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Introduction: Affective disorders are a major global burden, with approximately 15% of
people worldwide suffering from some form of affective disorder. In patients experiencing
their first depressive episode, in most cases it cannot be distinguished whether this is due
to bipolar disorder (BD) or major depressive disorder (MDD). Valid fluid biomarkers able to
discriminate between the two disorders in a clinical setting are not yet available.

Material and Methods: Seventy depressed patients suffering from BD (bipolar I and II
subtypes) and 42 patients with major MDD were recruited and blood samples were taken
for proteomic analyses after 8 h fasting. Proteomic profiles were analyzed using the
Multiplex Immunoassay platform fromMyriad Rules Based Medicine (Myriad RBM; Austin,
Texas, USA). Human DiscoveryMAPTM was used to measure the concentration of various
proteins, peptides, and small molecules. A multivariate predictive model was
consequently constructed to differentiate between BD and MDD.

Results: Based on the various proteomic profiles, the algorithm could discriminate
depressed BD patients from MDD patients with an accuracy of 67%.

Discussion: The results of this preliminary study suggest that future discrimination
between bipolar and unipolar depression in a single case could be possible, using
predictive biomarker models based on blood proteomic profiling.

Keywords: affective disorder, bipolar disorder, major depression (MD), major depressive disorder (MDD), proteome,
biomarker, blood, machine learning
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INTRODUCTION

Depressive episodes affect up to 322 million people worldwide
(Depression and Other Common Mental Disorders. Global
Health Estimates. Geneva: World Health Organization 2017,
https://apps.who.int/iris/bitstream/handle/10665/254610/
WHO-MSD-MER-2017.2-eng.pdf). People suffering from a
depressive episode can be suffering from either unipolar
depression (major depressive disorder; MDD) or bipolar
affective disorder (BD) as the underlying cause, depending on
whether previous (hypo)-manic episodes have occurred.
Unfortunately, this distinction can only be made after the first
(hypo-)manic episode has presented. Therefore the most
appropriate treatment for the underlying disorder may not
initially be prescribed, especially as BD and MDD require
fundamentally different pharmacological approaches; BD
requires mood stabilizing medication, whereas MDD is treated
with antidepressant monotherapy as a first-line treatment (1–3).
Patients suffering from BD are often misdiagnosed as MDD and
therefore adequate treatment can be delayed for up to several
years (4, 5). Inadequate and delayed treatment increases the
direct and indirect economic cost of BD, augments individual
suffering, and impairs the overall prognosis (6). However, despite
distinct treatment approaches, BD and MDD appear to share
common molecular pathomechanisms. The gradient of MDD
polygenic risk sore has been shown to slide across the mood
disorder spectrum, demonstrating an inverse relationship to the
mania polygenic risk score (7).

The development of fluid biomarkers that can discriminate
between BD and MDD would be highly beneficial, but reliable
biomarkers have so far remained elusive. Nonspecific findings
have been obtained in many studies, which failed to detect
disorder-specific alterations, instead identifying molecular
mechanisms implicated in several different psychiatric
conditions. For example, several studies have reported
dysregulation of the nitrinergic system in BD, but also in
ADHD and schizophrenia (8–11). Recent work has
additionally suggested that nitric oxide may play a role in the
pathophysiology of major depression (12). Another potential
cross-disorder mechanism is a dysfunctional hypothalamic-
pituitary-adrenal axis (HPA axis), which has been implicated
in both BD and MDD (13–15). Moreover, inflammatory
processes (including the glucocorticoid system) may also play a
role in MDD and BD (16, 17).

Despite several shared neurobiological features of psychiatric
disorders, combining different modalities or vast arrays of
biomarkers (e.g. using proteomic profiling) has demonstrated
potential for providing disorder-specific biomarkers. A previous
own study defined a diagnostic panel consisting of 20 protein
analytes suitable for the diagnosis of BD (18). Additionally, Chen
et al. published a set of 20 differential urine metabolites that
could discriminate between BD and MDD (19). Although these
initial findings are encouraging, the use of univariate statistical
inference does not provide sufficient information to determine
discriminative power for individual patients, nor does it quantify
generalisation to new data. These initial promising results
therefore need to be replicated in additional samples, and more
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importantly tested for personalized predictive power, before a
diagnostic biomarker panel can be used in clinical routine. In
addition, modern machine learning approaches may
considerably increase model performance by considering
multivariate patterns in the data, thereby improving upon
classic univariate approaches. In this study, we investigated
whether a multivariate machine learning approach using data
from multiplexed proteomic assays could accurately be used to
discriminate between BD and MDD.
MATERIALS AND METHODS

Study Participants
Bipolar and major depression patients were part of a naturalistic
sample recruited from patients treated in our in- and outpatient
clinics. The male and female participants were within the age
range 18–78 years, had a body mass index (BMI) between 18 and
46 kg/m, and had a test negative for recreational drug screening
at the time of sampling. Patients were diagnosed with BD or
MDD by two trained psychiatrists (SKS, AR) according to
criteria of the International Classification of Diseases–10 (ICD-
10), while being treated as inpatients or outpatients at the
Department of Psychiatry, Psychosomatic Medicine and
Psychotherapy of the University Hospital of Würzburg.
Diagnoses were confirmed by the Operational Criteria
Checklist for Affective and Psychotic Illness (OPCRIT) (20).
Severity of symptoms was assessed using the standard
questionnaire-based rating scales Young Mania Rating Scale
(YMRS) and Montgomery–Åsberg Depression Rating Scale
(MADRS) (21, 22).

Both bipolar I and bipolar II disorder patients were recruited
and were in depressed mood states at the time of sample
collection. MDD patients also had an acute depressive episode
at the time of sample collection. Exclusion criteria included a
diagnosis of severe coronary heart disease or cardiac insufficiency
(i.e. coronary stent, cardiac bypass surgery angina pectoris, and
cardiac insufficiency NYHA>I), severe autoimmune disorders
(Hashimoto’s thyroiditis excluded), acute or chronic infections,
treatment with immunosuppressive/immune-modulating drugs
or antibiotics, other severe neuropsychiatric disorders, chronic
terminal diseases affecting the brain (such as cancer or hepatic/
renal insufficiency), and alcohol or drug addiction (self-reported
or taken from hospital discharge letters/general practitioner’s
letters). Patients were fasting for at least 8 h prior to blood sample
collection. For more demographic details as well as somatic
disorders and medication taken at sampling point see Table 1
and Supplemental Table 2.

Only study participants who gave written informed consent
were enrolled in the study, which complied with the latest
Declaration of Helsinki, and was approved by the Ethics
Committee of the University of Würzburg.

Sample Collection
Patients were recruited over a total time period of 4 years (2009–
2013), and therefore proteomic profiles were analyzed in four
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batches. Proteomic analyses were completed in 2010, 2011, and
2013. The maximum storage time for each sample in −80°C prior
to analysis was 2 years.

Sample Preparation
Blood samples were taken on the day of clinical assessment (± 24
h). Blood was obtained from the participants by venous puncture
in the morning after fasting for 10–13 h (between 7 to 9 am).
Serum was collected from fasting patients using Vacutainer
(Becton-Dickinson, Franklin Lakes, NJ, USA). Blood clotting
time was 2 h at room temperature prior to centrifugation for 15
min at 1.100 x g. Samples were stored in low binding Eppendorf
reaction tubes (Hamburg, Germany) at −80°C. Sample shipment
took place on dry ice.

Multiplex Immunoassay Analysis
Serum from all participants was profiled using the multiplex
immunoassay platform at Myriad Rules Based Medicine (Myriad
RBM; Austin, Texas, USA), which has been previously described
in detail (23). The Human DiscoveryMAPTM was used to
measure the plasma concentrations of different proteins,
peptides and small molecules (collectively referred to as
“analytes”), in a Clinical Laboratory Improved Amendments
certified lab. The total number of analytes measured differed
between batches, depending on when the study samples were
profiled (total range: 190 to 257 analytes). The analytes measured
are reported in Supplemental Table 1 and the concentration of
all the analytes for all participants are reported in Supplemental
Table 3 and Supplemental Table 4. The raw data of the four
different multiplex assays were normalised for batch effects to
reduce variability.
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Statistical Analysis
Statistical analyses were performed in R (24). We pre-processed
the analyte data by excluding analytes with greater than 20%
missing values, and imputing missing data. Data points under
the lowest limit of detection (LLD) were replaced by the
minimum value above the LLD for the specific analyte, and
values above the highest detectable limit were replaced with the
maximum measured valued within the detectable range. In total,
1.1% of data points were imputed. We log10-transformed data to
stabilize the variance. Additional analyses were performed using
SPSS (v25, IBM®). The two analytes that appeared to play a
significant role in discriminating between unipolar and bipolar
depression were analyzed separately using ANCOVA.
Machine Learning Algorithm
In order to discriminate between patients suffering from MDD
and BD, we first scaled all features (i.e. analytes) to have zero
mean and unit variance. Next, tree ensemble classification was
performed using the scikit-learn implementation of the
AdaBoost algorithm with default hyperparameters (25, 26). To
facilitate training in this extensively imbalanced dataset, we
additionally employed Random Oversampling to the training set.

To assess the generalizability of the classifier, we used 10-fold
cross-validation. Tenfold cross-validation is the most common
standard in the field which ensures low model bias (due to the
fairly large training sample) and low variance (due to the
reasonably sized test set). Finding a balance between training
and test sample size in each iteration is important, particularly
because of the fairly small sample size used (for an introduction
to the issue of k-fold cross-validation in practice see Bengio et al.
(27). In each fold, data from 90% of the sample is used to train
the classifier. Categorization of the remaining 10%, which has so
far not been seen by the algorithm, is subsequently calculated.
This procedure is repeated 10 times, each time leaving out
different, nonoverlapping 10% portions of the sample, yielding
each subject’s categorization. To ensure unbiased test
performance estimates in this imbalanced sample, accuracy
was computed by calculating the mean of sensitivity and
specificity, yielding “balanced accuracy.”

To establish whether the observed test accuracy estimate is
statistically significant, we ran the entire pipeline 1,000 times
with randomly permuted labels and counted the number of
permutations which achieved higher accuracy than the one
observed with the true labels. The p-value was then calculated
by dividing this number by 1,000. If none of the permutation
accuracies exceeded accuracy obtained with the true labels, this is
denoted as p<.001.

To quantify the contribution of each feature, we computed
permutation importance scores, calculated as the mean decrease
of test accuracy for all samples if a given feature is randomly
shuffled 10 times. Generally, permutation importance as used
here provides a measure of how much a feature contributed to
classification performance while leaving all other features intact.
All analyses were performed using the PHOTON framework
(www.photon-ai.com).
TABLE 1 | Demographic data.

Depressive episode n=70 n=42

Bipolar
Disorder

Major
Depression

BD I/BD II 30/40 N/A
Age (years, mean +/− SD) 43.47 +/− 11.69 44.28 +/− 14.93
Gender (female/male) 44/28 25/16
BMI 27.50 +/− 5.72 27.78 +/− 6.27
Disease duration (years, mean
+/−SD)

15.10 +/−11.32 N/A

MADRS sum score (mean +/−SD) 18.0 +/− 1.96 18.47 +/− 8.32
YMRS sum score (mean +/−SD) 2.0 +/− 0.22 N/A
Medication
Lithium 7 3
Valproic acid 5 0
Other anticonvulsants 1 0
Antipsychotics 17 9
Lithium + Valproic acid 4 0
Valproic acid + antipsychotics 7 0
Other anticonvulsants + antipsychotics 4 0
Lithium + anticonvulsants +
antipsychotics

4 0

Lithium + antipsychotics 21 1
Antidepressants only 2 28
BD I, bipolar disorder type 1; BD II, bipolar disorder type II; BMI, body mass index;
MADRS, Montgomery-Åsberg Depression Scale; YMR, Young Mania Rating Scale; N/A,
not available.
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RESULTS

Patients with MDD and BD did not differ in basic demographic
variables (see Table 1). However, medication significantly
differed, as the majority of BD patients were taking mood
stabilizers and the majority of MD patients were taking
antidepressants (Table 1). Using data from 105 analytes, which
was the lowest common denominator of the four batches, a
multivariate predictive model was constructed to discriminate
between MDD and BD (combined BD I and BD II disorders).
The algorithm could discriminate between these two groups on
the basis of the proteomic profile with an accuracy of 67%
(p>.001 with 1,000 permutations) (see Figure 1). The analytes
which the algorithm used for discrimination and prediction are
displayed in Supplemental Tables 1, 3, and 4. The two analytes
Platelet-Derived Growth Factor BB (PDGF-BB) and
Thrombospondin-1 (TSP-1) were identified as particularly
important for discriminating between BD and MDD in our
sample. A subanalysis examining only young BD patients (<35
years) did not increase the accuracy of discrimination (data not
shown). Additionally, it was observed that including a set of
covariates (such as symptom severity and BD subtype) did not
lead to improved accuracy (data not shown). To assess the
potential influence of medication, we performed a covariate
analysis using PDGF-BB and TSP-1 and included diagnosis
(bipolar depression vs. MDD), medication, age, gender and
BMI as covariates. No significant differences were found
(p=0.19, p=0.47 respectively; see Table 2).
DISCUSSION

Recent studies found that ~10% of patients suffering from a
depressive episode subsequently develop BD (4). To date, there
are no tests in clinical routine to determine the risk of developing
BD in patients experiencing their first depressive episode.
However, it would be of great clinical significance to be able to
accurately predict the underlying disorder, as pharmacological
treatment differs considerably between MDD and BD. In this
study, we have demonstrated that a machine-learning algorithm
was able to individually discriminate BD (acutely depressed)
from MDD (acutely depressed) patients with a moderately good
accuracy of 67%, based on their proteomic profile. Based on our
data, PDGF-BB and TSP-1 appeared to play a prominent role in
this discrimination. Along with other serum analytes, PDGF-BB
has previously been reported as associated with lower fractional
anisotropy, higher mean diffusivity, and higher radial diffusivity
Frontiers in Psychiatry | www.frontiersin.org 4
in several brain regions in a sample of depressed BD patients
(28). Furthermore, PDGF-BB was found to be increased in BD
patients suffering a depressive episode after treatment with a
combination of sleep deprivation, lithium and bright light
therapy (29). PDGF-BB was also found to have low intra-
individual variability when measured with different methods
and in serum and plasma, suggesting that this marker may be
technically reliable (30). Physiologically, PDGF receptors have
been reported to play a role in glutamatergic signaling (31),
which is thought to be dysregulated in subtypes of affective
patients (32).

TSP-1 may be involved in synaptogenesis (33) .
Electroconvulsive therapy (ECT) is used to treat therapy-
resistant MDD and BD depression, and was found to increase
TSP-1 mRNA and protein expression in a rat model. However,
chronic antidepressant treatment in this animal model appeared
to have no effect on TSP-1 (34). Preclinical data has additionally
suggested that TSP-1 may play a role in bidirectional neuron-
astrocyte communication, dysregulation of which could be a
pathomechanism for the development of mental illnesses (35).
There are also several in vitro studies demonstrating that the
mood stabilizer valproate can induce TSP-1 protein expression
and thrombospondin-1 (THBS-1) gene expression in different
cell and animal models (36–38). This is in contrast to our results,
which showed no difference in TSP-1 expression between
patients treated with valproate and patients treated with the
other mood stabilizers and antidepressants. However, valproate
may only exert its main effect on TSP-1 expression in the central
nervous system, with its effects not detectable in the periphery.
With regards to human in vivo data, a recent study reported
decreased TSP-1 serum levels in female patients with MDD
compared to healthy controls and male MDD patients. However,
ECT treatment did not influence TSP-1 levels, leading the
authors to conclude that serum TSP-1 may be a state marker
of female MDD rather than a trait marker (39). Nonetheless, a
technical issue in both our study and the one performed by
Okada-Tsuchioka et al. is that TSP-1 concentration was
measured in serum and not plasma. As thrombocytes release
TSP-1 in high concentrations, the TSP-1 generated by other cells
may be masked (40). Future studies should therefore measure
plasma TSP-1.

Several studies have previously attempted to discriminate
between MDD and BD patients using fluid biomarkers. A
recent study from Chen and colleagues analyzed urinary
metabolic phenotypes and demonstrated that a panel of six
urinary metabolites could potentially be used to discriminate
between the two disorders (19). In a study comparing cytokine
TABLE 2 | TSP-1 and PDGF-BB levels.

Disorder N Mean (µg/L) Std. Deviation +/− ANCOVA, p

PDGF-BB Bipolar Disorder 70 15,811.67 5,828.79
Major depression 42 16,641.46 6,515.39 0.19

TSP-1 Bipolar Disorder 70 16,498.75 8,180.89
Major depression 42 17,424.39 4,829.24 0.47
April 2020 | Volume 11
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concentrations between remitted BD and MDD patients and
healthy controls, higher concentrations of soluble Interleukin-6
receptor (sIL-6R), C-reactive protein (CRP), soluble Tumor-
Necrosis-Factor-receptor-1 (sTNF-R) and Monocyte-
chemoattractant-protein -1 (MCP-1) were shown in BD
compared to MDD (41). Frye et al. used a similar approach to
our current and previous studies but with a smaller sample size of
MDD patients, BD patients and healthy controls, and observed
differences in several serum proteins between groups. To date,
the best diagnostic accuracy (>0.8) for discriminating between
BD I patients and healthy controls was shown by growth-
differentiation factor 15 (GDF-15), retinol-binding protein
(RBP-4) and transthyretin (TTR). However, in the same study
no marker could be identified that accurately discriminated
between BD and MDD, which would be the most clinically
relevant diagnostic biomarker (42). GDF-15 and RBP-4 were not
included as analytes in our studies and therefore no data
comparisons can be made. However, Frye and colleagues also
found six proteins to be significantly increased in depressed BD
and MDD patients, and these were found to differ from those of
our own previous multi-center study with the exception of
MMP-7 (18). PDGF-BB and TSP-1 were also not found to be
significant markers in our previous study, although our previous
samples were derived from BD patients in all episodes (including
euthymic), currently depressed and euthymic MDD patients,
which could explain the differences in results. Whereas in this
smaller sample we only compared acutely depressed bipolar
patients vs. current major depression. This inconsistency could
be therefore due to the differences in the samples which were
investigated with respect to current episode and subtypes as well
as to different proteins included in the analysis. Our current
study additionally improves upon previous approaches, as it is
the first to move beyond group-statistical inference to provide
single-subject predictions. As individualized prediction is a key
Frontiers in Psychiatry | www.frontiersin.org 5
requirement for clinical application, our results support the
clinical utility of multivariate predictive analytics approaches in
the field.

A current limitation of using fluid peripheral biomarkers is
that concentrations measured in the periphery do not necessarily
reflect pathophysiological processes in the central nervous
system. However, our primary aim is to develop a biomarker
that can discriminate between disorders, and not identify
underlying disease pathomechanisms. We therefore believe
that the most important factor is whether biomarker
expression varies sufficiently between individuals to allow for
discrimination between different disorders, and not whether the
biomarker is in directly involved in disease aetiology. However,
for most single metabolites, the differences between groups are
statistically significant but not great enough for single prediction
[for examples, see (9, 39, 43, 44)]. We therefore suggest that
currently the most promising approach for individual prediction
is to measure several analytes simultaneously in the form of a
biomarker panel, with additional machine learning, rather than
measuring only a few select proteins.

Machine-learning algorithms in the development of
diagnostic biomarkers have so far mainly been used in
neuroimaging studies. There are several preliminary studies
demonstrating the potential of this approach, for applications
such as identifying individuals at high-risk of BD (45) and for
defining subphenotypes of BD (46). However, machine learning
may impair the algorithm’s ability to derive a high performing
model, and preclude the use of more sophisticated approaches,
potentially rendering our results an artificially low estimate of the
true accuracy. Despite these limitations, the sample size used for
evaluation in machine learning entails fairly small test sets,
potentially increasing variance of performance estimates
(although we employed cross-validation).

To conclude, the initial results obtained from our study are
promising. However, larger samples of patients are needed to
replicate the results, thereby supporting the development of
diagnostic biomarkers which can be used in clinical routine.
We are aware that in this hypothesis generating study we could
only examine a discovery sample. The necessary next step is to
validate our findings in a second, independent dataset which is
however not readily available. We are currently reaching out to
conduct according replication studies which will finally be the
touchstone whether or not the pilot data presented here holds
true or not.
LIMITATION

The results of our study have several limitations. First, in the
subanalysis, sample sizes were small. Second, as all patients were
medicated an influence of mood stabilizing medication and
antidepressants on serum proteins cannot be excluded. Further
studies using increased sample sizes and including drug-naïve
BD and MDD patients should be performed to overcome this
methodological weakness. However, studies on drug-naïve
patients are difficult to conduct due to ethical issues.
FIGURE 1 | Receiver operating characteristic (ROC) curve depicting true
positive versus false positive rates for the major depressive disorder (MDD) vs.
bipolar disorder (BD) classification. Note that MDD was denoted as the
positive class.
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