/MW Power availability per unit of generator capacity

ηn,r MWel/MWth Efficiency of generator

un,r,t On/off binary status for generator unit commitment

min_ down
,n rT h Generator minimum down time

min_up
,n rT h Generator minimum up time

run,r (MW/MW)/h Generator ramp up limit per unit of capacity

rdn,r (MW/MW)/h Generator ramp down limit per unit of capacity

cn,r €/MW Generator capital (fixed) cost

on,r €/MWh Generator operating (variable) cost

sucn,r (,t) € Generator start up cost (in time t)

sdcn,r (,t) € Generator shut down cost (in time t)

hn,s,t MW Dispatch of storage at bus n with carrier s at time t

Hn,s MW Power capacity of storage n, s

en,s,t MWh Storage state of charge (energy level)

En,s MWh Storage energy capacity

cn,s €/MW Storage power capacity cost

ĉn,s €/MWh Storage energy capacity cost

on,s €/MWh Storage dispatch cost

dn,t MW Electrical load at bus n at time t

λn,t €/MWh Marginal price at bus n at time t

Vn kV Complex voltage at bus n

θn rad Voltage angle at bus n

In kA Complex current at bus n

Pn MW Total active power injection at bus n

Qn MVAr Total reactive power injection at bus n

Sn MVA Total apparent power injection at bus n

f
ℓ,t MW Branch active power flow

F
ℓ

 MW Branch active power rating

c
ℓ

 €/MW Branch capital cost

x
ℓ

 Ω Branch series reactance

r
ℓ

 Ω Branch series resistance
(contd.)

Brown et al: PyPSAArt. 4, p. 4 of 15

connected to the electricity bus with a link to represent
the energy conversion loss. Similarly a storage unit can be
represented with an additional bus for the storage medium
with a store attached, and then two links connected to the
electricity bus to represent charging and discharging.

Energy enters the model in generators; in storage units
or stores with higher energy levels before than after the
simulation; and in any components with efficiency greater
than 1 (such as heat pumps). Energy leaves the model in
loads; in storage units or stores with higher energy levels

Variable Units Definition

z
ℓ

 Ω Branch series impedance

y
ℓ

 S Branch shunt admittance

τ
ℓ

 Transformer tap ratio
shiftθ rad Transformer phase shift

η
ℓ,t MW/MW Efficiency loss of a link

Knℓ N × L incidence matrix

C
ℓc L × (L – N + 1) cycle matrix

Ynm S Bus admittance matrix

B
ℓk S Diagonal L × L matrix of branch susceptances

BODF
ℓk Branch Outage Distribution Factor

Table 2: PyPSA components.

Network Container for all other network components.

Bus Fundamental nodes to which all other components attach.

Carrier Energy carrier (e.g. wind, solar, gas, etc.).

Load A consumer of energy.

Generator Generator whose feed-in can be flexible subject to minimum loading or minimum down and up times, or
variable according to a given time series of power availability.

Storage Unit A device which can shift energy from one time to another, subject to efficiency losses.

Store A more fundamental storage object with no restrictions on charging or discharging power.

Shunt Impedance An impedance in shunt to a bus.

Line A branch which connects two buses of the same voltage.

Transformer A branch which connects two buses of different voltages.

Link A branch with a controllable power flow between two buses.

Figure 1: Electrical property definitions for passive branches (lines and transformers).

Brown et al: PyPSA Art. 4, p. 5 of 15

after than before the simulation; and in lines, links or
storage units with efficiency less than 1.

2.2. Power flow without optimisation
In a power flow calculation, the user specifies the power
dispatch of all dispatchable components (loads, generators,
storage units, stores and links) and then PyPSA computes
the resulting voltages in the network and hence the power
flows in passive branches (lines and transformers) based
on their impedances.

2.2.1. Power flow equations for AC networks
A power flow calculation for an alternating current (AC)
network ensures that for all buses labelled by n we have

	
n n n n nm m

m

S V I V Y V∑∗ ∗ ∗= = � (2)

where Sn = Pn + jQn is the apparent power injected at
the bus, In is the complex current and nj

n nV V e θ= is
the complex voltage, whose rotating angle is measured
relative to a chosen slack bus. Ynm is the bus admittance
matrix, which is constructed for all buses based on the
contributions from the individual branch admittance
matrices from equation (1) and any shunt impedances at
the nodes, following the example of MATPOWER [6].

The inputs and outputs for the buses are given as
follows:

•	 For the chosen slack bus n = 0, it is assumed that the
voltage magnitude |V0| and the voltage angle θ0 are
given. PyPSA must find the powers P0 and Q0.

•	 For PQ buses, Pn and Qn are given; |Vn| and θn are to be
found.

•	 For PV buses, Pn and |Vn| are given; Qn and θn are to be
found.

The non-linear equation system (2) is then solved using
the Newton-Raphson algorithm [39] and, by default, an
initial ‘flat’ guess of θn = θ0 and |Vn| = 1 (per unit). The
initial guess can also be specified (‘seeded’) by the user,
using for example the linearised power flow solution.

2.2.2. Power flow equations for DC networks
A power flow calculation for a direct current (DC) network
ensures that for all buses labelled by n we have

	
n n n n nm m

m

P V I V G V∑= = � (3)

where Pn is the active power injected at the bus and the
voltage, current and the conductance matrix Gij are now
all real quantities. This non-linear equation is also solved
with the Newton-Raphson algorithm.

2.2.3. Linearised power flow equations for AC networks
In some circumstances a linearisation of the AC power flow
equations (2) can provide a good approximation to the full
non-linear solution [40, 41]. The linearisation is restricted
to calculating active power flows based on voltage angle
differences and branch series reactances. It assumes that

reactive power flow decouples from active power flow,
that there are no voltage magnitude variations, voltage
angles differences across branches are small enough that
sin θ ~ θ and branch resistances are negligible compared
to branch reactances. This makes it suitable for short
overhead transmission lines close to their natural loading.

In this case it can be shown [6] that the voltage angles
are related to the active power injections by a matrix

	
() shiftT

n m nnm
m

P KBK K b∑ ∑θ θ= − � (4)

where K is the incidence matrix of the network, B is the
diagonal matrix of inverse branch series reactances x

ℓ

multiplied by the tap ratio τ
ℓ

, i.e. 1
xB b τ= = , and shiftθ

is the phase shift for a transformer. The matrix KBKT is
singular with a single zero eigenvalue for a connected
network and can be inverted by first deleting the row and
column corresponding to the slack bus.

2.2.4. Linearised power flow equations for DC networks
For DC networks the equation (3) is linearised by positing
Vn = 1 + δVn and assuming that δVn is small. The resulting
equations mirror the linearised AC approximation with
the substitutions θn → δVn and x

ℓ

 → r
ℓ

.

2.3. Optimisation with linear power flow equations
PyPSA is a partial equilibrium model that can optimise
both short-term operation and long-term investment in
the energy system as a linear problem using the linear
power flow equations.

PyPSA minimises total system costs, which include
the variable and fixed costs of generation, storage and
transmission, given technical and physical constraints.
The objective function is given by

()

, , ,
, , , , , , , , ,

min , ,
, , , ,

, , , ,

, , , , , , ,

, ,

, , , , , , ,

, , , ,

ˆ []

n r n s n s
t n r t n s t n r t n r t

n r n r
F G H E n r

g h suc sdc

t n r n r t n r t n r t
n r t

n s n s n s n s t n s n s t
n s n s n r t

c F c G

o g suc sdc

c H c E o h

⎡
⎢ ⋅ ⋅⎢
⎢⎣

⋅ ⋅

⎤
⎥⋅ ⋅ ⋅ ⋅ ⎥
⎥⎦

∑ ∑

∑

∑ ∑ ∑ +

+

+ + +

+ + +

f

w

w �(5)

It consists of the branch capacities F
ℓ for each branch ℓ and

their annuitised fixed costs per capacity c
ℓ

, the generator
capacities Gn,r at each bus n for technology r and their
annuitised fixed costs per capacity cn,r, the dispatch gn,r,t
of the unit at time t and the associated variable costs on,r,
the start up and shut down costs sucn,r,t and sdcn,r,t when
unit commitment is activated, the storage unit power
capacities Hn,s and store energy capacities En,s at each bus n
for storage technology s and their associated fixed costs cn,s
and ĉn,s, and finally the positive part of the storage dispatch
[hn,s,t]

+ and the associated variable costs on,s. The branch
flows f

ℓ,t are optimisation variables but do not appear
in the objective function. The optimisation is run over
multiple time periods t representing different weather

Brown et al: PyPSAArt. 4, p. 6 of 15

and demand conditions. Each period can have a weighting
wt; the investment costs must then be annuitised for the
total period ∑t wt (typically a full year).

The dispatch of generators gn,r,t is constrained by their
capacities Gn,r and time-dependent availabilities g̃n,r,t and
g–n,r,t, which are given per unit of the capacities Gn,r:

	 , , , , , , , ,· · , ,n r t n r n r t n r t n rg G g g G n r t≤ ≤ ∀ � (6)

For conventional generators the availabilities are usually
constant; a fully flexible generator would have g̃n,r,t = 0
and g–n,r,t = 1. For variable renewable generators such as
wind and solar, g–n,r,t represents the weather-dependent
power availability, while curtailment may also be limited
by introducing a lower bound on the dispatch g̃n,r,t.

The dispatch can also be limited by ramp rate constraints
run,r and rdn,r per unit of the generator nominal power:

(), , , , , , 1 , ,· · , , 0n r n r n r t n r t n r n rrd G g g ru G n r t− −≤ − ≤ ∀ > � (7)

Unit commitment for conventional generators is described
in Section 2.5.

The power capacity Gn,r can also be optimised within
minimum G̃n,r and maximum G–n,r installable potentials:

	 , , , ,n r n r n rG G G n r≤ ≤ ∀ � (8)

The dispatch of storage units hn,s,t, whose energy carriers
are labelled by s, is constrained by a similar equation to
that for generators in equation (6):

	 , , , , , , , ,· · , ,n s t n s n s t n s t n sh H h h H n s t≤ ≤ ∀ � (9)

except h̃n,s,t is now negative, since the dispatch of storage
units can be both positive when discharging into the grid
and negative when absorbing power from the grid. The
power capacity Hn,s can also be optimised within installable
potentials.

The energy levels en,s,t of all storage units have to be
consistent between all hours and are limited by the
storage energy capacity En,s

	

, , , ,0 , , 1

1
, , , , , , , ,

, , ,inflow , , ,spillage

, , , , , , , , , ,

t
n s t n s n s t

n s t n s t n s t n s t

t n s t t n s t

n s t n s n s t n s t n s

e e

h h

h h

e E e e E n s t

η

η η+
⎡ ⎤ ⎡ ⎤⋅ ⋅⎣ ⎦ ⎣ ⎦

⋅ ⋅

⋅ ⋅

−

+ −−
−

=

+ −

+ −

≤ ≤ ∀

w

w w

w w
� (10)

Positive and negative parts of a value are denoted as [·]+
= max(·, 0), [·]– = –min(·, 0). The storage units can have
a standing loss (self-discharging leakage rate) ηn,s,0, a
charging efficiency ηn,s,+, a discharging efficiency ηn,s,–,
inflow (e.g. river inflow in a reservoir) and spillage. The
initial energy level can be set by the user, or it is assumed
to be cyclic, i.e. en,s,t=0 = en,s,t=T.

The store component is a more basic version of the
storage unit: its charging and discharging power cannot
be limited and there are no charging and discharging

efficiencies ηn,s,+, ηn,s,–. The energy levels of the store can
also be restricted by time series ẽn,s,t, ēn,s,t given per unit
of the energy capacity En,s; this allows the demand-side
management model of [42] to be implemented in PyPSA.
The energy capacity En,s can also be optimised within
installable potentials.

Global constraints related to primary energy
consumption, such as emission limits, can also be
implemented. For example, CO2 emissions can be limited
by a cap CAPCO2

, implemented using the specific emissions
er in CO2-tonne-per-MWhth of the fuel r and the efficiency
ηn,r of the generator:

	
2 2, ,

,, ,

1
· · CAPt n r t r CO CO

n rn r t

g e μ∑ η
≤ ↔w � (11)

μCO2
 is the shadow price of this constraint.

The (inelastic) electricity demand dn,t at each bus n
must be met at each time t by either local generators and
storage or by the flows f

ℓ,t from the branches ℓ

, , , , , , , ,

,

·

· ,

n r t n s t n t t n t
r s

t n t

g h d

n tλ

∑ ∑ ∑+ + =

↔ ∀

α f

w � (12)

where α
ℓ,n,t = –1 if ℓ starts at n, α

ℓ,n,t = 1 if ℓ is a line or
transformer and ends at n, and α

ℓ,n,t = η
ℓ,t if ℓ is a link and

ends at n (note that for lines and transformers, α
ℓ,n,t is the

incidence matrix of the network, α
ℓ,n,t = Knℓ). ηℓ,t represents

an efficiency loss for a link (it can be time-dependent
for efficiency that, for example, depends on the outside
temperature, like for a heat pump). λn,t is the marginal
price at the bus. This equation implements Kirchhoff’s
Current Law (KCL), which guarantees energy conservation
at each node.

The flows in all passive branches are constrained by
their capacities F

ℓ

	 , ,t F t≤ ∀f � (13)

For links, the flows can be more finely controlled with
time-dependent per unit availabilities , ,,t t

˜ ˉf f

	 , , ,· · ,t t tF F tˉf̃ ff≤ ≤ ∀ � (14)

which allows, for example, time-dependent demand-side
management schemes to be modelled [42]. For both
passive branches and links, the upper and lower limits are
associated with KKT multipliers µ−

l,t and µ_
l,t.

The flows in links are fully controllable.
Power flows in networks of passive branches (lines and

transformers) according to the linear power flow equations.
It is assumed that the network is lossless, so that η

ℓ,n,t = 1
for passive branches. To guarantee the physicality of the
network flows, in addition to KCL, Kirchhoff’s Voltage Law
(KVL) must be enforced in each connected network. KVL
states that the voltage differences around any closed cycle
in the network must sum to zero. If each independent

Brown et al: PyPSA Art. 4, p. 7 of 15

cycle c is expressed as a directed combination of passive
branches ℓ by a matrix C

ℓc then KVL becomes the constraint

	
,· · 0 ,c tC c t∀∑ =x f � (15)

where x
ℓ is the series inductive reactance of branch l. In

a recent paper it is demonstrated that this formulation
of the linear load flow using cycles solves up to 20 times
faster than standard formulations using the voltage
angles [30]; voltage angle and PTDF formulations are also
implemented in PyPSA and deliver identical results.

Since branch capacities F
l

 can be continuously
expanded to represent the addition of new circuits to an
aggregated transmission corridor ℓ, the impedances x

l

 of
the branches would also decrease. In principle this would
introduce a bilinear coupling in equation (15) between the
x
l

 and the f
l,t. To keep the optimisation problem linear and

therefore computationally fast, x
l

 can be left fixed in each
optimisation problem, updated and then the optimisation
problem rerun, in up to 5 iterations to ensure convergence,
following the methodology of [43]. Another author has
implemented an integer transmission expansion in PyPSA
[34] that bypasses the bilinearity with a disjunctive big-M
relaxation [44]; this will be incorporated into the main
code base of PyPSA soon.

2.4. Coupling to other energy sectors
PyPSA can also optimise operation and investment
in other energy sectors, such as natural gas, heating
and transport. These sectors can be modelled using a
network of links with efficiencies for energy conversion
losses; an example from a recent paper [29] is shown
in Figure 2. For example, links from electricity to heat
buses can represent resistive heaters and/or heat pumps
(the latter can also be modelled with a time-dependent
coefficient of performance, given the importance of

capturing the dependence of heat pump performance
on outside temperature [45]). Combined Heat and Power
plants (CHPs) can also be modelled by adding additional
constraints for the back pressure and fuel consumption
(see the PyPSA examples [26]). Depletable resources such
as natural gas are modelled with stores.

2.5. Unit Commitment
Unit commitment can be turned on for any generator. This
introduces a times series of new binary status variables un,r,t

∈ {0, 1}, which indicates whether the generator is running
(1) or not (0) in period t. The restrictions on generator
output now become:

, , , , , , , , , , , ,· · · · , ,n r t n r t n r n r t n r t n r t n ru g G g u g G n r t∀≤ ≤ � (16)

so that if un,r,t = 0 then also gn,r,t = 0.
If min_up

,n rT is the minimum up time then we have

	
()

min_up
,

min_up
, , , , , 1, , , ,

n rt T

n r n r t n r tn r t
t t

u T u u n r t′
′
∑

+

−
=

≥ − ∀ � (17)

(i.e. if the generator has just started up (un,r,t – un,r,t–1 = 1)
then it has to run for at least min_up

,n rT periods). Similarly for
a minimum down time of min_ down

,n rT

() ()
min_down
,

min_ down
, , , 1 , ,, ,1 , ,

n rt T

n r n r t n r tn r t
t t

u T u u n r t′
′
∑

+

−
=

− ≥ − ∀ � (18)

For non-zero start up costs sucn,r a new variable sucn,r,t ≥ 0 is
introduced for each time period t and added to the objective
function. The variable satisfies

	
(), , , , , , , 1 , ,n r t n r n r t n r tsuc suc u u n r t∀−≥ − � (19)

Figure 2: Example of the coupling in PyPSA between electricity (at top) and other energy sectors: transport, hydrogen,
natural gas and heating. There is a bus for each energy carrier, to which different loads, energy sources and converters
are attached.

Brown et al: PyPSAArt. 4, p. 8 of 15

so that it is only non-zero if un,r,t – un,r,t–1 = 1, i.e. the
generator has just started, in which case the inequality is
saturated sucn,r,t = sucn,r. Similarly for the shut down costs
sdcn,r,t ≥ 0 we have

	
(), , , , , 1 , , , ,n r t n r n r t n r tsdc sdc u u n r t−≥ − ∀ � (20)

The ramp-rate limits in equation (7) can also be
suplemented by ramping limits at start-up and shut-down.

2.6. Security-Constrained LOPF
PyPSA has functionality to examine the steady state of the
power system after outages of passive branches, based on
an analysis of the linear power flow.

PyPSA calculates the Branch Outage Distribution Factor
(BODF) from the Power Transfer Distribution Factors (PTDF)
(see [46]). The BODF gives the change in linearised power
flow on passive branch ℓ given the outage of passive branch k

	
() ·BODF= +f f fκ

κ κ � (21)

Here f
ℓ

 is the flow before the outage and ()κf is the flow
after the outage of branch k.

The BODF can then be used in Security-Constrained
Linear Optimal Power Flow (SCLOPF). SCLOPF builds
on the LOPF by including additional constraints that
branches may not become overloaded after the outage
of a selection of branches. For each potential outage of
a branch k, a set of constraints for all other branches
ℓ is included, guaranteeing that they do not become
overloaded beyond their capacity F

ℓ

	
()
, , ,· ,t t tBODF F tκ

κ κ= + ≤ ∀f f f � (22)

2.7. Network clustering
PyPSA also implements a variety of network clustering
algorithms to reduce the number of buses in a network
while preserving important transmission lines. For
example, the k-means clustering algorithm was recently
used in [32] to examine the effect of clustering on
investment optimisation results.

2.8. Planned new features
PyPSA is currently in version 0.11.0. PyPSA has been
designed to be modular, so that it is possible to develop
the code for many other types of calculations. Currently
features being considered by the development team
include, in rough order of priority:

•	 Integer transmission expansion, following an existing
implementation in PyPSA [34] using the disjunctive
big-M relaxation [44];

•	 Multi-horizon dynamic investment optimisation over
several years, following for example the implementa-
tion in OSeMOSYS [15];

•	 Transient analysis using the Root-Mean-Square (RMS)
values of phasor quantities, following the implemen-
tation in PSAT [7];

•	 An implementation of the non-linear power flow
solution using analytic continuation in the complex

plane [47], following the implementation in GridCal
[48];

•	 Short-circuit analysis, following the implementation
in pandapower [9];

•	 OPF with the full non-linear network equations,
following the implementations in PYPOWER and
MATPOWER;

•	 An interactive web-based GUI for analysing and
manipulating the network topology.

3. Implementation and architecture
PyPSA was written in the Python programming language
[49] because it is widely used in the modelling community,
it is easy to learn and its implementation is also free. It
is available for every major operating system, including
GNU/Linux, Mac OSX and Windows. PyPSA has been
tested with versions 2.7 and 3.5 of Python.

PyPSA stores all data about network components in
the DataFrame objects of the Python library pandas [50].
This enables easy and efficient indexing of the data, while
mantaining the fast calculation speeds of the underlying
array objects of the Python library NumPy [51]. For each
of the components listed in Table 2 (except the overall
Network container component) there is a DataFrame
listing the static attributes (such as line impedance or
capital cost) and a dictionary of DataFrames containing the
time-varying attributes (such as wind power availability or
consumer demand) that are in addition indexed by the list
of snapshots. The specification of some attributes (such as
generator maximum output) can be either static or time-
varying; if the time series is not specified, then the static
value is taken.

All matrix calculations and solutions of linear equation
systems are carried out either with NumPy [51] or, in the
case of sparse matrices, with SciPy [52]. These Python
libraries interface with lower-level programming language
libraries to benefit from the speed of strongly-typed
languages.

Optimisation problems are formulated using the
Python-based optimization modeling language Pyomo
[53, 54], which is solver agnostic and intuitive to extend.
The use of Pyomo also allows inter-operability with other
energy system frameworks that use Pyomo, such as
calliope [11], oemof [14] and urbs [20]. In PyPSA lower-
level functions in Pyomo have been exploited to improve
computational performance.

PyPSA has no graphical user interface, but integrates
closely with the IPython [55] interactive notebooks, where
networks and their properties can be visualised using the
Python library Matplotlib [56] (see Figures 4 and 5) or the
interactive JavaScript-based library plotly [57].

Internally PyPSA converts all power system quantities
(voltage, power, current, impedances) to per unit values.
Set points for loads and generation are stored separately
from the power values which are actually dispatched.

4. Quality control
PyPSA comes with a large test suite that covers all of
its major functionality. Tests are implemented using
the Python library pytest [58]. Tests are also included

Brown et al: PyPSA Art. 4, p. 9 of 15

that compare PyPSA’s results with other software such
as PYPOWER [8] and pandapower [9]. Users can and do
report bugs by raising issues in the GitHub repository [24]
or on the forum [27].

5. Performance
In this section some examples of PyPSA’s computational
performance are given.

In Figure 3 computation times are given for a full
power flow on the MATPOWER [6] test cases (the IEEE
standard cases as well as snapshots from the French TSO
RTE and European networks [59]) using MATPOWER and
PyPSA. In both cases the complete execution of the load
flow function (‘runpf’ for MATPOWER and ‘network.pf’ for
PyPSA) was timed on a computer with Intel Core i5-2520 M
processors at 2.50 GHz each with a tolerance of 10–8 for the
summed error in the apparent power S from equation (2).
The timings were averaged over 10 attempts for each
network. The computation times are similar, thanks to the
fact that both MATPOWER and PyPSA (via the SciPy library
[52]) use the same C library umfpack [60] for solving sparse
linear equation systems, but PyPSA is in all cases slightly
slower due to the overhead of preparing the admittance
matrices in pure Python code. If the admittance matrix
remains the same for several calculations, PyPSA has the
option to avoid recalculating it, which can save some of
this time; further acceleration is possible by using the just-
in-time (jit) compiler numba [61], as has been done in the
pandapower project [9] with success for larger networks.

For the linear optimal power flow (LOPF) the
computation performance depends strongly on the
choice of linear solver. To give an indication of typical
calculation times, if dispatch in the SciGRID model of
the German transmission network described in Section 7
(585 buses, 1423 generators including curtailable wind
and solar at each node, 38 pump storage units, 852
lines, 96 transformers) is optimised over 4 snapshots, it

takes 5 seconds using the COIN-OR Clp free solver on the
computer described above. Extensive timings for different
formulations of the LOPF problem can be found in [30].

6. Comparison to other power system tools
Given the proliferation of software tools available for
modeling power systems, a guide is provided here that
briefly compares PyPSA to other power system tools,
with a particular focus on free software in the Python
programming language. The advantages of Python are
discussed above in Section 3.

Selected features for a selection of different software
tools are compared in Table 3. Many of the tools have
specialised features that are not shown in the table, so this
table should only be treated as an indicative overview of
their features in relation to PyPSA’s features.

Many power system tools concentrate on steady-state,
dynamic (i.e. short-term transient) and single-period OPF
analysis of power networks. They neglect the multi-period
unit commitment, investment optimisation and energy
system coupling which PyPSA offers. In Python we focus
our comparison on two tools: PYPOWER and pandapower.

PYPOWER [8] is a port of an older version of MATPOWER
[6] from Matlab to Python. It does not make strong use
of Python’s object-oriented interface and structures data
using NumPy arrays, which makes it difficult to track
component attributes. It has no functionality to deal
with multi-period OPF, which makes it unsuitable for
unit commitment, storage optimisation or investment
optimisation. This reflects the functionality of older
versions of MATPOWER, but the latest version 6.0 of
MATPOWER includes the MATPOWER Optimal Scheduling
Tool (MOST) [13], which does multi-period OPF, but no
investment optimisation. Unlike PyPSA, PYPOWER has
the ability to do full non-linear OPF for single snapshots.
Pandapower [9] provides a pandas [50] interface to
PYPOWER [8], which makes it easier to use, and adds useful

Figure 3: Calculation times for performing a full load flow on the MATPOWER [6] standard cases using MATPOWER
versus PyPSA.

Brown et al: PyPSAArt. 4, p. 10 of 15

Ta
bl

e
3

: A
 c

om
pa

ri
so

n
of

 s
el

ec
te

d
fe

at
ur

es
 o

f s
el

ec
te

d
so

ft
w

ar
e

to
ol

s
th

at
 a

re
 s

im
ila

r t
o

Py
PS

A
.

So
ft

w
ar

e
Ve

rs
io

n
Ci

ta
ti

on
Fr

ee

So
ft

w
ar

e
G

ri
d

A
na

ly
si

s
Ec

on
om

ic
 A

na
ly

si
s

Po
w

er

Fl
ow

Co

nt
in

ua
ti

on

Po
w

er
 F

lo
w

D
yn

am
ic

A

na
ly

si
s

Tr
an

sp
or

t
M

od
el

Li
ne

ar

O
PF

SC
LO

PF
N

on
lin

ea
r

O
PF

M
ul

ti
-P

er
io

d
O

pt
im

is
at

io
n

U
ni

t
Co

m
m

it
m

en
t

In
ve

st
m

en
t

O
pt

im
is

at
io

n
O

th
er

En

er
gy

Se

ct
or

s

Po
w

er

sy
st

em

to
ol

s

M
AT

PO
W

ER

6.
0

[6
]












N
EP

LA
N

5.

5.
8

[2
]














pa
nd

ap
ow

er

1.
4.

0
[9

]










Po
w

er
Fa

ct
or

y
20

17

[1
]











Po
w

er
W

or
ld

19

[3

]












PS
AT

2.

1.
10

[7

]
















PS
S/

E
33

.1
0

[4
]











PS
S/

SI
N

CA
L

13
.5

[5

]









PY
PO

W
ER

5.
1.

2
[8

]









 P
yP

SA

 0
.1

1.
0



















En
er

gy

sy
st

em

to
ol

s

ca
lli

op
e

0.
5.

2
[1

1]











m
in

po
w

er

4.
3.

10

[1
2]











M
O

ST

6.
0

[1
3]



















oe
m

of

0.
1.

4
[1

4]













O
Se

M
O

SY
S

20
17

[1

5]











PL
EX

O
S

7.
40

0
[1

6]















Po
w

er
G

A
M

A

1.
1

[1
7]









PR
IM

ES

20
17

[1

8]













TI
M

ES

20
17

[1

9]













ur
bs

0.

7
[2

0]













Brown et al: PyPSA Art. 4, p. 11 of 15

functionality such as standard types (on which PyPSA’s
standard types are based), short circuit calculations, state
estimation, and modelling of switches and three-winding
transformers. The last four functions are currently missing
in PyPSA, along with non-linear OPF, but like PYPOWER,
pandapower does not have multi-period OPF functionality.
pandapower is under active development and the PyPSA
team stays in contact with the pandpower team to
exchange tips and features, which is a clear benefit for
both developers and users of free software.

PyPSA differs from more general energy system models
such as calliope [11], oemof [14], OSeMOSYS [15] and
urbs [20] by offering more detailed modelling of power
networks, in particular the physics of power flow according
to the impedances in the network. PyPSA can model a
more general energy network using link components (see
Section 2.4), but cannot, for example, yet do the multi-year
dynamic investment that OSeMOSYS does. The non-free
PLEXOS software [16] comes the closest to matching PyPSA’s
functionality, but PLEXOS is missing non-linear power flow.

These differences with other software tools are the
reason that it was decided to develop a new tool rather
than to extend an existing one. Existing tools for power
flow such as PYPOWER did not have the internal code and
data structures for economic optimisation over multiple
time periods with many inter-temporal actors, whereas
the energy system tools were missing the tight integration
with power flow analysis that we believe is necessary for
future research.

7. Demonstration of features on the SciGRID and
GridKit datasets
On the PyPSA website [26] a large number of examples
of code using PyPSA is linked for reference and to help
users just starting out with the software. These range from
basic small-scale networks demonstrating the features of
PyPSA, to a one-node-per-country model of the European
power system with high shares of renewables [62], to full
transmission network models available as open data from
the SciGRID [63] and GridKit projects [64], [65] which we
demonstrate here.

The SciGRID model of Germany provides geo-referenced
data for substations and transmission lines (220 kV and

above). In one code example, data from openly-available
sources on power plant locations and capacities, load
distribution and time series are added to the SciGRID
data so that load flow calculations can be carried out.
The results of one such simulation for Germany with
nodal pricing is shown in Figure 4. In this snapshot there
was a large amount of zero-marginal-cost wind feed-in
suppressing the locational marginal prices (λn,t from
equation (12)) in the North of Germany. Transmission
bottlenecks in the middle of Germany prevent the
transportation of this cheap electricity to the South, where
more expensive conventional generators set the price. The
linearly-optimised dispatch was then fed into a full non-
linear power flow calculation where each bus was set to
maintain nominal voltage; the resulting reactive power
feed-in is also shown in Figure 4.

The data quality for the transmission grid in
OpenStreetMap outside Germany is not of uniform
quality, so for the European grid, an extract of the
ENTSO-E interactive map [66] was made [64] using GridKit
[65]. The details of how load, conventional power plants
and renewable generation time series and expansion
potentials were added to the grid data are provided in
a forthcoming paper [67]. The result of generation and
storage investment optimisation for a clustering of the
network from 5000 buses down to 256 buses, allowing
no grid expansion and assuming a CO2 reduction of 95%
compared to 1990 levels, is shown in Figure 5. The lack
of grid expansion forces some balancing of renewable
variability locally with storage. Short-term battery storage
(grey) combines with solar power (yellow) in Southern
Europe, while longer-term hydrogen storage (purple) pairs
with wind power (blue) in Northern Europe. This system
has an average cost of € 82/MWh. If the grid is optimally
expanded, much of the storage can be eliminated and
costs are as low as € 65/MWh [32].

8. Conclusions
In this paper a new toolbox has been presented for
simulating and optimising power systems. Python for
Power System Analysis (PyPSA) provides components
to model variable renewable generation, conventional
power plants, storage units, coupling to other energy

Figure 4: Left: Locational marginal prices (λn,t from equation (12)) for Germany in an hour with high wind and low load;
Middle: Line loading during this hour: highly loaded lines in the middle of Germany prevent the transport of cheap
wind energy to consumers in the South; Right: Reactive power feed-in (positive in red, negative in blue) necessary to
keep all buses at unit nominal voltage.

Brown et al: PyPSAArt. 4, p. 12 of 15

sectors and multiply-connected AC and DC networks over
multiple periods for the optimisation of both operation
and investment. Tools are also provided for steady-
state analysis with the full load flow equations. PyPSA’s
performance for large datasets, comparisons with other
software packages and several example applications are
demonstrated.

As free software, the code of PyPSA can easily be
inspected and extended by users, thereby contributing
to further research and also transparency in power
system modelling. Given that public acceptance of new
infrastructure is often low, it is hoped that transparent
modelling can contribute to public understanding of the
various options we face when designing a sustainable
energy system.

(2) Availability
Operating system
GNU/Linux, Mac OSX, Windows and any other operating
systems running Python.

Programming language
Python. PyPSA has been tested with versions 2.7 and 3.5
of Python.

Additional system requirements
None.

Dependencies
PyPSA is written in pure Python and is available in the
Python Package Index (PyPI). PyPSA depends on the
following Python libraries that are not in the Python
standard library, but all of which are available in PyPI:

•	 NumPy [51]
•	 SciPy [52]
•	 pandas [50] (version 0.18 or later)
•	 Pyomo [53, 54]
•	 networkx (optional for some graph topology algo-

rithms; version 1.10 or later)
•	 pytest (optional for testing)
•	 matplotlib (optional for plotting)
•	 plotly (optional for interactive plotting)

List of contributors
The exact code contributions of each person to version
0.11.0 of PyPSA can be found in the GitHub repository [24].

•	 Tom Brown, Frankfurt Institute for Advanced Studies
•	 Jonas Hörsch, Frankfurt Institute for Advanced Stud-

ies
•	 David Schlachtberger, Frankfurt Institute for

Advanced Studies
•	 João Gorenstein Dedecca, Delft University of Technol-

ogy
•	 Nis Martensen, Energynautics GmbH
•	 Konstantinos Syranidis, Forschungszentrum Jülich

Software location
Archive
Name: Zenodo
Persistent identifier: https://doi.org/10.5281/
zenodo.1034551
Licence: GPLv3 [21]
Publisher: Zenodo
Version published: 0.11.0
Date published: 21/10/17

Figure 5: Results of optimisation of generation and storage capacities in Europe to reduce CO2 emissions in the
European electricity sector by 95% compared to 1990 levels [32]. The grid topology is based on the GridKit network
for Europe, clustered from 5000 buses to 256 buses.

https://doi.org/10.5281/zenodo.1034551
https://doi.org/10.5281/zenodo.1034551

Brown et al: PyPSA Art. 4, p. 13 of 15

Code repository
Name: GitHub
Persistent identifier: https://github.com/PyPSA/PyPSA
Licence: GPLv3 [21]
Date published: 21/10/17

Language
English

(3) Reuse potential
Modelling of the electrical power system is becoming
increasingly important thanks to the liberalisation of
the power system, the rise of variable renewable energy
to combat global warming, and the electrification of
transport and heating. PyPSA provides a modular, object-
oriented framework for simulating power systems that
can be used for research and case studies, and also easily
extended beyond its existing functionality. To maximise
its reuse potential, PyPSA is written as abstractly as
possible, making no assumptions about network
topology, infrastructure parameters or asset technologies.
Judging by traffic on the forum [27], the website [26] and
private communications, PyPSA is already being used by
more than a dozen research institutes. Users have already
extended it for integer transmission expansion [28, 34]
and in the grid planning tool open_eGo [35].

Support for new users is provided on the PyPSA website
[26] in the form of documentation and extensive usage
examples, as well as on the PyPSA forum [27].

Users can contribute towards the code by raising issues
or making pull requests on the GitHub repository [24], or
by interacting with the PyPSA developers on the PyPSA
forum [27].

Acknowledgements
We thank Stefan Schramm for supporting the development
of PyPSA. We thank the community of PyPSA users for
bug reports, improvement suggestions and their general
friendly support and encouragement for the further
development of PyPSA.

Competing Interests
The authors have no competing interests to declare.

References
1.	 DIgSILENT GmbH 2017 “PowerFactory.” http://

digsilent.de/.
2.	 NEPLAN AG 2017 “PowerFactory.” http://www.

neplan.ch/.
3.	 PowerWorld Corporation 2017 “PowerWorld.”

https://www.powerworld.com/.
4.	 Siemens AG 2017 “PSS/E.” http://w3.siemens.com/

smartgrid/global/en/products-systems-solutions/
software-solutions/planning-data-management-
software/planning-simulation/Pages/PSS-E.aspx.

5.	 Siemens AG 2017 “PSS/SINCAL.” http://w3.siemens.
com/smartgrid/global/en/products-systems-
solutions/software-solutions/planning-data-
management-software/planning-simulation/pss-
sincal/pages/pss-sincal.aspx.

6.	 Zimmerman, R D, Murillo-Sanchez, C E and
Thomas, R J 2011 “MATPOWER: Steady-state
operations, planning and analysis tools for power
systems research and education.” IEEE Trans. Power
Syst., 26: 12. [Online]. DOI: https://doi.org/10.1109/
TPWRS.2010.2051168

7.	 Milano, F “An open source power system analysis
toolbox.” IEEE Transactions on Power Systems, 20(3):
1199–1206. Aug 2005. [Online]. DOI: https://doi.
org/10.1109/TPWRS.2005.851911

8.	 Lincoln, R 2017 “PYPOWER.” https://github.com/
rwl/PYPOWER.

9.	 Thurner, L, Scheidler, A, Schäfer, F, Menke, J-H,
Dollichon, J, Meier, F, Meinecke, S and Braun, M
2017 pandapower – an Open Source Python Tool for
Convenient Modeling, Analysis and Optimization of
Electric Power Systems. Preprint. [Online]. Available:
https://arxiv.org/abs/1709.06743.

10.	Open Electrical Wiki 2017 “Power Systems Analysis
Software.” http://www.openelectrical.org/wiki/index.
php?title=Power_Systems_Analysis_Software.

11.	Pfenninger, S 2017 “Dealing with multiple decades of
hourly wind and PV time series in energy models: A
comparison of methods to reduce time resolution and
the planning implications of inter-annual variability.”
Applied Energy, 197: 1–13. [Online]. DOI: https://doi.
org/10.1016/j.apenergy.2017.03.051

12.	Greenhall, A and Christie, R “Minpower: A
power systems optimization toolkit.” In: 2012
IEEE Power and Energy Society General Meeting,
1–6. July 2012. [Online]. DOI: https://doi.
org/10.1109/PESGM.2012.6344667

13.	Murillo-Sanchez, C E, Zimmerman, R D, Anderson,
C L and Thomas, R J 2013 “Secure planning and
operations of systems with stochastic sources, energy
storage and active demand.” IEEE Transactions on
Smart Grid, 4: 2220–2229. [Online]. DOI: https://doi.
org/10.1109/TSG.2013.2281001

14.	Hilpert, S, Günther, S, Kaldemeyer, C, Krien, U,
Plessmann, G, Wiese, F and Wingenbach, C 2017
“Addressing energy system modeling challenges: The
contribution of the open energy modelling framework
(oemof).” Preprints. [Online]. DOI: https://doi.
org/10.20944/preprints201702.0055.v1

15.	Howells, M, Rogner, H, Strachan, N, Heaps, C,
Huntington, H, Kypreos, S, Hughes, A, Silveira,
S, DeCarolis, J, Bazillian, M and Roehrl, A 2011
“Osemosys: The open source energy modeling
system: An introduction to its ethos, structure and
development.” Energy Policy, 39(10): 5850–5870.
sustainability of biofuels. [Online]. DOI: https://doi.
org/10.1016/j.enpol.2011.06.033

16.	Energy Exemplar 2017 “PLEXOS.” http://
energyexemplar.com/.

17.	Svendsen, H G and Spro, O C 2016 “PowerGAMA:
A new simplified modelling approach for analyses
of large interconnected power systems, applied to
a 2030 Western Mediterranean case study.” Journal
of Renewable and Sustainable Energy, 8(5): 055501.
[Online]. DOI: https://doi.org/10.1063/1.4962415

https://github.com/PyPSA/PyPSA
http://digsilent.de/
http://digsilent.de/
http://www.neplan.ch/
http://www.neplan.ch/
https://www.powerworld.com/
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-data-management-software/planning-simulation/Pages/PSS-E.aspx
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2005.851911
https://doi.org/10.1109/TPWRS.2005.851911
https://github.com/rwl/PYPOWER
https://github.com/rwl/PYPOWER
https://arxiv.org/abs/1709.06743
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software
https://doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1016/j.apenergy.2017.03.051
https://doi.org/10.1109/PESGM.2012.6344667
https://doi.org/10.1109/PESGM.2012.6344667
https://doi.org/10.1109/TSG.2013.2281001
https://doi.org/10.1109/TSG.2013.2281001
https://doi.org/10.20944/preprints201702.0055.v1
https://doi.org/10.20944/preprints201702.0055.v1
https://doi.org/10.1016/j.enpol.2011.06.033
https://doi.org/10.1016/j.enpol.2011.06.033
http://energyexemplar.com/
http://energyexemplar.com/
https://doi.org/10.1063/1.4962415

Brown et al: PyPSAArt. 4, p. 14 of 15

18.	“The PRIMES Model.” 2009 http://www.e3mlab.ntua.
gr/, NTUA, Tech. Rep.

19.	Loulou, R, Remne, U, Kanudia, A, Lehtila, A
and Goldstein, G 2005 “Documentation for the
TIMES Model – PART I 1–78.” ETSAP, Tech. Rep.
[Online]. Available: http://iea-etsap.org/index.php/
documentation.

20.	Dorfner, J, Dorfner, M, Candas, S, Müller, S,
Özsahin, Y, Zipperle, T and Herzog, S Icedkk, and
WYAUDI, “urbs: v0.6.” Aug. 2016. [Online]. DOI:
https://doi.org/10.5281/zenodo.60484

21.	“GNU General Public Licence.” Free Software
Foundation. [Online]. Available: http://www.gnu.org/
licenses/gpl.html.

22.	Pfenninger, S, DeCarolis, J, Hirth, L, Quoilin, S and
Staffell, I 2017 “The importance of open data and
software: Is energy research lagging behind?” Energy
Policy, 101: 211–215. [Online]. DOI: https://doi.
org/10.1016/j.enpol.2016.11.046

23.	Pfenninger, S 2017 “Energy scientists must show their
workings.” Nature, 542: 393. [Online]. DOI: https://
doi.org/10.1038/542393a

24.	“Python for Power System Analysis (PyPSA) GitHub
Repository.” [Online]. Available: https://github.com/
PyPSA/PyPSA.

25.	Brown, T, Hörsch, J and Schlachtberger, D “Python
for Power System Analysis (PyPSA) Version 0.11.0.”
Apr. 2017. [Online]. DOI: https://doi.org/10.5281/
zenodo.1034551

26.	Brown, T, Hörsch, J and Schlachtberger, D “Python
for Power System Analysis (PyPSA) Website.” [Online].
Available: https://pypsa.org/.

27.	“Python for Power System Analysis (PyPSA) Forum.”
[Online]. Available: https://groups.google.com/
forum/#!forum/pypsa.

28.	Dedecca, J G, Hakvoort, R A and Herder, P M
2017 “Transmission expansion simulation for the
European Northern Seas offshore grid.” Energy, 125:
805–824. [Online]. DOI: https://doi.org/10.1016/j.
energy.2017.02.111

29.	Brown, T, Schlachtberger, D, Kies, A and Greiner, M
2016 “Sector coupling in a simplified model of a highly
renewable European energy system.” In: Proceedings of
15th Wind Integration Workshop.

30.	Hörsch, J, Ronellenfitsch, H, Witthaut, D and
Brown, T “Linear Optimal Power Flow Using Cycle
Flows.” ArXiv e-prints. Apr. 2017. [Online]. Available:
https://arxiv.org/abs/1704.01881.

31.	Schlachtberger, D, Brown, T, Schramm, S and
Greiner, M 2017 “The benefits of cooperation in
a highly renewable European electricity network.”
Energy, 134: 469–481. [Online]. DOI: https://doi.
org/10.1016/j.energy.2017.06.004

32.	Hörsch, J and Brown, T 2017 “The role of spatial scale
in joint optimisations of generation and transmission
for European highly renewable scenarios.” In:
Proceedings of 14th International Conference on
the European Energy Market (EEM 2017). [Online].
Available: https://arxiv.org/abs/1705.07617.

33.	Groissböck, M and Gusmao, A “Impact of high
renewable penetration scenarios on system reliability:
two case studies in the Kingdom of Saudi Arabia.”
ArXiv e-prints. Sep. 2017. [Online]. Available: https://
arxiv.org/abs/1709.03761.

34.	Dedecca, J G 2017 “Mixed integer modification of the
PyPSA package.” https://github.com/jdedecca/MILP_
PyPSA.

35.	“open eGo GitHub Repository.” 2017. [Online].
Available: https://github.com/openego.

36.	Heuck, K, Dettmann, K-D and Schulz, D 2013
Elektrische Energieversorgung, 9th ed. Berlin
Heidelberg New York: Springer-Verlag. DOI: https://
doi.org/10.1007/978-3-8348-2174-4

37.	Oswald, B and Oeding, D 2004 Elektrische Kraftwerke
und Netze., 6th ed. Berlin Heidelberg New York:
Springer-Verlag.

38.	Oswald, B 2005 “Vorlesung Elektrische
Energieversorgung I: Skript Transformatoren.”
[Online]. Available: http://antriebstechnik.fh-
stra lsund.de/1024x768/Dokumentenframe/
Versuchsanleitungen/EMA/Trafo.pdf.

39.	Grainger, J J and Stevenson, W D, Jr. 1994 Power
System Analysis. New York: McGraw-Hill.

40.	Purchala, K, Meeus, L, Dommelen, D V and
Belmans, R “Usefulness of DC power flow for active
power flow analysis.” In: IEEE Power Engineering Society
General Meeting, 1: 454–459. June 2005. [Online].
DOI: https://doi.org/10.1109/PES.2005.1489581

41.	Stott, B, Jardim, J and Alsac, O 2009 “Dc power
flow revisited.” IEEE Trans. Power Syst., 24(3):
1290. [Online]. DOI: https://doi.org/10.1109/
TPWRS.2009.2021235

42.	Kleinhans, D “Towards a systematic characterization
of the potential of demand side management.” ArXiv
e-prints. Jan. 2014. [Online]. Available: https://arxiv.
org/abs/1401.4121.

43.	Hagspiel, S, Jägemann, C, Lindenburger, D, Brown,
T, Cherevatskiy, S and Tröster, E 2014 “Cost-optimal
power system extension under flow-based market
coupling.” Energy, 66: 654–666. [Online]. DOI: https://
doi.org/10.1016/j.energy.2014.01.025

44.	Bahiense, L, Oliveira, G C, Pereira, M and Granville,
S “A mixed integer disjunctive model for transmission
network expansion.” IEEE Transactions on Power
Systems, 16(3): 560–565. Aug 2001. [Online]. DOI:
https://doi.org/10.1109/59.932295

45.	Petrović, S N and Karlsson, K B 2016 “Residential
heat pumps in the future Danish energy system.”
Energy, 114: 787–797. [Online]. DOI: https://doi.
org/10.1016/j.energy.2016.08.007

46.	Wollenberg, B and Wood, A 1996 Power Generation,
Operation, and Control. John Wiley & Sons.

47.	Trias, A “The holomorphic embedding load flow
method.” In: Power and Energy Society General
Meeting, 2012 IEEE, 1–8. July 2012. DOI: https://doi.
org/10.1109/PESGM.2012.6344759

48.	Vera, S P 2017 “Gridcal.” https://github.com/SanPen/
GridCal.

http://www.e3mlab.ntua.gr/
http://www.e3mlab.ntua.gr/
http://iea-etsap.org/index.php/documentation
http://iea-etsap.org/index.php/documentation
https://doi.org/10.5281/zenodo.60484
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
https://doi.org/10.1016/j.enpol.2016.11.046
https://doi.org/10.1016/j.enpol.2016.11.046
https://doi.org/10.1038/542393a
https://doi.org/10.1038/542393a
https://github.com/PyPSA/PyPSA
https://github.com/PyPSA/PyPSA
https://doi.org/10.5281/zenodo.1034551
https://doi.org/10.5281/zenodo.1034551
https://pypsa.org/
https://groups.google.com/forum/#!forum/pypsa
https://groups.google.com/forum/#!forum/pypsa
https://doi.org/10.1016/j.energy.2017.02.111
https://doi.org/10.1016/j.energy.2017.02.111
https://arxiv.org/abs/1704.01881
https://doi.org/10.1016/j.energy.2017.06.004
https://doi.org/10.1016/j.energy.2017.06.004
https://arxiv.org/abs/1705.07617
https://arxiv.org/abs/1709.03761
https://arxiv.org/abs/1709.03761
https://github.com/jdedecca/MILP_PyPSA
https://github.com/jdedecca/MILP_PyPSA
https://github.com/openego
https://doi.org/10.1007/978-3-8348-2174-4
https://doi.org/10.1007/978-3-8348-2174-4
http://antriebstechnik.fh-stralsund.de/1024x768/Dokumentenframe/Versuchsanleitungen/EMA/Trafo.pdf
http://antriebstechnik.fh-stralsund.de/1024x768/Dokumentenframe/Versuchsanleitungen/EMA/Trafo.pdf
http://antriebstechnik.fh-stralsund.de/1024x768/Dokumentenframe/Versuchsanleitungen/EMA/Trafo.pdf
https://doi.org/10.1109/PES.2005.1489581
https://doi.org/10.1109/TPWRS.2009.2021235
https://doi.org/10.1109/TPWRS.2009.2021235
https://arxiv.org/abs/1401.4121
https://arxiv.org/abs/1401.4121
https://doi.org/10.1016/j.energy.2014.01.025
https://doi.org/10.1016/j.energy.2014.01.025
https://doi.org/10.1109/59.932295
https://doi.org/10.1016/j.energy.2016.08.007
https://doi.org/10.1016/j.energy.2016.08.007
https://doi.org/10.1109/PESGM.2012.6344759
https://doi.org/10.1109/PESGM.2012.6344759
https://github.com/SanPen/GridCal
https://github.com/SanPen/GridCal

Brown et al: PyPSA Art. 4, p. 15 of 15

49.	“Python programming language, version 3.5.” 2017
https://www.python.org/.

50.	McKinney, W 2010 “Data structures for statistical
computing in Python.” In: Proceedings of the 9th Python
in Science Conference, 51–56. [Online]. Available:
http://conference.scipy.org/proceedings/scipy2010/
mckinney.html.

51.	van der Walt, S, Colbert, S C and Varoquaux, G 2011
“The NumPy array: A structure for efficient numerical
computation.” Computing in Science & Engineering,
13: 22–30. [Online]. DOI: https://doi.org/10.1109/
MCSE.2011.37

52.	Jones, E, Oliphant, T, Peterson, P, et al. 2001 “SciPy:
Open source scientific tools for Python.” [Online].
Available: http://www.scipy.org/.

53.	Hart, W E, Watson, J-P and Woodruff, D L 2011
“Pyomo: modeling and solving mathematical
programs in Python.” Mathematical Programming
Computation, 3(3): 219–260. [Online]. DOI: https://
doi.org/10.1007/s12532-011-0026-8

54.	Hart, W E, Laird, C, Watson, J-P and Woodruff,
D L 2012 Pyomo–optimization modeling in python.
Springer Science & Business Media, 67. [Online]. DOI:
https://doi.org/10.1007/978-1-4614-3226-5

55.	Pérez, F and Granger, B E 2007 “IPython: A System
for Interactive Scientific Computing.” Computing in
Science & Engineering, 9: 21–29. [Online]. DOI: https://
doi.org/10.1109/MCSE.2007.53

56.	Hunter, J D 2007 “Matplotlib: A 2d graphics
environment.” Computing in Science & Engineering,
9: 90–95. [Online]. DOI: https://doi.org/10.1109/
MCSE.2007.55

57.	P. T. Inc. 2015 Collaborative data science. Montréal,
QC. [Online]. Available: https://plot.ly.

58.	Krekel, H, et al. 2017 “pytest.” [Online]. Available:
https://pytest.org/.

59.	Josz, C, Fliscounakis, S, Maeght, J and Panciatici,
P “Data in MATPOWER and QCQP Format: iTesla,

RTE Snapshots, and PEGASE.” ArXiv e-prints.
Mar. 2016. [Online]. Available: https://arxiv.org/
abs/1603.01533.

60.	Davis, T A “Algorithm 832: Umfpack v4.3—an
unsymmetric-pattern multifrontal method.” ACM
Trans. Math. Softw., 30(2): 196–199. Jun. 2004.
[Online]. DOI: https://doi.org/10.1145/992200.
992206

61.	Lam, S K, Pitrou, A and Seibert, S 2015 “Numba:
A llvm-based python jit compiler.” In: Proceedings
of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, ser., 7: 1–7: 6 LLVM ’15. New
York, NY, USA: ACM. [Online]. DOI: https://doi.
org/10.1145/2833157.2833162

62.	Schlachtberger, D, Brown, T, Schramm, S and
Greiner, M “Supplementary Data: The Benefits
of Cooperation in a Highly Renewable European
Electricity Network.” Jun. 2017. [Online]. DOI: https://
doi.org/10.5281/zenodo.804338

63.	Matke, C, Medjroubi, W and Kleinhans, D “SciGRID
– An Open Source Reference Model for the European
Transmission Network (v0.2).” Jul. 2016. [Online].
Available: http://www.scigrid.de.

64.	Wiegmans, B “GridKit extract of ENTSO-E interactive
map.” Jun. 2016. [Online]. DOI: https://doi.
org/10.5281/zenodo.55853

65.	Wiegmans, B 2015 “Improving the topology of an
electric network model based on open data.” Master’s
thesis, Energy and Sustainability Research Institute,
University of Groningen. [Online]. Available: https://
www.scigrid.de/publications/16_1_BWiegmans_
Master_Thesis_2015.pdf.

66.	“ENTSO-E Interactive Transmission System Map.” Jan.
2016. [Online]. Available: https://www.entsoe.eu/
map/Pages/default.aspx.

67.	Hörsch, J, Hofmann, F, Schlachtberger, D and
Brown, T 2017 PyPSA-Eur: An open optimization model
of the European transmission system, in preparation.

How to cite this article: Brown, T, Hörsch, J and Schlachtberger, D 2018 PyPSA: Python for Power System Analysis. Journal
of Open Research Software, 6: 4. DOI: https://doi.org/10.5334/jors.188

Submitted: 02 August 2017 Accepted: 12 November 2017 Published: 16 January 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://www.python.org/
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1007/978-1-4614-3226-5
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
https://pytest.org/
https://arxiv.org/abs/1603.01533
https://arxiv.org/abs/1603.01533
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/992200.992206
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.5281/zenodo.804338
https://doi.org/10.5281/zenodo.804338
http://www.scigrid.de
https://doi.org/10.5281/zenodo.55853
https://doi.org/10.5281/zenodo.55853
https://www.scigrid.de/publications/16_1_BWiegmans_Master_Thesis_2015.pdf
https://www.scigrid.de/publications/16_1_BWiegmans_Master_Thesis_2015.pdf
https://www.scigrid.de/publications/16_1_BWiegmans_Master_Thesis_2015.pdf
https://www.entsoe.eu/map/Pages/default.aspx
https://www.entsoe.eu/map/Pages/default.aspx
https://doi.org/10.5334/jors.188
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	1. Introduction
	2. Functionality
	2.1. Components
	2.2. Power flow without optimisation
	2.2.1. Power flow equations for AC networks
	2.2.2. Power flow equations for DC networks
	2.2.3. Linearised power flow equations for AC networks
	2.2.4. Linearised power flow equations for DC networks

	2.3. Optimisation with linear power flow equations
	2.4. Coupling to other energy sectors
	2.5. Unit Commitment
	2.6. Security-Constrained LOPF
	2.7. Network clustering
	2.8. Planned new features

	3. Implementation and architecture
	4. Quality control
	5. Performance
	6. Comparison to other power system tools
	7. Demonstration of features on the SciGRID and GridKit datasets
	8. Conclusions

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Table 1
	Table 2
	Table 3
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

