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(1) Overview
1. Introduction
Power system tools model the interactions between the 
electrical grid and the consumers and generators which 
use the grid. The importance of software modelling of 
the grid has risen in recent years given the increase in 
distributed and fluctuating wind and solar generation, 
and the increasing electrification of all energy demand. 
On the generation side, variable renewable generation 
causes loading in parts of the grid where it was never 
expected, and introduces new stochastic influences 
on the flow patterns. On the demand side, the need to 
decarbonise the transport and heating sectors is leading 
to the electrification of these sectors and hence higher 
electrical demand, replacing internal combustion engines 
with electric motors in the transport sector, and replacing 
fossil fuel boilers with heat pumps, resistive heaters 
and cogeneration for low-temperature space and water 
heating. In addition, the increasing deployment of storage 
technologies introduces many network users which are 
both consumers and generators of energy.

The increasing complexity of the electricity system 
requires new tools for power system modelling. Many 
of the tools currently used for power system modelling 
were written in the era before widespread integration of 
renewable energy and the electrification of transport and 
heating. They therefore typically focus on network flows 

in single time periods. Examples of such tools include 
commercial products like DIgSILENT PowerFactory [1], 
NEPLAN [2], PowerWorld [3], PSS/E [4] and PSS/SINCAL 
[5], and open tools such as MATPOWER [6], PSAT [7], 
PYPOWER [8] and pandapower [9] (see [10] for a full list of 
power system analysis tools).

The consideration of multiple time periods is important 
on the operational side for unit commitment of 
conventional generators and the optimisation of storage 
and demand side management, and on the investment 
side for optimising infrastructure capacities over 
representative load and weather situations. Several tools 
have subsets of these capabilities, such as calliope [11], 
manpower [12], MOST [13], oemof [14], OSeMOSYS [15], 
PLEXOS [16], PowerGAMA [17], PRIMES [18], TIMES [19] 
and urbs [20], but their representations of electrical grids 
are often simplified.

Python for Power System Analysis (PyPSA), the tool 
presented in this paper, was developed at the Frankfurt 
Institute for Advanced Studies to bridge the gap between 
power system analysis software and general energy 
system modelling tools. PyPSA can model the operation 
and optimal investment of the energy system over 
multiple periods. It has models for the unit commitment 
of conventional generators, time-varying renewable 
generators, storage units, all combinations of direct and 
alternating current electricity networks, and the coupling 
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of electricity to other energy sectors, such as gas, heating 
and transport. It can perform full load flow calculations 
and linearised optimal load flow, including under 
consideration of security constraints. It was written from 
the start with variable renewables, storage and sector-
coupling in mind, so that it performs well with large 
networks and long time series.

Given the complexity of power system tools and the 
different needs of different users, it is crucial that such 
tools are both transparent in what they do and easily 
extendable by the user. To this end, PyPSA was released 
as free software under the GNU General Public Licence 
Version 3 (GPLv3) [21]. This means that the user is free 
to inspect, use and modify the code, provided that if they 
redistribute the software, they also provide the source 
code. Free software and open data also guarantee that 
research results can be reproduced by any third party, 
which is important given the large investment decisions 
that will need to be made on the basis of energy system 
modelling to reduce greenhouse gas emissions and 
combat global warming [22], [23].

PyPSA is available online in the Python Package Index 
(PyPI), on GitHub [24] and is archived on Zenodo [25]. 
Documentation and examples are available on PyPSA’s 
website [26]. PyPSA is already used by more than a dozen 
research institutes and companies worldwide, 70 people 
are registered on the forum [27] and the website [26] 
has been visited by people from over 160 countries. As of 
October 2017 it has been used in six research papers [28, 
29, 30, 31, 32, 33]. Users have already extended PyPSA for 
integer transmission expansion [28, 34] and in the grid 
planning tool open_eGo [35].

This paper describes version 0.11.0 of PyPSA [25]. 
In Section 2 the mathematical functionality of PyPSA 
is described, while in Section 3 the focus shifts to the 
implementation in software. Quality control is discussed 
in Section 4; the computational performance of PyPSA 
is described in Section 5; and then its functionality is 
compared with other software in Section 6. Several 
example applications are given in 7 before conclusions 
are drawn in 8.

2. Functionality
In this section the basic components, power flow, 
linear optimal power flow, energy system optimisation, 
unit commitment, contingency modelling and other 
functionality of PyPSA are described. The definitions of 
the main variables used in this section can be found in 
Table 1, along with units where applicable.

2.1. Components
PyPSA’s representation of the power system is built by 
connecting the components listed in Table 2.

Buses are the fundamental nodes to which all other 
components attach. Their mathematical role is to enforce 
energy conservation at the bus at all times (essentially 
Kirchhoff’s Current Law).

Loads, generators, storage units, stores and shunt 
impedances attach to a single bus and determine the 
power balance at the bus. Loads represent a fixed power 

demand; a generator’s dispatch can be optimised within 
its power availaiblity; stores can shift power from one 
time to another with a standing loss efficiency for energy 
leakage; storage units behave like stores, but they can also 
have efficiency losses and power limits upon charging 
and discharging; finally shunt impedances have a voltage-
dependent power consumption.

Lines and transformers connect two buses with a given 
impedance. Power flows through lines and transformers 
according to the power imbalances at the buses and the 
impedances in the network. Lines and transformers are 
referred to collectively as ‘passive branches’ to distinguish 
them from controllable link branches. The impedances 
of the passive branches are modeled internally using 
the equivalent PI model. The relation between the series 
impedance z = r + jx, the shunt admittance y = g + jb, the 
transformer tap ratio τ, the transformer phase shift θ shift, 
and the complex currents I0, I1 and complex voltages V0, V1 
at the buses labelled 0 and 1 is given by
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(For lines, for which neither the tap ratio or the phase 
shift are relevant, set τ = 1 and θ shift = 0 in this equation.) 
The equivalent circuit is shown in Figure 1. This circuit 
is for the case where the tap-changer is on the primary 
side; a similar equation and figure for the case where 
the tap-changer is on the secondary side is given in the 
documentation [26]. The line model defaults to the PI 
model, while the transformer model defaults to the more 
accurate T model, which is converted to the PI model using 
the standard delta-wye transformation. For convenience 
standard types for lines and transformers in networks at 
50 Hz are provided following the conversion formula from 
nameplate parameters to impedances and the typical 
parameters provided in pandapower [9], so that the user 
does not have to input the impedances manually. The 
typical parameters in pandapower are based on [36, 37, 
38].

Links connect two buses with a controllable active power 
dispatch that can be set by the user or optimised by PyPSA. 
Links can be used to represent point-to-point high voltage 
direct current (HVDC) lines, import-export capacities in 
transport models such as Net-Transfer-Capacity (NTC) 
models, or general energy conversion processes with a 
given efficiency, such as resistive heaters or heat pumps 
(from electricity to heat) or gas boilers (from gas to heat). 
Their efficiency can also be time-varying (e.g. to represent 
the ambient temperature dependence of a heat pump’s 
coefficient of performance). Networks of links implement 
Kirchoff’s Current Law (energy conservation at each 
bus), but not Kirchoff’s Voltage Law, which is obeyed by 
networks of passive branches.

A generator can also be represented in terms of more 
basic components: a bus is added for the fuel source with 
a store to represent the amount of fuel available. It is then 
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Table 1: Nomenclature.

Variable Units Definition

n, m  Bus labels

r  Generator energy carrier labels (e.g. wind, solar, gas, etc.)

s  Storage energy carrier labels (e.g. battery, hydrogen, etc.)

k, ℓ  Branch labels

c  Cycle labels

t  Snapshot/time point labels

er/s tCO2eq/MWhth CO2-equivalent emissions of energy carrier r or s

wt h Weighting of snapshot in objective function

gn,r,t MW Dispatch of generator at bus n with carrier r at time t

Gn,r MW Power capacity of generator n, r

g–n,r,t MW/MW Power availability per unit of generator capacity

ηn,r MWel/MWth Efficiency of generator

un,r,t  On/off binary status for generator unit commitment

min_ down
,n rT h Generator minimum down time

min_up
,n rT h Generator minimum up time

run,r (MW/MW)/h Generator ramp up limit per unit of capacity

rdn,r (MW/MW)/h Generator ramp down limit per unit of capacity

cn,r €/MW Generator capital (fixed) cost

on,r €/MWh Generator operating (variable) cost

sucn,r (,t) € Generator start up cost (in time t)

sdcn,r (,t) € Generator shut down cost (in time t)

hn,s,t MW Dispatch of storage at bus n with carrier s at time t

Hn,s MW Power capacity of storage n, s

en,s,t MWh Storage state of charge (energy level)

En,s MWh Storage energy capacity

cn,s €/MW Storage power capacity cost

ĉn,s €/MWh Storage energy capacity cost

on,s €/MWh Storage dispatch cost

dn,t MW Electrical load at bus n at time t

λn,t €/MWh Marginal price at bus n at time t

Vn kV Complex voltage at bus n

θn rad Voltage angle at bus n

In kA Complex current at bus n

Pn MW Total active power injection at bus n

Qn MVAr Total reactive power injection at bus n

Sn MVA Total apparent power injection at bus n

f
ℓ,t MW Branch active power flow

F
ℓ

 MW Branch active power rating

c
ℓ

 €/MW Branch capital cost

x
ℓ

 Ω Branch series reactance

r
ℓ

 Ω Branch series resistance
(contd.)
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connected to the electricity bus with a link to represent 
the energy conversion loss. Similarly a storage unit can be 
represented with an additional bus for the storage medium 
with a store attached, and then two links connected to the 
electricity bus to represent charging and discharging.

Energy enters the model in generators; in storage units 
or stores with higher energy levels before than after the 
simulation; and in any components with efficiency greater 
than 1 (such as heat pumps). Energy leaves the model in 
loads; in storage units or stores with higher energy levels 

Variable Units Definition

z
ℓ

 Ω Branch series impedance

y
ℓ

 S Branch shunt admittance

τ
ℓ

 Transformer tap ratio
shiftθ rad Transformer phase shift

η
ℓ,t MW/MW Efficiency loss of a link

Knℓ  N × L incidence matrix

C
ℓc  L × (L – N + 1) cycle matrix

Ynm S Bus admittance matrix

B
ℓk S Diagonal L × L matrix of branch susceptances

BODF
ℓk Branch Outage Distribution Factor

Table 2: PyPSA components.

Network  Container for all other network components.

Bus Fundamental nodes to which all other components attach.

Carrier Energy carrier (e.g. wind, solar, gas, etc.).

Load A consumer of energy.

Generator Generator whose feed-in can be flexible subject to minimum loading or minimum down and up times, or 
variable according to a given time series of power availability.

Storage Unit A device which can shift energy from one time to another, subject to efficiency losses.

Store A more fundamental storage object with no restrictions on charging or discharging power.

Shunt Impedance  An impedance in shunt to a bus.

Line A branch which connects two buses of the same voltage.

Transformer A branch which connects two buses of different voltages.

Link A branch with a controllable power flow between two buses.

Figure 1: Electrical property definitions for passive branches (lines and transformers).
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after than before the simulation; and in lines, links or 
storage units with efficiency less than 1.

2.2. Power flow without optimisation
In a power flow calculation, the user specifies the power 
dispatch of all dispatchable components (loads, generators, 
storage units, stores and links) and then PyPSA computes 
the resulting voltages in the network and hence the power 
flows in passive branches (lines and transformers) based 
on their impedances.

2.2.1. Power flow equations for AC networks
A power flow calculation for an alternating current (AC) 
network ensures that for all buses labelled by n we have

	
n n n n nm m

m

S V I V Y V∑∗ ∗ ∗= = � (2)

where Sn = Pn + jQn is the apparent power injected at 
the bus, In is the complex current and nj

n nV V e θ=  is 
the complex voltage, whose rotating angle is measured 
relative to a chosen slack bus. Ynm is the bus admittance 
matrix, which is constructed for all buses based on the 
contributions from the individual branch admittance 
matrices from equation (1) and any shunt impedances at 
the nodes, following the example of MATPOWER [6].

The inputs and outputs for the buses are given as 
follows:

•	 For the chosen slack bus n = 0, it is assumed that the 
voltage magnitude |V0| and the voltage angle θ0 are 
given. PyPSA must find the powers P0 and Q0.

•	 For PQ buses, Pn and Qn are given; |Vn| and θn are to be 
found.

•	 For PV buses, Pn and |Vn| are given; Qn and θn are to be 
found.

The non-linear equation system (2) is then solved using 
the Newton-Raphson algorithm [39] and, by default, an 
initial ‘flat’ guess of θn = θ0 and |Vn| = 1 (per unit). The 
initial guess can also be specified (‘seeded’) by the user, 
using for example the linearised power flow solution.

2.2.2. Power flow equations for DC networks
A power flow calculation for a direct current (DC) network 
ensures that for all buses labelled by n we have

	
n n n n nm m

m

P V I V G V∑= = � (3)

where Pn is the active power injected at the bus and the 
voltage, current and the conductance matrix Gij are now 
all real quantities. This non-linear equation is also solved 
with the Newton-Raphson algorithm.

2.2.3. Linearised power flow equations for AC networks
In some circumstances a linearisation of the AC power flow 
equations (2) can provide a good approximation to the full 
non-linear solution [40, 41]. The linearisation is restricted 
to calculating active power flows based on voltage angle 
differences and branch series reactances. It assumes that 

reactive power flow decouples from active power flow, 
that there are no voltage magnitude variations, voltage 
angles differences across branches are small enough that 
sin θ ~ θ and branch resistances are negligible compared 
to branch reactances. This makes it suitable for short 
overhead transmission lines close to their natural loading.

In this case it can be shown [6] that the voltage angles 
are related to the active power injections by a matrix

	
( ) shiftT

n m nnm
m

P KBK K b∑ ∑θ θ= − � (4)

where K is the incidence matrix of the network, B is the 
diagonal matrix of inverse branch series reactances x

ℓ 

multiplied by the tap ratio τ
ℓ

, i.e. 1
xB b τ= = , and shiftθ  

is the phase shift for a transformer. The matrix KBKT is 
singular with a single zero eigenvalue for a connected 
network and can be inverted by first deleting the row and 
column corresponding to the slack bus.

2.2.4. Linearised power flow equations for DC networks
For DC networks the equation (3) is linearised by positing 
Vn = 1 + δVn and assuming that δVn is small. The resulting 
equations mirror the linearised AC approximation with 
the substitutions θn → δVn and x

ℓ

 → r
ℓ

.

2.3. Optimisation with linear power flow equations
PyPSA is a partial equilibrium model that can optimise 
both short-term operation and long-term investment in 
the energy system as a linear problem using the linear 
power flow equations.

PyPSA minimises total system costs, which include 
the variable and fixed costs of generation, storage and 
transmission, given technical and physical constraints. 
The objective function is given by
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It consists of the branch capacities F
ℓ for each branch ℓ and 

their annuitised fixed costs per capacity c
ℓ

, the generator 
capacities Gn,r at each bus n for technology r and their 
annuitised fixed costs per capacity cn,r, the dispatch gn,r,t 
of the unit at time t and the associated variable costs on,r, 
the start up and shut down costs sucn,r,t and sdcn,r,t when 
unit commitment is activated, the storage unit power 
capacities Hn,s and store energy capacities En,s at each bus n 
for storage technology s and their associated fixed costs cn,s 
and ĉn,s, and finally the positive part of the storage dispatch 
[hn,s,t]

+ and the associated variable costs on,s. The branch 
flows f

ℓ,t are optimisation variables but do not appear 
in the objective function. The optimisation is run over 
multiple time periods t representing different weather 
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and demand conditions. Each period can have a weighting 
wt; the investment costs must then be annuitised for the 
total period ∑t wt (typically a full year).

The dispatch of generators gn,r,t is constrained by their 
capacities Gn,r and time-dependent availabilities g̃n,r,t and 
g–n,r,t, which are given per unit of the capacities Gn,r:

	 , , , , , , , ,· · , ,n r t n r n r t n r t n rg G g g G n r t≤ ≤ ∀ � (6)

For conventional generators the availabilities are usually 
constant; a fully flexible generator would have g̃n,r,t = 0 
and g–n,r,t = 1. For variable renewable generators such as 
wind and solar, g–n,r,t represents the weather-dependent 
power availability, while curtailment may also be limited 
by introducing a lower bound on the dispatch g̃n,r,t.

The dispatch can also be limited by ramp rate constraints 
run,r and rdn,r per unit of the generator nominal power:

( ), , , , , , 1 , ,· · , , 0n r n r n r t n r t n r n rrd G g g ru G n r t− −≤ − ≤ ∀ > � (7)

Unit commitment for conventional generators is described 
in Section 2.5.

The power capacity Gn,r can also be optimised within 
minimum G̃n,r and maximum G–n,r installable potentials:

	 , , , ,n r n r n rG G G n r≤ ≤ ∀ � (8)

The dispatch of storage units hn,s,t, whose energy carriers 
are labelled by s, is constrained by a similar equation to 
that for generators in equation (6):

	 , , , , , , , ,· · , ,n s t n s n s t n s t n sh H h h H n s t≤ ≤ ∀ � (9)

except h̃n,s,t is now negative, since the dispatch of storage 
units can be both positive when discharging into the grid 
and negative when absorbing power from the grid. The 
power capacity Hn,s can also be optimised within installable 
potentials. 

The energy levels en,s,t of all storage units have to be 
consistent between all hours and are limited by the 
storage energy capacity En,s
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Positive and negative parts of a value are denoted as [·]+ 
= max(·, 0), [·]– = –min(·, 0). The storage units can have 
a standing loss (self-discharging leakage rate) ηn,s,0, a 
charging efficiency ηn,s,+, a discharging efficiency ηn,s,–, 
inflow (e.g. river inflow in a reservoir) and spillage. The 
initial energy level can be set by the user, or it is assumed 
to be cyclic, i.e. en,s,t=0 = en,s,t=T.

The store component is a more basic version of the 
storage unit: its charging and discharging power cannot 
be limited and there are no charging and discharging 

efficiencies ηn,s,+, ηn,s,–. The energy levels of the store can 
also be restricted by time series ẽn,s,t, ēn,s,t given per unit 
of the energy capacity En,s; this allows the demand-side 
management model of [42] to be implemented in PyPSA. 
The energy capacity En,s can also be optimised within 
installable potentials.

Global constraints related to primary energy 
consumption, such as emission limits, can also be 
implemented. For example, CO2 emissions can be limited 
by a cap CAPCO2

, implemented using the specific emissions 
er in CO2-tonne-per-MWhth of the fuel r and the efficiency 
ηn,r of the generator:
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μCO2
 is the shadow price of this constraint.

The (inelastic) electricity demand dn,t at each bus n 
must be met at each time t by either local generators and 
storage or by the flows f

ℓ,t from the branches ℓ
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where α
ℓ,n,t = –1 if ℓ starts at n, α

ℓ,n,t = 1 if ℓ is a line or 
transformer and ends at n, and α

ℓ,n,t = η
ℓ,t if ℓ is a link and 

ends at n (note that for lines and transformers, α
ℓ,n,t is the 

incidence matrix of the network, α
ℓ,n,t = Knℓ). ηℓ,t represents 

an efficiency loss for a link (it can be time-dependent 
for efficiency that, for example, depends on the outside 
temperature, like for a heat pump). λn,t is the marginal 
price at the bus. This equation implements Kirchhoff’s 
Current Law (KCL), which guarantees energy conservation 
at each node.

The flows in all passive branches are constrained by 
their capacities F

ℓ

	 , ,t F t≤ ∀f � (13)

For links, the flows can be more finely controlled with 
time-dependent per unit availabilities , ,,t t

˜ ˉf f

	 , , ,· · ,t t tF F tˉf̃ ff≤ ≤ ∀ � (14)

which allows, for example, time-dependent demand-side 
management schemes to be modelled [42]. For both 
passive branches and links, the upper and lower limits are 
associated with KKT multipliers µ−

l,t and µ_
l,t.

The flows in links are fully controllable.
Power flows in networks of passive branches (lines and 

transformers) according to the linear power flow equations. 
It is assumed that the network is lossless, so that η

ℓ,n,t = 1 
for passive branches. To guarantee the physicality of the 
network flows, in addition to KCL, Kirchhoff’s Voltage Law 
(KVL) must be enforced in each connected network. KVL 
states that the voltage differences around any closed cycle 
in the network must sum to zero. If each independent 
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cycle c is expressed as a directed combination of passive 
branches ℓ by a matrix C

ℓc then KVL becomes the constraint

	
,· · 0 ,c tC c t∀∑ =x f � (15)

where x
ℓ is the series inductive reactance of branch l. In 

a recent paper it is demonstrated that this formulation 
of the linear load flow using cycles solves up to 20 times 
faster than standard formulations using the voltage 
angles [30]; voltage angle and PTDF formulations are also 
implemented in PyPSA and deliver identical results.

Since branch capacities F
l

 can be continuously 
expanded to represent the addition of new circuits to an 
aggregated transmission corridor ℓ, the impedances x

l

 of 
the branches would also decrease. In principle this would 
introduce a bilinear coupling in equation (15) between the 
x
l

 and the f
l,t. To keep the optimisation problem linear and 

therefore computationally fast, x
l

 can be left fixed in each 
optimisation problem, updated and then the optimisation 
problem rerun, in up to 5 iterations to ensure convergence, 
following the methodology of [43]. Another author has 
implemented an integer transmission expansion in PyPSA 
[34] that bypasses the bilinearity with a disjunctive big-M 
relaxation [44]; this will be incorporated into the main 
code base of PyPSA soon.

2.4. Coupling to other energy sectors
PyPSA can also optimise operation and investment 
in other energy sectors, such as natural gas, heating 
and transport. These sectors can be modelled using a 
network of links with efficiencies for energy conversion 
losses; an example from a recent paper [29] is shown 
in Figure 2. For example, links from electricity to heat 
buses can represent resistive heaters and/or heat pumps 
(the latter can also be modelled with a time-dependent 
coefficient of performance, given the importance of 

capturing the dependence of heat pump performance 
on outside temperature [45]). Combined Heat and Power 
plants (CHPs) can also be modelled by adding additional 
constraints for the back pressure and fuel consumption 
(see the PyPSA examples [26]). Depletable resources such 
as natural gas are modelled with stores.

2.5. Unit Commitment
Unit commitment can be turned on for any generator. This 
introduces a times series of new binary status variables un,r,t 

∈ {0, 1}, which indicates whether the generator is running 
(1) or not (0) in period t. The restrictions on generator 
output now become:

, , , , , , , , , , , ,· · · · , ,n r t n r t n r n r t n r t n r t n ru g G g u g G n r t∀≤ ≤ � (16)

so that if un,r,t = 0 then also gn,r,t = 0.
If min_up

,n rT  is the minimum up time then we have

	
( )

min_up
,

min_up
, , , , , 1, , , ,

n rt T

n r n r t n r tn r t
t t

u T u u n r t′
′
∑

+

−
=

≥ − ∀ � (17)

(i.e. if the generator has just started up (un,r,t – un,r,t–1 = 1) 
then it has to run for at least min_up

,n rT  periods). Similarly for 
a minimum down time of min_ down

,n rT

( ) ( )
min_down
,

min_ down
, , , 1 , ,, ,1 , ,

n rt T

n r n r t n r tn r t
t t

u T u u n r t′
′
∑

+

−
=

− ≥ − ∀ � (18)

For non-zero start up costs sucn,r a new variable sucn,r,t ≥ 0 is 
introduced for each time period t and added to the objective 
function. The variable satisfies

	
( ), , , , , , , 1 , ,n r t n r n r t n r tsuc suc u u n r t∀−≥ − � (19)

Figure 2: Example of the coupling in PyPSA between electricity (at top) and other energy sectors: transport, hydrogen, 
natural gas and heating. There is a bus for each energy carrier, to which different loads, energy sources and converters 
are attached.
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so that it is only non-zero if un,r,t – un,r,t–1 = 1, i.e. the 
generator has just started, in which case the inequality is 
saturated sucn,r,t = sucn,r. Similarly for the shut down costs 
sdcn,r,t ≥ 0 we have

	
( ), , , , , 1 , , , ,n r t n r n r t n r tsdc sdc u u n r t−≥ − ∀ � (20)

The ramp-rate limits in equation (7) can also be 
suplemented by ramping limits at start-up and shut-down.

2.6. Security-Constrained LOPF
PyPSA has functionality to examine the steady state of the 
power system after outages of passive branches, based on 
an analysis of the linear power flow.

PyPSA calculates the Branch Outage Distribution Factor 
(BODF) from the Power Transfer Distribution Factors (PTDF) 
(see [46]). The BODF gives the change in linearised power 
flow on passive branch ℓ given the outage of passive branch k

	
( ) ·BODF= +f f fκ

κ κ � (21)

Here f
ℓ

 is the flow before the outage and ( )κf  is the flow 
after the outage of branch k.

The BODF can then be used in Security-Constrained 
Linear Optimal Power Flow (SCLOPF). SCLOPF builds 
on the LOPF by including additional constraints that 
branches may not become overloaded after the outage 
of a selection of branches. For each potential outage of 
a branch k, a set of constraints for all other branches 
ℓ is included, guaranteeing that they do not become 
overloaded beyond their capacity F

ℓ

	
( )
, , ,· ,t t tBODF F tκ

κ κ= + ≤ ∀f f f � (22)

2.7. Network clustering
PyPSA also implements a variety of network clustering 
algorithms to reduce the number of buses in a network 
while preserving important transmission lines. For 
example, the k-means clustering algorithm was recently 
used in [32] to examine the effect of clustering on 
investment optimisation results.

2.8. Planned new features
PyPSA is currently in version 0.11.0. PyPSA has been 
designed to be modular, so that it is possible to develop 
the code for many other types of calculations. Currently 
features being considered by the development team 
include, in rough order of priority:

•	 Integer transmission expansion, following an existing 
implementation in PyPSA [34] using the disjunctive 
big-M relaxation [44];

•	 Multi-horizon dynamic investment optimisation over 
several years, following for example the implementa-
tion in OSeMOSYS [15];

•	 Transient analysis using the Root-Mean-Square (RMS) 
values of phasor quantities, following the implemen-
tation in PSAT [7];

•	 An implementation of the non-linear power flow 
solution using analytic continuation in the complex 

plane [47], following the implementation in GridCal 
[48];

•	 Short-circuit analysis, following the implementation 
in pandapower [9];

•	 OPF with the full non-linear network equations, 
following the implementations in PYPOWER and 
MATPOWER;

•	 An interactive web-based GUI for analysing and 
manipulating the network topology.

3. Implementation and architecture
PyPSA was written in the Python programming language 
[49] because it is widely used in the modelling community, 
it is easy to learn and its implementation is also free. It 
is available for every major operating system, including 
GNU/Linux, Mac OSX and Windows. PyPSA has been 
tested with versions 2.7 and 3.5 of Python.

PyPSA stores all data about network components in 
the DataFrame objects of the Python library pandas [50]. 
This enables easy and efficient indexing of the data, while 
mantaining the fast calculation speeds of the underlying 
array objects of the Python library NumPy [51]. For each 
of the components listed in Table 2 (except the overall 
Network container component) there is a DataFrame 
listing the static attributes (such as line impedance or 
capital cost) and a dictionary of DataFrames containing the 
time-varying attributes (such as wind power availability or 
consumer demand) that are in addition indexed by the list 
of snapshots. The specification of some attributes (such as 
generator maximum output) can be either static or time-
varying; if the time series is not specified, then the static 
value is taken.

All matrix calculations and solutions of linear equation 
systems are carried out either with NumPy [51] or, in the 
case of sparse matrices, with SciPy [52]. These Python 
libraries interface with lower-level programming language 
libraries to benefit from the speed of strongly-typed 
languages.

Optimisation problems are formulated using the 
Python-based optimization modeling language Pyomo 
[53, 54], which is solver agnostic and intuitive to extend. 
The use of Pyomo also allows inter-operability with other 
energy system frameworks that use Pyomo, such as 
calliope [11], oemof [14] and urbs [20]. In PyPSA lower-
level functions in Pyomo have been exploited to improve 
computational performance.

PyPSA has no graphical user interface, but integrates 
closely with the IPython [55] interactive notebooks, where 
networks and their properties can be visualised using the 
Python library Matplotlib [56] (see Figures 4 and 5) or the 
interactive JavaScript-based library plotly [57].

Internally PyPSA converts all power system quantities 
(voltage, power, current, impedances) to per unit values. 
Set points for loads and generation are stored separately 
from the power values which are actually dispatched.

4. Quality control
PyPSA comes with a large test suite that covers all of 
its major functionality. Tests are implemented using 
the Python library pytest [58]. Tests are also included 
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that compare PyPSA’s results with other software such 
as PYPOWER [8] and pandapower [9]. Users can and do 
report bugs by raising issues in the GitHub repository [24] 
or on the forum [27].

5. Performance
In this section some examples of PyPSA’s computational 
performance are given.

In Figure 3 computation times are given for a full 
power flow on the MATPOWER [6] test cases (the IEEE 
standard cases as well as snapshots from the French TSO 
RTE and European networks [59]) using MATPOWER and 
PyPSA. In both cases the complete execution of the load 
flow function (‘runpf’ for MATPOWER and ‘network.pf’ for 
PyPSA) was timed on a computer with Intel Core i5-2520 M 
processors at 2.50 GHz each with a tolerance of 10–8 for the 
summed error in the apparent power S from equation (2). 
The timings were averaged over 10 attempts for each 
network. The computation times are similar, thanks to the 
fact that both MATPOWER and PyPSA (via the SciPy library 
[52]) use the same C library umfpack [60] for solving sparse 
linear equation systems, but PyPSA is in all cases slightly 
slower due to the overhead of preparing the admittance 
matrices in pure Python code. If the admittance matrix 
remains the same for several calculations, PyPSA has the 
option to avoid recalculating it, which can save some of 
this time; further acceleration is possible by using the just-
in-time (jit) compiler numba [61], as has been done in the 
pandapower project [9] with success for larger networks.

For the linear optimal power flow (LOPF) the 
computation performance depends strongly on the 
choice of linear solver. To give an indication of typical 
calculation times, if dispatch in the SciGRID model of 
the German transmission network described in Section 7 
(585 buses, 1423 generators including curtailable wind 
and solar at each node, 38 pump storage units, 852 
lines, 96 transformers) is optimised over 4 snapshots, it 

takes 5 seconds using the COIN-OR Clp free solver on the 
computer described above. Extensive timings for different 
formulations of the LOPF problem can be found in [30].

6. Comparison to other power system tools
Given the proliferation of software tools available for 
modeling power systems, a guide is provided here that 
briefly compares PyPSA to other power system tools, 
with a particular focus on free software in the Python 
programming language. The advantages of Python are 
discussed above in Section 3.

Selected features for a selection of different software 
tools are compared in Table 3. Many of the tools have 
specialised features that are not shown in the table, so this 
table should only be treated as an indicative overview of 
their features in relation to PyPSA’s features.

Many power system tools concentrate on steady-state, 
dynamic (i.e. short-term transient) and single-period OPF 
analysis of power networks. They neglect the multi-period 
unit commitment, investment optimisation and energy 
system coupling which PyPSA offers. In Python we focus 
our comparison on two tools: PYPOWER and pandapower.

PYPOWER [8] is a port of an older version of MATPOWER 
[6] from Matlab to Python. It does not make strong use 
of Python’s object-oriented interface and structures data 
using NumPy arrays, which makes it difficult to track 
component attributes. It has no functionality to deal 
with multi-period OPF, which makes it unsuitable for 
unit commitment, storage optimisation or investment 
optimisation. This reflects the functionality of older 
versions of MATPOWER, but the latest version 6.0 of 
MATPOWER includes the MATPOWER Optimal Scheduling 
Tool (MOST) [13], which does multi-period OPF, but no 
investment optimisation. Unlike PyPSA, PYPOWER has 
the ability to do full non-linear OPF for single snapshots. 
Pandapower [9] provides a pandas [50] interface to 
PYPOWER [8], which makes it easier to use, and adds useful 

Figure 3: Calculation times for performing a full load flow on the MATPOWER [6] standard cases using MATPOWER 
versus PyPSA.
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functionality such as standard types (on which PyPSA’s 
standard types are based), short circuit calculations, state 
estimation, and modelling of switches and three-winding 
transformers. The last four functions are currently missing 
in PyPSA, along with non-linear OPF, but like PYPOWER, 
pandapower does not have multi-period OPF functionality. 
pandapower is under active development and the PyPSA 
team stays in contact with the pandpower team to 
exchange tips and features, which is a clear benefit for 
both developers and users of free software.

PyPSA differs from more general energy system models 
such as calliope [11], oemof [14], OSeMOSYS [15] and 
urbs [20] by offering more detailed modelling of power 
networks, in particular the physics of power flow according 
to the impedances in the network. PyPSA can model a 
more general energy network using link components (see 
Section 2.4), but cannot, for example, yet do the multi-year 
dynamic investment that OSeMOSYS does. The non-free 
PLEXOS software [16] comes the closest to matching PyPSA’s 
functionality, but PLEXOS is missing non-linear power flow.

These differences with other software tools are the 
reason that it was decided to develop a new tool rather 
than to extend an existing one. Existing tools for power 
flow such as PYPOWER did not have the internal code and 
data structures for economic optimisation over multiple 
time periods with many inter-temporal actors, whereas 
the energy system tools were missing the tight integration 
with power flow analysis that we believe is necessary for 
future research.

7. Demonstration of features on the SciGRID and 
GridKit datasets
On the PyPSA website [26] a large number of examples 
of code using PyPSA is linked for reference and to help 
users just starting out with the software. These range from 
basic small-scale networks demonstrating the features of 
PyPSA, to a one-node-per-country model of the European 
power system with high shares of renewables [62], to full 
transmission network models available as open data from 
the SciGRID [63] and GridKit projects [64], [65] which we 
demonstrate here.

The SciGRID model of Germany provides geo-referenced 
data for substations and transmission lines (220 kV and 

above). In one code example, data from openly-available 
sources on power plant locations and capacities, load 
distribution and time series are added to the SciGRID 
data so that load flow calculations can be carried out. 
The results of one such simulation for Germany with 
nodal pricing is shown in Figure 4. In this snapshot there 
was a large amount of zero-marginal-cost wind feed-in 
suppressing the locational marginal prices (λn,t from 
equation (12)) in the North of Germany. Transmission 
bottlenecks in the middle of Germany prevent the 
transportation of this cheap electricity to the South, where 
more expensive conventional generators set the price. The 
linearly-optimised dispatch was then fed into a full non-
linear power flow calculation where each bus was set to 
maintain nominal voltage; the resulting reactive power 
feed-in is also shown in Figure 4.

The data quality for the transmission grid in 
OpenStreetMap outside Germany is not of uniform 
quality, so for the European grid, an extract of the 
ENTSO-E interactive map [66] was made [64] using GridKit 
[65]. The details of how load, conventional power plants 
and renewable generation time series and expansion 
potentials were added to the grid data are provided in 
a forthcoming paper [67]. The result of generation and 
storage investment optimisation for a clustering of the 
network from 5000 buses down to 256 buses, allowing 
no grid expansion and assuming a CO2 reduction of 95% 
compared to 1990 levels, is shown in Figure 5. The lack 
of grid expansion forces some balancing of renewable 
variability locally with storage. Short-term battery storage 
(grey) combines with solar power (yellow) in Southern 
Europe, while longer-term hydrogen storage (purple) pairs 
with wind power (blue) in Northern Europe. This system 
has an average cost of € 82/MWh. If the grid is optimally 
expanded, much of the storage can be eliminated and 
costs are as low as € 65/MWh [32].

8. Conclusions
In this paper a new toolbox has been presented for 
simulating and optimising power systems. Python for 
Power System Analysis (PyPSA) provides components 
to model variable renewable generation, conventional 
power plants, storage units, coupling to other energy 

Figure 4: Left: Locational marginal prices (λn,t from equation (12)) for Germany in an hour with high wind and low load; 
Middle: Line loading during this hour: highly loaded lines in the middle of Germany prevent the transport of cheap 
wind energy to consumers in the South; Right: Reactive power feed-in (positive in red, negative in blue) necessary to 
keep all buses at unit nominal voltage.
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sectors and multiply-connected AC and DC networks over 
multiple periods for the optimisation of both operation 
and investment. Tools are also provided for steady-
state analysis with the full load flow equations. PyPSA’s 
performance for large datasets, comparisons with other 
software packages and several example applications are 
demonstrated.

As free software, the code of PyPSA can easily be 
inspected and extended by users, thereby contributing 
to further research and also transparency in power 
system modelling. Given that public acceptance of new 
infrastructure is often low, it is hoped that transparent 
modelling can contribute to public understanding of the 
various options we face when designing a sustainable 
energy system.

(2) Availability
Operating system
GNU/Linux, Mac OSX, Windows and any other operating 
systems running Python.

Programming language
Python. PyPSA has been tested with versions 2.7 and 3.5 
of Python.

Additional system requirements
None.

Dependencies
PyPSA is written in pure Python and is available in the 
Python Package Index (PyPI). PyPSA depends on the 
following Python libraries that are not in the Python 
standard library, but all of which are available in PyPI:

•	 NumPy [51]
•	 SciPy [52]
•	 pandas [50] (version 0.18 or later)
•	 Pyomo [53, 54]
•	 networkx (optional for some graph topology algo-

rithms; version 1.10 or later)
•	 pytest (optional for testing)
•	 matplotlib (optional for plotting)
•	 plotly (optional for interactive plotting)

List of contributors
The exact code contributions of each person to version 
0.11.0 of PyPSA can be found in the GitHub repository [24].

•	 Tom Brown, Frankfurt Institute for Advanced Studies
•	 Jonas Hörsch, Frankfurt Institute for Advanced Stud-

ies
•	 David Schlachtberger, Frankfurt Institute for 

Advanced Studies
•	 João Gorenstein Dedecca, Delft University of Technol-

ogy
•	 Nis Martensen, Energynautics GmbH
•	 Konstantinos Syranidis, Forschungszentrum Jülich

Software location
Archive
Name: Zenodo
Persistent identifier: https://doi.org/10.5281/
zenodo.1034551
Licence: GPLv3 [21]
Publisher: Zenodo
Version published: 0.11.0
Date published: 21/10/17

Figure 5: Results of optimisation of generation and storage capacities in Europe to reduce CO2 emissions in the 
European electricity sector by 95% compared to 1990 levels [32]. The grid topology is based on the GridKit network 
for Europe, clustered from 5000 buses to 256 buses.

https://doi.org/10.5281/zenodo.1034551
https://doi.org/10.5281/zenodo.1034551
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Code repository
Name: GitHub
Persistent identifier: https://github.com/PyPSA/PyPSA
Licence: GPLv3 [21]
Date published: 21/10/17

Language
English

(3) Reuse potential
Modelling of the electrical power system is becoming 
increasingly important thanks to the liberalisation of 
the power system, the rise of variable renewable energy 
to combat global warming, and the electrification of 
transport and heating. PyPSA provides a modular, object-
oriented framework for simulating power systems that 
can be used for research and case studies, and also easily 
extended beyond its existing functionality. To maximise 
its reuse potential, PyPSA is written as abstractly as 
possible, making no assumptions about network 
topology, infrastructure parameters or asset technologies. 
Judging by traffic on the forum [27], the website [26] and 
private communications, PyPSA is already being used by 
more than a dozen research institutes. Users have already 
extended it for integer transmission expansion [28, 34] 
and in the grid planning tool open_eGo [35].

Support for new users is provided on the PyPSA website 
[26] in the form of documentation and extensive usage 
examples, as well as on the PyPSA forum [27].

Users can contribute towards the code by raising issues 
or making pull requests on the GitHub repository [24], or 
by interacting with the PyPSA developers on the PyPSA 
forum [27].
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