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The effect of a non-zero strangeness chemical potential on the strong interaction phase diagram has been 
studied within the framework of the SU(3) quark-hadron chiral parity-doublet model. Both, the nuclear 
liquid-gas and the chiral/deconfinement phase transitions are modified. The first-order line in the chiral 
phase transition is observed to vanish completely, with the entire phase boundary becoming a crossover. 
These changes in the nature of the phase transitions are expected to modify various susceptibilities, 
the effects of which might be detectable in particle-number distributions resulting from moderate-
temperature and high-density heavy-ion collision experiments.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
One of the primary foci of the ongoing, and upcoming, ultra-
relativistic heavy-ion collision (HIC) experiments at RHIC in Brook-
haven, at the LHC at CERN or at the future facilities, like FAIR 
at GSI and NICA in Dubna, is to probe the nature of strongly in-
teracting matter under extreme conditions of temperatures and 
densities. However, even for these conditions strong interactions 
are not in the perturbative regime and are therefore extremely dif-
ficult to solve directly from first principles.

While Lattice QCD (LQCD) provides the most direct approach 
for studying high-temperature systems [1,2], it is plagued by 
the familiar fermion sign-problem [3–9] at non-vanishing baryo-
chemical potentials. Effective Lagrangian models [10–31], on the 
other hand, provide a much more tractable alternative to the study 
of non-perturbative, strongly-interacting matter. Following this ap-
proach, in Ref. [32], within an extended hadron-quark parity-
doublet model, the QCD phase diagram and thermal fluctuations 
in an HIC have been studied, using the cumulants of conserved 
charges for a range of temperatures (T ) and baryo-chemical poten-
tials (μB ), at zero strangeness- (μS ) and isospin-chemical poten-
tials (μI ).

However, the effects of a non-zero μS on the QCD phase-
diagram and the fluctuations for low densities have been inves-
tigated in recent LQCD calculations and Hadron Resonance Gas 
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(HRG) model (comparative) studies [33–44]. On the other hand, 
the influence of a non-zero μI on the chiral phase transition can, 
in principle, be experimentally tested to some degree by varying 
projectile and target nuclei. It has been studied theoretically, using 
both effective-model and LQCD approaches [45–50].

From fitting observed particle ratios, μS has been deduced 
to have a value of ∼2%–30% of μB , while μI remains small, at 
around 2%–5% of μB [10,51–53]. These values illustrate that the 
strangeness- and isospin-chemical potentials, though small, are not 
entirely negligible. It is therefore worthwhile to study the QCD 
phase-diagram with non-zero isospin-, strangeness- and baryo-
chemical potentials. This includes potential fluctuations in the fire-
ball creating areas with positive and negative net-strangeness and 
net-isospin, respectively.

Motivated by these considerations, in this paper the authors 
focus on the strangeness aspect of a system at high-to-moderate 
temperatures and high densities. The model being used to study 
the effects of a non-zero μS (with μI = 0) is the Quark-Hadron 
Chiral Parity Doublet Model (QχP), which is a low-energy, ef-
fective SU(3) chiral model, which has been previously used in 
Refs. [32,54]. After a brief description of the model and the slight 
modifications done to its parametrization, the results are presented 
and discussed, and conclusions are given. For a more detailed ex-
planation of the model itself, see Refs. [55–58].

In parity-doublet formulations the Lagrangian can contain an 
explicit mass term for the baryons that does not break chiral sym-
metry [59]. The signature for chiral symmetry restoration is the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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degeneracy of the usual baryons and their respective negative-
parity partner states, which are grouped in doublets N = (N+, N−)

as discussed in Refs. [59,60]. Taking into account the scalar and 
vector condensates in mean-field approximation, the resulting La-
grangian LB reads as [58]:

LB =
∑

i

(B̄ i i/∂ Bi) +
∑

i

(
B̄ im

∗
i Bi

)

+
∑

i

(
B̄ iγμ(gωiω

μ + gρiρ
μ + gφiφ

μ)Bi
)

, (1)

summing over the states of the baryon octet. The effective masses 
of the baryons (assuming the matter to be isospin-symmetric) are:

m∗
i± =

√[
(g(1)

σ i σ + g(1)
ζ i ζ )2 + (m0 + nsms)2

]

± g(2)
σ i σ ± g(2)

ζ i ζ , (2)

with g( j)
i ’s as the coupling constants of the baryons with the 

scalar fields σ
(〈

ψψ
〉)

and ζ
(〈

ss
〉)

. In addition, there is an SU(3) 
symmetry-breaking mass term proportional to the strangeness, ns , 
of the respective baryon. Note that in the parity doublet model, 
there are two linear couplings of the scalar fields g(1)

σ , g(1)
ζ to the 

baryonic fields, where the second one generates the mass split-
ting of the parity doublet states. In order to avoid introducing 
too many parameters, we assume that the splitting of the various 
baryon species and their respective parity partners has the same 
value for all baryons. The hyperonic vector interactions are tuned 
to generate phenomenologically acceptable optical potentials of the 
hyperons in ground-state nuclear matter. The relevant parameters 
have been tabulated in Ref. [32]. For the calculations done in this 
paper, the parametrization is kept similar to that used earlier, the 
only difference being the omission of the baryon decuplet, and 
other higher resonances, from the particle mixture, which simpli-
fies the discussion without major quantitative changes.

In many-body systems, like those resulting from HICs, a chemi-
cal potential can be associated with each of the conserved charges 
of the system. In an HIC’s case, the corresponding charges are the 
baryon-number, isospin and strangeness [61–63], because of the 
short time elapsed between the formation of the fireball and the 
chemical, and kinetic, freeze-outs, assuming strangeness equilibra-
tion. During this time, only strong interactions play an important 
role, while electroweak interactions are practically negligible. As 
first argued in Ref. [64], strangeness might be abundantly produced 
in the deconfined phase through gluon-gluon fusion, during the 
early stages of the system’s evolution. The strange quarks are later 
rapidly redistributed in the hadronic phase, via multi-mesonic in-
teractions, when the system is close to the transition [65].

Although the total strangeness of the entire system (fireball) re-
mains zero throughout its formation and evolution, local distribu-
tions of non-zero strangeness (and anti-strangeness) regions could 
be formed as a result of fluctuations, resulting in a non-uniform 
distribution of strangeness within the system [66–69]. These lo-
cal sub-systems can be considered as being in thermal equilibrium 
with the rest of the system; since they are considerably smaller in 
size compared to the entire system. Thus, they can be adequately 
described by a grand-canonical ensemble.

The pressure (P ) for such a thermalised system can be written 
as:

P = −E + T H +
∑

j

(
B jμB j + S jμS j + I jμI j

)
, (3)

with E , T , H , μ, B j , S j and I j representing the energy, tempera-
ture, entropy, chemical potential, baryon-number, strangeness and 
Fig. 1. T − μB phase-diagram, showing the LG and chiral transitions at μS = 0 and 
−185 MeV.

isospin, respectively, of the different particle species; and the rel-
ative sign between B and S being always negative. In the quark 
phase, strange-quarks (or anti-quarks) carry a baryon number of 
1/3 (or −1/3).

For the purpose of this paper isospin effects are not considered 
and Eqn. (3) reduces to:

P = −E + T H +
∑

j

(
B jμB j + S jμS j

)
. (4)

Due to a non-zero μS , depending on the sign, hyperon thresh-
olds are lowered to values below, or close to, the masses of the 
non-strange baryons. Thus, the hyperonic particles appear in the 
system at smaller values of μB , as compared to the case of μS = 0. 
The hyperons produced have two non-zero quantum numbers (B j
and S j ) and chemical potentials (μB j and μS j ). These changes nat-
urally drive the first-order, nuclear Liquid-Gas (LG) transition to 
lower values of μB , as shown in Fig. 1. At μS = −185 MeV, not 
only is the LG transition line shifted to the left, but also its crit-
ical end-point (TCEP, μBCEP ) is lowered along the T -axis; from 15 
MeV (for μS = 0 MeV) to 8 MeV (for μS = −185 MeV), weakening 
the phase boundary to a crossover, earlier than that with a vanish-
ing μS . It is also evident from the figure that the chiral first-order 
transition weakens with larger negative values of μS and disap-
pears completely below μS = −185 MeV, giving way to a smooth 
crossover transition, for the full range of temperatures.

In Fig. 2 the normalised scalar field (σ/σ0) is plotted as a 
function of μB at T = 0 MeV. One can observe that the chi-
ral first-order transition actually vanishes at μS = −175 MeV. As 
can be seen in Figs. 3, 4, 5 and 6, the chiral condensate is inti-
mately related to the net-baryon density, and hence, the change 
in either variable can be used to define the transition [32,70–72]. 
From the figures, one arrives at the immediate conclusion that, 
with increasing |μS |, these quantities exhibit progressively shal-
lower jumps near the transition, pointing to a weakening of the 
first-order phase transition. The increase of higher-mass hyperons 
in the hadronic phase reduces the relative abundance of the lower-
mass, non-strange baryons (Figs. 3 and 4). Fig. 5 shows that the 
strange-quark degrees-of-freedom, already present in the system 
before the transition (in the hadronic phase), increase, with an 
increase in |μS |; causing the relative contribution of the lighter, 
non-strange quark degrees-of-freedom to decrease (Fig. 6). By sig-
nificant couplings to the much stiffer strange-quark condensate ζ , 
the hyperons gradually push the chiral transition to higher values 
of μB . Since the transition is signalled by an abrupt decrease in σ , 
to which the nucleons couple more strongly, a lower concentration 
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Fig. 2. Normalised chiral condensate, as a function of μB , for different values of μS , 
at T = 0.

Fig. 3. Relative abundance of hyperons, as a function of μB , for different values of 
μS , at T = 0.

of these non-strange baryons at moderate μB causes the hadronic 
phase to survive much longer than that for a vanishing μS . More-
over, this suppression of the non-strange baryons causes a smooth-
ing of the transition, even at lower values of |μS |, as seen in Fig. 2. 
When the concentration of strange-quarks in the hadronic phase 
increases further, with higher values of |μS | (Fig. 5), the degrees-
of-freedom do not change as drastically across the chiral transition, 
resulting in a smooth crossover, instead of a sharp first-order, for 
all strangeness-chemical potentials ≤ −175 MeV and temperatures 
≥0 MeV.

In Figs. 7 and 8, the strangeness fraction ( f S ); defined as:

f S = ρ S
B

ρB
; (5)

is plotted against μB , at different temperatures, for μS = −185
MeV and 0 MeV, respectively. The baryon number density ρ S

B in-
cludes contributions from both quarks and baryons. In Figs. 9 and 
10, the relative abundances of the strange-quarks and hyperons are 
plotted, while in Figs. 11 and 12, the normalised particle-number-
densities; for all quarks and baryons, at different temperatures; 
are plotted against μB , for constant values of μS (−185 MeV and 
0 MeV, respectively). The normalisation is done using the nuclear 
saturation density ρ0 = 0.15 fm−3.

As is amply evident from Fig. 8, for μS = 0, the system lacks the 
rich structure, at lower temperatures, visible in Fig. 7. Moreover, 
Fig. 4. Relative abundance of non-strange baryons, as a function of μB , for different 
values of μS , at T = 0.

Fig. 5. Relative abundance of strange-quarks, as a function of μB , for different values 
of μS , at T = 0.

Fig. 6. Relative abundance of non-strange quarks, as a function of μB , for different 
values of μS , at T = 0.

the curve for T = 0 MeV in this figure is buried beneath the T =
20 MeV curve. So there is no evidence of any structure between 
the temperatures 0 and 20 MeV; as corroborated by Fig. 10.

In Fig. 7, the T = 0 MeV curve begins exactly after the first-
order LG transition, at μB ∼ 920 MeV. This sudden appearance of 
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Fig. 7. Strangeness fraction, as a function of μB , for different values of T , at μS =
−185 MeV.

Fig. 8. Same as Fig. 7, at μS = 0 MeV.

Fig. 9. Relative abundances of strange-quarks and hyperons, as functions of μB , for 
different values of T , at μS = −185 MeV.

strangeness can be attributed to the introduction of the � and 
� hyperons to the system – along with other baryons – as can 
be seen in Fig. 9, thereby making both ρ S

B and ρB non-zero. The 
shoulder-like dip at μB ∼ 940 MeV is the result of the early onset 
of the up- and down-quarks, as seen in Fig. 11.

For the T = 12 and 20 MeV curves in Fig. 7, f S decreases 
drastically after the LG transition. This is because, right after the 
Fig. 10. Same as Fig. 9, at μS = 0 MeV. The curves corresponding to temperatures 
less than 60 MeV are negligibly close to zero and have not been shown.

Fig. 11. Relative abundances of quarks and baryons, as functions of μB , for different 
values of T , at μS = −185 MeV.

transition, there is a sudden rise in ρB , while the strange-particle 
contribution ρ S

B does not rise as much, due to the higher masses 
of the hyperons, which change relatively less strongly across the 
transition. This drives down the fraction of strangeness in the sys-
tem, which is slowly revived as the hyperons start increasing in 
abundance with increasing μB , as is evident from the gradual rise 
of ρ S

B , for T = 12 and 20 MeV, in Fig. 9. With the appearance of 
the up- and down-quarks (Fig. 11), at around μB ∼ 1000 MeV, f S

again experiences a slight dip in value. The third and final dips, 
observed at μB ∼ 1140 MeV, are caused by the chiral crossover 
transition (Fig. 1), which is not as sharp compared to the nuclear 
LG transition. As seen in Figs. 9 and 11, the quarks start dominat-
ing the composition of the system, as μB increases, from this point 
onward.

The kink in the T = 60 MeV curve (Fig. 7) is caused by the 
chiral crossover transition, as evident from Figs. 1, 9 and 11. Ex-
pectedly, after the transition into the quark sector, the relative 
abundance of baryons decreases w.r.t. quarks; only in this case, the 
decrement is much smoother, and smaller, as compared to a first-
order transition. The pronounced change in the relative abundance 
of the quarks observed in Fig. 11, at this temperature is due the in-
terplay between the two different chemical potentials, μS and μB , 
and the temperature.

For T = 100 and 175 MeV, the respective chiral crossover tran-
sitions occur at μB ∼ 840 and 0 MeV (cf. Fig. 1). As expected, 
the corresponding f S curves in Fig. 7 are monotonously increasing 
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Fig. 12. Same as Fig. 9, at μS = 0 MeV.

Fig. 13. Critical end-point temperature, for the chiral transition, as a function of μS .

functions of μB , for the range of values (850–1200 MeV) consid-
ered.

The figures, in addition to showing the disappearance of the 
chiral first-order transition at higher μS values, showcase the 
effect that μS has on the system as a whole. The fraction of 
strangeness in the system, driven by the growing relative abun-
dance of the hyperons and strange-quarks, increases rapidly with 
μB in Figs. 7, 9 and 11. They also grow to much higher values, as 
compared to what they attained with a zero strangeness-chemical 
potential, for similar values of μB (Figs. 10 and 12). A non-zero 
μS also results in an early onset of the aforementioned strange-
particles, as evidenced by the shifting of the kink; corresponding 
to the chiral transition; in Fig. 7, to progressively lower values of 
μB , with an increase in temperature.

In the case of μS = 0 MeV, the strangeness-fraction is observed 
to be either monotonously increasing, or remaining fairly constant, 
with μB ; for all temperatures in Fig. 8. This is to be expected, 
however, since from Figs. 10 and 12, it is clear that the transitions 
are primarily driven by the changes in the relative abundances of 
the non-strange quarks and baryons. But, even in this case, with 
an increase in temperature, strange-particles with baryon numbers 
do start to come in due to strange-mesons, in particular kaons. 
This explains the existence of a non-zero f S , which increases with 
an increase in temperature of the system, for a zero strangeness-
chemical potential. The slight dip in f S , at T = 60 MeV, is again 
caused by a sudden increase in ρB across the chiral transition 
(Fig. 1), with ρ S not being able to change as rapidly.
B
In Fig. 13, the critical end-point temperature is plotted as a 
function of μS . As expected, a considerable, gradual decrease in 
TCEP is observed, with an increase in the magnitude of μS . This 
re-emphasises the fact that the strangeness-chemical potential di-
rectly affects the LG and chiral transitions. The hadronic phase is 
dominated by hyperons, as μS increases in magnitude, suppress-
ing other baryons and resulting in an early onset of both light (u-
and d-) and strange quarks; which go on to become a quark state 
at hight densities.

In conclusion, in this model investigation of quark-hadron sys-
tems, one could see that the QCD phase diagram can be sig-
nificantly affected by a non-zero strangeness-chemical potential, 
changing the chiral transition from a first-order to a smooth 
crossover. The critical endpoint in this model appears at low tem-
peratures, which makes such an effect difficult to be directly ob-
served in heavy-ion collisions, but it could have an impact in 
the higher-temperature smooth transition region as well. Another 
strangeness-enriched situation is the beta-equilibrated matter in a 
neutron star, which was investigated in Ref. [54].

A related study could include explicit isospin effects on the be-
haviour of high-density and high-temperature QCD systems and 
the role that isospin plays in the system evolution. The fact that 
non-uniform distributions of isospin in the system are usually very 
small, is partly compensated by the possibility of experimentally 
measurable observables. These non-zero isospin-chemical potential 
effects, and their consequences as experienced by the QχP model, 
will be investigated in upcoming projects.
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