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V. Preface 

The work presented in this thesis has been performed at two Departments of the Goethe University 

Frankfurt, which is the “Molecular Bioinformatics” (Prof. Dr. Ina Koch) and “Department of Child and 

Adolescent Psychiatry, Psychosomatics and Psychotherapy” (Prof. Dr. Christine M. Freitag). In addition, 

Dr. Andreas G. Chiocchetti supervised my thesis at the Molecular Genetics Lab of the Department of 

Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy. 

In this work, I present the development and implementation of an integrative bioinformatics pipeline 

designed for genetic analyses of neuropsychiatric traits. The aim is to identify the associated genetic 

variants, underlying biological pathways of the traits, and to map the genetic association to the 

developing human brain. The pipeline is called “MAGNET” (MApping the Genetics of neuropsychiatric 

traits to molecular NETworks of the human brain). MAGNET was developed adhering to the state-of-

the-art guidelines for genome-wide single nucleotide polymorphism (SNP) imputation, quality control 

and genome-wide association studies (GWAS). 

MAGNET has been already used successfully to analyse data in different studies that have already been 

published. This includes a meta-analysis study across five different European populations analysing 

variants associated with ASD candidate genes. This study entitled “Lack of replication of previous 

autism spectrum disorder GWAS hits in European populations” was published in Autism Research by 

Dr. Bàrbara Torrico and Dr. Claudio Toma where I and Dr. Andreas G. Chiocchetti helped to provide the 

respective variants by using MAGNET for imputation in large ASD datasets 1. 

In another study, we investigated the genetic variants of the glutamatergic system in ASD with high 

and low intellectual abilities. This work was published in the Journal of Neurotransmission as “Common 

functional variants of the glutamatergic system in Autism spectrum disorder with high and low 

intellectual abilities”. I performed the data analysis, mainly using the MAGNET pipeline along with 

other algorithms to identify genes associated with high and low Intelligence Quotient (IQ) cohorts. The 
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concept and design of this work were developed by Dr. Andreas G. Chiocchetti and Prof. Christine M. 

Freitag 2. 

Parts of MAGNET have also been implemented in the work by Dr. Denise Haslinger and Dr. Andreas G. 

Chiocchetti, i.e. “Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal 

differentiation in the SH-SY5Y neuronal cell model”. There, we applied MAGNET on a transcriptome 

dataset to identify the gene networks of brain development within genes significantly differentially 

regulated upon knock out (KO) of the gene QPRT 3. 

A paper regarding the detailed features and implementation of MAGNET on IQ trait in a cohort is 

available as a preprint at bioarXiv. This work helped to identify novel candidate genes associated with 

IQ and also identified the genes already known in association with IQ. Thus, the study provided a 

successful proof of concept for MAGNET. The design and analysis were supported by Dr. Andreas G. 

Chiocchetti and supervised by Prof. Ina Koch. 

The main work related to MAGNET has been submitted to Translational Psychiatry. The publication 

focuses on the results generated using MAGNET and important novel findings gathered with respect to 

ASD quantitative phenotypes. I analysed two large ASD cohorts by using MAGNET and wrote the 

manuscript. The concept and design of the project were supported by Dr. Andreas G: Chiocchetti and 

Prof. Christine M. Freitag. Prof as well as both the co-authors supported in manuscript preparation. Ina 

Koch supported data analysis and manuscript revision. 

In summary, the presented pipeline has been already implemented in three publications 1–3 (see 

Publication list). The pipeline is available as a preprint at bioarXiv and the work related to the 

implementation of the pipeline on ASD cohorts has been submitted to the journal of Translational 

Psychiatry. This thesis focuses on the work presented in the following two publications: 

I. MApping the Genetics of neuropsychiatric traits to molecular NETworks of the human brain 

(preprint bioRxiv 10.1101/336776). 

II. Quantitative genome-wide association study of six phenotypic subdomains identifies novel 

genome-wide significant variants in Autism Spectrum Disorder (In review).
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VI. Zusammenfassung 

Motivation 

Neuropsychiatrische Erkrankungen sind komplexe Störungen mit hoher Heritabilität und 

weitestgehend unaufgeklärten Pathomechanismen. Die klinische und genetische Heterogenität dieser 

Erkrankungen stellt eine große Herausforderung für die Identifizierung von krankheitsbezogenen 

Biomarkern dar. Neben signifikanten Fortschritten bei der Aufklärung der genetischen Grundlagen 

dieser Erkrankungen bleiben die zugrunde liegenden Ursachen und biologischen Mechanismen 

verborgen. Mit der Weiterentwicklung der Array-, Sequenzierungs- und Big-Data-Technologien werden 

große Datenmengen von Einzelpersonen auf verschiedensten Plattformen und in verschiedensten 

Datenstrukturen erzeugt. Es gibt allerdings nur wenige Bioinformatik-Tools, die diese Fülle von Daten 

integrieren und verarbeiten können. Daher ist es notwendig, ein integratives bioinformatisches 

Datenanalysetool zu entwickeln, welches diese Daten im Sinne eines Big-Data Ansatzes kombiniert, um 

die zugrunde liegende Genetik besser zu verstehen und die Ergebnisse auf die humane 

Gehirnentwicklung zu übertragen, mit dem Ziel die mit den jeweiligen Störungen verbundenen 

Pathomechanismen aufzuklären. 

Einleitung: 

Diese Arbeit stellt eine Bioinformatik-Pipeline vor, welche Daten von verschiedenen Plattformen 

implementiert, um ein grundlegendes Verständnis der genetischen Ätiologie eines 

neuropsychiatrischen quantitativen/qualitativen Merkmals zu generieren. Innerhalb dieser Arbeit 

werden zwei Aspekte behandelt: Einer ist die Entwicklung und der Aufbau einer Bioinformatik-Pipeline 

namens MApping the Genetics of neuropsychiatric traits to the molecular NETworks of the human brain 

(MAGNET). Der andere Teil zeigt die Implementierung und den Nutzen von MAGNET bei der Analyse 

großer ASS-Kohorten (Autismus-Spektrum-Störungen). 

Um biologische und klinische Daten verschiedener Plattformen zu integrieren, sind effiziente 

Bioinformatik-Werkzeuge erforderlich, von denen derzeit nur wenige verfügbar sind. In dieser Arbeit 
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präsentieren wir eine Bioinformatik-Pipeline, die Genotyp-, Verhaltensmerkmal- und 

Genexpressionsdaten kombiniert. Ziel ist hierbei die genetischen Assoziationen eines 

neuropsychiatrischen Merkmals mit der genetischen Regulation der Gehirnentwicklung in Relation zu 

setzen, um so ein umfassendes Verständnis zu erhalten, das über die Identifikation von genetischen 

Risikofaktoren hinausgeht. MAGNET ist ein frei verfügbares command-line Tool, das innerhalb eines 

Frameworks Datenintegrationsansätze auf der Grundlage modernster Algorithmen und Software 

implementiert, um schließlich die Gene und Pfade zu identifizieren, die genetisch mit einem 

spezifischen quantitativen aber auch qualitativen Merkmal verbunden sind. MAGNET bietet einen 

zentralen Vorteil gegenüber den bestehenden Tools, da es neben der umfassenden genetischen 

Analyse die Datenverarbeitung und die Daten-Parsing-Schritte automatisiert, die für die 

Kommunikation zwischen den verschiedenen APIs (Application Program Interface) notwendig sind. 

Dabei unterstützt MAGNET genau die Zwischenschritte der Datenverarbeitung, die von Forschern 

benötigt werden, um von einer Analyse zur nächsten zu gelangen. Darüber hinaus können Anwender je 

nach Größe des Datensatzes innerhalb weniger Tage essentielle Informationen über ihr gewünschtes 

Merkmal ableiten wie genetische Assoziationen oder die Kartierung der zugehörigen Gene auf die 

Entwicklung des menschlichen Gehirns mit Transkriptomdaten von 16 verschiedenen Gehirnregionen 

von der 5. postkonzeptionellen Woche bis zum Alter von über 40 Jahren. 

MAGNET kann für jede neuropsychiatrische Störung, für die häufige Varianten ätiologisch relevant 

sind, verwendet werden. MAGNET verarbeitet SNP- (Single Nucleotide 

Polymorphism/Einzelnukleotidpolymorphismus) basierte Genotypdaten und setzt diese in Korrelation 

mit einem quantitativen bzw qualitativen Merkmal. Speziell neuropsychiatrische Erkrankungen sind 

komplexe und heterogene Störungen, welche zwar eine hohe Heritabilität aufweisen, aber deren 

Pathomechanismen trotz Fortschritten in der DNA-Analyse noch weitgehend unklar sind. Zu diesen 

Störungen gehören ASS (Autismus-Spektrum-Störung), ADHS (Aufmerksamkeitsdefizit-

Hyperaktivitätsstörung), BS (Bipolare Störung) und SZ (Schizophrenie). Von betroffenen Personen 

stehen große Mengen an Genotyp- und Verhaltensdaten zur Verfügung. Basierend auf diesen Daten 
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können wir signifikante genetische Varianten sowie Gene identifizieren, die mit den Verhaltensdaten 

oder klinischen Daten assoziiert sind. Darüber hinaus kann der Vergleich dieser assoziierten Gene mit 

Genexpressionsdaten des menschlichen Gehirns Schlüsselregionen und Zeitpunkte identifizieren, 

welche für verschiedene neuronale Entwicklungsphasen des menschlichen Gehirns eine Rolle spielen. 

Unser Ziel war es also, ein bioinformatisches Werkzeug zu entwickeln, das es Forschern erleichtert, die 

zugrundeliegenden genetischen Aspekte ihres gewünschten Merkmals in einer Pipeline zu sammeln, 

indem Daten aus verschiedenen Ebenen kombiniert werden. Auf diese Weise können die 

Pathomechanismen neuropsychiatrischer Störungen besser identifiziert werden. 

Im zweiten Teil, dem Proof of Concept, haben wir MAGNET auf zwei ASD-Kohorten implementiert. 

Diese Arbeit konzentriert sich auf die Auswertung von Daten, welche in einer Stichprobe von Patienten 

mit ASS erhoben wurden. ASS ist eine Gruppe von psychiatrischen Erkrankungen, denen eine 

neuronale Entwicklungsstörung zugrunde liegt. Klinisch wird die Psychopathologie von ASS wie folgt 

charakterisiert: A) Einschränkungen in der sozialen Interaktion und Kommunikation sowie B) 

eingeschränktes, repetitives Verhalten. Die Ätiologie der Erkrankungen ist aufgrund ihrer heterogenen 

klinischen und genetischen Eigenschaften äußerst komplex. Daher wurden bisher keine zuverlässigen 

Biomarker identifiziert. Die Diagnose basiert aktuell ausschließlich auf der Beschreibung des Verhaltens 

durch die Eltern sowie auf der direkten Verhaltensbeobachtung des Kindes. Ziel dieses Teils der Studie 

war es, die genetische Architektur von ASS unter Berücksichtigung der beiden oben genannten ASS-

Diagnostikgebiete zu charakterisieren. Außerdem wurde untersucht, ob diese Bereiche genetisch 

verknüpft oder unabhängig voneinander sind. Darüber hinaus haben wir uns mit der Frage beschäftigt, 

ob diese Merkmale das genetische Risiko (polygenic risk score/PRS) mit der kategorischen Diagnose 

von ASS teilen und wie viel von der phänotypischen Varianz dieser Merkmale durch die zugrunde 

liegende Genetik erklärt werden kann. 

Methoden: 

Im ersten Teil wurden vorbereitende Analysen zur Aufbereitung der Phänotpydaten durchgeführt. Es 

wurden folgende Datensätze eingeschlossen: Patienten mit ASS aus dem Autism-Genome-Project 
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(AGP, n=2 735) sowie eine deutsche Kohorte, bestehend aus Proben, welche in Frankfurt gesammelt 

wurden (n=705). Ziel der Studie war es, die genetische Architektur von ASS unter Berücksichtigung der 

beiden ASS-Diagnosebereiche Domäne A (soziale Interaktion und Kommunikation) und Domäne B 

(repetitives, stereotypes Verhalten, sensorische Auffälligkeiten und Sonderinteressen) zu 

charakterisieren. 

Die verwendeten Phänotypdaten wurden mithilfe des Tools „Diagnostisches Interview für Autismus – 

Revidiert“ (ADI-R) erhoben. Es beinhaltet 93 Items zur frühkindlichen Entwicklung, zu Spracherwerb 

und möglichem Verlust von sprachlichen Fertigkeiten, verbalen und nonverbalen kommunikativen 

Fähigkeiten, Spiel- und sozialem Interaktionsverhalten sowie stereotypen Interessen und Aktivitäten. 

Wir haben 28 Items ausgewählt, welche zum einen für die diagnostischen Algorithmen aus ADI-R 

notwendig sind, und zum anderen sowohl für verbale als auch für nonverbale Personen verfügbar 

waren. Darüber hinaus wurden demografische Daten wie  Alter, Geschlecht und IQ der betroffenen 

Personen verwendet. Personen mit mehr als 10% fehlenden Phänotypinformationen nach 

Qualitätskontrolle wurden ausgeschlossen. Anschließend wurde die Phänotypdaten-Imputation für die 

28 Algorithmenelemente durchgeführt. Die korrekte Kodierung des ADI-R wurde zusätzlich überprüft. 

Um die bekannte phänotypische Heterogenität zu reduzieren und die dimensionalen Eigenschaften als 

Zielgröße für die Analyse genetischer Risikofaktoren für einen unterschiedlichen ASS-Schweregrad zu 

definieren, wurde eine Hauptkomponentenanalyse für die einzelnen Items des ADI-R in der AGP-

Kohorte durchgeführt, um mögliche Komponenten/Subdomänen zu beschreiben. Im Anschluss wurde 

in der deutschen Kohorte eine konfirmatorische Faktorenanalyse durchgeführt, um festzustellen, ob 

die in der AGP-Kohorte erhaltenen Subdomänen in einer unabhängigen Kohorte repliziert werden 

können. 

Im zweiten Teil wurde MAGNET auf jede der ASS-Subdomänen als eine quantitative abhängige Variable 

angewendet. Die Analyse-Pipeline MAGNET ist in fünf Hauptabschnitte unterteilt. Der erste Abschnitt 

führt eine umfassende Qualitätsprüfung der Genotypdaten durch. Diese umfasst das Filtern fehlender 

Genotypdaten über einem bestimmten Schwellenwert, die Überprüfung auf Geschlechtsunterschiede, 
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Kontaminations- und Inzuchtfehler sowie die Visualisierung der Populationsstratifikation. Nach der 

Qualitätskontrolle der Genotypdaten werden im zweiten Abschnitt die fehlenden Genotypen anhand 

eines Referenzdatensatzes imputiert. Im dritten Abschnitt wird die Assoziationsanalyse von Genotyp- 

und einzelnen Merkmalsdaten mittels Regressionsanalyse durchgeführt, um assoziierte genetische 

Varianten zu finden. Im vierten Abschnitt wird eine genbasierte Analyse durchgeführt, die alle 

Varianten aus der Regressionsanalyse als Input übernimmt. Danach werden die genetischen Varianten 

den entsprechenden Genen zugeordnet und signifikante Gene werden weiteren Analysen unterzogen. 

Zusätzlich werden in diesem Abschnitt biologische Signalwege identifiziert, welche mit den 

signifikanten Genen assoziiert sind. Im letzten Abschnitt werden bereits vorhandene 

Genexpressionsdaten aus dem menschlichen Gehirn integriert (Kang et al.,2011). Diese Daten 

beschreiben 29 verschiedene genetische neuronale Module mit einem spezifischen Expressionsmuster 

zu verschiedenen Zeitpunkten (beginnend mit der 5. postkonzeptionellen Woche bis über 40 Jahre) in 

16 verschiedenen Gehirnregionen. Die mit den unterschiedlichen Phänotypen assoziierten Gene 

werden bezüglich ihrer Überlappungen mit den 29 Genexpressionsmodulen getestet. Für die 

wichtigsten Gene werden Heatmaps der Expression aller Gene innerhalb des assoziierten Moduls 

erstellt, sodass eine ätiologische Interpretation möglich wird. 

Im dritten Teil dieser Arbeit wurden zusätzliche Analysen durchgeführt, um den Anteil der 

phänotypischen Varianz zu bestimmen, der durch genetische Varianten (SNPs) für jede Subdomäne, 

d.h. die SNP-basierte Heritabilität erklärt wird. Darüber hinaus wurde eine genetische 

Korrelationsanalyse zwischen den Subdomänen durchgeführt, um festzustellen, ob Subdomänen, die 

sich auf Domäne A beziehen, und die Subdomänen, die sich auf Domäne B beziehen, genetisch 

verknüpft oder unabhängig voneinander sind. Am Ende wurde das polygenetische Risiko 

berücksichtigt, welches zwischen ASS und den einzelnen Subdomänen überlappt. 

Ergebnisse: 

Die Analyse aus dem ersten Teil der Arbeit (Aufbereitung der Phänotypdaten) identifizierte sechs 

aussagekräftige Komponenten in der AGP-Stichprobe, die jeweils ein quantitatives ASS-Merkmal oder 
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eine Subdomäne darstellen. Vier Subdomänen, nämlich "social interaction" (SI), "joint attention" (JA), 

"peer interaction" (PI) und "non-verbal communication" (NVC) sind Subdomänen des Bereichs A 

(soziale Interaktion und Kommunikation), die beiden weiteren Subdomänen "repetitive sensory-motor 

behavior" (RB) und "restricted interests" (RI) gehören zu Bereich B (repetitives, stereotypes Verhalten, 

sensorische Auffälligkeiten und Sonderinteressen). Die Subdomänen wurden in der zweiten, deutschen 

ASS-Kohorten bestätigt. 

Die Qualitätskontrolle und Imputation der fehlenden SNP-Genotypdaten in einzelnen Kohorten im 

zweiten Teil (MAGNET Implmentierung) der Arbeit erfolgte automatisiert durch MAGNET. Im nächsten 

Schritt wurden assoziierte Varianten für jede Subdomäne im kombinierten AGP und deutschen 

Datensatz identifiziert und ihren jeweiligen Genen zugeordnet. Wir fanden acht genomweit signifikante 

SNPs, sowie 292 nominal signifikante bekannte und neue ASS-Risikogene. Diese Gene wurden im 

Anschluss über MAGNET biologischen Signalwegen und Gen-Ontologien zugeordnet. Die 

zugrundeliegenden biologischen Mechanismen konvergierten zu neuronalen Übertragungs- und 

Entwicklungsprozessen. Über einen erneuten Abgleich dieser Gene mit dem Transkriptom des sich 

entwickelnden humanen Gehirns konnte über MAGNET herausgefunden werden, dass die 

signifikanten, mit den Subdomänen assoziierten Gene zu bestimmten Zeitpunkten in Gehirnarealen 

wie dem Hippocampus, der Amygdala und kortikalen Regionen exprimiert werden. 

In der zusätzlichen Analyse im dritten Teil haben wir festgestellt, dass die kollektive SNP-basierte 

Heritabilität, die durch einzelne Subdomänen erklärt wird, höher ist als die bekannte SNP-basierte 

Heritabilität von ASS. Wir konnten außerdem zeigen, dass die Subdomänen NVC, SI und PI das 

polygenetische Risiko teilen, während die Subdomänen von RB und RI genetisch unabhängig 

voneinander scheinen. Darüber hinaus spiegelt die genetische Korrelation zwischen den Subdomänen 

teilweise phänotypische Domänen von ASS wider. 

Conclusio: 

MAGNET ist ein frei verfügbares command line tool, das auf Github zugänglich ist 

(https://github.com/SheenYo/MAGNET). MAGNET bietet eine effiziente Datenintegration der Big-Data-

https://github.com/SheenYo/MAGNET
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Analyse und bewältigt automatisches Datenparsing sowie parallele Berechnung und 

Datenqualitätsprüfungen . Es führt gründliche Analysen durch, die von der Qualitätskontrolle der 

Genotypdaten bis hin zur Visualisierung von Gennetzwerken und Genexpressionsmustern wichtiger 

Gene reichen. MAGNET implementiert state-of-the-art Software, um assoziierte häufige genetische 

Varianten und Gene sowie deren biologische Relevanz zu identifizieren, welche mit einem bestimmten 

Merkmal assoziiert sind. Darüber hinaus können die Gene in Beziehung zum Transkriptom des sich 

entwickelnden menschlichen Gehirns gesetzt werden. MAGNET wurde erfolgreich zur Optimierung 

genomweiter Assoziationsstudien eingesetzt und hat sich im Bereich der ASS-Forschung bewährt. Die 

vom ADI-R-Algorithmus abgeleiteten Subdomänen im Zusammenhang mit der sozialen Kommunikation 

zeigen eine gemeinsame genetische Ätiologie im Gegensatz zu eingeschränkten und repetitiven 

Verhaltensweisen. Die ASS-spezifischen PRS überschnitten sich nur teilweise, was auf eine zusätzliche 

Rolle der spezifischen gemeinsamen Variation bei der Gestaltung der phänotypischen Expression von 

ASS-Subdomänen hindeutet. 
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VII. Abstract 

Motivation 

Neuropsychiatric disorders are complex, highly heritable but incompletely understood disorders. The 

clinical and genetic heterogeneity of these disorders poses a significant challenge to the identification 

of disorder related biomarkers. Besides significant progress in unveiling the genetic basis of these 

disorders, the underlying causes and biological mechanisms remain obscure. With the advancement in 

the array, sequencing, and big data technologies, a huge amount of data is generated from individuals 

across different platforms and in various data structures. But there is a paucity of bioinformatics tools 

that can integrate this plethora of data. Therefore, there is a need to develop an integrative 

bioinformatics data analysis tool that combines biological and clinical data from different data types to 

better understand the underlying genetics. For example, identifying significant genetic variants as well 

as genes that are associated with the behavioral data of these disorders. Moreover, integrating gene 

expression data of the human brain can highlight these associated genes with respect to key regions 

and time points that are altered during different neurodevelopmental stages of a human brain. 

Introduction 

This thesis presents a bioinformatics pipeline implementing data from different platforms to provide a 

thorough understanding of the genetic etiology of a neuropsychiatric quantitative as well as a 

qualitative trait of interest. Throughout the thesis, we present two aspects: one is the development 

and architecture of the bioinformatics pipeline named MApping the Genetics of neuropsychiatric traits 

to the molecular NETworks of the human brain (MAGNET). The other part demonstrates the 

implementation and usefulness of MAGNET analysing large Autism Spectrum Disorder (ASD) cohorts. 

MAGNET is a freely available command-line tool available on GitHub 

(https://github.com/SheenYo/MAGNET). It is implemented within one framework using data 

integration approaches based on state-of-the-art algorithms and software to ultimately identify the 

genes and pathways genetically associated with a trait of interest. MAGNET provides an edge over the 

https://github.com/SheenYo/MAGNET
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existing tools since it performs a comprehensive analysis taking care of the data handling and parsing 

steps necessary to communicate between the different APIs (Application Program Interface). Thus, this 

avoids the in-between data handling steps required by researchers to provide output from one analysis 

to the next. Moreover, depending on the size of the dataset users can deduce important information 

regarding their trait of interest within a time frame of a few days. Besides gaining insights into genetic 

associations, one of the central features is the mapping of the associated genes onto developing 

human brain implementing transcriptome data of 16 different brain regions starting from the 5th post-

conceptional week to over 40 years of age. 

In the second part as proof of concept, we implemented MAGNET on two ASD cohorts. ASD is a group 

of psychiatric disorders. Clinically, ASD is characterized by the following psychopathology: A) 

limitations in social interaction and communication, and B) restricted, repetitive behavior. The etiology 

of this disorder is extremely complex due to its heterogeneous clinical traits and genetics. Therefore, to 

date, no reliable biomarkers are identified. Here, the aim is to characterize the genetic architecture of 

ASD taking into account the two aforementioned ASD diagnostic domains. As well as to investigate if 

these domains are genetically linked or independent of each other. Moreover, we addressed the 

question if these traits share genetic risk with the categorical diagnosis of ASD and how much of the 

phenotypic variance of these traits can be explained by the underlying genetics. 

Methods 

In the first part, preliminary analyses were performed which incorporated statistical data analysis 

approaches. We included affected individuals from two ASD cohorts, i.e. the Autism Genome Project 

(AGP) and a German cohort consisting of 2,735 and 705 families respectively. We used phenotype data 

gathered from diagnostic interviews for Autism - Revised (ADI-R). Firstly, the quality of the phenotype 

data was ensured. In order to reduce the known phenotypic heterogeneity and to define the 

dimensional properties as a target for the analysis of genetic risk factors, a principal component 

analysis was performed on the ADI-R data in the AGP cohort. Subsequently, a confirmatory factor 
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analysis was performed in the German cohort to determine whether the subdomains obtained in the 

AGP cohort could be replicated in an independent cohort. 

In the second part, MAGNET was applied to each of the ASD subdomains as a quantitative dependent 

variable. MAGNET is divided into five main sections i.e. (1) quality check of the genotype data, (2) 

imputation of missing genotype data, (3) association analysis of genotype and trait data, (4) gene-

based analysis, and (5) enrichment analysis using gene expression data from the human brain. 

In the third part of this thesis, the proof of concept study was extended with additional analyses. These 

analyses included determination of the SNP-based heritability for each subdomain. In addition, a 

genetic correlation analysis between subdomains was performed to identify whether subdomains 

related to ASD domains A and B are genetically linked or independent of each other. Finally, the 

polygenic risk overlapping between ASD and each subdomain was considered. 

Results 

The preliminary analyses identified six meaningful components in the AGP sample, each representing a 

quantitative ASD subdomain. Four subdomains, namely "social interaction" (SI), "joint attention" (JA), 

"peer interaction" (PI) and "non-verbal communication" (NVC), are subdomains of domain A (social 

interaction and communication), the other two subdomains "repetitive sensory-motor behavior" (RB) 

and "restricted interests" (RI) belong to domain B (repetitive, stereotypical behavior, sensory 

abnormalities, and special interests). The subdomains were confirmed in the second German ASD 

cohort. 

The quality control and imputation of the missing SNP genotype data in individual cohorts in the 

second part of the work were automated by MAGNET. In the next step, associated variants for each 

subdomain were identified in the combined AGP and German cohort and mapped to their respective 

genes. We found eight genome-wide significant SNPs, and 292 known and new ASD risk genes. These 

genes were subsequently assigned to biological signaling pathways and gene ontologies via MAGNET. 

The underlying biological mechanisms converged with respect to neuronal transmission and 

development processes. By reconciling these genes with the transcriptome of the developing human 
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brain, MAGNET was able to identify that the significant genes associated with the subdomains are 

expressed at specific time points in brain areas such as the hippocampus, amygdala, and cortical 

regions. 

In the additional analysis in the third part, we found that the collective SNP-based heritability explained 

by single subdomains is higher than the known SNP-based heritability of ASD. We have also shown that 

the subdomains NVC, SI and PI share polygenic risk factors, while the subdomains of RB and RI seem 

genetically independent. Furthermore, the genetic correlation between the subdomains reflects 

partially phenotypic domains of ASD. 

Conclusion 

MAGNET offers an advantage over existing tools as it performs efficient data integration and deals with 

the challenges faced during big data analysis by providing automatic data parsing, parallel 

computation, and data quality checks. It performs thorough analysis ranging from quality control of 

genotype data to visualization of gene networks and gene expression patterns of significant genes. 

MAGNET has been successfully implemented on ASD cohorts optimizing quantitative genome-wide 

association studies and has proven to be valuable in the field of ASD-research. The ADI-R algorithm 

derived subdomains related to social communication show a shared genetic etiology in contrast to 

restricted and repetitive behaviors. The ASD specific PRS overlapped only partially, suggesting an 

additional role of specific common variation in shaping the phenotypic expression of ASD subdomains. 
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1. Introduction 

 Motivation and structure of the thesis 1.1.

The complex mechanisms underlying neuropsychiatric conditions such as ASD (Autism spectrum 

disorders), BD (Bipolar disorder), ADHD (Attention deficit hyperactivity disorder) and SZ 

(Schizophrenia) 5–8 are a challenging area of research. These disorders are highly heritable and exhibit a 

broad variety of expression of the various clinical traits. The high heritability of the diagnoses and the 

related traits indicate that the underlying genetics need to be dismantled in order to understand the 

pathomechanisms of these disorders.  

To determine the association between these genetic factors and the disorder, as well as to understand 

the biological and functional mechanisms behind the phenotypes, GWAS (Genome-wide association 

studies) are performed. GWAS requires efficient computational tools and their results are highly 

dependent on extensive QC (Quality check/control) procedures as well as an accurately performed 

imputation of missing genetic information. 

At present, there are numerous bioinformatics genetics pipelines available such as SNPQC 9, which 

perform an extensive QC of the genotype data. Similarly, for imputing missing genotype data, there are 

state-of-the-art pipelines such as ENIGMA 10 and Molgenis-impute 11. For genotype analyses GWAS 

applications are existing, e.g. GWASpi 12. There are also pipelines published combining QC and 

imputation, such as the Ricopili pipeline 13. All these available tools separately perform the individual 

steps needed for GWAS. However, in the area of neuropsychiatry, there currently is no framework, 

which besides performing association studies to identify the genes associated with a trait combines the 

different tools in an automated manner and translates the genetic findings at the brain and gene 

network level within a single framework. For example, integrating spatial and temporal properties of 

the available brain transcriptome (gene readouts present within a cell) data can contribute important 

insight to other neurodevelopmental disorders for understanding disease biology. Gene expression 

patterns in the developing human brain are highly dynamic and can reflect the underlying biological 
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processes. Thus, this information can assist researchers not only to find the genes associated with a 

specific trait but can also highlight the regions and time points when those specific genes are expressed 

in the brain.  

In the first chapter, a detailed overview of the state-of-the-art methods and an introduction to the key 

concepts in the field of ASD is provided. The second chapter of this thesis firstly highlights the methods 

used in the preliminary analyses performed on ASD phenotype data that will be used by MAGNET, 

then, the algorithms implemented in MAGNET. The third part of this chapter consists of the additional 

analysis performed to further answer the biological questions related to the two ASD cohorts. Chapter 

three shows MAGNET’s structure in detail, as well as its implementation on two large ASD cohorts in 

the same order as in the previous chapter. Chapter four elaborates on the methodological as well as 

biological results. Firstly, the results from the preliminary analyses are shown followed by 

methodological results which detail the structure of MAGNET and its use. Further, the chapter focuses 

on the biological results related to MAGNET’s implementation on the two ASD cohorts. Chapter four 

concludes the thesis in terms of its major outcomes and limitations. 

 

 Genetic concepts 1.2.

Complex genetic disorders result from a combination of distinctive characteristics. These disorders 

result from a combination of allele frequencies and disease penetrance in a population. Figure 1 shows 

the effect of allele frequency with respect to disease penetrance. Genetic studies in the past have 

shown that genetic variants with a very rare allele frequency and low disease penetrance are hard to 

identify. However, for Mendelian diseases like Huntington’s, one rare mutation of the single gene HTT 

(Huntingtin) is responsible for the disease (high penetrance). To identify genetic variants with modest 

effect sizes genome-wide association studies (GWAS) are performed, though these studies can not 

completely account for the phenotype risk. For variants with very low allele frequency, it is difficult to 

find enough cases and get significant associations. Though rare variants have a small effect size but are 

found to increase genetic liability and clinical presentation of neurodevelopmental disorders such as 
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ASD. Variants with a common allele frequency contribute significantly to the genetics of ASD, although 

the identification of individual risk polymorphisms is still not clear due to their small effect sizes and 

limited sample sizes available for association studies 1. More details about the genetic terminologies 

can be found in the Appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Allele frequency versus disease penetrance at different effect sizes 

This figure shows on the x-axis the allele frequency and the y-axis shows the effect size. The effect sizes of genetic variants change with 
allele frequency. On the lower left, we see that the rare variants with low effect sizes are hard to identify compared to variants with low 
frequency and intermediate effects. On the other side, common variants with small effects can be detected using genome-wide association 
analysis in common disease. On the top right, we see that only a few single high effect common variants are implicated in common diseases. 
This figure is adapted from McCarthy et al., 2009. 
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 Types of data in genetic studies 1.3.

1.3.1. Phenotype data 

Neuropsychiatric disorders generally come with a discrete diagnosis. For example, although the ASD 

phenotype is discussed to be at the far right end of a normally distributed behavioral phenotype in the 

general populations, the most frequent kind of available data is as categorical diagnosis. Interestingly, 

the categorical diagnosis of ASD is usually based on quantitative phenotypic data, as generated during 

the clinical assessments 83. These can include physical examinations, a series of interviews, cognitive 

and personality tests. The diagnostic instruments are clinical interviews conducted by expert clinicians 

from the (1) parent, primary caretaker or teacher, e.g. the ADI-R (Autism diagnostic interview-Revised) 

13or (2) directly from the individual, e.g., the ADOS (Autism diagnostic observation schedule) 34.  

The challenges faced for generating and retrieving phenotype data include standardized assessment 

instruments that are harmonized across the sites, maintaining clinical records and dealing with missing 

phenotype data due to lack of information gathered from the participants in the study data. However, 

it is possible to fill the missing information using imputation techniques (see 2.4). 

1.3.2. Genotype data: Types and Technologies  

Genotype data comprises of genetic variants, which can be varying stretches of several megabases, i.e. 

Copy Number Variants (CNVs) down to Single Nucleotide Polymorphisms (SNPs) or Single Nucleotide 

Variants (SNVs). To obtain genotype data, there are two widely used technologies, i.e. array-based and 

next-generation sequencing technology described as follows: 

Array-based technologies  

Millions of SNPs can be genotyped using oligonucleotide (short DNA molecules)-probes with the main 

purpose to differentiate between alternative alleles at the SNP locus and determining the nature of the 

allele based on the signal generated from genotyping. The two key players in this technology are 

Affymetrix and Illumina. Both technologies are based on the biochemical principle that nucleotide 

bases bind to their complementary bases based on Watson–Crick base pairs, i.e. A (Adenine) pairs with 
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T (Thymine) and C (Cytosine) pairs with G (Guanine). Moreover, both the technologies call for the 

hybridization (annealing) of fragmented single-stranded DNA to arrays which contain millions of unique 

nucleotide probe sequences designed specifically to a target DNA subsequence. However, Illumina has 

a higher probe density that encompasses millions of markers. 

Affymetrix arrays take a short DNA sequence targeting a single SNP allele. There are unique nucleotide 

probes which are designed in a way that they serve as perfect complementary to one of the two or 

more target alleles, e.g. A or B of a genetic variant (Major alleles conventionally referred to as allele A). 

Besides that, there are also negative probes that are identical to a perfect matching probe except that 

the allele-specific base is altered such as not to be complementary to any of the annotated alleles 35. 

After the hybridization of target DNA to these unique nucleotide probe sequences, a signal is 

generated, and its intensity is measured. The intensity is proportional to the amount of target DNA in 

the sample and depending on the affinity between the target and probe. These intensity measures can 

depict the SNP genotype, i.e. AA, AB or BB 35. Since intensity measures of all probes and individuals are 

assessed on multiple arrays, the intensities are normalized to account for non-biological differences. 

This aims at standardizing the intensity distributions across the arrays. The standardized approach is 

quantile normalization. It ranks the data and makes each quantile the same across the sample by 

calculating mean or median. In this manner, an average of the distributions is generated. So the 

highest values in the samples are the mean highest values. This ensures that all arrays in the study 

have precisely the same probe intensity distribution 35. This can be achieved by implementing 

normalization algorithms in any programming language such as R, MATLAB, etc. 

Illumina Bead-Arrays are based on the single base extension technology Infinium. Here, two allele-

specific probes are designed to bind adjacent to the SNP of interest. The last base of the probe 

matches the alleles of interest. A single base extension is used to confer the allele specificity of the 

probe. For example, if a probe is a perfect match to allele A, a nucleotide with a green fluorophore is 

incorporated and a red fluorophore for the B allele. Illumina uses silica beads (a few microns in size) 

and a longer probe sequence than Affymetrix. In addition, a genetic barcode is attached to the bead in 
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the form of another oligonucleotide with a fluorescent dye to be able to allocate the specific probes 36. 

For each variant, beads with specific probes (one per bead) are synthesized and spread randomly on to 

a glass slide with silica coating having small etched holes for the beads to reside 37. Thus, each SNP is 

interrogated with a single bead type covered by one unique probe designed to target the sequence 

spanning the SNP of interest. The signal intensities from each bead type are measured with a 

scanner  38. A number of algorithms are available for processing the raw signal from these arrays into 

genotype calls such as GenCall 39 and BeadStudio/GenomeStudio software; Illumina 40. Normalization 

steps are performed at the level of sub-bead pools level 39 (SNPs that share similar properties and are 

usually clustered together) using Illumina BeadStudio software, which provides the normalized 

intensities as a pair of coordinates corresponding to the signals for the two alleles at each SNP 40.  

NGS technologies 

NGS (Next-generation sequencing) is a DNA sequencing technology that performs millions of 

sequencing reactions of multiple small fragments of DNA to determine the sequence. Thus due to the 

speed of sequencing and the amounts of data generated this technology is also termed “high-

throughput”. It has massively reduced the time and cost required to generate sequence data. The 

sequencing methods vary depending on the retrieval of DNA/RNA samples such as healthy vs. affected, 

different time points and experimental conditions, etc.  

NGS provides large-scale DNA sequencing and is an efficient technique to identify novel SNPs 41. NGS is 

used for sequencing a whole-genome or targeted regions of the genome, e.g. coding regions, exome-

sequencing, which are sheared into small fragments. Barcodes and adapters are attached to each of 

the fragments for sequence identification, and each fragment is converted into a sequencing library. In 

the next step, the individual sequences are amplified multiple times and are sequenced. These 

sequences are then mapped and aligned onto annotated reference genomes, e.g. the human genome 

19 reference (hg19). After aligning the fragments, SNP or genotype calling can be performed to identify 

SNPs and genotype for each individual respectively 42.  
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Array technology uses pre-selected targets whereas sequencing provides better coverage of the entire 

genome. Since the focus of this research is on common variants, which can also be covered by SNP 

genotyping technologies and are less expensive than the sequencing technology, we performed SNP 

genotyping only. 

1.3.3. Transcriptome data 

Transcriptome data is a representation of the complete set of RNA transcripts produced by the 

genome under specific circumstances such as the effects of a drug at specific time intervals or in a 

specific cell. For example, this data can contain information about the gene expression at certain time 

points and/or tissues in an organism. The two widely used platforms for generation of transcriptome 

data are microarrays and RNA-sequencing, both relying on the conversion of RNA into cDNA, i.e. the 

complementary DNA sequence to the respective transcript. 

Microarrays are cost-effective and measure the abundance of transcripts via hybridization of the cDNA 

to an array of complementary probes, similar to the genotyping arrays, but targeting cDNA specific 

sequences. RNA-Seq is an NGS method, short pieces of cDNA (adapters) are attached to these 

fragments which contain the sequences to amplify the genomic fragment. These adapters also contain 

short sequences that serve as identifiers to avoid the samples being mixed. The cDNA library is then 

analysed by NGS, which produces short sequence segments corresponding to either one or both ends 

of the fragment. These short segments are then reconstructed and aligned with the help of a reference 

genome such as 1000 Genomes to map the genes. In the end, raw counts are produced, which are the 

number of reads that overlap with a transcript. In both cases, the data is normalized and analysed with 

the help of various bioinformatics tools available, e.g. the data analysis package limma in R 43 and also 

as standalone software that can analyse gene expression data and identify specific patterns, e.g. 

dCHIP  44 for microarrays, ArrayAnalysis 45 and AltAnalyze  46. 
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 ASD 1.4.

1.4.1. ASD prevalence and diagnosis in research 

ASD is a neurodevelopmental disorder marked by impairments in two domains, i.e. (A) social 

interaction and communication, and (B) restricted or repetitive patterns of behavior and interests. 

The estimated prevalence of ASD was 2.47% among the United States children and adolescents in the 

years 2014-2016 47. The median of global prevalence estimates of ASD was 62/10,000. This estimated 

prevalence is four times higher in boys than girls 48. Despite these high prevalence rates of ASD and 

efforts to reveal its genetic basis over the past decade, a clear understanding of the ASD mechanism is 

still unresolved. 

Currently, there are two gold standards for the diagnosis of ASD, i.e. the ADOS 34 and the ADI-R 49. They 

provide a diagnostic algorithm for the ICD-10 (International Statistical Classification of Diseases and 

Related Health Problems- 10th Revision) 50 and DSM-IV-TR (Diagnostic and Statistical Manual of Mental 

Disorders, 4th Edition-Text Revision) 51 definitions of ASD 52. 

Both ADI-R and ADOS are well established and validated diagnostic tools for children and adolescents 

with ASD. As mentioned before that the data gathered from these diagnostic tools can be interpreted 

as quantitative or phenotype data. In this study, we used ADI-R data because it considers the actual 

state of the patient as well as information on the retrospective behavior over the years and is thus less 

prone to age effects. Furthermore, the ADI-R, in contrast to the ADOS, does not come with age or 

developmental specific versions. 

1.4.2. Genetics of ASD 

Heritability 

ASD is one of the most genetically heritable mental disorders but lacks information available on its 

neurobiological causes and biomarkers. One of the biggest challenges in understanding the mechanism 

of ASD is its heterogeneous clinical and genetic architecture. Moreover, the strong interplay of genetic 

influences and environmental interactions makes it a topic of intriguing research. Twin studies have 
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also assisted in estimating the genetic and environmental contributions of ASD phenotypes. These 

studies have shown that MZ (monozygotic) twins are more concordant (twins sharing the same genetic 

and environmental condition) for ASD than DZ (dizygotic) twins (twins sharing environmental 

conditions but only 50% of their genetics) suggesting strong genetic effects underlying the liability to 

ASD 54. A meta-analysis of twin studies estimated heritability rates between 64% - 91% 55. Another 

recent study estimated the heritability of ASD in population data from five countries and found an 

estimate of ~80%, further supporting the finding that variation in ASD occurrence in the general 

population is mostly attributed by inherited genetic influences 56. Besides that, the risk of ASD has been 

shown to be increased by genetic variants 57, structural variations 28, and mutations 58. 

Genetic architecture of ASD 

The underlying causes of ASD remain largely unknown however twin studies have shown a high genetic 

contribution to ASD 59. Based on the Human Reference Genome Project an individual on an average 

carries 3 million genetic variants that differ from the reference human genome 60. These variants could 

be SNPs/SNVs, CNVs, and short insertions or deletions also termed as indels. All these variants 

contribute significantly to ASD liability. Moreover, the type of variants (common or rare), as well as the 

origin of variants (inherited or de novo), contribute to the ASD genetic risk. Though, common variants 

are known to have small effect sizes but increase genetic liability for ASD. Previously, a twin study in a 

Swedish sample has identified that the genetic variation accounts for ~60% of the liability for ASD with 

common variants accounting for ~49% of the liability 62. On the contrary, de novo mutations, CNVs and 

gene disrupting point mutations (a single nucleotide base change that can disrupt gene function) 

collectively contribute ~5% of the ASD liability 73 and less heritability. 
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 Genetic studies designs 1.5.

1.5.1. Twin studies in ASD 

These studies evaluate the involvement of genetic and environmental factors on complex diseases 

based on the findings that MZ twins share 100% of genetic makeup and DZ twins share ~50% of their 

genetic makeup, while both share the same environment. High co-twin correlations among MZs and 

low co-twin correlations among DZs would suggest a high genetic heritability. Similarly, a high co-twin 

correlation among both groups would indicate a strong environmental effect on the phenotype. Twin 

studies are generally used to assess the heritability of a phenotype and thus to inform the decision to 

investigate a trait at the genetic level. 

The first twin study of ASD was performed by Folstein et al.,1977 in a cohort of 11 MZ twins and 10 DZ 

twins. The study identified that MZ twins were more concordant for ASD, i.e. 36% compared to 0% for 

DZ 77. However, when a ‘‘broader autism phenotype’’ (individuals with personality and cognitive traits) 

was used, the concordance rate increased to 92% for MZ twins and to 10% for DZ twins 54,78,79. In the 

later period, twin studies with comparatively larger groups than the previous studies showed high 

concordances for ASD in MZ twins (77–95%) compared with DZ twins (31%) 80. Moreover, these studies 

have shown that the recurrence of having a child with ASD can increase depending on the proportion 

of the genome, which is shared between the individual and an affected sibling or parent. 

Sandin et al. 81 showed that individual risk of ASD and autistic disorder is increased with genetic 

relatedness to an individual with ASD. They estimated the relative recurrent risk (RR) for ASD as 

compared to the general population was RR= 153.0 (95% CI (Confidence Interval), 56.7-412.8) for MZ 

twins, RR= 8.2 (95% CI, 3.7-18.1) for DZ twins, RR= 10.3 (95% CI, 9.4-11.3) for full siblings, RR= 3.3 (95% 

CI, 2.6-4.2) for maternal half-siblings, RR= 2.9 (95% CI, 2.2-3.7) for paternal half-siblings and 2.0 (95% 

CI, 1.8-2.2) for cousins. In this study, the heritability of ASD and autistic disorders is estimated to be 

~50% for the additive genetic component and similarly, the non-shared environmental influence was 

also 50%. In a recent meta-analysis by Tick et al. 55, the correlations for MZ twins were 0.98 and for DZ 
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0.53 at a prevalence rate of 5%. Another study by Sandin et al. 2017 8 included 37,570 twin pairs, 

2,642,064 full sibling pairs, and 432,281 maternal and 445,531 paternal half-sibling pairs. Among these, 

14,516 children were diagnosed with ASD. The ASD heritability was estimated to be 83%, non–shared 

environmental influence was 17%. In short, these studies have provided high heritability estimates of 

ASD. One limitation, however, is that these estimates are often overestimated due to the overlapping 

genetic makeup between MZ twins and the 50% similarity in DZ twins. Finally, these studies do not 

provide information on the chromosomal regions, genes or variants involved. For this purpose, linkage 

studies and whole-genome analyses are performed. 

1.5.2. Linkage studies in ASD 

The purpose of linkage studies is to evaluate the probability that an allele or set of alleles are inherited 

together with a disease or trait in a family or group of families and thus to map the phenotype onto a 

genomic location, rather than identifying causal variants. The analysis is conducted in large pedigrees 

and tests for genome-wide genetic markers. The results are expressed as LOD (logarithm of odds) 

scores which compare the likelihood of two loci are being linked to the phenotype, i.e. being co-

inherited, with the likelihood of observing them by chance in a disease 82. High LOD scores thus 

correspond to regions with strong linkage to the disorder, i.e. the unknown disorder locus is close to 

the linked variants and can contain several candidate genes that are then investigated further. 

A large number of linkage studies have identified ASD risk loci on multiple chromosomes, i.e. 2q21-33, 

3q25-27, 3p25, 4q32, 6q14-21, 7q22, 7q31-36, 11p12-13 and 17q11-21 64. A study by Liu et al. 83 

showed that dimensional subphenotypes of ASD can also help in reducing the genetic heterogeneity 

and can lead to better identification of susceptibility loci. In ASD families with IQ (Intelligence Quotient) 

≥ 70, they identified linkage to chromosome 15q13.3-q14, a region already known in SZ. Moreover, 

they also found linkage of chromosome 11p15.4-p15.3 with “delayed onset of first phrases”. Later, the 

same group identified loci in a large study cohort associated with specific phenotypes in ASD. For 

example, the region 19q13.3 was genome-wide significantly associated with repetitive sensory-motor 

behavior (RB) whereas 11q23 was associated with joint attention (JA) 84. Later, Weiss et al. 85 
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performed a genome-wide linkage study and identified suggestive and significant linkage on 

chromosomes 6q27 and 20p13, respectively. Further analysis showed SNP on chromosome 5p15 

between SEMA5A (Semaphorin 5A) and TAS2R1 (Taste 2 Receptor Member 1) was significantly 

associated with ASD (P= 2x10-7). They also identified that the expression of SEMA5A is reduced in the 

brains of autistic individuals. 

Linkage analyses are suitable to detect loci and subsequently genes with potentially rare variants of 

high penetrance. However, they are not able to detect common variants that have small individual 

effects on risk 86. GWAS is a powerful method to detect common variants with small effect as seen in 

Figure 1. 

1.5.3. Genome-wide association studies in ASD 

Though association studies are designed for any type of genetic variants, SNPs are mostly used because 

of their spread across the genome. GWAS methods can analyse variations in a case-control or trio-

based (parents and offspring) setting. GWAS is efficient in detecting common alleles that contribute to 

common multifactorial diseases 87, however not only limited to common variants. GWAS is based on 

genotyping data usually generated using Chip- Array technology (see 1.3.2). Since the number of SNPs 

is limited to these arrays genotype imputation is further used to infer the missing genotypes based on 

linkage and thus increasing the number of SNPs to be analysed (see 1.7.2). 

In trio-based studies, an affected individual is recruited along with the parents to compare the alleles 

transmitted from the parents to the case versus the non-transmitted. This is performed by using the 

TDT (transmission-disequilibrium test), which looks for the linkage between a marker allele and a 

disease locus. One limitation of TDT is the difficulty to recruit parents-case data. 

Association studies based on case-control design have controls that are either unrelated or are the 

family members of the individual. In this study design, the occurrence of a given allele in cases versus 

the controls is observed to see the association between the phenotype and the disease. In contrast to 

a Chi2 (chi-square)-based association test as used in case-control studies, the TDT approach is 



Dissertation Afsheen Yousaf  Introduction 

13 
 

independent of potential stratification effects, i.e. findings that might relate to the differences in 

ethnicities between cases and controls rather than the group status. 

A caveat in GWAS studies is that millions of SNPs are tested. Testing for multiple corrections is 

therefore mandatory to minimize the chances of false positives. The two widely used methods are FDR 

(False discovery rate) 88 and Bonferroni 89 correction which calculates the expected rate of type I errors 

when performing multiple comparisons which then provide a corrected p-value (see Appendix). 

Generally, the larger the sample size, the more likely a study will find a significant relationship if it 

exists. As the sample size increases, the impact of the random error is reduced and the overall 

variability is decreased. This allows the measures to become more precise for the complete dataset. 

However, with large study cohorts, more bias can be introduced in the analysis, such as various 

confounding factors including population stratification (see 2.6.8), inadequate quality control and 

genotyping errors. As well as performing GWAS on small underpowered samples can result in false-

positive findings. Examples for successfully identified associations have been reported for several 

complex disorders such as ASD 90,91, Alzheimer 92, Parkinson’s 93, stroke 94, and SZ 95. 

There has been a drastic increase in ASD-GWAS since the first successful GWAS in ASD by Wang et al. 

2009 96 who identified six significant SNPs mapping to CDH10 (Cadherin 10) and CDH9 (Cadherin 9) 

genes which encode neuronal cell-adhesion molecules. Another study by Anney et al. 97 found a 

genome-wide significant SNP rs4141463 located within the gene MACROD2 (Mono-ADP 

Ribosylhydrolase 2). Later, a study by Connolly et al. 98 selected individual items from the ADI-R, ADOS, 

and the Social Responsiveness Scale (SRS) in the Autism Genetic Resource Exchange (AGRE) cohort to 

perform GWAS. They reported eight genome-wide significant (P< 5×10-8) hits, i.e. rs10239799 (KCND2: 

Potassium Voltage-Gated Channel Subfamily D Member 2) , rs2056412 (C8ORFK32: Family With 

Sequence Similarity 135 Member B), rs2779251 (NOS2A: Nitric Oxide Synthase 2), rs1429793 (NELL1: 

Neural EGFL Like 1), rs11899372 (BIN1: Bridging Integrator 1), rs4925506 (MPN2: Serine Protease 38), 

rs17134117 (SDK1: Sidekick Cell Adhesion Molecule 1) and rs3797817 (FER: FER Tyrosine Kinase) 

associated with “serious facial expressions”, “concentrating on parts of object rather than whole 
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picture”, “loss of motor skills”, “faints or blackouts”, “association of loss of skills with physical illness”, 

“too tense in social settings” and “loss of motor skills”, respectively. 

A study by Smoller et al. 99 analysed five psychiatric disorders namely ASD, ADHD, BD, Major depressive 

disorder and SZ. SNPs at four loci mapping to regions on chromosomes 3p21 and 10q24 passed the 

genome-wide significance threshold. A more recent GWAS focused on the seven items of the restricted 

and repetitive behavioral score of the ADI-R in 3,104 ASD-affected individuals. It identified a genome-

wide significant association of the SNP rs2898883 (P< 6.8×10-9) with the degree of the repetitive use of 

objects or interest in parts of objects100. This SNP is located within the sixth intron of PHB (Prohibitin). 

On further investigation, they identified candidate target genes of the associated SNPs at that locus 

and found three more genes: SLC35B1 (Solute Carrier Family 35 Member B1), CALCOCO2 (Calcium 

Binding And Coiled-Coil Domain 2) and DLX3 (Distal-Less Homeobox 3).  

In short, to date several studies have investigated the association of SNPs with ASD via GWAS but with 

limited replication success. The reason is the limited sample size and small effects of disease variants, 

and as a result, these associations are not replicated in other studies. With the advent of large-scale 

international collaborations to combine genotyping data from different sites, the statistical power has 

been improved. A recent genome-wide association meta-analysis of 18,381 ASD cases and 27,969 

controls identified five genome-wide significant loci with the variants rs910805, rs10099100, 

rs201910565, rs71190156 and rs111931861. It is the first study to robustly associate common variants 

with ASD and further highlighted biological insights relating to neuronal function and corticogenesis 57. 

1.5.4. CNVs studies in ASD 

Beside SNPs, CNVs are another class of genetic variants that are being analysed. Overall 4.8-9.5% of the 

human genome is affected by CNVs 101. Since CNVs include deletion, duplication or insertion of DNA 

fragments their effect on gene expression could also be large. Therefore, they might also be related to 

phenotypic variations in a genetic disorder. One problem with these studies is the accurate 

determination of CNVs and their boundaries since they can vary among individuals 102. CNV studies, 

similar to SNP studies rely on Array data comparing the intensity of signals across the genomic markers 
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to identify deletions or duplications. CNV studies are mostly done in trios to identify rare de-novo CNVs 

in the affected individual that have not been transmitted by the parents. The term de-novo refers to 

the new mutation, i.e. germline origin of the variant in the affected study participant. CNV studies have 

found regions in genes associated with ASD103, type-2 diabetes 104, and SZ 105. 

In addition to SNPs, CNVs are an important susceptibility factor for ASD. Studies have shown that the 

proportion of de novo CNVs is three to five times higher in ASD families when compared to controls. 

Altogether, they explain only 1% genetic heritability of ASD 28,68. De novo CNVs were found in ~ 27% of 

individuals with syndromic ASD (associated with chromosomal abnormalities or mutations in a single 

gene) 69. Individuals with two or more de novo CNVs typically have a more severe phenotype. Previous 

studies have shown that in ~ 7-8% of individuals with ASD chromosomal anomalies were found 70. 

Among the most common CNVs in ASD, there are the maternally derived duplications of chromosome 

15q11-q13, as well as deletions of 16p11.2 and 22q13. Studies have also found a considerable 

enrichment within CNVs in ASD for neuronal synaptic complex genes such as SHANK2 (SH3 And 

Multiple Ankyrin Repeat Domains 2), SHANK3 (SH3 And Multiple Ankyrin Repeat Domains 3), NRXN1 

(Neurexin 1), and NLGN4 (Neuroligin 4) 71,72. 

CNV studies have provided important regions and genes associated with the ASD phenotype 3,68,72,106. 

Previously identified genetic variants included CNVs associated with 7q11.23 107, 15q11–13 106, 16p11.2 

68, and 22q11.2 28 loci, as well as genes NRXN1 108, CNTN4 (Contactin 4) 109, SHANK3 110, and NLGNs 

genes 72. Among the pioneer studies for CNV analysis, a study by Szatmari et al., 2007 111 identified 254 

highly significant CNVs. Out of these, four CNVs were highlighted and among them, a 300 kb sized CNV 

deletion on chromosome 2p16 was identified in two families. This region contains coding exons of the 

NRXN1 gene, which interacts with neuroligins in synaptogenesis. Hence, disruption of this region can 

affect the function of NRXN1, which might affect ASD or its phenotypes. 

Later, a study by Sebat et al., 2007 71 identified 17 de novo (occurs in children but not in their parents) 

CNVs in 16 individuals. They identified a 4.3 Mb (Megabase) sized de novo deletion at 22q13.31-

q13.33, which includes the SHANK3 gene. This region has also been previously associated with ASD 112. 
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Another recurrently reported CNV region associated with ASD is located on the chromosomal region 

16p11.2. Studies have reported microdeletions and microduplications of 16p11.2 which has been 

validated further to be associated with ASD 28,113.  

A whole-genome CNV analysis by Glessner et al.72 identified CNVs in the loci 15q11–q13, 22q11.21, 

containing the ASD susceptibility genes NRXN1 and CNTN4. Other new susceptibility genes identified in 

this study were NLGN1 (Neuroligin 1) and ASTN2 (Astrotactin 2). 

Furthermore, Pinto et al.106 analysed the genome-wide features of rare CNVs in ASD. Based on 996 

cases and 1,287 controls, they identified 5,478 rare CNVs. By examining parent-child transmission, the 

authors found 226 de novo and inherited CNVs that were not present in controls. As a whole, ASD 

cases were found to carry a higher number of de novo CNVs than controls (1.69 fold, P= 3.4x10-4). 

A number of novel genes such as SHANK2 (SH3 And Multiple Ankyrin Repeat Domains 2), SYNGAP1 

(Synaptic Ras GTPase Activating Protein 1), DLGAP2 (DLG Associated Protein 2) and the DDX53 (DEAD-

Box Helicase 53) – PTCHD1 (Patched Domain Containing 1) were found to be associated with ASD in 

this study. 

In another study in Han Chinese population, pathogenic CNVs responsible for ASD were 

investigated 114. Genome-wide study of CNVs in 335 ASD cases and 1,093 healthy controls was 

performed. They identified six CNVs at 6q26 that were extended on different exons of PARK2 (Parkin 

RBR E3 Ubiquitin Protein Ligase) gene. PARK2 was one of the important genes with several case-

specific regions overlapped on it.  

A recent study investigated 1,108 ASD and 2,458 SZ cases in a Japanese population. 29 clinically 

significant loci were common in both disorders. Disease-relevant genes were identified in eight known 

ASD and SZ associated loci, i.e. 3q29, 7q11.23, 15q11.2, 15q11.2-q13.1, 15q13.3, 16p11.2, 17q12, and 

22q11.2 103. 

1.5.5. NGS studies in ASD 

There are a number of NGS methods available, however, in genomics, the most commonly used 

methods are whole-genome sequencing (WGS), whole-exome, and de novo sequencing. WGS attempts 
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to sequence the whole genome, however, due to sequencing technically difficult regions of the 

genome, it can capture only 95% of the genome. WES only considers the protein-coding sequences (i.e. 

exome) for sequencing and offers less coverage than WGS. As WES only focuses on ~1.5% of the 

genome that constitutes the exomes, the cost to sequence it is ultimately reduced compared to WGS. 

De novo sequencing refers to the sequencing of a primary genetic sequence of a particular organism 

for which there is no reference sequence available. NGS has been widely used in the identification of 

variants associated with ASD 115, SZ 116 and depression 117.  

Nowadays, NGS studies in ASD are extensively performed and have identified disruptive variants in the 

protein-coding regions of the genome. One of the earliest NGS studies in ASD is from Sanders et al., 

2012 118. They performed WES of 928 individuals, which included 200 phenotypically discordant sibling 

pairs with de novo mutations in brain-expressed genes associated with ASD. They identified a total of 

279 de novo coding mutations and one gene named SCN2A (sodium channel, voltage-gated, type II, α 

subunit) with de novo mutations in two affected individuals. Later, a study by Rubeis et al., 2014119 

performed exome sequencing in 3,871 autism cases and 9,937 ancestry-matched or parental controls 

individuals. They identified 22 autosomal genes at an FDR < 0.05, along with 107 autosomal genes. 

Moreover, they identified that these genes are enriched for developmental pathways of chromatin 

remodeling, synaptic function, etc. 

Another WES study from 787 ASD families reported that ASD is associated with de novo indels 

(insertion/deletion of a nucleotide base). The study also identified de novo indels in the genes of 

KMT2E (lysine methyltransferase 2E), and RIMS1 (regulating synaptic membrane exocytosis 1) involved 

in synaptic function and chromatin modification 120. 

1.5.6. eQTL studies in ASD  

An eQTL (Expression quantitative trait loci) represents a genomic locus or variant, e.g. a SNP that 

influences the expression level of a gene. eQTLs can act in cis if the respective SNP is present near the 

gene whose expression is influenced or they can act in trans, i.e. the SNP is not in close proximity to 

the gene 121. Genome-wide eQTL mapping thus identifies the association between gene expression 
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levels and DNA variants (i.e. SNPs or CNVs) by performing a direct association test between markers of 

genetic variation with gene expression levels across individuals. The analysis requires genetic markers 

that can be genotyped in a population as well as data on the gene expression in the tissue of interest. 

A direct association test is performed between markers of genetic variation with gene expression 

levels. These analyses can help in identifying the underlying genetic mechanisms of diseases. For 

example, when SNPs are associated with the expression of a gene in eQTL mapping and with a disease 

in GWAS. This implicates that the expression of the gene mediates the effect of SNP on the disease 122. 

eQTLs have been widely associated with ASD 123, BD 124, and SZ 125. 

The relevance of eQTLs in neuropsychiatric disorders has been shown by a study which identified 21 of 

the cis-eQTL variants of genes expressed in the fetal brain, that are located within a region of 

chromosome 17q21.31 and are enriched among risk variants for ASD, ADHD, SZ and BD disorder 124. 

Another study identified global enrichment of brain expression quantitative trait loci among top SNPs 

from an ASD-GWAS including individual genes SLC25A12 (Solute Carrier Family 25 Member 12), PANX1 

(Pannexin 1) and PANX2 (Pannexin 2) 126. Furthermore, a meta-analysis of 424 brain samples across five 

different studies was performed to identify regulatory variants that influence gene expression in the 

human cortex. They found that 28% of ~1000 autosomal genes encode proteins required for 

mitochondrial structure or function were eQTLs (enrichment P= 1.3x10−9). Thus, the information 

generated by eQTLs can provide important insight to understand the underlying biology of associations 

with psychiatric disorders. Moreover, integrative strategies are also used combining results from GWAS 

and eQTL to gather information on susceptible SNPs in GWAS such as in Crohn’s disease, SZ and 

psoriasis 127–129. 

 ASD data 1.6.

1.6.1. Quantitative data 

This type of data is gathered from clinical interviews such as ADI-R 49, or ADOS 34. which are the two 

gold standards in ASD diagnosis (see 1.3). ADI-R is an investigator-based interview for parents or 
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caregivers of individuals with ASD. It comprises 93 questions, which are categorized based on (i) the 

child’s early development; (ii) acquisition and loss of language; (iii) language and communication 

functioning; (iv) social development and play; (v) interests and behaviors and (vi) general behaviors. 

ADI-R focuses on behaviors that are less frequent in non-affected individuals, and therefore it is more 

useful as an ASD-specific measurement. Studies have shown that ADI-R is influenced by the IQ, 

language of the child, and age, as ADI-R is not recommended for children with non-verbal mental ages 

of 18 months or below as well as children who have not started to walk 130,131. In addition, some 

questions are only for verbal individuals. In ADI-R two separate scores are generated from social 

communication (verbal and non-verbal communication) and the other for repetitive behaviors. The 

answers are coded numerically between 0 and 9. 0 denotes that the behavior type specified in the 

coding does not exist. 1 shows that the behavior type specified is present but not in severe form 

whereas 9 denotes unknown or not asked question. A total algorithm score is then calculated for each 

of the areas. An individual is diagnosed with ASD if the scores in every area exceed the cutoff threshold 

for ASD.  

1.6.2. Genotype data in ASD 

SNPs and CNVs, both have an important role in the etiology of neuropsychiatric disorders, however 

here, we only focus on SNP genotype data. The SNP genotype data is generally coded as A, C, G, T or 1, 

2, 3, 4 but also as 1 or 2 for the major and minor alleles. The widely used genotype data formats are as 

follows: 

Merlin: This format contains a pedigree and a data file. The pedigree file includes the phenotype and 

genotype relationships per individual per row. The first four columns contain identifiers for family, 

individual, father and mother followed by gender information, where 1 is coded for male and 2 for 

female. Next, the phenotype information is provided in the form of a qualitative or quantitative trait. 

After this, genotype information for each individual is provided. The data file contains marker 

information (M), affection status (A), quantitative trait (T) and covariate (C).  
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PLINK: This format consists either of files for pedigree (fam), SNP genotypes (bed) and SNP information 

(bim), or flat format consisting of pedigree (ped) and SNP information file (map) (see Appendix). 

Vcf (variant calling file): This format contains meta-information lines at the beginning of the file, a 

header line consisting of chromosome number, SNP position, SNP id, alleles information, a quality 

score, filter status (if the SNP is called at this position), and additional information followed by 

genotype encoding. 

 

 Data analysis 1.7.

1.7.1. Quality Control 

For quality assurance of genotype data, QC is a mandatory step before conducting any kind of analysis. 

Quality thresholds are crucial and strongly dependent on the study design. Such as for performing 

GWAS, a deep pre-processing and QC steps are required. Biases in study design and errors in genotype 

calling can introduce a proficient amount of errors and information loss, which can increase the 

number of false-positive and false-negative associations. To date, there are various QC pipelines and 

protocols available, specifically used in psychiatric studies such as provided by the Ricopili 13 and the 

ASC (Autism Sequencing Consortium) framework 119, as well as publicly available protocols 133. 

However, there are only a few tools available to perform the QC followed by downstream analysis for 

researchers with limited knowledge on handling complicated bioinformatics tools. 

PLINK is one of the most widely used genetics tool which provides individual commands and options 

for performing quality checks. The available automated tools to perform QC of genotype data include 

SNPQC; an R-based pipeline for quality control of Illumina SNP genotyping array data 9. The pipeline 

uses the direct output from Genome studio software that allows visualization and analysis of data 

generated from Illumina 134. Since SNPQC is designed for Illumina arrays, it is dependent on files that 

are directly provided by Genome studio and therefore might not be straightforward for the new users 
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with a limited programming background. Another available tool for QC is QCTOOL 135 but it is not 

updated anymore and currently is legacy software. 

1.7.2. Genotype imputation 

Some individuals might have missing genotype data at loci, which are actually genotyped for another 

fraction of individuals. The other scenario could be that the loci are not covered by the analytical 

platform used. This missing data in association studies can be a limiting factor in terms of sample 

inclusion and genotyping resolution. For example, these studies exclude individuals with missing 

genotypes considering a complete case analysis 136. This not only reduces the sample size but can also 

cause potential bias and loss in efficiency of further downstream analysis 137. Imputation of genotype 

values at loci which are untyped in samples can thus help in improving the mapping of the disease-

causing variants, e.g. identify variants, which are not genotyped but are actually associated with a 

disease phenotype. Imputing these untyped variants can thus finally highlight fine association signals 

by imputing the un-typed causal variants based on SNPs in LD (Linkage Disequilibrium), i.e. the SNP 

alleles or DNA sequences that are physically close together in the genome tend to be inherited 

together and are in high LD rather than the SNPs far apart. 

The quality of imputed data largely depends on the reference data selected for imputation, as the 

unobserved genotypes in the study data set are predicted based on the haplotype (a particular set of 

alleles that tend to be transmitted together) patterns in the reference panel. The two widely used 

reference panels are HapMap and 1000 Genomes: The HapMap reference dataset was one of the 

most used reference panels for imputation analysis in the beginning era of Genome-wide association 

analysis. Phase 2 of the HapMap project contained 270 unrelated individuals from Africa, Asia, and 

Europe. However, in phase 3 of the HapMap project, the number increased to 1,301 unrelated 

individuals and also covered individuals from 11 different populations. The dataset included 3.5 million 

commonly occurring genetic variants. This dataset had a deep coverage as it contained samples from a 

variety of different populations. The 1000 Genomes dataset phase 1 was released in 2012 whereas 

phase 3 was released in 2015. This is the largest reference dataset available for imputation with 2,504 
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individuals and 84.4 million variants. It provides wide coverage as it contains many more SNPs than the 

HapMap data. 

Imputation of genotype data relies on efficient and correct estimation of haplotypes which is improved 

by the correct identification of an individual’s alleles inherited on one strand from one parent (phased 

strands). The computationally most intensive step during imputation is pre-phasing; which estimates 

the strand-based haplotypes (i.e. allele combinations inherited together on one strand) based on the 

called GWAS genotypes. Pre-phasing before imputation speeds up the imputation performance 138, and 

the pre-phased data can be used in the future on the availability of a new reference dataset. Thus, 

having the pre-phased data saves time for imputation and before imputation, since, for each set, the 

haplotype is estimated based on all the phased alleles. Haplotype estimation can also be performed in 

unrelated individuals by modeling the haplotype frequencies. Since several haplotype combinations 

are possible for an individual’s genotypes, one can estimate the probability of any given haplotype 

configuration and choose the most likely configuration or output a set of configurations sampled from 

the posterior distribution (see 2.7). 

SHAPEIT is a widely used tool, which performs phasing. The other widely used tool to infer haplotypes 

is Phase v2.1 139. SHAPEIT differs from it as it uses binary trees to represent the haplotypes for 

everyone, which overcomes the haplotype inference limitations by speeding up the computations for 

calculating posterior probabilities of the haplotypes compared to Phase v2.1. In addition, using the 

binary trees, it looks for the most plausible haplotypes for haplotypes estimation. SHAPEIT has also 

outperformed the previously used tools like Fastphase 140 and Gebril 141 in terms of speed and 

accuracy.  

To date, there are several genotype imputation pipelines available such as the “genipe” 142, “Molgenis-

impute” 11 and “Gimpute” 143 pipelines. Genipe uses PLINK 144, SHAPEIT 145 and IMPUTE2 138 software to 

perform complete imputation. Molgenis-impute is a command-line tool that can be run on local 

servers as well as high computational clusters and is also based on the SHAPEIT 145 and IMPUTE2 138 

tools. Gimpute is an extension to the genipe 142 but with extensive pre and post imputation steps. All 
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these imputation tools are well established and widely used for genotype imputation, though 

considerable efforts and time are required in setting up a complete framework that includes the 

necessary pre- and post-processing imputation steps. Minimac3 has been shown to perform better 

than the other imputation tools available 146 because of its reduced computation time paralleled with a 

high validity of the imputed variants 146,147.  

A short overview of imputation is shown in Figure 2. 

 

 

 

 

 

 

Figure 2 Genotype imputation 

The upper panel represents the observed pre-phased data. The reference data consists of genotypes or haplotypes with shared regions 
identified between study and reference data. Based on this set of information the missing genotypes in the study data are imputed. Figure 
adapted from Li et al., 2009. 

 

1.7.3. Association analysis 

Genetic association analyses are widely used to identify the susceptible genetic variants that are 

associated with specific traits. The most commonly used association analyses are candidate gene 

association analysis and genome-wide association study (GWAS). In the former analysis, candidate 

genes and polymorphisms are chosen beforehand along with appropriate DNA samples and phenotype 

for analysis. However, in the latter, the entire genome is scanned for genetic variation. GWAS have 

superseded candidate gene study in terms of informative and reproducible data on the genetic basis of 

psychiatric and other complex disorders 148. Moreover, due to the drastic decrease in genotyping cost, 

it is possible to genotype hundreds and thousands of genetic markers in large cohorts. However, as 

large number of SNPs are being analysed in GWAS the number of statistical tests performed is also 

increased and thus, statistical power is the main issue in these studies. Another notable issue is the 

effect size of the genetic variants, which goes together with the statistical power. As the individual 
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variants carry only a small risk in disease traits, the effect size is smaller and more statistical power 

(larger cohorts) is required to detect significant associations at the genome-wide level. To handle these 

issues, gene-based analyses are applied after performing GWAS (see next section). 

To perform GWAS analysis, there are existing pipelines like GWASpi 12, easyGWAS 149, and GWASTools 

150. GWASpi is an application written in Java and can be used under Linux, Mac or Windows. It can be 

used for pre-GWAS data quality control and conducting GWAS but has not been updated in recent 

years. Another tool is easyGWAS, which is a web application that allows a user to upload the genotype 

data and later retrieve the GWAS results. However, in most of the cases, genetic data is restricted to be 

shared online. There are also several R packages and MATLAB functions available such as 

“GWASTools”, “GWAS”, or one can also write own functions to perform GWAS depending on the 

regression model and covariates.  

1.7.4. Gene-based analysis for GWAS  

In a GWAS, several millions of SNPs are tested and thus the significance threshold is set to a p-value of 

5x10-8, based on the structure and best estimate of independent SNPs in the human genome. This 

stringent threshold reduces the number of false-positive findings but also increases the number of 

false negatives. However, the combined effect of weakly associated SNPs, which may or may not be 

statistically significant on their own can predict the disease status or symptoms 151. Thus, to maximize 

the use of GWAS, gene-based analysis provides an efficient way of combining the effects of individual 

genetic variants to identify the collective effect at gene level 152. For polygenic traits, there is more than 

one gene involved with thousands of genetic variants individually of small effects. This ultimately 

requires large sample sizes to detect them. When analysing the collective effect of genetic variants, the 

number of tests needed to be performed is considerably reduced thus allowing the effects of weaker 

associations to be considered.  

The success of GWAS analysis depends greatly on the available sample size. Here, gene-based analyses 

have the potential to account for multiple independent functional variants within a gene that can thus 

lead to an increase in power to identify the genes that are actually associated with the trait.  
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Among the most prominent tools used for gene-based analysis are MAGMA (Multi-marker Analysis of 

GenoMic Annotation) 153 and VEGAS2 (Versatile Gene-based Association Study 2) 154. The functionality 

of both tools is comparable. MAGMA can analyse both raw genotype data as well as summary SNP 

p-values from a GWAS or meta-analysis. VEGAS2 is available as a web and command-line tool that 

takes the GWAS summary file (output from GWAS) with SNP IDs and the association p-values. It first 

assigns the SNPs to genes (17,787 autosomal genes) according to positions on the UCSC Genome 

Browser hg19 assembly. It then searches for regulatory regions and SNPs which are in LD within 

defined gene boundaries and positions around. The approach is permutation-based for testing the 

enrichment for highly associated markers using the LD information from a reference panel so that all 

the association signals from shared variants in LD can be detected.  

MAGMA can use raw genotype data as well, where it first performs a principal component analysis 

(PCA) for all the markers in each gene. MAGMA then performs a linear regression where it uses the 

PCA eigenvectors as predictor variables and phenotype as the criterion variable. In this way, MAGMA 

overcomes the problem of low statistical power which comes into existence when a gene contains 

many markers and some of them are in strong LD. MAGMA also provides the option of performing 

gene analysis on GWAS summary data (see 2.9). Thus, MAGMA is reported to be a distinctive tool 

compared to other methods like INRICH 155, ALIGATOR 156, VEGAS 157 and MAGENTA 158 specifically 

because of more statistical power, less affected by linkage disequilibrium and multi-marker 

associations due to its multiple regression approach and being computationally less demanding 47. One 

of the main differences between MAGMA and VEGAS2 is that MAGMA provides additional gene-set 

analysis methods that can be categorized into self-contained and competitive analysis. The former 

tests whether the gene set contains any association at all with a phenotype of interest and the latter 

tests whether the phenotype association in the gene set is greater than in other genes. 

1.7.5. Pathway enrichment analysis 

Once the SNPs and their respective genes are associated with a disease phenotype, a further insight 

into the functional effect of a SNP can serve as prime importance for understanding the underlying 
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mechanism of a disease. Such as at the biological system level by analysing their effect on signaling 

pathways. To gain a mechanistic overview of any set of genes associated with a phenotype, pathway 

analysis is an excellent approach. It can help to identify the underlying pathways and mechanisms. The 

basic principle behind the analysis is to identify the biological pathways and gene ontology that are 

enriched in a gene list more than what is expected by chance. For example, when looking for 

annotations in the gene ontology, a standardized annotation platform of gene products, the frequency 

of individual annotations in the significant gene list is compared to the complete list of all genes on the 

array or in the human genome. In this way, a set of enriched biological processes annotated with the 

respective genes is identified and allows to draw the conclusion that the trait of interest is underlying 

alterations thereof. There are numerous pathway enrichment analysis tools, gene set enrichment 

analysis (GSEA) and R packages available for performing these analyses such as Database for 

Annotation, Visualization and Integrated Discovery (DAVID) 159, MetaCore 160, Ingenuity Pathway 

Analysis (IPA) (QIAGEN  Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-

analysis), Panther 161 and so on. MetaCore and IPA are high-end tools with very detailed information of 

the pathways, its drug targets and interactive maps however these are not freely available. One of the 

limitations of most of the tools is that it uses limited resources that are not timely updated such as 

DAVID. In comparison, GO-Elite 162 is a web-based and a command-line tool that performs over-

representation analysis (ORA) and also accounts for the hierarchial semantic-structure of the GO 

annotation terms. These GO annotations are always updated and automatically downloaded in GO-

Elite by default. 

 

 Aims of the study 1.8.

Genetics and neuropsychiatry are two individual fields, but to unveil the pathomechanisms underlying 

complex neuropsychiatric disorders there is a strong urge to strengthen the methods and to develop 

tools that can integrate data from different disciplines. These tools should be central for researchers in 

genetics and neuropsychology to grasp and apply in research.  

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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ASD is one of such complex developmental disorder that is diagnosed based on deficits in two 

domains: (A) social interaction and communication and (B) restricted and repetitive behavior. In this 

work, we incorporated two large ASD cohorts, i.e. AGP (Autism Genome Project) and a German cohort. 

The overall aim of the study is to develop and evaluate an integrative bioinformatics Big-Data Pipeline 

for the analysis of complex genetic traits in neuropsychiatry.  

Therefore, we defined the following aims: 

1. To elucidate the genetic architecture of quantitative ASD traits we first aimed at identifying and 

validating independent behavioral subdomains based on available clinical assessments.  

2. Generation of an integrative bioinformatics pipeline which can perform the following analysis: 

i.Quality Control of the genotype data 

ii.Genotype imputation 

iii.Genome-wide association analysis 

iv.Gene-based enrichment analysis 

v.Brain enrichment analysis 

3. To validate the implemented pipeline we applied MAGNET on the identified ASD subdomains in 

two ASD cohorts to identify underlying genetic pathomechanisms associated with these individual 

subdomains.  

4. Further, our goal was to investigate if the phenotypically defined ASD subdomains are genetically 

independent or are correlated with each other and if they share genetic etiology with ASD risk. 
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2. Materials and methods 

 ASD quantitative data 2.1.

In this study, we included a German cohort with individuals from n=705 families (n=625 parent-child 

trios, n=53 parent-child duos, and n=27 singletons) recruited at the Departments of Child and 

Adolescent Psychiatry at Goethe-University Frankfurt am Main, University Hospital Bern, Saarland 

University Hospital, and University Hospital Freiburg. The other cohort is the AGP (Autism Genome 

Project) cohort including n=2,730 trio families, and n=5 parent-child duos collected at 15 clinical sites 

across the US, Canada, and Europe. Overlapping German samples were excluded from the AGP cohort. 

The diagnosis was established by experienced clinicians based on thorough clinical assessment, the 

Social Communication Questionnaire (SCQ) 163, ADI-R 49 and/or ADOS 164. Exclusion criteria and sample 

quality checks were based on the AGP cohort 97. For the final analysis, only one affected individual per 

family, i.e. the index patient, with complete ADI-R and genotype information available was included. 

Written informed consent was obtained from all participants or caregivers, and the study was 

approved by the local ethical committees (decisions 162/99 (Frankfurt); 147/10 (Aachen); 214/10 

(Bern); 73/04 (Homburg), 237/09 (Frankfurt)). All ASD individuals were diagnosed according to ICD-10 

165 by experienced child psychiatrists or clinical child psychologists. The diagnosis was confirmed by the 

ADI-R 49,166 and/or ADOS 34. Individuals with SZ, BD, a neurodegenerative disorder, a known cytogenetic 

finding, fragile-X Syndrome, Angelman syndrome, Prader-Willi syndrome, Rett syndrome or any other 

genetically diagnosed disorder, IQ<35, history of a severe medical condition, birth weight <1,500 grams 

or cerebral palsy were excluded. Sample quality checks and exclusion criteria are published 

elsewhere  97. 
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 SNP genotype data  2.2.

In this project, we focused on SNPs genotype data. The German cohort was genotyped using Illumina 

HumanOmniExpress 12v1-H bead arrays at Life and Brain (Bonn, Germany). The AGP cohort was 

genotyped on 550K Illumina, 510K Illumina, 1M Single and 1M Duo Illumina Chips 97. The methods 

implemented for performing QC of the genotype data are detailed in 2.6.  

SNP genotype data carries information of each SNP with an identification number, i.e. an “rs” number 

or the chromosome number and genomic position, e.g. 7:24926377 where 7 is the chromosome 

number and 24926377 is the genomic position. Besides this information about chromosome number, 

physical position (Distance between two markers measured by the number of nucleotides between 

them) and genetic position (Distance between chromosome positions) is also provided. Moreover, it 

also includes a file consisting of sample information encompassing the pedigree and individual 

information. The raw intensities from the array are then normalized and SNPs are called using specific 

algorithms 167. The information can then be coded in PLINK format, i.e. as a ped and map or as bed, bim 

and fam files. For a detailed description of the SNP genotype files that can be provided as input to our 

developed pipeline please see Appendix.  

 

I. Preliminary data analysis of phenotype data 

 Quality assurance of ADI-R data 2.3.

We focus on ADI-R data in our study which has a total of 93 items organized into specific categories 

(see 1.4.1). Among these 93 ADI-R items, 42 are methodically combined in the form of a formal, 

diagnostic algorithm for autism or a general diagnosis of ASD. We selected 28 “ever/most abnormal” 

items from ADI-R questionnaire based on the study by Liu et al. 84, where “ever” denotes if a behavior 

ever occurred and “most abnormal” represents whether the behavior was present at a specific, 

defined period between 4 and 5 years of age. A list of these 28 items is provided in Table 3 in the 

results section. These items are available for both verbal and non-verbal individuals. ADI-R diagnostic 



Dissertation Afsheen Yousaf  Materials and methods 

31 
 

algorithm scores of 3 were recoded as 2 to limit the impact of severity before performing phenotype 

imputation. Moreover, it was made sure that all items use the same coding in both cohorts such as 

item “Repetitive use of objects” used 7 as a score, which means that the individual shows a not age-

related interest in a toy, but this play cannot be designated into a high-grade stereotype, therefore it is 

coded as 0 in both cohorts. Similarly, item 31: “Use of others body to communicate” codes 8 for little 

or no spontaneous communication, which was then coded as 0 in both cohorts. Besides these 

instances, all 8 and 9 scores were coded to NA (Not available). All individuals who had >10% missing 

items in the 28 selected items were excluded from both cohorts. The item with the highest value 

between the ever or most scores was selected for imputation. As the sample size is an important factor 

affecting the statistical power and for reliable estimates, respective ADI-R items from AGP and German 

cohorts were combined for phenotype imputation.  

 

 Phenotype imputation of missing ADI-R data 2.4.

In psychiatric research, it is a common problem that the clinical interviews used for diagnosing the 

disorder, e.g. in ADI-R some questions are left unanswered. Multiple imputation (MI) is a statistical 

technique for analysing incomplete data sets. MI fills the missing values multiple times and creates 

multiple “complete” datasets. Multivariate imputation by chained equations (MICE) was implemented 

in R using mice 168 package. 

MICE is one of the most powerful techniques in current research to deal with such data 169. We 

performed MI based on predictive mean matching (pmm) which is a semi-parametric imputation 

approach. It aims at reducing the bias introduced in a dataset because of imputation and looks for real 

values sampled from data170. MI using pmm is performed as follows: 

i.  Let us assume a variable Y which is to be imputed based on X predictors. 

ii. Estimate a linear regression of Y on X producing 𝛽. 

iii. A random draw from the posterior predictive distribution of 𝛽 is made to generate a set of 𝛽*. 

Based on Bayesian inference, the information about unknown parameters is expressed as a 
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form of the posterior probability distribution to create random variability in the imputed 

values 168. 

iv. Using 𝛽*, the missing values are predicted for all cases with and without data missing on Y. 

v. In each case where Y is missing, the closest predicted value is identified among the cases 

where Y is observed. 

vi. pmm then randomly draws one of the three close cases and imputes the missing value Yi with 

the observed value of this close case. 

vii. Depending on the m, i.e. number of multiple imputed datasets, to generate the algorithm, the 

process is repeated m times in a chain. As a result, m complete datasets are generated.  

We created 10 imputations, a number between 5-10 is suggested as computationally feasible as 

suggested by Horton et al. 171, one dataset out of these m multiply imputed datasets was selected for 

further analysis. 

 

 Identifying ADI-R subdomains 2.5.

An interesting approach for looking at the quantitative data is to identify meaningful groups or 

subgroups to target the underlying genetic associations. Commonly used approaches to dissect the 

heterogeneous architecture of ASD is to perform factor analysis 84,172 or principal component analysis 

173,174. These analyses can firstly help in reducing the number of variables to more representative and 

meaningful factors. Secondly, specifically looking at the individual subgroups helps in decreasing the 

overall heterogeneity of the disorder and working on more homogenous groups. 

PCA was preferred over the classical EFA (Exploratory factor analysis) approaches to preserve the 

maximum amount of variation and independence in the resulting factors. This can play a role in 

determining that the genetic factors might be independent of each other. EFA does not account for the 

maximum variation and estimates interdependence between variables to find common factors, which 

might not necessarily be independent of each other. 
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Following criteria were satisfied before performing PCA: 

i. Sample size: A sample size of total n=50-400 is recommended to yield reliable estimates 175,176. 

ii. Factorability: Checks that some correlations should exist among the variables so that coherent 

factors can be identified. It is expected that the variables have a degree of co-linearity among 

the variables but not an extreme degree or singularity among the variables. The following two 

tests are performed for structure detection: 

a. Bartlett’s test of sphericity: The null hypothesis is that the correlation matrix calculated for the 

variables in the samples is an identity matrix. Whereas the alternative hypothesis is that they 

are related and a structure could be detected. The purpose is to identify if there are redundant 

variables in the samples, which can be summarized into a few numbers of components. The 

test checks if the observed correlation matrix R= (rij)(pxp) (where p is the number of variables) 

diverges significantly from the identity matrix. A significant result indicates that a principal 

component analysis is appropriate for the data set.  

b. Kaiser Maier Olkin (KMO) test: KMO also indicates the suitability of the data for structure 

detection. The KMO measure of sampling adequacy is a statistical test that indicates the 

proportion of variance in the items that might be caused by the underlying components. High 

values close to 1 indicate that performing a PCA would be useful. 

A partial correlation is calculated first which is the relation between two variables and removes 

the effect of remaining variables. In the next step, KMO index compares the values of 

correlations between variables and those of the partial correlations. If two variables share a 

common factor with other variables, their partial correlation will be small, indicating the 

unique variance they share. 

    
∑∑   

 

∑∑   
  ∑∑   

  

where rij is the correlation matrix and aij is the partial covariance matrix 
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Based on the Kaiser’s criteria a KMO value between 0.9 -1 is considered best177. 

2.5.1. PCA 

PCA is a powerful tool to highlight similar patterns, similarities, and differences in the data. This 

approach is very useful when dealing with multidimensional data. After the identification of patterns, 

the data is compressed by reducing the total number of dimensions. We applied PCA to identify the 

structure and dimensions of the quantitative trait data. The steps performed in PCA are as follows: 

i. All initial variables are standardized so that each contributes equally to the analysis. 

Mathematically this is done as follows: 

  
          

                  
 

ii. Calculation of the covariance matrix to identify the variation in variables from the mean with 

respect to each other. Moreover, it reveals the relationship of the variables among each other. 

Also if they are highly correlated in such a way that they contain redundant information.  

A covariance matrix is then simply a symmetric matrix with nxn dimensions and has all possible 

combinations of variables. For example, for a 3-dimensional data set with 3 variables x, y, and 

z, the covariance matrix is a 3×3 matrix A of this form: 

  [

   (   )    (   )    (   )
   (   )    (   )    (   )
   (   )    (   )    (   )

] 

Whereas cov(x,x)=var(x) in the main diagonal and cov(x , y) = cov(y , x) so the upper and lower 

half of the diagonal is the same.  

iii. Computation of the eigenvectors (principal components) and eigenvalues (explains how much 

variance is present in the data) of the covariance matrix A. This can be expressed as: 

         

where v is a vector, λ is the eigenvalue associated with eigenvector v of A. The eigenvalues of A 

can be rewritten as    (    )     where I is an identity matrix. Simplifying the matrix and 

calculating the determinant will provide the eigenvalue of the matrix and the corresponding 

eigenvector. 
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iv. Arranging the eigenvectors in descending order of eigenvalues will provide principal 

components in order of significance. Eigenvectors with the lowest eigenvalues contain the 

least information about the distribution of the data. The number of components is equal to the 

number of dimensions of the data. But, PCA tries to put maximum information in the first 

component.  

v. Rotation 

For a meaningful interpretation, it is necessary to spread the variability more evenly among the 

components. Rotating the components will help in serving a simple structure. We chose 

“varimax” rotation, which is an orthogonal rotation of the component axes to maximize the 

variance of the squared loadings of a component (columns) on all the items (rows) in a 

components matrix. The loadings from PCA are the weights and correlations between each 

variable and the component. The higher the loads the more relevant it is in defining the 

component. PCA was performed with varimax rotation on 28 ADI-R items using the R package 

psych 178 as in previous studies 173,174.  

vi. Component extraction  

Components are extracted based on the following three criteria: 

-Scree plot and Eigenvalue: A scree plot shows the eigenvalues of the principal components on 

the y-axis and the number of factors on the x-axis. The point where the slope of the curve is 

leveling off (“the elbow”) indicates the possible factor solution.  

-Communalities: The proportion of variance accounted for each variable by the principal 

components variables. Small values indicate variables that are not well represented in the 

common factor space and vice versa. 

-Total variance explained: Total amount of variability of the original variables explained by 

each principal component. 
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vi. Interpretation of component loadings 

The rotated factors should make a theoretical sense to the researcher. Each of the identified 

components should have at least three variables with high loadings and each variable should 

load highly on only one component. 

The best solution for the number of components to be included was identified based on Kaiser’s 

criterion i.e. to exclude all components with eigenvalues under 1.0 179, and scree plot 180. Components 

were retained if (i) each component have at least three items loaded onto it 181,182, however, additional 

variables improve stability 183; (ii) loadings of respective items >0.4, which is more stringent than 

otherwise defined criteria (>0.35) 184; and (iii) they are interpretable. The respective items were 

summed up to provide a combined score, which will be used for subsequent analysis. 
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II. The MAGNET tool: Implemented methods 

Development of MAGNET was divided into five main parts, i.e. I) quality check (QC) of the genotype 

data, II) imputation of genotype data, III) GWAS, IV) enrichment analysis, V) integration of 

transcriptome data. This section details all the methods and algorithms implemented within MAGNET 

and the respective criteria used within each part. The list of software used for the analysis is provided 

in Table 1. 

 Tool Description 
PLINK v 1.9 (Purcell et al., 2007) Genetic data analysis 

liftOver (Tyner et al., 2017) Converts between genome builds 

SHAPEIT v2.727 (Delaneau et al., 2011) Haplotype estimation of SNP genotypes 

Minimac3 (Browning and Browning, 2016) Imputation 

MAGMA v1.06 (Leeuw et al., 2015) Gene-based test 

GO_Elite v1.2.6(Zambon et al., 2012) Gene Ontology & KEGG pathways 

Table 1 Software used in MAGNET 

 

 QC 2.6.

QC plays a crucial part in data analysis. Although, the initial quality checks are mostly performed at the 

genotyping centers but a second thorough quality check will assure that the data produced is of high 

quality. QC steps in our framework are based on the most widely used pipelines for QC in psychiatric 

studies provided by the Ricopili lab and the ASC (Autism Sequencing Consortium) framework 119. The 

data for GWAS requires a sufficient amount of pre-processing and QC steps. Any biases in study design 

and errors in genotype calling can introduce errors and loss, which can increase the number of false-

positive and false-negative associations. All the QC steps are implemented in PLINK and QC plots are 

generated in R. The standard steps and thresholds used in QC are detailed as below:  

2.6.1. Genotyping rate 

The distribution of the missing genotypes is analysed using PLINK. We chose a minimum classical 

genotype rate of 95% based on the ASC guidelines 97, it would filter all SNPs having more than 5% of 

missing data. Similarly, if an individual has more than 5% of missing genotypes, this individual would be 

excluded from the study dataset. This is lower than the other suggested thresholds of 98% -99% 186,187
. 
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Thus, our framework allows the inclusion of more variants and individuals, which increases genomic 

resolution (more SNPs) and reduces beta errors (more samples). This is done by using “--geno” option 

in PLINK to exclude SNPs based on the missing genotype rate. Similarly, individuals with missing 

genotype data can be filtered using the “-- mind” command. It is recommended to first filter the SNPs 

and then individuals with high missing genotype data. 

2.6.2. Application of the Hardy Weinberg Equilibrium  

The Hardy Weinberg Equilibrium (HWE) principle assumes that the genetic variation in a population 

will remain constant from one generation to the next without any evolutionary influences. It has been 

known that potential genotyping errors, population stratification, and inbreeding indicate extreme 

HWE deviations. HWE p-value thresholds used are < 10-8 119, if both cases and controls are present, 

then <1e−10 in cases and  <1e−6 in controls186
. We select a HWE threshold of p-value < 10-8 based on the 

ASC framework. Our framework is optimized for quantitative/qualitative traits, and thus differentiation 

between cases and controls is not applicable. 

It would be also worthwhile to identify the rates of homozygosity (two identical forms of an allele, one 

inherited from each parent), as high rates of homozygosity can reflect poor genotyping due to a poor-

quality sample, or sample contamination generating an additional variation. Extreme outliers for 

heterozygosity should be discarded. 

Let us suppose that the minor allele frequency is represented as “q” and the probabilities of the three 

possible genotypes is denoted as aa, Aa and AA at a biallelic locus which is in hardy Weinberg 

equilibrium, this can be represented as follows: 

Let x = AA, y = Aa and z = aa and N = x + y + z where N is the sample size. 
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So it can be written as: 

 (  )  
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Or  ( )   (  )  
 

 
 (  ) 

 ( )   (  )  
 

 
 (  ) 

Let    ( )    ( ) where p and q are allele frequencies of allele A and a in the population. 

The sum of the allele frequencies for all the alleles at the locus must be 1 so: 

                                    

(   )              

(   )     (   )( )       

In this equation, p2 represents the frequency of the homozygous genotype AA, q2 represents the 

frequency of the homozygous genotype aa, and 2pq represents the frequency of the heterozygous 

genotype Aa. One can calculate the frequencies of the three genotypes if the frequencies of p and q 

are known.  

p and q are used interchangeably as A and a, however, q is usually used for the rarer, recessive or 

deleterious allele. A Pearson’s chi-squared test is performed to test if the observed genotype 

frequencies obtained from the data deviate from the expected genotype frequencies based on the 

Hardy-Weinberg principle. Low p-values indicate that a SNP is out of HWE. This can be calculated as 

follows: 

     ∑
(   ) 
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where O denotes observed frequency and E the expected frequency, calculated for 

 (  )  (  )      (  ) and summed up to get a      distribution-based p-value. Degrees of freedom 

(DF) is calculated using the following formula: 

   (   ) (   ) , 

where   = number of rows and   = number of columns. 

Each SNP is tested for HWE since poor-quality genotyping can cause heterozygotes being called as 

homozygotes, which can lead to generating more homozygotes than expected. In individuals, high 

rates of homozygosity can indicate that the quality of the sample is poor or the sample is 

contaminated. SNPs extremely discordant with HWE and extreme outliers for heterozygosity should 

also be discarded. This is performed in PLINK using the “--hwe” command. 

2.6.3. Minor Allele Frequency (MAF) filtering 

Minor allele is defined as the less frequent of two variants of a gene. MAF removes SNPs, which fall 

below a specific threshold. Minor alleles are more often to be risk alleles in GWAS on complex 

diseases 188. MAF can also help to distinguish between common and rare variants. The power to detect 

genetic effects expressed as 1-beta error frequency is dependent on the MAF. Moreover, MAF 

depends on the study design and sample size. The widely used thresholds are between 1%-5% 119,186
. 

These variants explain most of the genetic variance in complex traits 253. However, the rate of false 

negatives decreases with an increase in MAF and sample size values. We selected only common SNPs 

and therefore limited SNPs to a MAF ≥ 2%. In addition, we performed a power analysis using G*Power 

3.1.9.2 185.  

The frequency of an allele can be defined as: 

                        
                                            

                                                 
 

The frequency of both alleles should add up to 1. The MAF threshold can depend on the sample size 

since larger samples can use lower MAF thresholds. Very low-frequency alleles are more likely to 
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represent genotyping error and can give spurious association results. PLINK uses the “--maf” command 

to perform this step. 

2.6.4. Sex check  

This step ensures that the self-reported gender from the individuals matches the genotyped gender, 

i.e. the gender reported based on the X-chromosome from the dataset. We used here the most 

commonly used threshold for sex-check, i.e. the males should have an X chromosome homozygosity 

estimate >0.8 and females < 0.2189 or for males an estimate of 197. This step was also implemented in 

PLINK using the command “--sex-check” command to detect if the SNP and pedigree data gender are 

different. If the gender information of an individual varies from the input dataset provided gender, the 

family and individual id are reported in the list of individuals with gender discrepancies. We 

implemented in our pipeline to remove samples, that have inconsistencies between the genotype-

based gender and the reported gender. However, it asks the user to update the gender information for 

the reported individuals. A wrong gender annotation might lead to the omission of data ultimately 

leading to a reduction in sample size.  

Moreover, this information also reveals sex chromosome anomalies, which are difficult to detect 

phenotypically. High levels of heterozygosity rate or low levels of homozygosity within an individual 

will be an indication that the sample quality is low and there is a chance of sample contamination or 

inbreeding as discussed in the next section.  

2.6.5. Inbreeding and contamination  

The step was implemented to identify inbreeding and contamination in the sample, which can occur 

due to mixed DNA samples. The probability of two alleles at a given locus in an individual is calculated 

based on the population data to identify if they are identical by descent from a common ancestor. This 

is the probability that an individual is homozygous for an ancestral allele by inheritance and not by 

mutation, i.e. inbreeding coefficient (F) 190. Samples with an F > 0.2 have a high rate of homozygous 

alleles and are thus considered to be likely inbred, while a coefficient < -0.15 marks samples with too 
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few homozygous alleles and are thus likely to be contaminated with other DNA 186. These thresholds 

are based on the ASC criteria. We use a stringent lower bound value to avoid any risk of contamination 

in the sample. The inbreeding coefficients are calculated using the “--het” command in PLINK. 

2.6.6. Mendelian error 

This step was implemented to test if the alleles of an individual could have been inherited from one of 

the individual’s biological parents, following laws of Mendelian inheritance, in particular, the law of 

segregation and the law of independent assortment 191. SNPs>4 Mendel errors and individuals in trio 

dataset with >10,000 Mendel errors are suggested to be removed186. Based on ASC guidelines for trio 

datasets the Mendel errors threshold for SNPs is >1% and individuals is > 10,000 Mendel errors. We 

selected a Mendelian error threshold of >1% for individuals and a Mendelian error frequency > 10 % 

for SNPs. Individuals and SNPs below these thresholds will be excluded. However, the user can adjust 

the thresholds based on the study design. We implemented PLINK command “--me” to filter individuals 

based on Mendel error rate. 

2.6.7. Identity by descent (IBD) 

To account for any duplicate individuals in a dataset we applied IBD criteria. It determines if two 

individuals share alleles that are inherited from common ancestors, to identify any duplicate 

individuals. 

For monozygotic twins or duplicates, the IBD= 100%. An IBD of 50% corresponds to first-degree 

relatives (individual’s parents, siblings or child), an IBD of 25% represents second-degree relatives (such 

as uncles, nieces, or grandparents of an individual) 133. An additional IBD-derived measure is  ̂ (pi-hat), 

a reference value for measuring genome-wide estimates of IBD 192. It gives the summary statistics of 

overall IBD proportion to tell if the samples are related or unrelated. Due to genotyping errors, a non-

random association of alleles between different loci occurs, i.e. linkage disequilibrium variation around 

the theoretical values. We perform relatedness testing using  ̂, where one of the two individuals with 

 ̂> 0.8 (two genetically identical samples) is excluded. Thresholds were based on the ASC thresholds 
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119. The other thresholds include an IBD measure of > 0.9 to report identical samples and > 0.2 for 

reporting closely related members133,186. 

Genome-wide IBD-sharing coefficients are calculated between individuals from whole-genome data. 

Probabilities of sharing 0, 1 or 2 alleles can be provided as a metric to calculate the hidden Markov 

model which provides multipoint estimates of allele-sharing IBD for each pair of individuals in a 

homogeneous sample. We require the conditional probability of IBD for z = 0, 1, or 2 at a particular 

position, given the marker genotypes M of all K markers on a chromosome, P(Z = z|M). This can be re-

expressed, using- the Bayes theorem, as 

 (   | )  
( ( |   )( (   )

∑     
  ( |    ) (    )

 

In this equation Z denotes the possible states being 0, 1, and 2. The global IBD sharing probability for 

the whole genome is P (Z=z), and the summation is over the three possible IBD states. 

In most studies, there are discrepancies between pedigrees provided and relatedness inferred from the 

genotype data. To infer genetic relatedness, we estimate coefficients of IBD. It is important to identify 

and take into account unannotated relationships. In this way analyses assuming all subjects are 

unrelated can use a filtered subset of samples. This step is performed in PLINK using the “--genome” 

command. 

2.6.8. Population stratification 

Performing GWAS analysis with a huge sample size can often lead to bias, which might be due to 

confounding factors such as population stratification. We implemented population stratification 

analysis within our pipeline to identify the presence of multiple subpopulations (e.g., individuals with 

different ethnic backgrounds) in a study. As allele frequencies can differ between subpopulations, 

population stratification can lead to false-positive associations and/or mask true associations. 

Therefore, as a result of varying frequencies of minor alleles in genetically distant ancestries, 

population substructures could be visualized. We implemented PLINK to perform population 



Dissertation Afsheen Yousaf  Materials and methods 

44 
 

stratification and applied the multidimensional scaling (MDS) methods to identify n-dimensional 

representation of the population. Following steps were performed: 

i. The SNPs after passing all the quality checks are used for the analysis. 

ii. Pairwise IBS distance is calculated for all the autosomal SNPs. 

iii. Nearest neighbors are identified based on the pairwise IBS distance. 

iv. This distance is then transformed into Z-score. 

v. An n number of dimensions can be extracted using the MDS-plot. 

vi. The values for each n dimensions can be then used as covariates in the downstream analysis.  

For N individuals in a sample, a N x N matrix of genome-wide IBS pairwise distances is generated and 

MDS is performed using the “--mds-plot” and “--cluster” options collectively. At this step, the quality 

check is completed and all plots with pre and post QC analysis and final QC data are saved.  

 Genotype imputation 2.7.

This section refers to the methods and algorithms used in the development of second part of our 

pipeline. Data handling steps are integrated within MAGNET to directly provide the QC output as in 

input for genotype imputation. The following steps are implemented within MAGNET: 

2.7.1.1. Matching genomic build 

At this stage, it is essential to check the SNP names and their genomic positions to see if they match 

the genome build of the reference genome. In case the genomic build of the targeted and the 

reference data set do not align with each other, it can result in mismatched SNP positions and wrong 

annotations. MAGNET uses 1000 Genome data as reference data 19, i.e. GRCh37 or build 37 (Genome 

Reference Consortium Human build 37). For correct matching, MAGNET implements liftOver 193 and 

performs the following steps in an automated manner: 

i. Generates a liftOver format bed file, which is in the following format 

Chromosome Number Starting position Ending position SNP name 

chr1 743267 743268 rs3115860 
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ii. Chooses the chain file (alignment file with chromosome number, chromosome size, 

strand, alignment positions of the reference and query sequence) to select for updating 

the genome build. Users can select among hg16, hg17, hg18 and hg38 annotation files 

depending on the study data (by default hg18). In case the data is already in hg19 format, 

the files remain unchanged. 

iii. A list of SNPs with an unknown chromosome or position and are not in the hg19 reference 

is generated within the pipeline and these SNPs are ultimately removed using PLINK 

command “--exclude”.  

iv. SNP annotation is then updated by liftOver ensuring that the study and reference genome 

build are the same. 

v. SNPs that were not updated after liftOver are again removed using the PLINK command 

 “--exclude” from the PLINK data file. 

For the next steps, only affected individuals are considered. By default, we set our pipeline to 

distinguish between affected and unaffected individuals using the PLINK coding provided for the 

individuals. However, the user is free to choose if all samples are needed for the study. The following 

steps will be performed for each chromosome within an automated loop to parallelize the process. 

2.7.1.2. Strand checking 

The lifted files in the PLINK format will then be provided for strand checking. For a successful and 

correct imputation, it is also important that the provided genotype data and the reference alleles are 

matched and are annotated based on the same strand. The difference in strands could arise due to 

differing genotyping platforms, which may use a forward strand of the human genome assembly, some 

use Illuminas’s annotation while some use Affymetrix annotation.  

For strand check, we integrated SHAPEIT 145 which highlights and corrects for any strand 

inconsistencies. It identifies the SNPs with the possible problem of strand flip and converts the forward 

allele to the “+” strand of the human genome reference assembly. It also considers if the alleles are 

changed to their complementary alleles (C-G and A-T) based on three criteria: (a) the observed alleles, 
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(b) minor allele frequencies (MAF), and (c) linkage-disequilibrium (LD) pattern within a specific SNP 

window 194. SNPs with persisting problems and errors are then removed from the dataset. 

The command used in SHAPEIT for strand checking is “-check”. This provides file information in the 

following format: 

type pos main 

id 

main 

A 

main 

B 

main 

flippable 

ref_id ref_A ref_B ref 

flippable 

Strand Strand 18681293 A G 1 rs1006881:18681293:C:T C T 0 

Missing Missing 19347892 C T 1 NA NA NA 1 

 

Here, a two-line example is shown, the actual file reports all the alignment problems detected between 

the study and reference data. The columns in this file represent the type of the alignment problem, the 

physical position, alleles and id of the SNP as well SNP id and alleles in the reference panel. Two 

separate SNP lists are generated based on the type, i.e.“strand” or “missing”, which are flipped or 

excluded, respectively. For the former, the “--flip” command is used whereas for the latter “--exclude” 

command is used in PLINK. In the end, PLINK files will be generated which can be used for phasing. 

2.7.1.3. Phasing 

For this step, scripts are automatically generated within our pipeline using Python to split the PLINK 

files for each chromosome in the study data and the reference panel files with SNP information, these 

scripts will run in parallel. Our pipeline implements SHAPEIT which uses compact hidden Markov model 

for sampling haplotypes for unrelated individuals. Let us suppose that an individual is selected from a 

population for phasing whose genotypes of three heterozygous markers (since there are two different 

alleles) are known. The parental information is missing and therefore each of the three markers has a 

probability of falling into a certain haplotype combination. If an individual has N heterozygous markers, 

there are 2N different haplotype combinations. But keeping in view that all humans are historically 

related there are common haplotypes present among many samples individuals. In order to infer 

haplotypes in unrelated individuals, it is necessary to identify common haplotype patterns. 
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Let G be the observed genotype and D as the unobserved diplotype of an unrelated individual. A 

diplotype here is a pair of haplotypes (h1, h2). Let H denote a set of K haplotypes defined over M 

markers. When updating the haplotypes for a given individual, H would be the set of current haplotype 

estimates of all other individuals. The total number of markers M are subdivided into non-overlapping 

subsets of consecutive markers also termed as “segments” in which the number of distinct haplotypes 

in H is limited. The haplotypes of H are split so that there exist ~J haplotypes by segments with J < K. 

A graph Hg  is built based on these haplotype segments, where edges are the probabilities. At each 

marker, there are ∼J nodes, one for each distinct haplotype in the segment in which the marker 

resides. The goal is to sample the diplotype for G conditional on the known haplotypes from Hg that is, 

by sampling from P(D|G, Hg). The method used in SHAPEIT thus samples pairs of haplotypes from the 

probability of h given Hg, i.e. P(h|Hg) that are consistent with G. If G has s heterozygous markers then 

the candidate haplotypes would be 2s, where S is used to denote the set of possible haplotypes. This 

method scales linearly with the number of haplotypes used in each iteration, i.e. O(MJ). The other 

HMM-based methods such as Impute2 and MaCH are O(MJ2)145.  

At the end of this step, phased files are generated which are then converted to vcf (variant calling files) 

format automatically by our pipeline. This is a standardized format for performing imputation. It is 

stored in a compressed manner and can be used for fast data retrieval of genetic variants.  

2.7.1.4. Imputation  

For performing imputation we integrated a Python script which will automatically create 22 different 

jobs, to perform imputation, one for each chromosome. This is one of the main steps of the whole 

imputation pipeline. This step was implemented in Minimac3146 because of its reduced computation 

time paralleled with a high validity of the imputed variants 147. It is based on the “state space 

reduction” of HMM showing haplotype sharing. It looks for similarities among haplotypes in small 

genomic segments so that the effective number of states is reduced (see Figure 3). 

Consider a chromosome region with M markers and H haplotypes, e.g X1….Xn. The region can be 

analysed by breaking it into consecutive genomic blocks based on the markers beginning from the left. 
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Let us assume that block 1 contains p markers and block 2 contains q markers. The haplotypes X1….Xn 

contains two U unique haplotypes, i.e Y1 and Yn. The left probabilities of the original state space at first 

marker will be known L1 (X1), L1 (X2) ….L1 (Xn). HMM can be applied to the reduced state space (U1….Un) 

from marker 1 to last marker in the first block to get L1 (Y1) and L1 (Yn). At the end of block 1, the left 

probabilities of reduced state space at the last marker in the block i.e. Xn, can be unfolded. Such as 

Ln(X1)….Ln(Xn). The same procedure is then repeated for the next block, i.e. L6 to L9.  

Each haplotype is imputed separately, assuming that GWAS haplotypes are conditionally independent. 

It should be kept in view before performing imputation that if the genotypes are coming from different 

platforms, then imputation should be performed separately for each platform.  

At the end of this step, minimac output files are generated. For details, see 3.2.2.4. These files are 

converted to PLINK format and all imputed SNPs below an imputation quality threshold of 0.3 are 

discarded. Again QC of the imputed data is performed, and all chromosomes are merged in one PLINK 

dataset. Since this file includes millions of SNPs, SNP chunks are created to perform the downstream 

analysis in an efficient manner by our pipeline. 
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Figure 3 Minimac3 workflow using state-space reduction 

A block showing a chromosome region with nine markers and four haplotypes i.e. X1, X2, Xn-1 ,and Xn. Two unique haplotypes, i.e.Y1 and Yn.are 
shown. Here H is the reference haplotype and a genomic segment bounded by markers P and Q, where U ≤ H and U are the unique 
haplotypes in that specific block. Lk and 𝓛k denote the left probabilities for the original and reduced states, respectively, at k marker where P ≤ 
k ≤ Q. Step 3 in the figure is a modification of Baum-Welch’s forward equations to obtain 𝓛k. θk  denotes the switch probability between 
markers k and k+1. Sk+1 is the genotype of the study data, P(Sk+1|Yi) is the genotype emission probability, and Ni the number of haplotypes 
matching Yi in the original state space. Figure adapted from Das et al., 2016. 

 

 GWAS 2.8.

This is the third part of the pipeline which incorporates R. Here, the aim is to identify the association 

between a trait and SNPs. Since the imputed genotype data consists of millions of SNPs, the data is 

parsed into small chunks. Each chunk creates a specific number of SNPs, which is provided for GWAS 

analysis. We provide the option to users if they would like to run a linear regression using lm or mixed 

regression analysis using lme4 in R. Let us assume that the user wants to run mixed regression analysis 

for a quantitative trait, e.g. IQ from the German cohort as a function of SNP, which can be represented 

as: 
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IQ ~ SNP + ε 

Here, “SNP” is a fixed effect and ε is the “error term” that describes the uncertainty in the model due 

to the random effects that are difficult to capture completely. Therefore, this error term could be 

expanded leaving the fixed part of the model undisturbed. There could be other factors in the model 

that could explain the uncertainty in the model, e.g. sex and age. Thus, we add these terms as fixed 

effects in the model. So now the model can be written as: 

IQ ~ SNP + Sex + Age + ε 

Let us further assume that IQ measures are contributed by individuals from different sites, e.g. 60 

individuals contributed from Heidelberg, 20 from Freiburg and so on. Hence, each site had multiple IQ 

measures. Multiple IQ measures from the same site cannot be regarded as independent from each 

other. In order to deal with such situations, we included a random effect in the model that accounts for 

“site” from where the individual samples are included. Every site will have different IQ measures that 

will affect the measures. By adding random effects, we can get a structure for the error term ε. In this 

example, adding a random effect for a site can characterize the distinctive variation, which is due to 

individual differences. We can now test for association of IQ with every SNP and controlling for the 

effect of recruitment site as an unobserved random intercept since affected individuals’ assessments 

might have been different across sites. So the above equation becomes: 

IQ ~ SNP + Sex + Age + (1|Site) + ε 

The intercept for each subject is different, and 1 stands here for the intercept. This will take into 

consideration the non-independence, which occurs from having multiple responses by the same site. 

This control captures the between-site differences, thus reducing the overall number of variables while 

increasing accuracy and statistical power for the parameters of interest. However, users will have the 

option to choose the model accordingly. The scripts were generated in R, and all required packages are 

automatically installed upon runtime. In the end, one regression output file is generated for each 

chunk. These files contain the effect sizes, nominal and adjusted p-values along with other information 
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(see 3.2.3.4). All files are then merged. A text file containing only the SNP id and the p-value is 

extracted within the pipeline for further analysis.  

 

 Gene-based analysis 2.9.

In this part, we implemented the gene-based analysis and directly take the text file with SNP and p-

value information as input. The output of GWAS will be provided as input for gene-based analysis after 

arranging the file in the format for performing SNP-wise gene-based analysis. This analysis is 

performed using MAGMA. 

Firstly, the SNPs are mapped to the corresponding gene, based on NCBI GRCh37/hg19 annotation 

within a window of 5 kilobases (kb) up and downstream of the respective coding sequence. However, 

we provided users the option to define a window-size. 

It secondly analyses the individual SNPs in a gene and adds their respective p-value into a gene test-

statistic. We selected the mean of the χ2 statistic for the SNPs in a gene. The observed gene-statistic is 

computed from the regression output, i.e. SNP and p-values taking into consideration, only the SNPs, 

which are in the reference dataset. In our case, it is the 1000 Genomes dataset which is used to 

estimate the SNP statistic correlation matrix “R”. 

A gene p-value is calculated by using a known approximation of the sampling distribution. For 

computing the approximate sampling distribution p-values, the correlation matrix “R” is required for 

SNP statistics. The correlations between the gene model sum of squares (SSM) values of the regression 

model are taken into account, which describes how well a regression model represents the modeled 

data. For single SNPs, a square of the correlation between the SNP genotype values is generated. 

In general, the approximate sampling distribution is based on the basic properties of the multivariate 

normal distribution. Assuming under a null hypothesis of no association, the individual SNP Z-values zi 

have a standard normal distribution, and therefore their joint distribution can be assumed to be a 

multivariate normal distribution with a mean of 0 and covariance equal to the correlation matrix R. 
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Besides a normal p-value, a permutation-based p-value is also calculated for all gene test-statistics. We 

selected adaptive permutations, which means that the number of permutation varies per gene. The 

genes are coded as Entrez gene, which are unique integers based on the gene-specific database 

(www.ncbi.nlm.nih.gov/gene) at the NCBI (National Center for Biotechnology Information). 

Initially, for every gene 1,000 permutations are generated. MAGMA checks the number of P 

permutations with a gene test-statistic greater than the observed gene statistic. In case this value is 

greater than the pre-specified threshold Pthresh, the empirical p-value is calculated. In this way, an 

empirical p-value is calculated for all the genes.  

In other cases, if the value is smaller, the number of permutations is increased to 5,000 and P is 

checked again, which will continue for checking at 10,000, 50,000 and so on until P > Pthresh or the 

maximum number of permutations is reached, i.e. 1,000,000. At the end of the analysis, a file with 

significant genes along with a system code, i.e. “L” for Entrez gene ids is created for performing gene 

ontology analysis. 

 

 Gene Ontology analysis 2.10.

In this step, we integrated Gene Ontology (GO) analysis. The significant gene list from the previous 

analysis, will serve as input for identifying the underlying biological pathways. Thus, the input file is (i) 

the list of all significant gene IDs (here, Entrez gene ids) named “input file”, (ii) a file containing all 

genes tested in MAGMA named as the “denominator file”, which is in the same format as the input 

file, which serve as the background gene list to test for enrichment. 

Gene ontology ORA (Over-representation analysis) is a method to test if the set of biologically related 

terms occur more often than would be expected by chance in the dataset. This analysis provides 

information about the ontology id, the number of genes associated with the ontology id, Z-score, 

permuted and adjusted p-values. The gene lists are tested to avoid redundancy by using a robust 

pruning method to provide a set of non-overlapping terms. The statistics is based on Z-scores, p-values 

and gene counts, and look for unique branch paths from the overall ontology tree structure. This is 

http://www.ncbi.nlm.nih.gov/gene
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performed via pruning to attain the node which has the largest Z-score in comparison to its 

corresponding child and parent nodes. 

To identify functional profiles and underlying pathways of the genetic variants, we performed gene-

based tests for GO-term and pathway enrichment. This step is performed using GO-Elite 162 and the R 

package kegga for identifying associated KEGG pathways. Z-scores are calculated, using the normal 

approximation to the hypergeometric distribution along with a permutation or a Fisher's exact test 

p-value. GO-Elite ranks each analysed term according to the Z-score. The method is detailed as 

follows:  

A Z-score and permutation or Fisher’s exact test p-value are calculated to look for the over-

representation of genes within specific ontology terms and pathways. 

  
(        )  (        )

              (        )
 

The probability of observed gene IDs (observed probability) from the significant gene list is subtracted 

from the probability of combined total gene IDs of all the MAGMA genes (expected probability) and 

divided by the standard deviation of the observed gene IDs (Observed probability). The statistics can 

be further explained as the following equation: 
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where  

n = Total IDs associated with a biological term (denominator list) 

r = Input IDs associated with a biological term (input list) 

N = Denominator IDs examined (denominator list) 

R = Total Input IDs (input list) 

A Fisher’s exact test is calculated by creating a 2x2 contingency table. The table will consist of (a) the 

number of input IDs within a biological term, i.e. “r”, (b) a number of non-input IDs in a biological term 



Dissertation Afsheen Yousaf  Materials and methods 

54 
 

(n-r), (c) a number of input IDs excluded from that term (R) and (d) the number of non-input IDs 

excluded from that term (N-R-n-r).  

In order to reduce the possibility of chance findings, permutation analysis is performed. A random 

number of source IDs are selected from the “input file” and “denominator file” in an equal amount. 

Again, Z scores are recalculated for all terms “X” times, where X is a user-defined value. By default, we 

provide an option of X= 2000. Now, the likelihood of a Z-score occurring by chance is calculated as the 

number of times a permutation Z-score is greater than or equal to the original Z-score divided by X. 

Further, a false-discovery rate (FDR) p-value is calculated from the Fisher’s exact test or permutation 

p-value based on the Benjamini-Hochberg (BH) correction (see Appendix).  

The output file contains the name of the ontology, number of genes in the input and matching 

pathway/GO-term, gene names involved in the pathway, a Z-score, a permuted and adjusted p-value. 

 

 Brain enrichment analysis 2.11.

The last step of the pipeline performs brain enrichment analysis. We integrated the Kang et al. 48 brain 

transcriptome data set within the pipeline. This will assist in gathering information on the brain-specific 

effects of associated genes at 16 different brain regions i.e. Orbital prefrontal cortex (OFC), 

Dorsolateral  prefrontal cortex (DFC), Ventrolateral prefrontal cortex (VFC), Medial prefrontal cortex 

(MFC), Primary motor cortex (M1C), Primary somatosensory cortex (S1C), Posterior inferior parietal 

cortex (IPC), Primary auditory cortex (A1C), Posterior superior temporal cortex (STC), Inferior temporal 

cortex (ITC), Primary visual cortex (V1C), Hippocampus (HIP), Amygdala (AMY), Striatum (STR), 

Mediodorsal nucleus of the thalamus (MD), and Cerebellar cortex (CBC). Gene expression at these 

brain regions can be seen within a time frame, ranging from embryonic development to late adulthood 

of males and females. This dataset consists of 1,340 tissue samples collected from one or both 

hemispheres of 57 postmortem human brains. Co-expression pattern of genes within this dataset is 

distinguished into 29 co-regulated gene modules 4. Enrichment analysis is implemented using Fisher’s 

exact test. Two-dimensional heatmaps with brain anatomical structures over time were plotted using 
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the R package CerebroViz 49 to visualize the eigengene (first principal component) values for each 

module. Moreover, we generated gene networks of the modules, which highlighted the overlapping 

genes from each subdomain. Gene networks were plotted using the R package igraph 50. For details on 

the output, please see 3.2.4.4. 

We discussed till here all the parts of the pipeline with respect to the thresholds and methods 

implemented. Further, we used additional methods that are currently not part of the pipeline but were 

performed to answer the biological question using the combined ASD cohort (AGP and German). The 

PLINK files from the two separate cohorts were merged using the “--merge” command in PLINK. 

 

III. Additional data analysis 

 Genetic correlation 2.12.

Genetic correlation analysis depicts the genetic relationship between two traits. This analysis will 

provide an understanding if the genetic variants on the two traits are shared, as well as if the alleles 

that affect one trait might have an effect on a second trait. 

The genetic correlation is defined as follows: 

   
     (     )

√     (  )      (  ) 
 , 

where  

     (  ) is the additive genetic variance of trait i , and 

     (     ) is the additive genetic covariance between the traits. 

For performing this analysis, the PLINK files were first converted into GRM (genetic relationship matrix) 

format. We used bivariate GCTA–GREML from the GCTA tool 195 to estimate the genetic correlation 

based on the combined (AGP and German cohorts) cohort containing the phenotypic and genotypic 

information from unrelated individuals. The GCTA bivariate method is an extension of the univariate 

model which relates the pairwise genetic similarity matrix to a phenotypic covariance matrix between 
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the first trait of interest with the second trait of interest and allows for correlated residuals. Before 

calculating rg, GCTA estimates the genetic relationship matrix (GRM) between unrelated individuals 

from the SNPs, which can be estimated as follows: 

 

    
 

 
∑

(       )(       )

   (     )

 
    , 

where 

xij is the number of copies of the reference allele for the ith SNP of the jth individual, 

j and k are individuals for which the genetic relationship between two individuals will be calculated, 

pi is the reference allele, and 

N is the number of SNPs. 

In this way, iteratively one individual of a pair is excluded, whose relationship is greater than a 

specified threshold. Genetic correlations are then calculated based on the GRM. 

 

 SNP-based heritability analysis 2.13.

This analysis is performed to estimate the phenotypic variance explained by all SNPs in a GWAS based 

on unrelated individuals. The heritability analysis was also performed in GCTA using the combined ASD 

data in GRM format. SNP-based heritability (h2
SNP) is calculated to estimate the total variance of a 

phenotype, which can be explained by all SNPs. We calculated the SNP-based heritability (h2
SNP) based 

on unrelated individuals since this avoids the bias in estimates, which occur due to the effect of 

common environment (dominance/epistasis) of the related individuals, e.g. siblings or twins. 

Moreover, to attain the minimum sample size requirements, we performed the analysis in the 

combined cohort. SNP-based heritability for each quantitative trait (subdomain) was estimated as 

follows: 

    
  

    

(         )
 , 
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where 

     is the genetic variance, and  

     is the residual variance. 

These variances are calculated using REML from the GRM as shown in the previous section. 

The variance explained by genome-wide SNPs (i.e. variance explained by all the causal variants) is 

estimated based on two steps: (i) A GRM calculated for all SNPs. This is an NxN matrix where each 

element represents the genetic similarity of two individuals. (ii) REML analysis where GRM is used as a 

predictor in the mixed linear model with the individual subdomain as the dependent variable. This 

analysis is performed in GCTA 195. 

 

 Polygenic risk scores (PRS) 2.14.

To identify the level of shared genetic etiology between ASD and the quantitative traits, we performed 

a polygenic risk score-based analysis in the combined cohort (i.e. AGP and German cohort) using PRSice 

which requires the GWAS output from individual subdomains 196. 

In general, PRS is an estimate of an individual’s predisposition to a trait. It is determined by the sum of 

their genome-wide genotypes and weighted based on the corresponding genotype effect sizes which 

are collected from the GWAS summary statistics.  

For this analysis two datasets are required as input: 

i. Base dataset: A reference GWAS summary statistics data. We used the PGC-ASD GWAS data 

consisting of 5,305 ASD cases and 5,305 controls. Data is publically available: 

http://www.med.unc.edu/pgc/downloads. 

ii. Target dataset: GWAS summary statistics of the target dataset. In our study, we have six 

different GWAS summary statistics for each of the quantitative traits (subdomains), i.e. JA, SI, 

PI, NVC, RB, and RI. 

http://www.med.unc.edu/pgc/downloads
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iii. To avoid any bias in the results, we made sure that the individuals of the PGC-ASD GWAS are 

not part of our consortium as the inclusion of related individuals can result in inflation of 

output. 

iv. We only selected the SNPs, which were overlapping in the base and target datasets. 

v. Clumping of SNPs was performed using PLINK to attain SNPs that are largely independent of 

each other. We selected a significance threshold for index SNPs of 0.001; the secondary 

significance threshold for clumped SNPs was 0.01. The LD threshold was 0.1 and the physical 

distance threshold for clumping was 250 kb. This generated a list of clumped SNPs. 

vi. Genomic profile scores will be generated in the target dataset, e.g. the sum of risk alleles 

weighted by base dataset effect size (betas, log odds ratio, etc.). It is possible that the causal 

SNPs in GWAS could not attain a significant p-value, therefore, PRS are calculated at a set of 

seven broad thresholds that are <0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. 

vii. Based on the above mentioned seven P thresholds, polygenic risk scores are generated based 

on all SNPs that were associated with the PGC-ASD data (base data). 

viii. PRSice also calculated the P of shared genetic etiology, i.e. the extent to which the combined 

SNPs from each of the seven P-value threshold linked polygenic risk scores for ASD predict 

each of the six quantitative subdomains-between the base ASD phenotype and target 

phenotypes, i.e. the total autistic score as well as the score for each of the subdomain.  

 

 



Dissertation Afsheen Yousaf  Results and Discussion 

59 
 

3. Results and Discussion 

I. Preliminary analysis of phenotype data 

 Phenotype imputation 3.1.

The selection criteria for performing this step are detailed in 2.3. Sample adequacy tests were 

performed to make sure that the data reaches the criteria for performing principal component 

analysis. Table 2 shows the results of the sample adequacy test. Both the tests satisfied the criteria. 

Sample Adequacy Test Value Cut-off value 

Bartlett’ test of sphericity P -value <0.0001 <0.05 

Kaiser Maier Olkin 0.92 >0.5 

Table 2 Sample adequacy tests. 

 

3.1.1. Principal component analysis  

Principle component analysis was performed to attain the independent components in the AGP 

cohort. The number of factors to be considered were decided based on Kaiser criterion 179, i.e. to 

include all components with an eigenvalue > 1 and a scree plot (Figure 4). This led to a six-component 

solution (Figure 5). The ADI-R items which were related to Domain A were labeled based on Liu et al. 84 

as SI (Social Interaction; 5 items), JA (Joint Attention; 8 items), PI (Peer Interaction; 4 items), and NVC 

(Non-verbal Communication; 3 items). Similarly, ADI-R items related to Domain B were RB (Repetitive 

Sensory-Motor Behavior; 5 items); and RI (Restricted Interests; 3 items). Items that had a factor 

loading > 0.4 for a specific factor were considered. However, one item “Conventional/Instrumental 

gestures” loaded > 0.4 in two factors simultaneously, i.e. SI and NVC. We referred to the previously 

published factor analysis in the AGP cohort 84 which included the respective item into NVC only (see 

Table 3). The respective items for each subdomain were summed up to provide a combined score 

which will be used for subsequent analysis. 
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In order to confirm the structure of six factors/components attained from the AGP cohort, we 

performed a confirmatory factor analysis in the German cohort. The structure was successfully 

confirmed based on comparative fit indices such as TLI (Tucker Lewis index)> 0.90, CFI (Comparative 

Fit Index)> 0.90 197,198, and absolute fit indices, i.e. RMSEA (Root Mean Square Error 

Approximation) < 0.08 198,199 and SRMR (Standardized Root Mean Square Residual; see Table 4). The 

sum of the respective factor items was calculated for each participant. No difference with respect to 

SI, PI, and RI was observed for the AGP and the German cohorts (Pall> 0.1). However, the sum scores 

for JA and RB were lower in the DE compared to the AGP cohort, while the NVC score was higher in 

the DE cohort (Pall< 1 x10-03) (see Table 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Scree plot of the AGP cohort 

Scree plot for principal component analysis: The number of factors (dimensions) with the corresponding eigenvalue at the y-axis and the 
number of factors at x-axis. The dotted line marks an eigenvalue> 1 which shows in total six factors. 
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Figure 5 PCA based subdomains of the 28 ADI-R items 

The color bar and size of the dots represent the intensity of correlation. Abbreviations: JA: Joint attention, SI: Social interaction, PI: Peer 
Interaction, NVC: Non-verbal communication, RB: Repetitive Sensory-Motor Behavior, RI: Restricted interests.  
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Table 4 Confirmatory factor analysis in the German cohort 

 

 AGP DE P Combined 

N total  1895 614  2509 

Age at Diag. in months, mean (SD) 103.11 (58.52) 128.72 (74.19) <0.001
a 

109.38 (63.66) 

Male Gender, N (% ) 1649 (87.01 %) 525 (85.50 %) 
0.373

b 2174 (86.64%) 

Female Gender, N (%) 246 (12.98 %) 89 (14.50 %) 335 (13.35%) 

IQ, Mean (SD) 78.63 (24.44) 88.96 (23.30) <0.001
a 

80.99 (24.56) 

IQ > 70, N (%) 1145 (60.42 %) 418
 
(74.51 %) 

<0.001
b 1563 (62.29%) 

IQ ≤ 70, N (%) 750 (39.58%) 143 (25.50%) 893 (35.59%) 

Subdomains, mean (SD)     

Joint Attention (JA), mean (SD) 12.86 (4.63) 11.92 (5.02) <0.001
a 

12.63 (4.74) 

Social Interaction (SI), mean (SD) 10.17 (3.24) 10.30 (3.43) 0.180
a 

10.20 (3.29) 

Peer Interaction (PI), mean (SD) 7.31 (2.56) 7.30 (2.79) 0.815
a
 7.31 (2.61) 

Non-verbal communication (NVC) 4.14 (2.24) 4.37 (2.21) 0.023
a 

4.19 (2.23) 

Repetitive Sensory Motor Behavior (RB) 6.04 (2.97) 5.16 (3.25) <0.001
a 

5.83 (3.07) 

Restricted Interests (RI) 3.08 (2.03) 2.91 (1.90) 0.103
a 

3.04 (2.00) 

Table 5 Descriptive statistics 

a) Wilcoxon test b) Chi-square test, Abbreviations: DE German cohort AGP: Autism Genome Project cohort, diag. diagnosis; SD: Standard 
Deviation, P: nominal p-value comparing DE vs AGP cohort. 

  

Measure Value Cut-off for good fit 

TLI (Tucker-Lewis Index) 0.981 >= 0.95 good model fit
198

 

CFI (Comparative Fit Index) 0.983 0.95 (great); 0.90 traditional
198

 

RMSEA (Root Mean Square Error of Approximation): 0.039 < 0.08
200

 

SRMR (Standardized Root Mean Square Residual) 0.048 <0.09 good
198
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II. (a) The MAGNET tool: Methodological results 

 MAGNET implementation and architecture 3.2.

We developed the MAGNET tool consisting of five main parts: I) quality check (QC) of the genotype 

data, II) imputation of genotype data, III) GWAS, IV) enrichment analysis, V) integration of 

transcriptome data, see Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 MAGNET workflow 

The five main parts of MAGNET, i.e. (i) Quality control, (ii) Imputation, (iii) GWAS, (iv) Enrichment analysis, and (v) Integration of brain 
transcriptome data. Violet blocks represent input data, yellow blocks represent individual processing steps and green blocks represent 
outputs produced. 
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The framework was developed under Linux Distribution Red Hat 4.1.2-55 and implemented in bash, 

python, and R. The pipeline is freely available at GitHub https://github.com/SheenYo/MAGNET. The 

provided configuration options to run a complete MAGNET pipeline on a cluster is available for 

“SLURM” or “PBS” cluster management system with at least 128GB of memory. Stage 1: QC analysis, 

stage 4: pathway enrichment analysis and stage 5: transcriptome enrichment analysis are 

computationally less intensive and can be performed on any 64-bit x86 Unix based local system. 

However, stage 2: genotype imputation and stage 3: GWAS requires the use of a computing cluster. 

Prior to running MAGNET, it is required that R>=3.5, Perl, Python, gunzip and unzip utility for Linux are 

installed.  

All the required parameters such as computational time or amount of memory required to run the 

framework are provided in Table 6. We will use the trait IQ from the German cohort for elaborating the 

architecture of MAGNET where ever necessary. Phenotype imputation (part of preliminary data 

analysis) was not performed on IQ trait data. 

The user first needs to run “testPreMAGNET.sh” before running MAGNET. The script will create 

directories and install if any of the software in Table 1 is not installed.  

Figure 7 shows the architecture of MAGNET. For each section of MAGNET, a bash script is defined or a 

complete script to run all the analysis together.  

Each stage of MAGNET is described in detail listing the variable names for required input files, input 

parameters, reference data, and outputs produced as arranged in the configuration files and scripts. 

  

https://github.com/SheenYo/MAGNET
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Figure 7 General architecture of MAGNET 

MAGNET is composed of four main directories, i.e. ConfigFiles, Scripts, RefData and Data, and the main configuration file which will create the 
required folders needed to process and save the outputs from MAGNET. Config files contain the thresholds and tools configuration 
parameters. The scripts for each step are organized in separate files along with one complete script to perform the whole analysis. The 
required reference data for the different steps are saved as shown under the ref data folders. The data folder contains the study data to be 
analysed. 

Table 6 Computational requirements for MAGNET 

For illustration purposes, we show here the computational requirements for running MAGNET on trait IQ in the German cohort. Since, part 1, 
4 and 5 can run on any local machine as well, we show here the time taken on a local machine for these parts. Part 2 and 3 requires parallel 
computing on a computational cluster. 

Parts Computational Requirements Sample Size Time 
(h:mm) 

 

1. QC pipeline 
 

Required 7.2 GB memory (RAM) on an Intel(R) Core(TM) i7-
3820 CPU 3.60GHz machine 
 

3,343 Individuals (affected& 
non-affected), 715,726 SNPs 

00:05 

2. Genotype Imputation 
(Pre & Post steps) 

 

Required 128 GB memory (RAM) on 1 computational node 
(slurm job scheduler) which consisted of four AMD Opteron 
Magny-Cours (twelve-core) CPUs  
 

717 affected individuals, 
622,344 SNPs 

75:20 

3.GWAS 
 

Required 128 GB memory (RAM) on 1 computational node 
(slurm job scheduler) 
which consisted of four AMD Opteron Magny-Cours (twelve-
core) CPUs  
 

522 affected individuals with 
IQ information available, 

8,261,813 SNPs 

37:00 

4. Gene analysis 
 

Required ~8.50 GB memory (RAM) on an Intel(R) Core(TM) i7-
3820 CPU 3.60GHz machine 

522 affected indiviudals with 
IQ information avaialble, 

8,261,813 SNPs 

00:22 

5. Transcriptome analysis 
 

Required ~ 0.5 GB on Intel(R) Core(TM) i7-3820 CPU 3.60GHz 
 

522 affected individuals with 
IQ information available, 

996 significant genes 

00:16 

Total Time=~113:00 
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3.2.1. QC 

This part is implemented in PLINK and R within the shell script “Stage1_GenoQC.sh”. This section 

reports the quality of user-provided data by generating reports for individual analysis. Results from 

these reports are generated as plots at the end of the analysis: 

3.2.1.1. Input files 

SamplesToQC: The user needs to provide PLINK formatted files either as .bed, .bim, and .fam or as.ped, 

.map input files. These are required to be ACGT/1234 allele coded. The program checks for their 

existence and exits if the files are not found. By default, the path is set to “Data” folder where the user 

can provide the PLINK files for analysis.  

AffectedInds: PLINK normally defines ‘-9’ as the unaffected individuals and ‘2’ as affected individuals, in 

case the affected statuses are otherwise defined the user needs to provide a list of affected individuals 

and its respective path in the configuration file. 

3.2.1.2. Input parameters 

This section of the program consists of the following defined variables that can be changed by the user 

in the MAGNET/ConfigFiles/Thresholds.config. 

installationDir: By default, the directory where the program is installed is considered as the installation 

directory, all further output folders will be created within this directory. This directory can be changed 

in the ToolsConfig, e.g. installationDir=/home/user/mypath.  

GENO: Refers to PLINK missing genotype call rate threshold. By default we have set it to 0.05, all 

variants exceeding this threshold will be omitted from the analysis. 

HWE: Refers to Hardy-Weinberg equilibrium exact test p-value threshold to filter out all variants below 

it, by default set to 10e-8.  

MAF: Filter variants with a minor allele frequency less than a specific threshold. By default, it is set to 

0.02. User can change it based on sample size and study design. 
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MIND: Excludes all samples which have missing genotype data greater than a specific threshold, here it 

is by default set as 0.05. 

MEFam and MESNP: These options are used for family-based data only. Filters individuals and/or 

markers based on the Mendel error rate. 

MEFam: By default discards all the families with more than 1% Mendel errors (considering all SNPs). 

MESNP: By default discards all the SNPs with more than 10% Mendel error rate based on the number 

of trios. 

3.2.1.3. Reference files 

For this stage only HapMap data is required: 

Hapmapfile: Hapmap genotype file for generating ethnicity plots 

3.2.1.4. Output 

QC1_report.imiss: A list reporting sample-based missingness, where F_MISS column details the missing 

call rate. 

QC1_report.lmiss: A list reporting variant based missingness, where F_MISS column details the missing 

call rate. 

PreQC_hardy.hwe: A statistic generated showing the Hardy-Weinberg exact test with p-values. 

PreQC_AlleleFreq.frq: Lists all the SNPs with minor allele frequencies. 

PreQC_Inbreeding.het: Generates the inbreeding coefficient estimates. 

QC2_Sexcheck.sexcheck: Reports the individuals with mismatched gender. 

FinalQC_Study: In the end, the user gets a clean quality checked PLINK data file, which will be directly 

incorporated for the next section. Altogether 9 graphs are produced at the end of QC, as an example 

six different QC output plots of IQ trait from the German cohort are shown in Figure 8. 
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Figure 8 Quality check plots of IQ trait in German cohort 

(a) and (b) show the histograms depicting the missingness per samples and SNPs respectively, (c) shows the Hardy-Weinberg equilibrium p-
value threshold, (d) shows the MAF, (e) shows the heterozygosity estimates and (f) shows the inbreeding coefficient  
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3.2.2. Genotype Imputation 

We implemented this section in R, PLINK, and python within the shell script “Stage2_Imputation.sh”. In 

this stage imputation of affected individuals was performed only for chromosomes 1-22 (autosomes) 

because of a lower proportion of genes on X chromosome and less coverage on current genotyping 

platforms in comparison to the autosomal chromosomes. Moreover, Y SNPs are approximated to be 

only ~0.07% of the biallelic SNPs within the genome and therefore might be underrepresented on 

genotyping arrays. The structure of this section looks as follows: 

3.2.2.1. Input files 

QCFile: Final quality check file (FinalQC_Study.bed, FinalQC_Study.bim, and FinalQC_Study.fam). For 

standalone imputation analysis, the user needs to provide a path of the QC PLINK formatted file (bed, 

bim, fam). 

AffectedInds: In case the sample consists of unaffected and affected individuals, a list consisting of 

family and individual IDs of affected individuals only is needed which should have the following format: 

 

 

 

3.2.2.2. Input parameters 

ChainToChoose: By default Chain file (see 2.7.1.1) from hg18 to hg19 is selected to update the genome 

build. Users can select a genome build if it is not hg18 as detailed in the following section.  

thresholdImp: Imputation quality threshold value of Rsq, default to 0.3. 

chunkSize: Number of SNPs to be present in each SNP raw data file, by default each SNP raw data file 

consists of 5000 SNPs. 

 

FAMILY ID INDIVIDUAL ID 

FAMID_1 IID_1 

FAMID_2 IID_2 

…….. ………… 

FAMID_65 IID_65 
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3.2.2.3. Reference files 

The user needs to download the following reference files in “RefData” folder. 

Hg19SNPs: Hg19 SNPs file containing SNPs rs ids (SNP name), starting and ending bp position, 

chromosome number. 

Since the 1000 genomes dataset is based on the hg19 genome build, the study dataset needs to be 

updated to this genome build. All chain files are provided in the reference data, which a user can 

download.  

Chain files can be downloaded from the links provided on the GitHub 

https://github.com/SheenYo/MAGNET and can be saved in the RefData folder.  

MapFile: Genetic map for 1000 genome data Phase3 consisting of three columns containing the 

physical position (bp), the recombination rate (cM/Mb) and the genetic position (cM). This file along 

with reference files for SHAPEIT are required to be downloaded.  

The folder will contain files in the following three formats: 

ShapeitRefHaps: This file consists of SNPs and the haplotypes where each line corresponds to a single 

SNP consisting information about the two alleles of a SNP by each haplotype of an individual about the 

chromosome number, SNP id, SNP position, and the first and second allele. 

ShapeitRefLegend: The file describes the SNPs, where the columns correspond to SNP id, SNP position, 

first and second allele. 

ShapeitRefSample: The file contains information about reference individuals, i.e. Individual ID, 

population, group, and sex. 

AnnotationFile: A complete instruction on downloading the annotation file is provided in the readme 

file at https://github.com/SheenYo/MAGNET. These files contain annotation based on SNP 142 

genome build (SNP locations and alleles information extracted from the single nucleotide 

polymorphism database (dbSNP)) separated based on chromosomes, each file consists of chromosome 

number, base pair position, SNP name, and column with chromosome:base pair. 

https://github.com/SheenYo/MAGNET
https://github.com/SheenYo/MAGNET
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3.2.2.4. Output 

Gwas.Chr (1-22)_Study.Imputed.Output.dose: Contains allele dosages (allele counts) for imputed and 

genotyped SNPs. 

Gwas.Chr(1-22)_Study.Imputed.Output.erate: Contains estimated error rate for every imputed and 

genotype marker. 

Gwas.Chr(1-22)_Study.Imputed.Output.info: Contains information on both genotyped and imputed 

SNPs. 

Gwas.Chr(1-22)_Study.Imputed.Output.m3vcf.gz: Output file in vcf (variant calling file) format. 

Gwas.Chr(1-22)_Study.Imputed.Output.rec: Recombination file containing switch error rate 

(Percentage of possible switches in haplotype orientation that is required to recover the correct phase 

in an individual 201) per interval. 

Gwas.Chr(1-22)_Study.Imputed.Output.hapDose.gz: Contains dosage for each haplotype separately. 

Gwas.Chr(1-22)_Study.Imputed.Output.hapLabel.gz: Contains haplotype labels. 

Merged_FinalQC_SNPs_Data (bed, bim, fam): PLINK formatted files consisting filtered (Rsq >0.3) and 

biallelic SNPs. 

Data_SNPfile (1-22): Raw files with minor alleles each consisting of 5000 imputed SNPs. 

3.2.3. GWAS 

This step is implemented in R, python, and bash. The analysis is provided within shell script 

“Stage3_GWAS.sh”. This section uses the MAGMA tool to map the SNPs to their respective genes and 

perform gene-based analysis (see 2.9). Depending on the number of SNPs in the study, chunks are 

created with a default chunk size of 5000 each. However, the user is free to choose a chunk size in the 

configuration file.  

  



Dissertation Afsheen Yousaf  Results and Discussion 

73 
 

3.2.3.1. Input files 

Data_SNPfile.raw: Raw files consisting of 5000 SNPs each. 

phenofile: The user needs to provide a reference file named “phenofile” consisting of family ID, 

individual ID and value of phenotype of interest (such as IQ) in the data folder, e.g in the table below: 

FAMILY ID INDIVIDUAL ID TRAIT 

FAMID_1 IID_1 49 

FAMID_2 IID_2 103 

……….. ………… ……….. 

FAMID_65 IID_65 112 

3.2.3.2. Input parameters 

Pheno: Name of the phenotype to be analysed, required for the naming of results. 

ColManhattan: Color to be used for Manhattan plot besides the grey color scheme used for every 

alternate chromosome, default is black color. 

Further, the user needs to specify five arguments required for MAGMA analysis and plotting 

Manhattan plots that are as follows: 

windowSize: The default window size to look for the genes around a SNP is 5kb upstream and 

downstream of the gene. 

Covars: Name of covariates included in the regression model, the names should correspond to those in 

the phenotype file provided, e.g by default “Sex, Age” are the two covariates provided, these names 

are same as in the phenotype file. 

Fixed: Names of random covariates included in the regression model, please note that the names 

should correspond to those in the phenotype file provided as explained above. 

snpsOfInterest: Specific set of SNPs of interest which will be highlighted in the Manhattan plot, e.g. 

"rs377398625","rs557375998","rs10736578” 

MagmaN: Sample size (Number of individuals) for which MAGMA will be conducted. 

MagmaPERMP: Permuted p-value for MAGMA analysis, by default set to 0.05 
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3.2.3.3. Reference files 

MagmaRef: 1000 genomes PLINK formatted reference file.  

MagmaSNPloc: The file contains chromosome, SNP identifier, position in morgans or centimorgans 

(unit to denote the distance between two loci on a chromosome) which is mostly dummy coded as “0” 

of the reference 1000 genome dataset. 

MagmaGeneloc: This file consists of location information about genes in NCBI37 (National Center for 

Biotechnology Information genome build 37), i.e. Entrez gene id, chromosome id, start and stop 

position, strand information, and gene.  

3.2.3.4. Output 

Results file: For each chunk, regression output will be saved in this file consisting of beta, se (standard 

error), t, p-value, and adjusted p-value. 

Summary file: For each chunk regression output summary will be saved in this file. 

Magma Result file: File consisting of complete MAGMA gene lists will be provided in the 

Magma_pheno.genes_tabseparated.txt file. 

Pheno.SignificantGenes: List of significant genes resulting from MAGMA analysis below the default 

threshold of the empirical p-value of 0.05. 

3.2.4. Enrichment analysis 

The enrichment analysis is implemented in R-3.5, packages include kegga, WGCNA, igraph, and 

cerebroViz. The analysis is wrapped in shell script “Stage4_Enrichment.sh”.  

3.2.4.1. Input files 

Pheno.SignificantGenes: List of significant genes resulting from MAGMA analysis that are below the 

default threshold of empirical p-value of 0.05. 

Magma Result file: File consisting of complete MAGMA gene lists will be provided in the 

Magma_pheno.genes_tabseparated.txt file. 
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R Pre-requisites: Requires R-packages "org.Hs.eg.db, annotate, WGCNA, igraph and purrr". These will 

be automatically downloaded upon script runtime.  

Detailed commands for updating the packages are also provided at 

https://github.com/SheenYo/MAGNET. 

3.2.4.2. Input parameters 

GOeliteSpecies: The pipeline is based for human data only, by default the option is set to “Hs” for 

homo sapiens. 

GOElitefolder: Name of the folder where GO elite inputs are stored. 

Outputfolder: Name of output folder where results of the downstream analysis will be stored. 

MAGNETHome: Name of the main directory where MAGNET is installed. 

3.2.4.3. Reference files 

Kang et al. 4 transcriptome data set is included as reference data for this stage. These files are provided 

with the tool. 

Kang Universe: All genes from Kang dataset. 

Kang genes: All genes which are in Kang modules. 

KangData: File consisting of Kang expression data. 

3.2.4.4. Output 

The output produces the following files: 

All_MagmaGenes_Symbols.txt: All MAGMA Entrez genes mapped with their gene symbols. 

All_genesMAGMA_Imputed_Kang.txt: All genes which are present in MAGMA and in Kang dataset. 

phenoEnrichment_ouput.txt: Output of enrichment analysis. 

phenoGO_ElitePlot.pdf : Plots of top ten GO-terms. 

phenoKEGG.pdf: Plots of top ten KEGG pathways. 

phenoEnriched_Modules.pdf: Gene network plots of enriched modules. 

Heatmap_EnrichedModules.pdf: Heatmap of enriched modules. 

https://github.com/SheenYo/MAGNET
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Cross sectional and sagittal Brain views: Eigen gene values of module genes in Kang dataset are also 

presented with respect to brain-specific regions. 

We ran the MAGNET tool on an IQ trait from the German cohort and recorded the computational time 

required to process each stage of it. The results are summarized in Table 6. The computational 

requirements for each section are different. The QC section requires the minimum computational 

requirements and does not require a computational server. Moreover, a comparison with other state-

of-the-art tools is provided in Table 7. 
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 MAGNET-lite 3.3.

We also developed a GUI (Graphical User Interface) for the enrichment analysis. The interface is 

developed in the R shiny package which builds interactive web apps using R. This interface was 

developed by Miriam Hana Ulbrich in her internship project under my supervision. Shiny is an R 

package that makes it easy to build interactive web apps straight from R.  

Features 

MAGNET-lite consists of the following features: 

 The user only needs to provide a gene list consisting of Entrez ids or gene symbols.  

 Pathway enrichment analysis is performed at the backend using GO-elite and R package kegga. 

 Bar plots are created for the top ten most significant GO-terms and KEGG pathways 

 Brain enrichment analysis is performed based on the user-provided gene lists. 

 Heatmaps of enriched modules and topmost connected gene networks are created. 

 All plots are downloadable in pdf format. 

Magnet-lite can also be downloaded from https://github.com/SheenYo/MAGNET and then can be run 

as a web GUI. 

 Discussion 3.4.

This section contains parts of the article “MApping the Genetics of neuropsychiatric traits to molecular 

NETworks of the human brain” available on bioaRxiv (10.1101/336776). 

MAGNET performance 

We developed a pipeline that integrates genotype, phenotype, and brain transcriptome data within a 

single framework. To illustrate the run time problem in data integration, we evaluated the run time for 

the different computation steps and the overall time required starting from the application of quality 

checks to the identification of associated genes for IQ trait in the German cohort, see Table 6. The 

complete framework for the ASD German cohort took ~4 days (i.e. ~113 hours) to complete on a 

computing server using 2 nodes with AMD Opteron Magny Cours with each 12 cores CPUs and with 

https://github.com/SheenYo/MAGNET
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128 GB RAM per node. Quality checks were finished within 5 minutes for a total of 715,724 SNPs and 

3,343 individuals (German cohort before QC). The computational time directly depends on the sample 

size and number of genotyped SNPs and may vary with the preferences to include, exclude or modify 

flagged samples and SNPs. Imputation based on the 622,344 variants was done for the 717 ASD 

affected individuals only and took 48:22 hours increasing the number of SNPs to 8,261,813. For ~8 

million SNPs, regression analysis took 37 hours. Overall, the gene-based association test took 19 

minutes. Hence on an average MAGNET can save the time required to set up, configure, handle in 

between data generated and running individual steps. All scripts are arranged as easy to use 

command-line interface with the flexibility to perform individual stages separately. To run the analysis 

no high-end programming skills are required but a basic understanding of Linux and shell scripting 

might be helpful to run the scripts on a computational cluster. 

Comparison with state-of-the-art tools 

We also compared the features of MAGNET with other tools that perform QC, imputation and 

regression analysis such as “Genipe” 142, Ezimputer 202, and Molgenis-impute 11. MAGNET provides an 

edge over Genipe as it provides extensive visual plots for each QC step and provides an additional 

pathway and brain enrichment analysis. Likewise MAGNET is beneficial for the users who do not want 

to provide their genetic data on an online server to perform genetic analysis due to legal issues. 

EZImputer besides performing QC and imputation also provides predicted ethnicity estimates. It 

actually provides a modular set of scripts for building an imputation workflow but does not provide an 

automated manner of performing it. Molgenis-impute is a well-established pipeline but only provides 

imputation workflow at the moment. 

MAGNET is oriented towards researchers with limited computational skills of computing clusters who 

do not want to invest time in setting up workflows and data handling from different genetic analyses. 

Instead, MAGNET provides an automated pipeline within one shell. However, the user has the 

flexibility to run individual parts of the pipeline provided the input files are available in the correct 

format.  
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MAGNET availability and cluster usage 

MAGNET is available freely at Github under https://github.com/SheenYo/MAGNET. with complete 

scripts that can be adjusted to the needs of the respective user. A web interface for MAGNET stage 4 

called MAGNET-lite is also available for the users who are only interested to know the specific 

biological pathways behind their trait of interest and can also be downloaded from 

https://github.com/SheenYo/MAGNET and can be run as GUI. In addition, it can look for enrichment of 

the genes of interest with respect to 29 different modules associated with distinct spatio-temporal 

expression patterns of the human brain 4. MAGNET-lite can be used as a normal GUI for which no 

programming or Linux experience is required.  

To boost the processing time of MAGNET, the scripts for stage 2 and 3 are written to directly run on 

high-performance computing environments, i.e. SLURM and PBS. The user does not need to perform 

any further parallelization steps, as genotype imputation and regression analysis are adapted to run in 

an automated fashion on the cluster. 

 

  

https://github.com/SheenYo/MAGNET
https://github.com/SheenYo/MAGNET
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II. (b) The MAGNET tool: Biological results 

 Quality check of genotype data 3.5.

MAGNET QC stage was run on AGP and German cohorts separately. MDS (Multidimensional scaling) 

analysis was performed using 11 populations from the HapMap dataset, the German and AGP cohorts 

to predict the dimension scores as shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 MDS plot of the first two dimensions  

The diamond legend shows populations from the AGP cohort, the square blocks show populations from the HapMap dataset, and filled circles 
show the populations from the German cohort. 
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MDS plots showed the presence of three different clusters as the three main ethnicities, i.e. Asian, 

African, and European. We selected the first four ethnicity components to be included in our analysis 

for correcting population bias in the data. After QC, we only included affected individuals who had 

complete genotype and phenotype data, i.e. data available for age and recruitment site information. 

This resulted in 1,895 and 614 AGP and the German cohort affected individuals, respectively. A 

detailed summary of data description is provided in Table 5. There was no difference in gender 

distribution across cohorts (P= 0.373). The German cohort was older at diagnosis and showed a higher 

IQ compared to the AGP sample. Moreover, no difference was observed between SI, PI, NVC, and RI 

between the two cohorts. MAGNET provided a clean quality checked genotype file for each cohort. For 

the next steps, MAGNET was run individually on each subdomain and for each cohort separately. 

 

 Imputation of missing genotype data 3.6.

The MAGNET imputation stage was run separately for each cohort and consisted only of affected 

individuals. As we used the 1000 Genomes phase 3 data which is annotated based on GRCh37 

coordinates we used liftOver to remove any genetic sample data which did not correspond to GRCh37 

annotation. Additionally, SNPs which were only in the provided genotype data and not in the reference 

data were also removed. SNP inconsistencies such as strand flip issues that cannot be resolved by 

flipping were removed during the imputation. MAGNET provided multiple imputation output files as 

detailed in 3.2.2.4, output was filtered based on the default imputation quality score of Rsq > 0.3 

(removes > 70% of poorly-imputed SNPs at the cost of <0.5% well-imputed SNPs). The QC stage was 

run again at the end of imputation to remove any SNPs that fall below the thresholds of QC. As our aim 

was to identify the common variants observed in both cohorts, we manually selected SNPs that were 

overlapping in both cohorts and extracted them from the genotype files of AGP and the German 

cohort. This resulted in 6,900,500 SNPs overlapping in both cohorts with a MAF ≥ 2%. For efficient 

processing, MAGNET divided the SNPs into 1,381 files, each file consisted of 5,000 SNPs in contrast to 
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the last file which contained 500 SNPs. This division and assignment of SNPs are performed 

automatically by MAGNET. 

 

 GWAS 3.7.

MAGNET stage 3, i.e. GWAS was first performed in the combined (AGP and German) cohort to account 

for the power issues and to determine SNPs that might not reach genome-wide significance because of 

the sample size of AGP and the German cohort. Later, MAGNET was also run on individual cohorts. The 

sample size had a power of 1-beta > 80% to explain 6% of the variance (R2= 0.06) in the German cohort, 

1.5% in the AGP cohort and 1.2% in the combined cohort with a genome-wide significance threshold of 

alpha = 5e-8. 

GWAS of the combined cohort resulted in eight genome-wide significant SNPs as shown in Table 8 and 

Figure 10. Out of the eight SNPs, four were found for SI, i.e. rs2095092, P= 4.3 x 10-08 at chr. 

(chromosome) 1p31.3 (closest gene PATJ: PALS1-Associated Tight Junction Protein); rs377634870, P= 

4.8 x 10-08 at chr. 1p22.3 (no gene within 10kb); rs34459814, P= 2.5 x 10-08 at chr. 7q11.23 (closest gene 

CLIP2: CAP-Gly Domain Containing Linker Protein 2); and rs34083004, P= 3.7 x 10-08 at chr. 7q11.23 

(closest gene CLIP2). One SNP was found in PI, i.e. rs10115292, P= 1.8 x 10-08 at chr. 9p21.1 (no gene 

within 10kb) and three in RB, i.e. rs13274146, P= 2.1x 10-08 at chr. 8p21.3 (no gene within 10kb); 

rs7837513, P= 4.2x 10-09 at chr. 8p21.3 (no gene within 10kb); and rs7824610, P= 2.0 x 10-09 at chr. 

8q21.11 (no gene within 10kb). 

In the AGP cohort we identified nine genome-wide hits, two were identified for SI, i.e. rs377634870, 

P= 4.8x10-08 at chr. 1p22.3 (no gene within 10kb), rs9333127, P= 4.75 x10-09 at chr. 10p13 (ITGA8: 

Integrin Subunit Alpha 8), five were identified for PI, i.e. rs7777015, P= 4.75 x 10-09 at chr. 7q21.11 (no 

gene within 10kb); rs6963792, P= 7.89x 10-09 at chr. 7q21.11 (no gene within 10kb); rs7783341, 

P= 3.25 x 10-09 at chr. 7q21.11 (no gene within 10kb); rs9969152 , P= 1.65 x 10-09 at chr. 7q21.11 (no 

gene within 10kb); and rs10115292, P= 4.73 x 10-08 at chr. 7q21.11 (no gene within 10kb). Two SNPs 

were identified for RB, i.e. rs441459, P= 4.53 x 10-08 at chr. 11p15.4 (SLC22A18AS: Solute Carrier Family 
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22 Member 18 Antisense); and rs388190, P= 1.44 x 10-08 at chr. 11p15.4 (SLC22A18AS). In the German 

cohort we identified one genome-wide hit, i.e. rs2151874, P=1.95 x 10-09 at chr. 1q42.2 (no gene within 

10kb) for JA. None of the genome-wide significant hits from individual cohorts were replicated 

between the two cohorts. 

GWAS for the trait IQ in the German cohort showed that none of the SNPs hit the genome-wide 

significance threshold. However, many SNPs survived FDR P < 0.001 such as rs10736578, rs1837768 

belonging to the CNTN5 (Contactin 5) gene as well as SNPs of MCF2L (MCF2 Cell Line Derived 

Transforming Sequence Like), e.g. rs66884214, rs534618502 and rs28459375. 

 Pheno SNP CHR Gene 
Comb. 
beta 

Comb. 
Pval 

AGP 
beta 

AGP 
Pval 

DE 
beta 

DE 
Pval 

C
o

m
b

in
e

d
 C

o
h

o
rt

 

SI 

rs2095092 1 PATJ -0.530 4.39e-08 -0.466 2.39e-05 -0.704 4.10e-04 

rs377634870 1  0.532 4.85e-08 0.578 1.58e-08 0.165 5.57e-01 

rs34459814 7 CLIP2 0.492 2.50e-08 0.488 1.86e-07 0.461 5.87e-02 

rs34083004 7 CLIP2 0.488 3.75e-08 0.483 2.90e-07 0.461 5.87e-02 

PI rs10115292 9  0.388 1.83e-08 0.361 4.73e-08 0.406 8.88e-02 

RB 

rs13274146 8  -0.733 2.15e-08 -0.733 9.44e-07 -0.731 6.5e-03 

rs7837513 8  -0.776 4.23e-09 -0.783 2.28e-07 -0.753 5.27e-03 

rs7824610 8  -0.790 2.00e-09 -0.806 1.00e-07 -0.743 5.40e-03 

A
G

P
 

SI 
rs377634870 1  0.532 4.86e-08 0.578 1.58e-08 0.165 5.57e-01 

rs9333127 10 ITGA8 0.414 2.81e-06 0.556 1.74e-08 -0.092 6.36e-01 

PI 

rs7777015 7  0.321 4.28e-06 0.447 4.75e-09 -0.119 4.4e-01 

rs6963792 7  0.299 2.73e-05 0.453 7.89e-09 -0.201 1.99e-01 

rs7783341 7  0.303 2.34e-05 0.466 3.25e-09 -0.228 1.44e-01 

rs9969152 7  0.316 8.07e-06 0.470 1.65e-09 -0.186 2.34e-01 

rs10115292 9  0.388 1.82e-08 0.361 4.73e-08 0.406 8.88e-02 

RB 
rs441459 11 SLC22A18AS -0.435 1.21e-06 -0.567 4.53e-08 -0.089 6.19e-01 

rs388190 11 SLC22A18AS -0.438 3.16e-07 -0.553 1.44e-08 -0.099 5.76e-01 

D
E JA rs2151874 1  -0.495 6.63e-05 -0.160 2.40e-01 -1.600 1.95e-09 

 

 

  

Table 8 Genome-wide hits in combined, AGP and German cohort 

Genome-wide hits for combined and individual cohorts, italics show the P-values for genome-wide hits. DE: German, AGP: Autism Genome 
Project, SI: social Interaction; JA: Joint Attention; PI: Peer Interaction; NVC: Non-verbal Communication; RB: Repetitive sensory-motor 
Behavior: RI: Restricted Interest, Comb.: combined, CHR: Chromosome, Pval:p-value. 
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IQ 
Figure 10 Manhattan plots of the six subdomains 
from combined cohort and IQ from the German 
cohort 

The blue line in the plots shows P= 0.01, red line P= 5x10 -8. 
Abbreviations: SI: Social Interaction; JA: Joint Attention; PI: 
Peer Interaction; NVC: Non-verbal Communication; RB: 
Repetitive sensory-motor Behavior; RI: Restricted Interest, IQ: 
Intelligence Quotient. 
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 Gene and pathway analysis 3.8.

MAGNET stage 4, i.e. gene-based analysis using MAGMA was performed on the individual GWAS 

outputs separately for each cohort. Since we wanted to identify the replicated genes in both cohorts, 

SNPs were mapped to corresponding genes within a window of 5 kilobases (kb) up and downstream of 

the respective hg19-annotated coding sequence. The significant genes (gene-wise empirical P< 0.05) to 

be associated with the subscores that also overlapped in both cohorts are shown in Table 9. These 

significant genes also contained some of the known ASD risk genes based on SFARI (Simons Foundation 

Autism Research Initiative) database (https://gene.sfari.org/). We identified 52 genes associated with 

SI which contained two ASD risk genes, i.e. GNAS (Guanine Nucleotide Binding Protein (G Protein)) and 

PATJ (Protein Associated To Tight Junctions). For JA, we found 35 overlapping genes that also 

contained the ASD risk gene DAGLA (Diacylglycerol Lipase Alpha). Similarly, in PI, 59 overlapping genes 

were identified having four ASD risk genes, i.e. CECR2 (Cat Eye Syndrome Chromosome Region, 

Candidate 2), MYO1E (Myosin IE), PGLYRP2 (Peptidoglycan Recognition Protein 2), and SCN5A (Sodium 

Voltage-Gated Channel Alpha Subunit 5). For NVC, we identified 47 genes encompassing the ASD risk 

genes ICA1 (Islet Cell Autoantigen 1), SCN8A (Sodium Voltage-Gated Channel Alpha Subunit 8) and 

THRA (Thyroid Hormone Receptor Alpha). We identified 49 genes associated with RB including CMIP 

(C-Maf Inducing Protein) and RNPS1 (RNA Binding Protein With Serine Rich Domain 1) which were 

previously identified as ASD risk genes. The 59 genes implicated in RI also include ERBB4 (Erb-B2 

Receptor Tyrosine Kinase 4) ASD risk gene.  

For the trait IQ in the Geman cohort, MAGMA mapped ~ 8 million variants to 18,267 genes. Out of 

these genes, 996 significant genes were identified with an empirical P< 0.05. The identified top three 

most significant hits from MAGMA analysis are genes belonging to the S100 family, namely S100A3 

(S100 calcium-binding protein A3), S100A4 (S100 calcium-binding protein A4), and S100A5 (S100 

calcium-binding protein A5). 

https://gene.sfari.org/
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 GO-term analysis 3.9.

Overlapping MAGMA genes from each subdomain were selected manually for the subsequent analysis. 

The overlapping gene list obtained for each subdomain was submitted to MAGNET stage 4. All 

together, unique and significant GO-terms (permuted p-value < 0.05) in SI, JA, PI, NVC, RB, and RI were 

9, 14, 22, 11, 3 and 12, respectively. IQ which was only analysed in the German cohort showed 190 

significant pathways. The top significant GO-terms are shown in Figure 11. These are diverse processes 

such as SI associated with the GO-term “sensory perception” among others. For JA the overlapping 

genes were enriched for “carbohydrate metabolism”, “energy metabolism” and “chromatin 

modification”. Similarly, in PI, enriched GO-terms included “hormone processing” and “plasma 

membrane”. For NVC we identified GO-terms related to “protein catabolism”. RB was enriched for the 

GO-terms “skeletal tissue muscle development” and “transmembrane receptor”. Enriched GO-terms 

for RI were related to “postsynaptic signaling” and “intracellular mediated signaling pathways”. The 

top GO-terms for IQ in the German data included GO-term analysis revealed processes such as 

“cerebellar cortex neuron differentiation” and cerebellum morphogenesis”. 

 

 KEGG pathway analysis 3.10.

MAGNET provided the list of all enriched KEGG pathways, the number of genes in the KEGG pathway 

and the number of genes associated with the input list and p-value for over-representation of the 

KEGG term in the set. The KEGG pathways were limited due to the conservative approach applied for 

selecting the set of significant genes. A few interesting pathways include “Starch and sucrose 

metabolism” for JA, “Glucagon signaling pathway” for SI, “Metabolic pathways” for PI, “Sulfur 

metabolism” for NVC, “FoxO signaling pathway” for RB and “cAMP signaling pathway” for RI. Whereas 

for IQ from the German cohort, the enriched KEGG pathways include “VEGF signaling pathway”. The 

most significant KEGG pathways for IQ included “Basal cell carcinoma” and “Melanogenesis”. These 

pathways are shown in Figure 12. 
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 Brain enrichment analysis 3.11.

The final stage of MAGNET uses Kang et al. brain transcriptome data set to find enrichment of the 

significantly overlapping genes from both cohorts for each subdomain in 29 different modules that are 

co-regulated during the development of the human brain. Significantly overlapping genes from both 

cohorts in each subdomain were then looked for enrichment in the Kang dataset.  Enrichment was 

found only for SI and NVC in Kang module 6 and module 27 respectively, showing a distinct pattern of 

gene expression across time and brain regions. Module 6 shows a gene expression pattern that is 

activated during toddlerhood and remains down-regulated between early and late childhood 

specifically in the hippocampus. However, in the frontal cortex and striatum, the genes are upregulated 

during childhood (Figure 13a). As per the information provided by Kang et al., module 6 is involved in 

GO-terms related to “transport”. On the other hand, the gene expression pattern of module 27 genes 

shows upregulation right after post-conception till middle childhood and then remains down-regulated 

from late childhood onwards except in the hippocampus which is down-regulated during early to late 

childhood (Figure 13b). Module 27 is related to GO-terms associated with “extracellular matrix” and 

“cell-adhesion”.  

Similarly, IQ trait in the German cohort showed to be enriched for modules 4 and 14. Module 4 is up-

regulated from early childhood to late adulthood in all brain regions other than the hippocampus, 

while the gene expression pattern of module 14 shows up-regulation between early and late 

childhood. Module 4 is involved in GO-terms related to “immune response”, and module 14 is 

associated with “mitochondria”. Gene interaction networks of the enriched modules are also provided 

to integrate the associated genes into the co-regulated modules. The provided graphs show the top 50 

most connected genes and their transcriptomic correlation. Expression of the enriched modules and 

gene networks of topmost connected genes are shown in Figure 13.  
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…Figure continues on next page... 
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Figure 11 Gene Ontology (GO) analysis 

Barplots showing the top GO paths. The red line marks significance threshold that is Z-score = 1.96. Abbreviations: JA: Joint Attention, SI: Social 
Interaction, NVC: Non-verbal Communication, PI: Peer Interaction, RB: Repetitive motor sensory behavior, RI: Restricted Interests, IQ: 
Intelligence Quotient. 
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…Figure continues on next page... 
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Figure 12 KEGG pathway analysis 

Barplots showing the top GO paths. The red line marks the significance threshold that is P-value< 0.05 and for IQ Z-score= 1.96. Abbreviations: 
JA: Joint Attention, SI: Social Interaction, NVC: Non-verbal Communication, PI: Peer Interaction, RB: Repetitive motor sensory behavior, RI: 
Restricted Interests, and IQ: Intelligence Quotient. 
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…Figure continues on next page … 

  

(a) Kang module 6 enriched for SI 

(b) Kang module 27 enriched for NVC 
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Figure 13 Expression profiles of associated brain gene modules 

Eigengene expression of (a) Module 6 enriched for genes implicated in SI (Social Interaction), (b) Module 27 enriched for genes implicated in 
NVC (Non-verbal communication), (c) Module 4, and (d) Module 14 enriched for genes in IQ, where x-axis shows the developmental time 
frame, and y-axis shows the different brain regions ,i.e. OFC: Orbital prefrontal cortex; DFC: Dorsolateral prefrontal cortex; VFC: Ventrolateral 
prefrontal cortex; MFC: Medial prefrontal cortex; M1C: Primary motor (M1) cortex; S1C: Primary somatosensory (S1) cortex; IPC: Posterior 
inferior parietal cortex; A1C: Primary auditory (A1) cortex, STC: Superior temporal cortex; ITC: Inferior temporal cortex; V1C: Primary visual 
(V1) cortex; HIP: Hippocampus; AMY: Amygdala; STR:Striatum; MD: Mediodorsal nucleus of the thalamus; CBC: Cerebellar cortex. 

 

(c) Kang module 4 enriched for IQ 

(d) Kang module 14 enriched for IQ 
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III. Additional data analysis 

The following analyses are not part of the MAGNET but were performed to investigate the genetic 

architecture of ASD subdomains at a further level. 

 Genetic heritability of ASD phenotypes 3.12.

We also estimated the phenotypic variance explained by the common variants in our analysis among 

the six ASD subdomains (Figure 14). The estimates are lower than the twins-based heritability 

estimates but higher than previously reported ASD SNP-based heritability estimates 203. The highest 

SNP-based heritability is observed for SI and the lowest for RB. All estimates were significant and were 

not corrected for any covariates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Heritability estimates 

Bar plots showing the heritability estimates of the six subdomains. Asterisks indicate that the p-value is significant after multiple corrections. 
Abbreviations: SI: Social Interaction; JA: Joint Attention; PI: Peer Interaction; NVC: Non-verbal Communication; RB: Repetitive sensory-motor 
Behavior; RI: Restricted Interest.  
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 Correlation among ASD phenotypes 3.13.

We observed the phenotypic and genetic correlation among ASD subdomains. Phenotypically, the six 

ASD subdomains appear to be significantly independent of each other. However, the domain A 

subdomains of ASD, i.e. JA, SI, PI, and NVC are relatively closely clustered than the domain B 

subdomains, i.e. RB and RI. At the genetic level, we observe that SI pairs with NVC, PI with JA, and 

altogether, all these subdomains are also correlated with the exception of RB. The correlation of RB 

was weak with all other subdomains although none of the correlations was significant (Figure 15b). 

 

Figure 15 Heatmaps illustrating the (a) phenotypic and (b) genetic correlation among ASD subdomains  

The color of squares represents the intensity of correlations depicted with a color range of yellow to blue showing a range of lowest to 
highest correlation respectively. Asterisks *** indicate p-values < 0.001. Abbreviations: JA: Joint Attention; PI: Peer Interaction; NVC: Non-
verbal Communication; RB: Repetitive sensory-motor Behavior; RI: Restricted Interest. 

 

 PRS for ASD phenotypes 3.14.

The PRS for ASD explained a significant (all P< 2x10-05) proportion of the genetic variance of all 

subdomains. Here, we report the best fit model for each of the subdomains. For SI the best fit 

explained 3.3% of variance (R²), 2.3% in JA and in PI. For NVC and the domain B related subdomain RB, 

a much lower R2 was observed, i.e. an R²= 0.7% and R²= 1.2%, respectively. In comparison, the other 
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subdomain of domain B showed a higher R² for RI, i.e. 4.5%. P-values for the best models ranged from 

0.031-0.411 (Figure 16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

…Figure continues on next page… 
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 SNPs and genes overlap among the subdomains 3.15.

We then compared the significant findings among the subdomains at SNP as well as at gene level. At 

the genome-wide significance threshold, none of the SNP overlapped among the subdomains. 

However, we found several nominal (P≤ 0.01) significant SNPs intersected among the subdomains 

(Figure 17a). We identified that the highest number of nominal SNPs overlapping were among SI, JA 

and PI, i.e. 149 SNPs, followed by 27 SNPs among SI, PI, and NVC. RI did not exhibit overlap with any 

other subdomain. At gene level, we found three overlapping genes significant for JA and SI (GYS1: 

Glycogen Synthase 1, TTC17: Tetratricopeptide Repeat Domain 17, and PPM1N: Probable Protein 

Phosphatase 1N), two genes overlapping between SI and PI (MNS1: Meiosis Specific Nuclear Structural 

1, IL20: Interleukin 20), one gene significant for NVC and PI (TM4SF4: Transmembrane 4 L Six Family 

Member 4), and one gene associated with SI as well as RB (RGS10: Regulator Of G Protein Signaling 10), 

one gene in JA and PI (LHB: Luteinizing Hormone Beta Polypeptide) and one gene between JA and NVC 

Figure 16 Polygenic risk score analysis 

The shared genetic etiology between ASD diagnosis and individual subdomains. Each bar represents the respective P-value thresholds (PT) 
whereas the numbers above bars denote the P value for the underlying model. Abbreviations: SI: Social Interaction; JA: Joint Attention; PI: 
Peer Interaction; NVC: Non-verbal Communication; RB: Repetitive Behavior; RI: Restricted Interest. 
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(COBLL1: Cordon-Bleu WH2 Repeat Protein Like 1) (Figure 17b). Overlaps between functional 

annotations were limited; we found only the GO-term “soluble fraction” as associated with JA and PI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Overlap of 
significant findings 

(a) Overlapping SNPs with a 
P< 0.01 between subdomains. 
(b) Overlapping genes with a 
significant empirical 
permutation P< 0.05 as 
identified using MAGMA. Bars 
correspond to the number of 
SNPs/genes intersecting 
between the subdomains as 
shown in the connection dot-
plot below bars. Set Size is the 
total number of identified 
genes/SNPs for the respective 
subdomain. Abbreviations - 
SI: Social Interaction; JA: Joint 
Attention; PI: Peer 
Interaction; NVC: Non-Verbal 
Communication; RB: 
Repetitive Behavior; RI: 
Restricted Interest. 
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 Discussion 3.16.

This section contains parts of the article “Quantitative genome-wide association study of six 

phenotypic subdomains identifies novel genome-wide significant variants in Autism Spectrum 

Disorder” which has been submitted and is currently in the review process in the Journal of Translation 

Psychiatry. The biological question behind this study was to characterize the underlying genetic 

etiology and functional overlap behind ASD diagnostic domains and the respective subdomains. 

Moreover, clinical studies have also shown that the phenotypic heterogeneity can be studied as 

predictors of outcome in clinical trials 204. However, only a few studies have looked at its association 

with the genetic underpinnings.  

ADI-R defined ASD subdomains replicated previous structure 

The two diagnostic domains of ASD defined by DSM-5 have been suggested as two separable domains, 

i.e. social and repetitive behaviors identified by using factor analysis and principal component 

analysis205. To date, information regarding the genetic etiology of these two domains remains limited 

and the individual findings are not replicated in other cohorts. The possible reasons can be the small 

genetic effect sizes and limited sample sizes.  

Previously, it has been shown that defining separate ASD traits into more homogenous groups can 

reduce the genetic heterogeneity 206. These subgroups might lead to direct expressions of gene effects 

and also contribute in improving the effect sizes and thus the statistical power. Moreover, it can assist 

in identifying susceptibility genes for ASD subgroups. In this study, we also identified a six-factor 

structure that has been previously reported by Liu et al.84, as well as a similar structure was identified 

from 98 ADI-R items 207. This six-factor structure was also confirmed in the independent German cohort 

in this study. Thus, we postulate that the classification of ADI-R diagnostic domains into these 

subdomains plays an important role and can serve as possible predictors in accessing the underlying 

etiology.  
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Association of common variants behind specific ASD subdomains in the combined, 

AGP and, German cohort 

GWAS analysis using MAGNET identified several genome-wide significant common variants and 

respective novel candidate genes across the study. As GWAS was performed on the combined cohort 

for power issues, we later followed a conservative approach to consider only the genes which 

significantly replicated in both cohorts to be considered for the downstream analysis. We first discuss 

the findings from the combined cohort and the significant genes replicated from gene analysis in both 

cohorts.  

Combined cohort (AGP and DE) 

We identified four genome-wide common variants for SI. One mapped to an ASD-related gene PATJ 

(Protein Associated To Tight Junctions), which codes for a scaffolding protein CIPP and regulates the 

surface expression and/or function of ASIC3 (Acid-sensing ion channel 3) in sensory neurons 208.  

A study found three case-specific loss-of-function variants (variants that disrupt the function of the 

resulting proteins) in association with PATJ 209. Two other genome-wide hits map to CLIP2 (Cytoplasmic 

Linker Protein 2) gene. This gene is located at chromosomal position 7q11.23 and duplication carriers 

of this region show a high rate of ASD 210. 

Though no genome-wide hit was identified for JA, the GWAS analysis for JA identified one of the top 

three significant SNP peaks, consisting of rs10254837, rs4075496, and rs56263157 at 7q11.22 which 

maps to the gene AUTS2. Genomic rearrangements of this gene are associated with ASD and 

intellectual disability (ID) 211. In a study by Gao et al., Auts2-KO (knockout) mice showed impairments in 

sensorimotor, cognition and communication behavior 212.  

For PI we identified only one genome-wide significant SNP, i.e. rs10115292 mapped to an intergenic 

region at chromosomal position 9p21.1, which is known for ASD-associated CNVs 28.  

Though no genome-wide significant hit was identified for NVC, SNPs at a suggestive significance 

P< 5x10-7 map to chromosomal position 6q26, a region linked to ASD 111. Moreover, this region has 
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been associated with intellectual disability, delayed language development and dyspraxia in a case with 

an 8Mb microdeletion of the 6q26-q27 locus 213. 

For RB we identified three genome-wide SNPs which mapped to 8p21.3. This region has been 

previously associated with restricted and repetitive behaviors in ASD 173. Duplications of this region 

have been associated with ASD 214. Among the other top three SNP peaks, 19q13.33 was also identified 

in RB. This region has also been shown previously to be associated with repetitive sensory-motor 

behavior 84. 

No genome-wide significant hit was observed for RI, however, the top significant SNP hits for RI were 

also observed in migraine, sensorineural deafness, cognition, and ASD such as NLRP3 (NLR Family Pyrin 

Domain Containing 3) 215, GNG2 (G Protein Subunit Gamma 2) 216 and NSUN5 (NOP2/Sun RNA 

Methyltransferase 5) 217. The top peak at 15q25.3 is spanning the neurotrophic receptor tyrosine 

kinase 3 gene NTRK3 (Neurotrophic Receptor Tyrosine Kinase 3), a gene previously associated with 

both ASD and Asperger syndrome 218 as well as obsessive-compulsive disorder 219. 

Individual cohorts 

In the individual AGP cohort, we identified nine genome-wide hits. Two hits were identified in SI, i.e. 

rs377634870 at chr1:84731827 (no nearest gene at 10kb) and rs9333127 at chr10:15658963 (ITGA8: 

Integrin Subunit Alpha 8). ITGA8 is involved in sensory and motor neurons and the regulation of neurite 

outgrowth. A missense mutation in this gene has been associated with schizophrenia 220. However, it 

has not been investigated with respect to ASD. Similarly, five genome-wide hits were reported for PI 

including rs7777015, rs6963792, rs7783341, rs9969152 at chr.7 (no nearest genes within 5kb). All 

these SNPs are present at 7q21.11, a region known to be involved in ASD 111. Besides these SNPs, 

rs10115292 at chromosome 9 (no nearest gene within 5kb) which is significant in the merged cohort, is 

also genome-wide, significant in the AGP cohort. Genome-wide, significant SNPs have also been found 

for RB, i.e. rs441459 and rs388190 at 11p15.4 mapping to the gene SLC22A18AS (Solute Carrier Family 

22 Member 18 Antisense). This gene was found to be upregulated in a group of ASD individuals 221. 
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We also identified two genome-wide significant hits in the German cohort. One in NVC, i.e. rs75158512 

at chromosomal position 10p14, a region associated with ASD 222. Similarly, one SNP was identified for 

JA, i.e. rs2151874 at 1q42.2. Previously, an inherited 2.07 Mb microduplication was found at this locus 

in two brothers with ASD and mental retardation 223. 

The separate GWAS on IQ trait from the German cohort identified gene variants of CNTN5 

(rs10736578, rs1837768) and MCF2L (rs66884214, rs534618502, rs28459375), which have not been 

identified before in the context of IQ directly. The SNPs of these newly IQ-associated genes were 

among the top 10 SNPs with a P< 5x10-7 and an FDR-corrected P≤ 0.001. CNTN5 mediates cell surface 

interactions during nervous system development and plays a role in axon connections 224. MCF2L 

encodes Rho guanine nucleotide exchange factor (GEF) and is expressed in the human brain 225. 

The results of GWAS analysis in combined and individual analysis strengthened the plausibility of our 

findings as we not only identified novel variants and genes but also genes that were known to be 

associated with ASD previously. Moreover, we deduce that the disassociation of ASD phenotypic 

domains into specific subdomains led to an increase in statistical power as also previously proposed 206 

and identification of genome-wide significant variants. Thus, this also validates the functioning of 

MAGNET in relation to identification of trait-associated common variants and their respective genes. 

Identification of overlapping genes in ASD cohorts subdomains 

As mentioned earlier, we followed a conservative approach for selecting the genes for downstream 

analysis to minimize the chance of false-positive findings. For this purpose, we only selected the genes 

from gene analysis which had a significant empirical P< 0.05 in AGP and the German cohort 

subdomains. 

Based on MAGMA gene analysis, we identified 52 overlapping genes in SI, which include the genome-

wide significant SNP mapped gene PATJ as well as the gene FTL (Ferritin Light Chain), which is involved 

in Neurodegeneration with Brain Iron Accumulation (NBIA) disorders 226 that are clinically characterized 

by a progressive movement disorder with symptoms varying significantly in terms of range and 
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severity, such as cognitive deficits, personality changes with impulsivity and violent outbursts, 

depression, emotional lability, and obsessive-compulsive disorder 227  

For JA, 35 overlapping genes showed significant association. Among the most significantly associated 

genes we identified a neural stem cell-derived dendrite regulator protein-coding gene DAGLA 

(Diacylglycerol Lipase Alpha) implicated in seizures and neurodevelopmental disorders including ASD 

228, and the COBLL1 (Cordon-Bleu WH2 Repeat Protein Like 1) gene involved in epilepsy 229 and 

language impairment 230. 

In the gene set analysis for PI, 59 overlapping genes were identified as significantly associated. Among 

these genes, we found a sodium voltage-gated ion channel gene SCN5A, which was found to be 

enriched in an ASD-associated protein interaction module 231. Other ASD-associated, significant genes 

include CECR2 (cat eye syndrome chromosome region candidate 2), a 7.2kb exonic loss of which was 

found in an ASD female 228. Another interesting hit in the list is ENPP3 (Ectonucleotide 

Pyrophosphatase), variants of this gene (ENPP4, ENPP5) have been associated with seven brain regions 

in ASD, i.e. angular gyrus, anterior caudate, cingulate gyrus, dorsolateral prefrontal cortex, 

hippocampus middle, inferior temporal lobe, and substantia nigra 232. 

NVC showed 47 replicated genes in both cohorts. The gene SLC26A5 (Solute Carrier Family 26 Member 

5) at 11p15.4 was among the top hits from the gene-based analysis. Mutations in this gene are 

potential candidates for causing neurosensory deafness233. This region is also linked with the 

development of speech83. Another important gene in the list is RGS10 (Regulator Of G Protein Signaling 

10) which is known to be implicated in neurodegenerative diseases 234. 

Top significant genes for RI were associated with migraine, sensorineural deafness, cognition, Williams-

Beuren syndrome and ASD such as NLPR3 215, GNG2 216and NSUN5 217.  

The top three most significant hits from IQ gene analysis were the genes S100A3, S100A4, and S100A5. 

Gene products of S100A5 are known to be expressed in the cerebral cortex and hippocampus, which 

are important brain regions in ASD 235. 
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Although we selected a conservative approach for selecting the gene list, we found that several genes 

mapped from GWAS hits of the combined cohort were found at the gene level. This validates the 

findings of our study and provides grounds for focusing on these genes further with respect to these 

subdomains of ASD phenotypes. 

Enrichment of distinctive pathways in ASD subdomains 

To further identify the biological function of the enriched genes for each subdomain, we used MAGNET 

to perform GO-term and pathway enrichment analysis. The analysis identified “sensory perception” as 

one of the most significant pathways for SI. Atypicalities in sensory processing were found in families 

which had higher genetic liability for ASD 236. For JA we identified that the topmost significant GO-term 

“chromatin modification” is enriched for ASD genes 237. The most significant GO-term for PI is 

“hormone processing”. Studies have shown that various hormones and hormone-like substances like 

neurotransmitters, e.g. serotonin and dopamine, can facilitate the regulation of different social 

behaviors in the developing brain 238. The top GO-terms for NVC are related to protein ubiquitination 

and localization. Alterations in protein synthesis and changes in the ubiquitin-proteasome system could 

contribute to different symptom domains of ASD 239. For RB we identified that the topmost significant 

GO-term is “skeletal muscle development”. Studies have shown that a variety of biomarkers in skeletal 

muscle has been focused in view of bioenergetic deficiency in ASD children 240. A study identified 72% 

of mitochondrial depletion in skeletal muscle of an ASD individual (Legido et al. 2013). For RI we found 

that the significant GO-terms include MAPKKK pathway, which is a module of MAPK and has been 

implicated in idiopathic ASD (pertaining to an unknown cause) 241. 

Identification of specific spatio-temporal patterns in the brain for NVC, RB, and IQ 

At the gene-expression network level, we found two co-regulated gene networks previously identified 

to be implicated in human brain development, namely Kang module 6 and 27. These modules are 

enriched for genes associated with SI and NVC, respectively.  

The SI module 6 is active prior to birth and remains active during early childhood cortical development, 

as well as during prenatal and pubertal hippocampal development. This is in line with findings of early 
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cortical maturation impairments in ASD 242. An interesting pattern is observed specifically between 

~5-13 years of age showing down-regulation of gene expression in the hippocampus, a time period 

associated with children adapting/learning externalizing behavior. Moreover, the hippocampus is 

known to play a profound role in social interaction 243.  

The NVC-associated regulatory gene-set (module 27) is throughout expressed until puberty in the 

hippocampus, striatum and mediodorsal nucleus of the thalamus. These regions are well known for 

their role in language and communication 244,245. Mild activation is observed ubiquitously already after 

birth in the frontal cortex. Overall, we observe a pattern that is more prominent starting from birth up 

to 3-4 years of age, an age range where children are developing language skills and communicate 

mostly in non-verbal gestures. We particularly see a higher expression in OFC (orbitofrontal cortex), 

DFC (dorsolateral prefrontal cortex), IPC (inferior parietal cortex), STC (superior temporal cortex) and 

hippocampus specifically in this age range.  

The enriched modules for IQ, i.e. module 4 and 14 show specific up-regulation patterns during the 

developmental time period of 5.5.-13.5 years of age in all parts of the brain. Moreover, the enriched IQ 

genes TYROPB (TYRO Protein Tyrosine Kinase Binding Protein), and CX3CR1 (C-X3-C Motif Chemokine 

Receptor 1) show increased expression in the pre-frontal cortex in post-mortem brain tissue of autistic 

individuals 246. 

As ASD is categorized as an early childhood disorder, knowing the spatio-temporal pattern of 

associated genes that might be involved in a particular phenotypic construct can help to provide 

interventions at an early stage. Thus, MAGNET can assist researchers who are interested in a specific 

neuropsychiatric trait to have an overview of the enriched brain expressed gene modules and their 

spatio-temporal pattern. 

Is the phenotypic variance of individual subdomains explained by common variants? 

At the genetic level, we specifically looked at the common variants as they are known to play an 

important role in ASD liability. The SNP-based heritability h2
SNP has been previously studied in large ASD 

samples to identify the additive heritability explained by genome-wide SNPs 76. We found that h2
SNP for 
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all subdomains was higher than previously reported estimates in ASD (~17%) 203. This indicates a strong 

role of common variation in the phenotypic expression of the ADI-R derived subdomains, and reduced 

genetic heterogeneity compared to the categorical diagnosis. SI showed the highest h2
SNP, and the 

second-highest was observed for RI. We observe that the SNP-based heritability estimates from 

individual subdomains can play an important role in explaining the variance by common variants. Since 

the common variation-based heritability of RB was the lowest, we further suggest rare variants to be 

involved in modulating the phenotypic presentation of this subdomain. Although the studies focusing 

on rare genetic variants agree that an increased genetic burden for rare variants in ASD is associated 

with increased severity119, a direct association with RB is lacking. Our study is the first to identify SNP-

based heritability of dimensional ASD subdomains and thus highlights that characterizing ASD domains 

into subdomains can reduce genetic heterogeneity. 

Genetic correlation between subdomains partially reflects phenotypic domains 

To test whether it is equally likely that the same set of genotypic variation responsible for a particular 

phenotype is also contributing to the appearance of another phenotype, we performed genetic 

correlation analysis among the subdomains. We aimed at identifying if the two diagnostic domains of 

ASD are independent of each other or interconnected at the genetic level. For this purpose we 

determined the genetic correlation rg of individual subdomains to identify if the subdomains related to 

domain A overlap with subdomains of domain B and vice versa. 

The genetic correlation rg across the subdomains identified that SI and NVC are highly correlated 

(0.97), which also confirms previous observations at phenotypic levels 247. This genetic correlation 

reflects the fact that non-verbal skills represent important aspects of everyday social interaction, which 

are a prerequisite for adequate psychosocial adjustment 248,249, and thus both behavioral dimensions 

are modulated by the same genetic variants. 

A complete genetic correlation of 1 was found for JA and PI, which shows that there is a strong overlap 

of common genetic variation underlying JA and PI. 
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The genetic correlation analysis of the two subdomains related to domain B showed only weak 

correlation and thus may be genetically independent with respect to common variation. Previous 

studies have also shown evidence of only a few overlapping linkage findings of the two subdomains of 

domain B derived from ADI-R algorithm, i.e. “repetitive sensory-motor behavior” (RSMB) and 

“insistence on sameness”.250. We also identified that RB did not correlate genetically with any other 

subdomain suggesting that the genetic mechanism behind RB is independent. There are contradictory 

studies suggesting that no genetic covariation was found between SI and RB scores78 to a strong 

genetic overlap of the extreme values of impaired social communication and restricted behaviors 

derived from SCQ in a twin-based study251. The differential role of common and rare variation in 

domain A subdomains and RB in ASD individuals might be responsible for these contrasting findings 

since rare variation might be playing a stronger role in RB252. 

Polygenic risk of ASD 

Given our finding that the genetic risk for the individual subdomains is only partially correlated, the 

polygenic risk score for ASD only explained small proportions of variance in subdomains. However, the 

highest genetic correlation of the ASD-PRS was seen for SI and RI, suggesting that the PRS captures 

both domains A and B related subdomains but might miss some of the genetic risk underlying other 

phenotypically relevant domains. Thus, we suggest that the PRS for ASD should be investigated to 

improve its validity at subdomains’ level.  
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4. Conclusion and outlook 

In this work, we present an integrative bioinformatics framework designed for researchers with 

minimal expertise in working with computational tools and handling big data. MAGNET streamlines the 

methods for performing and interpreting GWAS and mapping these findings to the human developing 

brain by integrating brain transcriptome data. MAGNET is a combination of state-of-the-art tools, 

providing a detailed workflow of the QC, GWAS and post-GWAS steps with standardized thresholds for 

each process within one shell. Further, to deduce more insight into the trait of interest, MAGNET 

provides information regarding the brain regions and time where the trait-associated genes are 

expressed. To overcome the challenges faced by big data MAGNET is equipped with data parsing, data 

parallelization assuring the quality of the data. Thus, this will help researchers to spend less time and 

effort in the compilation of various tools and data handling processes and can assist them to gather a 

meaningful interpretation of a neuropsychological trait of interest. 

MAGNET performs data integration from three different levels, i.e. phenotype, genotype, and 

transcriptome levels. It can aid in identifying genes and mechanisms in neuropsychiatric genetics and in 

generating new research hypotheses. Such frameworks can help to develop personalized medicine-

based approaches by understanding the genetic underpinnings of disorder-related phenotypes. 

This framework is designed to be applied to any neuropsychiatric disorder with a phenotypic trait of 

high heritability. As a proof of concept, we applied it to six subdomains/traits from two ASD cohorts, as 

well as on the trait IQ from the German cohort for demonstration of computational time required at 

each step. The framework helped to bridge the gap between the genotypic etiology and the 

phenotypic observations. The identified genes and gene networks revealed new genetic variants and 

also confirmed genetic associations already known from other studies, investigating these subdomains 

and neuropsychiatric disorders. Moreover, we showed the regulatory gene expression patterns of the 

gene-sets associated with these subdomains. This could help in a follow-on study to investigate the 
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detailed molecular basis of the ASD subdomains classified as SI, JA, PI, NVC, RB, and RI as well as to 

look at the enriched brain regions and time frames. 

We showed the effective time and memory usage required by each process of the framework. We 

outline that the time needed to assemble the results from multiple tools and to then convert the 

outputs into respective formats can be significantly minimized by providing one single framework, 

which manages the output from each tool and processes it for the next step, so the user can avoid the 

in-between cumbersome steps. We provide an in-depth analysis of traits of interest within a time 

frame of 4-5 days to foster the identification of relevant associated genes and their expression in 

developing human brain directly. Moreover, the modular structure of the framework makes it easily 

applicable, transparent and user-friendly.  

Implementation of MAGNET on the quantitative ASD traits/subdomains suggested that the genetic 

architecture of subdomains is distinct between domain A- and B-related subdomains. Moreover, it also 

varies between the two subdomains (RB, RI) of domain B. We identified several new genome-wide hits 

and replicated previous findings, thus adding credibility to the functioning of MAGNET. Additionally, 

the biological pathways and gene expression patterns provided evidence that the phenotypic 

variability in ASD traits encompasses pathways related to neuronal development, which include brain 

regions such as the hippocampus, amygdala, and cortex. Further exploring the underlying genetic 

etiology and to answer the biological questions behind ASD subdomains, the polygenic risk score for 

ASD was calculated. This analysis showed that the common variants can explain relatively higher ASD 

risk when analysed separately in homogenous subdomains. 

The results of our study have to be replicated in larger samples with different ethnic populations. In 

addition, a combined analysis of common and rare variants may clarify the specific role of common 

variants in shaping the ASD phenotype in relation to the reported subdomains. Moreover, the time and 

memory required to run MAGNET can still be minimized by integrating more parallel computing codes. 

With the upgraded versions of SNP and genome builds available, MAGNET reference files are required 
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to be updated. We further plan to deploy MAGNET as an application with all libraries and 

dependencies as one package that could be used on any Linux platform irrespective of the customized 

settings defined by the user. This would reduce the size constraints and increase the performance of 

MAGNET. 
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5. Appendix 

 Genetic terminologies  5.1.

Genotype: The difference among individuals based on DNA (Deoxyribonucleotide acid) sequence 

variation within a population defines the variation at the genetic level. The individual's genetic 

sequence is also defined as the genotype. These genetic variations can be modulators of a particular 

trait (also called phenotype). Genetic variations are thus possible risk factors contributing to complex 

diseases.  

 

Penetrance: Another important term is penetrance which refers to the effect of a variant onto the 

expression of a phenotype14. The magnitude of the effect of an allele on a phenotype is termed as the 

effect size. Figure 1 shows these key concepts in detail. 

 

Heritability: A fundamental concept in genetics is heritability which is the proportion of phenotypic 

variability that is attributable to genetic factors, large heritability estimates indicate that the genetic 

variability has more influence on the variability of a given trait in the population 15. 

 

Minor allele frequency: Genetic variations can be classified by frequency in the population and or type 

of variation. The most frequent allele of a variant is defined as the major allele and the other(s) as the 

minor allele. The minor allele frequency (MAF) is the second most frequent allele.  

 

Common and rare variants: Common variants are defined based on the MAF between 0.01–0.05 and 

higher. Rare variants are defined with a MAF < 0.01 16. Though rare variants have a small effect size but 

are found to increase genetic liability and clinical presentation of neurodevelopmental disorders such 

as ASD. Common variants contribute significantly to the genetics of ASD, although the identification of 
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individual risk polymorphisms is still not clear due to their small effect sizes and limited sample sizes 

available for association studies 1. More details about the MAF calculation are explained in 2.6.3.  

Locus and allele: The position on a chromosome where a genetic marker is located is called locus and 

the different version of the same genetic variant on a chromosome is termed an allele. For example in 

Mendelian diseases like Huntington’s, one rare mutation of the single gene HTT (Huntingtin) is 

responsible for the disease (high penetrance). However, associations of rare variants with small effect 

sizes are very hard to detect. Thus, in current GWAS common variants with modest effect sizes can be 

identified which, however, can not completely account for the phenotype risk. For variants with very 

low allele frequency, it is difficult to find enough cases and get significant associations. 

 

SNVs and CNVs: With respect to type, variants can be classified as single nucleotide variation (SNVs) 

and structural copy number variations (CNVs). The umbrella term SNV considers changes of a single 

nucleotide, i.e. A (Adenine), T (Thymine), C (Cytosine), or G (Guanine) irrespective of their frequency in 

a population. A possible estimate of human genes containing at least one SNVs is between 81% 17-93% 

18. The most prominent SNVs are single nucleotide polymorphisms (SNP). The 1000 genomes project 19 

has made available 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million 

short insertions/deletions (indels), and 60,000 structural variants) in their dataset with 26 different 

populations across Africa, Asia, Europe, and America 19. 

 

SNPs: The most frequent type of genetic variation in the human genome and are important genetic 

markers identified which contribute to phenotypic diversity. In general, if at least 1% of a population 

harbors the same nucleotide variation, then this SNV is assigned as a SNP. There are ~15 million SNPs 

currently annotated in the human genome 20. SNPs have served as genetic markers in complex genetic 

disorders 21, such as for ASD 22, breast cancer 23; Crohn’s disease 24, type-II diabetes mellitus 25, and 

SZ  26.  
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Heterozygosity: Carrying two different alleles of a specific SNP, the rate of heterozygosity can explain 

the proportion of heterozygous genotypes. Since our focus is on the common variation we considered 

only common SNPs for our study. CNVs describe genomic alterations with an abnormal number of 

copies of one or more genes, which is varying among individuals. CNVs are DNA segments with a size > 

1kb (kilobase) 27 and can occur as insertions, transpositions, or deletions. Moreover, CNVs contain 

more nucleotides per genome than the total number of SNPs. Like SNPs, certain CNVs have been 

associated with disease susceptibility and are strongly implicated in, ASD 28, BD 29, SZ 30 and breast 

cancer 31 

 

 Genotype file formats 5.2.

Following is a detailed description of how each file appears, their respective columns and data types: 

5.2.1. PLINK ped and map files 

i. ped file: The pedigree file contains the individuals and the genetic data arranged in columns 

without headers as below. The file can be space or tab-separated, where each line corresponds to a 

single individual. The first 6 columns represent the phenotype information and data type for each 

column are also mentioned: 

1. Family ID [string]: Alphanumeric identifier representing an individual’s family. This identifier is 

specific to all individuals in a family. 

2. Individual ID [string]: Alphanumeric identifier representing individual, which should be unique in 

that family. 

3. Paternal ID [string]: Alphanumeric identifier representing an individual’s father; 0 if “not known”. 

4. Maternal ID [string]: Alphanumeric identifier representing an individual’s mother; 0 if “not known”. 

5. Gender [integer]: Gender is encoded as 1 or 2, where 1 indicates a male and 2 represents a female 

and 0/-9 indicates not known. 
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6. Affection status [integer]: Affected individuals are mostly represented as 2 while unaffected as 1. 

0/ -9 indicate an unknown status. 

7. Columns after column number 6 represent the genotype information. 

8. Genotypes: Each SNP carries two alleles which are represented in two columns, e.g. column 7 and 

8 code for SNP 1, then column 9 and 10 code for SNP 2 and so on. Missing data is coded as 0. 

9. Two columns represent one SNP so the total number of columns for PED file varies depending on 

the number of SNPs. So if the number of SNPs is k then the number of genotype columns is k*2. 

The total number of columns in ped files = k*2+6 (phenotype). 

ii. map file: The file contains SNP information arranged as follows: 

1. Chromosome [integer]: Chromosome number for the respective SNP. 

2. Marker ID [string]: Name of the SNP, usually an rs id.  

3. Genetic distance [float]: Genetic distance from previous SNP, unit is centimorgan (cM).  

4. Physical position [integer]: Physical position of SNP in base pair (bp).  

This file should have n lines and 4 columns, where n is the number of SNPs contained in the dataset. 

Each SNP must have a unique physical position. All the SNPs must be ordered by physical position. 

5.2.2. PLINK bed, bim and fam files 

These files contain the same information as PLINK flat files but are compressed and more efficient to 

work with. 

i. bed: This file is encoded in binary format and is in a machine-readable format. The file includes 

information on the SNP for each individual. 

ii. bim: This file is similar to a map file but includes allele information for each marker. The first four 

columns are the same, i.e. a chromosome number, marker id, genetic distance, and physical 

position. The four columns are followed by a column for allele 1 and one for allele 2. 

iii. fam: This file corresponds to the first six columns of the ped file. 
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 Statistical terms 5.3.

5.3.1. Fisher’s exact test 

It is a test of significance which tests for two categorical variables if the proportions of one variable 

differ from the other. The following equation is implemented to obtain the probability of combination 

of frequencies: 

   ( (       )   (       )   (       )   (       )   )                       , 

where a, b, c, and d are the individual frequencies of the 2X2 contingency table, and N is the total 

frequency. 

5.3.2. Benjamini-Hochberg correction 

Benjamini-Hochberg (BH) is a p-value adjustment method to decrease the false discovery rate (FDR) for 

multiple hypothesis testing. Adjusting this rate could help to reduce the possibility of chance findings. 

The method first orders the m hypothesis by ascending p-values, Pi is the p-value at the ith position 

with the associated hypothesis Hi . Assuming k is the largest i then    
 

 
 . Benjamini Hochberg 

controls the FDR for all tests at a level of q. 
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 Supplementary figure 5.4.
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Supplementary Figure 1: Locus plots of top three peaks for each subdomain from the combined 
cohort  

Abbreviations: SI: Social Interaction; JA: Joint Attention; PI: Peer Interaction; NVC: Non-verbal Communication; RB: Repetitive sensory-motor 
Behavior; RI: Restricted Interest. The plot shows the genes in the region with there locations shown at the bottom, the SNP positions are 
shown at the top and the regional associations from GWAS are shown in the middle. The right axis gives the recombination rate shown as 
light blue line. The −log10 P values are shown for SNPs distributed in a 0.8-Mb genomic region that is centered where the most strongly 
associated signal is found, here shown as a purple diamond. 
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