Structural and dynamical studies on human epidermal-type fatty acid binding protein using high-resolution NMR spectroscopy

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften

vorgelegt beim Fachbereich Chemie und Pharmazeutische Wissenschaften der Johann Wolfgang Goethe-Universität in Frankfurt am Main

von

Luis Horacio Gutiérrez González

aus Saltillo, Mexiko

Frankfurt am Main, 2002 (DF1)

vom Fachbereich Chemische und Pharmazeutische Wissenschaften der Johann Wolfgang Goethe-Universität als Dissertation angenommen.

Dekan: Prof. Dr. W. Müller

- 1. Gutachter: Prof. Dr. H. Rüterjans
- 2. Gutachter: Prof. Dr. B. Ludwig

Tag der Disputation: 5. März 2002

Für Wiebke und Nicolás

Danksagung

Die vorliegende Arbeit wurde am Institut für Biophysikalische Chemie der Johann Wolfgang Goethe-Universität Frankfurt am Main unter der Anleitung von Herrn Prof. Dr. Heinz Rüterjans im Zeitraum von April 1997 bis November 2001 angefertigt.

Herrn Prof. Dr. Heinz Rüterjans gilt mein besonderer Dank für die interessante Themenstellung sowie für seine Unterstützung und die Schaffung hervorragender Arbeitsbedingungen.

Weiterhin möchte ich danken:

Herrn Dr. Christian Lücke für die konkrete Hilfestellung und für die vielen anregenden Diskussionen bei NMR-Fragen aller Art,

Herrn Dr. Christian Ludwig für die Aufnahme von NMR-Spektren und die anregenden fachlichen Diskussionen.

Herrn Prof. Dr. Carlos Pérez für die vielen fachlichen Gespräche,

Herrn Dr. Helmut Hanssum für die vielen Gespräche über NMR, Gerätetechnik und physikalische Themen;

den Herren Dipl.-Chem. Marco Betz, Dipl.-Biochem. Alex Koglin, Dipl.-Chem. Ulrich Schieborr, Dr. Michael Weimer und Dipl.-Chem. Bernd Weyrauch für die stete Hilfsbereitschaft bei Computerproblemen aller Art,

Herrn Dipl. Chem. Martin Rademacher für seine Unterstützung bei dem präparativen Teil dieser Arbeit,

allen nicht namentlich genannten Mitgliedern des Arbeitskreises für die freundliche Aufnahme und das ausgezeichnete Arbeitsklima,

dem Deutschen Akademischen Austauschdienst für die finanzielle Unterstützung durch ein Stipendium.

Abbreviations

A-FABP	Adipocyte-type Fatty Acid Binding Protein
B-FABP	Brain-type Fatty Acid Binding Protein
COSY	Correlation Spectroscopy
CSA	Chemical Shift Anisotropy
DD	Dipole-Dipole Interaction
DEPT	Distorsionless Enhancement by Polarization Transfer
E-FABP	Epidermal-type Fatty Acid Binding Protein
FABP	Fatty Acid Binding Protein
H-FABP	Heart-type Fatty Acid Binding Protein
HSQC	Heteronuclear Single-Quantum Coherence
HTQC	Heteronuclear Triple-Quantum Coherence
I-FABP	Intestinal-type Fatty Acid Binding Protein
ILBP	Ileal Lipid Binding Protein
INEPT	Insensitive Nuclei Enhancement by Polarization Transfer
L-FABP	Liver-type Fatty Acid Binding Protein
LBP	Lipid Binding Protein
M-FABP	Myelin-type Fatty Acid Binding Protein
NMR	Nuclear Magnetic Resonance
NOE	Nuclear Overhauser Effect
NOESY	Nuclear Overhauser Effect and Exchange Spectroscopy
ppm	Parts per million
RMSD	Root-Mean-Square Deviation
TOCSY	Total Correlation Spectroscopy
TPPI	Time Proportional Phase Incrementation

Index

2

1 Introduction

1.1	The lipid binding protein family			1	1
1.2	The epidermal-type fatty acid binding protein			5	5
The	oretic	al aspects			
2.1	Struc	ture determin	nation	1	10
	2.1.1 2.1.2 2.1.3	Resonance a The nuclear NMR experi	ssignments Overhauser effect ments	1 1 1	10 11 15
		2.1.3.1 2.1.3.2 2.1.3.3 2.1.3.4 2.1.3.5 2.1.3.6 2.1.3.7 2.1.3.8 2.1.3.9	COSY TOCSY NOESY INEPT DEPT ¹ H, ¹⁵ N-HSQC ¹ H, ¹⁵ N-HTQC 3D TOCSY-(¹ H, ¹⁵ N)-HSQC 3D NOESY-(¹ H, ¹⁵ N)-HSQC	1 1 1 1 1 1 2 2 2	15 16 17 18 18 19 20 21
	2.1.4 2.1.5	Torsion-angle Energy mini	e dynamics calculations mization	2	21 26
2.2	Backbone dynamics		2	28	
	 2.2.1 Relaxation 2.2.2 The dipole-dipole interaction 2.2.3 The chemical shift anisotropy 2.2.4 The spectral density function of Lipari and Szabo 2.2.5 The Clore-Gronenborn model 2.2.6 The exchange parameter 		2 3 3 3 3 3	28 31 33 34 36 37	

3 Materials and methods

3.1	Protein preparation	38
3.2	NMR data collection and processing	38
3.3	Constraint generation and structure calculation	40
3.4	Relaxation measurements	42

4 Results and discussion

	4.1 Resonance assignments of human E-FABP			
	4.2	Solution structure of human E-FABP	59	
	4.3	Backbone dynamics of human E-FABP	64	
=	C			
5	Sur	nmary	75	
6	Ref	ferences	77	
7	Ap	pendixes		
	App	pendix A.1	88	
	Арр	pendix A.2	98	
	Арр	pendix A.3	103	
	App	pendix A.4	104	

1 Introduction

1.1 The lipid binding protein family

The multigene family of intracellular lipid binding proteins (LBPs) comprises a group of homologous 14-15 kDa proteins that specifically bind and facilitate the transport of fatty acids, bile acids, retinoids or eicosanoids. Members of this family include several types of fatty acid binding proteins (FABPs), ileal lipid binding protein and cellular retinoid binding proteins (Table 1.1). Fatty acid binding proteins are cytosolic non-enzymatic proteins that display tissue-specific expression and may play a role in the metabolism of long-chain, unsaturated free fatty acids [Veerkamp and Maatman, 1995]. Members of this protein family have a high affinity for amphiphiles. It has been proposed that these proteins are involved in the cellular uptake of lipids, their transport to metabolic pathways [Kaikaus et al., 1990], and in the regulation of lipid transport and metabolizing proteins [Wolfrum et al., 1999]. It has furthermore been proposed that several proteins within the FABP family are important during cellular growth and differentiation [Ross, 1993; Yang et al., 1994]. Moreover, liver-type FABP for example may be involved in the transport of fatty acids and peroxisome proliferators from the cytosol into the nucleus for interactions with peroxisome proliferatoractivated receptors (PPARs) [Wolfrum et al., 1999]. These proteins have been isolated from a number of mammalian tissues as well as fatty acid-metabolizing tissues of chicken, fish and insects [Bass, 1988; Börchers and Spener, 1994].

At least thirteen types of LBPs have been identified to the present: liver (L-FABP), intestinal (I-FABP), heart (H-FABP), adipocyte (A-FABP), myelin (M-FABP), brain (B-FABP) and epidermal (E-FABP) fatty acid binding proteins and ileal lipid binding protein (ILBP), as well as cellular retinol binding proteins (CRBP I, II and very recently III) and cellular retinoic acid binding proteins (CRABP I and II). They contain 127-135 amino acid residues and are named after the tissue of first isolation or identification. These proteins have been originally identified using FABP-specific antibodies in enzyme-linked immunosorbent assays (ELISA), Western blotting, or immuno-histochemistry; corresponding mRNA was detected by hybridization with respective cDNAs or oligonucleotides in Northern blotting or *in situ* hybridization. Most FABPs are rather tissue specific, whereas H-FABP has a widespread distribution. The presence of more than one LBP type in a particular tissue is

Protein	Previous/other names	Ligand	Tissue localization
E-FABP	K-FABP, Mal-1, KLBP, skin FABP, psoriasis-associated FABP	fatty acid	epidermis, adipose and mammary tissue, tongue epithelia, testis
L-FABP	Z-protein, heme binding protein, hepatic FABP	fatty acids, others	liver, small intestine
I-FABP	gut FABP	fatty acid	small intestine (proximal)
H-FABP	muscle FABP, M-FABP	fatty acid	cardial and skeletal muscle, brain, mammary gland, kidney, adrenals, ovaries, testis, aorta
A-FABP	aP2, ALBP	fatty acid	adipose, monocytes
B-FABP	BLBP, O-FABP	fatty acid	brain, central nervous system
M-FABP	myelin P2	fatty acid	peripheral nervous system
ILBP	gastrotropin; ileal FABP, Il-FABP, I- BABP	bile acid, fatty acid	small intestine (distal)
CRBP I		retinol	liver, kidney, testis, lung
CRBP II		retinol, retinal	small intestine
CRBP III		Retinol	heart, muscle, adipose tissue
CRABP I		retinoic acid	brain, skin, testis
CRABP II		retinoic acid	epidermis, adrenals

Table 1.1Family of intracellular lipid binding proteins [Börchers and Spener, 1994;
Storch and Thumser, 2000; Vogel *et al.*, 2001].

generally regarded as a functional diversification of this protein family [Börchers and Spener, 1994]. The sequence similarity among the various LBPs ranges between 38 and 70 %. Generally, the similarity is high for sequences of the same tissue type isolated from different host organisms, while the similarity is low for different LBP types of the same host organism [Veerkamp and Maatman, 1995].

The sequence homologies among the different types of LBPs constitute an important classification principle within this protein family. Some of the most conserved amino acids are glycines, asparagines, and aspartates that are necessary for the formation of narrow β -turns, as well as aromatic residues located in several regions and with different functions that correspond to positions 11, 19, 22, 67 and 73 of E-FABP. Also highly conserved is a triad of protein side-chains consisting of two arginines and one tyrosine (E-FABP numbering R109, R129 and Y131).

The aligned amino acid sequences of the FABP family show the large similarity between the heart, myelin, adipocyte, brain and epidermal types, while CRBPs and CRABPs show only 20-45% similarity with the FABPs. The FABP types differ considerably in their surface charge. The heart-type FABP has an isoelectric point of about 5, the liver and

	1 10	20	30		40	
E-FABP	MATVOOLEGR	WRLVDSKGFD	EYMKELGVGI	ALRKMGAMA.	.KPDCIITCD	1008
M-FABP	SNKFLGT	WKLVSSENFD	DYMKALGVGL	ATRKLGNLA.	.KPTVIISKK	56%
A-FABP	CDAFVGT	WKLVSSENFD	DYMKEVGVGF	ATRKVAGMA.	.KPNMIISVN	52%
H-FABP	VDAFLGT	WKLVDSKNFD	DYMKSLGVGF	ATRQVASMT.	.KPTTIIEKN	49%
B-FABP	VEAFCAT	WKLTNSQNFD	EYMKALGVGF	ATRQVGNVT.	.KPTVIISQE	45%
I-FABP	AFDST	WKVDRSENYD	KFMEKMGVNI	VKRKLAAHD.	.NLKLTITQE	25%
L-FABP	MSFSGK	YQLQSQENFE	AFMKAIGLPE	ELIQKGKDI.	.KGVSEIVQN	23%
ILBP	AFTGK	YEIESEKNYD	EFMKRLALPS	DAIDKARNL.	.KIISEVKQD	22%
CRBP I	PVDFTGY	WKMLVNENFE	EYLRALDVNV	ALRKIANLL.	.KPDKEIVQD	28%
CRBP II	TKDQNGT	WEMESNENFE	GYMKALDIDF	ATRKIAVRL.	.TQTKIIVQD	27%
CRBP III	MPPNLTGY	YRFVSQKNME	DYLQALNISL	AVRKIALLL.	.KPDKEIEHQ	28%
CRABP I	PN.FAGT	WKMRSSENFD	ELLKALGVNA	MLRKVAVAAA	SKPHVEIRQD	36%
CRABP II	PN.FSGN	WKIIRSENFE	ELLKVLGVNV	MLRKIAVAAA	SKPAVEIKQE	34%
	50	60	70	80	90	
E-FABP	GKNLTIKTES	.TLKTTOFSC	TLGEKFEETT	ADGRKTOT	VCNFTD.GAL	
M-FABP	GDIITIRTES	.TFKNTEISF	KLGQEFEETT	ADNRKTKS	IVTLOR.GSL	
A-FABP	GDVITIKSES	.TFKNTEISF	ĨLGQEFDEVT	ADDRKVKS	~ TITLDG.GVL	
H-FABP	GDILTLKTHS	.TFKNTEISF	KLGVEFDETT	ADDRKVKS	IVTLDG.GKL	
B-FABP	GDKVVIRTLS	.TFKNTEISF	QLGEEFDETT	ADDRNCKS	VVSLDG.DKL	
I-FABP	GNKFTVKESS	.AFRNIEVVF	ELGVTFNYNL	ADGTELRG	TWSLEG.NKL	
L-FABP	GKHFKFTITA	.GSKVIQNEF	TVGEECELET	MTGEKVKT	VVQLEGDNKL	
ILBP	GQNFTWSQQY	PGGHSITNTF	TIGKECDIET	IGGKKFKA	TVQMEG.GKV	
CRBP I	GDHMIIRTLS	.TFRNYIMDF	QVGKEFEEDL	TGIDDRKCMT	TVSWDG.DKL	
CRBP II	GDNFKTKTNS	.TFRNYDLDF	TVGVEFDEHT	KGLDGRNVKT	LVTWEG.NTL	
CRBP III	GNHMTVRTLS	.TFRNYTVQF	DVGVEFEEDL	RSVDGRKCQT	IVTWEE.EHL	
CRABP I	GDQFYIKTST	.TVRTTEINF	KVGEGFEEET	VDGRKCRS	LATWENENKI	
CRABP II	GDTFYIKTST	.TVRTTEINF	KVGEEFEEQT	VDGRPCKS	LVKWESENKM	
	100		110	120	130	
E-FABP	VOHOEW.	.DGKESTITR	KLK.DGKLVV	ECVMNNVTCT	RIYEKVE	135
M-FABP	NOVORW.	.NGKETTIKR	KLV.DGKMVA	ECKMKGVVCT	RIYEKV	131
A-FABP	VHVQKW.	.DGKSTTIKR	KRE.DDKLVV	ECVMKGVTST	RVYERA	131
H-FABP	VHLQKW.	.DGQETTLVR	ELI.DGKLIL	TLTHGTAVCT	RTYEKEA	132
B-FABP	VHIQKW.	.DGKETNFVR	EIK.DGKMVM	TLTFGDVVAV	RHYEKA	131
I-FABP	IGKFKRT	DNGNELNTVR	EII.GDELVQ	TYVYEGVEAK	RIFKKD	131
L-FABP	VTTFK	.NIKSVT	ELN.GDIITN	TMTLGDIVFK	RISKRI	127
ILBP	VVNSP	.NYHHTA	EIV.DGKLVE	VSTVGGVSYE	RVSKKLA	127
CRBP I	QCVQKG.	.EKEGRGWTQ	WIE.GDELHL	EMRVEGVVCK	QVFKKVQ	134
CRBP II	VCVQKG.	.EKENRGWKQ	WVE.GDKLYL	ELTCGDQVCR	QVFKKK	133
CRBP III	VCVQKG.	.EVPNRGWRH	WLE.GEMLYL	ELTARDAVCE	QVFRKVR	135
CRABP I	HCTQTLLEG.	.DGPKTYWTR	ELAND.ELIL	TFGADDVVCT	RIYVRE	136
CRABP II	VCEQKLLKG.	.EGPKTSWTR	ELTNDGELIL	TMTADDVVCT	RVYVRE	137

Table 1.2 Alignment of the amino acid sequences of the members of the LBP family. The percentage of identity and the total nomber of amino acids are indicated. All sequences are for human proteins, except for ILBP (pig) and CRBP II (rat), and were taken from the following references: E-FABP [Madsen et al., 1992]; H-FABP [Peeters et al., 1991]; M-FABP [Hayasaka et al., 1991]; B-FABP [Shimizu et al., 1997]; A-FABP [Baxa et al., 1989]; ILBP [Walz et al., 1988]; L-FABP [Lowe et al., 1985]; I-FABP [Sweetser et al., 1987]; CRBP-I [Nilsson et al., 1988]; CRBP-II [Schaefer et al., 1989]; CRBP-III [Folli et al., 2001]; CRABP-I and CRABP-II [Åstrom et al., 1991].

epidermal FABP types of about 6 and the adipocyte and myelin FABP types are basic proteins (with pI values of 7.6-9.0) [Veerkamp and Maatman, 1995].

Lipid binding proteins can be grouped according to sequence homology, which is consistent with the ligand binding characteristics [Hohoff and Spener, 1998]. The proteins are classified into four categories: (*I*) the intracellular retinoid binding proteins; (*II*) the ileal lipid binding protein (ILBP, binds bile acid) and L-FABP (binds two fatty acids); (*III*) I-FABP (binds a single fatty acid in a linear conformation); and (*IV*) FABPs with the fatty acid bound in a highly bent or U-shaped conformation. To the last group belongs the E-FABP examined here, as well as adipocyte- (A-), brain- (B-), heart- (H-) and myelin- (M-) type FABPs, where the carboxylate end of the fatty acid is buried within the binding cavity and forms hydrogen bonds to highly conserved tyrosine and arginine residues, either directly or through an ordered water molecule. The hydrocarbon tail of the fatty acid forms van der Waals interactions with hydrophobic residues in the binding cavity and with ordered water molecules that are in contact with polar residues in the binding pocket [Scapin *et al.*, 1993].

LBPs have been detected in vertebrates (including fish) [Di Pietro *et al.*, 1996; Londraville and Sidell, 1995 and 1996] as well as in invertebrates [Becker *et al.*, 1994; Moser *et al.*, 1991]. Evolutionary studies have been performed on LBP sequences, and phylogenetic trees were constructed [Börchers and Spener, 1994; Matarese *et al.*, 1989; Medzihradsky *et al.*, 1996; Schleicher *et al.*, 1995]. These analyses showed that cellular retinoid binding proteins and the subfamily comprising A-FABP, M-FABP, H-FABP, B-FABP and E-FABP have a common progenitor that diverged early form I-FABP and from the L-FABP/ILBP subfamily. Thus, the specialized function of retinoid binding has evolved separately from fatty acid binding. The L-FABP/ILBP subfamily has the longest evolutionary distance from the other members, as reflected by their binding characteristics. A calculation made by Matarese *et al.* [1989] indicated that the different subfamilies diverged from the common ancestral gene about 700 million years ago, *i.e.*, before the invertebrate-vertebrate divergence.

1.2 The epidermal-type fatty acid binding protein

The human epidermal-type fatty acid binding protein (E-FABP) was originally detected in patients suffering from psoriasis, a hyperproliferative skin disease characterized by abnormal differentiation and disordered lipid metabolism [Madsen *et al.*, 1992; Rasmussen *et al.*, 1992].

In this pathological situation, E-FABP was immuno-histochemically localized in differentiated keratinocytes [Siegenthaler *et al.*, 1994]. It has also been called skin-FABP (S-FABP) [Krieg *et al.*, 1993], keratinocyte FABP (K-FABP) and psoriasis-associated-FABP (PA-FABP) [Madsen *et al.*, 1992]. Its cDNA showed similarity to human H-FABP (48%), A-FABP (52%) and M-FABP (58%). The protein is identical to a melanogenic inhibitor isolated from grafted human skin, that inhibits tyrosinase activity in normal melanocytes as well as in a melanoma cell line, and that reduces cellular proliferation of these cells when added exogenously, while normal skin fibroblasts remain unaffected [Farooqui *et al.*, 1995].

E-FABP, which consists of 135 amino acids (15.2 kDa), shows a high binding affinity to stearic acid, which decreases on reduction of the number of carbon atoms or the introduction of double bonds into the fatty acid chain [Siegenthaler *et al.*, 1994]. Moreover, it displays a different electrophoretic mobility compared to FABPs from other human tissues or cellular retinoic acid- and retinol binding proteins. The FABP5 gene of human E-FABP is located in chromosome 8, with a possible duplication in chromosome 11. Expression levels of this FABP are low in normal epidermis, higher in cultured keratinocytes and still higher in psoriatic skin [Madsen *et al.*, 1992; Siegenthaler *et al.*, 1993]. Krieg *et al.* [1993] described

Human	MATVQQLEGR	WRLVDSKGFD	EYMKELGVGI	ALRKMGAMAK	PDCIITCDGK
Bovine	MATVQQLVGR	WRLVESKGFD	EYMKEVGVGM	ALRKVGAMAK	PDCIITSDGK
Rat	MASLKDLEGK	WRLVESHGFE	DYMKELGVGL	ALRKMGAMAK	PDCIITLDGN
Murine	MASLKDLEGK	WRLMESHGFE	EYMKELGVGL	ALRKMAAMAK	PDCIITCDGN
Human	NLTIKTESTL	KTTOFSCTLG	EKFEETTADG	RKTOTVCNFT	DGALVOHOEW
Bovine	NLSIKTESTL	KTTQFSCKLG	EKFEETTADG	RKTQTVCNFT	DGALVQHQEW
Rat	NLTVKTESTV	KTTVFSCTLG	EKFDETTADG	RKTETVCTFT	DGALVQHQKW
Murine	NITVKTESTV	KTTVFSCNLG	EKFDETTADG	RKTETVCTFQ	DGALVQHQQW
Human	DGKESTITRK	LKDGKLVVEC	VMNNVTCTRI	YEKVE	100%
Bovine	DGKESTITRK	LEDGKLVVVC	VMNNVTCTRV	YEKVE	91%
Rat	EGKESTITRK	LKDGKMVVEC	VMNNAICTRV	YEKVQ	81%
Murine	DGKESTITRK	LKDGKMIVEC	VMNNATCTRV	YEKVQ	80%

Table 1.3Amino acid alignment of E-FABP homologues: mouse (Mus musculus)
[Krieg et al., 1993; Bleck et al., 1998; Hertzel and Bernlohr, 1998], rat
(Rattus norvegicus) [Wen et al., 1995; Watanabe et al., 1994; de León et al.,
1996] and cattle (Bos taurus) [Jaworski and Wistow, 1996; Kingma et al.,
1998].

the cDNA for keratinocyte lipid binding protein named mal-1, which is up-regulated in both benign papilloma and malignant squamous cell carcinoma stages during tumor development and that has been shown to be identical with E-FABP. The derived amino acid sequence is closely related to the mouse myelin- and adipocyte-type FABPs [Veerkamp and Maatman, 1995]. E-FABP has also been localized in other organisms: mouse (*Mus musculus*) [Krieg *et al.*, 1993; Bleck *et al.*, 1998; Hertzel and Bernlohr, 1998], rat (*Rattus norvegicus*) [Wen *et al.*, 1995; Watanabe *et al.*, 1994; de León *et al.*, 1996] and cattle (*Bos taurus*) [Jaworski and Wistow, 1996; Kingma *et al.*, 1998].

Additionally, it is known that E-FABP forms a complex with psoriasin (S100A7) [Hagens *et al.*, 1999], a protein of the S100 gene family that has been associated with psoriasiform epidermal hyperplasia and is secreted by neoplastic keratinocytes in bladder and breast carcinoma [Celis *et al.*, 1996; Watson *et al.*, 1998]. Thus, an investigation of the E-FABP:psoriasin complex in solution may eventually be useful to understand the coordinated up-regulation of E-FABP and S100A7 in psoriasis.

Most members of the FABP family display amino acid motifs aimed at high-affinity long-chain fatty acid binding. Tertiary structures of this protein family show a highly conserved fold, *i.e.*, a β -barrel (or β -clam) consisting of two orthogonal β -sheets with five antiparallel β -strands each and a helix-turn-helix domain partially covering the internal cavity [Sacchettini *et al.*, 1989]. Strands β A through β E and the first half of strand β F form one β sheet, while the second half of strand β F together with strands β G through β J form the second β -sheet. The center of strand β F is shared by both sheets. There is no network of hydrogen bridges between β D and β E, because of the large distance between the backbone atoms. However, there is a hydrogen-bonding network between the first and the tenth strand (β A and β J), thus forming an *up/down* β -cylinder. The cylinder is closed at one end by a cluster of hydrophobic side-chains and at the other end by the helix-turn-helix domain that connects the strands β A and β B.

The helices are designated as αI and αII . The inner surface of the cavity is limited by polar and non-polar amino acids, with the non-polar amino acids occupying a deeper position in the cavity. For the different FABP types, the volume of the binding cavity that is available to other atoms is of the order of 500 Å³, while the volume defined by the van der Waals surface of all the component atoms comprises approximately 1000 Å³ [Banaszak *et al.*, 1994]. The fatty acid is non-covalently bound inside the cavity, almost inaccesible to the external

solvent, and occupies between one third to one half of the cavity volume. FABPs bind only one ligand, with exception of L-FABP, that can bind two fatty acid molecules [Glatz and van der Vusse, 1996; Thompson *et al.*, 1997]. In most cases, the carboxyl group of the fatty acid is located inside the β -barrel and non-covalently bound to arginine and tyrosine residues. Crystallographic analyses have shown that there are several water molecules in the binding cavity, some of which show van der Waals interactions with the fatty acid [Banaszak *et al.*, 1994].

The crystallographic structure of E-FABP has been recently resolved to 2.05 Å and refined to an R factor of 20.7% [Hohoff et al., 1999]. E-FABP is a typical member of the 10stranded β -clam structure group. Its backbone structure is virtually identical to that of H-FABP [Scapin et al., 1993] and I-FABP [Sacchetini and Gordon, 1993]. Root-mean-square deviations (RMSD) of the Ca atoms after superposition of the structure with H-FABP (for 115 residues) and with I-FABP (for 93 residues) are 0.62 Å and 1.03 Å, respectively. The electron density map shows that the ligand is bound within a central cavity of 252 Å³ in a Ushaped conformation [Hohoff et al., 1999]. The carboxyl group of the ligand interacts with Y131, R129 and R109, in the latter case via an ordered water molecule. The loop between strands βC and βD probably adopts two or more conformations in the crystal, which may be related to the partial occupancy of the bound fatty acid. In all FABPs, this region interacts with the aliphatic end of bound fatty acids and is called the portal region, since it is believed that the fatty acid enters and exits the cavity at this site [Herr et al., 1996]. In E-FABP this loop includes L60, which is a phenylalanine in most other FABP sequences, and which is thought to affect the dynamics of lipid exchange with the exterior [Xu et al., 1993]. The homologues of human E-FABP detected in rat, mouse and cattle have also a hydrophobic residue at this position (Table 1.3).

Epidermal-type FABPs are unique because of the presence of 5-6 conserved cysteines, a number unusually high for members of this protein family. Four of these cysteines are unique to E-FABP: C43, C47, C67 and C87. The crystallographic structure of human E-FABP [Hohoff *et al.*, 1999] has shown the existence of a disulfide bridge between cysteines 120 and 127, the only reported case in the entire LBP family. Cysteines 67 an 87 are also in close vicinity. Some FABPs have one or two cysteines homologous to C120 or C127 in E-FABP, but only M-FABP has both (at respective positions 117 and 124). Biochemical results suggested that these cysteines in M-FABP form a disulfide bridge [Kitamura *et al.*, 1980], but the crystallographic structure determination did not confirm this observation.

Figure 1.1 Crystallographic structure of human E-FABP [Hohoff *et al.*, 1999]. The six cysteines and the disulfide bridge between C120 and C127 are highlighted.

In addition to the solution structure, the present study describes the backbone dynamics of human E-FABP determined by means of ¹⁵N-edited NMR relaxation (T_1 and T_2) and steady-state heteronuclear ¹⁵N{¹H} NOE measurements. Protein dynamics is an important aspect of the relationship between structure and function for most biochemical processes.

Differences previously observed in the hydrogen exchange rates of backbone amide protons have indicated that protein stability and dynamics are distinct for several LBPs [Lücke *et al.*, 1996]. Therefore, ¹⁵N-NMR backbone relaxation experiments may shed more light on the dynamic differences between the various members of this protein family. Consequently, backbone relaxation and hydrogen exchange in human E-FABP are compared with other LBPs, in order to obtain a better understanding of the relationship between their structure, dynamics and function.

2 Theoretical aspects

2.1 Structure determination in solution

2.1.1 Resonance assignments

The various protons of a molecule can be distinguished in a NMR spectrum by means of the resonance frequencies. This distinction based on chemical shift differences depends on the electron distributions, anisotropy and steric effects. However, in the case of chemically equivalent protons, degenerate resonance frequencies can occur. The standard chemical shift values for the proton resonances of the 20 L-amino acids were collected by Bundi and Wüthrich [1979]. In proteins, however, these values may be shifted because of shielding and deshielding effects due to different molecular environments. Furthermore, in the case of larger molecules such as proteins, signal overlap may become quite unfavourable for the assignment of resonance frequencies.

The scalar-coupled protons of a molecule form so-called spin-systems, which are limited by heteroatoms that carry no protons. Thus, the amino acids in proteins are characterized by specific proton spin-systems, that are separated within the polypeptide chain by the carbonyl groups of the peptide linkage. The protons of aromatic ring structures or sidechain amides form additional spin-systems, which show no scalar coupling to the backbone spin-systems.

In order to identify the proton resonances in a protein, it is possible to use the classical assignment strategy of Wüthrich in a modified form [Wüthrich, 1986; Bax, 1989; Bax and Grzesiek, 1993]. TOCSY and COSY spectra are analyzed to detect spin-systems that are either characterized as specific amino acid residues or classified into amino acid categories. Scalar coupling relations are found in the TOCSY spectrum of a protein, displaying couplings from the backbone amide proton to possibly all other proton resonances of a particular spin-system. Geminal (²J) or vicinal (³J) couplings of directly neighbouring protons can be assigned with a COSY spectrum. Thus, the combination of TOCSY and COSY spectra allows the complete characterization of the proton resonances into amino acid spin-systems. Furthermore, experimental evidence about hydrogen bonds can be obtained from hydrogen/deuterium exchange in perdeuterated buffer, where labile protons, such as those of hydroxyl, thiol, amide and imino groups, are substituted by the deuterium atoms of the solvent over time. Depending on the presence of hydrogen bonds, the signals of slow-exchanging protons remain visible for longer periods of time.

The sequential assignment of the amino acid spin-systems is achieved using NOESY spectra. Dipolar couplings between the HN resonance of amino acid *i* and the C_{α} and C_{β} protons of the preceding amino acid *i* – 1 are usually observed. The sequence of spin-systems obtained with this method is subsequently compared with the primary structure of the polypeptide chain, until all residues are identified and the assignment of all proton resonances is completed.

2.1.2 The nuclear Overhauser effect

The nuclear Overhauser effect (NOE) describes a change in the signal intensity of a NMR resonance belonging to nucleus i after perturbation of the resonance of a second nucleus s through irradiation of the corresponding frequency. This effect is caused by dipole-dipole cross-relaxation. Its intensity is a function of the distance between the dipole-coupled nuclei i and s [Neuhaus and Williamson, 1989].

The resonance belonging to nucleus *s* normally undergoes a process of saturation, *i.e.*, the population differences across certain transitions will be eliminated by means of a weak radio-frequency pulse. The NOE effect corresponds to the tendency of the system to remain in thermal equilibrium. The change of the population in one part of the system is balanced through a change in other parts. In general:

$$\eta_i(s) = (I - I_0) / I_0 \tag{2.1.2.1}$$

where I_0 is the reference intensity of one resonance, *I* the intensity during saturation of another resonance and η_i (s) the NOE in nucleus *i* after saturation of nucleus *s*.

For a system of two spin- $\frac{1}{2}$ nuclei *i* and *s* with the same gyromagnetic ratio γ , different chemical shifts and no J-coupling to each other, four energy levels exist, corresponding to the nuclei in the states $\alpha\alpha$, $\alpha\beta$, $\beta\alpha$ and $\beta\beta$ (Figure 2.1, left side). The total number of nuclei in the system is 4N. Since chemical shifts are generally very small in comparison with Larmor frequencies, the transitions of each nucleus are almost equal in energy, making the states $\alpha\beta$ and $\beta\alpha$ nearly degenerate with equal populations. The lower energy state $\alpha\alpha$ will contain an excess of δ nuclei, while $\beta\beta$ will be deficient by an equal amount, *i.e.*, the population difference for a transition $\Delta m = 1$, with a transition probability W₁, will be δ . For a transition of $\Delta m = 0$, with a transition probability W₂, the population difference will be 0; for a transition $\Delta m = 2$, with a transition probability W₂, the population difference will be 2 δ .

Figure 2.1 Energy levels and populations of a two spin-½ homonuclear system. Left: in thermal equilibrium. Right: after saturation of the system s, the thermal equilibrium can be reestablished only through the forbidden zero- and double-quantum transitions.

In a NOE experiment, the population differences across certain transitions are forced to change. This induces a change in other transitions, whose signals are observed. After the saturation of *s*, the new populations are $N - \frac{1}{2}\delta$ for $\alpha\alpha$ and $\alpha\beta$ and $N + \frac{1}{2}\delta$ for $\beta\alpha$ and $\beta\beta$. The populations after the perturbation are represented on the right side of Figure 2.1. The system as a whole is no longer in equilibrium and the population difference between $\alpha\beta$ and $\beta\alpha$ is equal to δ . Since the population differences along the *i* transitions correspond to the equilibrium state, they cannot contribute to reestablish the equilibrium. If only single-quantum transitions are active as relaxation pathways, saturating *s* does not affect the intensity of *i*, that is, there is no NOE at nucleus *i* due to the saturation of nucleus *s*.

For the transition probabilities W_2 and W_0 , the population difference between $\alpha\beta$ and $\beta\alpha$ is equal to δ , while at equilibrium it is zero. Thus, W_0 acts so as to transfer population from the state $\beta\alpha$ to the state $\alpha\beta$, trying to restore a population difference of 0. This increases the population at the top level of one *i* transition and decreases the population at the bottom of the other one, thereby decreasing the total intensity of signals due to transitions of nucleus *i*. If the zero-quantum transition W_0 is the dominant relaxation process, the saturation of the *s*

transitions causes a decrease in the intensity of the absorption signals of *i*, that is, there is a negative NOE at nucleus *i* due to the saturation of nucleus *s*.

For a double-quantum transition W_2 , the population difference $\alpha\alpha - \beta\beta$ is equal to δ , while at equilibrium it is 2 δ . Thus, W_2 acts so as to transfer population from the state $\beta\beta$ to the state $\alpha\alpha$, in order to restore the population difference of 2 δ . Thereby, the population at the top level of one of the *i* transitions decreases and the population at the bottom of the other one increases, increasing the intensity of the signals originating from transitions of nucleus *i*. If W_2 is the dominant relaxation process, then saturating *s* increases the intensity of signals due to *i*, that is, there is a positive NOE at nucleus *i* due to the saturation of nucleus *s*.

The new equilibrium in the system is given by:

$$\eta_i(s) = (W_2 - W_0) / (2W_1^i + W_2 + W_0)$$
(2.1.2.2)

The NOEs are positive for small molecules in non-viscous solutions (W_2 dominance) and negative in very viscous solutions or for macromolecules (W_0 dominance). Between these two cases exists a region where W_0 and W_2 are in balance and the NOE disappears.

The interaction that gives rise to the NOE is the dipolar coupling between two nuclei. The rapid reorientation of the dipolar interactions is a suitable source of fluctuating fields to stimulate longitudinal relaxation. The intensity of the dipolar interaction, *i.e.*, of the NOE cross-peaks, will depend on the internuclear distance. To connect the dipolar coupling with both longitudinal relaxation and NOE requires an explanation of the motion of molecules in solution. The random motions can be summarized by a single parameter, the molecular correlation time τ_c . The variation in τ_c will then affect relaxation times and the relative importance of the different relaxation pathways. The rate of relaxation will be determined by the intensities of the fluctuating fields that carry the right frequencies to stimulate the transitions of interest.

In a system of two spins separated by a distance r, the relaxation rates via dipolar coupling are:

$$W_1^{\ i} \propto 3 \tau_c / r^6 \left(1 + \omega_i^2 \tau_c^2 \right)$$
(2.1.2.3)

$$W_0 \propto 2 \tau_c / r^6 (1 + (\omega_i - \omega_s)^2 \tau_c^2)$$
 (2.1.2.4)

W₂
$$\propto 12 \tau_c / r^6 (1 + (\omega_i + \omega_s)^2 \tau_c^2)$$
 (2.1.2.5)

where the constant of proportionality is the same in each case, and ω_i and ω_s are the Larmor frequencies of the two nuclei *i* and *s*.

The condition $1/\tau_c \gg \omega_0$ may be expressed as $\omega^2 \tau_c^2 \ll 1$ (known as the extreme narrowing limit), in which case all the frequency dependent terms in the denominators of the above expressions become negligible, such that:

$$W_1 \propto 3 \tau_c / r^6$$

 $W_0 \propto 2 \tau_c / r^6$ (2.1.2.6)
 $W_2 \propto 12 \tau_c / r^6$

The net cross-relaxation is represented by the numerator in equation (2.1.2.2):

$$\sigma_{is} = W_2 - W_0 \tag{2.1.2.7}$$

while the denominator represents the total relaxation for nucleus *i*:

$$\rho_i = 2W_1^{\ i} + W_2 + W_0 \tag{2.1.2.8}$$

For a pure homonuclear dipolar relaxation between spin-1/2 nuclei:

$$\eta_i(s) = \sigma_{is} / \rho_i = 1 / 2 \tag{2.1.2.9}$$

i.e.,

$$\rho_i = 2 \sigma_{is} \tag{2.1.2.10}$$

If there are other relaxation mechanisms operating without cross-relaxation, they will be included as an extra contribution ρ^* :

$$\eta_i(s) = \sigma_{is} / (\rho_i + \rho^*) = \rho_i / 2 (\rho_i + \rho^*)$$
(2.1.2.11)

2.1.3 NMR experiments

In homonuclear protein NMR spectroscopy, there are three essential 2D experiments: COSY, TOCSY and NOESY. These spectra contain the information required to assign the different proton resonances in a spectrum to the corresponding protons in a protein. With larger molecular masses, it may be necessary to use ¹³C- or ¹⁵N-labeled proteins for less spectral overlap in the resonance assignment. Pulse sequence elements can be combined to produce more complex sequences designed to perform specific tasks. In this case, the basic NMR techniques used for coherence transfer are the INEPT and DEPT pulse sequences.

Three- and four-dimensional heteronuclear-edited NMR experiments resolve crosspeaks between ¹H spins according to the chemical shift of the heteronuclei bonded directly to the ¹H spins. A 3D heteronuclear-edited experiment consists of a homonuclear pulse sequence, usually a TOCSY or NOESY experiment, and a HSQC pulse sequence [Cavanagh *et al.*, 1996].

2.1.3.1 COSY

In a ¹H, ¹H-COSY experiment (Correlated Spectroscopy [Aue *et al.*, 1976]; Figure 2.2), the magnetization transfer occurs via scalar couplings. Since the aliphatic bonds have ⁴J coupling constants almost equal to zero, the COSY experiment provides correlations between pairs of protons separated by two or three bonds, *i.e.*, that have ²J or ³J connectivities. Assigning entire spin systems in the COSY spectrum is rarely possible because of chemical shift degeneracy in the upfield region of the spectrum. Instead, the COSY spectrum is best used to identify correlations in the fingerprint regions, which are well separated from each other and usually contain well-resolved cross-peaks, whose number reflect the size of the protein.

Figure 2.2 Pulse sequence for a COSY experiment. The phase cycle is $\phi_1 = x, -x, y, -y$; receiver = x, -x, y, -y.

2.1.3.2 **TOCSY**

A ¹H,¹H-TOCSY experiment (Total Correlation Spectroscopy [Braunschweiler and Ernst, 1983]; Figure 2.3) utilizes isotropic mixing to transfer in-phase magnetization between spins by means of the strong scalar coupling Hamiltonian. Magnetization can be transferred through several couplings during the course of the mixing, which occurs while a spinlock field is applied. In the absence of relaxation, cross-peaks are generated between all resonances within a spin system. A frequently used pulse sequence for the mixing is the MLEV-17 pulse sequence [Bax and Davies, 1985]. The extent of the magnetization exchange can be regulated via the duration of the applied spinlock field. The magnitude of a given cross-peak will depend on the topology of the spin system, the coupling constants between pairs of spins, the efficiency of the isotropic mixing sequence employed, and the rate of relaxation during the isotropic mixing pulse.

Figure 2.3 Pulse sequence for a TOCSY experiment. The phase cycle depends on the spinlock field (SL).

2.1.3.3 NOESY

The sequential assignment process can be completed using the NOE information to correlate protons that are close in space. Distance constraints for structure determination of proteins are derived primarily from NOE interactions. The pulse sequence for the ¹H,¹H-NOESY experiment (Nuclear Overhauser and exchange spectroscopy [Jeener *et al.*, 1979]) is shown in Figure 2.4. Initially, a 90°-t₁-90° period labels the spins according to the frequency and returns the magnetization to the *z* axis. Magnetization transfer occurs via dipolar coupling during the mixing for a period τ_m before observable transverse magnetization is created by the final 90° pulse. The NOE interaction between two protons is usually observable up to a distance of 5 Å.

Figure 2.4 Pulse sequence for the NOESY experiment. The basic phase cycle is $\phi_1 = x, -x, \phi_2 = 2(x), 2(-x); 2(y), 2(-y);$ receiver = x, -x, -x, x, y, -y,-y, y.

2.1.3.4 INEPT

The INEPT sequence (Insensitive Nuclei Enhanced by Polarization Transfer [Morris and Freeman, 1979]; Figure 2.5) is a crucial component in many multidimensional NMR experiments. The aim of the INEPT sequence is to transfer magnetization from a sensitive nucleus with a high gyromagnetic ratio (usually protons) to a less sensitive nucleus with a lower gyromagnetic ratio (*e.g.*, nitrogen or carbon) by means of scalar coupling. By doing this, the detected signal of the heteronucleus will be increased. Applying a spin echo sequence, t-180°-t, to the spin I causes the decoupling of the S and I spins. Heteronuclear scalar coupling interaction evolves over the duration of a spin echo sequence if 180° pulses are applied to both the I and S spins simultaneously. The INEPT sequence can be written as

I spin:
$$90^{\circ}_{x}$$
-t- 180°_{x} -t- 90°_{y} S spin: 180°_{x} 90°_{x} -detect

Up to the final pair of 90° pulses, the sequence is a spin-echo in which both spins have been affected by 180°_{x} pulses, with the chemical shift components refocused during the echo, but scalar coupling fully evolved.

Figure 2.5 Pulse sequence for the INEPT experiment. The delay $\Delta/2$ is $(4J_{IS})^{-1}$ to refocus the scalar coupling between both spins.

2.1.3.5 DEPT

The DEPT sequence (Distorsionless Enhancement Polarization Transfer [Bendall *et al.*, 1981]; Figure 2.6) is an improved version of the INEPT experiment. It is based on coherence transfer and depends on the multiplicity of the spin S. The initial pulses for I and S are used to refocus the chemical shift, so that I and S are in resonance. In contrast to the INEPT experiment, the 90° pulse on the S spin precedes the last pulse of flip angle β on the I spins. This sequence can be used for experiments designed to separate signals from the spin systems IS, I₂S and I₃S by linear combinations of spectra obtained with different values of the flip angle β , for example 45°, 90° and 135° (which correspond, *e.g.*, to CH, CH₂ and CH₃ groups). Usually, a value of $\Delta = (2J_{IS})^{-1}$ is chosen to maximize the antiphase component of the magnetization.

Figure 2.6 Pulse sequence for the DEPT experiment. The proton pulse β_x with a flip angle of β° is used to optimize the pulse sequence to IS, I₂S- or I₃S-spin systems. The delay Δ is $(2J_{1S})^{-1}$ to refocus the scalar coupling between both spin types.

2.1.3.6 ¹H, ¹⁵N-HSQC

The HSQC experiment (heteronuclear single-quantum coherence [Bodenhausen and Ruben, 1980]; Figure 2.7) includes two INEPT sequences. The first one is used as the preparation stage to create antiphase heteronuclear coherence, and the second one converts this coherence back to observable magnetization. The frequency labeling of the I nucleus is done by systematically incrementing the duration t_1 . In the center of the t_1 period a selective 180° pulse is applied to refocus the effect of J modulation. The sensitivity of the experiment can be increased by applying gradients [Kay *et al.*, 1992].

Figure 2.7 Pulse sequence for the HSQC experiment. The phase cycling is $\phi_1 = x, -x$; $\phi_2 = 2(x), 2(-x); \phi_3 = (4y), 4(-y)$; and receiver = 2(x,-x,-x,x). It is essential that the first and second 90° pulse on spin I are mutually 90° out of phase.

2.1.3.7 ¹H, ¹⁵N-HTQC

Filtering methods offer the possibility of selectively extracting spectral information from isotope-labeled compounds. The HTQC experiment (heteronuclear triple-quantum coherence [Schmidt and Rüterjans, 1990]; Figure 2.8) is based on the application of polarization transfer in conjunction with proton detection. It allows to exclusively detect heteronuclear spin systems of the type I₂S, I and S representing protons and a heteronucleus, respectively. Hence, a 2D spectrum is obtained showing only signals of the ¹⁵NH₂ groups. This type of selection is extremely useful in discriminating asparagine and glutamine side-chain amide protons from those located in the backbone of the polypeptide chain.

Figure 2.8 Pulse scheme for heteronuclear shift correlation via I_2S three-quantum coherences in the HTQC experiment. The delay Δ should match 1/(2J_{SI}). The phases are cycled as follows: $\phi = x, -x; \psi = x, x, -x, y, y, -y, -y;$ ref= x, -x, -x, x, -y, y, y, -y.

2.1.3.8 3D TOCSY-(¹H, ¹⁵N)-HSQC

The information obtained from a 3D TOCSY-(¹H, ¹⁵N)-HSQC spectrum is the same as that obtained from the $F_1({}^1H)$ - $F_2({}^1H^N)$ region of a 2D ¹H-¹H TOCSY spectrum, but it is edited according to the ¹⁵N chemical shift associated with the amide ¹H^N. Since this 3D version shows less spectral overlap, it may provide intraresidue correlations that are important for the sequential assignment process or may be used to obtain qualitative estimates of ${}^3J_{H\alpha H\beta}$ coupling constants from the relative intensities of well-resolved ${}^1H^{N}$ -¹H^{β} cross-peaks.

Following the initial t_1 evolution period, a 90°(¹H) pulse returns the frequency-labeled magnetization to the ± *z* axis for the isotropic mixing period. The DIPSI isotropic mixing sequence [Cavanagh and Rance, 1992] transfers ¹H magnetization from aliphatic spins to the corresponding intraresidual amide protons, while minimizing rotating-frame NOE effects. The 90°(¹H) pulse following the mixing sequence rotates the resulting *z*-magnetization back into the transverse plane, and is therefore analogous to the first pulse in an HSQC experiment. The remainder of the sequence is equivalent to a ¹H-¹⁵N HSQC experiment (Figure 2.9). Following the Fourier transform, ¹⁵N-edited homonuclear TOCSY spectra are obtained.

2.1.3.9 3D NOESY-(¹H, ¹⁵N)-HSQC

The 3D NOESY-(¹H, ¹⁵N)-HSQC combines a NOESY experiment and a HSQC pulse sequence [Cavanagh *et al.*, 1996]. At the beginning, the sequence is a homonuclear NOESY experiment with ¹⁵N spin decoupling during the t₁ evolution period. Decoupling of the J¹H¹⁵N coupling interaction is achieved by replication of a composite decoupling pulse scheme throughout t₁. The 90°(¹H) pulse immediately following the mixing time t_m is equivalent to the first 90°(¹H) pulse in the HSQC experiment, and the remainder of the pulse sequence is identical to the HSQC experiment (Figure 2.10). In the final 3D spectrum, the F₁(¹H) – F₃(¹H) projection corresponds to the F₁(¹H) – F₂(¹H^N) region of a conventional 2D ¹H–¹H NOESY spectrum, and the F₂(¹⁵N) – F₃(¹H) corresponds to the F₁(¹⁵N) – F₂(¹H) of a 2D HSQC spectrum.

Figure 2.10 Pulse sequence for the 3D ¹H-¹⁵N NOESY-HSQC experiment. The phase cycling is $\phi_1 = 2(x), 2(-x); \phi_2 = 4(x), 4(-x); \phi_3 = x, -x;$ receiver = x, -x, -x, x, -x, x, x, -x, x, x, -x. The spinlock purge pulses (SL) are applied for 1-2 ms. (I=¹H, S= ¹³C or ¹⁵N.)

2.1.4 DYANA

During the DYANA calculations, the molecule is represented as a rigid structure with *n* bodies fixed by rotating bonds [Abe *et al.*, 1983]. The degrees of freedom consist exclusively of dihedral angles. The target function *T* is proportional to the potential energy $E_{pot} = \omega_0 T$, with a constant of proportionality $\omega_0 = 10 \text{ kJ} / \text{mol} \cdot \text{Å}^2$:

$$T = \sum_{c=u,l,v} \omega_c \sum_{(\alpha,\beta) \in I_c} f_c(d_{\alpha\beta}, b_{\alpha\beta}) + \omega_d \sum_{j \in I_d} (1 - \frac{1}{2} (\Delta_j / \Gamma_j)^2) \Delta_j^2 \quad (2.1.4.1)$$

Upper and lower bounds, $b_{\alpha\beta}$, on distances between two atoms α and β , $d_{\alpha\beta}$, as well as constraints on individual torsion angles, θ_k , in the form of allowed intervals, $[\theta_k^{\min}, \theta_k^{\max}]$, are considered. I_u , I_1 and I_v are the sets of atom pairs (α , β) with upper, lower or van der Waals distance bounds, respectively, and I_d is the set of restrained torsion angles. w_u , w_l , w_v and w_d are weighting factors for the different types of constraints. $\Gamma_k = \pi - (\theta_k^{\max} - \theta_k^{\min})/2$ denotes the half-width of the forbidden range of torsion angle values, and Δ_k is the size of the torsion angle constraint violation.

For equation (2.1.4.1), $T \ge 0$. T equals 0 only when all the distance and angle constraints are satisfied and when the non-bonding atom pairs show no overlap. The function f_c indicates the distance constraint violations and can be represented as:

$$f_c(d,b) = \left(\left(d^2 - b^2 \right) / 2b \right)^2$$
(2.1.4.2a)

$$f_c(d,b) = (d-b)^2$$
(2.1.4.2b)

$$f_c(d,b) = \beta^2 \left[\sqrt{\left(1 + \left(d^2 - b^2\right) / \beta b^2\right)} - 1 \right] / 2$$
(2.1.4.2c)

or

$$f_c(d,b) = 2\beta^2 b^2 \left[\sqrt{(1 + (d-b)^2 / \beta^2 b^2)} - 1 \right]$$
(2.1.4.2d)

where *d* is the experimental distance, *b* the distance constraint and β a dimensionless parameter that weighs large violations. The functions (2.1.4.2a), (2.1.4.2b) and (2.1.4.2d) have Å² units; (2.1.4.2c) is dimensionless. For small distance constraint violations, equations (2.1.4.2a) and (2.1.4.2d) approach equation (2.1.4.2b), and equation (2.1.4.2c) becomes ((d – b) / b)². Equation (2.1.4.2a) is used in this work.

For all rigid bodies with k = 1, 2, ..., n, the angular velocity vector ω_k and the linear velocity vector at the reference point $\mathbf{v}_k = \mathbf{r}_k$ are calculated recursively [Jain *et al.*, 1993]:

$$\boldsymbol{\omega}_k = \boldsymbol{\omega}_{p(k)} + \mathbf{e}_k \, \mathrm{d}\theta/\mathrm{d}t \tag{2.1.4.3}$$

$$\mathbf{v}_{k} = \mathbf{v}_{p(k)} - (\mathbf{r}_{k} - \mathbf{r}_{p(k)}) \wedge \mathbf{\omega}_{p(k)}$$

$$(2.1.4.4)$$

The inertia tensor I_k of the rigid body k with respect to its reference point is expressed as a symmetric 3 × 3 matrix with elements given by [Arnold, 1978]:

$$(\mathbf{I}_k)_{ij} = \sum_{\alpha} m_{\alpha} (\mathbf{y}_{\alpha}^2 \delta_{ij} - y_{\alpha i} y_{\alpha j})$$
(2.1.4.5)

where \mathbf{y}_{α} represents the vector of the reference point of atom α with mass m_{α} . The center of mass and the center of inertia are calculated only once by summation of all atoms with every rigid body in a standard orientation. The obtained values are included in $Y_k^{(0)}$ and $\mathbf{I}_k^{(0)}$, which may be calculated with the help of the rotation vector \mathbf{R}_k , where a superscript T denotes the transposed matrix:

$$Y_k = R_k \ Y_k^{(0)} \tag{2.1.4.6}$$

$$\mathbf{I}_{k} = R_{k} \mathbf{I}_{k}^{(0)} \mathbf{R}_{k}^{T}$$

$$(2.1.4.7)$$

The kinetic energy is then calculated as

$$E_{\rm kin} = \frac{1}{2} \sum_{k=1}^{n} \left[m_k \mathbf{v}_k^2 + \boldsymbol{\omega} \cdot \mathbf{I}_k \boldsymbol{\omega}_k + 2 \mathbf{v}_k \cdot (\boldsymbol{\omega}_k \wedge m_k \mathbf{Y}_k) \right]$$
(2.1.4.8)

In order to improve the algorithm efficiency, the molecules are considered as spheres of mass m_k and radius ρ centered at the reference point \mathbf{r}_k . The equations (2.1.4.6) and (2.1.4.7) are then transformed into

$$Y_k = 0$$
 (2.1.4.9)

and

$$\mathbf{I}_k = 2 \ m_k \rho^2 \ \mathbf{1}_3 \tag{2.1.4.10}$$

where $\mathbf{1}_3$ is the 3 × 3 unit matrix.

The angular movement in a classical system can be described by the Lagrange equation [Arnold, 1978]:

$$d (\partial L/\partial (d^2 \theta_k / dt^2)) / dt - \partial L/\partial \theta_k = 0 \qquad (k = 1, 2..., n) \qquad (2.1.4.11)$$

where $L = E_{kin} - E_{pot}$. For the calculation of the Lagrange operator, the algorithm of Jain *et al.* [1993] is used. The six-dimensional initial vectors a_k , e_k and z_k are then calculated for all rigid bodies:

$$a_{k} = \begin{vmatrix} \mathbf{\omega}_{k} \wedge \mathbf{e}_{k} \rangle d\theta_{k}/dt \\ \mathbf{\omega}_{p(k)} \wedge (\mathbf{v}_{k} - \mathbf{v}_{p(k)}) \end{vmatrix}$$
(2.1.4.12)
$$e_{k} = \begin{vmatrix} \mathbf{e}_{k} \\ \mathbf{0} \end{vmatrix}$$
(2.1.4.13)

$$z_{k} = \begin{bmatrix} \mathbf{\omega}_{k} \wedge \mathbf{I}_{k} \, \mathbf{\omega}_{k} \\ (\mathbf{\omega}_{k} \cdot \mathbf{m}_{k} \, \mathbf{Y}_{k}) \, \mathbf{\omega}_{k} - \mathbf{\omega}_{k}^{2} \, m_{k} \, \mathbf{Y}_{k} \end{bmatrix}$$
(2.1.4.14)

$$P_{k} = \begin{vmatrix} \mathbf{I}_{k} & m_{k} \mathbf{A}(\mathbf{Y}_{k}) \\ -m_{k} \mathbf{A}(\mathbf{Y}_{k}) & m_{k} \mathbf{I}_{3} \end{vmatrix}$$
(2.1.4.15)

$$\varphi_{k} = \begin{vmatrix} 1_{3} & A(\mathbf{r}_{k} - \mathbf{r}_{p(k)}) \\ 0_{3} & 1_{3} \end{vmatrix}$$
(2.1.4.16)

where $\mathbf{0}_3$ is the 3 × 3 zero matrix and $\mathbf{A}(\mathbf{x})$ is the antisymmetric 3 × 3 matrix associated with the cross product, *i.e.*, $\mathbf{A}(\mathbf{x}) \mathbf{y} = \mathbf{x} \land \mathbf{y}$ for all vectors \mathbf{y} .

The additional magnitudes

$$D_{k} = e_{k} \cdot P_{k} e_{k}$$

$$G_{k} = P_{k} e_{k} / D_{k}$$

$$\varepsilon_{k} = -\varepsilon_{k} \cdot (z_{k} + P_{k} a_{k}) - \partial V / \partial \theta_{k}$$

$$P_{p(k)} \leftarrow P_{p(k)} + \varphi_{k} (P_{k} - G_{k} e_{k}^{T} P_{k}) \varphi_{k}^{T}$$

$$z_{p(k)} \leftarrow z_{p(k)} + \varphi_{k} (z_{k} + P_{k} a_{k} + G_{k} e_{k})$$
(2.1.4.17)

are calculated by executing a recursive loop over all rigid bodies in the backward direction (k = n, n - 1,...,1). D_k and ε_k are scalars and G_k is a six-dimensional vector. The angular acceleration is calculated by recursive iteration (k = 1, ..., n):

$$\alpha_{k} = \varphi_{k}^{T} \alpha_{p(k)}$$

$$d^{2} \theta_{k} / dt^{2} = \varepsilon_{k} / D_{k} - G_{k} \cdot \alpha_{k}$$

$$\alpha_{k} \leftarrow \alpha_{k} + \varepsilon_{k} d^{2} \theta_{k} / dt^{2} + \alpha_{k}$$
(2.1.4.18)

The integration of the equations of motion in torsion angle dynamics [Mathiowetz *et al.*, 1994] follows a variant of the leap-frog algorithm used in Cartesian dynamics [Allen and Tildesley, 1987]. The temperature is regulated by weak coupling to an external bath [Berendsen *et al.*, 1984]. A time step, $t \rightarrow t + \Delta t$, that follows a preceding time step, $t - \Delta t' \rightarrow t$, consists of the following parts:

- 1. The Cartesian coordinates of all atoms are calculated on the basis of the torsional positions $\theta(t)$ [Güntert, 1993].
- 2. The potential energy $E_{pot}(t) = E_{pot}(\theta(t))$ and its gradient $\nabla E_{pot}(t)$ are calculated using the Cartesian coordinates from equation (2.1.4.1).
- 3. The time step $\Delta t = \lambda_{\varepsilon} \Delta t'$ is calculated using the time step scaling factor:

$$\lambda_{\varepsilon} = \min\left(\lambda_{\varepsilon}^{\max}, \sqrt{\left[1 + (\varepsilon^{\text{ref}} - \varepsilon(t))/\tau \varepsilon(t)\right]}\right)$$
(2.1.4.19)

where λ_{ε} is based on the reference value for the relative accuracy of energy conservation, ε^{ref} , and on the relative change $\varepsilon(t)$ of the total energy $E = E_{\text{kin}} + E_{\text{pot}}$ in the preceding time-step, $\varepsilon(t)$, as given by:

$$\varepsilon(t) = |(E(t) - E(t - \Delta t')) / E(t)|$$
(2.1.4.20)

 $\lambda_{\varepsilon}^{\max}$ is the maximal value of the scaling factor. The time constant, $\tau \gg 1$, is a userdefined parameter that is measured in units of the time step. During the calculation of $\varepsilon(t)$, E(t) is used before scaling velocity is applied (step 4); whereas for $E(t - \Delta t')$ the value after velocity scaling in the preceding time step is used. The measurement of the accuracy of energy conservation (equation 2.1.4.20) is not affected by the scaling of velocities.

4. The temperature is modified by means of a scaling factor λ_T for the torsional velocities [Berendsen *et al.*, 1984]:

$$\lambda_T = \sqrt{\left[1 + (T^{\text{ref}} - T(t)) / \tau T(t)\right]}$$
(2.1.4.21)

where

$$T(t) = 2 E_{kin}(t) / nk_B$$
(2.1.4.22)

and T^{ref} is the reference temperature, *n* the number of torsion angles and k_B the Boltzmann constant (1.3806568 × 10⁻²³ JK⁻¹).

5. The torsional accelerations $d^2\theta(t)/dt^2 = d^2\theta[(\theta(t), d\theta_e(t)/dt)]/dt^2$ are calculated using equations (2.1.4.12) - (2.1.4.18).

6. The new velocities at half time step are determined by:

$$d\theta(t + \Delta t/2)/dt = d\theta(t - \Delta t'/2)/dt + \frac{1}{2}(\Delta t + \Delta t') d^2\theta(t)/dt^2 \quad (2.1.4.23)$$

7. The new estimated velocities at full time step are obtained by means of

$$d\theta_{\rm e}(t+\Delta t)/dt = (1+\Delta t/(\Delta t+\Delta t^2))d\theta(t+\Delta t/2)/dt -$$

$$(\Delta t/(\Delta t + \Delta t') d\theta(t - \Delta t'/2)/dt \qquad (2.1.4.24)$$

8. The new torsional positions are:

$$\theta(t + \Delta t) = \theta(t) + \Delta t \, d\theta(t + \Delta t^2/2) \,/\, dt \tag{2.1.4.25}$$

The algorithm is initialized by setting t = 0, $\Delta t' = \Delta t$, and $d\theta_e(0)/dt = d\theta(-\Delta t/2)/dt$ with torsional velocities $d\theta(-\Delta t/2)/dt$, which are chosen randomly from a normal distribution with zero mean value and a standard deviation that ensures that the initial temperature has a predefined value, T(0). Once the time step $t \rightarrow t + \Delta t$ is completed by going through the operations (1) to (8), t is replaced by $t + \Delta t$ and $\Delta t'$ by Δt .

Calculating steps with total energy changes (ΔE) of more than 10% are eliminated and substituted by two calculating steps with halved duration. With this procedure it is possible to avoid large energy violations.

2.1.5 Energy minimization

The conformers obtained from a distance geometry calculation do not necessarily correspond to a minimal energy structure. Therefore, it is necessary to energy minimize the resulting structures. There are two energy minimization algorithms that are widely used: *steepest descent* and *conjugate gradient*.

The *steepest descent* algorithm looks for the energy minimum along the gradient $-\nabla E(\mathbf{r})$ on the energy hypersurface. Each line search produces a new direction that is perpendicular to the previous gradient; however, the directions oscillate along the way to the minimum. The algorithm is repeated either for a preestablished number of calculation steps or until the gradient is smaller than a certain ε :

$$\varepsilon = 2 \pi \upsilon \checkmark (2 m k T) \tag{2.1.5.1}$$

where v is the oscillation frequency, *m* the reduced mass and *k* the Boltzmann constant.

Convergence is slow near the minimum because the gradient approaches zero, where each segment of the path tends to partially reverse progress made in an earlier iteration (since this algorithm does not preserve the results of the previous search, it may be under certain circumstances very inefficient), but it is the method most likely to generate a lower-energy structure regardless of what the function is or where it begins. Therefore, steepest descent is often used when the gradients are large and the structures are far from the minimum.

The conjugate gradient algorithm produces a complete basis set of mutually conjugate directions such that each succesive step continually refines the direction toward the minimum. This prevents the next direction vector from undoing earlier progress.

In conjugate gradient, \mathbf{h}_{i+1} , the new direction vector leading from point *i*+1, is computed by adding the gradient at point *i*+1, \mathbf{g}_{i+1} , to the previous direction \mathbf{h}_i scaled by a constant γ_i :

$$\mathbf{h}_{i+1} = \mathbf{g}_{i+1} + \gamma_i \, \mathbf{h}_i \tag{2.1.5.2}$$

where γ_i is a scalar that can be defined in two ways. In the Polak-Ribiere method, γ_i is defined as:

$$\gamma_i = \mathbf{g}_{i+1} \cdot \mathbf{g}_{i+1} / \mathbf{g}_i \cdot \mathbf{g}_i \tag{2.1.5.3}$$

In the Fletcher-Reeves [Fletcher, 1980] method, γ_i is defined as:

$$\gamma_i = (\mathbf{g}_{i+1} - \mathbf{g}_i) \cdot \mathbf{g}_{i+1} / \mathbf{g}_i \cdot \mathbf{g}_i$$
(2.1.5.4)

The \mathbf{h}_{i+1} direction is then used in place of the gradient, and a new line search is conducted. This construction has the characteristic that the next gradient, \mathbf{g}_{i+1} , is orthogonal to all previous gradients, \mathbf{g}_0 , \mathbf{g}_1 , \mathbf{g}_2 , ..., \mathbf{g}_i , and that the next direction, \mathbf{h}_{i+1} , is conjugate to all previous directions, \mathbf{h}_0 , \mathbf{h}_1 , \mathbf{h}_2 , ..., \mathbf{h}_i . Thus, the algorithm produces a set of mutually orthogonal gradients and a set of mutually conjugate directions.

The conjugate gradient method is used for large systems, because only the previous 3N gradients and directions have to be stored. This algorithm is especially effective on flat hypersurfaces. However, to ensure that the directions are mutually conjugate, more complete line search minimizations must be performed along each direction. Since these line searches consume several function evaluations per search, the time per iteration is longer for conjugate gradient than for steepest descent. In practice, both algorithms are used, first the steepest descent and then the conjugate gradient.

2.2 Backbone dynamics

In recent years, many three-dimensional structures of proteins have been determined by X-ray diffraction and multidimensional NMR. There have been great advances in the knowledge of protein architecture, chemical structure of active sites and biomolecular interfaces, but it has been recognized that knowledge of the static structure is not always sufficient to explain biomolecular function. In order to understand how a biomolecule works, it is necessary to analyze both the slow (on the milli- to microsecond time scale) as well as the fast (on the nano- to picosecond time scale) dynamics in relation to molecular function.

2.2.1 Relaxation

For a single spin with quantum number $I = \frac{1}{2}$ in a magnetic field \mathbf{B}_0 , there are two possible states: $|\alpha\rangle$ with energy $E_{\alpha} = -\frac{1}{2} \gamma \hbar B_0$, and $|\beta\rangle$ with energy $E_{\beta} = \frac{1}{2} \gamma \hbar B_0$. In the lower-energy state $|\alpha\rangle$, the component of the magnetic moment $\boldsymbol{\mu}$ along the B_0 axis is $\mu_z = \frac{1}{2} \gamma \hbar$, and in the higher-energy state $|\beta\rangle$ it is $\mu_z = -\frac{1}{2} \gamma \hbar$. The total length of the vector $\boldsymbol{\mu}$ is given by $|\boldsymbol{\mu}|^2/\gamma^2 \hbar^2 = I (I + 1) = \frac{3}{4}$. In the plane perpendicular to \mathbf{B}_0 , the xy plane, there is no preferred orientation. The $\boldsymbol{\mu}$ vectors of the spins in the $|\alpha\rangle$ state form a cone pointing along \mathbf{B}_0 , and those in the $|\beta\rangle$ state form a cone in the opposite direction. Due to the Larmor precession of the spins, the cones as a whole precess around \mathbf{B}_0 . The ratio of the two populations is given by the Boltzmann distribution

$$N_{\alpha} / N_{\beta} = \exp \left(E_{\beta} - E_{\alpha} \right) / kT = \exp \left(\gamma \hbar B_0 / kT \right)$$
(2.2.1.1)

The population difference generates a net magnetization vector **M** pointing along **B**₀. In the transverse plane, all orientations of the vectors $\boldsymbol{\mu}$ of the individual spins are equally populated ($M_x = M_y = 0$). If a 90° pulse is applied to this spin system, the M_z component of **M** will become zero, and **M** will be in the xy plane. The excess of $|\alpha\rangle$ disappears and there is no longer a random distribution of the vectors $\boldsymbol{\mu}$ in the xy plane, but a favoured orientation. The original situation may be restored by two processes: (a) transitions from the $|\beta\rangle$ to the $|\alpha\rangle$ state in order to restore M_z , *i.e.*, longitudinal relaxation, and (b) dephasing in the xy plane, *i.e.*, transverse relaxation.

The surroundings of the spins are called the lattice, which provides random fields fluctuating both in direction and magnitude. The mechanisms underlying these fields are

anisotropic interactions between the spins and the B_0 field, as well as between the spins mutually. Anisotropic means that the strength of the interaction depends on the orientation of the molecule relative to the static B_0 field. In general, the shielding or deshielding that gives rise to the chemical shift of a nucleus is anisotropic.

Rapid fluctuations are associated with high frequencies and slow ones with low frequencies, making it necessary to determine the characteristic time scale of a random function; furthermore, it is necessary to average over all the spins of the ensemble. The correlation function $C(\tau)$ is therefore defined as:

$$C(\tau) = \overline{H(t) H(t + \tau)}$$
(2.2.1.2)

where the bar indicates that the ensemble average must be taken. The correlation function $C(\tau)$ is a decaying function of τ and is independent of t. For $\tau = 0$,

$$C(0) = H(t) H(t) = H(0)^{2}$$
 (2.2.1.3)

Averaging over the ensemble of H(t) is equivalent to averaging over time t. The quantity $\overline{H(0)^2}$ is called the power of the interaction represented by H(t). If τ is very long, then

$$\lim_{\tau \to \infty} C(\tau) = 0 \tag{2.2.1.4}$$

i.e., if τ is long enough, then H(t) and H(t + τ) are no longer correlated.

Correlation functions involved in NMR relaxation are exponentially decaying with one or more characteristic time constant, called correlation time. For a single correlation time τ_c ,

$$C(\tau) = \overline{H(0)^2} \exp(-|\tau| / \tau_c)$$
 (2.2.1.5)

The correlation function $C(\tau)$ provides the time scale, characterized by the correlation times of the interaction H(t). The spectral density function $J(\omega)$, *i.e.*, the cosine Fourier transform of $C(\tau)$, gives the frequency characteristics:

$$J(\omega) = \int_0^\infty \cos(\omega t) C(\tau) d\tau$$
 (2.2.1.6)

Substitution of $C(\tau)$ given by equation (2.2.1.5) yields the Lorentzian

$$J(\omega) = \tau_{\rm c} / (1 + \omega^2 \tau_{\rm c}^2)$$
 (2.2.1.7)
The power of the interaction, $\overline{H(0)}^2$, is usually excluded from the definition of the spectral density function $J(\omega)$.

The time change of a spin system is defined by its Hamiltonian, which can be divided into two parts:

$$H = H_0 + H_1(t)$$
(2.2.1.8)

where H_0 represents the time-independent part of the Hamiltonian (e.g. chemical shift or scalar coupling) and $H_1(t)$ the randomly fluctuating part, *i.e.*, the coupling between the spin system and the environment, which is assumed to have an average value of zero for dipolar interaction and chemical shift anisotropy. The spin system can exchange energy with the environment through $H_1(t)$, which is then responsible for the relaxation. If the Hamiltonian is defined as in equation (2.2.1.8), the Liouville equation of motion of the density operator is

$$d\sigma(t)/dt = -i [H(t), \sigma(t)] = -i [H_0 + H_1(t), \sigma(t)]$$
(2.2.1.9)

For dissipative processes, only the time-independent or stochastic part of the Hamiltonian is important. The density operator and stochastic Hamiltonian are defined as

$$\sigma^{T}(t) = \exp\{iH_{0}t\} \ \sigma(t) \exp\{-iH_{0}t\}$$
(2.2.1.10)

$$H_1^{-1}(t) = \exp\{iH_0t\} H_1(t) \exp\{-iH_0t\}$$
(2.2.1.11)

from which the form of the transformed Liouville equation can be determined. The final result is

$$d\sigma(t)/dt = -i [H_1^{T}(t), \sigma^{T}(t)]$$
(2.2.1.12)

A very large number of physical interactions give rise to stochastic Hamiltonians capable of mediating spin relaxation. The most common are the intramolecular magnetic dipole-dipole (DD), chemical shift anisotropy (CSA), quadrupolar, and scalar coupling interactions. Intramolecular paramagnetic relaxation has the same Hamiltonian as for nuclear dipolar relaxation, except that the interaction occurs between a nucleus and an unpaired electron. For spin $\frac{1}{2}$ nuclei in diamagnetic biological macromolecules, the dominant relaxation mechanisms are the magnetic DD and CSA interactions. For nuclei with spin > $\frac{1}{2}$, specially ¹⁴N and ²H in proteins, the dominant relaxation mechanism is based on quadrupolar interactions. The cross-relaxation mechanism between the DD and the CSA interactions

becomes important for large proteins in strong magnetic fields. In this case, the Hamiltonian equals

$$H_{1}(t) = H^{DD}(t) + H^{CSA}(t) + H^{CSA/DD}(t)$$
(2.2.1.13)

where H^{DD} is the Hamiltonian for the dipole-dipole interaction, H^{CSA} for the interaction of the chemical shift with the external magnetic field and $H^{CSA/DD}$ for cross-relaxation between the DD and the CSA interactions. In two-spin systems, a cross-relaxation produces a differentiated relaxation of lines, *i.e.*, the doublet components show a different line width.

Relaxation rate constants for nuclei in proteins depend on a large number of factors, including overall rotational correlation times, internal motions, the geometric arrangement of nuclei, and the relative strengths of the applicable relaxation mechanisms. In general, ¹H relaxation in proteins is dominated by dipolar interactions with other protons (within approximately 5Å) and by interactions with directly bonded heteronuclei, which arise from dipolar interactions with ¹³C and ¹⁵N in isotopically enriched proteins or from scalar relaxation between the quadrupolar ¹⁴N nuclei and amide protons. Relaxation of protonated ¹³C and ¹⁵N heteronuclei, in turn, is dominated by dipolar interactions with the directly bonded protons, and secondly by CSA (for ¹⁵N spins and aromatic ¹³C spins). At 500 MHz magnetic field strength, the ¹⁵N nucleus relaxes 80% by dipolar interaction with the attached amide proton and 20% by CSA. On the other hand, relaxation of unprotonated heteronuclei, notably carbonyl ¹³C and unprotonated aromatic ¹³C spins, is dominated by CSA interactions [Cavanagh *et al.*, 1996].

2.2.2 The dipole-dipole interaction

The most important relaxation mechanism is that caused by the dipole-dipole interaction. Classically, the interaction energy of two magnetic moments, μ_1 and μ_2 , is

$$E_{1,2} = \{ \boldsymbol{\mu}_1 \cdot \boldsymbol{\mu}_2 - 3(\boldsymbol{\mu}_1 \cdot \boldsymbol{n}_{1,2})(\boldsymbol{\mu}_2 \cdot \boldsymbol{n}_{1,2}) \} / r_{1,2}^3$$
(2.2.2.1)

where $\mathbf{r}_{1,2}$ is the distance between $\boldsymbol{\mu}_1$ and $\boldsymbol{\mu}_2$ (assumed to be point dipoles as a good approximation for NMR), and $\mathbf{n}_{1,2}$ is the unit vector along the line connecting them, *i.e.*, $\mathbf{n}_{1,2} = \mathbf{r}_{1,2} / |\mathbf{r}_{1,2}|$. In a quantum mechanical formalism [Fischer *et al.*, 1998]:

$$H_{1,2} = \gamma_1 \gamma_2 \hbar \{ \mathbf{I}_1 \cdot \mathbf{I}_2 - 3 (\mathbf{I}_1 \cdot \mathbf{n}_{1,2}) (\mathbf{I}_2 \cdot \mathbf{n}_{1,2}) \} / r_{1,2}^3$$
(2.2.2.2)

In the Euclidian coordinate system with the z-axis parallel to $\mathbf{n}_{1,2}$, $\mathbf{H}_{1,2}$ becomes

$$H_{1,2} = \gamma_1 \gamma_2 \hbar \{ I_1 \cdot I_2 - 3 I_Z^{(1)} I_Z^{(2)} \} / r_{1,2}^{3}$$
(2.2.2.3)

The relaxation due to dipole-dipole interaction between two nuclei can be described by the correlation function [Wallach, 1967; Wittebort and Szabo, 1978]:

$$C(\tau) = \langle D_{qo}^{(2)*}(\Omega_{\rm LF}(0)) D_{qo}^{(2)})(\Omega_{\rm LF}(\tau)) \rangle$$
(2.2.2.4)

where $D_{mn}^{(2)}(\Omega)$ is a Wigner rotation matrix element [Brink and Satchler, 1968] and the Euler angles, Ω_{LF} , specify the orientation of the unit vector, μ_{LF} , connecting the two nuclei in the laboratory coordinate system. This correlation function also describes quadrupolar and chemical shift anisotropy relaxation in the special case where the involved tensors are axially symmetric. For a system in solution, the correlation function does not depend on the index qand can be rewritten by using the addition theorem for spherical harmonics [Brink and Satchler, 1968] as a correlation function that can be factored as [Lipari and Szabo, 1982a,b]:

$$C(\tau) = C_0(\tau)C_i(\tau)$$
 (2.2.2.5)

where, in the case of overall isotropic motion,

$$C_0(\tau) = (1/5) \exp(-6D_{\rm M}t) = (1/5) \exp(-\tau/\tau_{\rm M})$$
(2.2.2.6)

with D_M and τ_M as the rotational diffusion constant and correlation time of the macromolecule, respectively, and where the correlation function for internal motions is

$$C_{i}(\tau) = \langle P_{2}(\boldsymbol{\mu}(0) \cdot \boldsymbol{\mu}(\tau)) \rangle \qquad (2.2.2.7)$$

The $P_2(x)$ element is the second Legendre polynomial

$$P_2(\mathbf{x}) = \binom{1}{2} (3\mathbf{x}^2 - 1) \tag{2.2.2.8}$$

The correlation function therefore equals:

$$C(\tau) = (1/5) \langle P_2(\boldsymbol{\mu}_{LF}(0) \cdot \boldsymbol{\mu}_{LF}(\tau)) \rangle$$
(2.2.2.9)

For ¹⁵N NMR of protonated nitrogens, where at currently available fields the relaxation is primarily dipolar, the relaxation times and the nuclear Overhauser effect (NOE) are given by [Abragam, 1961; Farrow *et al.*, 1994]:

$$T_1^{-1} = d^2 \left[J(\omega_H - \omega_N) + 3J(\omega_N) + 6J(\omega_H + \omega_N) \right] + c^2 J(\omega_N)$$
(2.2.2.10)

$$T_2^{-1} = 0.5 d^2 [4J(0) + J(\omega_H - \omega_N) + 3J(\omega_N) + 6J(\omega_H) + 6J(\omega_H + \omega_N)] + (1/6) c^2 [3J(\omega_N) + 4J(0)]$$
(2.2.2.11)

NOE = 1 +
$$(\gamma_H / \gamma_N) d^2 [6J(\omega_H + \omega_N) - J(\omega_H - \omega_N)] T_1$$
 (2.2.2.12)

The constants d^2 and c^2 are defined as

$$d^{2} = 0.1 \gamma_{\rm H}^{2} \gamma_{\rm N}^{2} h^{2} / (4\pi^{2}) \langle 1/r_{\rm NH}^{3} \rangle^{2}$$
(2.2.2.13)

$$c^{2} = (2/15) \gamma_{\rm N}^{2} H_{0}^{2} (\sigma_{\scriptscriptstyle \parallel} - \sigma_{\scriptscriptstyle \perp})^{2}$$
(2.2.2.14)

where $\gamma_{\rm H}$ and $\gamma_{\rm N}$ are the gyromagnetic ratios of the ¹H and ¹⁵N nuclei, respectively, $\omega_{\rm H}$ and $\omega_{\rm N}$ are their Larmor precessional frequencies, respectively, $r_{\rm NH}$ is their internuclear distance (1.02 Å), and H_0 is the magnetic field strength. The parallel and perpendicular components of the axially symmetrical ¹⁵N chemical shift tensor are represented by $\sigma_{\scriptscriptstyle \parallel}$ and $\sigma_{\scriptscriptstyle \perp}$, respectively. The assumption of an axially symmetric chemical shift tensor has been shown to be valid for backbone amides in proteins with a value of -160 ppm for $\sigma_{\scriptscriptstyle \parallel} - \sigma_{\scriptscriptstyle \perp}$ [Hiyama *et al.*, 1988].

2.2.3 The chemical shift anisotropy relaxation

The interaction energy of the magnetic dipole of a nuclear spin, *I*, and the external field, B_0 , modulated by the chemical shift tensor, σ , is denoted by the chemical shift Hamiltonian

$$\mathbf{H}^{\mathrm{CS}} = \gamma \, \boldsymbol{\Sigma}_{\mathrm{ij}} \, \boldsymbol{B}_{\mathrm{i}} \, \boldsymbol{\sigma}_{\mathrm{ij}} \, \boldsymbol{I}_{\mathrm{j}} \tag{2.2.3.1}$$

where i and j correspond to the components x', y' and z' of a coordinate system attached to the molecule. Since σ is a hermitian operator, it has real eigenvalues and orthogonal eigenvectors. As a consequence, the unitary transformation that diagonalizes σ is equivalent to a rotation or change of coordinate axes to the principle axes, xyz, where the Hamiltonian is defined as [Fischer *et al.*, 1998]:

$$H^{CS} = \gamma \{\sigma_{XX}B_XI_X + \sigma_{YY}B_YI_Y + \sigma_{ZZ}B_ZI_Z\}$$
(2.2.3.2)

Since any arbitrary tensor can be written as the sum of two axially symmetric tensors, it can be assumed that the chemical shift tensor is axially symmetric, *i.e.*, that $\sigma_{XX} = \sigma_{YY} = \sigma_{\perp}$ and $\sigma_{ZZ} = \sigma_{\parallel}$, making the calculations much simpler. The chemical shift Hamiltonian may thus be written as

$$H^{CS} = \gamma \{ \sigma_{\parallel} B_Z I_Z + \sigma_{\perp} (B_X I_X + B_Y I_Y) \}$$
$$= \gamma \{ (1/3)(\sigma_{\parallel} + 2\sigma_{\perp}) \mathbf{B} \cdot \mathbf{I} + (1/3)(\sigma_{\parallel} - \sigma_{\perp})(2 B_Z I_Z - B_X I_X - B_Y I_Y) \} (2.2.3.3)$$

The first term is invariant under rotation and does not contribute to relaxation as the molecule tumbles. This term is the ordinary, isotropic chemical shift $\sigma_{iso} = (1/3)(\sigma_{\parallel} + 2\sigma_{\perp})$. The second term is the chemical shift anisotropy interaction, H^{CSA} , which may be written in a form identical to that of the dipolar interaction:

$$\mathbf{H}^{\mathrm{CSA}} = -(1/3) \,\gamma \left(\boldsymbol{\sigma}_{\parallel} - \boldsymbol{\sigma}_{\perp}\right) \left(\mathbf{B} \cdot \mathbf{I} - 3 \, B_{Z} I_{Z}\right) \tag{2.2.3.4}$$

2.2.4 The spectral density function of Lipari and Szabo

In order to obtain useful information about protein dynamics from the ¹⁵N relaxation parameters, it is necessary to use a functional form for the spectral density. Two separate descriptions of the spectral density are often used, each expressing a different dependence on the molecular motions responsible for relaxation: the model-free formalism of Lipari and Szabo and the model-free formalism of Clore and Gronenborn.

The information on fast internal motions that is contained in an NMR relaxation experiment can be described completely by (a) a generalized order parameter, *S*, which is the measure of the degree of spatial restriction of the motion and satisfies the inequalities $0 \le S^2 \le 1$, and (b) an effective correlation time, τ_e , which is a measure of the rate of the motion The relaxation of nuclei in proteins is determined by their global movement and by local dynamical effects. Therefore, it is necessary to use a model that also takes into account these local effects. In the model-free approach of Lipari and Szabo [1982a,b], the global and the local motions do not have an influence on each other, *i.e.*, there is no coupling between them. This can be expressed by means of a correlation function that can be factored as described in the section 2.2.2.

For the formulation of local dynamics in the protein backbone, Lipari and Szabo [1982a,b] made the following assumptions:

- 1. $C_i(0) = \langle P_2(\mu(0) \cdot \mu(0)) \rangle = 1$
- 2. The correlation function must be monotonously decreasing.
- 3. Because of steric restrictions, a NH vector set will not be uniformly distributed over a spherical surface, but will cover only a fraction of the surface. For the correlation function, this implies that $C(\infty) = S^2$.
- 4. The correlation function for the overall tumbling is assumed to be isotropic and monoexponential. The simplest approximation of $C_i(t)$ which is exact at t=0 and at t= ∞ has the form

$$C_{i}(\tau) = S^{2} + (1 - S^{2}) \exp(-\tau/\tau_{e})$$
(2.2.4.3)

where τ_e is the effective correlation time.

The overall tumbling of the macromolecule and its internal motions are described by the expression

$$J(\omega) = S^{2} \tau_{\rm m} / (1 + \omega^{2} \tau_{\rm m}^{2}) + (1 - S^{2}) \tau / (1 + \omega^{2} \tau^{2})$$
(2.2.4.4)

The dynamics of each backbone amide is characterized by a time-correlation function factorizable into two independent components: the overall tumbling of the macromolecule and the internal motion of the NH vector. S^2 is known as the generalized order parameter, a model-independent measure of the degree of spatial restriction of the motion (within the

limits $0 \le S^2 \le 1$). If the internal motion is isotropic, S^2 vanishes; if the amide is completely restricted in its motion, S^2 equals unity. The effective correlation time resulting from internal motions is τ_e , where

$$1 / \tau = 1 / \tau_{\rm m} + 1 / \tau_{\rm e} \tag{2.2.4.5}$$

2.2.5 The Clore-Gronenborn model

An extended form of the model-free formalism has been developed [Clore *et al.*, 1990a,b] to describe internal motions that take place on two distinct time scales, differing by at least one order of magnitude and affecting all three NMR relaxation parameters: T_1 , T_2 and NOE.

In the Clore-Gronenborn model, the order parameter is divided into two components: a fast order parameter (S_f) and a slow one (S_s). For each order parameter there is a corresponding local correlation time. The generalized order parameter then becomes a product of the individual fast and slow order parameters:

$$S^2 = S_f^2 S_s^2 \tag{2.2.5.1}$$

Consequently, the correlation function is expressed in a four-parameter equation

$$C_{i}(\tau) = \{S_{f}^{2} + (1 - S_{f}^{2}) \exp(-\tau/\tau_{f})\}\{S_{s}^{2} + (1 - S_{s}^{2}) \exp(-\tau/\tau_{s})\}$$

= $S_{f}^{2} S_{s}^{2} + S_{f}^{2} (1 - S_{s}^{2}) \exp(-\tau/\tau_{s}) + S_{s}^{2} (1 - S_{f}^{2}) \exp(-\tau/\tau_{f}) + ...$
... + $(1 - S_{f}^{2}) (1 - S_{s}^{2}) \exp(-\tau/\tau_{f}) \exp(-\tau/\tau_{s})$ (2.2.5.2)

Assuming slower global motions within the observation range ($\tau \approx \tau_s \gg \tau_f$) and faster thermal motions, the double exponential term in equation (2.2.5.2) may be neglected. As a result, a four-parameter bi-exponential model is obtained:

$$C_{\rm i}(\tau) = S_{\rm f}^2 S_{\rm s}^2 + S_{\rm f}^2 (1 - S_{\rm s}^2) \exp(-\tau/\tau_{\rm s}) + S_{\rm s}^2 (1 - S_{\rm f}^2) \exp(-\tau/\tau_{\rm f})$$
(2.2.5.3)

Assuming that the correlation time describing the faster of the two time scales, τ_f , is sufficiently small to make only a negligible contribution to the relaxation, the extended spectral density can be described as

$$J(\omega) = S^{2} t_{\rm m} / (1 + \omega^{2} \tau_{\rm m}^{2}) + (S_{\rm f}^{2} - S^{2}) \tau / (1 + \omega^{2} \tau^{2})$$
(2.2.5.4)

where the effective correlation time for slow internal motions, τ_s , is derived from the relationship

$$1 / \tau = 1 / \tau_{\rm m} + 1 / \tau_{\rm s} \tag{2.2.5.5}$$

2.2.6 The exchange parameter

An additional term, the exchange parameter R_{ex} , can be used to account for contributions to the transverse relaxation rate from processes other than the dipole-dipole interaction and chemical shift anisotropy. In most cases, these contributions are the result of conformational exchange averaging. The additional R_{ex} term is included by a modification of the transverse relaxation rate:

$$1 / T_2 = 1 / T_{2(DD)} + 1 / T_{2(CSA)} = R_{ex}$$
 (2.2.6.1)

where DD and CSA refer to the contributions of the dipole-dipole interaction and the chemical shift anisotropy to the relaxation, respectively. While the generalized order parameter and internal correlation time are sensitive to motions faster than the overall correlation time (τ_e is generally in the range of nanoseconds to picoseconds), chemical exchange processes contributing to the R_{ex} term occur on a time scale several orders of magnitude slower (milliseconds to microseconds).

3 Materials and methods

3.1 Protein preparation

The recombinant human E-FABP samples were kindly provided by Carsten Hohoff and Thorsten Hanhoff from the University of Münster. The protein was heterologously expressed in *Escherichia coli* and purified according to the procedure reported by Hohoff *et al.* [1999].

To obtain ¹⁵N-enriched E-FABP, the protein was expressed in M9 minimal medium with ¹⁵NH₄Cl (Cambridge Isotope Laboratories, Andover, USA) as the sole nitrogen source. All protein samples were delipidated with Lipidex-1000 according to the method of Glatz and Veerkamp [1983] and subsequently relipidated using a threefold excess of stearic acid (C18:0), for which E-FABP shows the highest binding affinity [Siegenthaler *et al.*, 1994].

Recombinant bovine H-FABP was prepared and delipidated as reported elsewhere [Lassen *et al.*, 1995]. The hydrogen/deuterium exchange of H-FABP in the apo-form (1.2 mM) was performed as previously described for holo H-FABP [Lücke *et al.*, 1992]. A series of homonuclear 1D and 2D NMR experiments were collected at a temperature of 310 K and a ¹H resonance frequency of 600.13 MHz to follow the amide proton exchange over time.

3.2 NMR data collection and processing

The NMR data collection was performed at pH 5.6 and 298 K. The E-FABP samples were prepared at 3-4 mM concentration in 20 mM potassium phosphate buffer ($H_2O:D_2O = 90:10$, v/v) with 0.05% NaN₃.

Homonuclear TOCSY and NOESY as well as ¹⁵N-edited HTQC, HSQC, TOCSY-HSQC and NOESY-HSQC experiments were carried out on a Bruker DMX spectrometer operating at a ¹H resonance frequency of 600.13 MHz and using a 5 mm triple-resonance (¹H/¹³C/¹⁵N) probe with XYZ-gradient capability (Table 3.1). The homonuclear TOCSY and NOESY spectra were recorded in a phase-sensitive mode with time-proportional phase incrementation (TPPI) of the initial pulse. Quadrature detection was used in both dimensions with the carrier placed in the center of the spectrum on the water resonance. The water signal was suppressed by selective presaturation during the relaxation delay. In the NOESY experiments water saturation was applied also during the mixing time. The TOCSY experiments were performed with the Bruker program mlevprtp (homonuclear Hartman-Hahn

Table 3.1Acquisition parameters for homonuclear TOCSY and NOESY as well as
 ¹⁵N-edited HTQC, HSQC, TOCSY-HSQC and NOESY-HSQC
 experiments.

Experiment		TOCSY	TOCSY	NOESY
Spinlock or mixing time (ms)		80	4.8	200
Data points	F ₁	512	512	512
	F ₂	2048	2048	2048
Spectral width (Hz)	F ₁	7374.63	7374.63	7374.63
	F ₂	7374.63	7374.63	7374.63
Spectral width (ppm)	F ₁	12.29	12.29	12.29
	F ₂	12.29	12.29	12.29
Resonance frequencies (MHz)	F ₁	600.130	600.130	600.130
	F ₂	600.130	600.130	600.130

Homonuclear TOCSY and NOESY experiments

¹⁵N-edited HTQC and HSQC

Experiment		HTQC	HSQC	HSQC
Data points	F_1	256	512	512
	F ₂	512	1024	1024
Spectral width (Hz)	F_1	608.18	4257.18	2219.81
	F ₂	2097.32	4194.63	4194.63
Spectral width (ppm)	F_1	10.00	70.00	36.50
	F ₂	3.49	6.99	6.99
Resonance frequencies (MHz)	F ₁	60.810	60.810	60.810
	F ₂	600.130	600.130	600.130

¹⁵N-edited TOCSY-HSQC and NOESY-HSQC

Experiment		TOCSY-HSQC	NOESY-HSQC
Data points	F_1	80	80
	F ₂	256	256
	F ₃	1024	1024
Spectral width (Hz)	F_1	2219.85	2219.85
	F_2	7788.16	7788.16
	F ₃	7788.16	7788.16
Spectral width (ppm)	F_1	36.500	36.50
	F ₂	12.98	12.98
	F ₃	12.98	12.98
Resonance frequencies (MHz)	F_1	60.810	60.810
	F_2	600.130	600.130
	F ₃	600.130	600,130

transfer using the MLEV17 sequence for mixing and two different power levels for excitation and spinlock [Bax and Davis, 1985]). The spinlock times were set to either 80 or 4.8 ms (to obtain COSY-type information with less spectral overlap). For the NOESY experiments, a modified version of the Bruker program noesyprtp (2D homonuclear correlation via dipolar coupling with presaturation during relaxation delay and mixing time) was used with mixing times ranging between 150 and 200 ms.

All three-dimensional experiments made use of pulsed-field gradients for coherence selection and artifact suppression, while gradient-sensitivity-enhancement schemes were utilized when appropiate [Kay *et al.*, 1992; Schleucher *et al.*, 1993]. Quadrature detection in the indirectly-detected dimensions was achieved by either the States/TPPI or the echoantiecho method. Baseline corrections were applied wherever necessary. All spectra were calibrated with respect to 2,2-dimethyl-2-silapentane-5-sulfonate (Cambridge Isotope Laboratories, Andover, USA) as an external reference [Wishart *et al.*, 1995].

The spectral data were processed on a Silicon Graphics workstation using the Bruker XWIN-NMR 1.3 software package. Peak-picking and data analysis of the transformed spectra were performed with the AURELIA 2.5.9 program (Bruker, Karlsruhe, Germany).

3.3 Constraint generation and structure calculation

The complete ¹H and ¹⁵N resonance assignments were obtained via the classical NOE-based assignment strategy of Wüthrich in a modified form [Wüthrich, 1986; Bax, 1989; Bax and Grzesiek, 1993], as described in section 2.1.1. of this work. The assignments for the NH₂ groups of the asparagine and glutamine side-chains were derived from a ¹H/¹⁵N-HTQC spectrum. The side-chain amide resonances of the arginine residues were obtained using a ¹H/¹⁵N-HSQC spectrum with a large spectral width of 70 ppm (Table 3.1).

The NOE-derived distance constraints were determined from 2D homonuclear NOESY and 3D ¹⁵N-edited NOESY-HSQC spectra. Automated assignments of the NOEs were made on the basis of only chemical shifts using a self-written MATLAB 5.0 routine. The upper distance limits were set by an internal calibration based on the intensities of sequential and medium-range NOE values from residues within well-defined secondary structure elements. For the distance calibration of the sequential H α -HN sequential NOE connectivities in the β -sheet structures were set to an atom distance of 2.5 Å, based on the following residue pairs: L13-V14, C43-I44, T76-T77, Q84-T85, G92-A93, Q96-H97, K115-L116 and V118-

E119. For the interstrand HN-HN and H α -HN NOE connectivities, corresponding to a distance limit of 3.5 Å, the following pairs were used: V134-W11, E132-L13, V121-C127, L13-D42, C43-W11, N51-D48, I54-F65, L116-Y131, V95-F89 and G9-I45. Finally, for the HN-HN(*i*, *i* + 2) connectivities in an α -helix, representing a distance of 4.5 Å, the NOEs between residues K17-F19, M23-E25, G29-A31 and M35-A37 served as calibration references. The cross-peak intensities were subsequently grouped into four different distance categories: 2.5, 3.5, 4.5 and 6.0 Å.

Experimental evidence about hydrogen bonds was obtained from hydrogen/deuterium exchange. First, the NMR sample buffer, 20 mM potassium phosphate buffer ($H_2O:D_2O =$ 90:10, v/v) with 0.05% NaN₃ and pH 5.6, was lyophilized and subsequently D_2O was added. This was repeated twice in order to obtain a perdeuterated buffer. Approximately 6 mg of E-FABP in protonated solution were concentrated to 100 μ l and then 1.9 ml of perdeuterated buffer were added. The solution was centrifugated at 277 K until it reached again a volume of 100 µl. This procedure was repeated 6 times in 6 hours until the protein sample had a 1.5-2.0 mM concentration in perdeuterated 20 mM potassium phosphate buffer with 0.05% NaN₃ and pH 7.6 (uncorrected reading). The protein sample was then put into a Bruker DMX spectrometer operating at a ¹H resonance frequency of 600.13 MHz and the temperature was set to 298 K. An alternating series of 1D and homonuclear TOCSY experiments was then started immediately. The TOCSY experiments (with a spinlock time of 80 ms) were carried out 19 min and 1, 2, 5, 15, 24, 33 and 43 hours after the sample was set to 298 K. Slowexchanging backbone amide protons were then identified to be part of the hydrogen-bonding network in the β -sheet and subsequently converted into additional distance constraints. The distance between N and O atoms in the hydrogen bridges was fixed at 3.2 Å; the distance between H^N and O atoms at 2.2 Å.

The structure calculations were performed with the DYANA 1.5 program package [Güntert *et al.*, 1997], which uses simulated annealing combined with molecular dynamics in torsion angle space. The distance constraints used for the structure calculations are listed in Appendix A.1. Assignments of ambiguous NOE cross-peaks were made by applying a structure-aided filtering strategy in repeated rounds of structure calculations. Starting *ab initio*, 300 conformers were calculated in 8000 annealing steps each. A total of 126 stereospecific assignments of the prochiral methylene and isopropyl groups were obtained with the program GLOMSA [Güntert *et al.*, 1991]. Pseudoatom correction for unassigned stereo partners and magnetically equivalent protons (Table 3.2) was applied as proposed by Wüthrich and co-workers [Wüthrich *et al.*, 1983]. Subsequent energy minimization in the

Table 3.2Amino acid pseudoatoms used for the interpretation of NOE distance
constraints in proteins. The indices A, B, G, D, E and H are used instead of
the more common Greek letters to identify the side-chain atom positions
[Wüthrich et al., 1983].

Chemically equivalent protons	Pseudoatom	Correction value (Å)
Methylene group	QA, QB, QG, QD, QE, QH	0.9
Methyl group	QB, QG, QD	1.1
Isopropyl group	QQG, QQD	2.3
Phenyl ring (Hδ or Hε)	QD, QE	2.2
Phenyl ring (all protons)	QR	2.5

presence of the NMR restraints was performed on the 20 best DYANA conformers using the DISCOVER module of the INSIGHT 97 software package (Molecular Simulations Inc., San Diego, USA). The consistent valence force field (CVFF) [Dauber-Ogusthorpe *et al.*, 1988] was used with a dielectric constant equal to r (distance in Å). A force constant of 20 kcal mol⁻¹ Å⁻² was used in the NOE restraint term. The resulting structures were analyzed with PROCHECK-NMR [Laskowski *et al.*, 1993].

3.4 Relaxation measurements

 T_1 , T_2 and steady-state heteronuclear ¹⁵N {¹H} NOE measurements were performed according to known pulse schemes with a gradient-selected echo/antiecho sensitivity enhancement technique [Stone *et al.*, 1992; Akke *et al.*, 1994]. For the longitudinal (R₁) and transverse (R₂) relaxation rate constants, a series of 8 - 12 spectra with relaxation periods between 16 - 960 msec for T₁ and 25 - 282 msec for T₂ were collected on Bruker DMX spectrometers operating at ¹H resonance frequencies of 499.87, 600.13 and 800.13 MHz (Table 3.3). R₁ and R₂ rates were determined by non-linear least square fitting of the integrated peak intensities versus time, using mono-exponential functions provided in the RMX software package developed in our laboratory by Jürgen Schmidt (presently at the National Institute for Medical Research, London). The steady-state heteronuclear ¹⁵N{¹H}NOEs were obtained from the ratio of the

Table 3.3Relaxation periods for the longitudinal (T1) and transverse (T2) relaxation.

 T_1 at 499 MHz

Loop counter	Spectrum number	Relaxation period (ms)		
2	1	16		
80	2	640		
10	3	80		
28	4	224		
38	5	304		
14	6	112		
6	7	48		
64	8	512		
20	9	160		
4	10	32		
50	11	400		

T_1 at 600 MHz

Loop Spectrum counter number		Relaxation period (ms)		
96	1	768		
2	2	16		
24	3	192		
12	4	96		
64	5	512		
4	6	32		
16	7	128		
48	8	384		
6	9	48		

T_1 at 800 MHz

Loop counter	Spectrum number	Relaxation period (ms)		
24	1	240		
10	2	100		
48	3	480		
6	4	60		
96	5	960		
2	6	20		
32	7	320		
8	8	80		
64	9	640		
4	10	40		
16	11	160		
12	12	120		

 T_2 at 499 MHz

Loop counter	Spectrum number	Relaxation period (ms)
3	1	23.24
27	2	209.17
6	3	46.48
24	4	185.93
15	5	116.21
21	6	162.69
9	7	69.72
12	8	92.97
18	9	139.45

T_2 at 600 MHz

Loop counter	Spectrum number	Relaxation period (ms)		
18	1	153.85		
21	2	179.49		
33	3	282.06		
6	4	51.28		
30	5	256.42		
9	6	76.92		
24	7	205.13		
15	8	128.21		
3	9	25.64		

T₂ at 800 MHz

Loop counter	Spectrum number	Relaxation period (ms)		
12	1	112.13		
21	2	196.22		
3	3	28.03		
24	4	224.26		
6	5	56.06		
18	6	168.19		
9	7	84.10		
15	8	140.16		

peak intensities observed with and without ¹H saturation. In order to suppress time- or temperature-dependent effects, the spectra were acquired in an interleaved mode with incremented relaxation delays. All experiments were recorded with 256 t₁ increments of 2048 data points in t₂. The spectral widths were set to 6010 Hz (¹H) / 1773 Hz (¹⁵N) at 500 MHz, 7184 Hz (¹H) / 2131 Hz (¹⁵N) at 600 MHz and 9766 Hz (¹H) / 2841 Hz (¹⁵N) at 800 MHz. Acquisition and processing parameters for the relaxation experiments of human E-FABP complexed with stearic acid are listed in Appendix A.2.

The overall molecular shape of the members of the FABP family is not spherical, but rather resembles an oblate ellipsoid. The ratio of the principal components of the rotational diffusion tensor obtained from hydrodynamic calculations using the bead method [García de la Torre and Bloomfield, 1981] is 1.00 : 0.92 : 0.83 for E-FABP. This suggests a small degree of anisotropy of the overall rotation for E-FABP, which can in principle be detected by NMR relaxation measurements [Tjandra *et al.*, 1995]. However, since the anisotropy of the rotational diffusion tensor is rather small, anisotropic modelling of the global motion did not result in a statistically significant improvement of the fit. Therefore, the dynamics calculations were performed by assuming an isotropic model in solution, as previously reported for bovine H-FABP and porcine ILBP [Lücke *et al.*, 1999]. Consequently, an estimate of the overall rotational correlation time τ_c was derived for $T_1(N)/T_2(N)$ ratios that fell within one standard deviation of the mean $T_1(N)/T_2(N)$ ratio [Kay *et al.*, 1989].

The microdynamic parameters of the backbone HN vectors (the generalized order parameter S^2 and the effective correlation time τ_e) as well as the conformational exchange contribution to the transverse relaxation rate (the exchange parameter R_{ex}) were calculated and fitted with the Modelfree4 program of Palmer and co-workers [Mandel *et al.*, 1995; Palmer *et al.*, 1991]. The order parameter S^2 represents the amplitude of the nanosecond-to-picosecond backbone mobility ($S^2 = 1$ corresponds to a completely restricted orientation of the HN vector, while $S^2 = 0$ indicates unrestricted motion). Non-zero values of the transverse relaxation rate R_{ex} are expected to appear when processes of conformational or chemical exchange occur within the millisecond-to-microsecond time range. Three models for the spectral density function were applied to derive backbone dynamics information from the experimentally determined relaxation rates R_1 , R_2 and NOE. The first model was based on the single time scale model-free formalism proposed by Lipari and Szabo [1982], with fitting of both S^2 and τ_e . The second model added an R_{ex} term to the model-free formalism, providing fits to S^2 and R_{ex} . Finally, the extended form of the model-free formalism [Clore *et al.*, 1990], where the

generalized order parameter becomes a product of the individual fast and slow time scale order parameters, $S^2 = S_f^2 S_s^2$, was used as another model of the spectral density function, fitting the parameters S_s^2 , S_f^2 and τ_e . The model-free formalism was used for 72 of 120 amino acids; the second model was used for 47 amino acids; the model of Clore was used only for the C-terminal residue.

4 **Results and discussion**

4.1 **Resonance assignments of human E-FABP**

Using homonuclear and heteronuclear NMR experiments, the ¹H and ¹⁵N resonance assignments were completed for recombinant human E-FABP and are reported in Table 4.1. They are also available at the BioMagResBank (http://www.bmrb.wisc.edu) under the accession number BMRB-5083. The proton resonance assignments were carried out mainly with 2D homonuclear TOCSY (Figure 4.1) and NOESY (Figure 4.2) spectra. ¹H/¹⁵N-correlated 3D TOCSY-HSQC and 3D NOESY-HSQC spectra were used to identify the ¹⁵N resonances of backbone amides and to verify the obtained proton resonance assignments. A 2D homonuclear TOCSY spectrum with a short spinlock time of 4.8 ms helped to characterize directly neighbouring protons in the side-chains (Figure 4.3). Reported in Appendix A.3 are the 126 stereospecific assignments of the prochiral methylene and isopropyl groups obtained with the program GLOMSA [Güntert *et al.*, 1991]. Side-chain NH₂ groups were identified using a ¹H/¹⁵N-HTQC spectrum (Figure 4.4). The sequential resonance assignments of the amide groups are indicated in the 2D ¹H/¹⁵N-HSQC spectrum (Figure 4.5).

Resonance assignments of FABPs are often hindered by the occurrence of multiple spin-systems. For bovine H-FABP, such spin-system heterogeneities within the so-called 'portal region' indicated up to four separate conformational states due to a mixture of different fatty acid ligands [Lücke et al., 2001]. The portal region is located between helix all (see Figure 4.9 for secondary structure denotation) and the turns connecting β -strands βC and βD as well as βE and βF , apparently representing the only opening in the protein surface through which the fatty acid ligand can enter and exit the internal binding cavity [Sacchettini et al., 1992]. In the case of human E-FABP, however, just nine out of 22 residues that exhibit spinsystem heterogeneities are part of this portal region, which encompasses residues 27-39, 57-62 and 76-82. Two separate proton spin-systems were observed for each of the following amino acid residues: R12 (βA), V28 (αI-αII turn), M35, A37 (both αII), A39 (αII-βB linker), I44, T46 (both βB), K55 (βC), Q64 (βD), G70, E71 (both βD-βE turn), T76 (βE), A78, D79 (both βE-βF turn), F89 (βF), T90 (βF-βG turn), V95 (βG), K110 (βH), V121 (βI) and E135 (C-terminus). Three different proton spin-systems were observed for G36 (all) and T77 (BE- β F turn). Remarkably, the O^{γ}H resonance of T77 shows three distinct signals around 5.84 ppm, analogous to the corresponding residue T74 in bovine H-FABP [Lücke et al., 2001]. Moreover, G36 in α -helix II belongs to a number of sequentially neighbouring residues (M35, G36, A37 and A39) that display multiple spin-systems also in bovine H-FABP (V32, G33, N34 and T36). The same applies to A78 and D79 in the β E- β F turn, which correspond to A75 and D76 in H-FABP. In contrast to bovine H-FABP, where all these residues showed multiple spin-systems of almost the same intensity (representing separate, equally-populated conformational states due to different bound fatty acids), one major form is always observed in the spectra of human E-FABP, since the protein had been complexed with only a single type of ligand molecule, *i.e.*, stearic acid. Consequently, the spin-system heterogeneities observed around the portal region in human E-FABP may be due to the presence of a minor, ligand-free protein form. All other cases of multiple spin-systems, however, are distributed randomly throughout the amino acid sequence, suggesting a different origin.

In the X-ray structure of human E-FABP, the turn between β -strands β C and β D, which comprises residues 58-61 and is assumed to be part of the portal region, displayed a less well-defined structure due to weak electron density. This has been interpreted as an indication that two or more conformational states may occur in the crystal at that position

Figure 4.1 2D homonuclear TOCSY spectrum of human E-FABP at pH 5.6 and 298 K (¹H resonance frequency of 600.13 MHz). The spinlock time was set to 80 ms.

[Hohoff *et al.*, 1999]. In the solution structure, on the other hand, no spin-system heterogeneities were observed for these particular residues, thus excluding separate long-lived conformational states as reported for H-FABP [Lücke *et al.*, 2001]. However, a less well-defined structure in the β C- β D turn together with a lack of the otherwise highly conserved F57 portal lid might explain why E-FABP shows a relatively low oleic acid binding affinity compared to other FABPs in the LBP subfamily *IV* [Zimmerman *et al.*, 2001].

The E-FABP chemical shift data show several values that fall outside five standard deviations of the mean chemical shift for the atom indicated according to the BMRB statistics. Precisely, these are: $H^{\gamma 2}$ of E75 (1.16 ppm, compared to a mean chemical shift of 2.33 ± 5×0.21 ppm in the BMRB), $H^{\delta 2}$ of R81 (0.38 ppm, compared to $3.13 \pm 5 \times 0.19$ ppm), $H^{\beta 2}$ and $H^{\beta 3}$ of K103 (both 0.11 ppm, compared to $1.77 \pm 5 \times 0.25$ ppm and $1.80 \pm 5 \times 0.24$ ppm, respectively) and $H^{\beta 2}$ of L116 (-0.85 ppm, compared to $1.62 \pm 5 \times 0.32$ ppm). In all of these cases, an aromatic ring in the neighbourhood of the protons involved can explain these

Figure 4.2 2D homonuclear NOESY spectrum of human E-FABP at pH 5.6 and 298 K (¹H resonance frequency of 600.13 MHz).

extreme values of the chemical shift. According to the model originally developed by Johnson and Bovey [1958], an aromatic ring may induce a shielding effect that modifies the chemical shift of any proton located up to 4 Å perpendicularly from the plane of the ring. All the above-mentioned amino acids with extreme chemical shift are less than 3.5 Å away from the plane of a neighbouring aromatic ring: F65 (for E75), W100 (for R81 and K103) and W11 (for L116), which can explain a difference of up to 2 ppm with respect to the mean chemical shift.

The presence of six cysteines in the amino acid sequence of human E-FABP is highly unusual in the LBP family. Four cysteines are unique to E-FABP: C43, C47, C67 and C87. The cysteine residues C120 and C127 of E-FABP are partially conserved in some LBPs, but only the M-FABP sequence includes both (at the respective positions 117 and 124). In the three-dimensional structure of E-FABP, two cysteine pairs (C67/C87 and C120/C127) were identified by X-ray analysis to be close enough to allow disulfide bridge formation, but a S-S bond was actually found only between C120 and C127 [Hohoff *et al.*, 1999].

Figure 4.3 2D homonuclear TOCSY spectrum of human E-FABP at pH 5.6 and 298 K (¹H resonance frequency of 600.13 MHz). The spinlock time was set to 4.8 ms to characterize directly neighbouring protons in the side-chains.

Table 4.1Chemical shift values of ¹H and ¹⁵N resonances for recombinant human E-
FABP at pH 5.6 and 298 K. Sequence numbers marked with prime and
double-prime correspond to multiple spin-systems. Stereospecific
assignments are written with italics; tentative assignments are marked
with asterisk (*).

Residue	Amino acid	Ν	NH	C ^α H	C ^β H	Other H	Other N
1	Met						
1							
2	Thr	115.3	8 23	1 55	1 12	$1.17 x^2$	
3 4	Val	123.0	8,25	4,55	4,42	1,17 y 0.61.0.75 y	
4	Val	123,0	8,10	3,07	1,04	0,01,0,75 Y	
5	UIII	119,0	0,12	5,91	1,92,2,05	2,02,2,20 y	111.2 c
6	Cln	1167	7 47	4.15	2 27.2 17	$7,42,0,09 \varepsilon$	111,2 8
0	OIII	110,7	/,4/	4,15	2,27,2,17	2,42,2,52 γ 7.62:6.05 c	112.4 c
7	Lou	116 1	7.65	1 29	1 61.1 72	7,02,0,95 E	112,4 8
/	Leu	110,1	7,05	4,20	1,01,1,75	1,40 γ	
0	Chu	115 2	7 20	4.01	2 10.2 00	0,03,0,380	
8	Clu	113,5	7,20	4,01	2,10,2,00	2,01,2,78 γ	
9	Gly	109,8	8,00	3,00,4,04	1 72.1 59	1 20.1 17	
10	Arg	119,8	8,20	4,80	1,72,1,58	1,30,1,1/γ	
						3,3/;2,84 8	02 (
	T	120.4	0.01	5.04	2 2 2 2 2 2 7	30 °C/	82,6 ε
11	Irp	128,4	9,21	5,26	3,20;2,8/	7,02 8	107.5
						9,58 E ²	127,5 ε
						7,07 e ³	
						$7,19\zeta^{2}$	
						$7,01 \zeta^{3}$	
						6,91 η²	
12	Arg	126,2	10,14	5,40	1,80;1,58	1,72 γ	
						<i>3,04;3,24</i> δ	
						9,18 ε	86,5 ε
12	' Arg	126,2	10,14	5,40	1,80;1,58	1,72 γ	
						3,04;3,24 δ	
						9,13 ε	86,4 ε
13	Leu	129,2	7,99	3,41	1,43;1,03	1,17 γ	
						<i>0,22;0,78</i> δ	
14	Val	119,8	9,39	4,54	2,18	0,96;0,85 y	
15	Asp	119,8	7,65	4,86	2,39;2,62		
16	Ser	116,4	8,22	5,00	3,75;3,40		
17	Lys	129,2	8,92	4,89	1,91;1,84	<i>1,52;1,48</i> γ	
						1,75;1,69 δ	
						3,03 ε	
18	Gly	111,6	8,99	4,18;4,39			
19	Phe	121,0	8,35	4,54	2,88;3,17	7,20 δ	
						7,10 ε	
						7,15 ζ	
20	Asp	119,0	8,77	4,20	2,61;2,51	-	
21	Glu	119,3	8,91	3,81	2,22;2,32	2,59;1,94 γ	
22	Tyr	121,8	7,98	3,99	2,91;3,08	6,72 δ	
	2	*	~	2 ⁴		6,40 ε	
23	Met	116,7	8,25	3,84	1,45;1,19	2,20;1,86 y	
		,	,	,		2,09 ε	

Residue	Amino acid	Ν	NH	C ^α H	C ^β H	Other H	Other N
24	Lys	119,3	8,26	3,84	1,71;1,93	1,44 γ 1,62 δ	
25		104.1	7.02	2.02	2 10 2 02	2,91 e	
25	Glu	124,1	7,92	3,93	2,10;2,03	2,39;2,20 γ	
20	Leu	115,8	/,03	3,80	1,3/;1,/4	1,05 γ 0 34:0 61 δ	
27	Glv	106.4	7 68	4 10.3 64		0,54,0,01 0	
28	Val	120.4	7,00	3 64	1.51	1.07:0.81 v	
28'	Val	120,1	7 45	3 68	1.53	1,06:0.80 v	
29	Gly	114,1	8,64	4,06:3,89	-,	_,,	
30	Ile	119,3	8,24	3,66	1,82	$1,26;1,51 \gamma^1 \\ 0,94 \gamma^2$	
						0,89 δ	
31	Ala	122,7	8,39	4,09	1,39		
32	Leu	119,3	7,78	4,21	1,56;1,46	1,06 γ 0,91;0,82 δ	
33	Arg	120,4	8,41	4,13	1,77;1,40	1,69 γ 3,06;2,79 δ 7 53 ε	82.4 e
34	Lvs	119 5	8 10	3 99	191.186	1 59·1 39 v	02,4 0
	295	119,0	0,10	0,77	1,71,1,00	1,65 δ 2 99 ε	
35	Met	117,3	7,38	4,07	2,07;2,26	2,70;2,43 γ 2,03 ε	
35'	Met	117,0	7,44	4,12	2,06;2,21	2,74;2,48 γ 2,04 ε	
36	Gly	107,6	9,21	3,76;3,62		,	
36'	Gly	107,0	9,11	3,76;3,62			
36"	Gly	106,1	9,02	3,77;3,59			
37	Ala	121,8	8,14	4,37	1,55		
37'	Ala	121,8	8,19	4,36	1,54		
38	Met	113,8	7,33	4,51	2,10	2,65;2,71 γ 1,99 ε	
39	Ala	121,8	7,57	4,18	1,43		
39'	Ala	121,8	7,51	4,20	1,43		
40	Lys	123,5	8,93	4,76	1,85	1,47;1,27 γ 1,70 δ	
						3,01 ε	
41	Pro			4,82	2,07	<i>1,81;1,98 γ</i> 4,09;3,80 δ	
42	Asp	116,7	8,43	6,08	2,57;2,49		
43	Cys	121,5	9,99	5,46	2,52;2,14	1,53 γ	
44	lle	129,0	9,80	5,27	1,74	$1,32;1,16 \gamma^{2}$ 0,78 γ^{2}	
44'	Ile	129,1	9,83	5,24	1,74	0,88 δ 1,32;1,16 γ ¹	
						0,78 γ ² 0,85 δ	
45	Ile	129,5	9,22	4,77	2,20	$\begin{array}{c} 0,74;1,77 \ \gamma^{1} \\ 0,51 \ \gamma^{2} \\ 0.55 \ \delta \end{array}$	
46	Thr	123.0	8.89	4,76	3.91	$1.13 \gamma^2$	
46'	Thr	121,8	8,91	4,80	3,97	$1,12 \gamma^{2}$	

Residue	Amino acid	Ν	NH	C ^a H	C ^β H	Other H	Other N
47	Cus	125.8	10.20	5 10	285.225		
47	Cys	125,6	7.05	<i>J</i> ,19	2,65,2,55		
40	Asp	120,7	8.24	4,80	2,00,5,00		
49 50	Uly Luc	110,1	0,24 8,62	4,40.3,23	1 97	1 45.1 26 %	
30	Lys	122,7	8,05	4,39	1,87	1,43,1,50 γ	
						1,09.0	
51	Asn	120.1	0.54	5 14	2 75.2 68	2,978	116 2 8
52	Leu	120,1	8.95	5 12	1 20.1 86	1 42 v	110,2 0
02	Lou	127,0	0,90	0,12	1,20,1,00	0.83 δ	
53	Thr	122,1	8,97	5,06	3,81	$0,98 \gamma^2$	
54	Ile	121,8	7,60	4,57	0,92	$0,77 \gamma^{1}$	
						$0,38 \gamma^2$	
						0,60 δ	
55	Lys	131,8	9,10	5,04	1,89;1,65	1,16 γ	
						1,43 δ	
<i>EE</i> ?	Leve	122.1	0.22	5.02	107.169	2,80 ε	
22	Lys	132,1	9,23	5,03	1,97;1,08	1,15 γ	
						1,400	
56	Thr	124.1	0.38	5.12	4.12	$2,84 \varepsilon$ 1 16 y^2	
57	Glu	124,1	9,38	5.03	$1.81 \cdot 2.02$	2 10.2 19 v	
58	Ser	118.1	8 12	4 97	4 20.3 74	2,10,2,17	
59	Thr	113.6	8 38	4 02	4 21	$1.28 v^2$	
60	Leu	118,7	7,69	4,31	1,57	1,36 γ	
		-) -	.,	2-	<u>-</u>	0.89:0.84 δ	
61	Lys	117,0	7,13	4,41	1,72;1,85	1,52 γ	
	-					1,30 δ	
						2,84 ε	
62	Thr	124,1	8,74	5,39	4,04	$1,26 \gamma^{2}$	
63	Thr	118,7	8,91	4,80	4,25	$1,16 \gamma^2$	
64	Gln	118,4	8,60	5,44	1,87;1,98	2,16;2,07 γ	
	-					7,46;6,73 ε	111,7 ε
64*	Gln	118,4	8,56	5,43	1,93;1,96	2,16;2,07 γ	
<i></i>	DI	117.0	7.04	5.00	2 20 2 26	7,46;6,73 ε	111,7 ε
65	Phe	117,0	7,96	5,09	3,28;3,36	6,87ð	
						/,1/ 8	
66	Sor	1147	° 11	5 57	2 50.2 70	6,875	
67	Cus	114,7	8,22 0.25	5,57	5,50,5,79	1 1 2 ***	
68	Cys Thr	110,7	9,23	4,08	2 82	$1,12 + \gamma$ $1,24 + \gamma^2$	
69	Leu	127.8	9,10	4,93	1 63.1 82	$1,24 \gamma$ 1 20 γ	
0)	Leu	127,0	9,12	1,11	1,05,1,02	0.68.0.808	
70	Glv	109.8	9 10	4 27.3 67		0,00,0,000 0	
70'	Gly	109,0	9,16	4,30;3,70			
71	Glu	120,1	7,83	4,80	2,02;1,87	2,19;2,06 y	
71'	Glu	120,1	7,94	4,80	2,02;1,87	2,19;2,06 y	
72	Lys	130,1	8,96	4,99	1,76	1,41 γ	
						1,65 δ	
						2,94 ε	
73	Phe	123,0	9,43	5,08	3,31;3,12	7,37 δ	
						6,98 e	
						6,31 ζ	
74	Glu	119,5	8,53	5,07	2,09	1,93 γ	
75	Glu	133,8	8,96	4,51	1,95	1,16;1,52 γ	
76	Thr	121,5	8,59	5,23	4,10	$1,13 \gamma^{2}$	
76'	Thr	121,5	8,52	5,23	4,10	1,13 γ²	

Residue	Amino acid	Ν	NH	C ^α H	$C^{\beta}H$	Other H	Other N
77	Thr	120,1	9,10	4,49	4,30	$0,66 \gamma^{2}$	
77'	Thr	120,1	9,10	4,49	4,30	5,84 γ^1 0,66 γ^2	
77"	Thr	120,1	9,10	4,49	4,30	5,89 γ^1 0,66 γ^2	
79	A 1a	124.1	0.56	3 07	1 /1	5,81 γ	
78,	Ala	124,1	9,50	3,97	1,41		
70	Ala	124,1	9,03	3,97	1,41		
79	Asp	103,1	9,20	4,51	2,25,2,07		
20	Asp	107,0	9,33	4,54	2,20;2,75		
80 91	Gly	108,1	7,80	5,44;4,10	1 16.0 57	0.02.1.11	
81	Arg	118,7	/,18	4,00	1,40;0,57	0,93,1,11 γ	
						0,38;2,63 8	00.5
						9,30 E	90,5 ε 72.2
				_		7,37 η²	73,2 ŋ²
82	Lys	121,0	7,98	5,35	1,67;1,56	<i>1,31;1,37</i> γ 1,58 δ 2.94 c	
07	The	115.0	0.14	4 97	2.07	$2,94 \varepsilon$	
83		115,0	9,14	4,8/	3,97	$0,33 \gamma$	
04	UIII	119,5	0,90	4,70	1,95,2,11	2,13,2,38 γ 7,62;6,87 ε	112,7 ε
85	l hr	127,2	9,25	5,63	2,32	0,87γ	
80	Val	121,0	8,36	4,48	1,97	0,93 γ	
87	Cys	126,1	9,83	6,02	2,50;2,94	1,8/γ	11410
88	Asn	120,4	9,02	5,02	2,58;2,54	7,72;6,92 δ	114,1 δ
89	Phe	125,2	9,37	5,57	2,50;3,27	6,98 δ 7,05 ε 6 76 ζ	
89'	Phe	125,2	9,32	5,66	2,52;3,25	6,98 δ 7,05 ε	
00	Thr	122.5	8 60	4 40	2 74	$0,70 \zeta$	
90	1 III Thr	123,3	8,09 8 57	4,40	3,74	$1,07 \gamma$	
90	1 111	123,0	0,57	4,40	3,73	1,07 γ	
91	Asp	127,8	9,15	4,1/	2,40;2,82		
92		101,9	7,83	5,27,5,92	1.07		
93	Ala	121,6	7,13	4,02	1,07	1 41	
94	Leu	120,4	8,90	5,02	1,50;1,94	1,41 γ	
05	Val	122.0	0.01	4.21	2.09	0,84;0,750	
95	Val	133,8	9,91	4,31	2,08	0,84;0,89 γ	
95	Val	134,1	10,05	4,29	2,02	0,84;0,88 γ	
96	Gin	129,8	8,95	5,12	2,49	2,14,1,73 γ 6,75;6,05 ε	113,7 ε
97	His	127,0	9,20	5,38	3,04;3,32	7,37 $δ^2$ 8,58 ε ¹	
98	Gln	124,7	9,03	4,93	1,53;1,81	2,28;2,45 γ 7,79;6,28 ε	114,7 ε
99	Glu	118,7	8,80	5,35	2,01;2,12	2,20;2,15 γ	
100	Trp	126.7	8.24	4.85	3.48:3.09	$7.13 \delta^{1}$	
	I	- , .	- ,	,		10,26 ε^1 6,93 ε^3 7,20 ζ^2 6,58 ζ^3	129,5 ε ¹
		1010	o 4 -			/,01 η²	
101 102	Asp Gly	121,8 104,1	9,15 8,42	4,22 3,92;3,53	2,38;2,81		

Residue	Amino acid	Ν	NH	C ^a H	C ^β H	Other H	Other N
103	Lys	122,4	8,31	4,20	0,11	1,05;0,86 y	
	-					1,43;1,18 δ	
						2,84;2,78 ε	
104	Glu	115,0	7,99	5,48	1,85;2,01	2,11;2,08 γ	
105	Ser	112,4	8,71	5,18	4,40;3,85	5,39 γ	
106	Thr	120,7	8,08	5,50	3,89	$1,15 \gamma^2$	
107	lle	127,2	9,36	5,00	1,75	$1,43 \gamma^{1}$	
						0,66 γ ²	
100	T 1	127.0	0.((5 17	2.07	$0,75\delta$	
108	l hr	127,8	9,66	5,17	3,97	1,09 γ	
109	Arg	124,7	9,07	5,26	1,2/;1,33	1,85;1,/0 *γ 2,52:2,72 *S	
						2,32;2,72 *0	9 <i>1</i> 2 * a
						$0,33 + \varepsilon$	04,3 *ε 70.2 *m ¹
110	Lvc	121.3	8 71	4.80	1 38.1 67	1.08 %	70,2 1
110	Lys	121,5	8,71	4,00	1,30,1,07	1,08 y	
						2 68 s	
110'	I vs	121.3	8 73	4 83	1 39.1 70	2,00 c	
110	Lys	121,5	0,75	4,05	1,57,1,70	1 49 8	
						2,72, £	
111	Leu	122.1	8 59	5 11	1.42:1.52	2,72 c 1 42 γ	
	200	,-	0,00	0,11	1,72,1,02	0.85:0.73 δ	
112	Lvs	125.8	9.28	4.47	1.51:1.71	1.33:1.24 γ	
	J -	-) -	- , -	2	,- , ,.	1,59;1,65 δ	
						2,94 ε	
113	Asp	128,4	9,48	4,33	2,95;2,67		
114	Gly	102,7	8,55	4,31;3,71			
115	Lys	121,3	7,96	4,96	1,81;2,00	1,54 γ	
						1,68;1,59 δ	
						3,08 ε	
116	Leu	123,8	8,23	4,27	-0,85;1,10	0,72 γ	
						<i>-0,03;-0,49</i> δ	
117	Val	128,7	9,19	4,49	1,87	0,82;0,90 y	
118	Val	130,4	9,61	4,97	2,23	0,66;0,83 γ	
119	Glu	125,8	9,15	5,45	1,86;2,00	2,19;2,17 γ	
120	Cys	123,0	8,93	5,41	2,09;2,26		
121	Val	120,7	8,69	5,36	2,14	1,00;0,95 γ	
121	Val	120,4	8,64	5,31	2,07	0,99;0,95 γ	
122	Met	130,1	9,15	4,87	1,83;2,04	2,91;2,36 γ	
102	A	107.0	10.01	4.20	2 10 2 02	2,12 8	115 4 8
123	Asn	127,2	10,01	4,28	3,19;2,93	8,83;0,89 0 7,55,6 99 S	115,40
124	Asn	115,8	8,50	4,04	2,87;2,99	/,55;0,88 0	113,00
125	v ai Thr	125,5	8,34 8 16	4,22	2,39	$0,94,1,00$ γ	
120		110,4	8,10 0.64	5,59	4,13	1,15 γ	
127	Cys Thr	120,4	9,04 8 81	5,50	3,38,2,09	$1.10 x^2$	
120	Arg	117,3	10.07	5,14	1 80.1 54	$1,10 \gamma$ 1.05.1.27* γ	
127	rug.	131,4	10,07	5,01	1,00,1,04	2 67·2 53 *8	
						2,07,2,55 0 8 40 *c	850*5
130	Ile	122 7	8 66	5.05	1 67	$1.56.1 19 v^1$	00,0 0
100	110	, /	0,00	2,00	1,07	$0.86 v^2$	
						0,82 δ	
						, -	

Residue	Amino acid	Ν	NH	C ^α H	$C^{\beta}H$	Other H	Other N
131	Tyr	127,2	9,82	5,51	3,05;3,17	6,87 δ	
132	Glu	119,5	9,25	5,32	2,05	6,45 ε 2,41;2,31 γ	
133	Lys	127,0	9,42	3,68	1,21;1,52	0,85;0,14 γ 1.00 · 1.08 δ	
						2,54;2,50 ε	
134	Val	127,5	8,74	4,03	1,70	0,85;0,80 y	
135	Glu	129,0	7,92	4,07	1,97;1,81	2,08 γ	
135	' Glu	129,5	7,99	4,13	2,00;1,86	2,17 γ	

Figure 4.4 ¹H/¹⁵N-HTQC spectrum of human E-FABP at pH 5.6 and 298 K (¹H resonance frequency of 600.13 MHz). The peak assignments for the NH₂ groups of the Asn and Gln residues are indicated. Due to spin-system heterogeneities, several residues displayed multiple amide signals, which are not additionally labeled. Peaks observed below the plot level are indicated by squares.

Since the exclusion of a disulfide bridge between C67 and C87 improved the R_{free} factor of the crystallographic model, the existence of a covalent bond between these two sidechains was considered unlikely. The NMR data now provide a definite answer to this question: the possibility of a second disulfide bridge in solution could be ruled out, since S^{γ}H resonances were detected for the cysteine residues C43, C67 (tentative assignment) and C87.

Because of the high structural homology, the disulfide bridge between C120 and C127 in E-FABP strongly suggests the presence of a cystine bond in M-FABP as well. Even though

Figure 4.5 ¹H/¹⁵N-HSQC spectrum of human E-FABP at pH 5.6 and 298 K (¹H resonance frequency of 600.13 MHz). Backbone and side-chain (sc) amide assignments are shown for each residue. Due to spin-system heterogeneities, several residues displayed multiple backbone amide signals (not additionally labeled). Peaks observed below the plot level are indicated by squares. Signals from side-chain NH₂ groups are connected by solid lines.

biochemical studies have actually indicated that the respective residues C117 and C124 are S-S linked in M-FABP [Kitamura *et al.*, 1980], the S^{γ} positions are too far apart (4.5 Å) in the crystal structure for the presence of a disulfide bridge [Cowan *et al.*, 1993]. A comparison with the E-FABP structure provides no obvious explanation for this structural discrepancy observed between the two proteins, except maybe for the lower atomic resolution (2.7 Å) of the M-FABP data.

Figure 4.6 Amino acid sequence of human E-FABP with a survey of the short-range and medium-range NOE connectivities, which were used to establish the sequence-specific ¹H NMR assignment and to identify elements of regular secondary structure (SS). H/D indicates residues with slow-exchanging backbone amide protons that remained visible in D₂O solution after 80 min (open circles) or 2 days (full circles) at 298 K.

Figure 4.7 Schematic representation of the β-sheet structure of E-FABP with the corresponding hydrogen bonding network. Residues with slow-exchanging backbone amide protons that remained visible in D₂O solution after 80 min (white boxes) or 2 days (shaded boxes) at 298 K are indicated.

4.2 Solution structure of human E-FABP

To determine the three-dimensional conformation of E-FABP by NMR spectroscopy, the intensity of the NOE signals obtained from NOESY spectra were translated into pairwise interatomic distances. Figure 4.6 shows the short- and medium-range NOE connectivities assigned to the backbone protons. Helical structures, characterized by strong sequential HN-HN and medium-range HN-HN(i,i+2), H α -HN(i,i+2), H α -HN(i,i+3), H α -H β (i,i+3) and H α -HN(i,i+4) connectivities, are present in segments V4-L7, F19-L26 and I30-M38. NOE connectivity patterns common to antiparallel β -sheet structures were detected between the backbone protons of β -strands βA , βB , βC and βD , as well as between β -strands βE , βF , βG , βH , βI and βJ , and also between the N-terminal β -strand βA and the C-terminal β -strand βJ . Backbone amide protons that exchange slowly in D₂O solution due to hydrogen-bonding network between the β -strands are also indicated in Figure 4.6. The β -sheet structure of E-FABP with the corresponding hydrogen bonding network is represented schematically in Figure 4.7. Only between β -strands βD and βE , neither backbone NOE connectivities nor slow-exchanging backbone amide protons were observed. This interruption of the β -sheet structure has been referred to as the 'gap' region [Sacchettini *et al.*, 1989].

Based on the NOE and hydrogen exchange data, an ensemble of 20 energy-minimized conformers representing the solution structure of human E-FABP complexed with stearic acid has been obtained. The analysis of homonuclear 2D and ¹⁵N-edited 3D NOESY spectra led to a total of 2926 NOE-derived distance constraints. Furthermore, 37 slow-exchanging backbone amide protons were identified to be part of the hydrogen-bonding network in the β -sheet and subsequently converted into 74 additional distance constraints. Finally, the disulfide bridge between C120 and C127 was defined by 3 upper and 3 lower distance bounds. The structure calculation program DYANA regarded 998 of these constraints as irrelevant, *i.e.*, they did not restrict the distance between two protons. Out of the remaining 2008 non-trivial distance constraints, 371 were intraresidual (i = j), 508 sequential (j = |i + 1|), 233 medium-range (|i - 5| < j < |i + 5|), and 896 long-range (j > |i + 4|). The resulting ensemble of 20 conformers as well as the ribbon diagram of the best DYANA structure after energy minimization are shown in Figures 4.8 and 4.9, respectively. The structure coordinates have been deposited at the RCSB data bank under PDB ID code 1JJJ. Experimental distance restraints and structural statistics of the calculated conformers are described in Table 4.2.

Table 4.2Structural statistics of the 20 selected conformers of humanE-FABP after energy minimization

Structural statistics	
Total number of residues	133
Total number of distance restraints	2008
Intraresidual	371
Sequential $(i - j = 1)$	508
Medium range $(1 < i - j < 5)$	233
Long range $(i - j > 4)$	896
Hydrogen bond distance restraints	2×37
Disulfide bridge distance restraints	2×3
Total number of restraint violations >0.3 Å	0
Total number of restraint violations >0.2 Å	23
Maximal restraint violation (Å)	0.28
Ramachandran plot statistics (%)	
Residues in most favoured regions	85.1
Residues in aditionally allowed regions	13.6
Residues in generously allowed regions	0.6
Residues in disallowed regions	0.7
Structural precision (Å)	
Backbone atom ^a RMSD (residues 4-134)	0.92 ± 0.11
Heavy atom RMSD (residues 4-134)	1.46 ± 0.10
Backbone atom ^a RMSD (residues 4-26, 40-56, 63-75, 83-134)	0.85 ± 0.10
Heavy atom RMSD (residues 4-26, 40-56, 63-75, 83-134)	1.46 ± 0.11

^a N, C^{α} , C' and O.

The solution structure of human E-FABP consists of 10 antiparallel β -strands, defining two nearly orthogonal β -sheets of five β -strands each, and two short α -helices that form a helix-turn-helix domain. The center of β -strand β F (K82-F89) is shared by both β -sheets. The N-terminal residues V4-L7 form a helical loop (presumably 3₁₀ conformation), which leads to β -strand β A (G9-K17). Residues V14 and D15 create a β -bulge inside β -strand β A. The residue G18 connects the first β -strand β A with helix α I, which consists of residues F19-L26. Residues G27-G29 form a turn that leads into helix α II, spanning residues I30-M38. The connection between helix α II and the second β -strand β B (D42-C47) is made up of residues A39-P41. The rest of the structure consists of a series of β -strands: β C (L52-E57), β D (T62-T68), β E (K72-T77), β F (R81-F89), β G (L94-E99), β H (E104-L111), β I (L116-V121), and β J (T126-K133), which are connected mostly by hairpin turns.

Figure 4.8 Stereoview of the ensemble showing the Ca traces of the 20 selected conformers that represent human holo E-FABP in solution, derived from torsion angle dynamics and restrained energy-minimization calculations.

The helical loop at the N-terminal segment between V4 and L7 has been deduced from the presence of medium-range NOE connectivities. An α - and 3_{10} -helical fold can be distinguished on the basis of the H α -HN(i,i+2) distances. For an α -helix, the average H α -HN(i,i+2) distance corresponds to 4.4 Å, while in a 3_{10} -helix it corresponds to 3.8 Å. In the 20 energy-minimized conformers of human E-FABP, the H α -HN(i,i+2) distances between residues V4 and Q6 as well as Q5 and L7 were 3.96 ± 0.32 Å and 3.95 ± 0.32 Å, respectively. Therefore, the N-terminal loop structure may represent a 3_{10} -helix. The presence of an Nterminal helical-loop, however, is a unique attribute of the LBP subfamily *IV* that binds fatty acids in U-shaped conformation. The loop usually consists of 4 residues, starting with a hydrophobic amino acid followed by one or two hydrophilic residues and a highly conserved phenylalanine (substituted by a leucine residue only in the case of E-FABP) in the last position. The nonpolar residues in the first and last position are part of the hydrophobic cluster at the bottom of the protein cavity, while the hydrophilic residues are accessible to the external solvent. This additional structural feature might therefore contribute to the overall stability of the β -barrel fold.

Figure 4.9 Ribbon drawing of the best solution structure of human E-FABP showing ten antiparallel β-strands (βA- βJ), which are arranged in two almost orthogonal β-sheets forming a β-barrel, and two short α-helices that close the β-barrel structure on one side. The hydrogen-bonding network within the β-sheets is continuous, except for a gap between β-strands βD and βE. The N-terminal residues form an additional helical loop. (Produced with MOLSCRIPT [Kraulis, 1991] and Raster3D [Merrit and Bacon, 1997]).

The overall structural fold of human E-FABP in solution is similar to the solution structures of other members of the LBP family, such as H-FABP [Lassen *et al.*, 1995; Lücke *et al.*, 2001], ILBP [Lücke *et al.*, 1996], I-FABP [Hodsdon *et al.*, 1996; Zhang *et al.*, 1997], B-FABP [Rademacher and Lücke, unpublished results], as well as cellular retinoic acid binding protein type II [Wang *et al.*, 1998] and cellular retinol binding protein type II [Lu *et al.*, 2000]. For the 20 best E-FABP conformers, average root-mean-square deviations (RMSD) of 0.92 ± 0.11 Å and 1.46 ± 0.10 Å were determined for the backbone and heavy

atoms, respectively, excluding the terminal residues. Without the portal region (*i.e.*, for residues 4-26, 40-56, 63-75 and 83-134), an average backbone RMSD of 0.85 ± 0.10 was obtained, thus reflecting the higher conformational dispersion in the portal region. Superposition with the X-ray structure of human E-FABP (excluding the terminal residues) yielded average backbone RMSD values of 1.00 ± 0.07 Å for the entire residue range and 0.98 ± 0.06 Å without the portal region. This indicates a close similarity of the crystallographic and the solution structures. According to the Ramachandran plot, the backbone dihedral angles of residues within the major secondary structure elements show well-defined values with low deviation. A total of 99.3 % of the non-glycine/non-proline residues are found in the allowed regions of conformational space. Most of the cases found in the disallowed regions belong to either V4 (N-terminus), D91 (β F- β G turn) or N123 (β I- β J turn), *i.e.*, residues that might not be well-defined in the structure calculation due to rather exposed positions either in turns or at terminal ends.

Marked differences in conformational stability and binding affinity for fatty acids have been reported for paralogous FABPs of LBP subfamily *IV* [Veerkamp and Zimmerman, 2001; Zimmerman *et al.*, 2001]. In all types of this subgroup, the fatty acid inside the cavity is bound in an U-shaped conformation with hydrogen-bond formation between the carboxylate group and a triad of protein side-chains consisting of two arginines (one via an ordered water molecule) and one tyrosine (E-FABP numbering R109, R129 and Y131). Among these FABP types, E-FABP displays the lowest conformational stability in the presence of urea, in spite of the presence of a unique disulfide bridge. Furthermore, E-FABP shows the second lowest binding affinity for oleic acid, after A-FABP. In contrast, H-FABP exhibits a very stable conformation and strong ligand binding.

A cluster of hydrophobic side-chains, which closes the end of the β -barrel structure that is located opposite to the helix-turn-helix domain, might play a significant role in both ligand binding and protein stability. Several members of this hydrophobic cluster are substituted in E-FABP (relative to H-FABP) by residues with different hydrophobicities: L7 (F4), F65 (I62), C67 (F64), C87 (V84) and F89 (L86). This might in part explain the decreased conformational stability of E-FABP, whereas other substitutions, like L60 (F57) and V118 (L115), could be responsible for the weaker stability of the E-FABP:fatty acid complex.

The determination of the solution structure of human E-FABP will now permit further studies on intermolecular interactions, in particular with S100A7 in regard to psoriasis, as alluded to in the introduction.

4.3 Backbone dynamics of human E-FABP

In spite of the high degree of structural similarity, most members of the fatty acid binding protein family show marked functional differences. Since ligand binding may also be influenced by intrinsic dynamical properties of the protein, it is important to characterize the backbone dynamics of E-FABP. ¹⁵N longitudinal and transverse relaxation rates as well as heteronuclear NOE values of human holo E-FABP were measured at three different fields (500, 600 and 800 MHz). The numerical values of R₁, R₂ and NOE are listed in Appendix A.4, with the error of the NOE set to a constant value (0.03) for all residues. The experimental values of the relaxation rates R₁ and R₂, plotted against residue number, are displayed graphically in Figures 4.10a and 4.10b, respectively; the experimental NOE values are shown in Figure 4.11. These data were subsequently combined and analyzed for 120 of 132 backbone amide groups to yield the microdynamic parameters S^2 , τ_e and R_{ex} (Table 4.3), which provide information about the mobility of the backbone HN vectors, the correlation time of local motion and the conformational exchange contribution the transverse relaxation, respectively.

Backbone amide order parameters (S^2) combined for all 3 fields were determined, with a resulting molecular tumbling correlation time of the protein of $\tau_c = 8.6$ ns for E-FABP, which may be compared to values of 8.70 ns for A-FABP, 9.05 ns for H-FABP (both calculated with a modified method [Constantine et al., 1998]), 5.8 ns for both ILBP and H-FABP ([Lücke et al., 1999], or 6.7 ns and 6.2 ns for apo and holo I-FABP, respectively [Hodsdon and Cistola, 1997]. The τ_c values for other members of the LBP family are 8.2 ns and 7.9 ns for apo and holo CRBP II, respectively [Lu et al., 1999; Lu et al., 2000], and 7.6 ns and 7.1 ns for apo and holo CRABP I [Krishnan *et al.*,2000]. Such τ_c values are not unusual for proteins of this molecular size. Nearly all non-terminal backbone amide groups show S^2 values > 0.8, with an average value of 0.88 ± 0.04 ; the same average S² value holds for the residues belonging to the secondary structure elements. As can be seen in Figure 4.12, the order parameters (representing backbone mobility within the nanosecond-to-picosecond time scale) show little correlation with secondary structure. Interestingly, the N-terminal helical loop and α -helix I both exhibit above-average S² values, indicating reduced backbone mobility, while α -helix II as part of the portal region displays a higher flexibility. Overall, however, the structure of human E-FABP shows a rather uniform dynamic behaviour throughout the entire amino acid sequence. Therefore, these data for E-FABP suggest an overall protein backbone structure of low flexibility (S^2 values > 0.8 imply a cone semiangle of $< 21^{\circ}$ assuming the wobbling-in-a-cone model for the NH-vector motion).

Figure 4.10 Experimental longitudinal (R₁) and transverse (R₂) ¹⁵N relaxation rates obtained for human E-FABP at 500 (■), 600 (▲) and 800 (●) MHz. Error bars represent standard deviations.
The dynamic behaviour of E-FABP contrasts, for example, that of ILBP [Lücke *et al.*, 1999], which shows a larger spread in the order parameter values and several non-terminal residues with S^2 well below 0.7. Yet other members of the LBP family also exhibit distinct patterns of backbone mobility. It has been observed that A-FABP has a greater backbone mobility than H-FABP, especially in the portal region [Constantine *et al.*, 1998]. This is due to the fact that A-FABP has lower order parameters in the portal region, while H-FABP shows higher S^2 values uniformly distributed throughout the amino acid sequence. For I-FABP, on the other hand, a very high mobility in the portal region has been described [Hodsdon and Cistola, 1997], even though the S^2 values for some residues in this region were abnormally low.

Based on hydrogen/deuterium exchange [Lassen *et al.*, 1995; Lücke *et al.*, 1996] and ¹⁵N relaxation experiments [Lücke *et al.*, 1999], significant differences in the backbone dynamics between bovine H-FABP and porcine ILBP have been previously reported. The extremely slow amide proton exchange behaviour observed for H-FABP indicated a clear distinction in the stability of the hydrogen-bonding network between these two β -barrel structures. Hence, both the hydrogen/deuterium exchange behaviour and the microdynamic

Figure 4.11 Experimental NOE values obtained for human E-FABP at 500 (■), 600 (▲) and 800 (●) MHz. Error bars represent standard deviations.

Figure 4.12 Backbone amide order parameters (S^2) determined for human holo E-FABP. The error bars represent standard deviations. All non-terminal residues exhibit a rather uniform dynamic behaviour, suggesting a low backbone mobility for the entire protein structure. The secondary structure elements are indicated schematically above the graph.

parameters can provide valuable information about the influence of dynamic molecular processes on the functional properties of different LBPs. The backbone dynamics data of human E-FABP are therefore compared below with those from other previously studied members of the LBP family [Lücke *et al.*, 1999], *i.e.*, bovine H-FABP and porcine ILBP.

Since the ¹⁵N relaxation data of both H-FABP and ILBP have been previously obtained for the apo-forms [Lücke *et al.*, 1999], we decided to perform an additional proton/deuterium exchange experiment with apo H-FABP for better compatibility. Lassen *et al.* [1995] have reported that 70 backbone amide protons displayed very slow exchange in bovine holo H-FABP over a period of several days at 310 K. For the apo-form, we now observed 39 such amide resonances after 4 days under identical conditions. This indicates a lower stability in the hydrogen-bonding network of the β -sheet structure for the apo-form compared to H-FABP complexed with a fatty acid. Such a stabilizing effect due to ligand binding has been reported before in the case of porcine ILBP [Lücke *et al.*, 1996]. Still, the amide proton exchange behaviour within the β -sheet is unusually slow also for apo H-FABP compared to other LBP types.

Table 4.3Microdynamic parameters obtained for human holo E-FABP. Only non-
zero values of τ_e and R_{ex} are shown in the table. Residues for which no
value could be calculated are marked "n.v." The spectral density models
are defined as described in Materials and Methods.

AA	S^2	$ au_e$ [ps]	R_{ex} [s ⁻¹]	Model
M1	n.v.	n.v.	n.v.	
A2	n.v.	n.v.	n.v.	
Т3	0.382 ± 0.021	5.200 ± 0.793		1
V4	0.925 ± 0.007	5.285 ± 11.370		1
Q5	0.922 ± 0.010		0.746 ± 0.111	2
Q6	0.940 ± 0.007	14.909 ± 13.768		1
L7	0.925 ± 0.006			1
E8	0.871 ± 0.006		0.575 ± 0.073	2
G9	0.897 ± 0.007	2.142 ± 8.065		1
R10	0.864 ± 0.008		0.748 ± 0.107	2
W11	0.912 ± 0.015			1
R12	0.855 ± 0.011		0.511 ± 0.150	2
L13	0.929 ± 0.056			1
V14	n.v.	n.v.	n.v.	
D15	0.895 ± 0.005	16.283 ± 7.323		1
S16	0.827 ± 0.004	6.216 ± 4.010		1
K17	0.867 ± 0.007	3.133 ± 6.060		1
G18	0.900 ± 0.008	11.558 ± 8.721		1
F19	0.934 ± 0.009			1
D20	0.964 ± 0.016	400.000 ± 607.616		1
E21	0.904 ± 0.010			1
Y22	0.953 ± 0.021		0.814 ± 0.318	2
M23	n.v.	n.v.	n.v.	
K24	0.935 ± 0.012	4.147 ± 13.664		1
E25	0.911 ± 0.007		0.522 ± 0.089	2
L26	0.876 ± 0.007		0.544 ± 0.071	2
G27	0.885 ± 0.007	0.603 ± 7.154		1
V28	0.904 ± 0.014		1.421 ± 0.113	2
G29	0.884 ± 0.007	27.259 ± 6.935		1
130	0.847 ± 0.010	11.991 ± 5.313		1
A31	0.946 ± 0.005	86.641 ± 18.747		1
L32	0.858 ± 0.008	14.709 ± 5.730		1
R33	0.874 ± 0.011	26.347 ± 6.999		1
K34	n.v.	n.v.	n.v.	
M35	0.873 ± 0.007	10.879 ± 6.427		1
G36	0.885 ± 0.019		0.793 ± 0.169	2
A37	0.934 ± 0.007		0.549 ± 0.105	2
M38	0.844 ± 0.010	36.798 ± 5.561		1
A39	0.861 ± 0.013		0.460 ± 0.109	2
K40	0.830 ± 0.018	28.825 ± 6.220		1
P41	n.v.	n.v.	n.v.	
D42	0.874 ± 0.007		0.456 ± 0.079	2
C43	0.858 ± 0.013		0.447 ± 0.094	2
I44	0.885 ± 0.014	10.874 ± 7.513		1
I45	0.855 ± 0.007		0.691 ± 0.073	2
T46	0.866 ± 0.010		0.720 ± 0.140	2

AA	S^2	$ au_e$ [ps]	R_{ex} [s ⁻¹]	Model
C47	0.845 ± 0.006	10.279 ± 4.851		1
D48	0.952 ± 0.014			1
G49	0.905 ± 0.008	0.248 ± 8.901		1
K50	0.916 ± 0.007	37.914 ± 9.876		1
N51	0.843 ± 0.007		0.504 ± 0.080	2
L52	0.857 ± 0.012		0.486 ± 0.098	2
Т53	0.869 ± 0.009		0.573 ± 0.087	2
154	0.871 ± 0.009		0.628 ± 0.090	2
K55	0.933 ± 0.017	14.390 ± 13.568		1
T56	0.874 ± 0.014			1
E57	0.911 ± 0.019	32.786 ± 12.775		1
S58	0.870 ± 0.016	34.945 ± 8.004		1
T59	n.v.	n.v.	n.v.	
L60	n.v.	n.v.	n.v.	
K61	0.875 ± 0.008	52.769 ± 7.593		1
T62	0.943 ± 0.017	68.162 ± 30.110		1
T63	0.919 ± 0.014	34.047 ± 12.698		1
Q64	0.976 ± 0.009	215.923 ± 278.933		1
F65	0.937 ± 0.011			1
S66	n.v.	n.v.	n.v.	
C67	0.915 ± 0.008	2.207 ± 9.861		1
T68	0.847 ± 0.009		0.720 ± 0.120	2
L69	0.918 ± 0.011			1
G70	0.903 ± 0.010	4.214 ± 8.854		1
E71	0.929 ± 0.005			1
K72	n.v.	n.v.	n.v.	
F73	0.943 ± 0.008	33.527 ± 15.137		1
E74	0.874 ± 0.004	3.052 ± 6.068		1
E75	0.908 ± 0.012	19.284 ± 9.400		1
Т76	0.831 ± 0.009		0.607 ± 0.115	2
T77	0.918 ± 0.010			1
A78	0.909 ± 0.018			1
D79	0.942 ± 0.022	19.671 ± 17.567		1
G80	0.831 ± 0.013		1.393 ± 0.102	2
R81	0.875 ± 0.009		0.751 ± 0.076	2
K82	0.791 ± 0.005		0.863 ± 0.135	2
T83	0.853 ± 0.005	3.311 ± 5.113		1
Q84	0.884 ± 0.008			1
T85	0.904 ± 0.010	11.737 ± 8.693		1
V86	0.920 ± 0.013	12.108 ± 10.961		1
C87	0.878 ± 0.009	4.420 ± 6.704		1
N88	0.836 ± 0.004		0.701 ± 0.055	2
F89	0.837 ± 0.005	13.134 ± 4.631	0.005	1
190	0.84 ± 0.008	10.0(1	0.385 ± 0.072	2
D91	0.921 ± 0.017	18.261 ± 12.010		1
G92	0.838 ± 0.009	$10.1/0 \pm 4.951$		1
A93	0.931 ± 0.005	22.093 ± 11.121	0.505 + 0.072	1
L94	0.88 ± 0.008		0.525 ± 0.063	2
V95	0.804 ± 0.010		2.160 ± 0.127	2
Q96	n.v.	n.v.	n.v.	2
H9/	0.902 ± 0.009		0.390 ± 0.127	2 1
Q98	0.883 ± 0.010			1

AA	S ²	$ au_e$ [ps]	R_{ex} [s ⁻¹]	Model
FOO	0.022 + 0.012		0.450 + 0.105	2
E99	0.832 ± 0.012		0.452 ± 0.105	2
W 100	0.902 ± 0.008	5 207 1 7 (22		1
D101	$0.89/ \pm 0.005$	5.397 ± 7.622	0.446 + 0.066	1
G102	0.864 ± 0.007		0.446 ± 0.066	2
K103	n.v.	n.v.	n.v.	1
E104	$0.81/ \pm 0.005$	22.646 ± 3.745		1
S105	0.883 ± 0.008			1
1106	n.v.	n.v.	n.v.	1
1107 T109	0.906 ± 0.015	15.439 ± 9.543	1 454 + 0 104	1
1108 D100	$0.86/ \pm 0.009$		1.454 ± 0.104	2
R109	0.842 ± 0.015		0.785 ± 0.171	2
K110	$0.861 \pm 0.00/$	22 (00 + 4 (40	$0.8/3 \pm 0.090$	2
LIII	0.844 ± 0.005	33.690 ± 4.649		1
K112	0.850 ± 0.007	14.900 ± 5.321		1
D113	0.930 ± 0.016	16.573 ± 13.394		1
G114	0.844 ± 0.009		0.411 ± 0.071	2
K115	n.v.	n.v.	n.v.	_
L116	0.869 ± 0.013		0.449 ± 0.084	2
V117	0.847 ± 0.010		0.986 ± 0.101	2
V118	0.882 ± 0.011		0.546 ± 0.092	2
E119	0.833 ± 0.010		0.690 ± 0.080	2
C120	0.885 ± 0.011	0.780 ± 7.328		1
V121	0.874 ± 0.017		0.804 ± 0.130	2
M122	0.909 ± 0.006		0.405 ± 0.093	2
N123	0.849 ± 0.006		0.672 ± 0.075	2
N124	0.937 ± 0.015	14.704 ± 14.863		1
V125	n.v.	n.v.	n.v.	
T126	0.896 ± 0.012		0.910 ± 0.268	2
C127	0.909 ± 0.016			1
T128	0.824 ± 0.006		1.084 ± 0.060	2
R129	0.878 ± 0.013		0.939 ± 0.148	2
I130	0.802 ± 0.011		1.255 ± 0.125	2
Y131	0.869 ± 0.014			1
E132	0.848 ± 0.008		0.703 ± 0.092	2
K133	$0.891 \ \pm 0.009$	17.646 ± 7.941		1
V134	0.873 ± 0.006	22.218 ± 6.459		1
E135	0.754 ± 0.007	400.000 ± 50.008		3

The conformational stabilities of various LBP types have been evaluated by examination of the fluorescence spectra of the proteins at different urea concentrations. It has been observed that oleic acid binding to H-FABP is less sensitive to urea than the binding to E-FABP. It has also been found that, for example, the oleic acid binding constants vary from 0.44 μ M for human H-FABP to 0.82 μ M for human E-FABP and >>1 μ M for human ILBP

[Zimmerman *et al.*, 2001]. The transition curves of E-FABP and, to a lesser extent, ILBP are shifted to the left in comparison with H-FABP. Their midpoints of transition are markedly lower than for H-FABP. Therefore, in spite of the presence of a disulfide bridge, E-FABP has the lowest stability of binding and conformation.

Due to the rather low structural stability of E-FABP, and due to the fact that the LBP holo-forms usually are more stable than the apo-forms as mentioned above, we have chosen to investigate human E-FABP in complex with stearic acid at a decreased temperature of 298 K. The comparison with the apo-forms of H-FABP and ILBP [Lücke et al., 1999] should nevertheless provide useful information about the relative conformational stabilities of these FABP types. First, human E-FABP is compared to bovine H-FABP. The order parameter (S^2) distributions of apo H-FABP and holo E-FABP are rather similar, *i.e.*, they show a uniform distribution throughout the amino acid sequence, indicating a relatively low flexibility within the entire backbone structure (average $S^2 = 0.89 \pm 0.06$ for apo H-FABP and 0.88 ± 0.06 for holo E-FABP). However, E-FABP shows a much faster hydrogen exchange compared to H-FABP. For apo H-FABP, 49 slow-exchanging backbone amide protons involved in the hydrogen-bonding network within the β -sheet structure were observed after 6 h in perdeuterated buffer at 310 K (Figure 4.13A), of which 39 remained detectable after four days. In the case of holo E-FABP, on the other hand, only 37 amide proton resonance signals remained observable after 2 h in perdeuterated solution at 298 K (Figure 4.13C), and just 13 signals could be detected after two days. Thus it appears that, compared to apo H-FABP, the hydrogen-bonding network of the β-sheet structure of E-FABP is less stable even in the holoform. These data agree with the conformational stabilities reported by Zimmerman et al. [2001]. Interestingly, in the case of holo E-FABP the analysis of the relaxation data produced exchange parameter terms (R_{ex}) for 47 residues (Figure 4.13D), the majority of which are located in the center sections of the β -strands where also the slow-exchanging amide protons are concentrated. This suggests a direct correlation between the slow exchange of backbone amide protons in the β -sheets and the occurrence of R_{ex} terms (representing exchange processes on the millisecond-to-microsecond time scale). For apo H-FABP, on the other hand, the occurrence of R_{ex} terms is reduced to only 8 residues, which are distributed randomly throughout the amino acid sequence (Figure 4.13B). Since apo H-FABP had been investigated at a considerably higher temperature [Lassen et al., 1995], these results indicate a strongly decreased hydrogen exchange within the β-sheet structure of apo H-FABP relative to holo E-FABP.

Figure 4.13 (Previous page) Backbone worm representation indicating slowexchanging amide protons (H/D in yellow) and non-zero conformational exchange parameter values (R_{ex} in red) in different LBP family members. Hydrogen/deuterium exchange experiments and the microdynamic parameters obtained from ¹⁵N relaxation analysis show significant differences in the chemical exchange with the solvent for the backbone amide protons. In bovine apo H-FABP (top panels), 49 slow-exchanging amide protons remain visible after 6 h at 310 K in D₂O solution (panel A), while only 8 residues show exchange parameters (panel B). For human holo E-FABP (center panels), 37 slow-exchanging amide protons are detected after 2 h at 298 K in D₂O solution (panel C) and 47 residues with R_{ex} terms occur in the central β -sheet (panel D). Porcine apo ILBP (bottom panels), finally, exhibits 20 slow-exchanging amide protons after 30 min at 310 K in D₂O solution (panel E) and 43 residues with exchange parameters (panel F). Human holo E-FABP appears to rank between apo H-FABP and apo ILBP in the hydrogen/deuterium exchange, with R_{ex} terms in the β-strands indicating exchange in the millisecond-to-microsecond time range. Clearly, the hydrogen-bonding network in the β-sheet structure of holo E-FABP is less stable relative to apo H-FABP. (Produced using GRASP [Nicholls *et al.*, 1991].)

Comparing the backbone dynamics data of human E-FABP with the previously reported results for porcine ILBP [Lücke et al., 1999], however, presents a quite different scenario. In the case of apo ILBP, several non-terminal residues displayed strongly decreased order parameter (S^2) values, suggesting a relatively high flexibility within certain regions of the backbone structure. In addition, an even faster hydrogen exchange was reported for apo ILBP [Lücke et al., 1996] compared to that of holo E-FABP presented here. For apo-ILBP, merely 20 amide proton resonance signals remained detectable after only 30 min in perdeuterated solution at 310 K (Figure 4.13E), all of which disappeared completely after 4 h. ILBP in complex with chenodeoxycholate showed a slower hydrogen exchange relative to apo ILBP, with complete exchange of all backbone amide protons after 18 h at 310 K, thus implying a stabilizing effect induced by the bound ligand. Nevertheless, the exchange of the backbone amide resonances within the β -sheet structure apparently proceeds faster for both apo and holo ILBP than in the cases of apo H-FABP or holo E-FABP, indicating a lower stability of the hydrogen-bonding network in ILBP. Moreover, R_{ex} terms occur in apo ILBP for a total of 43 residues that are located mainly within the β -strands (Figure 4.13F), suggesting that the exchange of backbone amide protons in this LBP may also be subjected to processes that take place within the millisecond-to-microsecond time range.

Summarizing the above results, it can be concluded that the different LBP family members E-FABP, H-FABP and ILBP are characterized by varying stabilities in the protein backbone structures. Hydrogen/deuterium exchange experiments showed significant differences in the chemical exchange with the solvent for the backbone amide protons belonging to the hydrogen-bonding network in the β -sheets. The β -barrel structure of bovine H-FABP appears to be the most rigid, with exchange processes presumably slower than the millisecond-to-microsecond time range. Porcine ILBP, on the other hand, shows the fastest hydrogen exchange as well as a significant number of exchange parameters (R_{ex}), indicating a decreased stability in the β -sheet structure. Human E-FABP, finally, appears to rank between these two proteins based on the hydrogen/deuterium exchange, with R_{ex} terms in the β -strands indicating millisecond-to-microsecond exchange processes like in ILBP.

It has now become clear from this study that within the LBP family there are distinctions in protein stability. According to Zimmerman and co-workers [2001], the conformational stabilities of the human paralogs H-FABP, ILBP and E-FABP decrease in this order, which partially contrasts the results presented here. However, both studies agree that within LBP subfamily IV the H-FABP has a much more rigid structure than E-FABP. Responsible for this distinction may be differences in the arrangement of the hydrophobic cluster inside the protein cavity, in particular the replacement of F4 (H-FABP) by L7 (E-FABP). Moreover, the higher conformational stability of H-FABP could also be related to the tighter binding of fatty acid ligands to H-FABP relative to E-FABP [Zimmerman et al., 2001]. Possibly, there is a correlation between protein stability and ligand binding affinity, if a more flexible structure allows the bound ligand to leave the binding cavity more easily. On the other hand, the lack of the highly conserved phenylalanine portal lid (F57 in H-FABP) in E-FABP could be the predominant factor for the lower fatty acid binding affinities of the latter. Future site-directed mutagenesis studies on human E-FABP may provide definite answers to these questions. Moreover, further NMR investigations on the dynamics of different LBPs will be needed for a more concise interpretation of the distinctions in binding affinity and specificity.

5 Summary

Human epidermal-type fatty acid binding protein (E-FABP) belongs to a family of intracellular non-enzymatic 14-15 kDa lipid binding proteins (LBP) that specifically bind and facilitate the transport of fatty acids, bile acids or retinoids. Their functions have also been associated with fatty acid signalling, cell growth, regulation and differentiation. As a contribution to better understand the structure-function relationship of this protein, the features of its solution structure determined by NMR spectroscopy are reported here. Both unlabeled and ¹⁵N-enriched samples of recombinant human E-FABP were used for multidimensional high-resolution NMR. The sequential backbone as well as side-chain resonance assignments have been completed. They are reported here and are also available at the BioMagResBank under the accession number BMRB-5083.

The presence of six cysteines in the amino acid sequence of human E-FABP is highly unusual for LBPs. Four of the six cysteines are unique to the E-FABPs: C43, C47, C67 and C87. In the three-dimensional structure of E-FABP, two cysteine pairs (C67/C87 and C120/C127) were identified by X-ray analysis to be close enough to allow disulfide bridge formation, but a S-S bond was actually found only between C120 and C127 [Hohoff *et al.*, 1999]. Since the exclusion of a disulfide bridge between C67 and C87 improved the R_{free} factor of the crystallographic model, the existence of a covalent bond between these two sidechains was considered unlikely. This agrees with the NMR data, where S^{γ}H resonances have been observed for the cysteine residues C43, C67 (tentative assignment) and C87, thus excluding the possibility of a second disulfide bridge in solution.

Based on the NOE and hydrogen exchange data, an ensemble of 20 energy-minimized conformers representing the solution structure of human E-FABP complexed with stearic acid has been obtained. The analysis of homonuclear 2D NOESY and ¹⁵N-edited 3D NOESY spectra led to a total of 2926 NOE-derived distance constraints. Furthermore, 37 slow-exchanging backbone amide protons were identified to be part of the hydrogen-bonding network in the β -sheet and subsequently converted into 74 additional distance constraints. Finally, the disulfide bridge between C120 and C127 was defined by 3 upper and 3 lower distance bounds. The structure calculation program DYANA regarded 998 of these constraints as irrelevant, *i.e.*, they did not restrict the distance between two protons. Out of the remaining 2008 non-trivial distance constraints, 371 were intraresidual (i = j), 508 sequential (|i - j| = 1), 233 medium-range ($1 < |i - j| \le 4$), and 896 long-range (|i - j| > 4) NOEs. The protein mainly consists of 10 antiparallel β -strands forming a β -barrel structure with a large

internal cavity. The three-dimensional solution structure of human E-FABP has been determined with a root-mean-square deviation of 0.92 ± 0.11 Å and 1.46 ± 0.10 Å for the backbone and heavy atoms, respectively, excluding the terminal residues. Without the portal region (*i.e.*, for residues 4-26, 40-56, 63-75 and 83-134; the portal region apparently represents the only opening in the protein surface through which the fatty acid ligand can enter and exit the internal binding cavity), an average backbone RMSD of 0.85 ± 0.10 Å was obtained, thus reflecting the higher conformational dispersion in the portal region. Superposition with the X-ray structure of human E-FABP (excluding the terminal residues) yielded average backbone RMSD values of 1.00 ± 0.07 Å for the entire residue range and 0.98 ± 0.06 Å without the portal region. This indicates a close similarity of the crystallographic and the solution structures. The structure coordinates have been deposited at the RCSB data bank under PDB ID code 1JJJ.

The measurement of ${}^{15}N$ relaxation experiments (T₁, T₂ and heteronuclear NOE) at three different fields (500, 600 and 800 MHz) provided information on the internal dynamics of the protein backbone. Nearly all non-terminal backbone amide groups showed order parameters $S^2 > 0.8$, with an average value of 0.88 ± 0.04, suggesting a uniformly low backbone mobility in the nanosecond-to-picosecond time range throughout the entire protein sequence. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the β -sheet structure and the conformational exchange (R_{ex}) in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics elaborated here differ from those of the phylogenetically closely related heart-type FABP and the more distantly related ileal lipid binding protein. The results on protein dynamics obtained in this work allow to conclude that the different LBP family members E-FABP, H-FABP and ILBP are characterized by varying stabilities in the protein backbone structures. Hydrogen/deuterium exchange experiments displayed significant differences in the chemical exchange with the solvent for the backbone amide protons belonging to the hydrogen-bonding network in the β -sheets. The β -barrel structure of H-FABP appears to be the most rigid, with exchange processes presumably slower than the millisecond-to-microsecond time range. ILBP, on the other hand, shows the fastest hydrogen exchange as well as a significant number of exchange parameters (R_{ex}) , implying a decreased stability in the β -sheet structure. E-FABP, finally, appears to rank between these two proteins based on the hydrogen/deuterium exchange, with R_{ex} terms in the β -strands indicating millisecond-to-microsecond exchange processes like in ILBP.

6 References

- Abe, H., Braun, W., Noguti, T. and Gö, N. (1983). Rapid calculation of first and second derivatives of conformational energy with respect to dihedral angles in proteins. General recurrent questions. *Comput. Chem.* 8, 239-247
- Abragam, A. (1961). Principles of Nuclear Magnetism, Clarendon Press, Oxford
- Akke, M., Carr, P. A. and Palmer, A. G. (1994). Heteronuclear correlation NMR spectroscopy with simultaneous isotope filtration, quadrature detection, and sensitivity enhancement using z rotations. J. Magn. Reson. B 104, 298-302
- Allen, M. and Tildesley, D. (1987). Computer Simulations of Liquids, Clarendon Press, Oxford
- Åstrom, A., Tavakkol, A., Petterson, U., Cromie, M., Elder, J. T. and Voorhees, J. J. (1991). Molecular cloning of two human cellular retinoic acid-binding proteins (CRABP). *J. Biol. Chem.* **266**, 17662-17666
- Arnold, V. (1978). Mathemathical Methods of Classical Mechanics, Springer, New York
- Aue, W. P., Bartholdi, E., Ernst, R. R. (1976). Two-dimensional spectroscopy. application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229-2246
- Banaszak, L., Winter, N., Xu, Z., Bernlohr, D., Cowan, S. and Jones, T. (1994). Lipid-binding proteins: A family of fatty acid and retinoid transport proteins. *Adv. Prot. Chem.* 45, 89-151
- Bass, N. M. (1988). The cellular fatty acid binding proteins: aspects of structure, regulation, and function. *Int. Rev. Cytol.* **111**, 143-184
- Bax, A. and Davis, D. G. (1985). MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. *J. Magn. Reson.* **65**, 355-360
- Bax, A. (1989). Two-dimensional NMR and protein structure. *Annu. Rev. Biochem.* **58**, 223-256
- Bax, A. and Grzesiek, S. (1993). Methodological advances in protein NMR. Acc. Chem. Res. 26, 131-138
- Baxa, C. A., Sha, R. S., Buelt, M. K., Smith, A. J., Matarese, V., Chinander, L. L., Boundy, K. L. and Bernlohr, D. A. (1989). Human adipocyte lipid-binding protein: purification of the protein and cloning of its complementary DNA. *Biochemistry* 28, 8683-8690
- Becker, M. M., Kalinna, B. H., Waine, G. J. and McManus D. P. (1994). Gene cloning, overproduction and purification of a functionally active cytoplasmic fatty acid-binding

protein (Sj-FABP_C) from the human blood fluke *Schistosoma japonicum*. *Gene* **148**, 321-325

- Bendall, M. R., Doddrell, D. M. and Pegg, D. T. (1981). Editing of ¹³C NMR spectra. A pulse sequence for the generation of subspectra. *J. Am. Chem. Soc.* **103**, 4603-4605
- Berendsen, H., Postma, J., Dinola, A. and Haak, J. (1984). Molecular dynamics with coupling to an external bath. *J. Chem. Phys.* **81**, 3684-3690
- Bleck, B., Hohoff, C., Binas, B., Rustow, B., Dixkens C., Hameister, H., Börchers, T. and Spener, F. (1998). Cloning and chromosomal localisation of the murine epidermal-type fatty acid-binding protein gene (Fabpe). *Gene* 215, 123-130
- Bodenhausen, G. and Ruben, D. J. (1980). Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. *Chem. Phys. Lett.* **69**, 185-189
- Börchers, T. and Spener, F. (1994). Fatty acid binding proteins. Curr. Top. Membr. 40, 261-294
- Braunschweiler, L. and Ernst, R. R. (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. *J. Magn. Reson.* **53**, 521-528
- Brink, D. M. and Satchler, G. R. (1968). Angular Momentum, Clarendon Press, Oxford
- Bundi, A. and Wüthrich, K. (1979). 1H-NMR parameters of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. *Biopolymers* **18**, 285-297
- Cavanagh, J. and Rance, M. (1992). Suppression of cross-relaxation effects in TOCSY spectra via a modified DIPSI-2 mixing sequence. *J. Magn. Reson.* **96**, 670-678
- Cavanagh, J., Fairbrother, W. J., Palmer III, A. G. and Skelton, N. J. (1996). *Protein NMR Spectroscopy: Principles and Practice*, Academic Press, San Diego
- Celis, J. E., Rasmussen, H. H., Vorum, H., Madsen, P., Wolf, B., Wolf, H., Orntoft, T. F. (1996). Bladder squamous cell carcinomas express psoriasin and externalise it to the urine. *J. Urol.* 155, 2105-2112
- Clore, G. M., Driscoll, P. C., Wingfield, P. T. and Gronenborn, A. M. (1990a). Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected heteronuclear ¹⁵N-¹H NMR spectroscopy. *Biochemistry* **29**, 7387-7401
- Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C. and Gronenborn, A. M. (1990b).
 Deviations from the two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. *J. Am. Chem. Soc.* **112**, 4989-4991
- Constantine, K. L., Friedrichs, M. S., Wittekind, M., Jamil, H., Chu, C. H., Parker, R. A., Goldfarb, V., Mueller, L. and Farmer, B. T. II (1998). Backbone and side chain dynamics

of uncomplexed human adipocyte and muscle fatty acid-binding proteins. *Biochemistry* **37**,7965-7980

- Cowan, S. W., Newcomer, M. E. and Jones, T. A. (1993). Crystallographic studies on a family of cellular lipophilic transport proteins. Refinement of P2 myelin protein and the structure determination and refinement of cellular retinol-binding protein in complex with all-trans-retinol. *J. Mol. Biol.* 230, 1225-1246
- Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, D. J., Genest, M. and Hagler, A. T. (1988). Structure and energetics of ligand binding to proteins: *Escherichia coli* dihydrofolate reductase-trimethoprim, a drug receptor system. *Proteins Struct. Funct. Genet.* 4, 31-47
- De León, M., Welcher, A. A., Nahin, R. H., Liu, Y., Ruda, M. A., Shooter, E. M. and Molina, C. A. (1996). Fatty acid binding protein is induced in neurons of the dorsal root ganglia after peripheral nerve injury. *J. Neurosci. Res.* 44, 283-292
- Delva, L., Bastie, J. N., Rochette-Egly, C., Kraiba, R., Balitrand, N., Despouy, G., Chambon,
 P. and Chomienne, C. (1999). Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. *Mol. Cell Biol.* 19, 7158-7167
- Di Pietro, S. M., Dell'Angelica, E. C., Schleicher, C. H. and Santomé, J. A. (1996).
 Purification and structural characterization of a fatty acid-binding protein from the liver of the catfish *Rhamdia sapo. Comp. Biochem. Physiol.* B 113, 503-509
- Dodrell, D. M., Pegg, D. T. and Bendall, M. R (1982). Distortionless enhancement of NMR signals by polarization transfer. *J. Magn. Reson.* **48**, 323-327
- Eads, J., Sacchettini, J. C., Kromminga, A. and Gordon, J. I. (1993). *Escherichia coli*-derived rat intestinal fatty acid binding protein with bound myristate at 1.5 A resolution and I-FABPArg106-->Gln with bound oleate at 1.74 A resolution. *J. Biol. Chem.* 268, 26375-26385
- Farooqui, J. Z., Robb, E., Boyce, S. T., Warden, G. D. and Nordlund, J. J. (1995). Isolation of a unique melanogenic inhibitor from human skin xenografts: initial *in vitro* and *in vivo* characterization. J. Invest. Dermatol. 104, 739-743
- Farrow, N. A., Muhandiram, R., Singer, A. U., Pascal, S. M., Kay, C. M., Gish, G., Shoelson, S. E., Pawson, T., Forman-Kay, J. D. and Kay, L. E. (1994). Backbone dynamics of a free and a phosphopeptide-complexed src homology 2 domain studied by ¹⁵N NMR relaxation. *Biochemistry* 33, 5984-6003

- Fischer, M. W. F., Majumdar, A. and Zuiderweg, E. R. P. (1998). Protein NMR relaxation: theory, applications and outlook. *Progress in Nuclear Magnetic Resonance Spectroscopy* 33, 207-272
- Fletcher, R. (1980). *Practical methods of optimization, Vol. 1, Unconstrained Optimization,* John Wiley and Sons, New York
- Folli, C., Calderone, V., Ottonello, S., Bolchi, A., Zanotti, G., Stoppini, M. and Berni, R. (2001). Identification, retinoid binding, and x-ray analysis of a human retinol-binding protein. *Proc. Natl. Acad. Sci. USA* 98, 3710-3715
- García de la Torre, J. and Bloomfield, V. (1981). Hydrodynamic properties of complex rigid, biological macromolecules: Theory and applications. *Quart. Rev. Biophys.* 14, 81-139
- Glatz, J. F. and Veerkamp, J. H. (1983). Removal of fatty acids from serum albumin by Lipidex 1000 chromatography. *J. Biochem. Biophys. Methods* **8**, 57-61
- Glatz, J. and Van der Vusse, G. (1996). Cellular fatty acid binding proteins: Their function and physiological significance. *Prog. Lip. Res.* **35**, 243-282
- Güntert, P. (1993). Neue Rechenverfahren für die Proteinstrukturbestimmung mit Hilfe der Magnetischen Kernspinresonanz, Doktorarbeit, ETH, Zürich
- Güntert, P., Braun, W. and Wüthrich, K. (1991). Efficient computation of three-dimensional protein stuctures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517-530
- Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997). Torsion angle dynamics for NMR structure calculation with the new program DYANA. *J. Mol. Biol.* **273**, 283-298
- Hagens, G., Masouyé, I., Augsburger, E., Hotz, R., Saurat J.-H. and Siegenthaler, G. (1999).
 Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes. *Biochem. J.* 339, 419-427
- Hayasaka, K., Nanao, K., Tahara, M., Sato, W., Takada, G., Miura, M. and Uyemura, K. (1991). Isolation and sequence determination of cDNA encoding P2 protein of human peripherical myelin. Biochem. *Biophys. Res. Commun.* **181**, 204-207
- Helledie, T., Antonius, M., Sørensen, R. V., Hertzel, A. V., Bernlohr, D. A., Kølvraa, S., Kristiansen, K. and Mandrup, S. (2000). Lipid-binding proteins modulate liganddependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. *J. Lipid Res.* **41**, 1740-1751

- Herr, F. M., Aronson, J. and Storch, J. (1996). Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. *Biochemistry* **35**, 1296-1303
- Hertzel A. V. and Bernlohr, D. A. (1998). Cloning and chromosomal location of the murine keratinocyte lipid-binding protein gene. *Gene* **221**, 235-243
- Hiyama, Y., Niu, C., Silverton, J. V., Bavoso, A. and Torchia, D. A. (1988). Determination of ¹⁵N chemical shift tensor via ¹⁵N –²H dipolar coupling in boc-glycylglycyl[¹⁵N]glycine benzyl ester *J. Am. Chem. Soc.* **110**, 2378
- Hodsdon M. E., Ponder J. W. and Cistola D. P. (1996). The NMR solution structure of intestinal fatty acid-binding protein complexed with palmitate: application of a novel distance geometry algorithm. J. Mol. Biol. 264, 585-602
- Hodsdon, M. E. and Cistola, D. P. (1997). Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by ¹⁵N NMR relaxation and ¹H exchange. *Biochemistry* **36**, 2278-2290
- Hohoff, C., Börchers, T., Rüstow, B., Spener, F. and van Tilbeurgh, H. (1999). Expression, purification, and crystal structure of recombinant human epidermal-type fatty acid binding protein. *Biochemistry* 38, 12229-12239
- Jain, A., Vaidehi, N. and Rodríguez, G. (1993). Fast recursive algorithm for molecular dynamics simulation. *J. Comput. Phys.* **106**, 258-268
- Jaworski, C. and Wistow, G. (1996). LP2, a differentiation-associated lipid-binding protein expressed in bovine lens. *Biochem. J.* **320**, 49-54
- Jeener, J., Meier, B. H., Bachmann, P. and Ernst, R. R. (1979). Investigation of exchange progress by two-dimensional NMR spectroscopy. *J. Chem. Phys.* **71**, 4546-4553
- Johnson, C. E. and Bovey, F. A. (1958). Calculation of nuclear magnetic resonance spectra of aromatic hydrocarbons. *J. Chem. Phys.* **29**, 1012
- Kay, L. E., Torchia, D. A. and Bax, A. (1989). Backbone dynamics of proteins as studied by ¹⁵N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. *Biochemistry* 28, 8972-8979
- Kay, L. E., Keifer, P. and Saarinen, T. (1992). Pure absorption gradient enhanced heteronuclar single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663-10665
- Kingma, P. B., Bok, D. and Ong, D. E. (1998). Bovine epidermal fatty acid-binding protein: determination of ligand specificity and cellular localization in retina and testis. *Biochemistry* 37, 3250-3257

- Kitamura, K., Suzuki, M., Suzuki, A. and Uyemura, K. (1980). The complete amino acid sequence of the P2 protein in bovine peripheral nerve myelin. *FEBS Lett.* **115**, 27-30
- Kraulis, P. J. (1991). MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. *J. Appl. Crystallogr.* **24**, 946-950
- Krieg, P., Feil, S., Fürstenberger, G. and Bowden, G. T. (1993). Tumor specific overexpression of a novel keratinocyte lipid-binding protein. Identification and characterization of a cloned sequence activated during multistage carcinogenesis in mouse skin. *J. Biol. Chem.* 268, 17362-17369
- Krishnan, V.V., Sukumar, M., Gierasch, L. M. and Cosman, M. (2000). Dynamics of cellular retinoic acid binding protein I on multiple time scales with implications for ligand binding. *Biochemistry* **39**, 9119-9129
- Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Appl. Crystallogr. 26, 283-291
- Lassen, D., Lücke, C., Kveder, M., Mesgarzadeh, A., Schmidt, J. M., Specht, B., Lezius, A., Spener, F. and Rüterjans, H. (1995). Three-dimensional structure of bovine heart fattyacid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy. *Eur. J. Biochem.* 230, 266-280
- Lipari, G. and Szabo, A. (1982a). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. *J. Am. Chem. Soc.* **104**, 4546-4559
- Lipari, G. and Szabo, A. (1982b). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. *J. Am. Chem. Soc.* **104**, 4559-4570
- Londraville, R. L. and Sidell, B. D. (1995). Purification and characterization of fatty acidbinding protein from aerobic muscle of the antarctic icefish *Chaenocephalus aceratus*. *J. Exp. Zool.* 273, 190-203
- Londraville, R. L. and Sidell, B. D. (1996). Cold acclimation increases fatty acid-binding protein concentration in aerobic muscle of striped bass, *Morone saxatilis*. J. Exp. Zool. 275, 36-44
- Lowe, J. B., Boguski, M. S., Sweetser, D. A., Elshourbagy, N. A., Taylor, J. M. and Gordon,J. I. (1985). Human liver fatty acid binding protein. *J. Biol. Chem.* 260, 3413-3417

- Lu, J., Lin, C.-L., Tang, C., Ponder, J. W., Kao, J. L. F., Cistola, D. P. and Li, E. (1999). The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure. J. Mol. Biol. 286, 1179-1195
- Lu, J., Lin, C.-L., Tang, C., Ponder, J. W., Kao, J. L. F., Cistola, D. P. and Li, E. (2000). Binding of retinol induces changes in rat cellular retinol-binding protein II conformation and backbone dynamics. *J. Mol. Biol.* **300**, 619-632
- Lücke, C., Lassen, D., Kreienkamp, H.-J., Spener, F. and Rüterjans, H. (1992). Sequencespecific ¹H-NMR assignment and determination of the secondary structure of bovine heart fatty-acid-binding protein. *Eur. J. Biochem.* **210**, 901-910
- Lücke, C., Zhang, F., Rüterjans, H., Hamilton, J. A. and Sacchettini, J. C. (1996). Flexibility is a likely determinant of binding in the case of ileal lipid binding protein. *Structure* **4**, 785-800
- Lücke, C., Fushman, D., Ludwig, C., Hamilton, J. A., Sacchettini, J. C. and Rüterjans, H. (1999). A comparative study of the backbone dynamics of two closely related lipid bindng proteins: Bovine heart fatty acid binding protein and porcine ileal lipid binding protein. *Mol. Cell. Biochem.* **192**, 109-121
- Lücke, C., Rademacher, M., Zimmerman, A. W., van Moerkerk, H. T. B., Veerkamp, J. H. and Rüterjans, H. (2001). Spin-system heterogeneities indicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP). *Biochem. J.* 354, 259-266
- Madsen, P., Rasmussen, H. H., Leffers, H., Honoré, B. and Celis, J.E. (1992). Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid binding protein [PA-FABP]) that is highly upregulated in psoriatic skin and that shares similarity to fatty acid binding proteins. J. Invest. Dermatol. 99, 299-305
- Mandel, A. M., Akke, M. and Palmer, A. G. (1995). Backbone dynamics of *Escherichia coli* ribonuclease HI: Correlations with structure and function in an active enzyme. *J. Mol. Biol.* 246, 144-163
- Matarese, V., Stone, R. L., Waggoner, D. W. and Bernlohr, D. A. (1989). Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. *Prog. Lip. Res.* **28**, 245-272
- Mathiowetz, A., Jain, A., Karasawa, N. and Goddard, W. I. (1994). Protein simulations using techniques suitable for large systems: The cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator for internal coordinate dynamics. *Proteins: Struct. Funct. Genet.* 20, 227-247

- Medzihradszky, K. F., Gibson, B. W., Kaur, S., Yu, Z. H., Medzihradszky, D., Burlingame, A. L. and Bass, N. M. (1992). The primary structure of fatty acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty acidbinding protein family. *Eur. J. Biochem.* 203, 327-339
- Merrit, E. A. and Bacon, D. J. (1997). Raster3D: Photorealistic molecular graphics. *Methods Enzymol.* 277, 505-524
- Morris, G. A. and Freeman, R. (1979). Enhancement of nuclear magnetic resonance signals by polarisation transfer. *J. Am. Chem. Soc.* **101**, 760-762
- Moser, D., Tendler, M., Griffiths, G. and Klinkert, M. Q. (1991). A 14-kDa *Schistosoma mansoni* polypeptide is homologous to a gene family of fatty acid binding proteins. *J. Biol. Chem.* **266**, 8447-8454
- Neuhaus, D. and Williamson, M. (1989). *The Nuclear Overhauser Effect in Structural and Conformational Analysis*, VCH Publishers, New York
- Nicholls, A., Sharp, K. A. and Honig, B. (1991). Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. *Proteins* **11**, 281-296
- Nilsson M. H., Spurr, N. K., Lundvall, J., Rask, L. and Peterson, P. A. (1988). Human cellular retinol-binding protein gene organization and chromosomal location. *Eur. J. Biochem.* 173, 35-44
- Palmer, A. G., Rance, M. and Wright, P. E. (1991). Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance ¹³C heteronuclear NMR spectroscopy. J. Am. Chem. Soc. 113, 4371-4380
- Peeters, R. A., Veerkamp, J. H., van Kessel, G. A., Kanda, T. and Ono, T. (1991). Cloning of the cDNA encoding human skeletal-muscle fatty acid-binding protein, its peptide sequence and chromosomal localisation. *Biochem. J.* 276, 203-206
- Rademacher, M., Lücke, C. Zimmerman, A. W., Veerkamp, J. H. and Rüterjans, H. (in preparation). Solution structure of fatty acid binding protein from human brain.
- Rasmussen, H. H., van Damme, J., Puype, M., Gesser, B., Celis, J. E. and Vandekerckhove, J. (1992). Microsequences of 145 proteins recorded in the two-dimensional gel protein database of normal human epidermal keratinocytes. *Electrophoresis* 13, 960-969
- Ross, A. C. (1993). Cellular metabolism and activation of retinoids: roles of cellular retinoidbinding proteins. *FASEB J.* **7**, 317-327
- Sacchettini, J. C., Gordon, J. I. and Banaszak, L. J. (1989). Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the *Escherichia coli*-derived protein with bound palmitate. J. Mol. Biol. 208, 327-339

- Sacchettini, J. C. and Gordon, J. I. (1993). Rat intestinal fatty acid binding protein. J. Biol. Chem. 268, 18399-18402
- Scapin, G., Young, A. C., Kromminga, A., Veerkamp, J. H., Gordon, J. I. and Sacchettini, J. C. (1993). High resolution X-ray studies of mammalian intestinal and muscle fatty acid-binding proteins provide an opportunity for defining the chemical nature of fatty acid: protein interactions. *Mol. Cell. Biochem.* 123, 3-13
- Schaefer, W. H., Kakkad, B., Crow, J. A., Blair, I. A. and Ong, D. E. (1989). Purification, primary structure characterization, and cellular distribution of two forms of cellular retinol-binding protein type II from adult rat small intestine. J. Biol. Chem. 264, 4212-4221
- Schleicher, C. H., Córdoba, O. L., Santomé J. A. and Dell'Angelica, E. C. (1995). Molecular evolution of the multigene family of intracellular lipid binding proteins. *Biochem. Mol. Biol. Int.*, **36**, 1117-1125
- Schleucher, J., Sattler, M. and Griesinger, C. (1993). Coherence selection by gradients without signal attenuation: application to the three-dimensional-HNCO experiment. *Angew. Chem. Int. Ed. Eng.* 32, 1489-1491
- Schmidt, J. and Rüterjans, H. (1990). Proton detected 2D heteronuclear shift correlation via multiple-quantum coherences of the type I₂S. *J. Am. Chem. Soc.* **112**, 1279-1280
- Shimizu, F., Watanabe, T. K., Shinomiya, H., Nakamura, Y. and Fujiwara, T. (1997).
 Isolation and expression of a cDNA for human brain fatty acid-binding protein (B-FABP). *Biochim. Biophys. Acta* 1354, 24-28
- Siegenthaler, G., Hotz, R., Chatellard-Gruaz, L., Jaconi, S. and Saurat, J.-H. (1993). Characterization and expression of a novel human fatty acid-binding protein: the epidermal type (E-FABP). *Biochem Biophys. Res. Commun.* **190**, 482-487
- Siegenthaler, G., Hotz, R., Chatellard-Gruaz, L., Didierjan, L. and Hellmann, U. (1994). Purification and characterization of the human epidermal fatty acid-binding protein: localization during epidermal cell differentiation *in vivo* and *in vitro*. *Biochem. J.* **302**, 363-371
- Slichter, C. P. (1978). Principles of magnetic resonance. Springer-Verlag, Berlin.
- Stone, M. J., Fairbrother, W. J., Palmer, A. G., Reizer, J., Saier, M. H. Jr. and Wright, P. E. (1992). The backbone dynamics of the *Bacillus subtilis* glucose permease IIA domain determined from ¹⁵N NMR relaxation measurements. *Biochemistry* **31**, 4394-4406
- Storch, J. and Thumser, A. E. A. (2000). The fatty acid transport function of fatty acidbinding proteins. *Biocbim. Biophys. Acta* **1486**, 28-44

- Studier, F. W., Rosenberg, A. H., Dunn, J. J. and Dubendorff, J. W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. *Methods Enzymol.* **185**, 60-89
- Sweetser, D. A., Birkenmeier, E. H., Klisak, I. J., Zollman, S., Sparkes, R. S., Mohandas, T., Lusis, A. J. and Gordon, J. I. (1987). The human and rodent intestinal fatty acid binding protein genes. J. Biol. Chem. 262, 16060-16071
- Thompson, J., Winter, N., Terwey, D., Bratt, J. and Banaszak, L. (1997). The crystal structure of the liver fatty acid-binding protein. *J. Biol. Chem.* **272**, 7140-7150
- Tjandra, N., Feler, S. E., Pastor, R.W. and Bax, A. (1995). Rotational diffusion anisotropy of human ubiquitin from ¹⁵N NMR relaxation. *J. Am. Chem. Soc.* **117**, 12562-12566
- Veerkamp, J. H. and Maatman, R. G. H. J. (1995). Cytoplasmic fatty acid-binding proteins: their structure and genes. *Prog. Lip. Res.* 34, 17-52
- Veerkamp, J. H. and Zimmerman, A. W. (2001). Fatty acid-binding proteins of nervous tissue. J. Mol. Neurosci. 16, 133-142
- Wallach, D. J. (1967). Effect of internal rotation on angular correlation functions. J. Chem. Phys. 47, 5258-5268
- Walz, D. A., Wider, M. D., Snow, J. W., Dass, C. and Desiderio, D. M. (1988). The complete amino acid sequence of porcine gastrotropin, an ileal protein which stimulates gastric acid and pepsinogen. J. Biol. Chem. 263, 14189-14195
- Wang, L., Li, Y., Abildgaard, F., Markley, J. L. and Yan, H. (1998). NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding. *Biochemistry* 37, 12727-12736
- Watanabe, R., Fujii, H., Odani, S., Sakakibara, J., Yamamoto, A., Ito, M. and Ono, T. (1994).
 Molecular cloning of a cDNA encoding a novel fatty acid-binding protein from rat skin.
 Biochem. Biophys. Res. Commun. 200, 253-259
- Watson, P. H., Leygue, E. R. and Murphy, L. C. (1998). Psoriasin (S100A7). Int. J. Biochem. Cell Biol., 30, 567-571
- Wen, Y., Li, G. W., Chen, P., Wong, E. and Bekhor, I. (1995). Lens epithelial cell mRNA, II. Expression of a mRNA encoding a lipid-binding protein in rat lens epithelial cells. *Gene* 158, 269-274
- Wittebort, R. J. and Szabo, A. J. (1978). Theory of NMR relaxation in macromolecules: restricted diffusion and jump models for multiple internal rotations in amino acid side chains. J. Chem. Phys. 69, 1722-1736

- Wolfrum, C., Ellinghaus, P., Fobker, M., Seedorf, U., Assmann, G., Börchers, T. and Spener,
 F. (1999). Phytanic acid is ligand and transcriptional activator of murine liver fatty acid
 binding protein. J. Lipid Res. 40, 704-714
- Wolfrum, C., Börchers, T., Sacchettini, J. C. and Spener, F. (2000). Binding of fatty acids and peroxisome proliferators to orthologous fatty acid binding proteins from human, murine, and bovine liver. *Biochemistry* **39**, 1469-1474
- Wolfrum, C, Borrmann, C. M., Borchers, T. and Spener, F. (2001). Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α- and γmediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus. *Proc Natl Acad Sci U S A* 98, 2323-2328
- Wüthrich, K., Billeter, M. and Braun, W. (1983). Pseudo structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 169, 949-961
- Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids, Wiley, New York
- Xu, Z., Bernlohr, D. A. and Banaszak, L. J. (1993). The adipocyte lipid-binding protein at 1.6-Å resolution. *J. Biol. Chem.* **268**, 7874-7884
- Yang, Y., Spitzer, E., Kenney, N., Zschiesche, W., Li, M., Kromminga, A., Müller, T., Spener, F., Lezius, A., Veerkamp, J. H. and Smith, G. H. (1994). Members of the fatty acid binding protein family are differentiation factors for the mammary gland. *J. Cell. Biol.* 127, 1097-1109
- Zhang F., Lücke C., Baier L. J., Sacchettini J. C. and Hamilton J. A. (1997). Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. J. Biomol. NMR 9, 213-228
- Zimmerman, A. W., van Moerkerk, H. T. B. and Veerkamp, J. H. (2001). Ligand specificity and conformational stability of human fatty acid-binding proteins. *Int. J. Biochem. Cell Biol.* 33, 865-876

Appendix A.1 Distance constraints in Å used for the structure calculations of human E-FABP complexed with stearic acid at pH 5.6 and 298 K. The pseudoatoms are used as described in Table 3.2.

Upper limit list

					6 GLN	HE21	6 GLN	HE22	2.5	9 GLY	HA1	10 ARG+	HN	3.0
					6 GLN	HE21	6 GLN	HG1	4.5	9 GLY	HA1	45 ILE	HN	6.0
3 THR	НΣ	3 THR	HB	3 0	6 GLN	HE 21	6 GUN	HG2	4 5	9 GLV	нд2	9 CLV	нд1	2 5
0 ====	116	0	110	5.0	0 911	11521	C GLIN	1192	4.5	9 611	1162	5 GIII	IIAI	2.5
3 THR	HA	3 THR	QG2	3.6	6 GLN	HE22	6 GLN	HBI	4.5	9 GLY	HAZ	10 ARG+	HN	3.0
3 THR	HA	4 VAL	HN	4.0	6 GLN	HE22	6 GLN	HB2	6.0	9 GLY	HA2	133 LYS+	HE1	5.0
2 00110	1175	00 DUE	1177	4 0	6 CT N	1112.0.0	6 CT N	1101	4 5	0 CTV	117.2	122 7 701	1112.0	5 0
5 Ink	пА	OJ FRE	пд	4.0	0 GLIN	пьгг	0 GLIN	ngi	4.5	9 GLI	na2	100 110+	пь∠	5.0
3 THR	HB	3 THR	QG2	3.6	6 GLN	HE22	6 GLN	HG2	4.5	9 GLY	HN	9 GLY	HA1	3.0
3 THR	HB	4 VAL	HN	3.0	6 GLN	HG1	6 GLN	HB2	3.5	9 GLY	HN	9 GLY	HA2	3.5
2 000		E CTN		4 E	C CIN	1100	C CTN	1101	2 5	0 GLV		10 1001		E 0
5 THR	нв	3 GLIN	HIN	4.0	6 GLIN	HGZ	6 GLN	HBI	3.5	9 GLI	HIN	IU ARG+	HIN	5.0
3 THR	HB	89 PHE	ΗZ	4.5	6 GLN	HG2	6 GLN	HB2	3.5	9 GLY	HN	44 ILE	HA	6.0
3 THR	HB	89 PHE	OE	67	6 GLN	HG2	6 GLN	HG1	35	9 GLY	HN	44 TLE	062	56
0 700	1112	0.0 11111	20	0.7	C GIN	1102	C OIN		2.0	J GEI		45 775	202	0.0
3 THR	HN	3 THR	HA	3.0	6 GLN	HN	6 GLN	HA	3.0	9 GLI	HN	45 ILE	HB	3.5
3 THR	HN	3 THR	OG2	5.6	6 GLN	HN	6 GLN	HB1	4.0	9 GLY	HN	45 ILE	HG12	6.0
2 00110	002	A 177 T	LINI	6 1	6 CT N	TINT	6 CT N	110.0	4 0	0 CT V	TINT	45 TTE	TINT	2 6
5 Ink	QGZ	4 VAL	rin -	0.1	0 GLIN	HIN	0 GLIN	пьг	4.0	9 GLI	nin 1	40 ILE	LIN	5.5
3 THR	QG2	89 PHE	HZ	7.1	6 GLN	HN	6 GLN	HG1	4.5	9 GLY	HN	45 ILE	HN	4.5
3 THR	0G2	89 PHE	OD	8.3	6 GLN	HN	6 GLN	HG2	4.5	9 GLY	HN	45 TLE	OG2	5.6
2 1111	202	00 DUD	22	7.0	C GLN	1111	7 1 111	1102	2 5	0 GLV	1111	4C mup	202	7 1
3 THR	QG2	89 PHE	QE	1.8	6 GLN	HN	/ LEU	HN	3.5	9 GLI	HN	46 THR	QG2	/.1
4 VAL	HA	4 VAL	HB	3.0	6 GLN	HN	8 GLU-	HN	6.0	10 ARG+	HA	11 TRP	HN	2.5
4 WAT.	НΣ	4 WAT.	061	56	7 1.511	НЪ	7 1.511	HB2	35	10 ARC+	НΣ	45 TLE	HN	4 5
4 4 4 4 4	1111	-1 VIIL	201	5.0	7 110	1111	7 110	1102	5.5	10 11(0)		10 100		1.5
4 VAL	HA	4 VAL	QG2	4.1	/ LEU	HA	/ LEU	HG	3.5	IU ARG+	HBI	10 ARG+	HB2	3.5
4 VAL	HA	5 GLN	HN	4.5	7 LEU	HA	7 LEU	OD2	4.1	10 ARG+	HB1	10 ARG+	HG1	3.5
A 177 T	UЛ	6 CT N	UN	5 0	7 1 511	uλ	8 CTIL	LINI	4 0	10 APC+	UD 1	10 NPC+	UC2	3 5
4 VAD	IIA	0 9114	1111	5.0	7 11110	IIA	0 610	1114	4.0	IO AKGI	1101	IU ARGI	1162	5.5
4 VAL	HA	7 LEU	HB1	5.0	7 LEU	HA	11 TRP	HE1	4.5	10 ARG+	HD1	10 ARG+	HB1	4.5
4 VAL	HA	7 LEU	HN	4.5	7 LEU	HA	11 TRP	HH2	4.5	10 ARG+	HD1	10 ARG+	HD2	3.5
A 177 T	UЛ	7 1 1211	001	5 1	7 1 511	uλ	11 ייסס	U72	3 0	10 APC+	up1	10 NPC+	UC1	15
4 VAD	IIA	7 110	QDI	5.1	7 11110	IIA	11 11/1	1122	5.0	IO AKGI	IIDI	IU ARGI	1161	4.5
4 VAL	HA	/ LEU	QD2	/.1	/ LEU	HA	III LEU	QD2	5.1	IU ARG+	HDI	10 ARG+	HG2	3.5
4 VAL	HA	89 PHE	HZ	4.5	7 LEU	HB1	7 LEU	OD1	4.1	10 ARG+	HD1	134 VAL	OG1	4.6
A 177 T	UЛ	80 DUF	OD	6.2	7 1 511	UD 1	7 1 11	ÕD2	5 1	10 APC+	up1	134 1771	002	5 6
4 141	IIA	0 J FIIE	QD	0.2	7 11110	1101	/ 100	QDZ	5.1	IU AKGI	IIDI	TO4 AU	QG2	5.0
4 VAL	HA	89 PHE	QE	5.7	7 LEU	HB1	8 GLU-	HN	4.5	10 ARG+	HD2	10 ARG+	HB1	4.5
4 VAL	HB	4 VAL	OG1	4.1	7 LEU	HB1	45 ILE	OG2	7.1	10 ARG+	HD2	10 ARG+	HG1	4.5
A 177 T	11D	4 377 T	002	4 1	7 1 1211	TTD 1	116 1 1211	001	7 1	10 ADCI	11D.2	10 ADCI	1102	2 5
- VAL	11D	- VAL	2GZ		/ LEU	пві	110 DEO	2DT	/ • ±	IU AKG+	пU2	IU AKG+	1162	5.5
4 VAL	HB	89 PHE	HB1	4.5	7 LEU	HB2	7 LEU	HB1	3.5	10 ARG+	HD2	134 VAL	HB	5.0
4 VAL	HB	89 PHE	HB2	5.0	7 LEU	HB2	7 LEU	OD2	5.1	10 ARG+	HD2	134 VAL	OG2	5.6
4 177 1	112	00 DUD	0.0	5.0	7 1 1 1 1	1102	4 E TT D	001	E 1	10 1001		10 1001	202 UD1	4 5
4 VAL	HB	89 PHE	QD	5./	/ LEU	HBZ	45 ILE	QDI	5.1	IU ARG+	HE	IU ARG+	HBI	4.5
4 VAL	HB	89 PHE	QE	6.2	7 LEU	HB2	116 LEU	QD1	7.1	10 ARG+	HE	10 ARG+	HD1	4.5
4 WAT.	HN	4 WAT.	НЪ	35	7 1.511	HC	7 T.FII	001	4 1	10 ARC+	HF	10 ARC+	HD2	35
-1 VIIL	1114	-1 VIIL	1111	5.5	7 1110	110	7 110	201	1.1	10 11(0)	1111	10 111(0)	1102	5.5
4 VAL	HN	4 VAL	HB	3.5	7 LEU	HG	7 LEU	QD2	4.1	10 ARG+	HE	10 ARG+	HG1	4.5
4 VAL	HN	4 VAL	OG1	4.6	7 LEU	HG	45 TLE	0G2	7.1	10 ARG+	HE	10 ARG+	HG2	4.5
A 177 T	TINT	4 377 T	002	6 1	7 1 1211	IIN	7 1 1211	117	1 5	10 ADCI	1112	44 TTE	001	5 6
4 VAL	HIN	4 VAL	QGZ	0.1	/ LEO	HIN	/ LEO	HA	4.5	IU ARG+	HE	44 ILE	QDI	5.0
4 VAL	HN	89 PHE	ΗZ	6.0	7 LEU	HN	7 LEU	HB1	4.0	10 ARG+	HE	44 ILE	QG2	6.1
4 VAL	HN	89 PHE	OD	7.2	7 LEU	HN	7 LEU	HB2	4.0	10 ARG+	HG1	10 ARG+	HG2	2.5
4 TZD T	1151	0.0 DUD	2- 07	<i>c</i> 7	7 1 111	1151	7 1 111		4 5	10 1001	1101	11 000		4 5
4 VAL	HIN	69 PHE	QE	0./	/ LEO	HN	/ LEO	HG	4.5	IU ARG+	HGI	II TRP	HIN	4.5
4 VAL	QG1	5 GLN	HN	5.1	7 LEU	HN	7 LEU	QD1	5.6	10 ARG+	HG1	134 VAL	HB	4.5
4 WAT.	0G1	89 PHE	HB1	7 1	7 LEU	HN	7 LEH	0.02	56	10 ARG+	HG2	11 TRP	HN	4 5
4 773 7	201	00 500		7.1	7 120		0 07.17	222	0.0	10 100		40 305		
4 VAL	QGI	89 PHE	HBZ	/.1	/ LEU	HN	8 GLU-	HN	3.0	IU ARG+	HG2	42 ASP-	HA	5.0
4 VAL	QG2	4 VAL	QG1	5.2	7 LEU	QD1	7 LEU	QD2	4.7	10 ARG+	HG2	134 VAL	HB	4.5
A 177 T	002	E CT M	LINI	6 1	7 1 1211	0D1	45 110	002	67	10 ADCI	1100	124 1771	002	5 6
4 VAL	QGZ	2 GTW	FIIN	0.1	/ 160	QDI	40 IDE	QGZ	0.7	10 AKG+	ngz	T24 AVT	QGZ	5.0
4 VAL	QG2	7 LEU	HG	5.6	7 LEU	QD1	89 PHE	QE	6.3	10 ARG+	HN	10 ARG+	HA	3.0
4 VAL	OG2	7 LEU	OD1	5.7	7 LEU	OD1	93 ALA	HA	5.6	10 ARG+	HN	10 ARG+	HG1	6.0
4 777 7	202	- 120	201	6.0	7 120	0.01	04 7 227		6.0	10 100		11 mpp		<i>c</i>
4 VAL	QG2	52 LEU	QQD	6.9	/ LEU	QDI	94 LEU	HA	0.1	IU ARG+	HN	II TRP	HN	6.0
4 VAL	QG2	89 PHE	HB1	5.6	7 LEU	QD1	94 LEU	HB1	4.6	11 TRP	N	43 CYS	0	3.2
A 177 T	002	80 DUF	UD 2	7 1	7 1 511	001		UN	16	ם סיד 11	U 7	11 100	UD1	15
4 VAD	292	0.5 11111	1102	/.1	7 11110	QDI	24 110	1110	4.0	II IN	IIA	II IN	IIDI	4.5
4 VAL	QG2	89 PHE	QD	7.8	7 LEU	QD1	94 LEU	QD2	6.2	11 TRP	HA	11 TRP	HB2	4.5
4 VAL	QG2	89 PHE	OE	8.3	7 LEU	QD1	109 ARG+	HB2	5.1	11 TRP	HA	12 ARG+	HN	2.5
A 177 T	002		0D1	6 7	7 1 1 1	ÕD1	100 7001	un2	6 1	ם סיד 11	U 7.	131 mVD	UD1	6 0
4 141	QG2	5 85.0	QD1	0.7	7 1150	201	105 ARG	1102	0.1	11 1111	117	101 110	IIDI	0.0
5 GLN	HA	5 GLN	HBI	3.5	/ LEU	QDI	II6 LEU	QDI	6.2	II TRP	HA	IJI TYR	QD	6./
5 GLN	HA	5 GLN	HB2	3.5	7 LEU	OD2	11 TRP	HZ2	7.1	11 TRP	HA	133 LYS+	HA	3.5
E CTN	117	5 CT M	1101	2 6	7 1 1211	002	00 DUE	1177	7 1	11 000	117	124 1771	TINT	2 6
J GLIN	пА	2 GTW	ngi	5.5	/ 160	QDZ	09 FHE	пд	/.1	II IKP	пА	T24 AVT	LIN	5.5
5 GLN	HA	5 GLN	HG2	3.5	7 LEU	QD2	89 PHE	QE	7.3	11 TRP	HB1	11 TRP	HB2	3.5
5 GLN	HА	6 GLN	HN	4 5	7 LEU	002	94 T.EH	HN	6 1	11 TRP	HB1	12 ARG+	HN	4 5
5 CT N	U7	7 1 10 11	יאנו	6 0	7 101	200	100 000	UD1	7 1	11 11	001	13 000	UD 2	e 0
3 GLIN	HA	/ LEU	HIN	0.0	/ LEO	QD2	109 ARG+	HBI	/.1	II TRP	HBI	43 CIS	HBZ	0.0
5 GLN	HA	8 GLU-	HG1	5.0	7 LEU	QD2	111 LEU	HA	6.6	11 TRP	HB2	12 ARG+	HN	6.0
5 GLN	НА	8 GLU-	HG2	4 5	7 LEH	002	111 LEH	HB1	6 1	11 TRP	HB2	43 CYS	HN	6.0
E CT M	UD 1	6 01 11	1157	 E	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200	111 1 100		5 1	11 mpp	1100	116 7 117	0.000	F 7
J GLIN	пдт	O GTN	LIN	5.0	/ LEU	QUZ	111 LEU	по	J.1	II TRP	пВ∠	TTO LEO	2UZ	5.6
5 GLN	HE21	5 GLN	HB2	3.5	7 LEU	QD2	111 LEU	HN	4.6	11 TRP	HB2	131 TYR	HB1	4.5
5 GLN	HE21	5 GLN	HE22	2.5	7 LEU	002	111 LEU	002	5.2	11 TRP	HR2	131 TYR	OD	62
E OT M	1001	E CTN		2.0	7 100	222	110	222	7.4	11 mm-	1102	101 000	22	2.2
5 GLN	HEZI	5 GLN	HGI	4.0	/ LEU	QDZ	II0 LEO	HG	/.1	II TRP	HBZ	131 TYR	QE	6./
5 GLN	HE21	5 GLN	HG2	4.0	7 LEU	QD2	116 LEU	QD1	5.2	11 TRP	HD1	11 TRP	HB1	4.5
5 CT.M	НЕСО	5 CT N	HC1	5 0	8 CT TT	нъ	8 CTTT-	- НВ1	2 5	- מסיי 11	цр1	11 ססיי	нво	4 0
2 GTIN		0 0111	1101	5.0	0 GTO-		0 GTO-	1101	5.5	II IRP	111/1	11 1RF		0
5 GLN	HE22	5 GLN	HG2	4.5	8 GLU-	НA	8 GLU-	нв2	3.5	11 TRP	HD1	43 CYS	нв2	6.0
5 GLN	HG1	5 GLN	HB1	3.5	8 GLU-	HA	8 GLU-	HG1	4.5	11 TRP	HD1	43 CYS	HN	6.0
5 CTN	HC1	5 CTN	нв.	3 5	9 CTT	цл. -	8 CT II.	HC2	4 5	 מסיח 11	цп1	44 TTE	нл	1 0
2 GTM	1101	0 0 0 0	1102	5.5	0 GTO-	IIA	0 GTO-	1192		II IRP	1101	45 TTP	1174	4.0
5 GLN	HG1	5 GLN	HG2	2.5	8 GLU-	HA	9 GLY	HN	2.5	11 TRP	HD1	45 ILE	HB	4.5
5 GLN	HG2	5 GLN	HB2	3.5	8 GLU-	НA	45 T.E	HN	6.0	11 TRP	HD1	45 TLE	HG12	4 5
E OT Y	1100	6 011	1131	6.0	0 010	1111	AE +	0.01	7 1	11	1101	AC TTO	1131	1.5
5 GLN	HG2	6 GLN	HN	ю.U	8 GLŪ-	HА	45 LLE	Ωυτ	/.⊥	II TRP	HDI	45 ILE	HN	3.5
5 GLN	HN	5 GLN	HA	3.5	8 GLU-	HA	45 ILE	QG2	5.1	11 TRP	HD1	45 ILE	QD1	4.6
5 GT-N	HN	5 GT.N	HB1	3 5	8 CT.II-	HR1	8 CT.II-	HB2	2 5	- קקית 11	HE1	11 שפפ	HB2	6 0
5 GUN	1114	0 0111	1101	2.2	0 GTO-	T CTT	0 GTO-	1102	2.5	11 166		11 IRF	11112	0.0
5 GLN	HN	5 GLN	HB2	3.5	8 GLU-	HB1	8 GLU-	HG1	3.5	11 TRP	HE1	⊥l TRP	HD1	3.0
5 GLN	HN	5 GLN	HE21	5.0	8 GLU-	HG1	9 GLY	HN	5.0	11 TRP	HE1	11 TRP	HH2	5.0
5 CT M	יאנו	5 CT M	uC1	5 0	0 01 17	UC1	17 000	UN	1 5	11 11 11	001	11 000	LIN	5.0
J GLIN	ПIN	D GLIN	ngi	5.0	9 GTO-	пбт	H/ CIS	LTIN .	4.5	II TRP	пьт	II TRP	LT IN	5.5
5 GLN	HN	5 GLN	HG2	5.0	8 GLU-	HG2	8 GLU-	HB1	3.5	11 TRP	HE1	11 TRP	HZ2	3.0
5 GT-N	HN	6 GUN	HN	3 5	8 CT.II-	HC2	8 CT.II-	HB2	35	11 הפס	HE1	45 TT.R	HB	3 5
0 0 1111	1111	0 0111	1111		0 GTO-	1192	0 GTO-	1102	5.5	11 166		-10 TTE		J.J
6 GLN	HА	6 GLN	HB1	4.0	8 GLU-	HG2	8 GLU-	HG1	2.5	11 TRP	HE1	45 ILE	HN	4.5
6 GLN	HA	6 GLN	HB2	3.5	8 GLU-	HG2	9 GLY	HN	6.0	11 TRP	HE1	45 ILE	HN	6.0
6 CT N	нл	6 CTN	HC1	3 5	9 CTT	нс2	47 CVC	HN	6 0	- תסיה 11	UU1	45 TTE	0.01	A C
O GLIN	пА	0 GTN	ngt	5.5	0 GTO-	пGZ	H/ CIS	LUN	0.0	II TRP	디즈 1	40 LLE	2DT	4.0
6 GLN	HA	6 GLN	HG2	3.5	8 GLU-	HN	8 GLU-	HA	3.5	11 TRP	HE1	45 ILE	QG2	6.1
6 GLN	HA	7 LEU	HN	4.0	8 GT.U-	HN	8 GJ.U-	HB1	4.0	11 TRP	HE1	116 LEU	QD2	5.6
C CT N	117	0 07.77	1157		0 010	1127	0 010	110.0		11 mpp	1750	11 000	2	
юGLN	HА	о GTA-	HN	4.3	8 GLU-	HN	ø GT∩-	нв∠	4.0	II TRP	HEJ	II TRP	HA	4.5
6 GLN	HB1	6 GLN	HB2	3.0	8 GLU-	HN	8 GLU-	HG1	6.0	11 TRP	HE3	11 TRP	HB1	4.5
6 GUN	HB1	7 1.511	HN	5 0	8 CT.U-	НM	8 CT.II-	HG2	4 5	11 הפס	비도 3	11 שפפ	HB2	4 5
0 0111	1101	, 120	1111	5.0	0 GTO-	1111	0 010-	1132	1.5	1 1 1 NF		1 1 11/1		ч.J
6 GLN	HB2	7 LEU	HN	5.0	8 GLU-	HN	9 GLY	HN	5.0	11 TRP	HE3	11 TRP	HH2	4.5
6 GLN	HE21	6 GLN	HB1	6.0	8 GLU-	HN	45 ILE	QG2	7.1	11 TRP	HE3	12 ARG+	HN	4.5

	11		116 7 777		4 5	10 100		10 7 777	0.0.1	1 6	17 710		10 011		<i>c</i> 0
	II TRP	HE3	116 LEU	HBI	4.5	13 LEU 10 IEU	HBZ	13 LEU	QDI	4.6	17 LYS+	HGZ	18 GLY	HN	6.0
	II TRP	HE3	116 LEU	HBZ	6.0	13 LEU 10 IEU	HBZ	14 VAL	HN	6.0	17 LYS+	HN	17 LYS+	HA UD 1	4.5
	11 TRP	HES	116 LEU	HN OD1	4.0	13 LEU 13 IEU	HB2	131 TIR	QE QE1	8.2	17 LIS+	HIN	17 LIS+	HBI	4.0
	11 TRP	HES	116 LEU	QDI	1.1	13 LEU 13 IEU	HG	13 LEU 13 IEU	QDI	3.0	17 LIS+	HIN	17 LIS+	HBZ UC1	4.0
	11 TRP	HE 3	121 EU	QD2	5.0	13 LEU 12 IEU	HG	1.5 LEU 1.4 MAT	QD2	3.0	17 LIS+	HIN	17 LIS+	HG1	5.0
	11 TRP	HES	131 TIR 132 CIU	HIN	6.0	13 LEU 13 IEU	HG	14 VAL 12 TRU	HIN	3.5	17 LIS+	HIN	1/ LIS+	HGZ	6.0
	11 TRP	HES	132 GLU-	HIN	0.0	13 LEU 13 IEU	HIN	13 LEU 13 IEU	HA UD 1	4.5	17 LIS+	HIN	19 PHE	HIN	6.0
	11 TRP	HES	133 LIS+	HA	3.3	13 LEU 13 IEU	HIN	13 LEU 13 IEU	HBI	4.5	17 LIS+	HIN	127 CISS	HA	0.0
	11 TRP	HES	133 LIS+	HIN	3.5	13 LEU 13 IEU	HIN	13 LEU 13 IEU	HBZ	4.5	17 LIS+	HIN	128 THR 120 THR	HB	4.5
	II TRP	HE3	134 VAL	HN OD1	6.0	13 LEU 10 IEU	HN	13 LEU 13 TEU	HG OD1	6.0	17 LYS+	HN	130 ILE	HN	6.0
	II TRP	HHZ	III LEU	QDI	3.6	13 LEU	HN	13 LEU	QDI	/.1	1/ LYS+	QE	I/ LYS+	HDZ	3.4
	II TRP	HH2	III LEU	QD2	3.6	13 LEU	HN	13 LEU	QD2	6.1	I/ LYS+	QE	I/ LYS+	HGI	4.9
	II TRP	HH2	II6 LEU	HN	6.0	I3 LEU	HN	14 VAL	HN	6.0	I/ LYS+	QE	I/ LYS+	HG2	3.9
	11 TRP	HH2	133 LYS+	HD1	4.5	13 LEU	HN	42 ASP-	HA	6.0	17 LYS+	QE .	128 THR	HB	6.9
	11 TRP	HH2	133 LYS+	HE2	5.0	13 LEU	HN	131 TYR	QD	6.7	18 GLY	HA1	127 CYSS	HA	5.0
	11 TRP	HN	11 TRP	HA	3.0	13 LEU	HN	131 TYR	QE	8.2	18 GLY	HA2	18 GLY	HA1	2.5
	11 TRP	HN	11 TRP	HB1	6.0	13 LEU	QD1	14 VAL	HN	4.6	18 GLY	HA2	19 PHE	HN	6.0
	11 TRP	HN	11 TRP	HB2	4.5	13 LEU	QD1	16 SER	HB2	5.6	18 GLY	HA2	127 CYSS	HA	4.0
	11 TRP	HN	11 TRP	HD1	3.5	13 LEU	QD1	16 SER	HN	7.1	18 GLY	HN	18 GLY	HA1	3.0
11 12<	11 TRP	HN	12 ARG+	HN	6.0	13 LEU	QD1	41 PRO	HG1	7.1	18 GLY	HN	18 GLY	HA2	3.5
	11 TRP	HN	43 CYS	HB1	6.0	13 LEU	QD1	129 ARG+	HB1	5.6	18 GLY	HN	19 PHE	HN	4.0
	11 TRP	HN	43 CYS	HN	4.5	13 LEU	QD1	129 ARG+	HB2	5.6	19 PHE	HA	19 PHE	HB1	3.5
11 12 13 14 14 14 14 14 15<	11 TRP	HN	43 CYS	0	2.2	13 LEU	QD1	130 ILE	HN	4.6	19 PHE	HA	19 PHE	HB2	4.5
1 1	11 TRP	HN	44 ILE	QG2	7.1	13 LEU	QD1	131 TYR	QD	6.8	19 PHE	HA	20 ASP-	HN	4.5
	11 TRP	HN	45 ILE	HN	6.0	13 LEU	QD1	131 TYR	QE	6.8	19 PHE	HA	22 TYR	HB2	3.5
	11 TRP	HN	134 VAL	QG2	7.1	13 LEU	QD2	13 LEU	QD1	4.7	19 PHE	HA	22 TYR	HN	4.5
	11 TRP	HZ2	11 TRP	HH2	2.5	13 LEU	QD2	16 SER	HB2	5.6	19 PHE	HA	22 TYR	QD	6.7
	11 TRP	HZ2	45 ILE	QD1	7.1	13 LEU	QD2	41 PRO	HD2	7.1	19 PHE	HA	127 CYSS	HA	4.5
	11 TRP	HZ2	111 LEU	HG	4.5	13 LEU	QD2	131 TYR	QE	8.3	19 PHE	HA	127 CYSS	HB1	6.0
	11 TRP	HZ2	111 LEU	QD1	5.6	14 VAL	N	130 ILE	0	3.2	19 PHE	HB1	20 ASP-	HN	6.0
1 TAP 120 140 TAP 120 140 TAP 120 140	11 TRP	HZ2	111 LEU	QD2	4.1	14 VAL	HA	14 VAL	HB	2.5	19 PHE	HB1	127 CYSS	HB1	6.0
	11 TRP	HZ2	116 LEU	HB1	6.0	14 VAL	HA	14 VAL	QG1	3.6	19 PHE	HB2	19 PHE	HB1	3.5
1 THE 110 THE 110 14 VAL 114 VAL	11 TRP	HZ2	116 LEU	QD1	5.6	14 VAL	HA	14 VAL	QG2	4.1	19 PHE	HB2	20 ASP-	HN	4.5
1 TATE 130 TATE 130 TATE 130 130 TATE 130 </td <td>11 TRP</td> <td>HZ2</td> <td>116 LEU</td> <td>QD2</td> <td>6.1</td> <td>14 VAL</td> <td>HA</td> <td>15 ASP-</td> <td>HN</td> <td>4.0</td> <td>19 PHE</td> <td>HN</td> <td>19 PHE</td> <td>HA</td> <td>4.5</td>	11 TRP	HZ2	116 LEU	QD2	6.1	14 VAL	HA	15 ASP-	HN	4.0	19 PHE	HN	19 PHE	HA	4.5
11 TATE HE3 14 VAL DE1 15 DE2	11 TRP	HZ2	133 LYS+	HE1	6.0	14 VAL	HA	131 TYR	HA	6.0	19 PHE	HN	19 PHE	HB1	4.5
11 12 12 2.6 1.9	11 TRP	HZ3	116 LEU	HN	6.0	14 VAL	HB	14 VAL	QG1	3.6	19 PHE	HN	19 PHE	HB2	4.0
12 Abc. N 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16	11 TRP	HZ3	133 LYS+	HA	6.0	14 VAL	HB	14 VAL	QG2	3.6	19 PHE	HN	19 PHE	QD	6.7
12 ABA HA 12 ABA 14 VAL HA 1.5 15 16 HA 12 27 PR 00 17 12 ABA AA 12 ABA AA 14 VAL HA 14 VAL HA 14 VAL HA 15 APA 15 APA 16 14 VAL HA 15 APA 16 17 18 PHE DO 13 PHE HA 4.5 13 PHE HA 4.5 13 PHE HA 4.5 13 PHE DA 4.7 14 AAA 14 AAA 14 AAA 14 AAA 14 AAA 13 114 AAA 114 AAA 1	12 ARG+	N	132 GLU-	0	3.2	14 VAL	HB	15 ASP-	HN	4.5	19 PHE	HN	20 ASP-	HN	3.5
12 AKC+ HA 12 AKC+ HA 14 VAL HB 15 HB HB 15 HB 15 HB 15 HB HB 15 HB 15 HB 15 HB 15 HB 15 HB 15 HB 16 HB HB 16 HB <td>12 ARG+</td> <td>HA</td> <td>12 ARG+</td> <td>HB1</td> <td>3.5</td> <td>14 VAL</td> <td>HN</td> <td>14 VAL</td> <td>HA</td> <td>3.5</td> <td>19 PHE</td> <td>ΗZ</td> <td>22 TYR</td> <td>QD</td> <td>7.2</td>	12 ARG+	HA	12 ARG+	HB1	3.5	14 VAL	HN	14 VAL	HA	3.5	19 PHE	ΗZ	22 TYR	QD	7.2
12 AKC+ HA 11 MAC+ QC 5.4 14 VAL HC C.1 19 PHE Z 36 C/H A3 C/H A4 A2 C.1 A3 A4 A2 A3 A3 A4 A2 A3 A4 A2 A3 A4 A2 A3 A4 A2 A3 A4 A3 A4 A3 A4 A3 A4 A3 A4 A3 A4	12 ARG+	HA	12 ARG+	HB2	4.5	14 VAL	HN	14 VAL	HB	4.5	19 PHE	ΗZ	22 TYR	QE	7.7
12 ABA 13 LED IN 1.0 1.4 VAL IN 1.4 VAL IN 1.4 VAL IN 1.4 VAL IN 1.5 <th1.5< th=""> <th1.5< th=""> <th1.5< th=""></th1.5<></th1.5<></th1.5<>	12 ARG+	HA	12 ARG+	QG	5.4	14 VAL	HN	14 VAL	QG1	5.1	19 PHE	ΗZ	36 GLY	HA2	6.0
12 ABAP BA 4.5 14 ALL BN 1.5 APP BA 4.5 14 ALL BN 1.5 APP BA ALL BN 1.5 DIE D DIE DIE <td>12 ARG+</td> <td>HA</td> <td>13 LEU</td> <td>HN</td> <td>3.0</td> <td>14 VAL</td> <td>HN</td> <td>14 VAL</td> <td>QG2</td> <td>3.6</td> <td>19 PHE</td> <td>QD</td> <td>19 PHE</td> <td>HA</td> <td>4.7</td>	12 ARG+	HA	13 LEU	HN	3.0	14 VAL	HN	14 VAL	QG2	3.6	19 PHE	QD	19 PHE	HA	4.7
$ \begin{array}{c} 12 \ Acc + BA \\ Acc + BA $	12 ARG+	HA	42 ASP-	HA	4.5	14 VAL	HN	15 ASP-	HN	2.5	19 PHE	QD	19 PHE	HB1	5.2
12 ABACH HA 4 (2) 14 VAL HIN 130 TLE HIN 4.5 19 PIEE CD 130 PIEE HIN 6.7 12 AACH HIN 4.4 VAL HIN 130 TLE HIN 6.7 13 PIEE CD 12 ACH HIN 131 TYE A. 3.5 13 PHEE CD 22 TYE HIN 6.7 12 AACH HIN 6.0 14 VAL HIN 3.1 TYE CA 7 19 PIEE CD 22 TYE RC 0.4 4.4 CC 14 VAL RC CD 13 CL 14 VAL RC 13 TYE HA 5.7 19 PIEE CD 22 TYE HA 5.7 19 PIEE CD 22 TYE HA 5.7 19 PIEE CD 23 <t< td=""><td>12 ARG+</td><td>HA</td><td>42 ASP-</td><td>HN</td><td>6.0</td><td>14 VAL</td><td>HN</td><td>130 ILE</td><td>HB</td><td>4.5</td><td>19 PHE</td><td>QD</td><td>19 PHE</td><td>HB2</td><td>5.7</td></t<>	12 ARG+	HA	42 ASP-	HN	6.0	14 VAL	HN	130 ILE	HB	4.5	19 PHE	QD	19 PHE	HB2	5.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HA	43 CYS	HN	4.0	14 VAL	HN	130 ILE	HN	4.5	19 PHE	QD	19 PHE	ΗZ	6.7
$ \begin{array}{c} 12 \ AGe \\ AGE \\$	12 ARG+	HA	134 VAL	QG2	6.1	14 VAL	HN	130 ILE	HN	6.0	19 PHE	QD	20 ASP-	HN	8.2
$ \begin{array}{c} 12 \ AAGe + \ Hell & 42 \ ASP - \ HA & 4.5 & 14 \ VAL & HN & 131 \ TYR & HA & 3.5 & 19 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 10 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 12 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 13 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 13 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 13 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 13 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 13 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 13 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 13 \ PHE \ OD & 22 \ TYR & HN & 62 \ C & 13 \ PHE \ OD & 23 \ MET \ HN & 64 \ S2 \ ASP \ TYR \ HN & 64 \ S2 \ ASP \ TYR \ HN & 64 \ S2 \ ASP \ TYR \ HN \ ASP \ TYR \ TYR$	12 ARG+	HB1	13 LEU	HN	4.5	14 VAL	HN	130 ILE	0	2.2	19 PHE	QD	22 TYR	HB2	6.7
$ \begin{array}{c} 12 \ AAG+ \ HB1 \ 132 \ CL0- \ HC \ 0. \ 14 \ VAL \ HS \ 131 \ TR \ 0.0 \ 6.2 \ 13 \ PHE \ 0.0 \ 2.2 \ TR \ 0.0 \ 1.4 \ VAL \ HS \ 132 \ CL0- \ HS \ 0.5 \ 0.5 \ 14 \ VAL \ 0.0 \ 1.4 \ VAL \ 0.0 \ 1.3 \ HS \ 0.0 \ 0.2 \ 1.5 \ PHE \ 0.0 \ 2.2 \ TR \ 0.0 \ 1.4 \ VAL \ 0.0 \ 1.4 \ VAL \ 0.0 \ 1.3 \ HS \ 0.0$	12 ARG+	HB1	42 ASP-	HA	4.5	14 VAL	HN	131 TYR	HA	3.5	19 PHE	QD	22 TYR	HN	8.2
$ \begin{array}{c} 12 \ AAG + \ HB & 132 \ CLD - \ HS & 6.0 \\ 14 \ VAL & GC & 114 \ VAL & GC & 14 \ VAL & GC & 14 \ VAL & GC & 14 \ VAL & GC & 15 \ HS & GD & 22 \ TR & GD & 22 \ TR & GD & 23 \ ALA & \ HS & 15 \ ALA & \ HS & \$	12 ARG+	HB1	132 GLU-	HG2	6.0	14 VAL	HN	131 TYR	QD	8.2	19 PHE	QD	22 TYR	QD	7.9
$ \begin{array}{c} 12 \ AACP & HE2 \ 122 \ CALP & HN \ 6.0 \ 14 \ VAL \ QC1 \ 131 \ TTP \ HA \ 5.6 \ 15 \ PHE \ QD \ 23 \ MET \ HN \ 6.2 \ 22 \ AFF \ HN \ 6.2 \ 22 \ AFF \ HN \ 6.2 \ 23 \ AFF \ HN \ 6.2 \ 24 \ AFF \ HN \ 6.2 \ 25 \ AFF \ 6.2 \ 25 \ AFF \ 6.2 \ 26 \ AFF \ 7.1 \ 28 \ 7.1 \ 7.$	12 ARG+	HB1	132 GLU-	HN	6.0	14 VAL	HN	132 GLU-	HN	6.0	19 PHE	QD	22 TYR	QE1	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HB2	132 GLU-	HN	6.0	14 VAL	QG1	14 VAL	QG2	4.7	19 PHE	QD	23 MET	HN	8.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HD1	12 ARG+	HB1	3.5	14 VAL	QG1	131 TYR	HA	5.6	19 PHE	QD	37 ALA	HA	5.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HD1	12 ARG+	HB2	3.5	14 VAL	QG1	132 GLU-	HA	7.1	19 PHE	QD	37 ALA	HN	8.2
$ \begin{array}{c} 12 \ Acc+ HD1 & 14 \ VAL & Cd1 & 5.1 & 14 \ VAL & Cd1 & 132 \ CUD- \ HG2 & 7.1 & 19 \ PHE & Cd & 127 \ CYS & HB2 & 6.7 \\ 12 \ Acc+ HD2 & 12 \ Acc+ HB1 & 4.5 & 14 \ VAL & Cd1 & 132 \ CUD- \ CD & 5.5 & 19 \ PHE & CE & 23 \ MET & HG2 & 5.2 \\ 13 \ Acc- HD2 & 12 \ Acc+ HD1 & 4.5 & 14 \ VAL & Cd1 & 132 \ CUD- \ CD & 5.5 & 19 \ PHE & CE & 23 \ MET & HG2 & 5.2 \\ 14 \ Acc- HD2 & 12 \ Acc+ HD2 & 14 \ VAL & Cd2 & 135 \ CUD & HA & 4.1 & 20 \ Acc- HA & 21 \ CUD- \ HA & 4.1 & 20 \ Acc- HA & 23 \ MET & HB & 4.5 \ 20 \ Acc- HA & 23 \ MET & HB & 4.5 \ 20 \ Acc- HA & 15 \ Acc- HB & 12 \ Acc- HB & 12$	12 ARG+	HD1	13 LEU	HN	5.5	14 VAL	QG1	132 GLU-	HG1	5.1	19 PHE	QD	127 CYSS	HB1	6.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HD1	14 VAL	QG1	5.1	14 VAL	QG1	132 GLU-	HG2	7.1	19 PHE	QD	127 CYSS	HB2	6.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HD2	12 ARG+	HB1	4.5	14 VAL	QG1	132 GLU-	HN	4.6	19 PHE	QE	22 TYR	QD1	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HD2	12 ARG+	HB2	4.5	14 VAL	QG1	132 GLU-	QB	5.5	19 PHE	QE	23 MET	HG2	8.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HD2	12 ARG+	HD1	2.5	14 VAL	QG2	15 ASP-	HN	4.1	20 ASP-	HA	20 ASP-	HB1	3.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HD2	12 ARG+	QG	4.4	14 VAL	QG2	115 LYS+	HD2	5.6	20 ASP-	HA	20 ASP-	HB2	3.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HD2	14 VAL	QG1	5.6	14 VAL	QG2	130 ILE	HN	5.6	20 ASP-	HA	21 GLU-	HN	4.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HE	12 ARG+	HB1	4.5	14 VAL	QG2	131 TYR	HA	4.1	20 ASP-	HA	23 MET	HB1	5.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HE	12 ARG+	HB2	4.5	14 VAL	QG2	132 GLU-	HA	7.1	20 ASP-	HA	23 MET	HB2	5.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HE	12 ARG+	HD1	4.5	15 ASP-	HA	15 ASP-	HB1	3.0	20 ASP-	HA	23 MET	HN	4.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HE	12 ARG+	HD2	3.5	15 ASP-	HA	15 ASP-	HB2	3.5	20 ASP-	HA	23 MET	QE	4.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HE	12 ARG+	QG	4.4	15 ASP-	HA	16 SER	HN	2.5	20 ASP-	HA	33 ARG+	HE	6.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HE	134 VAL	QG2	5.6	15 ASP-	HB1	16 SER	HN	4.5	20 ASP-	HB1	20 ASP-	HB2	2.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	12 ARG+	HA	3.5	15 ASP-	HB1	130 ILE	HB	4.5	20 ASP-	HB1	21 GLU-	HN	3.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	12 ARG+	HB1	4.5	15 ASP-	HB1	130 ILE	HG11	6.0	20 ASP-	HB2	21 GLU-	HN	4.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	12 ARG+	HB2	6.0	15 ASP-	HB2	15 ASP-	HB1	2.5	20 ASP-	HB2	23 MET	QE	7.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	12 ARG+	HD1	6.0	15 ASP-	HB2	16 SER	HN	4.5	20 ASP-	HN	20 ASP-	HA	3.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	12 ARG+	HD2	6.0	15 ASP-	HB2	130 ILE	HN	4.5	20 ASP-	HN	20 ASP-	HB1	3.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	12 ARG+	QG	5.4	15 ASP-	HN	15 ASP-	HA	3.5	20 ASP-	HN	20 ASP-	HB2	3.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	131 TYR	HA	6.0	15 ASP-	HN	15 ASP-	HB1	4.0	20 ASP-	HN	21 GLU-	HN	3.5
$ \begin{array}{c} 12 \text{ ARG-} & \text{HN} & 151 \text{ Tr} \text{K} & \text{QU} & \text{b.}, & 15 \text{ ASP} & \text{HN} & 16 \text{ SER} & \text{HN} & 5.0 & 21 \text{ GLD-} & \text{HA} & 21 \text{ GLD-} & \text{HB} 2 & 3.0 \\ 12 \text{ ARG+} & \text{HN} & 132 \text{ GLU-} & \text{HN} & 3.5 & 15 \text{ ASP} & \text{HN} & 129 \text{ ARG+} & \text{HA} & 5.0 & 21 \text{ GLU-} & \text{HA} & 21 \text{ GLU-} & \text{HG} 2 & 4.5 \\ 12 \text{ ARG+} & \text{HN} & 132 \text{ GLU-} & \text{QB} & 6.9 & 15 \text{ ASP} & \text{HN} & 130 \text{ ILE} & \text{HA} & 6.0 & 21 \text{ GLU-} & \text{HA} & 22 \text{ TYR} & \text{HN} & 4.5 \\ 12 \text{ ARG+} & \text{HN} & 132 \text{ GLU-} & \text{QB} & 6.9 & 15 \text{ ASP} & \text{HN} & 130 \text{ ILE} & \text{HB} & 3.5 & 21 \text{ GLU-} & \text{HA} & 24 \text{ LYS+} & \text{HB} & 5.0 \\ 12 \text{ ARG+} & \text{HN} & 133 \text{ LYS+} & \text{HA} & 4.5 & 15 \text{ ASP} & \text{HN} & 130 \text{ ILE} & \text{HN} & 3.5 & 21 \text{ GLU-} & \text{HA} & 24 \text{ LYS+} & \text{HB} & 5.0 \\ 12 \text{ ARG+} & \text{HN} & 134 \text{ VAL} & \text{HN} & 5.0 & 15 \text{ ASP} & \text{HN} & 130 \text{ ILE} & \text{HN} & 3.5 & 21 \text{ GLU-} & \text{HA} & 24 \text{ LYS+} & \text{HB} & 4.0 \\ 12 \text{ ARG+} & \text{HN} & 134 \text{ VAL} & \text{HN} & 5.0 & 15 \text{ ASP} & \text{HN} & 131 \text{ TYR} & \text{HA} & 5.0 & 21 \text{ GLU-} & \text{HA} & 24 \text{ LYS+} & \text{QD} & 5.4 \\ 12 \text{ ARG+} & \text{HN} & 134 \text{ VAL} & \text{HN} & 6.0 & 16 \text{ SER} & \text{HA} & 16 \text{ SER} & \text{HB1} & 3.5 & 21 \text{ GLU-} & \text{HA} & 24 \text{ LYS+} & \text{QD} & 5.4 \\ 12 \text{ ARG+} & \text{QG} & 122 \text{ GLU-} & \text{HG2} & 5.4 & 16 \text{ SER} & \text{HA} & 17 \text{ LYS+} & \text{HN} & 2.5 & 21 \text{ GLU-} & \text{HA} & 24 \text{ LYS+} & \text{QG} & 4.9 \\ 12 \text{ ARG+} & \text{QG} & 132 \text{ GLU-} & \text{HG2} & 5.4 & 16 \text{ SER} & \text{HB1} & 17 \text{ LYS+} & \text{HN} & 5.5 & 21 \text{ GLU-} & \text{HB1} & 21 \text{ GLU-} & \text{HG2} & 3.0 \\ 13 \text{ LEU} & \text{HA} & 13 \text{ LEU} & \text{HB1} & 6.0 & 16 \text{ SER} & \text{HB1} & 16 \text{ SER} & \text{HB2} & 4.0 & 21 \text{ GLU-} & \text{HB2} & 21 \text{ GLU-} & \text{HG2} & 3.0 \\ 13 \text{ LEU} & \text{HA} & 13 \text{ LEU} & \text{HB1} & 6.0 & 16 \text{ SER} & \text{HB1} & 16 \text{ SER} & \text{HB1} & 4.5 & 21 \text{ GLU-} & \text{HB2} & 21 \text{ GLU-} & \text{HB2} & 3.0 \\ 13 \text{ LEU} & \text{HA} & 13 \text{ LEU} & \text{HB1} & 4.5 & 16 \text{ SER} & \text{HB1} & 16 \text{ SER} & \text{HB2} & 4.0 & 21 \text{ GLU-} & \text{HB2} & 21 \text{ GLU-} & \text{HB2} & 3.0 \\ 13 \text{ LEU} & \text{HA} & 13 \text{ LEU} & \text{HB1} & 6.0 & 17 \text{ LYS+} & \text{HA} & 17 $	12 ARG+	HŃ	131 TYR	HB1	0.0	15 ASP-	HŃ	15 ASP-	нв2	4.0	21 GLU-	HA	21 GLU-	HB1	3.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	131 TYR	QD	b./	15 ASP-	HN	10 SER	HN	5.0	ZI GLU-	HA	ZI GLU-	HB2	3.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 AKG+	HN	132 GLU-	HN	3.5	15 ASP-	HN	120 ARG+	HA	5.0	ZI GLU-	HA	21 GLU-	HGI	4.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	132 GLU-	HN	3.5	15 ASP-	HN	130 ILE	HA	6.0	21 GLU-	HA	21 GLU-	HG2	4.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	132 GLU-	0	2.2	15 ASP-	HN	130 ILE	нв	3.5	ZI GLU-	HA	ZZ TYR	HN UD 1	4.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 AKG+	HN	132 GLU-	Ωв	0.9	15 ASP-	HN	130 ILE	HN	3.3	ZI GLU-	HA	Z4 LYS+	HBI	5.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	133 LYS+	HA	4.5	15 ASP-	HN	130 ILE 131 mun	HN	3.5	21 GLU-	HA	24 LYS+	HBZ	5.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	134 VAL	HN	5.0	15 ASP-	HN	131 TYR	HA UD1	5.0	21 GLU-	HA	24 LYS+	HN	4.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	134 VAL	HN	6.0	16 SER	HA	16 SER	HBI	3.5	21 GLU-	HA	24 LYS+	QD	5.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	HN	134 VAL	QGZ	4.6	16 SER	HA	10 SER	HBZ	4.5	21 GLU-	HA	24 LIS+	QE	5.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	QG	12 ARG+	HBZ	4.4	16 SER	HA	I/ LYS+	HN	2.5	21 GLU-	HA	24 LYS+	QG	4.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	QG	132 GLU-	HGI	6.9	16 SER	HBI	16 SER	HB2	3.5	21 GLU-	HBI	21 GLU-	HG2	3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ARG+	QG	132 GLU-	HG2	5.4	16 SER	HB1	1/ LYS+	HN	4.5	21 GLU-	HB1	22 TYR	HN	5.0
12 ANGT QG 134 VAL QG2 5.0 10 SEK HA 16 SEK HA 3.5 21 GLU- HB2 21 GLU- HG2 3.5 13 LEU HA 13 LEU HB1 6.0 16 SER HN 16 SER HB1 4.5 21 GLU- HB2 22 TYR HN 6.0 13 LEU HA 13 LEU HB2 4.5 16 SER HN 16 SER HB1 4.5 21 GLU- HB2 24 LYS HQ 6.0 13 LEU HA 13 LEU HG 4.5 16 SER HN 17 LYS+ HN 6.0 21 GLU- HG2 22 TYR HN 6.0 13 LEU HA 130 LE HA 6.0 17 LYS+ HA 17 LYS+ HB2 3.5 21 GLU- HG1 21 GLU- HG2 22 TYR HN 6.0 13 LEU HA 131 TYR HB1 6.0 17 LYS+ HA 17 LYS+ HG2 4.0 21 GLU- HN 2.1 GLU- HA 3.5 13 LEU HA 131 TY	12 ARG+	QG	132 GLU-	HN	5.4	16 SER	нв2	19 PHE	нв2	6.U	21 GLU-	HB2	21 GLU-	HB1	4.5
1.3 LEU HA 1.3 LEU HA 1.5 LEU HA 1.4 VAL HN 2.5 1.6 SER HN 1.7 LYS+ HN 6.0 2.1 GLU- HB2 2.2 TYR HA 0.0 1.0 SER HB1 3.5 2.1 GLU- HB2 2.2 TYR HA 0.0 1.1 SER HB1 3.5 2.1 GLU- HB2 2.2 TYR HA 0.0 1.0 SER HB1 3.5 2.1 GLU- HB2 2.2 TYR HA 1.0 SER HB1 3.5 2.1 GLU- HB2 3.6 1.0 <th< td=""><td>12 AKG+</td><td>QG UP</td><td>134 VAL</td><td>QG2</td><td>3.6</td><td>16 SER</td><td>HN</td><td>10 SER</td><td>HA UD1</td><td>3.3</td><td>ZI GLU-</td><td>HB2</td><td>ZI GLU-</td><td>HG2</td><td>3.5</td></th<>	12 AKG+	QG UP	134 VAL	QG2	3.6	16 SER	HN	10 SER	HA UD1	3.3	ZI GLU-	HB2	ZI GLU-	HG2	3.5
13 LEU HA 14 VAL HN 2.5 16 SER HN 17 LYS+ HN 6.0 21 GLU- HG1 21 GLU- HB2 2.4 LYS+ QD 6.9 13 LEU HA 14 VAL HN 2.5 17 LYS+ HA 17 LYS+ HB1 3.5 21 GLU- HG1 22 TYR HN 6.0 13 LEU HA 131 TYR HA 4.5 17 LYS+ HA 17 LYS+ HB1 4.5 21 GLU- HG1 22 TYR HN 6.0 13 LEU HA 131 TYR HB 6.0 17 LYS+ HA 17 LYS+ HC2 4.0 12 GLU- HN 21 GLU- HB1 4.0 13 LEU HA	13 LEU	HA	13 LEU	HBI	6.U	16 SER	HN	16 SER	HBI	4.5	ZI GLU-	HB2	ZZ TYR	HN	6.0
1.3 LEU na 1.5 LEU nb 4.5 10 SEK HN 17 LYS+ HN 6.0 21 GLU- HG1 21 GLU- HG2 2.0 13 LEU HA 14 VAL HN 2.5 17 LYS+ HA 17 LYS+ HB1 3.5 21 GLU- HG1 21 GLU- HG2 2.5 13 LEU HA 131 TYR HA 4.5 17 LYS+ HA 17 LYS+ HB1 3.5 21 GLU- HG1 21 GLU- HG2 2.2 TYR HN 6.0 13 LEU HA 131 TYR HA 4.5 17 LYS+ HA 17 LYS+ HG2 4.0 21 GLU- HG1 21 GLU- HA 6.0 13 LEU HA 131 TYR GE 6.7 17 LYS+ HA 19 LYS+ HG2 4.0 21 GLU- HN 2.1 GLU- HA 4.0 13 LEU HA 132 GU- HN 4.5 17 LYS+ HA 19 PHE HN 4.5 21 GLU- HN 2.1 GLU- HA 4.0 4.5 13 LEU	13 LEU	HA	13 LEU	нв2	4.5	16 SER	HN	10 SER	нв2	4.0	ZI GLU-	HBZ	24 LYS+	ΩD	b.9
13 LEU HA 14 VAL HX 2.5 17 LIST HA 17 LIST HB 3.5 21 GLU HG1 21 GLU HG2 22 TYR HN 6.0 13 LEU HA 131 TYR HA 4.5 17 LYS+ HA 17 LYS+ HB2 3.5 21 GLU HG1 22 TYR HN 6.0 13 LEU HA 131 TYR HA 4.5 17 LYS+ HA 17 LYS+ HG1 4.5 21 GLU HG2 22 TYR HN 6.0 13 LEU HA 131 TYR HB 6.0 17 LYS+ HA 17 LYS+ HG1 4.5 21 GLU HG1 21 GLU HA 3.5 13 LEU HA 132 CLU HN 4.5 17 LYS+ HA 19 PHE HN 4.5 21 GLU HN 2.1 GLU HB2 4.5 13 LEU HB 13 LEU HB 13 LEU HB1 16 LU HB1 17 LYS+ HB1 17 LYS+ HD2 3.5 21 GLU HN 21 GLU HB2 4.5 17 LYS+<	13 LEU	HA UN	1.3 LEU	HG	4.5	10 SER	HN UN	17 TV0-	HIN UTD 1	3 E	21 GLU-	HG1	21 GLU-	HBZ UCO	3.0
L3 L10 na 130 L12 na 6.0 17 L13 H2 5.5 21 GLU- HG1 22 TYR HN 6.0 13 LEU HA 131 TYR HA 4.5 17 LYS+ HA 17 LYS+ HG1 4.5 21 GLU- HG2 22 TYR HN 6.0 13 LEU HA 131 TYR HB1 6.0 17 LYS+ HA 17 LYS+ HG2 4.0 21 GLU- HN 21 GLU- HA 13 LEU HA 131 TYR QE 6.7 17 LYS+ HA 18 GLY HN 2.5 21 GLU- HN 21 GLU- HB1 4.0 13 LEU HB1 13 LEU HB 4.5 17 LYS+ HB1 17 LYS+ HD 3.5 21 GLU- HN 21 GLU- HB2 4.5 13 LEU HB1	10 THU	пА UP	120 TTT	TIN	2.3	17 LYS+	пА U 7	17 INS+	UD0	3.3	ZI GLU-	ng1	ZI GLU-	ng2	2.5
1.3 LEU na 1.3 LIN na 4.5 1/ LIS+ HA 1/ LIS+ HO 4.5 21 GLU- HG2 22 TYR HN 6.0 13 LEU HA 131 TYR HB1 6.0 17 LYS+ HA 17 LYS+ HO2 4.0 21 GLU- HN 21 GLU- HA 3.5 13 LEU HA 131 TYR QE 6.7 17 LYS+ HA 19 PHE HN 2.5 21 GLU- HN 21 GLU- HB1 4.0 13 LEU HA 132 GLU- HN 4.5 17 LYS+ HA 19 PHE HN 4.5 21 GLU- HN 21 GLU- HB1 4.0 13 LEU HB1 13 LEU HB2 2.5 17 LYS+ HB1 17 LYS+ HD2 3.5 21 GLU- HN 21 GLU- HB2 4.5 13 LEU HB1 13 LEU HG 3.5 17 LYS+ HB1 128 THR HN 6.0 21 GLU- HN 2.2 TYR HA 2.5 13 LEU HB1 13 LEU QD2 <t< td=""><td>13 LEU</td><td>HA</td><td>130 ILE</td><td>HN</td><td>0.0</td><td>17 LYS+</td><td>HA</td><td>17 LYS+</td><td>HB2</td><td>3.3</td><td>ZI GLU-</td><td>HGI</td><td>ZZ TYR</td><td>HN</td><td>ь.O</td></t<>	13 LEU	HA	130 ILE	HN	0.0	17 LYS+	HA	17 LYS+	HB2	3.3	ZI GLU-	HGI	ZZ TYR	HN	ь.O
13 LEU HA 131 TK HB1 0.0 17 LTS* HA 17 LTS* H02 4.0 21 GL0* HN 21 GL0* HA 3.5 13 LEU HA 131 TK QE 6.7 17 LTS* HA 18 GLY HN 2.5 21 GL0* HN 21 GL0* HB1 1.0 HB2 2.5 1.7 LYS* HA 1.9 PHE HN 4.5 2.1 GLU* HB2 4.5 13 LEU HB1 13 LEU HG 3.5 1.7 LYS* HB1 1.2 HS HS 1.0 HCU* H2 4.5 13 LEU HB1 1.3 LEU QD1 5.6 1.7 LYS* HB1 3.0 2.1 GLU* HN 4.0 0.0 1.3 HN H0 1.7 LYS* HB1 1.3 LEU QD1 5.6 1.7 LYS* HB1 3.0 <	13 LEU	HA	101 TYK	HA UD 1	4.5	17 LYS+	HA U.7	17 INS+	HGI	4.0	21 GLU-	HGZ	ZZ TIK	HIN	ь.U Эг
LS LED NA 131 TIK QE 6.7 17 LYS+ HA 18 GL7 HN 2.5 21 GL0- HN 21 GL0- HB 21 GL0- HB 21 GL0- HB 21 GL0- HB 4.0 13 LEU HA 13 LEU HB 13 LEU HB 13 LEU HB 13 LEU HB 2.5 17 LYS+ HA 19 PHE HN 4.5 21 GLU- HN 21 GLU- HB2 4.5 13 LEU HB 13 LEU HB 3.5 17 LYS+ HB1 17 LYS+ HD 3.5 21 GLU- HN 22 GLU- HB2 4.5 13 LEU HB 13 LEU QD1 5.6 17 LYS+ HB1 128 THR HN 6.0 21 GLU- HN 23 MET HN 6.0 13 LEU HB1 13 LEU QD2 3.6 17 LYS+ HB2 17 LYS+ HB1 3.0 21 GLU- HN 23 MET HN 6.0 13 LEU HB1 14 VAL HN 4.5 17 LYS+ HD2 17 LYS+ H	13 LEU	HA	131 TYR	ЧВТ	0.0	17 LYS+	HA	10 CT Y	HG2	4.0	ZI GLU-	HN	ZI GLU-	HA IID 1	3.5
13 LEU HB1 13 LEU HB2 2.5 17 LYS+ HB1 17 LYS+ HD2 3.5 21 GLU- HN 21 GLU- HN 21 GLU- HC2 4.5 13 LEU HB1 13 LEU HG 3.5 17 LYS+ HB1 12 KHR HD2 3.5 21 GLU- HN 21 GLU- HC2 4.5 13 LEU HB1 13 LEU HG 3.5 17 LYS+ HB1 12 KHR HD2 3.5 21 GLU- HN 22 TYR HN 4.5 13 LEU HB1 13 LEU QD2 3.6 17 LYS+ HB2 17 LYS+ HG1 3.0 21 GLU- HN 23 MET HN 6.0 13 LEU HB1 13 LEU QD2 3.6 17 LYS+ HB2 17 LYS+ HG1 3.5 22 TYR HA 23 MET HN 6.0 13 LEU HB1 14 VAL HN 4.5 17 LYS+ HD2 17 LYS+ HG1 3.5 22 TYR HA 23 MET HN 5.0 13 LEU HB1 <t< td=""><td>13 TET</td><td>UA A</td><td>132 CTT</td><td>신다</td><td>0.7</td><td>17 TVCI</td><td>11A</td><td>10 011</td><td>1111</td><td>2.J 2 5</td><td>21 GLU- 21 CTT</td><td>1111</td><td>21 GLU- 21 CTT</td><td>כםע</td><td>ч.0 л г</td></t<>	13 TET	UA A	132 CTT	신다	0.7	17 TVCI	11A	10 011	1111	2.J 2 5	21 GLU- 21 CTT	1111	21 GLU- 21 CTT	כםע	ч.0 л г
13 LEU HB1 13 LEU HG 3.5 17 LIST HD1 17 LIST HD2 3.5 21 GLU- HN 21 GLU- HC 45 S 13 LEU HB1 13 LEU HG 3.5 17 LIST HB1 12 B THR HN 6.0 21 GLU- HN 22 TYR HN 6.0 13 LEU HB1 13 LEU QD1 5.6 17 LYS+ HB2 17 LYS+ HG1 3.0 21 GLU- HN 23 MET HN 6.0 13 LEU HB1 13 LEU QD2 3.6 17 LYS+ HB2 128 THR HB 6.0 22 TYR HA 22 TYR HB2 3.5 13 LEU HB1 14 VAL HN 4.5 17 LYS+ HD2 17 LYS+ HG1 3.5 22 TYR HA 23 MET HN 6.0 13 LEU HB1 40 LYS+ QB 6.9 17 LYS+ HD2 17 LYS+ HG2 3.5 22 TYR HA 25 GLU- HB1 4.5 13 LEU HB1 41 PRO HG1 <	13 LEU	ID 1	10 TUT	UD O	4.0	17 TV0-	ID 1	17 TV0-	LIDO LIDO	4.J 3 E	21 GLU-	LINI	21 GLU-	пв2	4.5
13 LEU HB1 13 LEU QD1 5.6 17 LYS+ HB2 17 LYS+ HG1 3.0 21 GLU- HN 22 TIK HN 4.5 13 LEU HB1 13 LEU QD1 5.6 17 LYS+ HG1 3.0 21 GLU- HN 2.2 TIK HN 6.0 13 LEU HB1 13 LEU QD2 3.6 17 LYS+ HB2 17 LYS+ HG1 3.5 22 TYR HA 22 TYR HB2 17 LYS+ HG1 3.5 22 TYR HA 23 MET HN 5.0 13 LEU HB1 40 LYS+ QB 6.9 17 LYS+ HQ1 17 LYS+ HG1 3.5 22 TYR HA 25 GLU- HB1 4.5 17 LYS+ HG1 18 GLY HN 6.0 22 TYR HA 25 GLU- HB1 4.5	13 TET	בסה. 1 סין	13 LEU	ль∠ µс	2.5	17 TVCI	101 101	128 mm	пл Г	5.5	21 GLU- 21 CTT	1111	21 GTA_	11GZ	5.5 / =
13 LEU HB1 14 LEO QD2 3.6 17 LYS+ HB2 12 BHR HB 6.0 22 TYR HA 22 TYR HB2 21 HB2 3.5 13 LEU HB1 14 VAL HN 4.5 17 LYS+ HB2 17 LYS+ HB1 3.5 22 TYR HA 22 TYR HB2 3.6 13 LEU HB1 40 LYS+ QD2 3.6 17 LYS+ HD2 17 LYS+ HG1 3.5 22 TYR HA 23 MET HN 5.0 13 LEU HB1 40 LYS+ QB 6.9 17 LYS+ HD2 17 LYS+ HG2 3.5 22 TYR HA 25 GLU- HB1 4.5 13 LEU HB1 41 PRO HG1 4.5 17 LYS+ HG1 18 GLY HN 6.0 22 TYR HA 25 GLU- HB2 4.0 13 LEU HB1 41 PRO HG1 4.5 17 LYS+ HG1 128 THR HN 6.0 22 TYR HA 25 GLU- HB2 4.0	13 T.EU	HR1	то пел 13 г.еп	001	J.J 5 6	17 тVст	HBJ UDT	17 T.VC1	нс1 нс1	3.0	21 GLU- 21 CTT-	TIN	22 IIK 23 MFT	11IN 11IN	4.5 6 0
13 LEU HB1 14 VAL HN 4.5 17 LYS+ HD2 17 LYS+ HG1 3.5 22 TYR HA 23 MET HN 4.5 13 LEU HB1 40 LYS+ QB 6.9 17 LYS+ HD2 17 LYS+ HG2 3.5 22 TYR HA 25 GLU- HB1 4.5 13 LEU HB1 41 PRO HG1 4.5 17 LYS+ HG1 18 GLY HN 6.0 22 TYR HA 25 GLU- HB1 4.5 13 LEU HB1 41 PRO HG1 4.5 17 LYS+ HG1 18 GLY HN 6.0 22 TYR HA 25 GLU- HB2 4.0 13 LEU HB1 41 PRO HG 4.5 17 LYS+ HG1 18 GLY HN 6.0 22 TYR HA 25 GLU- HB2 4.0	13 150	101 101	13 LEU	0D0 ADT	3.0	17 TVC-	1102	100 mm	TOT	5.0	21 GLU- 22 mVD	1110	20 MRT 20 MVD	1110	ບ.U ວີ
13 LEU HB1 14 VAL NN 4.5 17 LIST HD2 17 LIST HD1 5.5 22 TIR HA 23 MET HN 5.0 13 LEU HB1 40 LYS+ QB 6.9 17 LYS+ HD2 17 LYS+ HG2 3.5 22 TYR HA 25 GLU- HB1 4.5 13 LEU HB1 41 PRO HG1 4.5 17 LYS+ HG1 18 GLY HN 6.0 22 TYR HA 25 GLU- HB2 4.5 13 LEU HB1 431 TYR OD 8.2 17 LYS+ HG1 128 THR HN 4.5 27 TYR HA 25 GLU- HB2 4.0	13 LEU	HB1	1.3 LEU	UNI UNI	3.0 / E	17 TYC:	HBZ UDO	17 TYO	нВ UC1	3 E	ZZ TIK	HA U 7	ZZ TIK	HBZ UM	3.5
IS LEG IS IS IS IS <t< td=""><td>то теп 13 теп</td><td>пыі гал</td><td>14 VAL</td><td></td><td>4.5</td><td>17 TVCI</td><td>л U Z</td><td>17 тусь</td><td>HG1 HC2</td><td>3.3 3 5</td><td>22 TIK 22 mvn</td><td>пА цл</td><td>23 MET 25 CTT</td><td>лім цр1</td><td>5.U / =</td></t<>	то теп 13 теп	пыі гал	14 VAL		4.5	17 TVCI	л U Z	17 тусь	HG1 HC2	3.3 3 5	22 TIK 22 mvn	пА цл	23 MET 25 CTT	лім цр1	5.U / =
13 LEU HB1 31 TXR OD 8.2 17 LV3+ HG1 128 THR HN 4.5 27 TVR HA 25 GLU- HB2 4.5	13 LEU	пыі up1	40 LIS+ /1 DDO	<u>у</u> в uc1	0.9	17 TVC-	пU2 UC1	10 CTV	пG∠ ⊔№	5.5	22 TIK 22 mvn	nA uz	23 GLU-	up 2	4.5
	13 LEU	HB1	131 TVR	UD	1.J 8 2	17 T.VQ+	HG1	128 THR	HN	4 5	22 11N 22 TVR	HA	125 UAT	HR	4 0

22 TYR	HA	125 VAL	QG1	4.1	26 LEU	HA	26 LEU	HG	3.5	30 ILE	QG2	31 ALA	HN	7.1
22 TYR	HB1	23 MET	HN	4.5	26 LEU	HA	26 LEU	QD1	5.6	30 ILE	QG2	33 ARG+	HB1	5.6
22 TYR	HB2	23 MET	HN	3.5	26 LEU	HA	26 LEU	QD2	3.6	31 ALA	HA	31 ALA	QB	3.6
22 TYR	HN	22 TYR	HA	3.0	26 LEU	HA	27 GLY	HN	4.5	31 ALA	HA	32 LEU	HN	4.0
22 TYR	HN	22 TYR	HB1	3.5	26 LEU	HA	100 TRP	HZ2	4.0	31 ALA	HA	34 LYS+	HB1	4.5
22 TYR	HN	22 TYR	HB2	3.5	26 LEU	HA	122 MET	QE	4.6	31 ALA	HA	34 LYS+	HB2	3.5
22 TYR	HN	22 TYR	QD	7.2	26 LEU	HB1	28 VAL	HN	4.5	31 ALA	HA	34 LYS+	HN	4.5
22 TYR	HN	23 MET	HN	3.5	26 LEU	HB2	27 GLY	HN	3.5	31 ALA	HN	31 ALA	HA	3.0
22 TYR	QD	22 TYR	HA	4.7	26 LEU	HG	26 LEU	QD1	4.1	31 ALA	HN	31 ALA	QB	3.6
22 TYR	QD	22 TYR	QE	6.9	26 LEU	HG	26 LEU	QD2	4.1	31 ALA	HN	32 LEU	HN	3.0
22 TYR	QD	23 MET	HN	6.7	26 LEU	HG	27 GLY	HN	6.0	31 ALA	HN	33 ARG+	HN	4.5
22 TYR	QD	25 GLU-	HB2	7.2	26 LEU	HN	26 LEU	HA	3.5	31 ALA	HN	33 ARG+	HN	4.5
22 TYR	QD	105 SER	HG	8.2	26 LEU	HN	26 LEU	HB2	4.5	31 ALA	HN	34 LYS+	HN	6.0
22 TYR	QD	122 MET	HB1	6.7	26 LEU	HN	26 LEU	HG	3.5	31 ALA	QB	32 LEU	HN	3.6
22 TYR	QD	122 MET	HN	5.7	26 LEU	HN	26 LEU	QD1	5.6	31 ALA	QB	33 ARG+	HN	6.1
22 TYR	QD	125 VAL	HB	6.7	26 LEU	HN	26 LEU	QD2	5.1	32 LEU	HA	32 LEU	HB1	3.0
22 TYR	QD	125 VAL	QG1	6.8	26 LEU	HN	27 GLY	HN	3.0	32 LEU	HA	32 LEU	HG	3.5
22 TYR	QD	126 THR	HA	8.2	26 LEU	HN	28 VAL	QG2	6.1	32 LEU	HA	32 LEU	QD1	5.6
22 TYR	QE	22 TYR	HA	8.2	26 LEU	QD1	27 GLY	HN	7.1	32 LEU	HA	32 LEU	QD2	3.6
22 TYR	QE	22 TYR	HB2	8.2	26 LEU	QD1	28 VAL	HN	7.1	32 LEU	HA	33 ARG+	HN	4.0
22 TYR	0E	105 SER	HA	6.7	26 LEU	QD1	28 VAL	QG2	5.7	32 LEU	HA	35 MET	HB1	4.5
22 TYR	QE	105 SER	HB1	6.7	26 LEU	QD1	81 ARG+	HE	5.1	32 LEU	HA	35 MET	HG1	6.0
22 TYR	QE.	105 SER	HB2	6.7	26 LEU	QD1	100 TRP	HH2	7.1	32 LEU	HA	35 MET	QE	4.6
22 TYR	QE	105 SER	HG	5.7	26 LEU	QD1	105 SER	HG	7.1	32 LEU	HB1	32 LEU	QD1	4.1
22 TYR	0E	106 THR	HN	8.2	26 LEU	OD2	26 LEU	OD1	4.7	32 LEU	HB1	32 LEU	OD2	4.1
22 TYR	ÕE	107 ILE	OD1	8.3	26 LEU	ÕD2	27 GLY	HN	7.1	32 LEU	HB1	33 ARG+	ΗN	4.0
22 TYR	ÕE	120 CYSS	нв1	5.7	26 LEU	ÕD2	81 ARG+	HD1	7.1	32 LEU	HB1	34 LYS+	HN	6.0
22 TYR	ÕE	121 VAL	HN	6.7	26 LEU	ÕD2	81 ARG+	HD2	5.6	32 LEU	HG	32 LEU	OD2	3.6
22 TYR	ÕE	121 VAL	OG1	9.3	26 LEU	ÕD2	81 ARG+	HE	5.6	32 LEU	HN	32 LEU	ĥA	3.5
22 TYR	ÕE	121 VAL	0G2	9.3	26 LEU	ÕD2	100 TRP	HE1	7.1	32 LEU	HN	32 LEU	HB1	4.0
22 TYR	ÕE	122 MET	HB1	5.7	26 LEU	ÕD2	100 TRP	HH2	4.1	32 LEU	HN	32 LEU	HG	4.5
22 TYR	ÕE	122 MET	HG1	7.2	26 LEU	ÕD2	100 TRP	H72	4.6	32 LEU	HN	32 LEU	002	5.6
22 TYR	ÕE	122 MET	HN	6.7	26 J.EU	QD2	105 SFR	HB1	5.1	32 J.FU	HN	33 ARG+	- HN	3.0
23 MET	HA	23 MET	HB1	3.5	26 J.EU	OD2	105 SER	HB2	5.6	32 J.FU	HN	33 ARG+	HN	3.5
23 MET	HA	23 MET	HB2	4.5	26 J.EU	OD2	105 SER	HG	7.1	32 J.FU	HN	34 LYS+	HN	4.5
23 MET	HA	23 MET	HG1	4.0	26 J.EU	OD2	122 MET	HB1	5.6	32 J.FU	OD1	32 LEU	OD2	4.7
23 MET	HA	24 LYS+	HN	4.5	26 J.EU	OD2	122 MET	0E	5.7	32 J.FU	OD1	35 MFT	ÕE	8.2
23 MET	НА	27 GLY	HN	6.0	27 GLY	¥	27 GLY	HA2	2 5	32 LEU	001	79 ASP-	HA	36
23 MET	HA	28 VAL	0G2	7.1	27 GLY	HA1	28 VAL	HN	3.5	32 LEU	002	35 MET	HB1	6.1
23 MET	НЪ	33 ARC+	00	6 9	27 GLY	нд2	28 VAL	HN	3 5	32 LEU	002	35 MET	OF	5.2
23 MET	HR1	23 MET	<u>до</u> нв2	2.5	27 GLY	HN	27 GLY	нд1	3.0	32 LEU 32 LEU	002	79 ASP-	ЧΣ	4 6
23 MET	HB1	28 VAL	061	5 1	27 GLY	HN	27 GLY	нд2	3.0	33 ARC+	ил	36 GLV	HN	4.5
23 MET	HB1	28 VAL	062	4 6	27 GLY	HN	28 VAL	HN	2.5	33 ARC+	НΣ	37 AT.A	HN	4.5
23 MET	HB1	33 ARC+	06	3.9	28 VAL	нъ	28 VAL 28 VAL	0G1	4 1	33 ARG+	HB1	34 T.VS+	HN	3.5
23 MET	HC1	23 MET	<u>до</u> нв1	6.0	28 VAL	нъ	28 VAL	062	4 1	33 ARC+	HB2	33 ARC+	HB1	2.5
23 MET	uc1	23 MET	uC2	2.5	28 WAT	U7	20 CTV	UN UN	2.5	33 APC+	up1	33 APC+	1101	1 5
23 MET	HG1	23 MET	OF	6.1	28 VAL 28 VAL	нд	32 LEU	001	5.6	33 ARG+	HD1	33 ARC+	HD2	2.5
23 MET	uc1	28 1771	002	7 1	20 VAL 28 VAL	סט	28 1/71	001	3.6	33 ARG1	11D1 UD1	33 APC+	000	2.5
23 MET	uc1	33 NDCT	QG2 U7	6.0	20 VAL 28 VAL	םנו	20 VAL 20 CTV	DN QGT	1 5	33 ARG1	up2	33 APC+	<u>и</u> в1	6.0
23 MET	uC2	23 MET	חחו 1 סט	3.0	20 VAL 28 VAL	םנו	33 APC+	11IN U 7	4.J	33 ARG1	up2	33 APC+	1101	6.0
23 MET	UN	23 MET	11D1	3.5	20 VAL 28 VAL	םנו	33 ARC+	00	3.9	33 ARG1	UF	33 APC+	11DZ UD1	1 5
23 MET	LIN	23 MET	חחו 1 סט	1.0	20 VAL 28 VAL	UN	28 1/71	0 U N	3.0	33 ARG1	UF	33 APC+	up1	4.5
2.3 MET	TIN	23 MET 22 MET	IIC1	4.0	20 VAL 20 VAL	TIN	20 VAL	ID	3.0	22 ARGT	UP	22 ADCI	UD2	6.0
23 MET	TIN	23 MEE	1101	7.0	20 VAL	TIN	20 VAL	0.001	5.5	22 ARGI	11D	22 ADCI	00	1 0
23 MEI 23 MET	LIN	23 MEI 23 MEE	ngz op	3.5	20 VAL	TIN	20 VAL	QGI	3.0	33 ARGT	IN	33 ARGT	QG	4.7
23 MET	HIN	23 MET	QE	3.0	28 VAL	HIN	28 VAL	QGZ	3.0	33 ARG+	HIN	33 ARG+	HA UD 1	3.5
23 MET	HN	24 LIS+	HN UD 1	3.0	28 VAL	HIN	29 GLI	HN	6.0	33 ARG+	HIN	33 ARG+	HBI	4.0
23 MET	QE	23 MET	HBI	4.6	28 VAL	HN 0.01	33 ARG+	QG	6.9	33 ARG+	HN	33 ARG+	QG	6.9
23 MET	QE	33 ARG+	HA	4.6	28 VAL	QGI	28 VAL	QG2	4./	33 ARG+	HN	34 LYS+	HN	3.5
23 MET	QE	33 ARG+	HBI	/.1	28 VAL	QGI	29 GLY	HN	4.6	33 ARG+	HN	34 LYS+	HN	3.5
23 MET	QE	33 ARG+	QG	6.0	28 VAL	QGI	33 ARG+	HDI	/.1	33 ARG+	HN	35 MET	HN	6.0
23 MET	QE	36 GLY	HAI	/.1	28 VAL	QGI	33 ARG+	HN	5.6	34 LYS+	HA	34 LYS+	HBI	3.0
23 MET	QE	36 GLY	HN	5.6	28 VAL	QGI	33 ARG+	QG	5.5	34 LYS+	HA	34 LYS+	HB2	3.0
23 MET	QE	3/ ALA	HN	5.6	28 VAL	QG2	29 GLY	HN	5.6	34 LYS+	HA	34 LYS+	QD	4.4
23 MET	QE	37 ALA	QB .	5.7	28 VAL	QG2	33 ARG+	QG	6.5	34 LYS+	HA	35 MET	HN	4.5
24 LYS+	HA	24 LYS+	HBI	3.5	29 GLY	HAI	29 GLY	HA2	2.5	34 LYS+	HA	3/ ALA	HN	4.5
24 LYS+	HA	24 LYS+	HB2	3.5	29 GLY	HAI	30 ILE	HG12	6.0	34 LYS+	HA	3/ ALA	QB	4.1
Z4 LYS+	HA	24 LYS+	QG	4.4	29 GLY	HAI	30 ILE	HN	3.0	34 LYS+	HBI	34 LYS+	QD	4.9
24 LYS+	HA	27 GLY	HAI	6.0	29 GLY	HAI	31 ALA	HN	6.0	34 LYS+	HBI	3/ ALA	QВ	/.1
24 LYS+	HA	27 GLY	HN	4.0	29 GLY	HA2	30 ILE	HN	3.5	34 LYS+	HB2	34 LYS+	HG2	3.5
24 LYS+	HA	33 ARG+	HD1	4.5	29 GLY	HA2	JI ALA	HN	4.5	34 LYS+	HB2	35 MET	HN	3.5
24 LYS+	HA	33 ARG+	HD2	4.5	29 GLY	HN	29 GLY	HAI	3.0	34 LYS+	HGI	35 MET	HN	6.0
Z4 LYS+	HA	33 ARG+	QG OC	0.9	Z9 GLY	HN	29 GLY	HAZ	3.U 5 0	34 LYS+	HGI	SC MET	QE:	5.6
24 LYS+	HB1	Z4 LIS+	QG IN	3.4	29 GLI	HIN	SU LLE	HIN	5.0	34 LIS+	HIN	34 LIS+	HA UD1	3.5
24 LIS+ 24 TV0-	HBI	23 GLU-	LID 1	4.0	SU ILE	riA L' 7	SO TIE	пВ UC10	J.U / E	34 LIS+	LIN UNI	34 LIS+	UD O	4.0
24 110+	미러스 미자	24 113+	ndi uv	3.5	30 TTF	11A U7	30 TTF	001	-1.J 5 1	34 LID+	1110	34 TIG+	11DZ	J.D / F
24 115+	niN 7757	24 LIS+	ILD 1	J.U	20 TLE	nA UN	20 TTE	000	J.1	34 LIS+	1121	34 LIS+	ngi	4.5
24 LIS+ 24 TV0-	HIN UN7	24 LIS+ 24 TV0-	UD O	4.0	SU ILE	riA L' 7	JU LLE م T م	QGZ UNI	ч.⊥ / 0	34 LIS+	LIN UNI	34 LIS+	ng2	4.5
24 1137	LIN	24 1134	пb2 00	4.5	30 ILE 20 ILE	IIA	JI ALA	TIN	4.0	34 LIST		34 LIST 35 MEE	QD	J.4
24 LIS+ 24 TV0-	HIN UN7	24 LIS+ 25 CTT	QG UN	0.9 5 E	SU ILE	riA Lī 7	33 YPC:	LIN LID 1	0.0	34 LIS+	UN OD	SJ MET	HIN LICO	4.5
24 LIS+ 24 TV0-	HIN UN7	23 GLU-	11N 11N	3.3	SU ILE	riA Lī 7	33 AKG+	UD0	4.U	34 LIS+ SE MORT	Δn	35 MDT	л⊌∠ ⊔⊓1	3.4 2 -
24 LIS+	HN OF	ZO LEU	UD 0	4.0	SU ILE	IL7	JJ AKG+	nuZ ur	0.0	SS MET	пА UZ	JJ MET	UD 0	3.5
24 LYS+	QE	24 LYS+	HBZ	5.9	30 ILE	HA	33 ARG+	HE	6.0	35 MET	HA	35 MET	HBZ	4.5
Z4 LYS+	QG QG	ZO GLU-	HN	0.9	30 ILE	HA	33 ARG+	nN OC	4.U	35 MET	HA	SO MET	HGI	4.5
Z4 LYS+	QG	33 ARG+	HE	4.4	30 ILE	HA	33 ARG+	QG	4.4	35 MET	HA	35 MET	HGZ	4.5
25 GLU-	HA	25 GLU-	HBI	3.5	30 ILE	HA	34 LYS+	HN	4.5	35 MET	HA	38 MET	HG2	4.5
25 GLU-	HA	25 GLU-	HB2	3.5	30 ILE	HB	JU ILE	HG11	3.0	35 MET	HA	38 MET	HN	4.5
25 GLU-	HA	25 GLU-	HG1	4.0	30 ILE	HB	JU ILE	HG12	3.5	35 MET	HA	39 ALA	HN	6.0
25 GLU-	HA	26 LEU	HN	4.0	30 ILE	нB	JU ILE	QD1	3.6	35 MET	HA	39 ALA	QB QB	6.1
25 GLU-	HA	2/ GLY	HN	6.0	30 ILE	HB	JU ILE	QG2	4.1	35 MET	HA	6U LEU	QD2	4.6
25 GLU-	HB1	125 VAL	HB	4.0	30 ILE	HB	JI ALA	HN	3.5	35 MET	HB1	36 GLY	HN	4.5
25 GLU-	HB2	26 LEU	HN	4.0	30 ILE	HG11	30 ILE	QD1	3.6	35 MET	HB1	60 LEU	QB	5.4
25 GLU-	HB2	125 VAL	HB	4.0	30 ILE	HG11	30 ILE	QG2	4.1	35 MET	HB1	60 LEU	QD1	7.1
25 GLU-	HB2	125 VAL	QG1	5.1	30 ILE	HG12	30 ILE	HG11	2.5	35 MET	HB1	60 LEU	QD2	7.1
25 GLU-	HB2	125 VAL	QG2	5.6	30 ILE	HG12	30 ILE	QD1	3.6	35 MET	HB2	35 MET	HB1	2.5
25 GLU-	HG1	25 GLU-	HB1	3.5	30 ILE	HG12	30 ILE	QG2	4.6	35 MET	HB2	36 GLY	HN	4.5
25 GLU-	HG1	25 GLU-	HB2	3.5	30 ILE	HG12	31 ALA	HN	6.0	35 MET	HG1	35 MET	HB1	3.5
25 GLU-	HG1	26 LEU	HN	5.0	30 ILE	HN	30 ILE	HA	3.0	35 MET	HG1	35 MET	HB2	4.5
25 GLU-	HG1	122 MET	HB2	4.5	30 ILE	HN	30 ILE	HB	4.0	35 MET	HG1	35 MET	HG2	2.5
25 GLU-	HG2	25 GLU-	HB1	3.5	30 ILE	HN	30 ILE	HG11	3.5	35 MET	HG1	61 LYS+	HB1	6.0
25 GLU-	HG2	25 GLU-	HB2	3.5	30 ILE	HN	30 ILE	HG12	3.0	35 MET	HG1	61 LYS+	HN	6.0
25 GLU-	HN	25 GLU-	HA	3.0	30 ILE	HN	30 ILE	QD1	5.6	35 MET	HG2	60 LEU	QB	5.4
25 GLU-	HN	25 GLU-	HB2	3.0	30 ILE	HN	30 ILE	QG2	5.1	35 MET	HG2	60 LEU	QD1	7.1
25 GLU-	HN	25 GLU-	HG1	5.0	30 ILE	HN	31 ALA	HN	3.5	35 MET	HG2	61 LYS+	HB2	6.0
25 GLU-	HN	26 LEU	HN	3.5	30 ILE	QD1	31 ALA	HN	4.6	35 MET	HN	35 MET	HA	3.5
		4.05.000												

35 MET	HN	35 MET	HB2	4.5	43 CYS	HA	56 THR	QG2	5.6	46 THR	HN	54 ILE	QG1	6.9
35 MET	HN	35 MET	HG1	6.0	43 CYS	HA	57 GLU-	HN	4.5	46 THR	HN	55 LYS+	HN	6.0
35 MET 35 MET	HN OE	36 GLY 61 LYS+	HN HA	6.0 7 1	43 CYS 43 CYS	HB1 HB1	43 CYS	HB2 HG	2.5	46 THR 46 THR	QGZ QG2	47 CYS 53 THR	HN	5.6
35 MET	0E	61 LYS+	QG	5.5	43 CYS	HB1	44 ILE	HN	4.5	47 CYS	HA	47 CYS	HB1	4.5
35 MET	QE	78 ALA	QВ	6.7	43 CYS	HB1	54 ILE	QG2	7.1	47 CYS	HA	47 CYS	HB2	4.5
35 MET	QE	79 ASP-	HA	7.1	43 CYS	HB1	116 LEU	QD2	5.6	47 CYS	HA	48 ASP-	HN	2.5
36 GLY	HA1	37 ALA	HN	6.0 5 1	43 CYS	HB1	131 TYR 131 TYR	QD	6.7	47 CYS	HA	52 LEU 52 LEU	HB1	6.0
36 GLY	HA2	36 GLY	HA1	2.5	43 CYS	HB2	43 CYS	HG	4.5	47 CYS	HB1	47 CYS	HB2	4.5
36 GLY	HA2	37 ALA	HN	4.5	43 CYS	HB2	44 ILE	HN	4.5	47 CYS	HB1	52 LEU	HA	6.0
36 GLY	HN	36 GLY	HA1	6.0	43 CYS	HB2	131 TYR	QE	6.7	47 CYS	HB1	52 LEU	QQD	5.8
36 GLY	HN	36 GLY	HA2	3.5	43 CYS	HG	44 ILE	HN UG11	6.0	47 CYS	HB2	48 ASP-	HN	6.0
30 GLI 37 ALA	HA	37 ALA 37 ALA	OB	4.5	43 CYS	HG	45 ILE 54 TLE	OG1	4.0	47 CYS	HN	47 CIS 47 CYS	HA HB1	5.5
37 ALA	HA	38 MET	HN	4.5	43 CYS	HG	54 ILE	QG2	4.6	47 CYS	HN	47 CYS	HB2	6.0
37 ALA	HN	37 ALA	HA	3.0	43 CYS	HN	43 CYS	HA	6.0	48 ASP-	HB2	48 ASP-	HB1	2.5
37 ALA	HN	37 ALA	QB	3.6	43 CYS	HN	43 CYS	HB1	3.5	48 ASP-	HN	48 ASP-	HA	4.5
37 ALA 37 ALA	HN	38 MET 38 MET	HN	3.5	43 CYS 43 CYS	HN	43 CIS 131 TVR	HB2	3.5	48 ASP- 48 ASP-	HN	48 ASP- 48 ASP-	HB1 HB2	3.5
37 ALA	HN	39 ALA	HN	4.5	43 CYS	HN	131 TYR	0E	6.7	48 ASP-	HN	49 GLY	HN	4.0
37 ALA	QB	38 MET	HN	4.1	43 CYS	N	11 TRP	0	3.2	48 ASP-	HN	50 LYS+	HN	6.0
38 MET	HA	38 MET	HG1	4.0	43 CYS	HN	11 TRP	0	2.2	48 ASP-	HN	51 ASN	HN	4.5
38 MET 38 MET	HA	38 MET 38 MET	HG2	4.0	44 ILE 44 TIE	N UN	55 LYS+	UD	3.2	49 GLY	HAI UA1	49 GLY 50 TVC+	HA2	2.5
38 MET	HA	39 ALA	HN	3.5	44 ILE	HA	44 ILE	HG11	3.5	49 GLY	HA2	50 LYS+	HN	3.5
38 MET	HG1	38 MET	QB	4.4	44 ILE	HA	44 ILE	HG12	6.0	49 GLY	HN	49 GLY	HA1	3.0
38 MET	HG2	38 MET	QB	4.4	44 ILE	HA	44 ILE	QD1	5.6	49 GLY	HN	49 GLY	HA2	3.0
38 MET	HG2	39 ALA	HN OD1	4.5	44 ILE 44 TIE	HA	44 ILE 45 TIE	QG2	3.6	49 GLY	HN	50 LYS+	HN UC1	4.5
38 MET	HN	38 MET	HA	3.5	44 ILE 44 ILE	HA	45 ILE 45 ILE	HG12	6.0	50 LYS+	HA	50 LYS+	HG1 HG2	4.0
38 MET	HN	38 MET	HG1	6.0	44 ILE	HA	45 ILE	HN	2.5	50 LYS+	HA	50 LYS+	QB	4.4
38 MET	HN	38 MET	HG2	4.5	44 ILE	HA	45 ILE	QD1	7.1	50 LYS+	HA	50 LYS+	QD	6.9
38 MET	HN	38 MET	QB	5.4	44 ILE	HB	44 ILE	QG2	3.6	50 LYS+	HA	51 ASN	HN UD 1	3.5
38 MET	OB	38 MET	OE	4.5	44 ILE 44 ILE	нв	55 LYS+	QG2 HN	6.0	50 LYS+	НА	69 LEU	OD2	4.5
38 MET	QB	60 LEU	QD1	6.5	44 ILE	HB	55 LYS+	QD	4.4	50 LYS+	HG1	50 LYS+	HG2	2.5
39 ALA	HA	39 ALA	QB	3.6	44 ILE	HG11	44 ILE	HG12	2.5	50 LYS+	HG1	51 ASN	HN	6.0
39 ALA 20 ALA	HA	40 LYS+	HN UD2	3.5	44 ILE	HG11	44 ILE	QD1	3.6	50 LYS+	HG1	69 LEU 51 ACM	QD2	5.1
39 ALA	НА	41 FRO 60 LEU	HG	4.5	44 ILE 44 ILE	HG11	45 TLE	QG2 HN	4.0 6.0	50 LYS+	HN	50 LYS+	HA	3.5
39 ALA	HA	60 LEU	HN	6.0	44 ILE	HG12	44 ILE	QD1	3.6	50 LYS+	HN	50 LYS+	QB	4.4
39 ALA	HN	39 ALA	HA	3.5	44 ILE	HG12	44 ILE	QG2	4.6	50 LYS+	HN	51 ASN	HN	2.5
39 ALA	HN	39 ALA	QB	3.6	44 ILE	HN	44 ILE	HA	4.5	50 LYS+	QB	50 LYS+	HG1	3.9
39 ALA	OB	40 LIS+ 40 LYS+	HN	4.6	44 ILE 44 ILE	HN	44 ILE 44 ILE	HG12	4.5	50 LYS+	OB	51 ASN	HN HN	4.9
39 ALA	QВ	41 PRO	HD2	5.6	44 ILE	HN	44 ILE	QD1	4.6	50 LYS+	QВ	68 THR	HA	6.9
39 ALA	QB	60 LEU	HA	7.1	44 ILE	HN	44 ILE	QG2	5.6	50 LYS+	QB	68 THR	QG2	4.5
39 ALA 39 ATA	QB QB	60 LEU 61 TVC+	QD1	4./	44 ILE 44 TIE	HN	45 ILE 54 TIE	HN OC2	4.5	50 LYS+	QB	69 LEU 50 TVC+	QD2	6.5
40 LYS+	HN	40 LYS+	HA	6.0	44 ILE	HN	55 LYS+	HB2	6.0	50 LYS+	0D	50 LYS+	HG2	3.4
40 LYS+	HN	40 LYS+	HG2	4.5	44 ILE	HN	55 LYS+	HN	4.5	50 LYS+	QD	68 THR	QG2	8.0
40 LYS+	HN	40 LYS+	QB	4.4	44 ILE	HN	55 LYS+	0	2.2	50 LYS+	QE	50 LYS+	HG1	4.4
40 LYS+ 40 LYS+	HN HN	40 LYS+ 58 SER	QD HB2	6.9 6 0	44 ILE 44 TLE	HN OD1	57 GLU- 55 T.VS+	HN	6.0 7 1	50 LYS+	QE	50 LYS+	HG2	4.9
40 LYS+	QB	40 LYS+	HG1	3.9	44 ILE	QD1 QD1	55 LYS+	QG	4.5	50 LYS+	0E	68 THR	HA	5.4
40 LYS+	QB	41 PRO	HD1	5.9	44 ILE	QD1	57 GLU-	HB2	7.1	50 LYS+	QE	68 THR	QG2	4.5
40 LYS+	QD	40 LYS+	HG1	3.9	44 ILE	QG2	45 ILE	HN	5.6	51 ASN	HA	51 ASN	HB1	3.5
40 LYS+ 40 LYS+	QE OE	40 LYS+ 40 LYS+	NG2 OB	4.9	44 ILE 44 TLE	QG2 QG2	55 LYS+	HN OD	7.1 6.5	51 ASN 51 ASN	НА НА	51 ASN 52 LEU	HBZ HN	3.5
40 LYS+	QE	40 LYS+	QD	4.3	45 ILE	HA	46 THR	HN	3.5	51 ASN	HA	68 THR	HA	2.5
41 PRO	HA	42 ASP-	HN	3.0	45 ILE	HA	53 THR	HN	6.0	51 ASN	HA	68 THR	QG2	5.6
41 PRO	HD2	42 ASP-	HN UD 1	6.0	45 ILE	HB	45 ILE	HG12	3.5	51 ASN	HA UD 1	69 LEU	HN	4.5
41 PRO 41 PRO	HDZ HG1	56 THR	OG2	0.0 7.1	45 ILE 45 ILE	HB	45 ILE 45 ILE	QD1 QG2	4.1 3.6	51 ASN	HB1	51 ASN 52 LEU	HB2 HN	5.0
41 PRO	HG1	131 TYR	QE	5.7	45 ILE	HB	46 THR	HN	4.5	51 ASN	HB1	68 THR	HA	6.0
41 PRO	HG2	41 PRO	HG1	2.5	45 ILE	HG11	45 ILE	QD1	4.1	51 ASN	HB2	52 LEU	HN	4.5
41 PRO	HG2	42 ASP-	HN UC1	6.0	45 ILE	HG11	45 ILE	QG2	4.1	51 ASN	HB2	68 THR	HA UD 1	6.0
41 PRO 41 PRO	<u>Q</u> В OB	41 PRO 41 PRO	HG1 HG2	3.4	45 ILE 45 ILE	HG11 HG11	54 ILE	OD1	4.6	51 ASN	HD21 HD21	51 ASN	HB1 HB2	4.0
41 PRO	QВ	42 ASP-	HN	3.4	45 ILE	HG11	54 ILE	QG2	4.6	51 ASN	HD21	51 ASN	HD22	2.5
41 PRO	QB	57 GLU-	HN	5.4	45 ILE	HG11	109 ARG+	HD1	6.0	51 ASN	HD22	51 ASN	HA	6.0
41 PRO 41 PRO	QB QB	38 SER 131 TVR	UE UE	5.4	45 ILE 45 TLE	HGII HGII	109 ARG+ 116 LEU	HDZ OD2	6.U 7 1	51 ASN 51 ASN	HDZZ HD22	51 ASN	HB1 HB2	4.5
42 ASP-	₽- HA	42 ASP-	HB1	4.5	45 ILE	HG12	45 ILE	HG11	2.5	51 ASN	HD22	51 ASN	HD21	2.5
42 ASP-	HA	43 CYS	HN	2.5	45 ILE	HG12	45 ILE	QG2	5.1	51 ASN	HD22	51 ASN	HN	6.0
42 ASP-	HA UD 1	134 VAL	QG2	7.1	45 ILE	HG12	46 THR	HN	6.0	51 ASN	HN	51 ASN	HA UD 1	3.5
42 ASP= 42 ASP=	HB1 HB1	44 ILE 44 TLE	OD1	6.U 5 1	45 ILE 45 ILE	HG12	54 ILE 54 ILE	na OG1	6.0 5.4	51 ASN	HN	51 ASN	HB1 HB2	4.0
42 ASP-	HB1	57 GLU-	HB2	6.0	45 ILE	HG12	54 ILE	QG2	5.4	51 ASN	HN	51 ASN	HD21	5.0
42 ASP-	HB1	57 GLU-	HN	4.5	45 ILE	HN	45 ILE	HB	3.5	51 ASN	HN	51 ASN	HD22	5.0
42 ASP-	HB2	44 ILE	HG12	4.5	45 ILE	HN	45 ILE	HG12	4.5	51 ASN	HN	52 LEU	HN OC2	6.0
42 ASF- 42 ASP-	HB2	57 GLU-	HG2	5.5 6.0	45 ILE 45 ILE	HN	45 ILE 45 ILE	OG2	5.6	52 LEU	N	67 CYS	0	3.2
42 ASP-	HB2	57 GLU-	HN	4.5	45 ILE	HN	46 THR	HN	4.5	52 LEU	HA	52 LEU	HB1	3.5
42 ASP-	HN	42 ASP-	HA	4.5	45 ILE	QD1	94 LEU	QD2	6.7	52 LEU	HA	52 LEU	HB2	3.5
42 ASP-	HN	42 ASP-	HB1	6.0	45 ILE	QD1	109 ARG+	HB1	7.1	52 LEU	HA	52 LEU	HG	3.0
42 ASP-	HN	43 CYS	HN	4.5	45 TLE	OD1	109 AKG+ 116 LEU	HB1	7.1	52 LEU 52 LEU	HA	53 THR	HN	2.5
42 ASP-	HN	43 CYS	HN	6.0	45 ILE	QD1	116 LEU	HG	7.1	52 LEU	HB1	52 LEU	QQD	4.8
42 ASP-	HN	56 THR	QG2	5.6	45 ILE	QD1	116 LEU	QD2	4.7	52 LEU	HB1	53 THR	HN	4.5
42 ASP-	HN	5/ GLU-	НА цр1	5.0 4 5	45 ILE	QG2	46 THR 46 TUD	HN	4.6	52 LEU	HB1	6/ CYS 52 TETT	HN	6.0 3 -
42 ASP-	HN	57 GLU- 57 GLU-	HB2	4.5	45 TLE	QGZ OG2	47 CYS	HB1	7.1	52 LEU 52 LEU	пв∠ HB2	52 LEU 52 LEU	00D	3.5 4.8
42 ASP-	HN	57 GLU-	HN	4.5	45 ILE	QG2	52 LEU	QQD	6.9	52 LEU	HB2	53 THR	HN	4.5
42 ASP-	HN	57 GLU-	HN	4.5	45 ILE	QG2	53 THR	HN	7.1	52 LEU	HB2	69 LEU	QD1	5.6
42 ASP- 42 ASP-	HN HN	58 SER 58 SFP	HA HB1	6.0 6.0	45 ILE 45 TTP	QG2	54 ILE 54 TTP	HA OG2	/.1 7 2	52 LEU 52 TETT	HG HC	52 LEU 52 T.FTT	HB1	3.5 4 °
42 ASP-	HN	58 SER	HN	5.0	46 THR	HB	46 THR	QG2	3.6	52 LEU	HG	53 THR	HN	3.5
43 CYS	HA	43 CYS	HB1	4.5	46 THR	HN	46 THR	HB	4.5	52 LEU	HG	54 ILE	QG1	4.4
43 CYS	HA	43 CYS	HG	4.5	46 THR	HN	46 THR	QG2	5.6	52 LEU	HG	94 LEU	QD2	7.1
43 CYS	на НА	44 ILE 54 TIF	нN OG2	∠.⊃ 7.1	46 THR 46 THR	HN HN	⊃∠ LEU 53 THR	НИ ЛОП	в.3 6.0	5∠ LEU 52 LEU	HN HN	o∠ LEU 52 T.EH	HA HB1	3.0 4 ∩
43 CYS	HA	55 LYS+	HN	6.0	46 THR	HN	53 THR	QG2	5.6	52 LEU	HN	52 LEU	HB2	3.5
43 CYS	HA	56 THR	HA	3.5	46 THR	HN	54 ILE	HA	4.5	52 LEU	HN	52 LEU	HG	5.0

52 LEU	HN	52 LEU	QQD	7.8	55 LYS+	QG	57 GLU-	HB1	6.9	63 THR	QG2	78 ALA	HN	5.6
52 LEU	HN	53 THR	HN	4.5	55 LYS+	QG	57 GLU-	HG1	4.4	64 GLN	HA	64 GLN	HB1	3.5
52 LEU	HN	67 CYS	HN	3.5	55 LYS+	OG	64 GLN	HA	5.4	64 GLN	HA	64 GLN	HB2	4.0
52 LEU	HN	67 CVS	0	2 2	55 T.YS+	ÔG	64 GLN	HB1	5 4	64 GLN	НΔ	64 GLN	HG1	4 5
52 IEU	TINT	60 mup	117	4.0	SS LIDI	00	64 CIN	1101	5.4	64 CIN	1173	64 CIN	1101	4.5
52 LEU	HN	66 THR	HA	4.0	55 LIS+	QG	64 GLN	HBZ	5.4	64 GLN	HA	64 GLN	HGZ	4.5
52 LEU	QQD	53 THR	HN	4.8	56 THR	HA	56 THR	HB	6.0	64 GLN	HA	65 PHE	HN	3.0
52 LEU	QQD	54 ILE	QG1	6.2	56 THR	HB	56 THR	QG2	3.6	64 GLN	HB1	65 PHE	HN	4.5
52 LEU	QQD	65 PHE	QE	9.0	56 THR	HB	57 GLU-	HN	6.0	64 GLN	HB2	65 PHE	HN	4.5
52 LEU	000	65 PHE	OB	98	56 THR	HB	63 THR	062	7 1	64 GLN	HE21	64 GLN	HB2	5 0
52 LEU 52 LEU	000	67 CVC	UNI	6.0	EC TUD	TIM	EC TUD	UD	2 6	64 CIN	11221	64 CIN	1102	2.5
JZ LEU	QQD	07 CIS	HIN	0.0	JUIR	HIN	JU IRK	пь	3.5	04 GLIN	HEZI	04 GLIN	HEZZ	2.5
52 LEU	QQD	69 LEU	HG	6.8	56 THR	HN	57 GLU-	HN	4.5	64 GLN	HE22	64 GLN	HG1	4.5
52 LEU	QQD	69 LEU	QD1	6.9	56 THR	HN	62 THR	QG2	7.1	64 GLN	HE22	64 GLN	HG2	4.5
52 LEU	OOD	87 CYS	HB2	6.8	56 THR	HN	63 THR	HN	4.5	64 GLN	HG1	64 GLN	HB1	3.5
52 LEU	000	94 LEU	002	59	56 THR	HN	64 GLN	НА	3 5	64 GLN	HG1	64 GLN	HB2	3 5
52 <u>HU</u> D	220		002	2.2	EC mup	0000	E7 CIU	1111	1.0	CA CIN	1101	CE DUD	1102	
55 THR	IN	40 THR	0	3.2	56 THR	QGZ	37 GLU-	HIN	4.0	64 GLIN	HGI	05 PHE	HIN	6.0
53 THR	HA	53 THR	HB	4.0	56 THR	QG2	61 LYS+	HB2	7.1	64 GLN	HG2	64 GLN	HB2	3.5
53 THR	HA	53 THR	QG2	3.6	56 THR	QG2	131 TYR	QE	9.3	64 GLN	HG2	65 PHE	HN	5.0
53 THR	HA	54 ILE	HN	2.5	57 GLU-	N	42 ASP-	0	3.2	64 GLN	HN	64 GLN	HA	4.5
53 THR	НА	65 PHE	HN	6.0	57 GLU-	HA	57 GLU-	HB1	35	64 GLN	HN	64 GLN	HA	6.0
EO mun	1111	CC OPD	1110	2.5	57 GLU	1111	57 GLU	HD1	J.J	CA CIN	1111	CA CIN	1171	E 0
55 THR	HA	00 SER	HA	3.5	57 GLU-	HA	57 GLU-	HBZ	4.5	64 GLIN	HN	64 GLN	HBI	5.0
53 THR	HA	66 SER	HB2	4.5	57 GLU-	HA	57 GLU-	HG2	6.0	64 GLN	HN	64 GLN	HB2	5.0
53 THR	HA	67 CYS	HN	4.0	57 GLU-	HA	58 SER	HN	2.5	64 GLN	HN	64 GLN	HG1	6.0
53 THR	HB	53 THR	QG2	4.1	57 GLU-	HA	62 THR	HB	5.0	65 PHE	HA	66 SER	HN	2.5
53 THR	HB	54 TLE	HN	4 5	57 GLU-	HA	62 THR	062	4 1	65 PHE	НΆ	73 PHE	OE	8 2
53 mup	UN	16 100	0	2 2	57 CTU-	UD1	58 CFD	LIN	1 5	65 DUF	UD1	66 955	UN	4 5
55 1110	1111	40 IIIK		2.2	57 610	IIDI	JO JER	1110	4.5	CE DUD	IID1	JO DER	1119	4.5
53 THR	HN	53 THR	HA	3.0	57 GLU-	HBZ	58 SER	HN	4.5	65 PHE	HBI	/3 PHE	HZ	6.0
53 THR	HN	53 THR	HB	3.5	57 GLU-	HB2	62 THR	QG2	5.6	65 PHE	HB1	73 PHE	QE	6.2
53 THR	HN	53 THR	QG2	5.6	57 GLU-	HG1	62 THR	QG2	4.6	65 PHE	HB1	75 GLU-	HA	6.0
53 THR	HN	54 ILE	HN	4.5	57 GLU-	HG2	57 GLU-	HB1	3.0	65 PHE	HB1	75 GLU-	QB	6.9
53 THR	HN	54 TLE	HN	6 0	57 GUI-	HG2	57 GUI-	HB2	3 5	65 PHF	HB2	65 PHF	~ нв1	4 5
52 min	0022	54 ILL 54 ILL	TINT	1 6	57 CIU	1102	57 CIU	1102	2.5	CE DUE	11D2	66 CED	IIN	1.5
55 1110	292	55 100	1110	4.0	57 610	1162	57 GHO	1191	2.5	05 FIIE	1102	00 SER	1119	4.5
53 THR	QG2	55 LYS+	QD	8.0	57 GLU-	HG2	62 THR	QG2	5.6	65 PHE	HBZ	/5 GLU-	HA	6.0
53 THR	QG2	64 GLN	HE21	5.6	57 GLU-	HN	42 ASP-	0	2.2	65 PHE	HN	65 PHE	HA	3.5
53 THR	QG2	64 GLN	HE22	5.6	57 GLU-	HN	57 GLU-	HA	3.0	65 PHE	HN	65 PHE	HB2	6.0
53 THR	0G2	65 PHE	HN	5.6	57 GLU-	HN	57 GLU-	HB1	4.5	65 PHE	HN	65 PHE	OE	7.2
53 mup	0022	66 970	ΗZ	4 6	57 CTTL	HN	57 CTT-	HC1	6 0	65 000	HM	66 970	HN HN	Δ F
55 1110	092	CC SER	116	7.0	57 610	1110	57 610	1191	0.0	CE DUD	1110	CE DUR	1119	
55 THR	QG2	00 SER	HBI	/.1	57 GLU-	HN	37 GLU-	HG2	4.5	65 PHE	QE	05 PHE	HBI	0./
53 THR	QG2	66 SER	HB2	4.6	58 SER	HA	59 THR	HN	4.5	65 PHE	QE	65 PHE	HB2	6.7
53 THR	QG2	66 SER	HN	7.1	58 SER	HA	59 THR	QG2	5.6	65 PHE	QE	65 PHE	QR	7.2
54 ILE	Ν	65 PHE	0	3.2	58 SER	HA	60 LEU	HN	4.5	65 PHE	OE	73 PHE	HZ	6.7
54 TLE	НЪ	54 TT.F	0.01	5.6	58 SER	НΣ	61 T.YS+	HN	5 0	65 PHF	ÕF	87 CVS	HC	6.2
EA TID	1111	54 110	001	5.0	EO ODD	1111	EO mup	1110	0.0 4 E	CE DUE	QL	OC CIN	110	7.0
54 ILE	HA	54 ILE	QGI	5.4	JO SER	HBI	59 THR	HIN	4.5	65 PHE	QE	96 GLN	HEZI	1.2
54 ILE	HA	54 ILE	QG2	4.6	58 SER	HBI	60 LEU	HN	6.0	65 PHE	QE	109 ARG+	QHI	9.1
54 ILE	HA	55 LYS+	HN	3.5	58 SER	HB2	59 THR	HN	6.0	65 PHE	QR	65 PHE	HA	7.0
54 ILE	HB	54 ILE	QD1	4.6	58 SER	HB2	60 LEU	QD1	7.1	65 PHE	QR	65 PHE	HB1	6.0
54 TLE	HB	54 TLE	062	4 1	58 SER	HN	62 THR	НА	6 0	65 PHE	OR	65 PHE	HB2	5.0
54 TIP	UD	EE TVCI	UN	1.1	EO CED	TINT	62 mun	0000	7 1	CE DUE	OD	66 CED	IIN	6.0
J4 ILE	пь	55 LIST		4.5	JO SER	TIN	02 IAK	QG2	/.1	OJ FHE	QR	CO SER	HIN	0.0
54 ILE	HB	65 PHE	QE	6./	59 THR	HA	59 THR	QG2	4.1	65 PHE	QR	6/ CYS	HN	/.0
54 ILE	HB	65 PHE	QR	7.0	59 THR	HA	60 LEU	HN	4.5	65 PHE	QR	73 PHE	ΗZ	6.0
54 ILE	HN	54 ILE	HA	3.5	59 THR	HB	59 THR	HA	3.0	65 PHE	QR	73 PHE	QD1	0.7
54 ILE	HN	54 ILE	HB	6.0	59 THR	HB	59 THR	OG2	3.6	65 PHE	OR	75 GLU-	HG2	8.5
54 TLE	HN	54 TLF	0.01	7 1	59 THR	HB	60 LEU	HG	5 0	65 PHF	ÕR	87 CVS	HG	8 0
EA TID	TINT	54 110	002	5.2	EO mun	IID		110	0.0	CE DUE	QI	OC CIN	110	0.0
34 ILE	HN	34 ILE	QGZ	5.0	59 THR	нв	OO LEO	HIN	0.0	65 PHE	QR	90 GUN	HGZ	8.5
54 ILE	HN	55 LYS+	HN	6.0	59 THR	HN	59 THR	HA	4.5	66 SER	HA	66 SER	HB1	3.5
54 ILE	HN	65 PHE	HN	6.0	59 THR	HN	59 THR	HB	4.5	66 SER	HA	66 SER	HB2	3.5
54 ILE	HN	65 PHE	0	2.2	59 THR	HN	59 THR	OG2	5.6	66 SER	HA	67 CYS	HN	2.5
54 TLE	HN	65 PHF	OR	8 5	59 THR	HN	60 LEU	HN	6.0	66 SER	HB1	67 CVS	HN	4 5
54 ILL	TIN	CC ORD	QIV UD	0.5	50 mun	0000	CO LEU	TIN	7 1	CC ORD	IID1	CC OPD	1119	1.5
54 ILE	HN	66 SER	HA	4.5	59 THR	QG2	60 LEU	HN	/.1	66 SER	HBZ	66 SER	HBI	2.5
54 ILE	HN	67 CYS	HN	6.0	60 LEU	HA	60 LEU	QB	3.4	66 SER	HB2	67 CYS	HN	4.5
54 ILE	HN	67 CYS	HN	6.0	60 LEU	HA	60 LEU	QD1	5.6	66 SER	HN	66 SER	HA	3.5
54 ILE	QD1	54 ILE	QG2	4.7	60 LEU	HA	60 LEU	QD2	3.6	66 SER	HN	66 SER	HB1	4.0
54 TLE	001	65 PHF	OR	6 6	60 LEU	HN	60 LEU	НЪ	35	66 SER	HN	66 SER	HB2	4 5
EA TID	001	OC CIN	QI.	0.0	CO 100	1114		00	2.3	CC OED	1111	CZ OVO	1102	1.0
34 ILE	QDI	96 GLN	QВ	8.0	OU LEO	HN	60 LEO	QВ	3.4	00 SER	HN	67 CIS	HIN	4.5
54 ILE	QG1	54 ILE	QD1	4.5	60 LEU	HN	60 LEU	QD2	5.6	66 SER	HN	67 CYS	HN	6.0
54 ILE	QG1	54 ILE	QG2	5.5	60 LEU	HN	61 LYS+	HN	4.5	67 CYS	HA	67 CYS	HB1	6.0
54 ILE	QG1	55 LYS+	HN	6.9	60 LEU	QB	60 LEU	QD1	4.5	67 CYS	HA	67 CYS	HB2	3.5
54 TLE	OG1	65 PHE	OE	9.1	60 LEU	OB	60 LEU	002	4.5	67 CYS	HA	68 THR	HN	3.5
54 TLE	061	65 PHF	ÕR.	7 9	60 LEU	ÕВ	61 T.YS+	нв2	6 9	67 CVS	HB1	68 THR	HN	4 0
EA TID	201	EE TYOL	210	1.5	CO 100	2D	C1 TVO	1102	0.5	67 CID	UD2	67 GYG	1111	1.0
54 ILE	QG2	55 LYS+	HN	4.6	60 LEU	ÕВ	61 LYS+	HN	4.4	67 CYS	HBZ	67 CIS	HBI	6.0
54 ILE	QG2	65 PHE	QE	7.3	60 LEU	QВ	61 LYS+	HN	4.9	67 CYS	HB2	68 THR	HN	4.5
54 ILE	QG2	65 PHE	QR	7.6	60 LEU	QD2	61 LYS+	HN	7.1	67 CYS	HG	69 LEU	QD1	7.1
54 ILE	QG2	109 ARG+	HD1	7.1	61 LYS+	HA	61 LYS+	HB1	3.0	67 CYS	HN	67 CYS	HA	3.5
55 LYS+	N	44 ILE	0	3.2	61 LYS+	HA	61 LYS+	HB2	3.5	67 CYS	HN	67 CYS	HB1	4.5
55 LYS+	HA	55 LYS+	HB1	3.5	61 T.Y.S+	HA	61 LYS+	QD	4.4	67 CYS	HN	67 CYS	HB2	6.0
55 T.VS+	ΗA	55 T.VS+	HR2	3 5	61 T.VQL	НΔ	61 T.VS+	OF	5 4	67 CVS	HN	68 THR	HN	6 0
SS LIST	117	SS LIST	000	3.5	C1 TV0-	112	C2 min	211 Y	2.7	C0 mm	1119	CO MUD	TID	0.0
JJ ∐IS+	пА	ээ тт <u>р</u> +	QG	4.4	OI LIS+	пА	UZ THK	riiN	2.0	00 THK	пА	UO THK	пв	3.5
55 LYS+	HA	56 THR	HN	2.5	61 LYS+	HB1	61 LYS+	QD	3.9	68 THR	HA	68 THR	QG2	4.1
55 LYS+	HA	64 GLN	HA	2.5	61 LYS+	HB1	62 THR	HN	4.5	68 THR	HA	69 LEU	HN	2.5
55 LYS+	HA	64 GLN	HB1	4.5	61 LYS+	HB2	61 LYS+	QG	3.4	68 THR	HB	68 THR	QG2	3.6
55 T.YS+	ΗA	64 GT N	HR2	4 5	61 T.VQL	HR2	62 THR	 HN	4 5	68 THR	HR.	69 T.FTT	HN	4 5
SS HIDT	U7	64 CT 17	UC1	-4.J E 0	C1 TVC-	1102	79 77 7	0.0	7 1	CO MUD	מתי	71 0111	TITA TITA	
55 LIS+	HA	64 GLN	HGI	6.0	61 LYS+	HBZ	/8 ALA	ÕВ	/.1	68 THR	нв	/I GLU-	HN	6.0
55 LYS+	HB1	55 LYS+	HB2	2.5	61 LYS+	HN	61 LYS+	HA	4.5	68 THR	HN	68 THR	HA	3.0
55 LYS+	HB1	55 LYS+	QG	5.4	61 LYS+	HN	61 LYS+	HB1	4.5	68 THR	HN	68 THR	HB	3.5
55 LYS+	HB1	56 THR	HN	4.5	61 LYS+	HN	61 LYS+	HB2	3.5	68 THR	HN	68 THR	QG2	5.6
55 T.VC+	нво НВО	55 T.VC+	ΩD	3 ⊿	61 TVQJ	ни	61 T.VC+	00	6 9	68 500	ни	69 1.511	HM -	⊑
55 1101	0 D D D	55 11107	20	1 5	C1 TVO	LINT	61 170	20	6.9	20 mm	LINI	73	0.0	1.0
DD LYS+	нв2	JO THR	nN	4.0	DI LIS+	HN	OT TIR+	QG	0.9	68 THR	HN	/3 PHE	QD	b./
55 LYS+	HN	44 ILE	U	2.2	61 LYS+	HN	62 THR	HN	6.0	68 THR	HN	/3 PHE	QE	8.2
55 LYS+	HN	55 LYS+	HA	6.0	61 LYS+	HN	62 THR	HN	6.0	68 THR	QG2	69 LEU	HN	4.6
55 LYS+	HN	55 LYS+	HB1	3.5	61 LYS+	QD	62 THR	HN	4.4	68 THR	QG2	71 GLU-	HN	5.6
55 T.Y.S+	HN	55 T.YS+	HB2	3.5	61 T.Y.S+	0E	61 T.YS+	HB1	6.9	69 T.ETT	HA	69 T.ETT	HB1	35
55 TVCI	LIM .	56 mm	UM	6.0	61 TVC	~~ ~~	61 TVC	00	63	20 100	но 1	60 1171	001	5.5
SS LIST	1111	SC III	1111	6.0	01 LID+ C1 THO	2 <u>2</u>	61 TVO:	20	0.0	07 LEU	1,004	60 TEV	ADT.	J.1
DD LIS+	HN	JO THR	HN	0.0	DI LIS+	QG	OT TIR+	QD	4.3	0A TEO	нвт	03 TEO	QU2	4.1
55 LYS+	QD	55 LYS+	QG	4.8	62 THR	HA	62 THR	HB	4.5	69 LEU	HB1	70 GLY	HN	4.5
55 LYS+	QD	56 THR	HN	6.4	62 THR	HA	62 THR	QG2	4.6	69 LEU	HB2	70 GLY	HN	4.5
55 LYS+	OD	57 GLU-	HG2	5.4	62 THR	HB	62 THR	0G2	3.6	69 LEU	HG	69 I.EU	OD2	3.6
55 T.VC+	0 D	64 GT N	HR1	6 9	62 TUD	HN	62 THP	HD HD	2 5	69 1011	HM	69 1.511	<u>н</u> л	3.0
55 1101	~~	SE TVOI	UD 1	6.0	CO mun	LINT	62 mm	L1D	3.J	20 100	LINI	60 1011	1111	5.U 5 F
JJ ЦҮХ+	QЕ:	33 LIS+	nB1	0.9	02 THK	HN	02 THK	нВ	3.5	DA TEO	HIN	09 LEU	HBI	3.5
55 LYS+	QE	55 LYS+	QD	5.3	62 THR	HN	62 THR	QG2	5.6	69 LEU	HN	69 LEU	HB2	4.0
55 LYS+	QE	55 LYS+	QG	6.3	62 THR	QG2	63 THR	HN	5.1	69 LEU	HN	69 LEU	HG	4.5
55 LYS+	QE	57 GLU-	HA	6.9	63 THR	HA	64 GLN	HN	3.5	69 LEU	HN	69 LEU	QD1	5.1
55 TVC+	0F	57 CTTT-	ир1	5 9	63 mub	цр	63 700	002	3 6	60 TETT	нм	69 1 11	002	5 6
JJ L13+	2 E	57 GLU-	1101	J.J	05 THK	11D	US IRK	2GZ	3.0	UJ LEU	1110	0.0 LEU	202	J.0 F ^
55 LYS+	QE	5/GLU-	HG2	4.4	63 THR	нв	64 GLN	HN	4.0	69 LEU	HN	/U GLY	HN	5.0
55 LYS+	QE	62 THR	QG2	5.5	63 THR	HN	63 THR	HA	6.0	69 LEU	QD1	70 GLY	HN	5.6
55 LYS+	QE	64 GLN	HB1	6.9	63 THR	QG2	64 GLN	HN	6.1	69 LEU	QD1	87 CYS	HB1	4.6
55 LYS+	QG	56 THR	HN	4.4	63 THR	QG2	78 AJ.A	HA	6.1	69 LEU	QD1	87 CYS	HB2	5.1

69 LEU	QD1	87 CYS	HN	7.1	74 GLU-	HA	83 THR	HN	4.5	78 ALA	HN	78 ALA	QB	3.6
69 LEU	QD1	88 ASN	HA	7.1	74 GLU-	HA	83 THR	HN	6.0	78 ALA	HN	79 ASP-	HN	4.5
69 LEU	QD1	89 PHE	HB1	6.1	74 GLU-	HA	84 GLN	HE21	4.0	78 ALA	HN	80 GLY	HN	6.0
69 LEU	QD1	89 PHE	HN	6.1	74 GLU-	HA	85 THR	HB	6.0	78 ALA	QB	79 ASP-	HN	4.1
69 LEU	QD1	94 LEU	QD1	6.2	74 GLU-	HN	74 GLU-	HA	3.0	78 ALA	QB	80 GLY	HN	7.1
69 LEU	QD2	69 LEU	QD1	4.7	74 GLU-	HN	74 GLU-	QB	3.4	79 ASP-	HA	79 ASP-	HB2	3.5
69 LEU	QD2	88 ASN	HA	5.6	74 GLU-	HN	74 GLU-	QG	5.4	79 ASP-	HA	80 GLY	HA2	6.0
69 LEU	QD2	89 PHE	HB1	4.6	74 GLU-	HN	75 GLU-	HN	4.5	79 ASP-	HA	80 GLY	HN	3.5
69 LEU	QD2	89 PHE	HN	4.6	74 GLU-	HN	75 GLU-	HN	6.0	79 ASP-	HB2	80 GLY	HN	6.0
70 GLY	HN	71 GLU-	HN	3.5	74 GLU-	QB	74 GLU-	QG	4.3	79 ASP-	HN	79 ASP-	HA	3.5
70 GLY	HN	71 GLU-	HN	4.5	74 GLU-	QB	75 GLU-	HN	5.4	79 ASP-	HN	79 ASP-	HB2	4.5
70 GLY	HN	86 VAL	QQG	6.3	74 GLU-	QB	84 GLN	HE21	5.4	79 ASP-	HN	80 GLY	HN	3.5
70 GLY	HN	88 ASN	HA	3.5	74 GLU-	QB	84 GLN	HE22	4.4	79 ASP-	HN	80 GLY	HN	3.5
70 GLY	HN	88 ASN	HB1	6.0	74 GLU-	QG	75 GLU-	HN	4.4	79 ASP-	HN	81 ARG+	HN	4.5
71 GLU-	HA	72 LYS+	HN	2.5	74 GLU-	QG	82 LYS+	HA	6.9	80 GLY	HA1	81 ARG+	HN	4.5
71 GLU-	HB1	71 GLU-	HB2	2.5	74 GLU-	OG	82 LYS+	HB1	5.9	80 GLY	HA2	80 GLY	HA1	2.5
71 GLU-	HG1	71 GLU-	HB1	3.5	74 GLU-	QG	82 LYS+	HB2	4.4	80 GLY	HA2	81 ARG+	HN	4.5
71 GLU-	HG1	71 GLU-	HB2	3.0	74 GLU-	QG	83 THR	HN	6.9	80 GLY	HN	80 GLY	HA1	3.5
71 GLU-	HG1	71 GLU-	HG2	2.5	74 GLU-	QG	84 GLN	HE22	4.4	80 GLY	HN	80 GLY	HA2	3.0
71 GLU-	HG1	72 LYS+	HN	4.5	75 GLU-	N	83 THR	0	3.2	80 GLY	HN	81 ARG+	HN	3.5
71 GLU-	HN	71 GLU-	HA	3.5	75 GLU-	HA	75 GLU-	HG1	4.5	80 GLY	HN	81 ARG+	HN	3.5
71 GLU-	HN	71 GLU-	HG1	5.0	75 GLU-	HA	75 GLU-	HG2	4.5	81 ARG+	HA	81 ARG+	HB2	3.5
71 GLU-	HN	72 LYS+	HN	4.5	75 GLU-	HA	75 GLU-	QB	4.4	81 ARG+	HA	81 ARG+	HG1	3.5
71 GLU-	HN	72 LYS+	HN	6.0	75 GLU-	HA	76 THR	HN	2.5	81 ARG+	HA	82 LYS+	HA	6.0
71 GLU-	HN	86 VAL	OOG	6.8	75 GLU-	HA	85 THR	HB	6.0	81 ARG+	HA	82 LYS+	HN	2.5
72 LYS+	HA	72 LYS+	OB	3.4	75 GLU-	HG2	76 THR	HN	4.5	81 ARG+	HB1	83 THR	OG2	4.6
72 LYS+	HA	72 LYS+	ÕE	6.9	75 GLU-	HG2	77 THR	OG2	5.6	81 ARG+	HB2	81 ARG+	HD1	4.5
72 LYS+	HA	72 LYS+	ÕG	3.9	75 GLU-	HN	75 GLU-	HA	3.5	81 ARG+	HB2	82 LYS+	HN	4.5
72 LYS+	HA	73 PHE	HN	2.5	75 GLU-	HN	75 GLU-	HG1	4.5	81 ARG+	HD1	100 TRP	HE1	4.0
72 LYS+	HA	73 PHE	OD	6.2	75 GLU-	HN	75 GLU-	HG2	6.0	81 ARG+	HE	81 ARG+	HB2	4.5
72 LYS+	HA	85 THR	ΗŇ	6.0	75 GLU-	HN	75 GLU-	QB	3.4	81 ARG+	HE	81 ARG+	HD2	6.0
72 LYS+	HA	86 VAL	HA	4.5	75 GLU-	HN	76 THR	HN	4.5	81 ARG+	HG1	81 ARG+	HB2	6.0
72 LYS+	HA	86 VAL	QOG	4.8	75 GLU-	HN	76 THR	HN	6.0	81 ARG+	HG1	81 ARG+	HD1	4.5
72 LYS+	HA	87 CYS	HN	6.0	75 GLU-	HN	82 LYS+	HA	6.0	81 ARG+	HG1	82 LYS+	HN	5.5
72 LYS+	HN	72 LYS+	HA	3.5	75 GLU-	HN	83 THR	HN	3.5	81 ARG+	HG1	83 THR	QG2	7.1
72 LYS+	HN	72 LYS+	QВ	3.9	75 GLU-	HN	83 THR	HN	3.5	81 ARG+	HG1	100 TRP	HE1	6.0
72 LYS+	HN	72 LYS+	0G	5.4	75 GLU-	HN	83 THR	0	2.2	81 ARG+	HG2	81 ARG+	HB2	4.5
72 LYS+	HN	73 PHF	HN	5.0	75 GLU-	HN	84 GI-N	HE22	6.0	81 ARG+	HG2	81 ARG+	HD1	4.5
72 LYS+	HN	86 VAL	OOG	6.8	75 GLU-	OB	75 GLU-	HG1	4.4	81 ARG+	HG2	81 ARG+	HG1	2.5
72 LYS+	OB	72 LYS+	0G	4.8	75 GLU-	ÔB	75 GLU-	HG2	3.4	81 ARG+	HG2	82 LYS+	HN	5.5
72 LYS+	0B	73 PHE	HN	4.9	75 GLU-	0B	76 THR	HN	5.4	81 ARG+	HN	81 ARG+	HA	3.5
72 LYS+	0B	86 VAL	OOG	6.2	75 GLU-	0B	77 THR	OG2	6.5	81 ARG+	HN	81 ARG+	HB1	3.5
72 LYS+	ÕD	72 LYS+	ŌĞ	4.8	75 GLU-	о́в	83 THR	HN	4.4	81 ARG+	HN	81 ARG+	HG1	4.5
72 LYS+	0D	84 GLN	HB1	4.9	75 GLU-	0B	83 THR	0G2	7.0	81 ARG+	HN	81 ARG+	HG2	3.5
72 LYS+	0D	84 GLN	HB2	4.9	75 GLU-	0B	85 THR	HB	3.9	81 ARG+	HN	82 LYS+	HN	6.0
72 LYS+	ÕD	84 GLN	HG2	4.9	76 THR	ΗA	76 THR	HB	3.5	81 ARG+	OH1	81 ARG+	HD1	6.9
72 LYS+	ÕE	72 LYS+	OB	5.3	76 THR	HA	76 THR	OG2	3.6	81 ARG+	ÕH1	81 ARG+	HE	6.9
72 LYS+	ÕE	72 LYS+	ÕD	4.3	76 THR	HA	77 THR	HN	2.5	82 LYS+	ĥA	82 LYS+	HB1	3.5
72 LYS+	0E	72 LYS+	0G	5.3	76 THR	HA	82 LYS+	HA	3.5	82 LYS+	HA	82 LYS+	HB2	3.5
72 LYS+	ÕE	84 GLN	HB1	5.4	76 THR	HA	82 LYS+	HG1	6.0	82 LYS+	HA	82 LYS+	HG1	4.0
72 LYS+	ÕE	84 GLN	HB2	4.9	76 THR	HA	82 LYS+	HN	6.0	82 LYS+	HA	82 LYS+	HG2	4.5
72 LYS+	ÕE	84 GLN	HG2	5.4	76 THR	HA	82 LYS+	OD	5.4	82 LYS+	HA	83 THR	HN	2.5
72 LYS+	0E	86 VAL	OOG	6.7	76 THR	HB	76 THR	0G2	3.6	82 LYS+	HB1	82 LYS+	HB2	2.5
72 LYS+	06	73 PHE	HN HN	4 4	76 THR	HB	77 THR	HN N	4 5	82 LYS+	HB1	82 LYS+	HG2	3 5
72 LYS+	0G	84 GLN	HB2	5 4	76 THR	HB	82 LYS+	OD	5 9	82 LYS+	HB1	83 THR	HN	4 5
72 LYS+	0G	86 VAL	HA	6.9	76 THR	HN	76 THR	НА	3.5	82 LYS+	HB2	82 LYS+	HG1	3.5
73 PHE	N	85 THR	0	3.2	76 THR	HN	76 THR	HB	3.5	82 T.YS+	HB2	82 T.YS+	HG2	3.5
73 PHE	НΣ	73 PHF	HB1	2 5	76 THR	HN	76 THR	062	5.6	82 T.YS+	HB2	83 THR	HN	4 5
73 PHE	НΣ	73 PHE	HB2	2.5	76 THR	HN	70 IIIR 77 THR	UQG2 HN	4 5	82 T.VS+	HG1	83 THR	HN	 6 0
73 DUE	117	74 CTU-	UN	2.5	76 TUD	LIN	77 mup	UN	4.5	82 TVCL	uc2	83 TUD	LIN	6.0
73 PHE	HB1	73 PHF	HB2	2.5	76 THR	HN	82 T.VS+	нъ	6.0	82 T.YS+	HN	82 T.YS+	НΣ	3 5
73 DUE	1101	74 CTU-	UN	2.5	76 TUD	002	77 mup	IN	1.6	82 TVCL	LIN	82 TVCL	ייינ חמח	1 5
73 DUE	1101	74 GLU	UN	4.0	76 TUD	002	80 CTV	цл 1	4.0	82 TVCL	LIN	82 TVCL	uc1	
73 PHE	HN	73 PHF	НΣ	3.5	76 THR	062	80 GLY	HN	5.6	82 T.VS+	HN	82 T.VS+	HG2	4 5
73 PHE	HN	73 PHF	HB1	4 5	76 THR	062	82 T.VS+	нъ	5.1	82 T.YS+	HN	83 THR	HN	4.5
73 PHE	HN	73 PHF	HB2	4 5	76 THR	062	82 T.VS+	OF	5 5	82 T.YS+	HN	100 TRP	HD1	-1.0 6 0
73 PHE	HN	73 PHE	OD	5.7	70 THR 77 THR	HA HA	77 THR	HR	3.0	82 LYS+	OD	82 LYS+	HG2	3 4
73 PHE	HN	73 PHE	0E	8 2	77 THR	НА	77 THR	062	3.6	82 LYS+	0E	82 LYS+	HB1	5 9
73 PHE	HN	74 GLU-	HN	6.0	77 THR	НЪ	78 AT.A	42	5.0	82 LVS+	OF	82 T.YS+	HG2	3.0
73 PHE	HN	85 THR	HB	4 5	77 THR	μъ	78 AT.A	HN	3.5	82 T.YS+	OF	82 T.YS+	00	4 3
73 PHE	HN	85 THR	HN	3 5	77 THR	НА	78 ALA	OB	7 1	83 THR	N	75 GLU-	0	3 2
73 PHE	HN	85 THR	0	2.2	77 THR	HA	79 ASP-	HN	6.0	83 THR	НА	83 THR	HB	4.5
7.3 PHE	HN	86 VAL	НА	6.0	77 THR	HB	77 THR	0G2	3.6	83 THR	HA	83 THR	0G2	4.1
- 73 PHE	HN	86 VAL	QOG	6.8	77 THR	HB	78 ALA	HN	3.5	83 THR	HA	84 GLN	HN	2.5
73 PHE	ΗZ	75 GLU-	QB	6.9	77 THR	HB	79 ASP-	HN	3.5	83 THR	HA	100 TRP	HB1	3.5
73 PHE	ΗZ	85 THR	HB	6.0	77 THR	HB	80 GLY	HN	4.5	83 THR	HA	100 TRP	HB2	3.5
73 PHE	ΗZ	85 THR	QG2	4.6	77 THR	HB	81 ARG+	HB1	4.5	83 THR	HA	100 TRP	HE3	6.0
73 PHE	ΗZ	87 CYS	HG	4.5	77 THR	HB	81 ARG+	HN	4.5	83 THR	HB	83 THR	QG2	3.6
73 PHE	QD	73 PHE	HA	6.7	77 THR	HG1	77 THR	HA	6.0	83 THR	HB	84 GLN	HN	3.5
73 PHE	QD	73 PHE	HB1	4.7	77 THR	HG1	77 THR	HB	4.5	83 THR	HB	98 GLN	HA	4.5
73 PHE	QD	73 PHE	HB2	4.7	77 THR	HG1	77 THR	QG2	5.6	83 THR	HB	99 GLU-	HN	3.5
73 PHE	QD	73 PHE	ΗZ	6.7	77 THR	HG1	80 GLY	HN	4.5	83 THR	HB	100 TRP	HB1	6.0
73 PHE	QD	73 PHE	QE	6.9	77 THR	HG1	81 ARG+	HE	6.0	83 THR	HB	100 TRP	HB2	4.0
73 PHE	QD	74 GLU-	HA	6.7	77 THR	HG1	81 ARG+	HN	3.5	83 THR	HB	100 TRP	HE3	4.5
73 PHE	QD	74 GLU-	HN	5.7	77 THR	HG1	81 ARG+	QH1	6.9	83 THR	HN	75 GLU-	0	2.2
73 PHE	QD	75 GLU-	HN	8.2	77 THR	HN	77 THR	HA	3.5	83 THR	HN	83 THR	HA	3.5
73 PHE	QD	75 GLU-	QB	7.6	77 THR	HN	77 THR	HB	4.5	83 THR	HN	83 THR	HB	4.0
73 PHE	QD	85 THR	HB	8.2	77 THR	HN	77 THR	QG2	3.6	83 THR	HN	83 THR	QG2	4.6
73 PHE	QD	85 THR	QG2	9.3	77 THR	HN	78 ALA	HN	6.0	83 THR	QG2	84 GLN	HN	5.6
73 PHE	QD	86 VAL	HA	6.7	77 THR	HN	80 GLY	HN	6.0	83 THR	QG2	98 GLN	HA	7.1
73 PHE	QE	73 PHE	HB2	7.2	77 THR	HN	81 ARG+	HA	6.0	83 THR	QG2	98 GLN	HB1	5.6
73 PHE	QE	73 PHE	ΗZ	4.7	77 THR	HN	81 ARG+	HN	4.5	83 THR	QG2	98 GLN	HB2	5.6
73 PHE	QE	75 GLU-	HA	8.2	77 THR	HN	83 THR	HN	4.5	83 THR	QG2	98 GLN	HE21	7.1
73 PHE	QE	75 GLU-	HG2	5.7	77 THR	HN	83 THR	QG2	7.1	83 THR	QG2	98 GLN	HG1	7.1
73 PHE	QE	75 GLU-	HN	8.2	77 THR	QG2	78 ALA	HN	5.6	83 THR	QG2	99 GLU-	HN	5.6
73 PHE	QE	75 GLU-	QB	6.6	77 THR	QG2	81 ARG+	HE	5.6	83 THR	QG2	100 TRP	HB1	4.6
73 PHE	QE	76 THR	HN	8.2	77 THR	QG2	81 ARG+	HN	7.1	83 THR	QG2	100 TRP	HB2	4.6
73 PHE	QE	85 THR	HB	6.7	77 THR	QG2	81 ARG+	QH1	8.0	83 THR	QG2	100 TRP	HD1	6.1
73 PHE	QE	85 THR	QG2	6.8	77 THR	QG2	83 THR	HN	5.1	83 THR	QG2	100 TRP	HE1	7.1
73 PHE	QE	86 VAL	HA	8.2	77 THR	QG2	83 THR	QG2	5.7	83 THR	QG2	100 TRP	HE3	4.1
73 PHE	QE	87 CYS	HG	5.7	77 THR	QG2	98 GLN	HE21	7.1	83 THR	QG2	100 TRP	HN	6.1
73 PHE	QE	87 CYS	HN	8.2	78 ALA	HA	79 ASP-	HA	6.0	83 THR	QG2	100 TRP	HZ3	5.6
74 GLU-	HA	74 GLU-	QB	3.9	78 ALA	HA	79 ASP-	HN	4.5	84 GLN	HA	85 THR	HN	3.5
74 GLU-	HA	74 GLU-	QG	4.4	78 ALA	HA	80 GLY	HN	4.5	84 GLN	HB1	99 GLU-	HN	6.0
74 CT II-	HА	75 GLU-	HN	2 5	78 ALA	HN	78 AT.A	HA	3.5	84 GLN	HB2	84 GLN	HB1	2.5

84 GLN	HB2	85 THR	HN	4 5	89 PHF	HB2	89 PHF	HB1	2 5	95 WAT.	НΣ	96 CLN	HN	3 5
84 CIN	UE 21	84 CIN	up2	1.5	80 DUF	1102	00 THE	UM	5.0	95 VAL	U7	108 TUD	U7	3 5
84 CIN	UE21	84 CIN	uC2	4.5	80 DUE	UM	90 DUF	11IN U 7	3.5	95 VAL	117	100 THR 108 TUD	002	5.1
84 CIN	UE21	84 CIN	uC2	4.5	80 DUE	LIN	80 DUE	110.0	3.5	95 VAL	117	100 100	UN	1 5
84 CIN	UC2	84 CIN	11G2 UD1	3.5	80 DUE	LIN	80 DUE	OD.	5.5	95 VAL	UD	05 WAT	0001	3.6
84 CIN	uC2	84 CIN	1101	3.5	80 DUE	LIN	00 THE	UM UM	6.0	95 VAL	סח	95 VAL 95 VAL	002	3.0
04 GLN	HGZ HC2	04 GLN	по2 UC1	3.5	0 PHE	117	90 INK	TIN TIA 1	2.0	05 VAL	ID ID	95 VAL	QG2	
04 GLN	HG2	00 GLN	ngi upo	2.5	09 FHE	12	92 GLI	IA1	5.5	95 VAL		90 GLIN		4.3
84 GLN	HGZ	99 GLU-	HBZ UD1	6.0	89 PHE	HZ	92 GLI	HAZ	5.0	95 VAL	HIN	00 ASN	0	2.2
84 GLN	HIN	84 GLN	HBI	4.0	89 PHE	HZ OD	92 GLI	HIN	0.0	95 VAL	HIN	95 VAL	HA	4.3
84 GLN	HN	84 GLN	HBZ	4.5	89 PHE	QD	89 PHE	HA UD 1	4./	95 VAL	HN	95 VAL	HB 0.01	3.5
84 GLN	HN	84 GLN	HG1	4.5	89 PHE	QD	89 PHE	HB1	4.7	95 VAL	HN	95 VAL	QG1	6.1
84 GLN	HN	84 GLN	HG2	4.5	89 PHE	QD	89 PHE	HB2	4.7	95 VAL	HN	95 VAL	QG2	4.6
84 GLN	HN	85 THR	HN	4.5	89 PHE	QD	89 PHE	ΗZ	6.7	95 VAL	HN	96 GLN	HN	4.5
84 GLN	HN	99 GLU-	HN	3.5	89 PHE	QD	90 THR	HN	6.7	95 VAL	QG1	96 GLN	HN	4.6
85 THR	N	73 PHE	0	3.2	89 PHE	QD	93 ALA	HN	8.2	95 VAL	QG1	97 HIS+	HB1	6.1
85 THR	HA	85 THR	HB	4.5	89 PHE	QD	94 LEU	HA	5.2	95 VAL	QG2	96 GLN	HN	6.1
85 THR	HA	85 THR	QG2	4.6	89 PHE	QD	94 LEU	HG	7.2	95 VAL	QG2	108 THR	HA	5.6
85 THR	HA	86 VAL	HB	6.0	89 PHE	QD	94 LEU	HN	6.7	95 VAL	QG2	108 THR	HB	7.1
85 THR	HA	86 VAL	HN	2.5	89 PHE	QD	94 LEU	QD1	6.8	95 VAL	QG2	108 THR	QG2	5.7
85 THR	HA	98 GLN	HA	2.5	89 PHE	QD	94 LEU	QD1	6.8	96 GLN	HA	96 GLN	HG1	4.5
85 THR	HA	98 GLN	HG2	6.0	89 PHE	QD	94 LEU	QD2	8.8	96 GLN	HA	96 GLN	HG2	4.5
85 THR	HA	99 GLU-	HN	4.5	89 PHE	OD	95 VAL	HN	6.7	96 GLN	HA	96 GLN	OB	6.9
85 THR	HB	85 THR	QG2	3.6	89 PHE	0E	89 PHE	HA	6.7	96 GLN	HA	97 HIS+	HN	2.5
85 THR	HB	86 VAL	HN	4.5	89 PHE	OE	89 PHE	HB1	8.2	96 GLN	HE21	96 GLN	HG1	4.0
85 THR	HB	98 GLN	HA	6.0	89 PHE	ÕE	89 PHE	HZ	4.7	96 GLN	HG1	96 GLN	HG2	4.5
85 THR	HN	73 PHE	0	2.2	89 PHE	ÕE	89 PHE	OD	6.9	96 GLN	HG1	98 GLN	HG1	6.0
85 THR	HN	85 THR	на	4 5	89 PHE	0E	92 GLY	HA1	5 2	96 GLN	HG1	107 TLE	HB	4 5
85 THR	HN	86 VAL	HN	6.0	89 PHE	0E	92 GLY	HA2	7 2	96 GLN	HG1	107 TLE	0G1	4 0
85 THR	062	86 VAL	HN	4 6	89 PHE	0E	94 LEII	НА	6 7	96 GLN	HG2	97 HTS+	HN	4 5
85 THR	062	96 GLN	HE 21	4 6	89 PHE	0F	94 T.ETI	HB1	6 7	96 GUN	HG2	98 GLN	HG1	6.0
85 THR	062	98 GLN	HA	5 1	89 PHE	OE	94 LEU	HN	6.7	96 GLN	HN	96 GLN	HA	3 0
86 VAL	N	97 HTS+	0	3.2	89 PHE	0F	94 LEU	001	83	96 GLN	HN	96 GLN	OB	4 4
86 VAL	117	96 WAT	UD	3.5	00 THE	<u>пу</u>	90 TLD	UD QD1	2.5	96 CIN	LIN	107 TTE	UD UD	4.5
86 VAL	цу ПУ	86 VAL	000	1.9	00 TIIK	117	90 THK	002	5.1	96 CIN	LIN	107 TIE	UN	4.5
OC VAL	IIA	00 VAL	ΩQG	4.0	90 IHK	IIA	90 IRK	QGZ UNI	2.1	96 GLN		DE CIN	IIC2	4.3
OC VAL	HA	87 CIS	HN	2.5	90 THR	HA	91 ASP-	HIN	2.3	96 GLN	QB	96 GLIN	HGZ	5.4
OC VAL	HB	00 VAL	QQG	4.0	90 THR	HA	92 GLI	HIN OCC2	3.0	96 GLN	QB	97 HIS+	HN	0.5
00 VAL	HB	87 CIS	HN	4.5	90 THR	нв	90 THR	QG2	3.0	96 GLN	QВ	107 115	нв	5.4
86 VAL	HB	97 HIS+	HB2	4.5	90 THR	HB	91 ASP-	HN	6.0	96 GLN	QВ	10/ ILE	HN	5.4
86 VAL	HN	86 VAL	HA	3.5	90 THR	HN	90 THR	HA	3.0	97 HIS+	IN	86 VAL	0	3.2
86 VAL	HN	86 VAL	HB	3.5	90 THR	HN	90 THR	HB	3.5	97 HIS+	HA	97 HIS+	HB1	3.5
86 VAL	HN	86 VAL	QQG	5.3	90 THR	HN	90 THR	QG2	3.6	97 HIS+	HA	97 HIS+	HB2	4.5
86 VAL	HN	87 CYS	HN	6.0	90 THR	HN	91 ASP-	HN	6.0	97 HIS+	HA	98 GLN	HN	2.5
86 VAL	HN	97 HIS+	HB1	6.0	90 THR	HN	93 ALA	HN	3.5	97 HIS+	HA	106 THR	HA	3.5
86 VAL	HN	97 HIS+	HB2	6.0	90 THR	HN	93 ALA	HN	3.5	97 HIS+	HA	106 THR	HB	4.5
86 VAL	HN	97 HIS+	HN	4.0	90 THR	HN	95 VAL	HN	4.5	97 HIS+	HA	106 THR	QG2	4.6
86 VAL	HN	97 HIS+	0	2.2	90 THR	HN	95 VAL	HN	5.0	97 HIS+	HA	107 ILE	HN	4.5
86 VAL	HN	98 GLN	HA	6.0	90 THR	QG2	91 ASP-	HN	5.6	97 HIS+	HB1	98 GLN	HN	4.5
86 VAL	QQG	87 CYS	HA	6.8	90 THR	QG2	93 ALA	HN	6.1	97 HIS+	HB1	106 THR	QG2	5.6
86 VAL	QQG	87 CYS	HN	5.3	90 THR	QG2	95 VAL	HN	5.6	97 HIS+	HB2	97 HIS+	HB1	2.5
86 VAL	QQG	88 ASN	HD21	5.8	90 THR	QG2	95 VAL	QG2	5.2	97 HIS+	HB2	98 GLN	HN	4.5
86 VAL	QQG	88 ASN	HD22	5.3	91 ASP-	HA	91 ASP-	HB1	3.5	97 HIS+	HD2	97 HIS+	HA	3.5
86 VAL	QQG	97 HIS+	HB2	6.8	91 ASP-	HA	91 ASP-	HB2	4.0	97 HIS+	HD2	97 HIS+	HB1	4.5
87 CYS	HA	87 CYS	HB1	4.5	91 ASP-	HA	92 GLY	HA1	5.0	97 HIS+	HD2	97 HIS+	HB2	4.0
87 CYS	HA	87 CYS	HB2	3.5	91 ASP-	HA	92 GLY	HN	4.5	97 HTS+	HD2	98 GLN	HN	4.5
87 CYS	HA	87 CYS	HG	4.5	91 ASP-	HA	93 ALA	HN	6.0	97 HTS+	HD2	106 THR	HA	4.5
87 CYS	НА	88 ASN	HN	2 5	91 ASP-	HB1	91 ASP-	HB2	2 5	97 HIS+	HD2	106 THR	062	3 6
87 CVS	нъ	94 T.FII	001	6 1	91 ASP-	HB1	92 GLV	HN	6.0	97 HTS+	HE1	97 HTS+	4D2	6.0
87 CVS	1171 1171	96 CIN	U7	3 5	01 ACD_	1101	92 CIV	UM	5.0	07 UTCL	1101	99 CTU-	uc1	3 5
07 CIS	IIA	96 GLN	OD	5.5	91 ASP-	IIM	92 GLI 01 30D	117	2.0	97 HIST 07 HICL	UE1	104 CTU	IID1	3.3
87 CIS	HA	96 GLN	QB UN	5.4	91 ASP-	HIN	91 ASP-	HA UD 1	2.5	97 HIS+	HEI UP1	104 GLU-	HBI	4.0
87 CIS	HA UD1	97 HIS+	HIN	4.5	91 ASP-	HIN	91 ASP-	HBI	4.5	97 HIS+	HEI	104 GLU-	HB2	4.0
87 CYS	HBI	88 ASN	HN	4.5	91 ASP-	HN	91 ASP-	HBZ	4.5	97 HIS+	HN	86 VAL	0	2.2
87 CYS	HB2	87 CYS	HG	3.5	91 ASP-	HN	92 GLY	HN	4.5	97 HIS+	HN	97 HIS+	HA	3.5
87 CYS	HB2	88 ASN	HN	4.5	91 ASP-	HN	93 ALA	HN	5.0	97 HIS+	HN	97 HIS+	HBI	3.5
87 CYS	HB2	94 LEU	QD1	5.6	92 GLY	HA1	93 ALA	HN	4.0	97 HIS+	HN	97 HIS+	HB2	3.5
87 CYS	HG	88 ASN	HN	6.0	92 GLY	HA2	92 GLY	HA1	2.5	97 HIS+	HN	98 GLN	HN	4.5
87 CYS	HG	96 GLN	HA	3.5	92 GLY	HA2	93 ALA	HN	4.5	98 GLN	HA	98 GLN	HB1	3.5
87 CYS	HG	96 GLN	HG2	3.0	92 GLY	HN	92 GLY	HA1	3.0	98 GLN	HA	98 GLN	HB2	4.5
87 CYS	HN	87 CYS	HA	4.5	92 GLY	HN	92 GLY	HA2	3.5	98 GLN	HA	98 GLN	HG1	4.5
87 CYS	HN	87 CYS	HB1	4.0	92 GLY	HN	93 ALA	HN	3.0	98 GLN	HA	98 GLN	HG2	4.5
87 CYS	HN	87 CYS	HB2	4.5	93 ALA	HA	93 ALA	QB	3.6	98 GLN	HA	99 GLU-	HN	2.5
87 CYS	HN	87 CYS	HG	4.5	93 ALA	HA	94 LEU	HN	2.5	98 GLN	HB1	100 TRP	HE3	4.5
87 CYS	HN	88 ASN	HN	4.5	93 ALA	HN	93 ALA	HA	3.0	98 GLN	HB1	100 TRP	HZ3	4.5
87 CYS	N	71 GLU-	0	3.2	93 ALA	HN	93 ALA	QB	4.1	98 GLN	HB1	105 SER	HN	5.0
87 CYS	HN	71 GLU-	0	2.2	93 ALA	HN	94 LEU	HN	4.5	98 GLN	HB2	98 GLN	HB1	2.5
88 ASN	N	95 VAL	0	3.2	93 ALA	HN	94 LEU	HN	6.0	98 GLN	HB2	99 GLU-	HN	4.5
88 ASN	HA	88 ASN	HB1	3.5	93 ALA	HN	110 LYS+	HB2	6.0	98 GLN	HE21	98 GLN	HB2	5.0
88 ASN	HA	88 ASN	HB2	3.5	93 ALA	QB	94 LEU	HN	4.1	98 GLN	HE21	98 GLN	HE22	3.5
88 ASN	HA	89 PHE	HN	2.5	94 LEU	Ν	109 ARG+	0	3.2	98 GLN	HE21	98 GLN	HG2	6.0
88 ASN	HB1	89 PHE	HN	5.0	94 LEU	HA	94 LEU	QD1	3.6	98 GLN	HE22	98 GLN	HB2	6.0
88 ASN	HB1	90 THR	HB	6.0	94 LEU	HA	95 VAL	HN	2.5	98 GLN	HE22	98 GLN	HE21	3.5
88 ASN	HD21	88 ASN	HA	5.0	94 LEU	HB1	94 LEU	HG	3.5	98 GLN	HE22	98 GLN	HG2	4.5
88 ASN	HD21	88 ASN	HB1	4.5	94 LEU	HB1	94 LEU	QD2	4.1	98 GLN	HG1	98 GLN	HB1	4.5
88 ASN	HD21	88 ASN	HB2	5.0	94 LEU	HB1	95 VAL	HN	5.0	98 GLN	HG1	99 GLU-	HN	6.0
88 ASN	HD21	88 ASN	HD22	2.5	94 LEU	HB2	94 LEU	HB1	2.5	98 GLN	HG1	107 ILE	QG1	6.9
88 ASN	HD22	88 ASN	HA	6.0	94 LEU	HB2	94 LEU	HG	3.5	98 GLN	HG2	98 GLN	HB2	6.0
88 ASN	HD22	88 ASN	HB1	4.5	94 LEU	HB2	94 LEU	QD2	5.6	98 GLN	HN	98 GLN	HA	3.5
88 ASN	HD22	88 ASN	HB2	5.0	94 LEU	HG	94 LEU	QD1	4.1	98 GLN	HN	98 GLN	HB1	4.5
88 ASN	HN	88 ASN	HA	3.5	94 LEU	HG	94 LEU	QD2	4.1	98 GLN	HN	98 GLN	HB2	4.5
88 ASN	HN	88 ASN	HB1	4.5	94 LEU	HN	94 LEU	HA	3.5	98 GLN	HN	98 GLN	HG1	3.5
88 ASN	HN	88 ASN	HD21	6.0	94 LEU	HN	94 LEU	HB1	3.5	98 GLN	HN	98 GLN	HG2	4.5
88 ASN	HN	88 ASN	HD22	6.0	94 LEU	HN	94 LEU	QD1	7.1	98 GLN	HN	99 GLU-	HN	5.0
88 ASN	HN	89 PHE	HN	4.5	94 LEU	HN	95 VAL	HN -	4.5	98 GLN	HN	100 TRP	HZ3	6.0
88 ASN	HN	94 LEU	OD1	5.1	94 T.EU	HN	95 VAT.	HN	6.0	98 GT.N	HN	105 SFR	HN	4.5
88 ASN	HN	95 VAT.	HN	3.5	94 T.E.II	HN	109 ARC+	HB2	4.5	98 CLN	HN	106 THR	HA	3 5
88 ASN	HN	95 VAT.	HN	4.5	94 T.E.II	HN	109 ARG+	HN	6.0	98 GLN	HN	106 THR	0G2	5.6
88 ASN	HN	95 VAT.	0	2.2	94 T.E.II	HN	109 ARG+	0	2.2	99 GLU	N	84 GT.N	0	3.0
88 ASN	HN	95 VAT.	062	7 1	9.4 T.RTI	HN	110 T.VS+	НА	4 5	99 CT.II-	НА	99 GT.II-	HR1	3.5
89 PHF	НА	89 PHF	HR1	3 5	9.4 T.RTI	001	94 T.FTT	002	4 7	99 CT.II-	HA	99 GT.II-	HR2	4 0
80 DHL 02 1115	HZ UU	80 DDL	HBJ TOT	35	0.4 TEU	001	95 WAT	AN Ang	4 6	99 GLU-	HZ	90 CTTT_	HC1	3.5
80 DUF	нъ	00 mup	HM	2.5	97 LEU 9/1 TTT	000 201	109 VAL	1102	5.6	99 GLU-	нъ	100 - 010-	TOT	2.3
90 FIL	1114	04 TPT	1110	2.J	04 LEU	0P2	100 ARG+	1102	7 1	00 CTT	1114	10/ CTT	T1 2/	2.3
07 FHE	пА un	24 LEU 04 TETT	nA OD1	2.J	94 LEU 05 1771	V M	103 AKG+	UDI	/ • ± 3 · 2	33 GTA-	пА up1	100 mpp	LIM	3.0
07 FHE	пА un	24 LEU 95 1777	ΩNT ΩDT	3 5	JJ VAL	11.27 TA	OF ASN	U LID	J.Z	33 GTA-	nbl ogu	TOO IKL	LTD 1	0.0
09 PHE	HA UD1	95 VAL	HIN	3.5	93 VAL	HA	95 VAL	пВ 0C1	4.0	33 GTA-	HB2	39 GLU-	ны	2.5
da bHE	HBI	90 THR	HN	5.0	95 VAL	HA	95 VAL	QGI	4.1	33 GTO-	HB2	LUU TRP	HN	4.5
09 PHE	нвт	94 LEU	Ωυτ	J.0	95 VAL	HА	90 VAL	QG2	4.⊥	AA GTA-	нGТ	22 GTA-	нвг	న.5

99 GLU-	HG2	99 GLU-	HB1	3.5	103 LYS+	HN	103 LYS+	HA	3.0	108 THR	HB	119 GLU-	HN	4.5
99 GLU-	HN	84 GLN	0	2.2	103 LYS+	HN	103 LYS+	HD1	6.0	108 THR	HN	108 THR	HA	3.5
99 GLU-	HN	99 GLU-	HA	4.5	103 LYS+	HN	103 LYS+	HD2	5.0	108 THR	HN	108 THR	HB	3.5
99 GLU-	HN	99 GLU-	HB1	4.5	103 LYS+	HN	103 LYS+	HE1	6.0	108 THR	HN	108 THR	QG2	5.6
99 GLU-	HN	99 GLU-	HG1	4.5	103 LYS+	HN	103 LYS+	HE2	6.0	108 THR	HN	109 ARG+	HN	6.0
99 GLU-	HN	100 TRP	HN	6.0	103 LYS+	HN	103 LYS+	HG1	4.5	108 THR	HN	119 GLU-	HB1	6.0
99 GLU-	QG	104 GLU-	HA	5.9	103 LYS+	HN	103 LYS+	HG2	3.0	108 THR	HN	119 GLU-	HN	4.5
100 TRP	HA	100 TRP	HB1	3.5	103 LYS+	HN	103 LYS+	QB	3.9	108 THR	HN	119 GLU-	0	2.2
100 TRP	HA	100 TRP	HB2	3.5	103 LYS+	HN	104 GLU-	HN	5.0	108 THR	HN	120 CYSS	HA	3.5
100 TRP	HA	101 ASP-	HN	2.5	103 LYS+	QB	104 GLU-	HN	4.4	108 THR	HN	121 VAL	HN	6.0
100 TRP	HA	102 GLY	HN	4.5	103 LYS+	QB	122 MET	QE	4.5	108 THR	QG2	109 ARG+	HN	4.6
100 TRP	HB1	100 TRP	HB2	3.5	104 GLU-	HA	104 GLU-	HB1	3.5	108 THR	QG2	110 LYS+	HB1	7.1
100 TRP	HB1	101 ASP-	HN	4.5	104 GLU-	HA	104 GLU-	HB2	3.0	108 THR	QG2	119 GLU-	HB1	5.6
100 TRP	HB2	101 ASP-	HN	4.5	104 GLU-	HA	104 GLU-	HG1	4.5	108 THR	OG2	119 GLU-	HN	5.6
100 TRP	HD1	100 TRP	HA	4.5	104 GLU-	HA	104 GLU-	HG2	4.5	109 ARG+	N	94 LEU	0	3.2
100 TRP	HD1	100 TRP	HB1	4 0	104 GLU-	НΣ	105 SER	HN	2 5	109 ARC+	НЪ	109 ARC+	HB1	4 5
100 TRP	HD1	100 TRP	HB2	4 0	104 GLU-	HB1	105 SER	HN	4 5	109 ARC+	нъ	109 ARC+	HB2	4 5
100 1101	up1	101 AGP_	UN	1.0	104 CLU	11D1 11D2	104 CTU-	1110	2.5	100 APC+	цл	100 APC+	up1	 6 0
100 TRP	HD1	103 LVS+	OB	6.9	104 GLU-	HB2	105 SER	HN	4 5	109 ARC+	нъ	109 ARC+	HG2	4 5
100 1101	1101	100 100	UD1	6.0	104 CLU	uc1	104 CTU-	1110	3.5	100 APC+	цл	110 TVC+	UN	2.5
100 TRF	11151	100 TRF	1101	6.0	104 GLU	uc1	105 GED	11D1	5.0	109 ARG1	110	110 JIST	000	6.0
100 IRF	111111	100 IRF	1102	0.0	104 GLU	1101	105 SER	117	5.0	100 ARGI	117	110 1131	0.01	0.J
100 TRP	HEI UE1	100 TRP	HDI	2.5	104 GLU-	HG1	105 SER	HIN	5.0	109 ARG+	HA	110 LEU 117 VAT	UD I	5.0
100 IRP	UD1	100 IRP	117.0	0.0	104 GLU-	IIN	103 SER	LT N	3.0	109 ARG+	IIA	110 UNI	пь	0.0
100 TRP	HEI UP1	100 TRP	HZZ OD	3.0	104 GLU-	HIN	104 GLU-	HA UD1	3.3	109 ARG+	HA	110 VAL	HA OC1	3.5
100 TRP	HEI	103 LYS+	0E	6.9	104 GLU-	HN	104 GLU-	HBI	5.0	109 ARG+	HA	118 VAL	QGI	5.6
100 TRP	HEI	122 MET 100 mpp	QE	6.1	104 GLU-	HN	104 GLU-	HGI	3.5	109 ARG+	HA	118 VAL	QGZ	5.6
100 TRP	HE3	100 TRP	HA	4.5	104 GLU-	HN	104 GLU-	HG2	4.5	109 ARG+	HBI	IIO LYS+	HN	4.5
100 TRP	HE3	100 TRP	HBI	4.5	104 GLU-	HN	105 SER	HN	4.5	109 ARG+	HBI	II6 LEU	QDI	5.6
100 TRP	HE3	100 TRP	HB2	4.5	104 GLU-	HN	122 MET	QE	4.6	109 ARG+	HB1	118 VAL	QG1	7.1
100 TRP	HE3	100 TRP	HZ3	2.5	105 SER	N	98 GLN	0	3.2	109 ARG+	HB2	110 LYS+	HN	4.5
100 TRP	HE3	103 LYS+	HN	6.0	105 SER	HA	105 SER	HB1	3.5	109 ARG+	HB2	116 LEU	QD1	4.1
100 TRP	HE3	105 SER	HB2	6.0	105 SER	HA	105 SER	HB2	4.5	109 ARG+	HB2	116 LEU	QD2	5.6
100 TRP	HE3	105 SER	HN	5.0	105 SER	HA	106 THR	HN	2.5	109 ARG+	HB2	118 VAL	HA	6.0
100 TRP	HH2	100 TRP	HZ3	2.5	105 SER	HB1	105 SER	HB2	3.5	109 ARG+	HD1	109 ARG+	HB1	4.5
100 TRP	HH2	105 SER	HA	5.0	105 SER	HB1	106 THR	HN	6.0	109 ARG+	HD1	109 ARG+	HB2	4.0
100 TRP	HH2	105 SER	HB1	4.5	105 SER	HB1	122 MET	QE	6.1	109 ARG+	HD1	109 ARG+	HG1	4.5
100 TRP	HH2	105 SER	HB2	4.5	105 SER	HB2	106 THR	HN	6.0	109 ARG+	HD1	116 LEU	QD1	7.1
100 TRP	HH2	105 SER	HG	6.0	105 SER	HG	105 SER	HA	4.5	109 ARG+	HD2	109 ARG+	HB2	3.0
100 TRP	HH2	105 SER	HN	5.0	105 SER	HG	105 SER	HB1	4.5	109 ARG+	HD2	109 ARG+	HG1	4.5
100 TRP	HH2	122 MET	OE	4.6	105 SER	HG	105 SER	HB2	4.5	109 ARG+	HD2	116 LEU	001	7.1
100 TRP	HN	100 TRP	HA	3 5	105 SER	HG	106 THR	HN	4 0	109 ARG+	HD2	118 VAL	0G1	7 1
100 TRP	HN	100 TRP	HB1	4 5	105 SER	HG	122 MET	НА	6.0	109 ARG+	HD2	118 VAL	062	56
100 1101	LIN	100 110	1101	1.5	105 SER 105 SEP	UN	98 CIN	0	2.2	100 APC+	UF	100 NPC+	UD2	6.0
100 TRF	LIN	100 TRF	1152	3.5	105 SER	LIN	105 GER	U7	3 5	109 ARG1	UF	109 ARG1	up1	6.0
100 TRF	LIN	100 TRF	111113	5.0	105 SER	LIN	105 SER 105 SER	110	1 5	109 ARG1	UF	118 VAT	0001	7 1
100 IRF	1111	101 305	112.5	5.0	105 BER	1111	105 SER	IIDI	4.0	100 ARGI	110	110 VAL	001	/ · · 1
100 IRP	LIN	101 ASF-		0.0	105 SER	LIN	105 SER	пьг	4.0	109 ARG+	HG1	110 LEU	QD1	7 1
100 TRP	HIN	103 LIS+	QВ	6.9	105 SER	HIN	105 SER	HG	5.0	109 ARG+	HGI	110 LEU	QD2	/.1
100 TRP	HN	104 GLU-	HA	4.5	105 SER	HN	106 THR	HN	4.5	109 ARG+	HG1	118 VAL	HA 0.01	6.0
100 TRP	HN	105 SER	HN	6.0	105 SER	HN	106 THR	HN	4.5	109 ARG+	HGI	118 VAL	QGI	5.6
100 TRP	HZ2	100 TRP	HH2	2.5	106 THR	HA	106 THR	HB	4.5	109 ARG+	HGI	118 VAL	QG2	4.6
100 TRP	HZ2	100 TRP	HZ3	4.5	106 THR	HA	106 THR	QG2	4.6	109 ARG+	HG2	118 VAL	HA	6.0
100 TRP	HZ2	103 LYS+	QB	5.4	106 THR	HA	107 ILE	HB	6.0	109 ARG+	HG2	118 VAL	QG2	5.6
100 TRP	HZ2	122 MET	QE	4.1	106 THR	HA	IO/ ILE	HN	2.5	109 ARG+	HN	94 LEU	0	2.2
100 TRP	HZ3	104 GLU-	HN	6.0	106 THR	HA	107 ILE	QG1	6.9	109 ARG+	HN	109 ARG+	HB1	4.5
100 TRP	HZ3	105 SER	HA	5.0	106 THR	HB	106 THR	QG2	3.6	109 ARG+	HN	109 ARG+	HG1	6.0
100 TRP	HZ3	105 SER	HB1	4.0	106 THR	HB	107 ILE	HN	6.0	109 ARG+	HN	109 ARG+	HG2	6.0
100 TRP	HZ3	105 SER	HB2	4.0	106 THR	HB	121 VAL	QG1	7.1	109 ARG+	QH1	109 ARG+	HE	6.9
100 TRP	HZ3	105 SER	HN	3.5	106 THR	HN	106 THR	HA	4.5	109 ARG+	QH1	118 VAL	QG1	8.0
100 TRP	HZ3	122 MET	QE	7.1	106 THR	HN	106 THR	HB	4.0	109 ARG+	QH1	118 VAL	QG2	8.0
101 ASP-	HA	101 ASP-	HB1	3.0	106 THR	HN	106 THR	QG2	4.6	110 LYS+	N	117 VAL	0	3.2
101 ASP-	HA	101 ASP-	HB2	3.5	106 THR	HN	107 ILE	HN	6.0	110 LYS+	HA	111 LEU	HN	2.5
101 ASP-	HA	102 GLY	HA2	6.0	106 THR	HN	121 VAL	HB	6.0	110 LYS+	HB1	117 VAL	HB	6.0
101 ASP-	HA	102 GLY	HN	3.0	106 THR	HN	121 VAL	HN	4.5	110 LYS+	HB2	110 LYS+	HB1	2.5
101 ASP-	HB1	102 GLY	HN	6.0	106 THR	HN	121 VAL	QG1	5.6	110 LYS+	HB2	110 LYS+	QD	4.4
101 ASP-	HB1	103 LYS+	HN	6.0	106 THR	HN	121 VAL	OG2	7.1	110 LYS+	HB2	111 LEU	HN	4.5
101 ASP-	HB2	101 ASP-	HB1	2.5	106 THR	0G2	107 TLE	HN	7.1	110 LYS+	HN	110 LYS+	HA	3.5
101 ASP-	HB2	102 GLY	HN	4.5	106 THR	0G2	121 VAL	HN	7.1	110 LYS+	HN	110 LYS+	HB1	4.5
101 ASP-	HB2	103 LYS+	HG2	6.0	107 TLE	N	96 GLN	0	3 2	110 LYS+	HN	110 LYS+	HB2	4 0
101 ASP-	HN	101 ASP-	нъ	2 5	107 TLE	НΣ	107 TLE	нв	3 5	110 LVS+	HN	110 T.YS+	06	4 4
101 AGP_	LIN	101 ASP_	1001	4.0	107 115	цу ПУ	107 TIE	0.0.1	1.6	110 IIS+	UN	116 1 10	001	5 1
101 AGP_	LIN	101 ASP_	1101	1.0	107 115	цу ПУ	107 TIE	002	1 1	110 IIS+	UN	117 VAT	UD UD	1 0
101 ASP-	HN	102 GLV	HN	3.5	107 TLE	НЪ	108 THR	UN UN	2 5	110 LVS+	HN	117 VAL	HN	3.5
101 ASP-	HN	103 LVS+	HN	6.0	107 TLE	нъ	120 CVSS	HB1	4 5	110 LVS+	HN	117 VAL	0	2.2
102 GLY	НД1	102 GLV	HA2	2 5	107 TTF	на	121 VAT.	HN	4 5	110 T.YS+	HN	118 VAT.	μа	4 5
102 GLV	HZ1	103 1.794	HN	3 5	107 TLF	HR	107 TT.F	0.01	5 1	110 1.794	00	112 T.VQ+	OF	7 0
102 GTV	цд Э	103 1.761	HN	3.5	107 100	HR	107 TTE	002	3 6	110 TVC+	25	117 1777	HB AB	,.0 5 0
102 GTV	HN	102 GTV	нд 1	3.5	107 775	HR.	109 2001	<u>дог</u> нс1	6.0	110 TVC+	0F	112 T.VC+	нс1	5.5
102 CTV	TIN	102 CTV	1141	3.0	107 TTE	TTT TTT	96 CTM	0	2.0	110 TVCJ	0F	112 ILDT	HC3	U.9 6 0
102 GLI	TIN	102 501	IIM	3.0	107 105	TINT	107 TIE	UD	2.2	110 110	QE OF	112 1131	OF	5.2
103 TVC	NT N	100 mmm	0	3.0	107 105	T11/1	107 115	001	J.J 5 6	110 110+	0C	117 1777	민씨	5.3
103 1134	IN	100 IKP	0	3.2	107 ILE	LIN	107 ILE	QD1	5.0	110 LIST	QG	110 CTU		J.4
103 1001	117	103 113+	UD	4.0	107 777	TIN	107 TTT	QG1	J.4 5 C	111 1015+	07G	111 TPT	29 UD 1	0.3
103 1134	IIA	104 CTU	QD UNI	4.4	107 ILE	LIN	107 ILE	QGZ	5.0	111 150	IIA	111 150	UD 0	3.0
103 LYS+	HA	104 GLU-	HN	2.5	107 ILE 107 TLE	HN	108 THR	HN	6.0	III LEU	HA	III LEU	HBZ	3.0
103 LYS+	HA	122 MET	QE	5.6	10/ 1LE	HN	120 CYSS	HA	6.0	III LEU	HA	III LEU	HG	4.0
103 LYS+	HD1	103 LYS+	HD2	2.5	107 ILE	QD1	107 ILE	QG2	4.7	111 LEU	HA	111 LEU	QD1	4.1
103 LYS+	HD1	103 LYS+	HG1	3.5	107 ILE	QD1	108 THR	HN	7.1	111 LEU	HA	111 LEU	QD2	3.6
103 LYS+	HD1	103 LYS+	HG2	3.5	107 ILE	QD1	120 CYSS	HA	5.6	111 LEU	HA	112 LYS+	HN	2.5
103 LYS+	HD1	103 LYS+	QB	5.4	107 ILE	QD1	120 CYSS	HB1	4.6	111 LEU	HA	116 LEU	HA	3.5
103 LYS+	HD1	122 MET	QE	5.6	107 ILE	QD1	121 VAL	HN	5.6	111 LEU	HA	116 LEU	QD1	5.1
103 LYS+	HD2	103 LYS+	HG1	3.5	107 ILE	QG1	107 ILE	QD1	4.5	111 LEU	HB1	111 LEU	QD1	5.6
103 LYS+	HD2	103 LYS+	HG2	3.5	107 ILE	QG1	107 ILE	QG2	4.5	111 LEU	HB1	111 LEU	QD2	4.1
103 LYS+	HD2	103 LYS+	QB	4.4	107 ILE	QG1	120 CYSS	HA	6.9	111 LEU	HB1	112 LYS+	HN	5.0
103 LYS+	HD2	122 MET	QE	5.6	107 ILE	QG1	120 CYSS	HB1	6.9	111 LEU	HB1	116 LEU	QD1	7.1
103 LYS+	HE1	103 LYS+	HD2	3.5	107 ILE	QG2	108 THR	HA	6.1	111 LEU	HB2	111 LEU	HB1	2.5
103 LYS+	HE1	103 LYS+	HG1	3.5	107 ILE	QG2	108 THR	HN	4.6	111 LEU	HB2	111 LEU	HG	3.0
103 LYS+	HE1	103 LYS+	HG2	3.5	107 ILE	QG2	109 ARG+	HG1	5.6	111 LEU	HB2	111 LEU	QD1	4.1
103 LYS+	HE1	103 LYS+	QB	6.9	107 ILE	QG2	120 CYSS	HA	4.6	111 LEU	HB2	111 LEU	QD2	5.1
103 LYS+	HE2	103 LYS+	HD1	3.5	107 ILE	QG2	120 CYSS	HB2	5.6	111 LEU	HB2	112 LYS+	HN	5.0
103 LYS+	HE2	103 LYS+	HD2	4.5	108 THR	N	119 GLU-	0	3.2	111 LEU	HG -	111 LEU	OD1	4.1
103 LYS+	HE2	103 LYS+	HG1	4.0	108 THR	HА	108 THR	HB	4.5	111 LEU	HG	111 LEU	OD2	4.1
103 T.YS+	HE2	103 T.YS+	OB	6.9	108 THR	HA	108 THR	0G2	3.6	111 LEU	HN	111 LEU	HA HA	3 5
103 LYS+	HG1	103 T.YS+	HG2	2.5	108 THR	HA	109 ARG+	HN	2.5	111 LEU	HN	111 LEU	HR1	3.0
103 T.YS+	HC1	103 T.VS+	OP	4 4	108 748	HR	108 THR	062	3.6	111 1.811	HN	111 LEU	HR2	3.0
103 T.VCT	HC1	122 MET	신도	4 1	108 400	HB	109 IDC+	AQG HM	6.0	יזים בבי 111 דידיו	HM	111 T.FTT	001	J.J 7 1
103 T.VC+	IN	100 400	<u> </u>	2 2	108 400	HR HR	119 CTT	μв1	6.0	111 100	HM	111 1.50	000	5 6
	LIIN	T 0 0 T T/E	0	4.4	T 0 0 T 111/			1101	0.0		TTTN		UU2	J.0

111 LEU	HN	112 LYS+	HN	4.5	116 LEU	HB1	131 TYR	HB2	6.0	119 GLU-	HB2	128 THR	OG2	6.1
111 LEU	HN	116 LEU	001	7 1	116 LEU	HB1	131 TYR	HN	6 0	119 GLU-	HG1	119 GLU-	HB1	3 5
111 LEU 111 LEU	001	111 LEU	002	4 7	116 LEU	HB1	131 TTR	00	8 2	119 GLU-	HG1	119 GLU-	HB2	3.0
111 100		112 INCL	UN	1 1	116 IEU	1101	116 1 110	UD1	3 5	119 CIU-	uc1	128 100	U7	1 5
111 100		114 CTV	U 7 1	5.6	116 IEU	1102	116 IEU	uC	3.5	119 CIU-	uc1	120 IIIR 128 mup	002	1.0
111 DEU 111 TEU		115 1701	IIM	5.0	116 IEU	1102	116 IE0	0.01	5.5	110 CIU	1101	110 CTU	QG2 IID1	
111 DEU 111 TEU		116 IEU	110 1	7 1	116 IEU	1102	116 IE0	OD3	1 1	110 CIU	1162	120 010	002	1.6
111 100	QD1	110 110	IIDI	7.1	110 150	1102	117 100	202	4.1	110 GLU	1162	100 mup	QG2	
111 150	QDI	110 LEU	LIN	7.1	110 LEU 110 IEU	п Б 2 U Б 2	121 WAL	TIN	4.5	119 GLU-		110 CIU		2.2
III LEU	QD2	112 LYS+	HN	5.1	116 LEU	HBZ	131 TYR 131 TYR	HN	6.0	119 GLU-	HN	119 GLU-	HA	3.5
III LEU	QD2	115 LIS+	HN	/.1	116 LEU	HBZ	131 TYR	QD	6.2	119 GLU-	HN	119 GLU-	HBI	4.0
III LEU	QD2	II6 LEU	HA	4.6	II6 LEU	HG	II6 LEU	HBI	3.5	119 GLU-	HN	119 GLU-	HB2	4.5
111 LEU	QD2	116 LEU	HB1	4.6	116 LEU	HG	116 LEU	QD1	3.6	119 GLU-	HN	119 GLU-	HG1	4.0
111 LEU	QD2	116 LEU	HN	7.1	116 LEU	HG	116 LEU	QD2	3.6	119 GLU-	HN	119 GLU-	HG2	4.0
111 LEU	QD2	116 LEU	QD1	5.7	116 LEU	HG	117 VAL	HN	4.0	119 GLU-	QG	120 CYSS	HN	6.9
112 LYS+	HA	112 LYS+	HB1	3.5	116 LEU	HG	131 TYR	QD	6.7	120 CYSS	N	127 CYSS	0	3.2
112 LYS+	HA	112 LYS+	HB2	3.5	116 LEU	HN	116 LEU	HA	3.5	120 CYSS	CB	127 CYSS	SG	3.5
112 LYS+	HA	112 LYS+	HD2	6.0	116 LEU	HN	116 LEU	HB1	4.5	120 CYSS	HA	120 CYSS	HB1	3.5
112 LYS+	HA	112 LYS+	HG1	3.5	116 LEU	HN	116 LEU	HB2	4.5	120 CYSS	HA	120 CYSS	HB2	3.0
112 LYS+	HA	112 LYS+	HG2	3.5	116 LEU	HN	116 LEU	HG	5.0	120 CYSS	HA	121 VAL	HN	2.5
112 LYS+	HA	112 LYS+	QE	6.9	116 LEU	HN	116 LEU	QD1	6.1	120 CYSS	HB1	121 VAL	HN	4.5
112 LYS+	HA	113 ASP-	ΗN	3.0	116 LEU	HN	116 LEU	ÕD2	6.1	120 CYSS	HB2	121 VAL	HN	4.5
112 LYS+	НА	114 GLY	HN	4 5	116 LEU	HN	117 VAL	- HN	6.0	120 CYSS	HB2	127 CYSS	HN	6 0
112 LYS+	НА	115 LYS+	HN	6.0	116 LEU	HN	130 TLE	062	5.6	120 CYSS	HN	120 CYSS	НА	3 5
112 LYS+	HB1	112 LVS+	HG1	3 5	116 LEU	HN	131 TVR	4B2	4 5	120 CYSS	HN	120 CYSS	нв1	
112 II31	1101	112 1131 112 TVC+	uC2	3.5	116 IEU	LIN	131 TIK	UM	4.5	120 C133	UN	120 CI33	1101	4.5
112 LIST	UD1	112 1137	ngz un	5.5	110 LEU 110 IEU	LIN	101 IIK		4.0	120 CI33		120 CI33	IDZ	4.0
112 LIS+	HB1	113 ASP-	HN	5.0	116 LEU	HIN	131 TIR 130 GIV	0	2.2	120 CISS	HIN	127 CISS	HN	5.0
112 LYS+	HBI	II/ VAL	QG2	4.1	II6 LEU	HN	132 GLU-	HA	4.5	120 CYSS	HN	127 CYSS	0	2.2
112 LYS+	HB2	IIZ LYS+	HBI	2.5	II6 LEU	QDI	II6 LEU	HBI	4.1	120 CYSS	HN	128 THR	HA	4.5
112 LYS+	HB2	117 VAL	QG2	5.1	116 LEU	QD1	116 LEU	QD2	5.2	120 CYSS	SG	127 CYSS	CB	3.5
112 LYS+	HD2	117 VAL	HB	3.5	116 LEU	QD1	117 VAL	HN	4.6	120 CYSS	SG	127 CYSS	SG	2.5
112 LYS+	HG1	112 LYS+	HG2	2.5	116 LEU	QD1	118 VAL	QG2	6.2	121 VAL	N	106 THR	0	3.2
112 LYS+	HG1	113 ASP-	HN	6.0	116 LEU	QD2	116 LEU	HB1	4.1	121 VAL	HA	121 VAL	QG1	5.6
112 LYS+	HG2	117 VAL	QG2	5.6	116 LEU	QD2	118 VAL	QG2	6.2	121 VAL	HA	121 VAL	QG2	4.1
112 LYS+	HN	112 LYS+	HA	3.5	116 LEU	QD2	131 TYR	HA	7.1	121 VAL	HA	122 MET	HN	2.5
112 LYS+	HN	112 LYS+	HB1	3.5	116 LEU	OD2	131 TYR	HB1	5.6	121 VAL	HA	126 THR	HA	3.5
112 LYS+	HN	112 LYS+	HB2	4.5	116 LEU	ÕD2	1.31 TYR	HB2	4.6	121 VAL	HA	126 THR	HB	6.0
112 LYS+	HN	112 LYS+	HG1	6.0	116 LEU	002	131 TYR	HN	6 1	121 VAL	на	126 THR	062	4 6
112 DID:	TINT	112 110	1101	6.0	116 100	002	121 mVD	00	6 0	101 1771	117	127 CVCC	Q02	1.0
112 LIST	TIN	112 1137	IIM	0.0	116 LEU	002	121 UVD	QD	0.0	121 VAL	IIA IIA	127 CI33	TIN	4.0
112 1137	rin .	115 ASF-	nin .	4.5	110 LEU	QDZ	131 IIK	QE Q	7.0	121 VAL	nA UD	127 0133	пN 0.01	0.0
112 LYS+	HN	114 GLY	HN	6.0	II/ VAL	N	IIO LYS+	0	3.2	121 VAL	HB	121 VAL	QGI	3.6
112 LYS+	HN	115 LYS+	HN	3.5	117 VAL	HA	117 VAL	HB	4.5	121 VAL	HB	121 VAL	QG2	3.6
112 LYS+	HN	116 LEU	HA	4.0	117 VAL	HA	117 VAL	QG2	3.6	121 VAL	HB	122 MET	HN	4.5
112 LYS+	HN	117 VAL	QG2	5.1	117 VAL	HA	118 VAL	HN	2.5	121 VAL	HB	126 THR	HA	4.5
112 LYS+	QE	112 LYS+	HB1	5.4	117 VAL	HA	130 ILE	HA	6.0	121 VAL	HB	126 THR	QG2	3.6
112 LYS+	QE	112 LYS+	HD1	3.4	117 VAL	HA	130 ILE	QG2	5.1	121 VAL	HB	127 CYSS	HN	5.0
112 LYS+	QE	112 LYS+	HD2	3.4	117 VAL	HB	117 VAL	QG2	3.6	121 VAL	HN	106 THR	0	2.2
112 LYS+	0E	112 LYS+	HG2	4.4	117 VAL	HB	118 VAL	HN	4.5	121 VAL	HN	121 VAL	HA	3.0
112 LYS+	0E	117 VAL	OG2	5.5	117 VAL	HN	110 LYS+	0	2.2	121 VAL	HN	121 VAL	HB	3.5
113 ASP-	HA	113 ASP-	HB1	4 0	117 VAL	HN	117 VAL	на	4 5	121 VAL	HN	121 VAL	0G1	4 6
113 ASP-	НЪ	113 ASP-	HB2	3 5	117 VAL	HN	117 VAL	HB	3.0	121 VAL	HN	121 VAL	062	6 1
113 AGD_	U7	114 CTV	UM	3.5	117 VAL	LIN	117 VAL	0001	5.6	121 VAL	UN	122 MET	UN	1 5
112 ADD	117	115 1701	TIN	1.5	117 VAL	TIN	117 VAL	QG1	1 1	101 VAL	0.001	122 MET	TIN	7.0
113 ASF-	IR UD1	112 105	UD 0	4.5	117 VAL	LIN	110 VAL	QGZ	4.1	121 VAL	QGI	122 MEI 122 MET	TIN	5.0
IIS ASP-	HBI	IIS ASP-	HBZ	2.3	II/ VAL	HN	110 VAL	HIN	6.0	IZI VAL	QG2	IZZ MET	HN	5.1
113 ASP-	HBI	114 GLY	HN	5.0	II/ VAL	QGI	118 VAL	HN	5.1	121 VAL	QG2	124 ASN	HA	6.1
113 ASP-	HB2	114 GLY	HN	5.5	117 VAL	QG1	128 THR	QG2	5.7	121 VAL	QG2	124 ASN	HN	5.1
113 ASP-	HN	113 ASP-	HA	3.0	117 VAL	QG1	130 ILE	HA	5.6	121 VAL	QG2	125 VAL	HN	5.1
113 ASP-	HN	113 ASP-	HB1	4.0	117 VAL	QG2	117 VAL	QG1	4.7	121 VAL	QG2	126 THR	HA	5.6
113 ASP-	HN	113 ASP-	HB2	4.5	117 VAL	QG2	118 VAL	HN	6.1	121 VAL	QG2	126 THR	HB	6.1
113 ASP-	HN	114 GLY	HN	6.0	117 VAL	QG2	130 ILE	QD1	4.7	121 VAL	QG2	126 THR	HN	7.1
114 GLY	HA1	114 GLY	HA2	2.5	118 VAL	N	129 ARG+	0	3.2	121 VAL	QG2	126 THR	QG2	4.7
114 GLY	HA1	115 LYS+	HN	4.0	118 VAL	HA	118 VAL	HB	4.5	122 MET	HA	122 MET	HB1	3.5
114 GLY	HA2	115 LYS+	HN	4.0	118 VAL	HA	119 GLU-	HN	2.5	122 MET	HA	122 MET	HG1	4.5
114 GLY	HN	114 GLY	HA1	3 0	118 VAL	HB	118 VAL	0G1	3.6	122 MET	НА	123 ASN	HN	3 5
114 GLY	HN	114 GLY	HA2	3.0	118 VAL	HB	118 VAL	0G2	3.6	122 MET	HB1	123 ASN	HN	5 0
114 CIV	UN	115 TVCL	UN	3.0	110 VIIL	UD	120 NPC+	UC1	6.0	122 MET	uc1	122 MET	UD1	3 5
115 TVCI	1110	115 LISI	1110	2.0	110 VAL	IID	120 ARGI	1101	5.0	122 MET	1101	122 MET	OF	1 1
115 LIST	IA	115 LIST	UD 2	3.5	110 VAL	пр	129 ARG+	ngz	5.0	122 MEI 122 MEE	HG1	122 MEI 122 BON	UD 01	4.1
115 115+	пA	115 115+	пь ₂	3.5	110 VAL	пь	129 ARG+		5.5	122 MEI 100 MET	ngi ugi	123 ASN	HDZI	4.0
115 LYS+	HA	115 LYS+	HDI	4.5	118 VAL	HB	IJI TYR	QE	6./	IZZ MET	HGI	123 ASN	HDZZ	4.0
II5 LYS+	HA	115 LYS+	QG	4.4	118 VAL	HN	118 VAL	HA	4.5	122 MET	HGI	123 ASN	HN	4.5
115 LYS+	HA	116 LEU	HN	2.5	118 VAL	HN	118 VAL	HB	3.5	122 MET	HG2	122 MET	HB1	3.5
115 LYS+	HA	132 GLU-	HA	4.0	118 VAL	HN	118 VAL	QG1	6.1	122 MET	HG2	122 MET	HG1	2.5
115 LYS+	HB1	115 LYS+	QG	3.4	118 VAL	HN	118 VAL	QG2	4.6	122 MET	HG2	122 MET	QE	4.1
115 LYS+	HB1	116 LEU	HN	4.5	118 VAL	HN	119 GLU-	HN	6.0	122 MET	HG2	123 ASN	HD21	5.0
115 LYS+	HB1	130 ILE	QG2	5.1	118 VAL	HN	128 THR	QG2	6.1	122 MET	HG2	123 ASN	HD22	5.0
115 LYS+	HB2	115 LYS+	HB1	2.5	118 VAL	HN	129 ARG+	HN	3.5	122 MET	HG2	123 ASN	HN	4.5
115 LYS+	HB2	115 LYS+	HD1	4.5	118 VAL	HN	129 ARG+	HN	4.5	122 MET	HN	122 MET	HA	4.5
115 LYS+	HB2	115 LYS+	HD2	4.5	118 VAL	HN	129 ARG+	0	2.2	122 MET	HN	122 MET	HB1	4.5
115 LYS+	HB2	116 LEU	HN	4.5	118 VAL	HN	130 ILE	HA	4.5	122 MET	HN	123 ASN	HN	6.0
115 LYS+	HB2	117 VAL	QG2	7.1	118 VAL	HN	130 ILE	QD1	5.6	122 MET	HN	125 VAL	HB	4.5
115 LYS+	HB2	130 ILE	QG2	4.1	118 VAL	HN	131 TYR	HN	5.0	122 MET	HN	125 VAL	HN	4.0
115 LYS+	HD1	115 LYS+	ŌG	3.4	118 VAL	HN	131 TYR	QD	8.2	122 MET	HN	125 VAL	QG1	6.6
115 LYS+	HD1	132 GT.U-	ов	5.4	118 VAT.	HN	131 TYR	0E	7.2	122 MET	HN	125 VAT.	QG2	7.1
115 T.YS+	HD2	116 LEU	HN	4 5	118 VAL	0G1	119 CLU-	HN HN	5.6	122 MET	HN	126 THR	<u>к</u>	4 5
115 T.VC+	HU3	130 110	0022	5.6	118 1771	061	129 2001	HC2	5.6	122 MET	HN	126 THD	062	 5 4
115 DIST	1102	100 ILL	QG2	5.0	110 VAL	001	120 ARGI	1192	7 1	122 MBI	0.0	120 1110	QG2	J.C
115 TVC:	HUZ	115 JUC	ΩR	3.4 7 E	110 VAL	QG1	121 MKG+	nin OD	/ • ±	122 MET	QE OF	102 PUST	ID01	0.1
IT2 TA2+	HIN	IIS LYS+	HA	3.5	110 VAL	QGI	131 TYR	QE QE	1.8	122 MET	QE	123 ASN	HD21	5.6
115 LYS+	HN	115 LYS+	HB1	3.5	118 VAL	QG2	118 VAL	QG1	4.7	122 MET	QE	123 ASN	HD22	5.6
115 LYS+	HN	115 LYS+	HB2	4.0	118 VAL	QG2	119 GLU-	HN	6.1	123 ASN	HA	123 ASN	HB1	3.5
115 LYS+	HN	115 LYS+	HD1	6.0	118 VAL	QG2	129 ARG+	HE	7.1	123 ASN	HA	123 ASN	HB2	3.0
115 LYS+	HN	115 LYS+	QG	5.4	118 VAL	QG2	129 ARG+	HG2	7.1	123 ASN	HA	124 ASN	HN	3.5
115 LYS+	HN	116 LEU	HN	5.0	118 VAL	QG2	129 ARG+	HN	7.1	123 ASN	HA	125 VAL	HN	6.0
115 LYS+	QE	115 LYS+	HD2	4.4	118 VAL	QG2	131 TYR	QD	6.3	123 ASN	HB1	123 ASN	HB2	2.5
115 LYS+	QE	115 LYS+	QG	5.3	118 VAL	QG2	131 TYR	QE	5.8	123 ASN	HB1	124 ASN	HN	5.0
115 T.YS+	ŐE	132 GLU-	на	5.4	119 GT.TT-	N	108 THR	0	3.2	123 ASN	HB2	124 ASN	HN	5.0
115 T.YS+	ŐE	132 GLU-	0B	7 8	119 CT.IT-	ΗA	119 GT.II-	HR?	3 5	123 AGN	HD21	123 ASM	HA	5.0
115 T.VS+	00	116 1.511	HN Z	6 4	119 CT.II-	НΔ	119 CT.II-	HG1	3 5	123 AGN	HD21	123 AGN	HR1	
115 T.VC+	00	130 110	0022	5.4	110 CTTL	нъ НЪ	119 CTT-	HC3	3.5	123 ACM	HD21	123 ACM	HR2	c
116 TETT	N.	131 mvn	0	3.5	110 CTT	17	120 0000	119Z	2.5	123 701	1021 1001	123 701	1000 7011	
116 TET	T1 27	116 T TTK	101	J.∠ ∧ ⊑	110 010	1174	127 0000	111N	2.J	122 ADN	11D27	123 AON	11DZZ UD1	Z.C
TTO TRA	HA	110 LEU	HRI	4.5	110 GLU-	HA	120 TWD	HN	0.0	123 ASN	HDZZ	123 ASN	HBI	4.5
110 LEU	HA	116 LEU	HG	3.5	II9 GLU-	HA	⊥∠d THR	HA	3.5	123 ASN	нр75	123 ASN	нв2	4.5
II6 LEU	HА	116 LEU	QD1	3.6	119 GLU-	HA	128 THR	QG2	5.6	123 ASN	HN	123 ASN	HA	3.0
116 LEU	HA	116 LEU	QD2	6.1	119 GLU-	HA	129 ARG+	HN	4.5	123 ASN	HN	123 ASN	HB1	4.5
116 LEU	HA	117 VAL	HN	2.5	119 GLU-	HB1	120 CYSS	HN	4.5	123 ASN	HN	123 ASN	HB2	4.5
116 LEU	HB1	117 VAL	HN	4.5	119 GLU-	HB2	119 GLU-	HB1	2.5	123 ASN	HN	124 ASN	HN	4.5
116 LEU	HB1	131 TYR	HB1	6.0	119 GLU-	HB2	120 CYSS	HN	4.5	124 ASN	HA	124 ASN	HB1	4.0

124 A	SN	HA	124	ASN	HB2	3.5	130 ILE	HN	130 ILE	HG11	4.5	Lower	li	mit l:	ist	
124 A 124 A	ISN	ha HB1	125	VAL VAL	DG2	4.0 6.1	130 ILE 130 ILE	HN HN	130 ILE 130 ILE	OD1	4.5 5.1					
124 A	SN	HB2	124	ASN	HB1	2.5	130 ILE	HN	130 ILE	QG2	5.6					
124 A	SN	HD21	124	ASN	HA	6.0	130 ILE	HN	131 TYR	HN	6.0	100 0000		107 0000		
124 A	SN	HD21 HD21	124	ASN	HB1 HB2	4.0	130 ILE 130 TLE	QD1 QC2	131 TYR 131 TYR	HN HN	5.6 4 1	120 CYSS 120 CYSS	CB	127 CYSS 127 CYSS	CB	2.9
124 A	SN	HD21	124	ASN	HD22	2.5	131 TYR	N	116 LEU	0	3.2	120 CYSS	SG	127 CYSS	SG	1.9
124 A	SN	HD22	124	ASN	HB1	4.5	131 TYR	HA	131 TYR	HB1	4.5					
124 A	SN	HD22 HD22	124	ASN	HB2 HD21	5.0	131 TYR 131 TYR	НА НА	131 TYR 132 CLU-	HB2 HN	5.0					
124 A	SN	HN	124	ASN	HA	3.5	131 TYR	HB1	132 GLU-	HN	5.0					
124 A	SN	HN	124	ASN	HB1	4.5	131 TYR	HB2	132 GLU-	HN	4.5					
124 A	SN	HN HN	124	ASN	HB2 HD21	4.5	131 TYR 131 TYR	HN HN	116 LEU 131 TVR	О	2.2					
124 A	SN	HN	124	ASN	HD21 HD22	6.0	131 TYR	HN	131 TYR	HB1	4.5					
124 A	SN	HN	125	VAL	HN	3.5	131 TYR	HN	131 TYR	HB2	6.0					
125 V	AL	HA	125	VAL	HB OC1	3.5	131 TYR 121 WVD	HN	131 TYR	QD	5.7					
125 V 125 V	AL	HA	125	VAL	QG1 QG2	3.6	131 TYR	QD	131 TYR	HA	5.7					
125 V	AL	HA	126	THR	HN	2.5	131 TYR	QD	131 TYR	HB1	5.7					
125 V	AL	HB	125	VAL	QG1	3.6	131 TYR 131 TYR	QD	131 TYR 131 TYR	HB2	4.7					
125 V 125 V	AL	HB	120	THR	4N	4.5	131 TYR	QD QD	132 GLU-	HN	6.7					
125 V	AL	HN	125	VAL	HA	3.5	131 TYR	QE	131 TYR	HB1	8.2					
125 V	AL	HN	125	VAL	HB OC1	2.5	131 TYR 132 CLU	QE	131 TYR	HB2	8.2					
125 V 125 V	AL	HN	125	VAL	QG1 QG2	4.1	132 GLU- 132 GLU-	HA	132 GLU-	HG1	4.5					
125 V	AL	HN	126	THR	HN	4.5	132 GLU-	HA	132 GLU-	HG2	4.5					
125 V	AL	HN OC1	126	THR	HN	4.5	132 GLU-	HA	132 GLU-	QB	3.4					
125 V	AL	OG2	126	THR	HN	4.0 6.1	132 GLU- 132 GLU-	HG1	132 GLU-	OB	3.9					
126 T	HR	HA	126	THR	HB	2.5	132 GLU-	HG2	132 GLU-	ĤG1	2.5					
126 T	HR	HA	126	THR	QG2	3.6	132 GLU-	HG2	132 GLU-	QB	3.4					
126 I 126 T	HR	HA	127	CYSS	HN	2.5	132 GLU- 132 GLU-	HG2 HN	12 ARG+	O	2.2					
126 T	HR	HB	126	THR	QG2	3.6	132 GLU-	HN	132 GLU-	HA	3.0					
126 T	'HR 'HR	HB HN	127	CYSS THR	HN HA	3.5	132 GLU- 132 GLU-	HN HN	132 GLU- 132 GLU-	HG1 HG2	3.5					
126 T	HR	HN	126	THR	НВ	4.0	132 GLU-	HN	132 GLU-	QB	4.4					
126 T	HR	HN	126	THR	QG2	4.1	132 GLU-	QB	133 LYS+	HN	4.4					
126 T	'HR 'HR	HN HN	127	CYSS	HN HN	6.0 6.0	133 LYS+ 133 LYS+	НА НА	133 LYS+ 133 LYS+	HB1 HB2	3.0					
126 T	'HR	QG2	127	CYSS	HN	5.6	133 LYS+	HA	133 LYS+	HD1	6.0					
126 T	HR	QG2	127	CYSS	HN	5.6	133 LYS+	HA	133 LYS+	HG1	4.0					
127 C	YSS	НА НА	127	CYSS	HB1 HB2	3.5	133 LYS+ 133 LYS+	НА НА	133 LYS+ 134 VAL	HG2 HN	4.0 2.5					
127 C	YSS	HA	128	THR	HN	2.5	133 LYS+	HA	134 VAL	QG2	5.1					
127 C	YSS	HB1	127	CYSS	HB2	3.5	133 LYS+	HB1	133 LYS+	HG1	3.5					
127 C	YSS	HB1 HB2	128	THR	HN HN	4.5	133 LYS+ 133 LYS+	HB1 HB2	133 LYS+	HGZ HB1	2.5					
127 C	YSS	HN	127	CYSS	HB1	6.0	133 LYS+	HB2	133 LYS+	HD1	4.5					
127 C	YSS	HN	127	CYSS	HB2	4.5	133 LYS+	HB2	133 LYS+	HD2	3.5					
127 C	YSS HR	HN HA	128	THR	HN HB	6.0 4.5	133 LYS+ 133 LYS+	HB2 HB2	133 LYS+ 133 LYS+	HG1 HG2	3.5					
128 T	HR	HA	128	THR	QG2	3.6	133 LYS+	HB2	134 VAL	HN	4.5					
128 T	'HR	HA	129	ARG+	HN	2.5	133 LYS+	HD1	133 LYS+	HG2	3.5					
128 T	'HR 'HR	HB HB	120	ARG+	QG2 HN	3.6 4.5	133 LYS+ 133 LYS+	HD1 HD2	134 VAL 133 LYS+	HIN HG2	6.0 3.5					
128 T	'HR	HB	130	ILE	QD1	5.6	133 LYS+	HD2	134 VAL	HN	6.0					
128 T	'HR	HN	128	THR	HA	3.0	133 LYS+	HD2	135 GLU-	QG UD1	5.4					
128 T	'HR	HN	128	THR	QG2	5.6	133 LYS+	HE1	133 LYS+	HD1 HD2	3.5					
128 T	HR	HN	129	ARG+	HN	4.5	133 LYS+	HE1	133 LYS+	HG2	4.5					
128 T	'HR 'HR	HN OG2	129	ARG+	HN HN	4.5	133 LYS+ 133 LYS+	HE2 HE2	133 LYS+ 133 LYS+	HD1 HD2	4.5					
120 I 128 T	HR	QG2	130	ILE	HG11	7.1	133 LYS+	HE2	133 LYS+	HG1	4.0					
128 T	HR	QG2	130	ILE	QD1	4.7	133 LYS+	HE2	133 LYS+	HG2	4.5					
129 A	RG+	N HA	118	VAL ARC+	О НВ1	3.2	133 LYS+ 133 LYS+	HG1 HG1	133 LYS+ 134 VAL	HG2 HN	2.5					
129 A	RG+	HA	129	ARG+	HB2	3.5	133 LYS+	HG1	135 GLU-	QG	3.4					
129 A	RG+	HA	129	ARG+	HD2	5.0	133 LYS+	HG2	134 VAL	HN	4.5					
129 A	RG+	НА НА	130	TYR	HN OE	2.5	133 LYS+ 133 LYS+	HG2 HN	135 GLU- 133 LYS+	QG НА	6.9 3 5					
129 A	RG+	нв1	129	ARG+	HB2	2.5	133 LYS+	HN	133 LYS+	нв1	3.5					
129 A	RG+	HB1	130	ILE	HN	6.0	133 LYS+	HN	133 LYS+	HB2	3.5					
129 A 129 A	RG+ RG+	HB2 HD2	129	ILE ARG+	HN HB2	4.5	133 LYS+ 133 LYS+	HN HN	133 LYS+ 133 LYS+	HG1 HG2	5.0					
129 A	RG+	HE	129	ARG+	HB1	3.5	133 LYS+	HN	134 VAL	HN	5.0					
129 A	RG+	HE	129	ARG+	HB2	4.5	134 VAL	HA	134 VAL	HB	3.5					
129 A 129 A	RG+	HG2	129	ARG+ ARG+	HB1	3.5	134 VAL 134 VAL	HA	134 VAL 134 VAL	QG1 QG2	4.1					
129 A	RG+	HG2	129	ARG+	HB2	3.5	134 VAL	HA	135 GLU-	HN	2.5					
129 A	RG+	HN	118	VAL	0	2.2	134 VAL	HB	134 VAL	QG1	3.6					
129 A 129 A	ARG+ ARG+	HN	129	ARG+ ARG+	HA HB1	4.5 6.0	134 VAL 134 VAL	HB HB	134 VAL 135 GLU-	QG2 HN	4.5					
129 A	RG+	HN	129	ARG+	HB2	6.0	134 VAL	HN	134 VAL	HA	3.5					
129 A	RG+	HN HN	130	ILE	HN	6.0 6.0	134 VAL 134 VAL	HN	134 VAL 134 VAL	HB OG1	3.0					
130 I	LE	N	15	ASP-	0	3.2	134 VAL	HN	134 VAL	QG2	4.1					
130 I	LE	HA	130	ILE	HB	3.5	134 VAL	HN	135 GLU-	HN	4.5					
130 I 130 T	LE	ha HA	±30 130	ILE	DD1	4.5 3.6	134 VAL 134 VAL	нN QG1	135 GLU- 135 GJ/U-	QG HN	ю.9 5.1					
130 I	LE	HA	130	ILE	QG2	3.6	134 VAL	QG2	135 GLU-	HN	6.1					
130 I	LE	HA	131	TYR	HN UC11	2.5	135 GLU-	HA	135 GLU-	HB1	3.0					
130 I	LE	HB	130	ILE	HG12	3.5	135 GLU-	HA	135 GLU-	QG	3.9					
130 I	LE	HB	131	TYR	HN	6.0	135 GLU-	HB1	135 GLU-	HB2	2.5					
130 I 130 T	LE LE	HG11 HG11	130 130	líE TLE	HG12 OD1	2.5	135 GLU- 135 CT.II-	HN HN	135 GLU- 135 GLU-	HA HR1	3.0 4 N					
130 I	LE	HG11	131	TYR	HN	5.5	135 GLU-	HN	135 GLU-	HB2	4.0					
130 I	LE	HG12	130	ILE	QD1	3.6	135 GLU-	HN	135 GLU-	QG	4.9					
⊥30 I 130 T	LE LE	HG12 HN	⊥30 15	ile Asp-	QG2 O	4.6	135 GLU- 135 GLU-	QG OG	135 GLU- 135 GLU-	HB1 HB2	3.9 3.9					
130 I	LE	HN	130	ILE	HB	3.0		~~		-						

Appendix A.2 Acquisition and processing parameters for the relaxation experiments of human E-FABP complexed with stearic acid at pH 5.6 and 298 K.

% Dataset: (¹H,¹⁵N)-HSQC of EFABP in H₂0 at 298K at 499MHz NOE-Measurements

NOISE=0.010 T MIX=[0 5]*1e-3 ∞,_____ % acquisition parameters as shown by "dpa" in "uxnmr" ∞ BF= [50.65 499.87]; % in [MHz] 2353.57]; % in [Hz] 3004.8075]; % in [Hz] 2048/2]; % complex points OF= [5961.65 SW= [1773.05 TD= [384/2 8-----% processing parameters as shown by "dpp" in "uxnmr" %_____ SI= [1024 1024]; % real points SR=[-149.23+27.35-53.24+15-3004.8075/2];% in [Hz]%SR=[549.19-2075.6];% in [Hz]SSB=2];% sinebell phase shift % Dataset: (¹H,¹⁵N)-HSQC of EFABP in H₂0 at 298K at 499MHz T₁-Measurements NOISE=0.125 T MIX=[16 32 48 80 112 160 224 304 400 512 640]*1e-3 %-----% acquisition parameters as shown by "dpa" in "uxnmr" %_____ 499.87]; % in [MHz] 2353.57]; % i- 7 BF= [50.65 OF= [5961.65 3004.8075]; % in [Hz] SW= [1773.05 TD= [384/2 2048/2]; % complex points % processing parameters as shown by "dpp" in "uxnmr" 06_____ SI= [1024 1024]; % real points SR= [-149.23+27.35 -53.24+15-3004.8075/2]; % in [Hz] %SR= [549.19 -2075.6]; % in [Hz] SSB= [2 2]; % sinebell phase shift

% Dataset: (¹H,¹⁵N)-HSQC of EFABP in H₂0 at 298K at 499MHz T₂-Measurements

```
NOISE=0.125
          46.4869.7292.97116.21 139.45 162.69 185.93
T MIX=[23.24
    209.17]*1e-3
%_____
% acquisition parameters as shown by "dpa" in "uxnmr"
499.87 ]; % in [MHz]
2353.57 ]; % in [Hz]
BF= [50.65
OF= [5961.65
                          3004.8075 ]; % in [Hz]
2048/2 ]; % complex points
SW= [1773.05
TD= [384/2
% processing parameters as shown by "dpp" in "uxnmr"
SI= [10241024 ];% real pointsSR= [-149.23+27.35-53.24+15-3004.8075/2 ];% in [Hz]%SR=[549.19-2075.6 ];% in [Hz]SSB= [22 ];% sinebell phase shift
```

% Dataset: (¹H,¹⁵N)-HSQC of EFABP in H₂0 at 298K at 600MHz NOE-Measurements

%=====

NOISE=0.100 T MIX=[0 5] §_____ % acquisition parameters as shown by "dpa" in "uxnmr" 0/2 _____ 600.13]; % in [MHz] 2821]; % in [Hz] BF= [60.81 OF= [7814.3 3591.954]; % in [Hz] 2048/2]; % complex points SW= [2131.29 TD= [512/2 §_____ % processing parameters as shown by "dpp" in "uxnmr" 1024]; % real points -21.52-3591.954/2]; % in [Hz] -2075.6]; % in [Hz] 2]; % sinebell phase shift SI= [1024 SR= [530.32 %SR= [549.19 SSB= [2

응:

=

% Dataset: (H, %======												
NOISE=0.100 T_MIX=[16	32	48	96	128	8 192	2 3	384	51	2	768]	*1e-3	
8												
% acquisitio %	n par 	ameter:	s as	showr	n by "o	dpa" 	in 	"uxn 	mr"			
BF= [60.81 OF= [7814.3 SW= [2131.29 TD= [512/2)				500.13 2821 3591.99 2048/2	54];];];];	olo olo olo olo	in in in com	[MHz] [Hz] [Hz] nplex	points	
% % processing %	 par	ameter	 s as	showr	n by "c	 dpp" 	in	 "uxn	 mr"			
SI= [1024 SR= [530.32		-2	1.52	-3591	1024 .954/2 -2075 (6];];];	olo olo olo	rea in in	al poi [Hz] [Hz]	nts	
%SR= [549.19 SSB= [2					2010];	olo	sir	nebell	phase	shif
<pre>%SR= [549.19 SSB= [2 % Dataset: (¹H, % NOISE=0.100 T_MIX=[25.64 256.42 282</pre>	, ¹⁵ N)-₽ 5 .06] *	ISQC of 1.28 1e-3	EFA 76.	BP in I	2010.1 2 120 at 2 128.21	98 K a]; at 60	% 0MH 85	sir z T 2 17	-Measu 9.49	. phase urement	shif 8
<pre>%SR= [549.19 SSB= [2 % Dataset: (¹H, % NOISE=0.100 T_MIX=[25.64 256.42 282 % % acquisitio %</pre>	, ¹⁵ N)-H 5 .06]* n par	ISQC of 1.28 1e-3 ameter:	EFA 76.	BP in H .92 showr	128.21	98K a 1 1 1pa"]; 1 60 153. in	% 0MH 85 "uxn	sir z T ₂ 17 	9.49	205.	shif s
<pre>%SR= [549.19 SSB= [2 % Dataset: (¹H, % NOISE=0.100 T_MIX=[25.64 256.42 282 % % acquisition % acquisition % BF= [60.81 OF= [7814.3 SW= [2131.29 TD= [512/2</pre>	, ¹⁵ N)-E 5 .06]* n par	ISQC of 1.28 1e-3 ameter:	EFA 76.	BP in I	2010.13 2010.13 128.21 500.13 2821 3591.99 2048/2	9 8K a]; it 60 153. in];];];];];	% 0MH 85 "uxn % % % %	sir z T ₂ 17 in in in con	Measu -Measu 9.49 [MHz] [Hz] [Hz] [Hz] nplex	205.	= shif
<pre>%SR= [549.19 SSB= [2 % Dataset: (¹H, % Dataset: (¹H, % Dataset: (¹H, % Dataset: (¹H, % Dataset: (¹H, % DATASE SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB</pre>	, ¹⁵ N)-H 5 .06]* n par	ISQC of 1.28 1e-3 ameter: ameter:	EFA 76. 5 as	BP in I .92 showr	2010.13 128.21 128.21 500.13 2821 3591.99 2048/2 1 by "c	98K a 1 1 1pa" 54]; t 60 153. in];];];]; in	% 0MH 85 "uxn % % % % %	sir zT2 17 in in in com mr"	MHz] [MHz] [Hz] [Hz] plex	205.	shif s 13

% Dataset: (¹H,¹⁵N)-HSQC of EFABP in H₂0 at 298K at 800MHz NOE-Measurements %**=====**== NOISE=0.100 T MIX=[1 5] 96_____ % acquisition parameters as shown by "dpa" in "uxnmr" ∞_____ 800.13]; % in [MHz] 3751.0]; % in [Hz] 4882.81]; % in [Hz] 2048/2]; % complex points BF= [81.08 OF= [9540.0 SW= [2840.91 TD= [512/2 ∞_____ % processing parameters as shown by "dpp" in "uxnmr" %_____ SI=[1024];% real pointsSR=[-178.34-42.72-4882.81/2];% in [Hz]%SR=[549.19-2075.6];% in [Hz]SSB=22];% sinebell phase shift % Dataset: (¹H,¹⁵N)-HSQC of EFABP in H₂0 at 298K at 800MHz T₁-Measurements %**====**= NOISE=0.100 40 60 80 100 120 160 240 320 480 640 T MIX=[20 960]*1e-3 8-----% acquisition parameters as shown by "dpa" in "uxnmr" %_____]; % in [MHz] BF= [81.08 800.13 OF= [9540.0 3751.0]; % in [Hz]]; % in [Hz]]; % complex points SW= [2840.91 4882.81 TD= [512/2 2048/2 ° % processing parameters as shown by "dpp" in "uxnmr" ۶_____ SI= [1024]; % real points 1024 -42.72-4882.81/2 SR= [-178.34]; % in [Hz] -2075.6]; % in [Hz] 2]; % sinebell phase shift %SR= [549.19

SSB= [2

101
응 % Dataset: (¹H,¹⁵N)-HSQC of EFABP in H₂0 at 298K at 800MHz T₂-Measurements 8====== NOISE=0.100 T MIX=[28.03 56.06 84.10 112.13 140.16 168.19 196.22 224.26]*1e-3 §_____ % acquisition parameters as shown by "dpa" in "uxnmr" ∞,_____ 800.13]; % in [MHz] 3751.0]; % in [Hz] 4882.81]; % in [Hz] 2048/2]; % complex points BF= [81.08 OF= [9540.0 SW= [2840.91 TD= [512/2 %_____ % processing parameters as shown by "dpp" in "uxnmr" %_____ SI=[1024];% real pointsSR=[-178.34-42.72-4882.81/2];% in [Hz]%SR=[549.19-2075.6];% in [Hz]SSB=2];% sinebell phase shift

Appendix A.3 Stereospecific assignments used in the DYANA calculations. Residues with reversed stereospecific assignments are marked with "r".

atoms	stereo	HA1	9 18 29 36 80 92 102 114 9r18r 80r92r
atoms	stereo	HB1	5 7 8 11 15 16 19 21 22 23 24 25 26 33 34 35 48 5r7r 15r 19r21r22r 24r 26r 35r48r
atoms	stereo	HB1	51 52 55 57 61 64 65 66 67 69 79 82 84 87 88 89 52r 57r61r64r65r66r67r69r79r 84r87r 89r
atoms	stereo	HB1	91 94 97 98 99 100 101 104 105 109 110 111 112 91r94r97r98r99r 101r104r 109r110r111r112r
atoms	stereo	HB1	113 115 116 119 120 122 123 124 127 131 133 135 115r116r119r120r122r 124r 131r133r
atoms	stereo	HG1	5 6 8 17 21 23 25 38 41 57 71 75 81 82 84 96 98 6r8r 38r41r57r 75r81r82r84r 98r
atoms	stereo	HG1	99 103 109 112 119 122 129 132 133 119r122r129r132r
atoms	stereo	HD1	10 12 41 81 109 112 133 12r 81r109r112r133r
atoms	stereo	HD21	51 88 123 124
atoms	stereo	HE1	
atoms	stereo	HE21	5 6 98
atoms	stereo	HG11	30 44 45 30r 45r
atoms	stereo	QG1	4 14 28 95 117 118 125 134 4r 95r117r118r125r
atoms	stereo	QD1	7 13 26 32 60 69 94 111 116 13r26r 69r

Appendix A.4 ¹⁵N relaxation data of human E-FABP at 3 different fields. s.d. represents the standard deviation. The NOE error was set to a constant value (0.03) for all residues.

499.870 MHz

AA	R1	s.d.	R2	s.d	NOE	error
M1	[1/5]	[1/5]	[1/5]	[1/5]		
A2						
T3	1 587	0 084	3 734	0 295	0 468	0.030
V4	1 724	0.024	10.325	0.456	0.834	0,030
05	1 788	0.046	10,020	0,400	0 774	0,000
06	1,708	0,040	9 878	0.239	0 767	0,000
17	1 781	0.046	10 218	0,200	0.837	0,000
E8	1,701	0,040	10 425	0,107	0,007	0,000
G9	1,642	0.053	9 4 9 4	0 232	0,800	0,000
R10	1 734	0.027	10 834	0 127	0 784	0,030
W11	1,692	0.074	9.275	0.835	0.846	0.030
R12	1.678	0.030	9.864	0.373	0.769	0.030
L13	1.776	0.127	10,109	0.944	-,	-,
V14	.,	-,	,	-,		
D15	1,661	0.038	10.085	0,296	0,716	0.030
S16	1,569	0,024	9,491	0,123	0,739	0,030
K17	1,636	0,019	10,172	0,332	0,833	0,030
G18	1,700	0,073	10,555	0,134	0,770	0,030
F19	1,775	0,065	11,152	0,390	0,807	0,030
D20	1,868	0,079	10,760	0,289	0,771	0,030
E21	1,758	0,045	10,243	0,370	0,840	0,030
Y22	1,663	0,177			0,922	0,030
M23						
K24	1,982	0,121	10,342	0,386	0,724	0,030
E25	1,811	0,037	10,418	0,139	0,763	0,030
L26	1,681	0,023	10,478	0,327	0,801	0,030
G27	1,673	0,023	9,806	0,193	0,831	0,030
V28	1,649	0,066	11,009	0,530	0,854	0,030
G29	1,687	0,036	9,910	0,144	0,726	0,030
130	1,694	0,045	9,550	0,224	0,675	0,030
A31	1,822	0,016	10,682	0,157	0,722	0,030
L32	1,576	0,038	9,933	0,206	0,728	0,030
R33	1,658	0,030	8,771	0,487	0,719	0,030
K34	4 500	0.045	10.000	0.400	0.770	0.000
M35	1,598	0,045	10,083	0,129	0,770	0,030
G30	1,014	0,061	10,295	0,477	0,762	0,030
A37 M29	1,729	0,076	10,490	0,022	0,004	0,030
10130	1,030	0,000	9,079	0,395	0,702	0,030
K10	1,000	0,002	9 2 2 2	0,440	0,035	0,030
D/1	1,701	0,229	0,000	0,030	0,077	0,030
D42	1 740	0.023	0.042	0.270	0.747	0.030
C43	1 849	0,025	10 011	0,270	0,747	0,030
144	1 693	0.055	10 159	0.329	0 755	0.030
45	1,688	0.035	10,104	0.214	0.831	0.030
T46	1,690	0.044	10,481	0.342	0.839	0.030
C47	1.733	0.034	9.621	0.138	0.783	0.030
D48	.,	-,	-,	-, - • •	-,	-,
G49	1,688	0,050	10,135	0,202	0,790	0,030
K50	1,718	0,085	9,409	0,561	0,730	0,030
N51	1,644	0,037	9,861	0,253	0,783	0,030

AA	R1 [1/s]	s.d. [1/s]	R2 [1/s]	s.d [1/s]	NOE	error
L52	1,691	0,058	9,649	0,315	0,788	0,030
155	1,727	0,040	10,551	0,276	0,707	0,030
104	1,030	0,103	10,774	0,200	0,737	0,030
T56	1,770	0,001	0 321	0,920	0,740	0,030
F57	1,030	0,000	10 528	0,410	0,903	0,030
S58	1,734	0,123	8 371	0,799	0,701	0,030
T59	1,072	0,000	0,071	0,007	0,047	0,000
160						
K61	1 695	0.066	8 190	0 480	0 690	0.030
T62	1 858	0.089	9 815	0.662	0.683	0,030
T63	1,553	0.145	9.251	0.814	0.629	0.030
Q64	1,879	0,146	10.787	0.497	0.660	0.030
F65	1.829	0.062	10.502	0.377	0.820	0.030
S66	.,	-,	,	-,	-,	-,
C67	1,682	0,064	10,413	0,201	0,727	0,030
T68	1,702	0,033	10,159	0,301	0,803	0,030
L69	1,668	0,044	10,232	0,400	0,773	0,030
G70	1,660	0,061	10,158	0,226	0,734	0,030
E71	1,759	0,026	10,177	0,201	0,822	0,030
K72				·		
F73	1,790	0,059	10,205	0,312	0,760	0,030
E74	1,621	0,026	9,579	0,144	0,744	0,030
E75	1,745	0,049	9,828	0,339	0,753	0,030
T76	1,841	0,106	9,555	0,423	0,738	0,030
T77	1,650	0,058	10,548	0,253	0,875	0,030
A78	1,778	0,089	10,131	0,455	0,827	0,030
D79	1,768	0,076	10,417	0,658	0,764	0,030
G80	1,555	0,046	10,115	0,445	0,815	0,030
R81	1,651	0,037	9,795	0,357	0,744	0,030
K82	1,660	0,049	9,909	0,210	0,828	0,030
T83	1,630	0,029	9,818	0,139	0,766	0,030
Q84	1,633	0,036	10,360	0,225	0,798	0,030
185	1,740	0,107	9,728	0,384	0,702	0,030
V86	1,588	0,059	11,298	0,373	0,737	0,030
C87	1,718	0,074	9,385	0,316	0,734	0,030
N88	1,702	0,038	9,982	0,284	0,745	0,030
F89	1,571	0,026	9,297	0,127	0,755	0,030
190	1,609	0,054	9,915	0,151	0,804	0,030
D91	1,829	0,133	9,414	0,742	0,804	0,030
G92	1,599	0,027	9,310	0,219	0,744	0,030
A93	1,725	0,029	10,010	0,207	0,700	0,030
L94 \/05	1,701	0,051	10,273	0,300	0,832	0,030
096	1,755	0,050	11,077	0,332	0,015	0,030
490 H97	1 701	0 078	10 914	0 395	0 741	0.030
098	1,751	0,070	9 698	0,000	0 772	0,030
F99	1 558	0.043	10 208	0.320	0 771	0.030
W100	1 670	0,039	10,200	0 189	0 766	0.030
D101	1 706	0.026	9 650	0 271	0 788	0.030
G102	1,623	0.029	9,959	0.192	0.742	0.030
K103	.,020	0,020	3,000	5,102	, L	3,000
E104	1,543	0,024	9,093	0,143	0,728	0,030
S105	1,768	0,059	9,892	0,231	0,839	0,030
T106						<i>.</i>
I107	1,832	0,073	9,560	0,515	0,645	0,030
T108	1,722	0,033	10,861	0,282	0,791	0,030
R109	1,691	0,090	10,355	0,362	0,764	0,030
K110	1,728	0,020	10,368	0,214	0,746	0,030

AA	R1	s.d.	R2	s.d	NOE	error
	[1/s]	[1/s]	[1/s]	[1/s]		
L111	1,565	0,032	10,062	0,107	0,682	0,030
K112	1,695	0,030	9,586	0,183	0,729	0,030
D113	1,741	0,116	10,429	0,441	0,761	0,030
G114	1,619	0,026	9,923	0,177	0,743	0,030
K115						
L116	1,728	0,049	10,173	0,257	0,821	0,030
V117	1,658	0,034	10,164	0,294	0,753	0,030
V118	1,783	0,042	10,181	0,352	0,742	0,030
E119	1,643	0,042	10,150	0,238	0,830	0,030
C120	1,714	0,071	10,007	0,337	0,726	0,030
V121	1,645	0,078	10,583	0,469	0,714	0,030
M122	1,746	0,024	10,193	0,351	0,813	0,030
N123	1,661	0,015	10,237	0,118	0,715	0,030
N124	1,618	0,119			0,787	0,030
V125						
T126	1,811	0,103	11,654	0,545	0,886	0,030
C127	1,696	0,055	10,266	0,435	0,854	0,030
T128	1,635	0,045	10,778	0,218	0,817	0,030
R129	1,840	0,048	10,382	0,360	0,730	0,030
I130	1,614	0,038	10,674	0,348	0,804	0,030
Y131	1,651	0,065	9,496	0,353	0,777	0,030
E132	1,692	0,024	10,367	0,171	0,770	0,030
K133	1,790	0,054	9,702	0,289	0,722	0,030
V134	1,683	0,022	9,498	0,162	0,738	0,030
E135	1,508	0,026	8,008	0,221	0,466	0,030

(Cont.)

600.130 MHz

AA	R1 [1/s]	s.d. [1/s]	R2 [1/s]	s.d [1/s]	NOE	error
M1		L -]	L - J			
A2						
Т3	1,312	0,149	7,687	0,809	0,797	0,030
V4	1,375	0,027	12,039	0,484	0,820	0,030
Q5	1,405	0,031	12,856	0,175	0,818	0,030
Q6	1,422	0,033	11,939	0,314	0,823	0,030
L7	1,383	0,022	11,812	0,337	0,806	0,030
E8	1,356	0,025	11,767	0,327	0,797	0,030
G9	1,283	0,042	10,988	0,466	0,819	0,030
R10	1,281	0,056	12,091	0,242	0,800	0,030
W11	1,371	0,095	11,454	0,502	0,796	0,030
R12	1,313	0,035	10,857	0,973	0,769	0,030
L13	1,432	0,093	10,586	0,509	0,829	0,030
V14	1 221	0.015	11 115	0 174	0 702	0.020
D15 S16	1,001	0,015	10,440	0,174	0,703	0,030
S10 K17	1,231	0,028	11,011	0,150	0,791	0,030
G18	1,231	0,040	11 167	0,047	0,770	0,030
F19	1,407	0,000	12 353	0,407	0,007	0,030
D20	1,407	0,000	11 431	0,407	0,906	0,000
F21	1,345	0.035	11 215	0.603	0.844	0,030
Y22	1 486	0.067	11,588	0 709	0.975	0,030
M23	1,100	0,001	11,000	0,100	0,010	0,000
K24	1,319	0,061	11,742	0,779	0,863	0,030
E25	1,391	0,053	11,781	0,985	0,839	0,030
L26	1,333	0,037	11,535	0,564	0,850	0,030
G27	1,383	0,032	11,476	0,553	0,815	0,030
V28	1,296	0,091	12,132	0,606	0,941	0,030
G29	1,303	0,032	11,525	0,602	0,813	0,030
130	1,294	0,036	10,284	0,424	0,819	0,030
A31	1,488	0,017	11,438	0,179	0,812	0,030
L32	1,308	0,039	11,391	0,417	0,754	0,030
R33	1,374	0,043	12,537	1,223	0,739	0,030
K34	1 265	0.055	11 500	0.450	0.011	0.020
G36	1,205	0,055	12 108	0,439	0,011	0,030
Δ37	1 313	0,005	12,150	0,004	0,820	0,030
M38	1 289	0,040	10 091	0,000	0,692	0,000
A39	1,200	0.067	11 312	0 214	0 772	0,030
K40	1.327	0.170	11.895	0.775	0.722	0.030
P41	.,	-,	,	-,	-,	-,
D42	1,361	0,044	11,697	0,189	0,867	0,030
C43	1,250	0,066	11,039	0,655	0,799	0,030
144	1,437	0,091	10,857	0,654	0,734	0,030
I45	1,405	0,058	11,618	0,897	0,827	0,030
T46	1,375	0,045	12,073	0,609	0,773	0,030
C47	1,289	0,022	10,436	0,195	0,784	0,030
D48	1,516	0,044	12,595	0,648	0,842	0,030
G49	1,369	0,044	10,995	0,341	0,823	0,030
K50	1,388	0,043	10,667	0,317	0,803	0,030
I N51	1.284	0.047	11.011	0.439	0.752	0.030

	1/s	[1/s]	[1/s]	[1/s]		2
L52 T53	1,304 1,342 1,268	0,037 0,033 0,040	11,168 11,704 11,424	0,482 0,301 0,469	0,788 0,802 0,814	0,030 0,030 0.030
K55	1,475	0,040	10,776	1,086	0,789	0,030
156 E57	1,337 1,356	0,087 0,132	11,509 10,515	0,665 0,791	0,808 0,836	0,030 0,030
S58 T59	1,443	0,111	10,097	1,077	0,783	0,030
L60	4.000	0.004	0.000	0.050	0 7 4 7	0.000
K61 T62	1,333 1,535	0,064 0,073	9,699 10,957	0,850 0,598	0,717 0,831	0,030 0,030
T63 064	1,246 1,502	0,082 0.070	11,964 12 565	0,936 0 788	0,844 0 747	0,030 0,030
F65	1,370	0,036	11,927	0,330	0,824	0,030
S66 C67	1,361	0,045	11,821	0,507	0,831	0,030
T68 1.69	1,267 1,395	0,053 0.042	11,575 11,458	0,480 0.503	0,779 0.877	0,030 0,030
G70	1,328	0,061	10,610	0,562	0,840	0,030
E71 K72	1,353	0,023	11,113	0,200	0,795	0,030
F73 E74	1,428 1,324	0,043 0,024	10,915 11,015	0,424 0,221	0,768 0,798	0,030 0,030
E75	1,410	0,048	12,718	0,776	0,795	0,030
T77	1,354	0,073	12,079	0,503	0,806	0,030
A78 D79	1,388 1,406	0,046 0,123	10,710 12,575	0,958 0,778	0,805 0,788	0,030 0,030
G80 R81	1,297	0,051	11,632	0,636	0,803	0,030
K82	1,195	0,049	11,320	0,495	0,836	0,030
183 Q84	1,280 1,324	0,033 0,046	11,137 11,602	0,422 0,383	0,791 0,819	0,030 0,030
T85 V86	1,404 1,455	0,041 0.070	10,746 10 489	0,426 0,500	0,796 0.811	0,030 0,030
C87	1,292	0,068	10,135	0,595	0,813	0,030
N88 F89	1,310 1,283	0,027 0,029	11,391 10,617	0,344 0,118	0,835 0,789	0,030 0,030
T90 D91	1,299 1,397	0,028 0.089	11,032 11 124	0,269 0,705	0,809 0 798	0,030 0,030
G92	1,324	0,037	10,945	0,518	0,811	0,030
A93 L94	1,360	0,024 0,063	11,401 11,604	0,194 0,181	0,796 0,856	0,030 0,030
V95 Q96	1,294	0,028	13,704	0,520	0,835	0,030
H97	1,392	0,074	11,302	0,345	0,830	0,030
E99	1,304	0,031	10,702	0,568	0,765	0,030
W100 D101	1,422 1,351	0,033 0,022	10,208 11,246	0,342 0,244	0,898 0,811	0,030 0,030
G102 K103	1,328	0,029	11,699	0,132	0,807	0,030
E104	1,275	0,021	10,439	0,397	0,773	0,030
S105 T106	1,324	0,023	11,429	0,363	0,803	0,030
I107 T108	1,313 1,337	0,071 0.044	11,026 12 272	0,952 0,536	0,855 0 840	0,030 0,030
R109	1,350	0,064	11,452	0,584	0,752	0,030

AA	R1	s.d.	R2	s.d	NOE	error
	[1/s]	[1/s]	[1/s]	[1/s]		
L111	1,301	0,024	11,109	0,232	0,760	0,030
K112	1,325	0,025	10,770	0,162	0,796	0,030
D113	1,362	0,092	11,125	0,614	0,816	0,030
G114	1,332	0,054	11,006	0,250	0,790	0,030
K115						
L116	1,372	0,076	11,610	0,302	0,799	0,030
V117	1,307	0,044	12,177	0,339	0,823	0,030
V118	1,336	0,062	10,854	0,587	0,792	0,030
E119	1,300	0,040	10,464	0,339	0,828	0,030
C120	1,319	0,069	11,811	0,726	0,806	0,030
V121	1,308	0,058	12,193	0,475	0,793	0,030
M122	1,413	0,024	11,670	0,297	0,832	0,030
N123	1,361	0,042	11,486	0,271	0,787	0,030
N124	1,420	0,130	11,896	0,205	0,682	0,030
V125						
T126	1,279	0,063	11,888	0,584	0,813	0,030
C127	1,362	0,072	11,971	1,036	0,924	0,030
T128	1,271	0,025	11,669	0,289	0,857	0,030
R129	1,328	0,032	12,563	0,473	0,791	0,030
1130	1,251	0,039	12,310	0,251	0,799	0,030
Y131	1,332	0,087	11,353	0,545	0,807	0,030
E132	1,348	0,047	11,582	0,279	0,838	0,030
K133	1,333	0,039	10,965	0,313	0,777	0,030
V134	1,403	0,023	10,730	0,167	0,779	0,030
E135	1,297	0,025	9,428	0,263	0,614	0,030

(Cont.)

800.130 MHz

AA	R1	s.d. [1/s]	R2	s.d [1/s]	NOE	error
M1	[1/3]	[1/3]	[1/3]	[1/3]		
Λ2						
A2 T2	1.062	0.076	9 160	0 776	0 716	0.020
13	1,002	0,076	0,109	0,770	0,716	0,030
V4	0,998	0,010	14,972	0,286	0,815	0,030
Q5	1,001	0,014	15,969	0,316	0,834	0,030
Q6	1,015	0,009	14,580	0,202	0,850	0,030
L7	0,972	0,007	14,485	0,151	0,836	0,030
E8	0,952	0,009	14,535	0,174	0,849	0,030
G9	0,951	0,012	14,115	0,187	0,832	0,030
R10	0,915	0,012	15,055	0,324	0,825	0,030
W11	0,966	0,022	14,311	0,468	0,878	0,030
R12	0,927	0,023	14,187	0,370	0,829	0,030
L13	1,049	0,038	14,819	0,879	0,949	0,030
V14						
D15	0,962	0,007	13,815	0,178	0,825	0,030
S16	0,884	0,005	12,691	0,157	0,857	0,030
K17	0,931	0,009	14,987	0,352	0,838	0,030
G18	0,994	0,033	13,784	0,258	0,831	0,030
F19	0.949	0.013	14,500	0.227	0.870	0.030
D20	1 105	0.024	14 781	0 249	0,859	0,030
F21	0,935	0,015	14 040	0,234	0,886	0,030
Y22	1 017	0.026	17 449	0.897	0 942	0,030
M23	1,017	0,020	17,110	0,001	0,012	0,000
K24	1 017	0.025	13 925	0 282	0.857	0.030
F25	0.081	0,020	15,620	0,202	0,866	0,000
1.26	0,901	0,000	14 244	0,224	0,800	0,030
C27	0,949	0,011	14,244	0,149	0,004	0,030
G27 \/20	0,952	0,014	14,112	0,219	0,037	0,030
V20 C20	0,907	0,017	17,002	0,204	0,020	0,030
GZ9	0,976	0,010	14,577	0,270	0,760	0,030
130	0,900	0,024	10,294	0,005	0,000	0,030
AST	1,076	0,009	14,404	0,179	0,823	0,030
L3Z	0,893	0,017	13,767	0,229	0,806	0,030
R33	0,984	0,026	15,008	0,428	0,800	0,030
K34	0.005	0.045	44457	0.040	0 704	
M35	0,925	0,015	14,157	0,218	0,791	0,030
G36	1,002	0,034	15,160	0,323	0,815	0,030
A37	0,996	0,008	15,221	0,266	0,839	0,030
M38	0,940	0,013	12,953	0,375	0,744	0,030
A39	0,923	0,016	13,923	0,202	0,794	0,030
K40	0,950	0,051	12,115	0,338	0,759	0,030
P41						
D42	0,922	0,009	14,125	0,199	0,835	0,030
C43	0,915	0,016	13,724	0,135	0,831	0,030
144	0,940	0,035	14,468	0,515	0,877	0,030
I45	0,907	0,009	14,422	0,154	0,847	0,030
T46	0,915	0,013	14,718	0,356	0,839	0,030
C47	0,906	0,008	13,595	0,261	0,825	0,030
D48	0,984	0,014	14,353	0,363	0,860	0,030
G49	0,957	0,013	14,521	0,238	0,848	0,030
K50	1,007	0,009	13,206	0,215	0,813	0,030
N51	0.899	0.009	13.788	0.178	0.809	0.030

AA	R1 [1/s]	s.d. [1/s]	R2 [1/s]	s.d [1/s]	NOE	error
L52 T53 I54 K55 T56 E57 S58 T59	0,929 0,919 0,926 1,011 0,937 0,946 0,981	0,018 0,011 0,010 0,028 0,021 0,047 0,025	13,909 14,266 14,433 14,114 14,187 13,960 13,078	0,170 0,188 0,195 0,682 0,554 0,401 0,503	0,861 0,883 0,852 0,864 0,865 0,762 0,767	0,030 0,030 0,030 0,030 0,030 0,030 0,030
L60 K61 T62 T63 Q64 F65 S66	1,007 1,095 1,009 1,016 0,989	0,012 0,037 0,031 0,063 0,017	12,456 13,715 13,733 14,382 14,913	0,186 0,547 0,257 0,282 0,376	0,758 0,768 0,807 0,836 0,888	0,030 0,030 0,030 0,030 0,030 0,030
C67 T68 L69 G70 E71 K72	0,957 0,895 0,966 0,938 0,987	0,011 0,012 0,016 0,022 0,011	14,643 14,518 15,176 14,723 14,146	0,243 0,300 0,338 0,267 0,108	0,851 0,860 0,863 0,840 0,862	0,030 0,030 0,030 0,030 0,030 0,030
K72 F73 E74 E75 T76 T77 A78 D79 G80 R81 K82 T83 Q84 T85 V86 C87 N88 F89 T90 D91 G92 A93 L94 V95	1,023 0,921 0,998 0,878 0,967 0,976 1,000 0,924 0,950 0,835 0,903 0,937 0,963 1,024 0,928 0,881 0,929 0,902 0,998 0,953 0,998 0,934 0,924	0,011 0,009 0,018 0,010 0,015 0,041 0,068 0,021 0,011 0,005 0,006 0,011 0,014 0,023 0,014 0,023 0,014 0,023 0,014 0,023 0,014 0,023 0,014 0,023 0,014 0,025 0,006 0,010 0,015 0,015 0,015 0,005 0,014 0,025 0,010 0,015 0,015 0,015 0,015 0,015 0,015 0,015 0,015 0,015 0,015 0,006 0,014 0,025 0,010 0,015 0,015 0,015 0,014 0,025 0,010 0,015 0,010 0,014 0,025 0,010 0,015 0,010 0,014 0,015 0,010 0,015 0,010 0,015 0,010 0,015 0,010 0,015 0,010 0,015 0,010 0,025 0,006 0,010 0,015 0,005 0,005 0,010 0,015 0,005 0,010 0,015 0,005 0,010 0,025 0,006 0,010 0,025 0,006 0,005 0	14,162 13,238 14,080 13,919 14,859 14,471 15,503 15,813 14,822 14,564 13,558 14,227 13,811 15,237 13,586 14,083 13,356 13,475 13,825 14,219 14,482 14,287 18,454	0,213 0,087 0,691 0,276 0,336 0,605 0,733 0,166 0,149 0,476 0,198 0,341 0,277 0,687 0,235 0,129 0,195 0,129 0,195 0,146 0,355 0,384 0,151 0,113 0,307	0,851 0,841 0,831 0,824 0,862 0,892 0,849 0,868 0,847 0,849 0,850 0,874 0,850 0,874 0,858 0,863 0,843 0,843 0,832 0,834 0,832 0,834 0,803 0,817 0,798 0,861 0,900	0,030 0,03
V95 Q96 H97 Q98 E99 W100 D101 G102 K103	0,924 0,957 0,937 0,905 0,961 0,955 0,943	0,010 0,018 0,018 0,012 0,008 0,011	15,344 13,698 13,430 13,873 13,521 13,821	0,341 0,246 0,211 0,229 0,129 0,131	0,900 0,873 0,877 0,833 0,883 0,831 0,825	0,030 0,030 0,030 0,030 0,030 0,030 0,030
E104 S105 T106 I107 T108 R109 K110	0,897 0,929 0,935 0,925 0,888 0,905	0,004 0,011 0,035 0,013 0,019 0,012	12,394 13,637 14,227 16,747 14,636 15,124	0,330 0,224 0,380 0,236 0,401 0,217	0,809 0,867 0,840 0,865 0,841 0,853	0,030 0,030 0,030 0,030 0,030 0,030

AA	R1	s.d.	R2	s.d	NOE	error
	[1/s]	[1/s]	[1/s]	[1/s]		
L111	0,933	0,006	11,717	0,405	0,745	0,030
K112	0,934	0,016	13,098	0,457	0,823	0,030
D113	0,981	0,039	14,557	0,381	0,822	0,030
G114	0,951	0,016	13,520	0,118	0,824	0,030
K115						
L116	0,929	0,018	13,877	0,097	0,867	0,030
V117	0,909	0,014	15,108	0,226	0,865	0,030
V118	0,935	0,015	14,417	0,167	0,854	0,030
E119	0,893	0,015	14,076	0,132	0,859	0,030
C120	0,942	0,015	13,674	0,533	0,901	0,030
V121	0,953	0,024	14,877	0,217	0,886	0,030
M122	0,972	0,009	14,655	0,242	0,860	0,030
N123	0,959	0,014	14,748	0,185	0,830	0,030
N124	1,107	0,101			0,914	0,030
V125						
T126	0,952	0,014	16,546	0,989	0,896	0,030
C127	0,992	0,024	14,958	0,739	0,810	0,030
T128	0,870	0,008	14,866	0,122	0,865	0,030
R129	0,910	0,026	15,573	0,348	0,847	0,030
I130	0,823	0,017	14,639	0,323	0,863	0,030
Y131	0,931	0,024	14,644	0,616	0,883	0,030
E132	0,895	0,013	14,532	0,219	0,847	0,030
K133	0,950	0,024	13,831	0,238	0,833	0,030
V134	0,972	0,016	13,829	0,177	0,809	0,030
E135	0,938	0,009	11,307	0,078	0,605	0,030

Untersuchungen von Struktur und Dynamik des humanen epidermalen Fettsäurebindungsproteins mittels hochaufgelöster NMR-Spektroskopie.

Das humane epidermale Fettsäurebindungsprotein (E-FABP) gehört zur Familie der intrazellulären Lipidbindungsproteine (LBP), die Fettsäuren, Gallensäuren oder Retinoide spezifisch binden und transportieren. Gallensäure-bindendes Protein (ILBP), zellulare Retinoidbindungsproteine und mehrere Typen von Fettsäurebindungsproteinen (FABPs) sind Mitglieder dieser Proteinfamilie. Ihre Funktionen sind mit Fettsäure-Signalgebung sowie Zellwachstum, -regulation und -differenzierung in Verbindung gebracht worden. FABPs werden gewebespezifisch exprimiert und spielen eine wichtige Rolle im Metabolismus von langkettigen, nicht-gesättigten Fettsäuren.

Mindestens dreizehn verschiedene Typen von LBPs sind bis jetzt identifiziert worden. Sie enthalten 127-135 Aminosäurereste und werden nach dem Gewebe ihrer ersten Isolierung oder Identifizierung benannt. Die Sequenzübereinstimmung verschiedener LBPs rangiert zwischen 38 und 70 %. Die Übereinstimmung ist in Proteinen aus gleichen Geweben und unterschiedlichen Organismen höher als in Proteinen aus gleichen Organismen und unterschiedlichem Gewebe.

Rekombinantes humanes E-FABP enthält 135 Aminosäurereste (15.2 kDa) und zeigt eine starke Affinität zu Stearinsäure. Die Röntgenstruktur von humanem E-FABP zeigt die Existenz einer Disulfidbrücke zwischen Cysteinresten 120 und 127, was einzigartig in der ganzen LBP-Familie ist. Außerdem bildet E-FABP einen Komplex mit Psoriasin (auch bekannt ala S100A7), einem Protein der S100-Genfamilie, das mit psoriasisähnlicher Hyperplasie oder mit Brustkrebs in Verbindung gebracht worden ist. Die Untersuchung des E-FAPB:Psoriasin-Komplexes könnte eventuell zu einem besseren Verständnis der Wechselwirkung von E-FABP und S100A7 bei einer Psoriasiserkrankung führen.

Um die Beziehung zwischen Struktur und Funktion dieses Proteins besser zu verstehen, wurde seine Lösungsstruktur mittels NMR-Spektroskopie bestimmt. Sowohl unmarkierte als auch ¹⁵N-markierte Proben von rekombinantem humanem E-FABP wurden im bakteriellen System *Escherichia coli* exprimiert, mit dem Isotop ¹⁵N angereichert und zur Aufnahme von multidimensionalen NMR-Spektren verwendet. Mit Hilfe von heteronuklearen HTQC-, HSQC-, TOCSY-HSQC- und NOESY-HMQC-Spektren wurde die Zuordnung der ¹H- und ¹⁵N-Resonanzen des Peptidrückgrats erfolgreich durchgeführt. Außerdem war es mit

Hilfe homonuklearer COSY- und TOCSY-Spektren möglich, die Zuordnung der ¹H-Resonanzen der Seitenketten zu vervollständigen. Hierbei ergaben sich Strukturhomologien zu anderen Fettsäurebindungsproteinen, die die Richtigkeit der Zuordnung unterstützten. Die vollständige Zuordnung der ¹H- und ¹⁵N-Resonanzen des Peptidrückgrats sowie der Seitenketten erfolgte in der vorliegenden Arbeit, und die Daten wurden in der BioMagResBank unter BMRB-5083 abgelegt.

Das Vorkommen von sechs Cysteinresten in der Aminosäuresequenz von humanem E-FABP ist äußerst ungewöhnlich für LBPs. Vier dieser sechs Cysteinreste sind einzigartig in E-FABPs: C43, C47, C67 und C87. In der dreidimensionalen Struktur von humanem E-FABP wurden mittels Röntgenbeugungsanalyse zwei Cysteinpaare (C67/C87 and C120/C127) identifiziert, die ausreichend nahe beieinander eingeordnet sind, um eine Disulfidbrücke bilden zu können. Eine solche S-S-Bindung konnte jedoch nur zwischen C120 and C127 eindeutig nachgewiesen werden [Hohoff *et al.*, 1999]. Da der Ausschluss einer Disulfidbrücke zwischen C67 and C87 den R_{free} -Faktor der Röntgenstruktur verbesserte, wurde die Existenz einer kovalenten Bindung zwischen diesen zwei Seitenketten als eher unwahrscheinlich angesehen. Dies stimmt mit den hier präsentierten NMR-Daten überein, in denen S^γH-Resonanzen für die Cysteinreste C43, C67 (vorläufige Zuordnung) und C87 beobachtet worden sind, wodurch die Möglichkeit einer zweiten Disulfidbrücke in Lösung definitiv ausgeschlossen wird.

Die Auswertung der NOESY-Spektren wurde mittels einer semi-automatischen Zuordnungsroutine im Programm MATLAB 5.0 durchgeführt. Weitere Verfeinerungen mußten manuell im direkten Vergleich mit den Spektren vorgenommen werden, wobei die NOE-Intensitäten in Abstände zwischen den Wasserstoffatomen des Proteins übersetzt wurden. Die maximalen Abstände bei gegebener Intensität wurden durch Kalibrierung auf die Intensitäten von sequentiellen und 'medium-range' NOE-Werten aus Aminosäuresten in bekannten Sekundärstrukturelementen bestimmt. Die Intensitäten der Kreuzsignale wurden in vier verschiedene Abstandskategorien eingestuft: 2.5, 3.5, 4.5 und 6.0 Å. Informationen über Wasserstoffbrücken wurden aus Wasserstoff-Deuterium-Austauschexperimente mit deuteriertem Puffer erhalten.

Auf den NOE- und Wasserstoffaustauschdaten basierend wurde ein Ensemble von 20 energieminimierten Konformeren errechnet, das die Lösungsstruktur von humanem E-FABP im Komplex mit Stearinsäure darstellt. Die Analyse von homonuklearen 2D NOESY- und

¹⁵N-editierten 3D NOESY-Spektren führte zu einer Gesamtzahl von 2926 NOE-abgeleiteten Abstandsbeschränkungen. Außerdem wurden 37 langsam-austauschende Amidprotonen des Peptidrückgrats identifiziert, die Teil des Wasserstoffbindungsnetzwerks zwischen den β-Faltblattsträngen darstellen und in 74 zusätzliche Abstandsbeschränkungen umgesetzt wurden. Zusätzlich wurde die Disulfidbrücke zwischen C120 und C127 durch 3 maximale und 3 minimale Abstandsbeschränkungen definiert. Das Strukturrechnungsprogramm DYANA stufte 998 von diesen Abstandsbeschränkungen als überflüssig ein. Von den restlichen 2008 nicht-trivialen Abstandsbeschränkungen, waren 371 intraresiduell (i = j), 508 sequentiell (|i - j| = 1), 233 'medium-range' $(1 < |i - j| \le 4)$, und 896 'long-range' (|i - j| > 4). 300 Konformere, jedes nach 8000 'annealing' Schritten, wurden ab initio errechnet. Eine Gesamtzahl von 126 stereospezifischen Zuordnungen der prochiralen Methyl- und Isopropylgruppen wurde mit dem Programm GLOMSA erzielt [Güntert et al., 1991]. Wie von Wüthrich et al. [1983] vorgeschlagen wurden Pseudoatome für die nicht zugeordneten Stereopaare und für magnetisch gleichwertige Protonen verwendet. Die Energieminimierung der Struktur wurde für die 20 besten Konformeren aus DYANA mit dem Programm DISCOVER (INSIGHT 97, Molecular Simulations Inc., San Diego, USA) durchgeführt.

Das Protein besteht hauptsächlich aus 10 antiparallelen β -Faltblattsträngen, die eine β -Fassstruktur mit einer großen, inneren Bindungstasche bilden, und zwei kurze α -Helices, die ein Helix-Turn-Helix-Motif bilden. Die N-terminalen Reste V4-L7 bilden eine helicale Schlaufe (wahrscheinlich mit einer 3₁₀ Konformation), die zum β -Strang βA (G9-K17) führt. Amionosäurereste V14 und D15 bilden ein " β -Bulge" im β -Strang βA . G18 verbindet den ersten β -Strang βA mit der α -Helix I, die aus den Aminosäureresten F19-L26 besteht. Die Aminosäurereste G27-G29 bilden einen "Turn", der zur α -Helix II führt. Diese Helix enthält die Aminosäurereste I30-M38. Die Aminosäurereste A39-P41 verbinden α -Helix II und β -Strang βB (D42-C47). Die restliche Struktur besteht aus einer Serie von β -Strängen: βC (L52-E57), βD (T62-T68), βE (K72-T77), βF (R81-F89), βG (L94-E99), βH (E104-L111), βI (L116-V121), und βJ (T126-K133), die hauptsächlich durch Hairpinturns verbunden sind.

Ohne die terminalen Reste zu berücksichtigen, wurde für die dreidimensionale Lösungsstruktur des humanen E-FABP eine mittlere quadratische Abweichung von $0,92 \pm 0,11$ Å bzw. $1,46 \pm 0,10$ Å für die Peptidrückgrat- und die Schweratome bestimmt. Ohne die Portalregion (*d.h.*, für Aminosäurereste 4-26, 40-56, 63-75 und 83-134; die Portalregion stellt anscheinend die einzige Öffnung in der Proteinoberfläche dar, durch die der Fettsäureligand ein- oder austreten kann) wurde eine mittlere quadratische Abweichung des Peptidrückgrats

von 0.85 ± 0.10 Å errechnet, was die höhere konformationelle Dispersion in der Portalregion widerspiegelt. Die Überlagerung mit der Röntgenstruktur des humanen E-FABP (die terminalen Aminosäurereste ausgeschlossen) lieferte eine mittlere quadratische Abweichung des Peptidrückgrats von 1.00 ± 0.07 Å für die ganze Aminosäuresequenz bzw. von 0.98 ± 0.06 Å ohne die Portalregion. Diese Ergebnisse deuten auf eine starke Ähnlichkeit zwischen den Röntgen- und Lösungsstrukturen hin. Die Strukturkoordinaten wurden in der RCSB Datenbank unter PDB ID 1JJJ abgelegt.

¹⁵N-Relaxationsexperimente (T₁, T₂ und heteronukleare NOE) mit humanem E-FABP bei drei verschiedenen Feldstärken (500, 600 und 800 MHz) lieferten Informationen über die innere Dynamik des Peptidrückgrats. Die longitudinalen und transversalen (R_1 und R_2) Relaxationsraten wurden durch nicht-lineare Fehlerquadratanpassung der Peakintensitäten bestimmt (was unter Verwendung der durch das RMX-Programm erzeugten monoexponentiellen Funktionen erzielt wurde). Stationäre heteronukleare ¹⁵N{¹H} NOE-Werte wurden durch das Verhältnis der Peakintensitäten mit und ohne ¹H-Sättigung gemessen. Die mikrodynamischen Parameter der HN-Peptidrückgratvektoren (der verallgemeinerte Ordnungsparameter S² und die effektive interne Korrelationszeit τ_e) sowie der Beitrag von konformationellem Austausch zu der transversalen Relaxationsrate (der Austauschparameter R_{ex}) wurden mit dem Programm Modelfree4 errechnet und angepasst [Mandel *et al.*, 1995; Palmer et al., 1991]. Es wurden drei verschiedene Modelle für die spektrale Dichtefunktion verwendet. Das erste Modell basiert auf dem von Lipari und Szabo [1982] vorgeschlagenen model-free Formalismus. Es werden S^2 und τ_e bestimmt. Das zweite Model berücksichtigt außerdem einen Austausch-Term R_{ex} ; es werden S² und R_{ex} bestimmt. Schließlich wurde die erweiterte Variante des model-free Formalismus [Clore et al., 1990] als drittes Modell für die spektrale Dichtefunktion verwendet, wobei die Parameter S_s^2 , S_f^2 und τ_e angepasst wurden.

Die Ordnungsparameter (S^2) der Amidprotonen des Peptidrückgrats wurden für alle drei Feldstärken bestimmt, wobei eine Korrelationszeit $\tau_c = 8.6$ ns für die Umorientierung des Gesamtproteins errechnet wurde. Nahezu alle nicht-terminalen Peptidrückgratgruppen zeigten Ordnungsparameterwerte $S^2 > 0,8$ (durchschnittlicher Wert von $0,88 \pm 0,04$), was eine gleichmäßig niedrige Beweglichkeit des Peptidrückgrats im ns-ps-Zeitbereich über die ganze Aminosäuresequenz nahelegt. Die N-terminale helikale Schlaufe und die α -Helix I zeigen überdurchschnittliche S^2 -Werte, was auf eine niedrigere Beweglichkeit des Peptidrückgrats hindeutet, während die α -Helix II, die Teil der Portalregion ist, eine höhere Flexibilität aufweist. Austauschparameter (R_{ex}) wurden hauptsächlich im mittleren Teil der β -Stränge beobachtet, in dem sich auch die langsam-austauschenden Amidprotonen befinden, *d.h.*, Wasserstoff-Deuterium-Austauschexperimente deuteten eine direkte Korrelation zwischen der Stabilität des Wasserstoffbrückennetzwerks in der β -Faltblattstruktur und dem konformationellen Austausch (R_{ex}) im ms-µs-Zeitbereich an.

Die Eigenschaften der hier ausgearbeiteten Peptidrückgratdynamik des humanen E-FABP unterscheiden sich von denen des phylogenetisch eng verwandten Herztyp-FABP und des etwas entfernter verwandten Gallensäure-bindenden ILBP. Die in dieser Arbeit erzielten Resultate der Proteindynamik führen zu dem Schluss, dass verschiedene Mitglieder der LBP-Familie wie E-FABP, H-FABP und ILBP durch eine unterschiedliche Dynamik in den Peptidrückgratstrukturen charakterisiert sind. Wasserstoff-Deuterium-Austauschexperimente zeigten deutliche Unterschiede im chemischen Austausch mit dem Lösungsmittel für die Peptidrückgratprotonen des Wasserstoffbindungsnetzwerks zwischen den β-Faltblattsträngen. Die β-Fassstruktur des H-FABP ist anscheinend nur wenig beweglich, mit Austauschvorgängen, die vermutlich oberhalb des ms-µs-Zeitbereichs einzuordnen sind. Diese Divergenzen könnten dadurch zustandekommen, dass das hydrophobe Cluster in der Bindungstasche teilweise von unterschiedlichen Aminosäureresten gebildet wird. So kommt es zum Beispiel zu einer Substitution von F4 in H-FABP zu L7 in E-FABP. Außerdem könnte die höhere konformationelle Stabilität von H-FABP mit der stärkeren Bindung der Fettsäureliganden zu H-FABP im Vergleich zu E-FABP zusammenhängen [Zimmerman et al., 2001]. ILBP zeigt andererseits den schnellsten Wasserstoffaustausch und eine erhebliche Anzahl von Austauschparametern (R_{ex}) , was auf eine reduzierte Stabilität in der β -Faltblattstruktur im ms-us-Zeitbereich hindeutet. Schließlich rangiert E-FABP aufgrund des Wasserstoff-Deuterium-Austausches zwischen diesen zwei Proteinen, mit Rex-Termen in den β-Faltblattsträngen, die auf Austauschvorgänge im ms-μs-Zeitbereich wie in ILBP hinweisen. gibt möglicherweise eine Korrelation zwischen der Proteinstabilität und der Es Bindungsaffinität der Liganden, wenn eine flexiblere Struktur dem gebundenen Liganden erlaubt, die Bindungstasche leichter auszutreten. Andererseits könnte das Fehlen des hochkonservierten Phenylalanin (F57 in H-FABP) der Portalklappe in E-FABP ein wichtiger Faktor für die niedrigere Fettsäurebindungsaffinität von E-FABP sein. Untersuchungen von Punktmutanten des humanen E-FABP könnten eine Antwort auf diese Fragen geben.

Lebenslauf

Luis Horacio Gutiérrez González

geboren am 6. Oktober 1963 in Saltillo, Mexiko.

Schulbildung:

1970 - 1976	"Primaria" in Mexiko-Stadt (Grundschule und Gymnasium
	Grundstufe)
1976 - 1979	"Secundaria" in Mexiko-Stadt (Gymnasium Sekundärstufe)
1979 - 1982	"Preparatoria" in Mexiko-Stadt (Gymnasium Oberstufe)
1982	Abschluss (Hochschulzugangsberechtigung) "Bachillerato"

Hochschulbildung:

1983 - 1990	Physikstudium an der Universidad Nacional Autónoma de México in
	Mexiko-Stadt
1991	"Licenciatura" in Physik (entspricht Diplom) mit der Arbeit:
	"Physikalische Vorgänge in Polarlichtern."
1993 - 1995	Chemiestudium an der Universidad Autónoma Metropolitana in
	Mexiko-Stadt
1996	"Maestría" in Chemie (entspricht Magister) mit der Arbeit:
	"Untersuchung der chemischen Stabilität von Chymopapain: Auswirkung des pH-Werts auf die Aktivierungsparameter."
1997 - 2001	Anfertigung der vorliegenden Dissertation unter der Leitung von Herrn
	Prof. Dr. Heinz Rüterjans am Institut für Biophysikalische Chemie der
	Johann Wolfgang Goethe-Universität in Frankfurt am Main.