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In this paper we present the un-Casimir effect, namely the study of the Casimir energy in the presence of 
an unparticle component in addition to the electromagnetic field contribution. The distinctive feature of 
the un-Casimir effect is a fractalization of metallic plates. This result emerges through a new dependence 
of the Casimir energy on the plate separation that scales with a continuous power controlled by the 
unparticle dimension. As long as the perfect conductor approximation is valid, we find bounds on the 
unparticle scale that are independent of the effective coupling constant between the scale invariant sector 
and ordinary matter. We find regions of the parameter space such that for plate distances around 5 μm 
and larger the un-Casimir bound wins over the other bounds.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recently, a massive extension to the Standard Model was pro-
posed in which scale invariance is preserved, provided these new 
particles are weakly interacting and appear in non-integer num-
bers [1]. The topic has intersected a huge variety of fields, spanning 
astrophysics neutrino physics, AdS/CFT duality and quantum grav-
ity.

Scale invariance for massive fields can be described through 
Banks–Zaks (BZ) fields [2]. At some very high energy scale MU , 
the Standard Model fields interact with a sector exhibiting a non-
trivial infrared BZ fixed point, Lint = (MU )−kOSMOBZ , where the 
field operators must have dimensions dSM, dBZ and k = dSM +
dBZ − 4. Since the Banks–Zaks fields are not observed in na-
ture, their suppression requires that the scale MU is somewhere 
between current experimentally-accessible scales and the Planck 
scale.

At a second energy scale �U < MU , the BZ sector develops 
scale-invariant properties and the particle number is controlled by 
a continuous parameter dU �= dBZ . This is equivalent to saying that 
BZ fields undergo a dimensional transmutation to become unpar-
ticles via

1

(MU )k
OSMOBZ −−−→∼�U

λ
1

(�U )kU
OSMOU (1)
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where the unparticle operator OU has dimension dU and kU =
dU + dSM − 4. We note that the resulting interaction term de-
pends on a dimensionless coupling constant λ = (�U/MU )k < 1. 
Unitarity constraints from conformal field theory (CFT) necessitate 
a lower bound on the unparticle dimension dU ≥ 1 [3]. Normally 
only operators with dU ≤ 2 are considered because for dU ≥ 2 the 
calculations become sensitive to the ultraviolet sector and there-
fore less predictive. For a discussion about a more general form of 
these operators see for instance the HEIDI models [4–7].

The phenomenology of unparticles and the associated signals at 
high energy colliders (LEP, LHC) have received attention in recent 
literature [8–13].

On the theoretical side, bounds on the parameter space have 
been derived by computing the unparticle contribution to the 
muon anomaly [14]. Unparticles also provide a relevant short scale 
modification to gravitational interactions. Black hole solutions have 
been derived for the case of scalar [15–17] and vector [18] unpar-
ticle exchange. A significant characteristic of these solutions is the 
fractalization of the event horizon, whose dimension is a function 
of the unparticle parameter dU . This feature has been confirmed 
by subsequent studies of the spectral dimension, as an indicator 
of the short-scale spacetime dimension perceived by an unparti-
cle probe [19]. In addition, such unparticle modifications to gravity 
offer compelling effects that can be observed through short-scale 
deviations to Newton’s law [20] and on the energy levels of the 
hydrogen atom [21].

In this paper, we will analyze the Casimir effect in the presence 
of a weakly-coupled unparticle sector, which we will refer to as the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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un-Casimir effect. The Casimir effect has been discussed within var-
ious scenarios beyond the Standard Model including compactified 
extra dimensions [22] and minimal length theories [23,24]. Using 
the un-Casimir effect, we present a privileged testbed for setting 
bounds on relevant regions of the parameter space [�U , dU ] gov-
erning unparticle physics. The un-Casimir effect also offers an in-
triguing phenomenon of plate fractalization in agreement with the 
above discussion.

2. Unparticle contribution to the Casimir effect

In line with (1) we assume the existence of an unparticle vector 
field AU

μ of scaling dimension dU which couples with the standard 
model electron Dirac current Jμ = ψ̄γ μψ via the interaction:

Lint = λ

�
dU−1
U

AU
μ ψ̄γ μψ. (2)

Interactions of the form given in (2) have been extensively used 
in the literature in order to study the phenomenology of unparti-
cles [25–27]. In the presence of perfectly conducting parallel plates 
at a distance a, the interaction in (2) will be responsible for a 
Casimir effect for the field AU

μ in much the same way the interac-

tion Lint = e Aμ ψ̄γ μψ implies the Casimir effect in QED. For ease 
of presentation, in the following section we discuss the Casimir 
effect mediated by a scalar unparticle field using the scalar field 
analogy.1 This is routinely done in QED, where the actual result 
is just twice that of a scalar field due to the two physical photon 
polarisations. For the case of un-particles such a working hypothe-
sis remains valid, since the energy of longitudinal modes related to 
superposition of massive fields (see (5) below) do not exceed 1% of 
that of the transverse polarizations. A full treatment of the Casimir 
effect mediated by a vector unparticle field will be presented in 
[28].

The Casimir energy [29] is often described by the shift in the 
sum of the zero point energies of the normal modes of the electro-
magnetic field induced by geometrical boundary conditions. Such 
a Casimir energy can be written by means of the density of states 
dN/dω which in quantum field theory (QFT) is related to the imag-
inary part of the trace (over both space and spinor degrees of 
freedom of the field under consideration) of the Feynman prop-
agator [30,31]. It has been shown in [32, p. 47] that for a generic 
massive, scalar field the vacuum energy can be written as

Evac(m) = i

∫
d3x ∂2

0 D(x, x′;m2)

∣∣∣
x=x′ . (3)

Here D(x, x′; m2) denotes the Green’s function of the massive scalar 
field. Eq. (3) is obtained from the spatial integral of the vacuum 
expectation value of the energy-momentum tensor

〈0|T00|0〉 = − i

2

⎛⎝ 3∑
μ=0

∂μ∂ ′
μ + m2

⎞⎠ D(x, x′;m2)

∣∣∣
x=x′ . (4)

In case of an unparticle field, one has [1] a modified Feynman 
propagator [19,25,33] given by the following representation:

1 Alternatively one can consider the Lagrangian

Lint = λ

�
dU−1
U

J φU ,

that describes the Yukawa-like coupling between electrons and scalar un-particles, 
where J is a scalar current. Such interaction has to vanish in the limit dU → 1 but 
it is legitimate for dU �= 1.
DU (x, x′) = AdU

2π(�2
U )dU−1

∞∫
0

dm2(m2)dU−2 D(x, x′;m2)

AdU = 16π5/2

(2π)2dU


(dU + 1/2)


(dU − 1)
(2dU )
(5)

i.e. it is a linear continuous superposition of Feynman propagators 
of fixed mass m. When the conformal dimension tends to unity 
(dU → 1) the unparticle propagator reduces to that of an ordinary 
massless field DU (p2) → 1/p2 [25]. The above propagator can be 
expressed in terms of the unparticle generating functional ZU [ J ]
[33,34]. The net result is

DU
(

x, x′ ) = F̂ −1
U (�) D

(
x, x′ ) (6)

where D
(

x, x′ ) is the Green’s function for massless scalars and 
F̂ −1
U (�) is a non-local operator defined as [33,34]

F̂U (�) ≡ 2 sin (π dU )

AdU

(
−�
�2

U

)1−dU

. (7)

Eq. (6) shows that the unparticle propagator actually solves the 
massless Green function equation, since [ �, F̂U (�) ] = 0. This fact 
allows us to assume

〈0|TU
00|0〉 ≡

⎡⎣− i

2

⎛⎝ 3∑
μ=0

∂μ∂ ′
μ

⎞⎠ DU (x, x′)

∣∣∣∣∣∣
x=x′

⎤⎦ . (8)

The above assumption turns out to be in complete agreement with 
previous results for the non-local quantum stress tensor in a vari-
ety of contexts (e.g. for a generic operator F̂U (�)). See for instance 
[17] for the scalar un-particle mediated gravity and [35–37] for 
other non-local deformations where it is found:

〈0|TU
00|0〉 = F̂ −1

U (�) 〈0|T00|0〉, (9)

with 〈0|T00|0〉 referring to a massless scalar field. Indeed by using 
(6) in (9) one obtains (8).

By inserting (5) in (8) one has that the unparticle Casimir en-
ergy EC

U reads:

EC
U = AdU

π(�2
U )dU−1

∞∫
0

dm m2dU−3 EC(m) . (10)

Here we used the fact that the derivatives ∂μ∂ ′
μ and the integra-

tion on m commute. To derive the above result for the Casimir 
energy we apply in (3) geometric boundary conditions at the plates 
and subtract the free vacuum (no boundary) contribution.

The above formula shows that EC
U can be related to the stan-

dard Casimir energy of a scalar field of fixed mass m, i.e., EC(m). 
We also note that (10) is formally equivalent to the Casimir ef-
fect in Randall–Sundrum type II models [38,39], where the hid-
den 3-brane taken to infinity generates a continuous spectrum of 
Kaluza–Klein excitations [40].

3. Un-Casimir effect

To calculate EC
U we consider the Casimir energy for a massive 

scalar field [41–43]:

EC(m) = − 1

8π2

m2

a

∞∑
n=1

1

n2
K2(2amn), (11)

where K2(z) is a modified Bessel function of the second type. By 
inserting (11) in (10) we analytically find the unparticle Casimir 
energy that reads:



A.M. Frassino et al. / Physics Letters B 772 (2017) 675–680 677
EC
U (a) = − 1

a3

dU ζ(2 + 2dU )

(4π)2dU

1

(a�U )2dU−2
, (12)

where ζ(s) = ∑∞
n=1 n−s is the Riemann Zeta function. In the limit 

dU → 1, (12) reproduces the ordinary result for the Casimir ef-
fect of the scalar massless field. Despite the similarities with the 
Casimir effect of RSII type [40], the final explicit result (12) carries 
important differences. The unparticle contribution EC

U depends not 
only on the new energy scale but, more importantly, also on the 
conformal dimension dU . This makes the unparticle contribution 
sizable for dU approaching 1. Comparatively, the RSII Casimir en-
ergy is always suppressed since it scales as (κa)−1 ≈ 10−28, where 
κ ∼ 1019 GeV is the curvature parameter of the warped dimension 
and the separation length is typically a ∼ 1 μm.

As a related remark, we note that unparticles introduce a new 
and distinctive effect, i.e., a fractalization of metallic plates. This is 
evident by writing (12) as

EC
U (a) = − 1

aD+1

dU ζ(2 + 2dU )

(4π)2dU

1

(�U )2dU−2
. (13)

In the conventional case dU = 1, one finds D = D , corresponding to 
the topological dimension D = 2 of the boundary (we recall that, 
on dimensional grounds, EC (a) is an energy per unit area). On the 
other hand, when dU �= 1, the dimensional parameter D departs 
from integer values, a typical feature of fractal surfaces. Specifi-
cally one finds that D is completely determined by the unparticle 
dimension as D = 2dU . This result is in agreement with an equiva-
lent fractalization of a black hole horizon obtained from scalar [20,
15,17] and vector [18] unparticle exchange. The fractality encoded 
in unparticles has also been studied from a more general view-
point. Fractals require the introduction of dimensional probes like 
the spectral dimension, i.e., the dimension perceived by a diffu-
sive process or random walker. As such, it has been shown that 
the complete fractalization of plates, i.e., D = 2dU is a general re-
sult deriving from the spectral dimension for an unparticle field 
propagating on a manifold with topological dimension D = 2 [19].

Finally we find that, for two parallel metallic plates separated 
by a distance a, the total attractive energy reads

EC(a) = − π2

720a3

[
1 + 720 dU ζ(2 + 2dU )

π2(4π)2dU

1

(a�U )2dU−2

]
. (14)

The above result exhibits an additional contribution to the stan-
dard electromagnetic Casimir effect (− π2

720a3 or twice that of the 
scalar case). Eq. (14) gives the definition of the spectral dimension 
of plates in terms of the Casimir energy as D = − ∂ logEC(a)

∂ log a − 1, 
where EC(a) and a play the role of the return probability and the 
diffusion time respectively. By using (14) one finds

D= 2 + (2dU )β

1 + β
, (15)

where β = 720 dU ζ(2+2dU )

π2(4π)2dU
1

(a�U )2dU−2 . This formula shows, for 
dU > 1, a dimensional flow interpolating the following two 
regimes. For large plate separation a � 1/�U we recover the usual 
topological result, i.e., D → 2. On the other hand in the unparti-
cle dominated case a � 1/�U , plate fractalization takes place, i.e., 
D → 2dU . The conventional Casimir result, D = 2, is recovered by 
taking the limit of (15) for dU → 1. As expected �U is the criti-
cal scale at which the transition between the two phases (ordinary 
matter and unparticles) occurs.

4. Discussion

The un-Casimir effect offers important phenomenological pre-
dictions. We can get an estimate of the unparticle scale �U as 
follows. If �Cas is the relative error of the experimental measure-

ment, by imposing that 
∣∣∣[EC(a) − EC

QED(a)
]
/EC

QED(a)

∣∣∣ ≤ �Cas we 
obtain (for dU �= 1) the bound on �U :

�U ≥ �a ≡ 1

a

[
720 dU ζ(2 + 2dU )

π2(4π)2dU

1

�Cas

] 1
2dU−2

. (16)

We notice that there is a strong dependence on the parameter dU . 
In particular for values of dU slightly above 1 the bound on �U is 
very strong while as soon as dU increases the bound exponentially 
decreases.

In the case of the unparticle contribution to the muon anomaly 
[14] one has the bound:

�U ≥ �μ ≡ mμ

∣∣∣∣∣ λ2 ZdU
4π2�μ


(3 − dU )
(2dU − 1)


(2 + dU )

∣∣∣∣∣
1

2dU−2

, (17)

where �μ is the difference of the experimental result with the 
Standard Model prediction [46], �μ = �aμ(exp) − �aμ(SM) =
22 × 10−10 and ZdU = AdU /(2 sin(πdU ). We see the above bound 
is set by the muon mass mμ ≈ 105.7 MeV/c2. Conversely, the 
bound (16) is set by the parameter a−1 ≈ 2 × 10−7 MeV/(h̄c) for 
a ≈ 1 μm. From (17) we see that the g-2 bound depends on the 
coupling coefficient λ.

However we ignore the actual value of λ. Given the scale hi-
erarchy �U < MU < MPl, the coupling might be smaller, with 
consequent decrease in predictivity of the muon anomaly analy-
sis. This is not the case for the un-Casimir effect. The lower bound 
on �U derived from the Casimir effect does not depend on λ

(cf. (16)). This is in marked contrast with all the proposed bounds 
in the literature, such as the aforementioned muon anomaly [14,
26], a variety of other particle physics phenomena [47–49], the 
predicted deviation of Newton’s law at short scales [20], other 
astrophysical bounds [50,51] as well as bounds from atomic par-
ity violation [52]. This peculiar feature of the un-Casimir effect, 
i.e. being independent of the dimensionless coupling λ should not 
mislead the reader. Like any other physical effect based on the in-
teraction in (2), the un-Casimir effect in reality decouples in the 
λ → 0 limit. Indeed, the standard Casimir formula for a scalar 
field of mass m, cf. (11), is obtained in the limit of perfectly con-
ducting plates ωpla � c with ωpl the plasma frequency of the 
conductor. In QED, this is equivalent, upon squaring, to αEM � γ , 
where αEM = e2/(h̄c) is the fine structure constant and γ ≡ c2αEM

(ωpla)2

a material dependent quantity scaling as a−2. As noticed in [31], 
Casimir energies are independent of the nature of the plates as 
well as of any particular interaction coupling (αEM) when Dirichlet 
boundary conditions are perfectly met on metallic plates. In gen-
eral this is not the case and deviations from the standard Casimir 
formula increase as the plate separation a decreases. In QED, the 
deviations become relevant when γ ∼ αEM. Good conductors [53]
(Al, Au, Cu) with a ranging in [1–50] μm have γ from 10−5 to 
10−10. Therefore, being αEM ≈ 1/137 � γ , one can safely em-
ploy the perfect conductor approximation. This is also the case 
in the un-Casimir effect for λ2/γ � 1 and accordingly one finds 
λ-independent lower bounds for �U .

The above line of reasoning is confirmed by the background 
field approach, i.e. the calculation of the Casimir effect by com-
puting the one-loop effective action due to an interaction Lint =
1
2 g σ φ2 with a sharp background field σ(z) = δ(z − a/2) + δ(z +
a/2). Here the field σ(z) mimics the geometrical Dirichlet bound-
ary conditions on the plates at a distance a along z-axis [54,55]. 
Then the resulting renormalized energy EC (m, g) ≡ EC (m, g, a) −
EC (m, g, a → ∞) reads:
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Fig. 1. Contour plot (strong coupling regime) of the ratio �a/�μ = 1. The region 
below the solid line corresponds to �a/�μ > 1 (unCasimir provides the strongest 
bound).

EC (m, g) =
∞∫

m

dt t

4π2

√
t2 − m2 log

[
1 − g2 e−2at

4t2 + 4tg + g2

]
. (18)

The above relation readily interpolates between the known Casimir 
result of (11) (for g → ∞) and the decoupling limit (EC → 0 when 
g → 0). In QED the coupling g (dim[g] = E) is identified with 
the plasma frequency ωpl, which is indeed infinite for a perfect 
conductor and therefore identifies with the strong coupling limit 
g → ∞. On the other hand the decoupling takes place in the limit 
g → 0 because g scales like e4 (or α2

EM) and therefore vanishes in 
the limit (e → 0) [31]. Our working hypothesis in (2) implies that 
the unparticle coupling λ plays the role of the charge e in QED 
and any given material will have an unparticle plasma frequency 
ω̃pl related to the vacuum polarisation fermion loop diagram iden-
tical to that of QED with e ↔ λ [30]. At one loop order one can 
therefore calculate the unparticle plasma frequency

ω̃2
pl =

[(
λ

e

)2 ω2
pl

�
2(dU−1)
U

] 1
2−dU

(19)

that reduces to ω̃pl � (λ/e) ωpl for dU ≈ 1 when the unCasimir
bound is stronger. The perfect conductor approximation for the un-
particle Casimir effect is then ω̃pl � c/a or λ2/γ � 1. However, 
corrections in powers of 1/g (i.e. of 1/ω̃pl) can be computed in 
order to go beyond the perfect conductor approximation. The first 
order correction, to Eq. (7) reads:

EC,U
(1) =

(
2

ga

)
1

a3

dU ζ(2 + dU )

(4π)2dU (�Ua)2dU−2
= −

(
2

ga

)
EC,U

(0) (20)

where EC,U
(0)

is the perfect conductor result of Eq. (7). The rela-
tive magnitude of the first order correction with respect of the 
perfect conductor result is O (1/(ga)). This provides us with a 
physical basis to decide for what numerical values of λ the con-
dition ga � 1 (equivalent to λ2/γ � 1) is satisfied. Indeed we can 
safely apply the perfect conductor result if the first order correc-
tion is within the experimental error of the Casimir measurement. 
Therefore given that 1/(ga) = 1/(ω̃pla) = √

γ /λ we require that 
λ � 2

√
γ /�Cas.

5. Results

Fig. 1 shows the region in the parameter space (λ, dU ) where 
the un-Casimir bound on �U wins over the g-2 bound in the 
strong coupling limit (λ2/γ � 1). The range of applicability of our 
λ-independent result—see the dark filled triangle in Fig. 1—can 
be increased either reducing γ (other materials, larger distances 
and/or modulating the effective plasma frequency [56–60]) while 
Fig. 2. (Color online.) Lower bounds on �U (the regions below the curves are ex-
cluded). The continuous solid line is the bound from the Casimir effect [44]. The 
central filled area (gray) are the bounds from the muon anomaly [14] with differ-
ent choices of the coupling coefficient λ. We include bounds from direct searches at 
high energy colliders: LEP [10] full dots (blue) and LHC [11] full diamonds (green). 
The two (orange) square points are bounds from sub-millimeter Newtonian grav-
ity [20,45]. In the inset we show details of the region d ≈ 1, where the unCasimir
bound is by far the strongest.

Fig. 3. Contour plot of the ratio �a/�μ = 1 in the decoupling regime. The regions 
above the curves correspond to values of the ratio �a/�μ > 1 (un-Casimir provides 
the strongest bound).

higher precision in the Casimir measurement may require to go 
to higher order in the perturbative expansion based on (18). The 
current state of the art in the Casimir effect for perfectly con-
ducting parallel plates is the measurement reported in [61]. The 
relative error on the Casimir energy for plates distance a = 1 μm
is then �Cas ∈ [21%–33%]. However, larger plate separation exper-
iments (a ∈ [5, 10] μm) are currently under investigation [62,63], 
while distances up to a ≈ 50 μm have been considered in [64]. In 
this regime lowers values of γ (and hence λ) become accessible 
and the un-Casimir starts to be extremely competitive. In Fig. 2
we show the results for λ = 4 × 10−4 where the un-Casimir wins, 
see Fig. 1. For dU in the interval [1.005, 1.007] the bounds on �U
are respectively in the range [107, 10] TeV.

For λ2/γ � 1, the decoupling limit discussed above corre-
sponds to a λ-dependent un-Casimir energy. The leading
O

(
(ga)2

) =O
(
λ2/γ

)
term is computed form (18):

EC,U = (ga)2 2−(1+2dU )

2dU

1
3

1
2dU−2

(21)

(2π) (2dU − 1) a (�Ua)
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and the contour plot of the unit ratio of the corresponding bound 
on �U (now λ-dependent) with the g-2 bound is presented in 
Fig. 3 which shows that there is a sensible region in the plane 
(a, dU ) where the un-Casimir wins. Note that this region is instead 
λ-independent.

In conclusion we have highlighted regions of the parameter 
space where the bound on �U from current Casimir experiments 
is the strongest amongst the ones available, both in the strong cou-
pling regime (λ2/γ � 1) or in the decoupling regime (λ2/γ � 1). 
By combining the two regimes one finds that for plate distances 
of about a ∼ 5 μm and larger the un-Casimir bound wins over the 
other bounds for dU ∼ 1.
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