
Graph algorithms for approximate
and dynamic settings in the
external-memory model

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik
der Goethe-Universität
in Frankfurt am Main

von
DAVID VEITH

aus Offenbach am Main

Frankfurt 2019
(D 30)





vom Fachbereich Informatik und Mathematik der
Goethe-Universität als Dissertation angenommen.

Dekan:

Gutachter:

Datum der Disputation:





Danksagung

Ich bin dankbar, dass ich während meiner Promotion ein wissenschaftliches Aben-
teuer begehen und zugleich eine wertvolle Erfahrung sammeln durfte. Am Lehrstuhl
für Algorithm Engineering in Frankfurt am Main durfte ich mit den höchsten
Kreisen der deutschen und internationalen Wissenschaft in Berührung kommen und
gleichzeitig mein Verständnis für andere Kulturen rund um den Globus vertiefen.
Dies wäre ohne die Mitwirkung vieler Kollegen, Freunde und meiner Familie nicht
möglich gewesen.

Mein Dank gilt meinem Doktorvater Prof. Dr. Ulrich Meyer. Er hat mir die
Chance eröffnet, Spitzenforscher in Deutschland und Europa besser kennenzulernen.
Ich durfte bedeutende Konferenzen und Forschungsevents auf drei Kontinenten
besuchen, sowie regelmäßig in Dänemark am Zentrum für große Datenmengen bei
MADALGO in Aarhus forschen und so viele Kontakte knüpfen. Uli Meyer hat
mich immer unterstützt, angeleitet und durch immer neue Herausforderungen in
Forschung, Koordination und Lehre wachsen lassen.

Ein ganz besonderer Dank gilt Dr. Deepak Ajwani. Deepak hat sich während
meiner wissenschaftlichen Karriere häufig als Co-Autor und Mentor erwiesen und
mich durch seine ruhige, erfahrene Art und seinen Ideenreichtum dazu gebracht,
immer nach höchsten wissenschaftlichen Standards zu streben.

Weiterhin möchte ich meinen ehemaligen Kollegen danken. Sie waren alle wunder-
bare Menschen, die den noch recht jungen Lehrstuhl innerhalb von etwas mehr
als zehn Jahren zu einer Arbeitsgruppe geformt haben, in der ich mich überaus
wohlgefühlt habe. Ich möchte mich bei folgenden Personen bedanken: Andreas
Beckmann, Mahyar Behdju, Julia Hoeboer, Annamaria Kovacs, Arlene Kühn,
Kasimir Kuliberda, Gabriel Moruz, Andrei Negoescu, Manuel Penschuck, Alexan-
der Schickedanz und Volker Weichert. Ein besonderer Dank geht auch an Claudia
Heinemann. Ich hatte das Privileg sie als lebenslustige, gebildete und nachdenkliche
Person kennenzulernen. Sie hat meine Sicht auf die Welt und mögliche Lebensweisen



nachhaltig geprägt.

Weiterhin möchte ich meinen anderen Kollegen an der Universität danken, die
meinen Alltag und Mittagspausen bereichert haben. Das wären meine alten Kolle-
gen von der GDV (u.a. Jörg Demmer, Thorsten Gattinger, Patrick Sacher, Daniel
Schiffner, Sarah Voß-Nakkour, David Weiß, Alexander Wolodkin und Prof. Dr.
Detlef Krömker), sowie die Mitglieder des Lehrstuhls THI - Bert Besser, Mario
Holldack, Hannes Seiwert und Matthias Poloczek, sowie Prof. Georg Schnitger.
Von ihm habe ich gelernt, wie man zugleich zutiefst menschlich als auch fordernd
und fördernd sein kann, um alles aus einem Menschen herauszuholen (ich denke
u.a. an eine Ansprache nach einer Prüfung, der ich beisitzen durfte). Weiterhin
danke ich den gute Seelen des Prüfungsamts für Informatik, Diana Firnges und
Sylvia Trouillet, für die Zusammenarbeit in der Studienfachberatung sowie im Prü-
fungsausschuss. Für die Zusammenarbeit in der Studienfachberatung gebührt auch
Ronja Düffel ein gesonderter Dank. Schließlich danke ich noch Claudia Schwarz,
die im Dekanat so einige Kohlen aus dem Feuer geholt und uns ebenso wie Jutta
Nadland während Frau Heinemanns Erkrankung unterstützt hat. Ich danke all
den anderen wunderbaren Menschen, die im Laufe meiner vielen Jahre an der
Universität Frankfurt kennenlernen durfte.

Abschließend möchte ich mich ganz besonders bei meiner Frau Nadine und meiner
gesamten Familie für ihre Unterstützung und ihre Liebe bedanken.



Abstract

In this thesis we examine huge data sets in the area of graph algorithms from a
theoretical point of view, combined with implementations in C++ and experimental
evaluations. A graph G = (V,E) is an ordered pair with n vertices (sometimes also
called nodes) in the set V and m edges in the set E. Graphs can be used to model
objects as vertices and edges as connections between the objects. One example is
the constellation Ursa Major, where the stars are the vertices and the edges connect
the stars to the figure that can be seen in the star atlas. Due to their structural
diversity, graphs can have different interesting properties. In this thesis we focus on
the following main topics: diameter approximation, dynamic breadth-first search,
and distance oracles. We use methods of algorithm engineering [San09] combined
with the external-memory model [AV87] for theoretical considerations. Graphs are
a common model to process connection based information like routing on streets
or communication in networks, and customer behavior in online shops. Web based
data is growing by several terabytes every day. Thus, classic graph algorithms
designed for the RAM model (a fast processor plus a fast main memory) perform
poorly compared to algorithms that are explicitly designed for big data in the
external-memory model.

In 1987, Aggarwal and Vitter introduced the external-memory model [AV87].
Simplifying the hardware of a computer and its memory hierarchy into a model
containing a CPU, a fast main memory of limited size M , and an external memory
with communication in blocks of size B, this model allows us to abstract the cost
of slow input/output operations (or short “I/Os”). The challenge is to reorganize
data in a way that a block access to the external-memory device provides Ω(B)
useful data elements that can be processed in the near future before the fetched
data is displaced from the main memory again. A simple example is to read a text
file and count the number of appearances of a specific word. Each time a new block
is fetched, it can be immediately determined if the word appears or starts in the
received block and there is no need to load this specific block again.
Around the year 2000, researchers started to implement the library STXXL, written
in C++, which has been designed to supply commonly known C++ standard template



library (short: STL) packages like sorting [DKS08]. Using STXXL, the developer is
able to use the sorting function for big data as easy as in the STL. The complexity
of the library implementation in the external-memory model, which uses techniques
to parallelize and interleave operations on external-memory and CPU, is hidden
for the developer. We use the STXXL for implementations of our external-memory
graph algorithms.

Several overview papers have been published on efficient graph algorithms in
the external-memory model quite early [CGG+95, MSS03]. Nevertheless there
are still some famous open external-memory graph problems, for which we lack
efficient algorithms such as depth-first search. Similaryly, a factor 2 approximation
of the diameter can be computed in linear time in main memory. However, in
external memory – even after years of research – no algorithm with an equivalent
number of I/Os, namely Θ((n+m)/B) I/Os, has been found in the last decades
for depth-first search. Based on the work of Meyer [Mey08b], we present two
variants of external-memory implementations, and a few improvements on them,
in order to approximate the diameter of a graph I/O-efficiently. Our experimental
evaluation demonstrates that these algorithms are viable and suitable as prepro-
cessing steps for more complex algorithms that can be improved by knowing an
approximation for the diameter of the given graph. The I/O-complexity of our first
implementation is O(k ·scan(n+m)+sort(n+m)+MST(n,m)+

√
n·m
k·B · log2 (n

k
)) I/Os

with an approximation error of k · log (n). With scan(n+m) = O(n+m
B

) I/Os
we express the number of I/Os to entirely read a linear file of size n+m, with
sort(n+m) = O(n+m

B
· logM/B (n+m

B
)) I/Os the number of I/Os to sort a file of size

n+m, and with MST(n,m) the I/O-complexity to compute the minimum spanning
tree (MST) of a graph with n vertices and m edges. The I/O-complexity for the cur-
rently best randomized EM algorithm to determine an MST isO(sort(n+m)). Using
recursion we were able to design an external-memory algorithm that can approxi-
mate the diameter of a graph usingO(k·scan(n+m)+sort(n+m)+MST(n,m)) I/Os
with an approximation error of k4/3−ε under the side condition that the recursively
shrunken graph fits into the main memory which predefines the valid range for
values of k. One of our contributions is a mechanism to automatically determine a
value for k in the recursive step with high probability.



Subsequently we look at dynamic graph algorithms in external memory, which
are applied to process data that changes over time. We consider the breadth-first
search (BFS) algorithm on sparse graphs as an example, where we can improve
the I/O-complexity from the static to the dynamic case. This is different from
main memory, where the dynamic algorithm in general provides no guaranteed
improvement over the time complexity. Our implementation for dynamic breadth-
first search is based on previous work by Meyer [Mey08a]. We focus on the case
that in each step an edge is inserted into the graph. While the currently best
static EM-BFS algorithm has an I/O-complexity of O(n/

√
B+sort(n)) I/Os on

sparse graphs for one computation, the dynamic EM-BFS algorithm achieves an
amortized I/O-complexity of O(n · ( n

B2/3 +sort(n) · log (B))) I/Os for n updates.
In addition to the implementation of dynamic BFS in external memory, we intro-
duce a new clustering which is essential for the practically efficient preprocessing
and the dynamic updates. The clustering provides clusters of uniform size each
and dynamically changes the cluster sizes within one scan.
During the experimental evaluation, our dynamic EM-BFS implementation shows
in many scenarios, even on more challenging edge insertion sequences, that it saves
a significant amount of the I/O-volume to update the BFS tree compared to the
static EM-BFS implementation.

Finally, we provide a real-time external-memory algorithm that is able to answer
distance queries for arbitrary pairs of vertices with sufficient accuracy on real-world
graphs with a diameter bounded by O(log (n)), once the algorithm has precomputed
a larger data structure. We can answer online distance queries in milliseconds on
SSDs (solid-state drives) and amortized even in microseconds on HDDs (hard disk
drive), if the queries are answered in a batched way.
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1 INTRODUCTION

1 Introduction

Entities in our daily life such as street networks, transportation services, logistics
or even relationships between people can be expressed by graphs. In the graph
model we can use edges for several purposes to model properties of entities such
as distances, connections or relationships. Science and industry in particular have
been using graph algorithms for several decades in order to solve problems on big
data and gain insights about relationships between entities from the real world.
Seen from the field of discrete mathematics, graph theory is a well researched
topic. There exist various methods and algorithms to solve problems or provide
services based on results from the graph theory since many decades. Many graph
algorithms scale well on growing data sets - for example in linear time on graph
traversal algorithms. Some of them are introduced in Chapter 2. However, when
the input size grows to the point when the data set becomes too large to fit into the
main memory of a single compute unit, the situation changes and these algorithms
- designed for the RAM model - usually start to perform poorly. There are several
options to deal with this issue. One possibility is to divide the data into several
subsets, such that each subset fits into the main memory of a single machine. In a
computing cluster these subsets are sent to an appropriate number of machines
and partial results are computed separately. After the local computations have
been finished, the partial results are gathered and combined to a solution by one
or more machines. This scenario is especially part of the research areas distributed
computing [Lyn96, TvS07] and high-performance computing [HW10, Eij15]. The
concept of distributed computation is powerful if the partial results can be triv-
ially combined. The challenge for distributed computation is that in general the
combination of the results is complex and limited memory constrains increase
the complexity. One example is parallel merge sort [Col86], where splitters are
computed for both sequences that are parallelly merged.

Another common technique to speed up data processing is GPGPU (General-
Purpose Computing on Graphics Processing Unit) that came up in 2001. At
that time graphics hardware become more complex and with growing demands
on shading the number of floating point operations that can be processed per
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second increased a lot. Today, graphics hardware with GFLOPS (109 operations
per second) or even TGFLOPS (1012 operations per second) are available for the
consumer market. In 2005, the first meaningful GPGPU implementation of LU
factorization [GGHM05, DWL+12] which solves dense linear systems was published.
In GPGPU a single instruction can cause several computation steps in parallel on
one or more highly parallelized processing units (SIMD: Single Instruction Multiple
Data). Algorithms that are designed for single instructions on single data - which
is usually the case - might not scale well on GPGPUs and therefore we often
have to process huge data sets in a different way in order to solve the underlying
problem. There is a relationship between parallel and external-memory algorithms.
If we achieve a well-performing algorithm in the external-memory model we can
construct a well-performing parallel algorithm by a simulation. Refer to Dehne et
al. [DDH03] for an example of the construction of an external-memory algorithm
through a simulation on a parallel algorithm.

In industry, daily growing data sets resulted in more expensive machines with
growing main memory. One example of this development is the HANA (High
Performance Analytic Appliance) database architecture. Färber et al. [FML+12]
provide a short introduction to the architecture of the model. The HANA architec-
ture is based on a large main memory and compression of the stored data in order
to keep as much data of the working set as possible in main memory. HANA is
designed to be used in the daily work on business processes of a company. The
working sets usually include only a narrow part of the data like a week or a month
and a smaller footprint respectively summary of older data. However, if it is needed
to store growing data sets on external-memory devices for special purposes like
machine learning or optimization, due to the lack of free main memory, we still
need efficient external-memory algorithms. In addition, such an architecture cannot
be used on embedded systems as in production facilities or even on smart phones
due to its large hardware requirements and energy consumption.

In this thesis we demonstrate that we are able to design algorithms on small
hardware requirements even for real-time systems by the capability of the model
we use for algorithm design.
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1 INTRODUCTION

1.1 History of the external-memory model

In theoretical computer science we utilize computation models to express space
and time requirements of algorithms we design. Two very popular examples every
computer scientist should be familiar with are the Turing machine [Tur38] by
Alan Turing and the RAM model, as defined by Goldstine and von Neumann in
1947 [GvN47]. Both models are still very popular and have their advantages, as we
can examine the complexity class of a problem P on a Turing machine or implement
an algorithm - if P is a computable problem. The RAM model is used to determine
time complexity on today’s computers. However, the RAM model leaves a gap
to the performance of realistic machines. While the RAM model assumes one
computation step for each instruction and a fast main memory of unlimited size,
in real computers fast memory is small and expensive whereas slower memory is
larger and much cheaper. To close the performance gap in the memory hierarchy,
the external-memory computation model has been introduced by Aggarwal and
Vitter in 1987 [AV87].
The external-memory model gives a detailed description of the performance of
memory accesses in the memory hierarchy of modern computers. The model
consists of two levels of the memory hierarchy 1: the main memory and the
external memory of any computer. Access time to data that is stored in the main
memory is reasonably fast (nanoseconds) compared to the execution time of an
instruction on the CPU2, whereas it is orders of magnitude slower to access a
data element on a classic hard drive with mechanical disks, in both worst and
average case. Thus, we aim to reduce the communication steps between these
two stages of the memory hierarchy while we design algorithms with the external-
memory model. The data elements are stored on the external-memory devices
in blocks of fixed size. Even if only a single data element is requested from the
external-memory device, the whole block is sent. A block transfer is called an I/O
(input/output) operation. Since the introduction of the external-memory model,
computer scientists were able to research efficient algorithms for several well-known
graph problems in external memory as it was already the case for the corresponding

1Refer to section 2.7 for further details.
2On modern machines, 40 to 80 clock cycles are need to access a single data element in the

main memory at random.
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main-memory algorithms. Refer to [CGG+95, KS96, AM09] to get an overview
and an introduction into existing external-memory graph algorithms and ongoing
research. However, there are still examples such as depth-first search (short DFS),
where so far we have not been successful in developing an I/O-efficient algorithm,
expect the trivial one with one I/O per data request which is not feasible in practice.
Two heuristic DFS reference implementations for huge input graphs should be
mentioned: an implementation by Sibeyn et al. and another implementation by
Zhang et al. [SAM02, ZYQS15].

1.2 Research questions

In this thesis we deal with several research questions based on three algorithms.
These algorithms have in common that they deal with graphs in an external-memory
setting. The first algorithm is designed only for static data sets, whereas the others
are designed for dynamic data sets. The third algorithm even deals with the
demands of a real-time application. Our algorithms have the following research
questions in common:

• How does the algorithmic performance depend on graph parameters like the
diameter?

• Which graph classes enforce worst-case approximation bounds?

• Are there possibilities to improve our I/O performance respectively computa-
tion time?

Our first algorithm, which is introduced in Chapter 3, approximates the diameter
of a given graph. We show that there are various possibilities to approximate
the diameter of a graph and implement an algorithm by Meyer [Mey08b] and an
extension of it. We published these two results at PASA 2012 and ESA 2012,
respectively. Important research questions for this topic are:

• The original description of the diameter approximation left some details open.
Does the idea perform well in practice, and how much effort does it take to
fill in these details?

4



1 INTRODUCTION

• Is the approximation error in practice good enough to use the heuristic as a
preprocessing method?

• Is our algorithm competitive compared to existing solutions [AMO06, Bru07]
for diameter approximation in external memory?

The next algorithm deals with dynamic breadth-first search that has been introduced
by Meyer in 2008 [Mey08a]. We implemented a first prototype for ESA 2013
regarding the following research questions:

• Is it worth to use a dynamic algorithm compared to the static one?

• How much effort is needed to compute the dynamic clustering? And how
much effort is done to change the size of the clusters, if needed?

• On which graph classes and in which update cases does dynamic breadth-first
search perform well?

Our third algorithm deals with an external-memory distance oracle for real-world
graph data. We demonstrate that we are now able to create data structures for
applications that can be used in web services and other areas in real time. For
such applications we have to answer queries in a few milliseconds. To achieve this,
we deal with the following research questions:

• How can we use properties of real-world data to design a real-time application?

• Which hardware and parameters do we need to achieve our aim?

• How feasible is our trade-off between time and space?

• How close are the answers by the distance oracle to the actual distances and
are they close enough for applications?

1.3 Structure of the thesis

This thesis aims to give an overview of our work on several graph algorithms,
their history, current state of the art and possible ongoing work. We explain
how we gained new insights into the behavior of algorithms on different graph
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classes and several algorithmic tools while we dealt with performance issues. We
evaluate the performance of dynamic algorithms in external memory. We create
and experimentally analyze an implementation for an external-memory algorithm
for dynamic breadth-first search [Mey08a, BMV13]. Furthermore, we go one step
further and focus on new scenarios where it is necessary to be able to answer all
possible combinations of distance queries for two arbitrary nodes u and v in a
graph instead of having a fixed starting point u and only the degree of freedom in
the selection of an arbitrary target node v. Thereby we demonstrate that we are
now able to develop external-memory approximation algorithms that can be used
by companies to provide services which can be executed in real time. We conclude
with a chapter about ongoing and future work.
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2 BASICS

2 Basics

2.1 Graph

Definition 2.1. A graph G = (V,E) is an ordered pair of two finite sets V 6= ∅
and E, where V represents the set of vertices and E the set of edges.

The vertices are used to model entities as for example stars in a constellation. We
describe vertices by their label: for example the vertex vi is usually described by a
label i ∈ N. In a constellation the position of each star is an important property
as well as in street networks and many other applications. It is possible to add
further properties to vertices such as the vertex type. One important vertex type
is the start vertex. This property is usually not fixed by the input graph and we
have to determine which vertex or in some cases which and how many vertices we
select as start vertices.

An edge e ∈ E represents a connection between two or more3 vertices in G. We
focus on edges that connect two vertices. In the example of a constellation an
edge is the connection between two stars. Edges can be directed or undirected.
In the case of no direction, the edge between two vertices u and v can be used in
both directions. More precisely, the set of undirected edges E is defined as follows:
E ⊆ {{u, v}|u, v ∈ V ∧u 6= v}. We exclude self-loops in our definition. If self-loops
are allowed, the edge {u, u} is a valid member of E, if u ∈ V .
In the case of directed edges, the first vertex of an edge represents the source and
the second one the target vertex of an edge. The set of directed edges E is defined
as E ⊆ {(u, v)|u, v ∈ V ∧ u 6= v}. A connection from u to v does not imply a
connection from v to u.
Edges can be weighted by a function c(e) : E → R. An unweighted graph can be
seen as a weighted graph with ∀e ∈ E : c(e)→ 1. Important application of edge
weights are street or communication networks.

Annotation 2.2. The cardinality |V | of V is denoted by n (number of vertices)
and the cardinality |E| of E by m (number of edges).

3If an edge connects more than two vertices, the graph is called a hypergraph [Ber89]
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Definition 2.3. The density of a graph G = (V,E) is defined as the ratio between
the actual number of edges m in the graph G and the largest possible number of
unique edges n ·(n−1)/2 in an undirected graph that defines a complete graph Kn. A
graph Kn is also called a clique of size n. We call a graph G sparse, if m = O(n)
and dense, if m = Θ(n2).

In this thesis, graphs are stored in the adjacency list representation. We have a list
Lu for each vertex u ∈ V where each list Lu stores the an entry v for each edge
(u, v) ∈ E. If the graph is undirected, the edge {u, v} ∈ E results in an entry v in
the adjacency list of u and vice versa. If the graph has weighted edges (u, v, c(e)),
a pair of two values (v, c(e)) is stored in the adjacency list.
The graph model is quite simple to understand and very powerful. The graph model
is used to describe various entities from the real world. Simple examples are subway,
road, internet or social media networks. In the example of subway networks, the
vertices model the stations and the edges4 model the offered connections between
these stations. In some flight networks, the edges between different points in the
atmosphere can be used to model the fuel consumption, the average speed of the
plane and therefore the duration of a flight, possible alternative routes (e.g. to
redirect the airplane in the case of bad weather) or the height of a plane to use
so called jetstreams that are usually stable in the atmosphere. However, a flight
network is a very complex example, e. g. due to time dependency of edge weights.

2.2 Properties of graphs

Graphs have various properties we are potentially interested in. For an input graph
at first only the sizes of n and m are known. However, if other properties can be
quickly determined for the input graph, this knowledge can be used to select an
algorithm that is tailored for the graph class the input graph belongs to. Examples
for graph classes are trees, cliques or web graphs.
The diameter (Definition 2.5) of a graph is an example for such a property that
potentially has a strong impact on the performance of an algorithm.
In main memory, we can approximate the diameter of a graph using linear time

4A single edge is used if we only model the tracks and multi-edges are applied if we model the
different lines between stations.
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graph traversal algorithms like breadth-first search (BFS) within a factor of two.
However, in external memory, if the diameter is known, the appropriate external-
memory breadth-first search algorithm [AMO06] could be selected. This results
in a chicken-and-egg problem. It makes no sense to compute BFS for diameter
approximation in external-memory to improve the performance of BFS itself. We
would be forced to select the BFS algorithm with best worst case guarantees on
every input graph in the first step to choose a better performing algorithm in the
second iteration. We discuss this mutual dependence in Chapter 3 and engineer a
fast approximation algorithm that allows us to avoid this self-dependence.
Another very important property is the degree deg(v) of a vertex v ∈ V . Usually,
we are interested in the average degree or the maximum degree of all vertices v ∈ V .
The degree information is useful to design mechanisms to improve the approximation
quality of heuristic algorithms. We show examples of such mechanisms, namely
in the diameter approximation or our distance oracle computation (refer to the
Chapters 3 and 5).

2.3 Breadth-first search

Breadth-first search (BFS) is one of the most fundamental and oldest graph
traversal algorithms [Moo59, LS10, CLRS07]. BFS explores an unweighted graph
G = (V,E) from a start vertex s ∈ V level-wise. The vertex s belongs to level L0.
The neighbors N(0) of s are assigned to level L1. The neighbors of level L1, which
have not been visited while a previous level has been constructed, are assigned to
level L2 (N(1)) and so forth. A level Li is called the i-th BFS-level.
The data structure to implement BFS is a queue with the operations enqueue()
and dequeue(). A bit array with random access is used to check whether a vertex
has been visited. A sketch of the implementation is provided in Algorithm 1.
Each vertex v is marked as visited in line 12 and thus stored in the queue Q only
once.When a vertex is fetched from the queue, all outgoing edges are read once for
this vertex. If all vertices are reachable from the start vertex s, O(m) outgoing
edges are read and n vertices are marked as visited. This results in a linear run
time, we formulate in Lemma 2.4.
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Algorithm 1 Breadth-first search
1: procedure BFS(Graph G, vertex s)
2: Queue Q
3: Array visited[n,false]
4: Array level[n,-1]
5: Q.enqueue(s)
6: visited[s] ← true
7: level[s] ← 0
8: while !Q.empty() do
9: vertex u ← Q.dequeue()

10: vertices adjacent_vertices ← u.get_neighbors()
11: for v : adjacent_vertices do
12: if !v.visited then
13: visited[v] ← true
14: level[v] ← level[u]+1
15: Q.enqueue(v)
16: end if
17: end for
18: end while
19: end procedure

Lemma 2.4. For an unweighted graph G = (V,E) with |V | = n and |E| = m the
time complexity of BFS is O(n+m).

A very space efficient linear time BFS algorithm by Hagerup requires n·log2(3)+O((log (n))2)
Bits [Hag18].

2.4 The single-source and the all-pairs shortest path prob-
lem

The single-source shortest path algorithm in a directed and weighted graph
G = (V,E) (SSSP) defines the task of finding a shortest path from the start
vertex s to all other reachable vertices v ∈ V . Dijkstra’s algorithm [Dij59] solves
the SSSP within O((n+m) · log (n)) computation steps for positive5 edge weights

5Johnson modified Dijkstra’s algorithm in 1973 so that it is able to deal with negative edge
weights, if the graph has no directed cycles of negative length [Joh73].
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c(e) ∈ R+ using a heap [Vui78]6 as the underlying priority queue. With later
developed Fibonacci heaps the time complexity of Dijkstra’s algorithm has been
reduced to O(n · log (n)+m) [FT87]. Today’s improvements of the SSSP complexity
target the average case and tend to a linear complexity in average case [Mey03].
Thorup [Tho07] proved that with sophisticated priority queues SSSP can be imple-
mented with an amortized time complexity of (O(n ·

√
log(n)

1+ε
+m)). Elmasry

et al. introduced a priority queue with reduced space consumption on bit level in
O((m+n · log n+n ·

(
logn
s(n)

)2
) time [EHK15]. However, several side conditions for the

input and output structure are needed to implement this space efficient approach.
In this thesis we focus on a simple implementation based on the STL priority queue
in C++ which solves SSSP in O((n+m) · log (n)) time, which is feasible for our
purposes.
With the SSSP-tree can answer queries from a fixed source s to an arbitrary target
vertex. However, many applications require to answer queries between two arbitrary
vertices. To answer such queries time-efficiently, the computation of a shortest
path between all pairs of vertices is needed. The extension of SSSP is called the
all-pairs shortest problem (APSP).
Two classic algorithms solve this problem: the Floyd–Warshall [Flo62] and the
Bellman–Ford algorithm [Bel58]. Floyd–Warshall uses dynamic programming7 and
has a time complexity of O(n3). Bellman–Ford was actually designed to solve the
SSSP and is able to deal with edges of negative length. In addition, the algorithm
can detect cycles of negative length and can be computed in O(n ·m) time. In
total the Bellman-Ford has a time complexity of O(n2 · m) to solve APSP and
therefore performs well on sparse graphs. The Floyd–Warshall algorithm is the
better choice for dense input graphs. In the case of sparse graphs with non-negative
edge weights, APSP can be solved by using Dijkstra’s algorithm from every vertex in
O(n ·m+n2 log (n)) = O(n2 log (n)) time. Beside these algorithms there are several
improvements like solving APSP in O(n2) on graphs with random edge weights
from [0, 1] with high probability [PSSZ10]. An overview of the currently known
bounds for several APSP variants are given in a discussion of the Shoshan-Zwick

6The author refers to J.W. Williams and R.W. Floyd as originators of the heap and refers to
the Art of Computer Programming [Knu73].

7Richard Bellman is seen as one of the originators of dynamic programming [Bel54].
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algorithm by Eirinakis et al. [EWS17].

Several graph properties which we are interested in, can be determined by solving
the single-source or the all-pairs shortest path problem for a graph. Some well-
known examples are betweenness centrality (BC), where the value of each vertex v
gives information on how many shortest paths in the graph over all shortest paths
v participates [Fre77, Bra01, BMS15], closeness centrality (CC), as a measurement
how close a vertex is to all other vertices [Bav50, Sab66], or the diameter of a
graph. While each vertex in a graph might have a distinct value for BC or CC, the
diameter is a global property of a graph.

Definition 2.5. The diameter of a graph is defined as the length of the longest
path among the set of all shortest paths in a graph G. If the graph is not connected,
we only consider the diameter of the largest connected component in G [CGI+10].

2.5 Graph partitioning

Divide & Conquer is a common technique to deal with algorithmic problems by
recursion on growing inputs. On graphs, we usually divide the set V into smaller
disjoint subsets Vi for 1 ≤ i ≤ k. We call such a collection of k subsets a partition of
V . Simple examples for partitions are: every vertex has its own partition, vertices
are arbitrarily grouped into partitions at random, or vertices with a distance
smaller than a specific value are grouped together. The last calculation regulation
potentially produces conflicts in the partitioning algorithm. Vertices can be grouped
into different partitions and the algorithm has to find a partition, where the number
of vertices in each cluster is balanced, the centers of the clusters are well distributed
and as many information of the graph structure as possible is represented by the
clustering. In this thesis, we use various advanced methods to partition a graph
(refer to sections 3.7 and 4.3 for examples) to work on smaller representations of a
graph or load locally connected graph components as working sets.
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2.6 Distance oracle

For many applications such as web services with real-time answer requirements for
their users, an algorithm that solves APSP is not viable for reasonable large inputs.
There are two main reasons for this. The first reason is that the data used by such
web services usually stems from a dynamic setting. Hence, static precomputed
answers for user requests have no value due to many changes of the data over time.
Current work on dynamic APSP algorithms is currently just breaking the O(n ·m)
bound [HKN16] which is still not feasible for real-time applications. The second
reason is that for sparse graph data sets in the size of hundreds of gigabytes or
even terabytes, it is often too expensive to store precomputed distance tables due
to their quadratic size in the input size.

Hence, a new data structure has been developed by Thorup and Zwick in 2001 [TZ01,
TZ05] – the distance oracle. It should be mentioned that a similar idea for objects
in data bases and a distance function on these objects has been developed in 1998
by Yang et al. [YZW+98]. However, the approach by Yang et al. was not designed
for graph algorithms. The publication of Thorup and Zwick led to more than one
hundred subsequent publications on distance oracles and applications for graphs in
the community. This is another example for the versatility of the graph model.
A distance oracle for a graph G = (V,E) aims at two competing targets. The first
target is to answer distance queries as fast as possible (usually we aim O(1) or at
most O(log (|V |)) in practice for real-time applications), the second target is to
require less space and the third target is to achieve a high approximation quality.
Thorup’s and Zwick’s distance oracle is able to give a (2k−1)–approximation of all
queries with a query time of O(k), using O(k · n1+1/k) space and O(k ·m · n1/k)
preprocessing time on undirected and weighted graphs for any integer k ≥ 2.
Since the introduction of distance oracles, some improvements have been found for
unweighted graphs by Baswana et al. [BGSU08] respectively for weighted graphs by
Pǎtrasçu and Roditty [PR10]. An important bound, shown by Sommer, Verbin and
Yu [CSTW12], is that a k-approximate distance oracle needs at most O(n1+1/tk)
space, where t is the time for preprocessing. Distance oracles have been implemented
using various design patterns. They always have in common that there is a trade-off
between the query time, the space requirements per vertex/object and the quality
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of the output. Many newly developed distance oracles focus on design patterns
and trade-offs based on their applications as for time-dependent networks [KZ16]
or planar graphs [CDW17].

2.7 The external-memory model

The external-memory model (short EM model) has been introduced by Aggarwal
and Vitter in 1987 [AV87] to design algorithms that can perform well on the
communication between the main-memory and the external-memory level of the
memory hierarchy. The cache-oblivious model, introduced in 1999 by Frigo et
al. [FLPR99, FLPR12], is designed to perform well in each stage of the memory
hierarchy. In this thesis we focus on the external-memory model, regarding only
the communication costs between the RAM and the external-memory devices.
For simplicity in the EM model some assumptions of the RAM model are reused:
the access of the CPU to a single data element in the RAM is as fast as one compu-
tation step and costs O(1) time. However, the size of the RAM is now limited by
M data elements, whereas in the RAM model the entire data set is initially stored
in an external-memory. While a random access to the main memory is quite cheap,
the external-memory device behaves differently. If an access to a single data element
of constant size to the external-memory device is issued, the cost of this access is
denoted by 1 I/O (input/output operation). The time to accomplish one random
access on the external-memory device is between 10 to 100 µs for solid state drives
and 6 to 10 ms for hard drives. In contrast, the time to perform one random access
in main memory is between 40 and 100 ns. Hence, an I/O is several thousands
to 100,000 times slower than one single access on RAM. On the other hand, if an
external-memory device transfers data to the main memory, not only one element
is transferred but a block with B data elements. Hence, external-memory devices
are organized in blocks of size B to support this transfer pattern. With the block
pattern for data organization on the external-memory device the vendors of such
devices try to close the gap between the time to physically reach the position where
the data is stored and the time to read the data when the data stream from the
position is read. While accessing a block is very expensive (on hard drives in the
range milliseconds), reading a block of consecutive data elements consumes only a
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few nanoseconds per element. Another possibility to speed up the data transfer
rate is to combine several devices as a RAID (Redundant Array of Independent
Disks).
Abstracting all this information about the memory hierarchy and the hardware
architecture, the external-memory model is defined by the following parameters:

• N is the size of the input. Initially, it is stored as a file on the external
memory in consecutive, aligned blocks.

• M is the size of the main memory. The model assumes N �M .

• B is the size of a block of consecutive elements that are read or wrote in one
I/O. M/B ≥ 2 but usually the main memory can store a few hundred to a
few thousand blocks simultaneously depending on the block size.

• D is the number of disks. For theoretical analysis we assume D = 1. In the
later experiments we usually use 4 to 6 disks.

The two main operations in the external-memory model are scanning (read-
ing/writing the data in blocks) and sorting data. We denote the consumed I/Os of
scanning by scan(N) = Θ(N

B
) I/Os and of sorting by sort(N) = Θ(N

B
· logM

B

N
B

) I/Os.
In practice external-memory sorting is slower by a constant factor (between 2 and
20) compared to scanning.

The external-memory model aims at two major targets. One target is to make
external-memory algorithms comparable and the other target is to design algorithms
in a way that they use as few I/Os as possible and still have a feasible computation
time. We usually observe that external-memory algorithms are I/O-bound. That
means that the CPU has time windows where it has to wait for data transfers
from the external-memory device before the CPU can continue the computation.
There are still a few cases where parts of an I/O-efficient implemented algorithm
is compute bound, e.g. if many operations are done on each data element in a
data stream. Pipelining operations, where for example the data stream is read,
transformed, removed or sorted in consecutive computation steps, are one common
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example for compute bound implementation parts [BDS09]. Our libraries and
implementations for algorithms are designed to balance the workload between the
CPU and the external-memory devices with methods as interleaving – e. g. the
computation starts when the first block is loaded from the disk instead of waiting
the operation to be finished.

2.8 Minimum spanning tree computation in external mem-
ory

Definition 2.6. A spanning tree T = (V,E ′) of an undirected and connected graph
G = (V,E) is an acyclic subset E ′ ⊆ E, with |E ′| = n−1.

Deduced from Definition 2.6, a minimum spanning tree T = (V,E ′) of an undirected,
connected and weighted8 graph G = (V,E) is a spanning tree where the sum
C(T ) = Σe∈E′c(e) is as low as possible.
Minimum spanning trees (MSTs) are well-understood for the RAM model. Early
MST algorithms have been developed in 1926 by Borůvka [Bor26] and in 1930
by Jarník [Jar30]. The two basic algorithms which are usually taught in the first
year theoretical computer science lectures are based on Prim’s algorithm [Pri57]
from 1957 and Kruskal’s algorithm [Kru56] from 1956. Prim actually rediscovered
Jarník’s algorithm. Kruskal’s algorithm is based on the union-find data structure.
The MST algorithm by Prim has a time complexity of Θ(n log (n)+m) using
Fibonacci Heaps and Kruskal’s algorithm has a time complexity of Ω(m log (m)).
For external memory no efficient union-find data structure is known. An I/O-
efficient batched version has been presented by Agarwal et al. in 2010 [AAY10]. A
previously known sequence of N union and find operations can be executed with
O(sort(N)) I/Os, if the sets of each union operation are disjointed. Therefore, a
commonly used implementation of external-memory MST algorithm modifies Prim’s
algorithm using the fact that we know how to implement I/O-efficient priority
queues [BK98, BCFM00, WY14, ELY16]. Two special modifications are applied to
Prim’s algorithm in order to convert it into a feasible version for external memory.
The first modification is that we store edges as ordered node pairs < u, v > with

8For an arbitrary spanning tree it does not matter whether the graph is weighted or not.
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their edge weight as the key in the priority queue instead of vertices with their
smallest seen distance to the already constructed tree. With this modification we
can easily check whether a vertex has already been visited by checking if the next
entry on the priority queue concerns the same edge, e.g. the entry < u, v > followed
by the entry < v, u >. For unweighted graphs we ensure this by adding unique
random edge weights to each edge or deterministically by numbering the edges in
a fixed order (e. g. lexicographically). The second modification is that we reduce
the data size by Borůvka steps [Bor26], which we introduce in Definition 2.7.

Definition 2.7. Given a weighted input graph G = (V,E) for the MST computation,
a Borůvka step is a method to partition the vertices such that the vertices in a
partition can be represented by a new vertex. Each partition has at least 2 vertices
and therefore the output of the step has at most |V ′| = |V |

2 vertices left.

In order to partition the vertices for a Borůvka step, the edge with the smallest
edge weight of each vertex is marked as being part of the resulting MST. In each
step so called pseudo-trees with one cycle of length 2 each are constructed out of
the marked edges. The cycles are removed and the remaining trees are a valid
subset of the solution. The vertices of each subset are coalesced into a single super
node. With a logarithmic number of such steps number of remaining super nodes
can be reduced so that the computation can be finished with internal-memory
algorithms.
Combining the modified priority queue with randomization and super Borůvka
steps that guarantee less steps in total, we can achieve an I/O-complexity of
O(sort(n+m)) I/Os [ABW98, ABW02, KKT95]9. An I/O-efficient implementation
was published by Dementiev et al. in 2004 [DSSS04].

The external-memory MST algorithm is motivated by its versatile applications in
the preprocessing of various external-memory algorithms and its usability within an
approximation scheme, e.g., for the diameter of a graph (refer to Chapter 3). Usu-
ally, the computation of the MST is one of the first steps in a chain of preprocessing
steps to reorganize data.

9It is an interesting open problem whether we can achieve this I/O-complexity for deterministic
algorithms, too.
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Lemma 2.8. The external-memory minimum spanning tree computation can be
done within O(sort(n+m)) I/Os using randomization.

2.9 Euler-Tour in external memory

The Euler-Tour is one of the first application for which graphs have been used.
In 1736, the mathematician Leonhard Euler created graphs to solve the “Seven
Bridges of Königsberg” problem [Eul36]. The problem was to find a tour through
the city of Königsberg using each of the seven bridges exactly once. Euler proved
that for the given topological layout of the seven bridges there exists no valid tour
under the given constraints.
In this thesis we consider Euler-Tours on trees. Each edge can be used in both
directions only once and therefore there always exists an Euler-Tour. To construct
an unordered Euler-Tour, a cyclic order has to be fixed for each vertex (ingoing edge,
outgoing edge, ingoing edge,...). In external memory an unordered Euler-Tour can
be computed in O(scan(N)) I/Os on trees [CGG+95]. The list ranking algorithm
can be used to sort the tour data to a sequence of consecutive elements within
O(sort(N)) I/Os.

2.10 List ranking in external memory

Definition 2.9. Given an unordered pointer-based linked list with elements of the
type (data, nextElement) and the position of the head, the task of the list ranking
problem is to compute the rank of each list element. The rank of a list element is
its position in the list. The head has rank 1, the next element rank 2 and so forth.

The list ranking problem [CGG+95, Sib03, JLS14] can be solved within O(N)
computation steps in main memory. Beginning at the head of the list in each
step, the algorithm jumps to the address of the successor element e and memorizes
the rank of e by the rank of the predecessor p(e) plus one. In external memory
this simple algorithm is not feasible due to Ω(N) memory accesses and therefore
Ω(N) I/Os.
However, there exist several algorithms that can solve the list ranking problem
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in O(sort(N)) I/Os [MSS03, chap. 3.6]. One algorithm, derived from parallel
computing, is based on the usage of an independent set computation:

Definition 2.10. An independent set of a graph G = (V,E) is a subset V ′ of V
where no two vertices u,w ∈ V ′ have an edge e = {u,w} in common. Thus, if a
vertex v is part of the independent set, no vertex u with {u, v} ∈ E can be part of
the set.

For general graphs the computation of an independent set of maximum size is
NP-complete, whereas the computation of a maximal independent set is not. A
maximal independent set means that the solution is not expandable, while the
maximum independent set means that the size |V ′| of V ′ is maximum under all
existing maximal independent sets of a graph.

The list ranking algorithm in external memory is designed as follows: first, an
independent set L1 on the list elements is computed using time-forward process-
ing [CGG+95, section 4]. The elements in L1 are removed from the list L and the
resulting smaller list L′ is recursively shrunken until the shrunken list has a size
of min {M, |L|

B
}. When the list is shrunken we memorize each deleted element e

by adding its weight to the weight of its successor s(e) in order to compute the
correct ranks of the remaining elements. One independent set computation for a
list and the removal of its elements can be done within O(scan) I/Os.
The total I/O-complexity of list ranking is T (N) = T (2 · N/3)+O(sort(N)) =
O(sort(N)) I/Os. The complexity is derived from the size of the maximal indepen-
dent set on a list, which is at least N

3 .

Lemma 2.11. The external-memory list ranking problem can be solved recursively
within O(sort(N)) I/Os using independent sets in order to shrink the list.

2.11 Breadth-first search in external memory

While in main memory breadth-first search has linear time complexity, there is
no external-memory BFS algorithm known with an I/O-complexity better than
O( n√

B
+sort(n)) I/Os for sparse graphs, which is slower than the MST computa-
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tion [MM02].

In order to compute a BFS tree from a vertex v, two issues have to be addressed
by the algorithm which many cause the I/Os.

1. Check whether a vertex from the queue has already been visited. One I/O
per vertex would lead to Ω(n) I/Os and therefore this is not feasible.

2. For every unvisited vertex from the queue: load its adjacency list to process
it. This is actually a bigger problem for sparse graphs, because in general
only a small fraction of the block that has to be loaded can be used in the
next computation steps, if at all.

In 1999 Munagala and Ranade published a BFS algorithm [MR99] for undirected
graphs, which deals with the issue to recognize visited vertices and remove related
entries from the working set efficiently. In the following we call this algorithm
MR_BFS. The core idea of the external-memory algorithm is based on the observa-
tion that when a new BFS-level L(t) is computed, only N(L(t−1)), the set of neigh-
bors of the vertices in the already determined level L(t−1) are potential candidates.
Edges that connect a vertex u ∈ L(t−1) to another vertex v ∈ L(t−1) and edges that
connect a vertex u ∈ L(t−1) to a vertex v ∈ L(t−2) have to be ignored for the con-
struction of L(t). Therefore, L(t) = {N(L(t−1))−duplicates}\{L(t−1)∪L(t−2)}10.
In order to compute L(t) we have to maintain three sorted files in external memory
and scan them in parallel while we compute L(t)11. The two files of L(t−1) and L(t)
can be reused to compute the BFS-level L(t+1). This causes O(sort(n+m)) I/Os
over all BFS-levels. Due to the issue to load adjacency lists, we additionally
have O(n+m/B) I/Os to fetch the adjacency lists from the external memory at
random. Hence, the total I/O-complexity of MR_BFS is O(n+sort(n+m)) I/Os
instead of O(n+m) I/Os for the trivial version. There are graph classes where
MR_BFS is I/O-efficient in terms of sorting complexity. This for example is true,
if the diameter of the graph is a constant k. For a bounded number of at most d

10With the term duplicates we refer to multiple appearance of the same vertex by several edges
from the previous level from different vertices. Only one entry per vertex is permitted

11It is possible to merge these files into one file to avoid Ω(n) I/Os for writing these files or
even keep small sets in main memory.
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BFS-levels we obtain an I/O-complexity of O(d · scan(m)+sort(n+m)) I/Os. Since
many real-world graphs have a very small diameter, MR_BFS performs well as a
preprocessing step. In Chapter 5 we use this property of MR_BFS to construct a
distance oracle, especially designed for real-world data with a small diameter.

For general graphs and real-world data sets, the bound of O(n+sort(n+m)) I/Os
for MR_BFS is not feasible for sparse graphs due to the worst-case Ω(n) I/Os
by fetching adjacency lists at random. In 2002 Mehlhorn and Meyer published
an external-memory BFS algorithm that deals with the second issue [MM02].
MR_BFS is still used as a subroutine to deal with the first issue. In addition,
some new preprocessing is done on the graph in order to compute a partition of the
vertices, so that it is potentially enough to load the adjacency lists of the grouped
vertices only once into the main memory block by block. Then we can reallocate
the main memory fast to replace outdated entries by adjacency lists that are likely
to be used for the BFS computation in the near future.
The idea of Mehlhorn’s and Meyer’s external-memory BFS algorithm (short
MM_BFS) is to use an extra data structure that maintains the adjacency lists
of a graph with some knowledge about the distance of the vertices to each other in
their cluster. The MM_BFS clustering of the adjacency lists of a graph G works
as follows: first, a spanning tree T = (V,E ′) of G = (V,E) is computed. Next, an
Euler-Tour is computed on T using list ranking to order the tour. Finally, we go
through the Euler-Tour and split it into smaller clusters of size µ. Only the first
occurrence of each vertex is kept in a cluster and empty clusters are deleted. Hence,
there is a unique assignment of each vertex v ∈ V to exactly one cluster C(v). The
distance of any vertex v ∈ C(v) to any other vertex u ∈ C(v) is at most µ.
If during the BFS computation the adjacency list of vertex v ∈ C(v) is requested,
the whole cluster C(v) is loaded into the so-called hotpool H, instead of a single
entry. The exact value for the parameter µ and its impact on the I/O-complexity
is discussed in the following paragraph.

For an arbitrary pair of vertices u, v ∈ V their distance in the graph is upper-
bounded by their distance in the corresponding MST T . In general distT (u, v) ≥
distG(u, v) is not a very tight bound. For example, the distance between two
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vertices u and v can be 1 in the original graph G, but Ω(n) in the corresponding
MST T . Hence, we gain no guarantees for the BFS tree by the looking at the
MST. Nevertheless, if to vertices u and v have at most distance µ in the MST,
their BFS-levels differ by at most µ. Thus, as previously described we partition
vertices using the Euler-Tour. Ideally, the value µ would be Ω(B) so that we need
O(1/B) I/Os amortized to load the adjacency list of vertex v.
On the other hand, if we load a cluster C(v) into the hotpool, in the worst case this
cluster stays for Θ(µ) steps in the hotpool. If this happens for too many clusters
during the BFS computation at the same time, we have to scan O(N/B) the clusters
Θ(B) times which results in an I/O-complexity of Θ(N/B · B) I/Os. Refer to
Figure 24 for an example graph, where this run time behavior is enforced. In order
to avoid this unbalanced performance between fast cluster loading and many scans
of the hotpool file, we scan in each round, we have to find a reasonable trade-off
between the cluster size µ and the number of scans of the hotpool on average.
Mehlhorn and Meyer derived that µ has to be in the order of O(

√
B) so that the

scanning of the hotpool for each level-computation is not too expensive. This
trade-off results into a more expensive loading of the adjacency lists, respectively
in clusters of smaller diameter. It is an open problem if the two divergent aims12

can be modified to improve the I/O-complexity. Altogether, MM_BFS improves
the worst case I/O-complexity of external-memory BFS by a factor of Ω(

√
B)

while dealing with the issue to load adjacency lists I/O-efficiently. The original
clustering for MM_BFS has been improved to keep the first or last occurrence
of each vertex at random. This increased the expected workload of each cluster
(number of vertices in a cluster) to at least µ

8 [Mey08a]. In Chapter 4 we introduce
a clustering that goes one step further: it is dynamic in the cluster size with a
guaranteed high number of vertices in each cluster. It is used for the computation
of dynamic BFS. We conclude this section with Lemma 2.12.

Lemma 2.12. External-memory breadth-first search on undirected graphs can
be solved within O(d · scan(m)+sort(n+m)) I/Os for small diameter graphs and
for general undirected graphs consuming O( n√

B
+sort(n+m)+MST(n,m)) I/Os on

sparse graphs.
12To be as cheap as possible to load adjacency lists with O(1) I/Os while the hotpool has to

maintain as few elements for each level computation as possible.
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2.12 SSSP in external memory

In 2006 Meyer and Zeh [MZ06] provided an algorithm that solves the SSSP problem
in external memory usingO(

√
(n·m)
B
·log (n)+MST(n,m)) I/Os on undirected graphs.

Hence, on sparse graphs O( n√
B
· log (n)+MST(n,m)) I/Os are needed, which is

only a factor of O(log (n)) slower than MM_BFS. However, it is claimed by
Meyer and Osipov that this algorithm has too many complicated details to be
implemented efficiently and would suffer of high constants [MO09]. They performed
an experimental study to engineer an semi-external-memory implementation for
SSSP based on STXXL, using ideas from previous work such as the hotpool
structure to keep edges that are needed in the near future in internal memory, or
bounded edge weights to maintain the queues for the sorters in the pipeline with
less overhead. The available implementation is only semi-external due to one bit
per vertex which is kept in the main memory.

2.13 STXXL

The standard template library for extra large data sets (short STXXL)13 is a library
written in C++. This library models the standard template library (short STL) for
C++ in the external-memory setting. STL provides some basic data structures and
algorithms such as queues, stacks, vectors or sorting. STXXL provides a similar
interface, but in addition STXXL adds some underlying implementation layers to
manage the I/Os for the developer, implicitly organizes the block layout and provides
a pipelining interface to avoid I/Os by redundant operations [BDS09]. The first
version of STXXL was released in 2003 by Dementiev and Sanders [DKS05, DKS08].
Since 2016, the STXXL is in a review process and has been modernized for C++14
and C++17. In this thesis we use version 1.3.1, released in March 2011. We
additionally use some bug fixes of the developer version (queue package, some
minor development output bug fixes). These bug fixes are part of the release 1.4
which was releases in December 2013.
The current version 1.4.1 was released in October 2014.

13refer to stxxl.org for further implementation details
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2.14 Some details about graph classes and data sets used

In our experimental evaluations in the following chapters the same kind of graph
data sets appear several times. These sets have diverging properties, which is
used to evaluate the performance of the different implementations and make the
performance results for the algorithms comparable to each other. As previously
described for the external-memory Breadth-first search, the performance of an
algorithm often depends on the graph structure. Hence, the evaluation of an
implementation has to be done carefully, concerning the used graph classes.

• Graphs with a diameter of Θ(log (n)). Graphs in this diameter class are
typically real-world data sets such as web graphs or social media graphs.
Random graphs are another very important graph class that have a shape
with logarithmic graph diameter with high probability.

• Graphs with a diameter of Θ(
√
n). Examples for graphs in this diameter

class are grids of other regular or non-regular structures with paths of length
Θ(
√
n) as stars or trees.

• Graphs with a diameter of Θ(n). Graphs in this class tend to be lists or
structures with long paths and smaller hub regions in between.

In addition to these graph classes, we use worst case graphs, if we are able to
construct such instances. These worst case graphs are tailored to provoke as bad
performance as possible. Here is a small overview of our test data sets.

sk-2005: The sk-2005 graph14 belongs to the class of real-world data sets with a
small diameter in the range of O(log (n)). It has a diameter of 40 and is a web
crawl of the Slovakian sk-domain. The UbiCrawler has been used to crawl the
data for this graph [BCSV04]. This real-world data set has a huge core region with
an even smaller diameter and some satellites and lists with small clusters in the
outer rim. This data set has been used by several scientists in their experimental
evaluations while working on graph algorithms. Hence, it is very likely that the
sk-2005 graph will be used in the future again.

14http://law.di.unimi.it/webdata/sk-2005/
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√
n-level graph: This class is constructed by having a root vertex in the first

level and in each following Θ(
√
n) levels Θ(

√
n) vertices each. For the last level

less vertices might be generated to fulfill the user input for the parameter n. Our
implementation ensures that the graph is connected by connecting each vertex in
the new level Li to on vertex on the previous level Li−1 at random. The edges left
to achieve the desired number of edges respectively the mean vertex degree are
created at random by inserting random edges from level Li−1 to level Li−1. An
example of the structure is given in Figure 1. This graph structure was used by
Ajwani in his thesis [Ajw08].
Θ(n)-level graph: These graphs have a large range diameter of Θ(n) and a regular
structure. The same generator as for

√
n-level graphs is used. Therefore these

graphs have a structure as shown in Figure 1 but only a few vertices on each level.

...

Figure 1: An example for a k-level graph [Vei12].

Table 1 enlists some important data sets that are commonly used in our experiments.
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graph name diameter n m avg. deg(v) file size [GB]
sk-2005 40 5.06 · 107 1.81 · 109 35.7 27.0√

n-level graph 16,385 2.68 · 108 1.13 · 109 4.2 33.6√
n-level graph 2 46,342 2.15 · 109 8.59 · 109 4.0 128.0

Θ(n)-level graph 67,108,864 2.68 · 108 9.04 · 108 3.4 26.9
Θ(n)-level graph 2 536,870,913 2.15 · 109 5.62 · 109 2.6 83.8

Table 1: Some statistics on our graph data sets we use since
2011.
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3 DIAMETER APPROXIMATION

3 Diameter Approximation

Preliminaries. Some parts of this chapter have already been partially published
in a master thesis [Vei12] and two papers at PASA 2012 [ABMV12] and ESA
2012 [AMV12].

3.1 Introduction

We introduced the diameter d as a global graph property (refer to Section 2.2)
defined by the maximum length among all shortest paths in a graph G = (V,E).
By knowing an approximation of the diameter of a graph we can choose the best
suited graph algorithm among under all available options. The breadth-first search
problem, we introduced in Section 2.11, is one example we are interested in. For
a reasonable small diameter bounded by d = O(log (n)), we select the MR_BFS
algorithm and for a larger diameter the MM_BFS algorithm which performs
better on graphs with a larger diameter. This might have a huge impact on the
computation time in practice. In the following we specify some side conditions
under which the diameter of G is computed. These side conditions have already
been used in well-known work on the diameter computation and approximation of
graphs as in the publication by Crescenzi et al. [CGI+10]: If the graph G = (V,E)
is not connected we compute the diameter of the largest connected component C1

under all connected components of G. We assume that C1 is substantially larger
than the other components. In many data sets we encountered a huge connected
component, some singletons and a few connected components with less than 100
vertices. If needed, the diameter of smaller graph components can be computed
independently. It is assumed that the source s is part of C1.
Obviously, an easy way to approximate the diameter d of a graph in main memory
is the computation of a BFS tree TBFS. The height h of TBFS bounds the diameter
of an unweighted and undirected graph G within at most 2 · d. The height h of
TBFS can never be smaller than dd2e. We prove this well-know fact in Lemma 3.1.

Lemma 3.1. The diameter d of an undirected, unweighted graph G = (V,E) can
be bounded through one BFS computation from source s ∈ V by h ≤ d ≤ 2 · h where
h is the height of the computed BFS tree.
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Proof. We first show that h ≤ d: Let the path from u to v be a path that
defines the diameter of an unweighted and undirected graph. If the source s
equals u respectively v, the resulting height h of the BFS tree matches exactly
the diameter. Otherwise, if s is in any other position on the path, h is at least
d−min{dist(s, u), dist(s, v)} and by the definition of the diameter h ≤ d because
the path from u to v is the longest among all shortest paths. If s is exactly in the
middle of the path h is at least dd2e. Refer to Figure 2 for an example.

If s is not on the path between u and v, we have to include the following consid-
erations: the length l(p1) = d of the path p1 between the two vertices u and v is
the longest among all shortest paths in the graph G. The length of the paths p2

from s to u and p3 from s to v is bounded by d. Furthermore, l(p2) + l(p3) > d.
This brings us to the second inequality, d ≤ 2 · h: From the first inequality it is
known that h is at least dd2e and at most d. Hence, 2 · h ≥ 2 · dd2e ≥ d

2·d
2 e ≥ d and

2 · h ≤ 2 · d.

u

s

v

Figure 2: An example of a simple tree, where the BFS tree
from the source s is exactly half of the diameter.

For the main-memory scenario BFS is a feasible diameter approximation algorithm
with its linear time complexity in the size of the graph and the reasonable ap-
proximation factor of at most 2. In external memory, however, we have to select
the EM-BFS implementation with the best worst-case I/O-complexity (refer to
Section 2.11) even if another implementation needs less I/Os for the specific input.
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3 DIAMETER APPROXIMATION

Therefore, we want another algorithm to approximate the diameter in external-
memory that has an I/O-complexity less than Ω( n√

B
) on sparse graphs. In 2008,

Meyer published a scheme for an external-memory diameter approximation that
is not based on the computation of BFS [Mey08b]. The core idea is the concept
of parallel cluster growing. We evaluated this approach in 2012 [Vei12, ABMV12].
However, the performance of the parallel cluster growing still depends on the
shape of the graph. Hence, we improved the parallel cluster growing to a recursive
version [AMV12]. In this thesis we present the results in detail and evaluate the
development since that time. In 2013 we tried to further improve our approximation
guarantees in a diploma thesis by Timmer [Tim13]. However, only in a few cases the
weight sensitive recursive cluster growing produced slightly better results compared
to the first weight-oblivious recursive version, while significantly increasing the
approximation error in many other cases. So, we focus on the version from 2012
which does not include the weights of the shrunken graph into the clustering.
Beyond the original purpose of the parallel cluster growing, the author of this
thesis also used the core of the parallel cluster growing implementation for a lean
minimum spanning (MST) tree implementation. This MST implementation is
competitive to the reference MST implementation by Schultes in 2003 [DSSS04]
but, is less complex and easier to understand and even helped to improve the
reference implementation. This showed that parallel cluster growing is a versatile
and efficient method that is worth to be considered for further applications.

3.2 Some theoretical background

Füredi and Kim proved a bound on the number of distinct graphs with n labeled
vertices and a diameter 3 ≤ d ≤ n − c1 · log (n) for any constant c1 > 0 in
2012 [FK13]. The number of graphs for fixed values for n and d regarding the side
conditions is upper bounded by

(1+o(1))d− 2
2 n(d−1)3n−d+12(n−d+1

2 ).

Note that n(d−1) = n · (n−1) · · · · · (n−d+2). However, for reasonable large values
of n and d, there exist too many different graphs so that a hash table or another
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kind of lookup table is not a viable option to match input graphs to their exact
diameter. In general, the time complexity to compute the exact diameter of an
arbitrary unweighted graph is O(n · m) [CDK02] and O(M(n) · log (n)) for an
arbitrary weighted graph, where M(n) = n2.373 is the complexity of the matrix
multiplication [Sei92, Wil12].
So, instead of exact diameter computation it is a viable option to use an approxima-
tion algorithm. In the literature, there exist various techniques to approximate the
diameter that are based on one or more BFS computations. Corneil, Dragan and
Köhler [CDK02] showed in 2002 that specialized versions of BFS can approximate
the diameter with a result not worse than d−bk/2c, where k is the size of the
largest cycle in the given graph G.

In 2009, Magnien, Latapy and Habib gave an overview on techniques to determine
a lower, respectively upper bound of the diameter [MLH08]. They introduced
the double sweep lower bound technique (dslb), based on two BFS computations,
as a well-performing algorithm with linear time complexity. For trees, lists and
some other graph structures dslb returns the exact diameter [CDHP01, Han73]. In
2010, Crescenzi et al. published the fringe algorithm that can compute an upper
bound of the diameter on many additional graph classes using an a priori unknown
number of BFS computations [CGI+10]. In 2015 Crescenzi et al. published an
improved algorithm that is able to determine a reasonable lower and upper bound
of the diameter with only ten to a few hundred BFS computations on real-world
graphs [BCH+15]. The authors stated that they were surprised by the good
performance of their algorithm and that the most important open question was
(and still is) why this approach performs that well.
Nevertheless, all these diameter approximation algorithms use BFS as an underlying
function and their performance relies on the linear time of BFS in main memory.
In external-memory, however, current BFS algorithms are much slower than their
MST counterpart. Thus, we aim to achieve a better performance for diameter
approximation with algorithms that avoid external-memory BFS.
The I/O-complexity of MST is viable, but the diameter approximation of an MST
even of the complete graph Kn is in expectation O(

√
n) [RS67]. Therefore, MST

is no good candidate to replace BFS. With such an approximation error we would
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fail to choose the proper algorithm for external-memory BFS on sparse graphs.
MM_BFS would be selected instead of MR_BFS although MR_BFS could solve
the problem within few sorting steps which is the best we can hope for. Hence, we
need a heuristic that performs as close to the sorting bound in external memory as
possible and has a much better expected approximation factor than the MST even
on a complete graph.

3.3 Graph classes

In the following sections we discuss several heuristics that can be used to ap-
proximate the diameter in external memory. To evaluate the performance of the
different approaches, we selected a set of graphs as follows: a real-world graph
with small diameter of 40, instances of a synthetic graph class with diameter of
Θ(
√
n), instances of another synthetic graph class with diameter of Θ(n), and two

graph classes that enforce worst-case behavior for our parallel and recursive cluster
growing implementations. We present details about our worst-case graphs later in
this chapter (refer to Sections 3.8 and 3.11). Details about the other graphs can
be found in Section 2.14.

3.4 Hardware configuration

While initially working on this topic in 2011 and 2012 we used two kinds of
hardware architectures in order to perform our experiments [ABMV12, AMV12].
The first architecture was designed for external-memory experiments and the second
architecture was used for internal-memory experiments concerning some techniques
that are too expensive to be computed in an external-memory setting. The following
description is taken from our original paper, published at PASA 2012 [ABMV12]:

1. To determine the behavior of different techniques in an external-memory set-
ting, we used a machine with an Intel dual core E6750 processor @ 2.66GHz,
4GB internal memory (around 3.5GB free), 4 hard disks with 500GB each
as external memory for STXXL, and a separate disk for the operating system,
application and storing data, log files etc. The operation system was Debian
GNU/Linux amd64 ‘wheezy’ (testing) with kernel 3.0. The programs were
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compiled with GCC 4.4 in C++0x mode using optimization level 3.

2. For running the heuristics in internal memory, we used a machine (part of
the HPC cluster at Goethe University) with four quad-core AMD OpteronTM

processors 8384 @ 2.7GHz (only one core was used) and 64GB internal
memory. The only purpose of the internal-memory experiments is to determine
the approximation quality.

3.5 External-memory BFS with DSLB

As a base line for our approximation algorithm we ran experiments with external-
memory BFS on various data sets. We extended the MM_BFS implementation by
Ajwani et al. from 2006 [AMO06] in order to use the double sweep lower bound
technique. The results are presented in Table 2.

graph (diameter) time [h] approx. diameter size [GB]
sk-2005 (40) 5.27 39 27.0√

n-level graph (16,385) 10.64 16,385 33.6√
n-level graph 2 (46,342) 56.6 46,342 128.0

Θ(n)-level graph (67,108,864) 4.75 67,108,864 26.9
Θ(n)-level graph 2 (536,870,913) 27.8 536,870,913 83.8

worst_PAR_APPROX (2,440,341) 1.66 2,440,341 8.0
worst_2step (8,111) 3.1 8,111 31.9

Table 2: Results from external-memory MM_BFS experiments
with all data sets. Note that the diameter is easily determined
for tree structures like the worst case graph classes, and for
synthetic data with large diameters.

As discussed in Section 3.2, BFS can be a well-performing technique to approximate
or – in some cases – even compute the diameter [BCH+15]. The results from Table 2
show that BFS combined with the double sweep lower bound performs well and
reasonable fast. The performance of MR_BFS is of interest on real-world data
sets like the sk-2005 graph, where the computation of BFS needs only a couple of
minutes (about five to twenty minutes on a typical desktop depending on the type
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of external storage). Therefore, we use MR_BFS as a preprocessing routine for
our distance oracle (refer to Chapter 5).

3.6 Diameter approximation based on MST heuristics

In the worst-case the diameter of a minimum spanning tree is a bad predictor
to select the most suited EM-BFS implementation (refer to Section 3.2). On the
other hand, the randomized computation of an external-memory spanning tree
can be done in sorting complexity which is quite cheap compared to the currently
known I/O-complexity of external-memory BFS in general. Furthermore, the
computation of BFS-levels on any tree T can also be done in sorting complexity
by computing an Euler-Tour on T first and then use list ranking to determine
the distance of the vertices to the source. Knowing the BFS-level of each vertex
in an arbitrary spanning tree T of a graph G, the following algorithm can be
used to improve T = (V,E ′) to another spanning tree T ′ with less height. First,
we check for each vertex u ∈ V in a batched way, whether there exists an edge
e = {u, v} ∈ E with e 6∈ E ′, where the difference between the height-levels of u and
v in the spanning tree is at least 2. Assume that the height-level of v is smaller
than the height-levels of u. In that case, we replace the edge from the parent
of u to u in T by the edge e, which refines the tree and improves its diameter
approximation quality. The I/O-complexity of this strategy is O(sort(n+m)) I/Os
in each iteration with the implementation of Brudaru [Bru07]. If we head for a
total I/O-complexity of O(sort(n+m) · log (n)), up to O(log (n)) iterations are a
feasible number of refinement phases. In the following sections we refer to the
implementation of Brudaru by the shortcut SPAN. Our experimentally results for
SPAN are presented in Table 3.

graph (diameter with BFS) time [h] approx. diameter time BFS [h]
sk-2005 (39) 7.65 60 5.27√

n-level graph (16,385) 7.74 46,262 10.64
Θ(n)-level graph (67,108,864) 4.81 86,488,096 4.75

worst_PAR_APPROX (2,440,341) 3.34 3,982,472 3.1

Table 3: Diameters approximated by SPAN. For the
√
n-level

graph SPAN was faster than MM_BFS by 27%.
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3.7 Parallel cluster growing

In order to outperform external-memory BFS for the external-memory diameter
approximation, Meyer introduced two algorithms in 2008 [Mey08b]. Both algo-
rithms are based on a parameter trade-off between the I/O-complexity and the
approximation quality. Both algorithms shrink the graph G = (V,E) during the
preprocessing to a smaller graph G′ = (V ′, E ′) with |V ′| = Θ(|V |/k) for a parameter
k. A vertex v ∈ V is part of the shrunken graph with probability 1/k.

We first analyze the Euler-Tour based algorithm, which is derived from the clus-
tering of MM_BFS (refer to Section 2.11). The aim is to reduce the number of
vertices from |V | to Θ|V |/k) deterministically. We first compute an MST within
O((1+ log log (B · n/m)) · sort(n+m)) I/Os [ABT04] and subsequently we compute
an Euler-Tour and a list ranking with O(sort(n)) I/Os. The sorted tour is chopped
into chunks of size µ = max{1,

√
n·B
n+m}. Only the first occurrence of each vertex

v in a chunk is kept, while the duplicates of v in all other chunks are removed.
Each of the O(n/µ) non-empty chunks forms a cluster. The distance between two
vertices u and v in such a cluster is bounded by µ in the graph by construction.
We now reorganize the graph into a smaller representation in the following way:
each cluster is transformed into a single new vertex: we merge the adjacency lists
of all vertices in the cluster and thereby potentially reduce the number of edges,
too. After the transformation we obtain a shrunken graph G′ with O(n/µ) vertices.
The number of edges is reduced by one for every edge between two vertices in the
same cluster and for every duplicate edge between the same pair of clusters. On
the shrunken graph G′ we run a deterministic MM_BFS which differs from the
random variant by the described preprocessing. The height of the resulting BFS
tree is the approximation of the diameter.
In order to determine the approximation bound, the size of the chunks is denoted
by k with 1 < k < Θ(B). We now recap the influence of the transformation on the
graph which has been proven by Meyer [Mey08b].

Lemma 3.2. Let pu,v be the shortest path with length d(u, v) between the two
vertices u and v in the unweighted and undirected graph G. Furthermore, let
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d′k(u, v) be the length of the path in the shrunken graph G′k. The following inequality
is true: d(u,v)

k
≤ d′k(u, v) ≤ d(u, v).

Proof. Let 〈P = u = w1, . . . , wl = v〉 be a shortest path in G. Being a shortest
path P has no cycle. Thus, wi 6= wj ∀1 ≤ i < j ≤ l. With the clustering at most k
different vertices are mapped to the same cluster C(·). The vertices of the shortest
path P are mapped to their related clusters. Thus, P ′k = 〈C(u), . . . , C(v)〉. Any
two vertices vi and vj that are mapped to the same cluster C(·) create a cycle that
shrinks the length of P ′k by at most d(vi, vj) < k. In total the distance of the two
endpoints of P is at least bdG(u, v)/kc ≤ dG′(C(u), C(v)). On the other hand the
length of the path is not increased. Each vertex on the path P is mapped to one
cluster. The original length is obtained if each vertex is mapped to a different
cluster. Otherwise, at least one cycle is produced and the length of P ′k is decreased.
It holds dG′(C(u), C(v)) ≤ dG(u, v).

Following Lemma 3.2 the diameter d of the original graph G is reduced to bd/kc ≤
dG′ ≤ d for the reduced graph G′. With a single external-memory BFS run on G′,
rooted at an arbitrary vertex v, the diameter is bounded by bd/(2 · k)c ≤ dBFS ≤ d.
The approximation error is then bounded by O(k). In total we achieve an I/O-
complexity for MM_BFS of O(

√
n/k·(n/k+m)

B
+sort(n/k+m)+MST(n/k,m)) I/Os.

With the preprocessing bounded by sorting complexity in the original graph size,
we obtain in total an I/O-complexity of O(n/

√
k ·B+sort(n)+MST(n/k,m)) I/Os

for unweighted, undirected and sparse graphs with m = O(n).
The approximation error of O(k) is in general too large to select a suitable BFS
implementation for external memory if the value of k is close to the value of B.
On the other hand, if k is too small, we are still close to the I/O-complexity of
MM_BFS. Thus we have a look at the second approach: the first algorithm does
not propagate information to G′ about the distance between the nodes within the
clusters. With the following approach we preserve some information about the
distance between the clusters and thereby reduce the approximation error. To
obtain a weighted graph, each cluster Ci is created from a center point, well refer
to as master vertex. After selecting O(n/k) master vertices at random and O(n/k)
deterministically by an Euler-Tour to ensure a distance of at most k between the
master vertices, local BFS runs are computed from each master vertex as a source
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Figure 3: An example for the parallel cluster growing with 4
master vertices.

in parallel. In iteration step j we assign newly reachable vertices to exactly one
cluster, which means that the distance of the newly assigned vertices to at least
one master is exactly j and the distance to no master is smaller than j. Assume
that two clusters Ca and Cb hit an unassigned vertex u at in the same iteration
j. Then vertex u is assigned to Ca or Cb at random. Now, the two clusters meet
at u. Hence, we store the cluster-connecting edge 〈Ca, Cb, 2 · j〉 in the temporary
edge set E ′t for the shrunken graph G′. Whenever a cluster Ce hits a vertex u′ in a
later iteration j′ and u′ is already assigned to another cluster Cd with distance j′′,
a new cluster connecting edge 〈Cd, Ce, j′+j′′〉 is added to E ′t. When all vertices are
assigned to a cluster, we sort and scan E ′t and keep only the lightest entry for each
cluster-connecting edge and obtain the edge set E ′ for G′. A small example for the
parallel cluster growing as new preprocessing is depicted in Figure 3. Lemma 3.3
states the I/O-complexity of the parallel cluster growing.

Lemma 3.3. The parallel cluster growing has an I/O-complexity of
O(k · scan(n+m)+sort(n+m)) I/Os.

Proof. We select Θ(n/k) master vertices deterministically on the Euler-Tour with
at most distance of k between the masters on the tour and the same amount of
master vertices at random. With the deterministically chosen masters we ensure
that the distance of each non-master vertex to any master is at most k−1. With
k−1 iterations the parallel cluster growing assigns each non-master to a cluster.
Thus, the distance between the masters of two clusters is at most 2 · k−1.
In each iteration the adjacency lists are scanned once, what produces O(k ·
scan(n+m)) I/Os in total. In order to assign the vertices to exactly one clus-
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3 DIAMETER APPROXIMATION

ter, we have to sort the output of each iteration, which results in sort(n+m)) I/Os
in total.

We have to solve a single-source shortest path problem instead of the cheaper BFS
computation in order to obtain the shortest paths on the shrunken graph. On the
other hand, the expected approximation error is reduced to O(

√
k·log (k)) [Mey08b].

In the original publication it is actually proven that the expected approximation
for single paths is O(

√
k). However, for graph structures with many paths with

length in the range of the diameter it can happen that some resulting compressed
paths in G′ overshoot the expectation value by at most a multiplicative log-factor
with high probability. We recapitulate our approximation bound for one path in
Lemma 3.4.

Lemma 3.4. When a graph is shrunken by the parallel clustering growing approach,
the expected multiplicative error for one path is O(

√
k) with high probability.

Proof. We distinguish two cases: in the first case, the diameter d is at most 2 ·
√
k

and in the second case the diameter is larger than 2 ·
√
k.

1. Due to the diameter of at most 2 ·
√
k, the edge weights between the clusters

are in the interval 1, . . . ,min{4 ·
√
k, 2 · k−1} and each path contains at

most 2 ·
√
k edges. In Lemma 3.2 we already argued that the length of a

shortest path P is maximally increased if every vertex on P belongs a different
cluster and the edge weights are 4 ·

√
k each. This results in paths of weight

4 ·
√
k · d ≤ 8 · k and therefore, the approximation error is bounded by O(

√
k).

2. If the diameter is larger than 2 ·
√
k, we consider a shortest path P = 〈u =

w0, . . . , wp′〉 = v with length of the diameter d and split it into sub-paths p′i
of length between

√
k and 2 ·

√
k edges. Each path is considered separately.

W.l.o.g. let x be the master vertex which reaches the vertex wx on the sub-
path p′i earliest. By construction x has a distance of at most k to the reached
vertex on p′i. We denote the iteration in which x reaches the first vertex on p′i
by t ≤ k. There are two sub cases. The master x can capture all vertices on
the reached sub-path within the next p′ < 2 ·

√
k steps. Or, there is at least

one other master vertex y which also captures another vertex wy 6= wx on the
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same sub-path between the steps t and t+p′. The number of such different
master vertices, also capturing vertices on p′i, is limited by the number of
non-master vertices on the sub-path and by the number of non-masters in the
neighborhood of the sub-path. Let us quantify the impact of these capturing
master vertices on the resulting path length: when x reaches wx in step t, a
weight of size t is added to the path weight. When another master vertex y
captures a vertex on p′i, the paths Px and Py from the masters x and y do not
have any vertex in common on p′i. Therefore, the number of different master
vertices that can capture a vertex on p′i is limited by the amount of non-
masters on the path and the number non-master vertices in the neighborhood
of the path p′i with distance less than t to p′i. We accommodate the non-
masters with distance less than t by At. At most min {At/t, p′+1} different
master vertices reach the sub-path within the rounds t, . . . , t+p′. Thus, in the
worst-case each of the min {At/t, p′+1} different master vertices can increase
the length by an edge weight of at most 2 · (t+p′)+1. If we sum up this
influence, we gain in total a new path weight of O(min {At/t, p′+1} · (t+p′)).
With min {At/t, p′+1} · (t+p′) ≤ At+(p′)2 ≤ At+4 · k and the uniform and
independent selection of a vertex as a master vertex with probability 1/k,
it is easy to see that E[At] ≤ k with high probability. Thus, the expected
detour and resulting length of the sub-path is bounded from above by O(k).
Now, the sub-path is increased by a multiplicative factor of at most O(

√
k).

In order to combine the results of the sub-paths, we use the linearity of
expectation: we have Θ(d/

√
k) sub-paths of length Θ(

√
k) each. For each

sub-path we have already proven that the extra detour by the path growing
from the masters in parallel is bounded by O(k). Thus, the total detour for
the complete path is O(k · d/

√
k =
√
k · d).

The parallel cluster growing produces a weighted graph. We use the semi-external
SSSP implementation by Meyer and Osipov [MO09] and achieve an I/O-complexity
of O(k · scan(n+m)+sort(n+m)+MST(n,m)+

√
n·m
k·B · log2 (n

k
)) I/Os with

MST(n,m)) = O(sort(n+m)) using the random MST implementation. A full
external version is possible using the SSSP algorithm by Meyer and Zeh [MZ03,
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3 DIAMETER APPROXIMATION

MZ06]. In our implementation, we omit the deterministic master vertices to
decrease our preprocessing time. We refer to the implementation of the parallel
cluster growing algorithm by PAR_APPROX.

3.8 A graph class to enforce worst-case performance

In our later experimental evaluation, we challenge the parallel cluster growing diam-
eter approximation. In order to achieve its worst-case approximation performance,
we constructed a graph class to enforce bad results [Vei12, ABMV12, AMV12].
The weakness of the parallel cluster growing is the construction of the cluster
connecting edges which define the shrunken representation of the graph. Even a
single vertex on a direct path between two master vertices can be replaced by a
larger weight. Refer to Figure 4 for an example how a third master vertex can
increase the distance between two master vertices which are connected by a direct
path in the original graph G.

... ...

..
. z

z z
2z 2z

Graph G Shrunken graph G′

Figure 4: A worst case example for parallel cluster growing
with three masters: the distance from the blue to the green
cluster is increased from 2 ·z to 4 ·z through the purple cluster.

In order to create a worst-case graph class, we used the observation that clusters
interfere with each other and blow up shorter paths by growing side paths into
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them which results in larger edge weights in the shrunken graph. Our construction
starts with a long path, that essentially defines the diameter. We add side chains
to this path to create a potential to blow up this path. In order to concentrate
the randomly chosen master vertices at the endpoints of these side chains, we add
fans at their endpoints. Each fan attracts many master vertices at endpoints of
side chains. In order to avoid that many master vertices selected on the chains,
the length k1 of the side chains must not overshoot the length of the parameter k.
More precisely, we chose k1 = k1/2−ε. The size of the fans is k2 = k · log (n) so that
is very likely that at least one master vertex is selected in the fan. The construction
of a single long path with side chains can still fail if randomly selected master
vertices cut off many side chains. Therefore, we split the long path into smaller
segments with buffers in between. A segment with side chains has a path length
of k3 =

√
k to ensure that k3 · k1 < k. Then, the size of the buffers is Θ(k1 + k3).

With these buffers many of the segments will succeed and increase their diameter
from k3 +O(k1) to k3 · k1, which results in an approximation error of k1/2−ε. For
an example of such an segment, refer to Figure 5.

3.9 Experimental evaluation of PAR_APPROX

We evaluate our PAR_APPROX implementation empirically on different graph
classes to derive its performance in practice. We aim to find a reasonable ratio
between the amount of masters and vertices in the graph such that the performance
of the diameter approximation is feasible on as many different graph classes as
possible. In Figure 6 we have sketched the program flow of our PAR_APPROX
implementation: we first select the master vertices, then we shrink the graph. While
we shrink the graph, we memorize a correcting value cf for the diameter. With
the correcting value cf we try to cover the case that parts of the diameter defining
path(s) may be not covered by edges in the shrunken graph. The value of cf is the
maximum over all distances of the masters to the non-master vertices. Without
that correcting value we might underestimate the diameter of lists and other longer
structures. Note, that the expected value of cf decreases with a growing amount of
master vertices relative to the number of vertices.
After the reduction of the graph, it is checked whether the shrunken graph fits into
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k1
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c1 c2

Figure 5: A sketch of a segment of the worst-case graph class
for PAR_APPROX [ABMV12]. Many segments can be
connected at the endpoints of the horizontal chain of length
k3 with buffers of size Θ(k1 + k3) in between.
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Select mas-
ter vertices

Shrink graph
and determine cf

Shrunken graph fits
into main memory?

Internal-
memory SSSP

Approximated diam-
eter: dmax(v) + 2 · cf

Save weights
and edges in
separated files

Preprocessing with
EM-BFS Phase 1

Semi-external SSSP

yes

no

Figure 6: Flowchart of our PAR_APPROX implementa-
tion [Vei12].

the main memory. If this is the case, an internal-memory SSSP implementation
is run and the double sweep lower bound trick is used. The first source of SSSP
is chosen at random and we improve the result in the second run by the double
sweep lower bound technique.
If the shrunken graph G′ does not fit into the main memory M , we have to store
our data in two separated files, compute the MM_BFS clustering on G′ – MST,
Euler-Tour and list ranking – and then execute the semi-external memory SSSP
implementation by Meyer and Osipov [MO09] (we assume, that n

k
< M which is

feasible).
In order to run hundreds of experiments within a small time window on PAR_APPROX,
we created an internal-memory simulation of it. We used this version to research
the approximation quality on different ratios for masters and non-masters on our
web graph sk-2005, our synthetic graphs

√
n-level graph and Θ(n)-level graph with

about 228 vertices and worst_PAR_APPROX, our instance of the worst case graph
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3 DIAMETER APPROXIMATION

class with almost 228 vertices, k1 = 10 and k2 = 100 for a single segment with
k3 = 2, 440, 322.
It is easy to see that the parameter k should be in a range that |V ′| = O(n/k) < M ,
if we want to use the semi-external SSSP. On the other hand, the less vertices
the shrunken graph G′ has, the more likely G′ fits into main memory such that
we can use internal-memory SSSP to evaluate G′ in a few seconds without the
need of further I/Os. Thus, we started experiments with different values for k
on each graph class. Here are some highlights of the experimental results on the
internal-memory simulation of the diameter approximation, we used to improve
our external-memory version: for a larger k in the range of 218, respectively small
number of 210 master vertices, we have encountered 20 iterations for the parallel
cluster growing on our web graph and a comparable small value of 69 iterations on
the
√
n-level graph but also 228, 249 iterations on the Θ(n)-level graph and 7, 626

iterations on our worst case graph instance. While less than 100 iterations are
reasonable fast, 228, 249 iterations are definitely not viable. With a small k in the
range of 64, respectively 222 master vertices, the parallel cluster growing needed not
more than 121 iterations on any graph. In Figure 7 we depicted the approximation
ratio for various numbers of master vertices on the graphs in external memory and
in Figure 8 the running time for the experiments in external memory is given. For
k = 1, 024 three graphs performed acceptable in time and approximation quality.
However, the Θ(n)-level graph was too slow with 41.60 hours and 1698 iterations
(218 master vertices). MM_BFS outperform PAR_APPROX by a factor of 8 in
this case. Therefore, we only stated that a small value for k between 64 and 256 is
potentially feasible.

We concluded our work on PAR_APPROX in the published study [ABMV12]
with: “Our experiments have shown that the parametrized diameter approximation
method is in fact faster than plain external-memory BFS and typically produces
much better approximation bounds than the theory predicts. Nevertheless, it
turns out that it is currently not suited as a section guide between different BFS
approaches: as soon as the condensed graph does not fit into main memory, the
overhead to run the semi-external memory SSSP is not worth the subsequent
savings of a carefully chosen BFS approach.” [ABMV12]
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√
n-level Θ(n)-level worst_PAR_APPROX

Figure 7: The approximation ratio of PAR_APPROX for
different numbers of master vertices O(n/k), with n = 228.
Only for the web graph, n < 226. Note that these are results
for our external-memory implementation. The increasing ap-
proximation error for the web graph can be explained by more
detours that are added to the edge weights in the shrunken
graph due to the small diameter of the hub region.
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[masters]
28 210 212 214 216 218 220 222 224 226

5h

10h

15h web
√
n-level Θ(n)-level worst_PAR_APPROX

Figure 8: The execution time of PAR_APPROX depends on
the number of master vertices. Note that these are results for
our external-memory implementation. We skipped the value of
41.60 hours for the Θ(n)-level graph with 218 master vertices in
this figure for a better readability. The dashed lines are from
experiments we did with semi-external SSSP for the shrunken
graph.
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Figure 9: This figure depicts the scheme of the memory con-
sumption we encountered after the first and the second cluster
growing step with our recursive approach in many cases.

PAR_APPROX works well on graphs with small diameter, which is the case on
many real-world graphs, and on structures as trees or lists. At this point we decided
to tackle the challenge of extensive computation times by a recursive clustering
growing. Initially, we start with a small value for k in order to keep the number
of iterations small, and shrink the shrunken graph again – if needed. The next
section describes our modifications towards a recursive version in more detail.

3.10 Recursive parallel cluster growing

With the implementation of PAR_APPROX we demonstrated that on some
graph classes we can outperform MM_BFS to approximate the diameter of the
graph in terms of the execution time. However, on graph classes as the

√
n-level

graph we cannot achieve this goal. Therefore, we implemented a recursive version
of PAR_APPROX, we call REC_APPROX.
The main idea behind the recursion is to start with a parallel cluster growing
iteration with a large amount of master vertices in expectation.15 Then we measure
some properties of the shrunken graph and conclude parameters to shrink the graph
recursively such that it fits into main memory, if this is not already the case (refer
to Figure 9 for better imagination of the memory consumption).
In order to derive the value of k for the next shrinking step, respectively the number
of master vertices selected on G′, we include the number of vertices in the original
graph n0, the number of edges with m0 in the original graph and the number of

15In our implementation we have a default value of k = 16, and thus n′ is n/16 masters in
expectation.
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Figure 10: For each vertex we select the biggest among all its
edge weights as its corresponding wi value for our adaptive
rule.

vertices in the shrunken graph n1 as well as the number of edges m1 in the shrunken
graph. We developed an adaptive rule, such that we prefer vertices with larger
edge weights to adjacent vertices as master vertices and reduce the size of the
re-shrunken graph G′′ to something that fits into the main memory. Hence, we
keep for each vertex vi ∈ V ′ the value wi, where wi is the maximum under all edges
adjacent to vi. Refer to Figure 10 for an example. The value wmin represents the
smallest value among all wi and Sw = ∑

iwi is the sum over all wi.
The probability for a vertex vi to be selected as master vertex is now given by
pi = α· (wi−wmin)·n2

Sw−(n1·wmin) , where α = min {1−
(
m1
m0
− n1

n0

)
, 1} and n2 = n1 ·(m2/m1). The

value ofm2 is defined by the main memory, we reserved for the edges of the shrunken
graph G′′ in main memory. We assume, that ((wi−wmin) · n2) < (Sw − (n1 · wmin)),
which is the case if enough edge weights in G′ are greater than wmin, and further-
more we assume that n1 � n2 and m1 � m2.

In 2013, Thorsten Timmer worked on a modification of REC_APPROX with
additional queues to sort the integer edge weights such that for example an outgoing
edge with weight 5 waits for 4 rounds before it is considered for cluster growing.
It turned out that this idea only slightly improves the diameter approximation
quality on some graphs [Tim13] while it increases the running time by a significant
factor. So we stick to the idea of ignoring the weights for the cluster growing,
while we count them for the cluster edge weights for the resulting shrunken graph.
In Section 3.12 we present two minor improvements, we added to the recursive
implementation in order to further improve the approximation quality.
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3.11 Approximation error of REC_APPROX

While we have proven an upper bound for the approximation error of O(
√
k) for

simple paths using PAR_APPROX, we did not attempt to prove such an upper
bound for the approximation error of our recursive approach. So, we designed a
graph pattern according to the worst case graph pattern of PAR_APPROX for
two REC_APPROX with two iterations. For this new pattern we have proven a
lower bound for the approximation error of Ω(k 4

3−ε) for REC_APPROX, when
two cluster growing steps suffice to shrink the graph such that it fits into main
memory [Vei12, ABMV12] and no improvement for the selection of master vertices
is used (refer to Section 3.12).
We reuse the basic pattern of a long path with side chains that will grow into this
path with high probability. In order to retain this behavior we extended the side
chains by larger structures, we describe as follows:

• x-fan (Figure 11): the root v can be connected to the left and to the
right, e.g. to be part of a longer path. The root v has x vertices as children,
where these x vertices are only connected to v. In total this element has x+1
vertices with x = Ω(k · log (n)).

• x-double-fan (Figure 12): the root v can be connected to the left and to
the right, e.g. to be part of a longer path. The root v has x children v1 . . . vx.
Each of these children vi connects to another child wi and each wi in turn has
x further children zi,j with j ∈ [1, x]. The x-double-fan comprises x2+x+1
vertices in total and x = Ω(k · log (n)).

• side-chain block (Figure 13): a side-chain block is a list of length 2·k1/3+1.
The vertex in the center of the list is denoted as u. The center u itself is the
root of another path with k5/3−ε vertices and at the end of this path is an
x-double-fan. The other 2·k1/3 vertices on the list, except the center u, are the
root of an x-fan each. The side-chain block has 2·k1/3 ·(x+1)+k5/3−ε+x2+x+1
vertices in total.

• basic block (Figure 14): a basic block is assembled by k1/3 side-chain
blocks. In addition, a list of k2/3 x-fans to the left and to the right is
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connected. At the endpoints to the left and to the right there is an x-double-
fan as a buffer.

• Ω(x)-fan (Figure 15): the Ω(x)-fan is the remaining structure of the x-
double-fan during the parallel cluster growing. Although the structure of
this subgraph is randomly determined, it is similar to an x-fan with high
probability.

Our graph is now constructed by connecting y basic blocks to a long path, where each
segment grows independently. The diameter is then bounded by O(y · k2/3+k5/3−ε).
If y > k then the first term dominates. We chose x in the order of Θ(k · log (n)).
In the first round a vertex is selected as a master vertex with probability 1

k
. After

the first round of shrinking, the shape of the basic block is transformed into some
list with several Ω(x)-fans with high probability. The chain from the side-chain
block will be a list with a length in the range of k2/3−ε± k1/3 with high probability.
Refer to Lemma 3.5 for a proof. A possible shape of a shrunken basic block is
depicted in Figure 16.

Lemma 3.5. The length of the list in a shrunken side-chain block remains in the
interval of k2/3−ε ± k1/3 with probability 1−2 · e− k

ε

2 .

Proof. Each vertex vi in the list of the side-chain block in G is represented by the
random variable Xi. If vi is selected as a master vertex, Xi = 1 and else Xi = 0.
We denote δ as the deviation of the expected list length µ = k2/3−ε. We want to
bound the deviation of the list length by ±k1/3.

We first bound the deviation to the right: the Chernoff bound (refer to [Gon07] for
details) is then P

[
n∑
i=1

Xi ≥ (1+δ) · µ
]
≤ e−

min {δ,δ2}·µ
3 . For the additive deviation we

set (1 + δ) · µ = µ+ k1/3 and therefore, δ = k1/3

µ
.

e
−min{δ,δ2}·µ

3 = e
−min

{
k1/3
µ , k

2/3
µ2

}
·µ

3 = e
−min

{
k1/3, k

2/3
µ

}
3 = e

−min
{
k1/3, k2/3

k2/3−ε

}
3 =

e
−min{k1/3,kε}

3 = e
−kε

3 , for 0 < ε ≤ k1/3.
The Chernoff bound for deviation to the left is P

[
n∑
i=1

Xi ≤ (1−δ) · µ
]
≤ e−

δ2
2 ·µ.

Using the same technique to transform the multiplicative bound to its subtractive
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v0 v1 ... vx−2 vx−1

Figure 11: The x-fan [Vei12].

form, we again get δ = k1/3

µ
.

e−
δ2
2 ·µ = e

− k
2/3

2·µ2 ·µ = e−
k2/3
2·µ = e

− k2/3

2k2/3−ε = e−
kε

2 .
We condense the bounds to the left and to the right by twice the bound to the left
and the complementary probability is our probability 1−2 · e− k

ε

2 that the length of
the chain in the shrunken graph remains in the interval k2/3−ε ± k1/3.

The second iteration of recursive cluster growing lets the side chains grow into
the main chain of the side-chain blocks. A possible shape for the graph after the
second iteration is provided in Figure 17. The diameter of each basic block can be
increased from Ω(k2/3) to Ω(k1/3 · k5/3−ε) = Ω(k2−ε). So the expected diameter of
G′′ is Ω(y · k2−ε) which causes an expected approximation error of at least k4/3−ε.
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v

v0 ... vx−1

w0 wx−1

z0,0 ... z0,x−1 zx−1,0 ... zx−1,x−1

Figure 12: The x-double-fan [Vei12].
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k5/3−ε

connection edge

Figure 13: A side-chain block as a subelement we need to
generate our worst-case graph class [Vei12].

x-double-fan x-double-fan

x-fan x-fan x-fan x-fan

k2/3 k2/3

... ... ...

k1/3 side-chain blocks

Figure 14: The basic block as an element for our worst-case
graph class for REC_APPROX [Vei12].
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v

...

Figure 15: A possible shape of the Ω(x)-fan after the first
cluster growing. Note that the shape of the Ω(x)-fan is ran-
dom [Vei12].

Ω(x)-fan

Ω(x)-fan Ω(x)-fan Ω(x)-fan

Ω(x)-fan

... ... ... ... ... ... ...
k2/3 k1/3

L1

2k1/3

L2

2k1/3

Lk1/3

k1/3 k2/3

Figure 16: A possible shape of a basic block after the first
cluster growing step[Vei12].

Θ(k5/3−ε) Θ(k5/3−ε) Θ(k5/3−ε) Θ(k5/3−ε) Θ(k5/3−ε) Θ(k5/3−ε)

Figure 17: A possible shape for the graph after the second
clustering. The largest path is determined by the horizontal
baseline [Vei12].
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3.12 Two improvements of REC_APPROX: tie breaking
and cluster centering

In order to improve the approximation quality of REC_APPROX in the context
of weighted shrunken graphs, we added two tricks. We improved the tie breaking
rule by assigning non-master vertices in case of conflict to the master vertex
with minimum distance. Note, that such a tie breaking rule is not needed for
PAR_APPROX, which operates on unweighteed graphs, because two master
vertices can only compete for one vertex in the same iteration. For an example of
the tie breaking rule in a recursive step of REC_APPROX refer to Figure 18.
The second improvement aims to reduce the influence of clusters that grow into
longer paths. As mentioned in the constructions of our worst-case graph classes
we encounter bad performance by side chains with huge fans in which most of the
master vertices emerge with high probability (refer to Figures 5 and 13). In order
to reduce the impact of such structures in a graph, we move the master of each
cluster to its center after the clustering has been finished. This reduces the edge
weights between the clusters by a constant factor in some cases. An example is
given in Figure 19.
The I/O-costs for moving the masters to the center of their clusters are bounded
by an additional sorting step. Each cluster is loaded into main memory, the center
is approximated using internal-memory SSSP from the master and a second SSSP
run from one vertex with farthest distance to the master, similarly to the double

2 10

3

1

2 10

3

1

12

6

No TIE breaking
12

14

Figure 18: With active tie breaking, the algorithm assigns a
non-clustered vertex to the cluster with smallest distance to
the master.
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3 DIAMETER APPROXIMATION

Figure 19: After the clustering is computed, the master vertices
are moved to the center of their cluster in order to reduce the
possible impact on paths they might interfere with.

sweep lower bound technique (refer to Section 3.2). On the middle of the longest
path in the tree of the second SSSP-tree we select a vertex as the new master of
the cluster.

3.13 Experimental evaluation of REC_APPROX

We executed experiments on four graph instances: our web graph sk-2005, an
instance of the

√
n-level graph with a diameter of 46,342 and a size of 128 GB,

an instance of our Θ(n)-level graph with a diameter of 536,870,913 and a size
of 83.8 GB and an instance of our worst-case graph class for REC_APPROX:
worst_2step with a diameter of 8,111 and a size of 31.9 GB. While the web graph
has about 51 million vertices, the other graphs have more than 2.1 billion vertices.

In Table 4 we give an overview of the computation time that REC_APPROX
achieved on our graphs. REC_APPROX outperforms the execution time of
external-memory MM_BFS on every graph. In addition, the approximation quality
of REC_APPROX is still reasonable and close to the quality we achieved with
PAR_APPROX.
In order to check the performance of our improvements on REC_APPROX, we
analyzed how the approximation error grows with k. We generated a set of worst-
case graph instances for REC_APPROX with 228 vertices and a doubled value for
the graph parameter k. Note, that the size of the x-fans is x = dk · log2 ne (refer
to Section 3.11). The diameter approximation error is provided in Figure 20 for
an increasing number of master vertices (probability for each vertex to be selected
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HIER-time ratio BFS-time (single) ratio
sk-2005 0.6 h 3.3 5.6 h ( 3.2 h) ∼ 1.0√
n-level graph 2 9.0 h ∼ 1.0 56.6 h (37.3 h) 1.0

Θ(n)-level graph 2 3.6 h ∼ 1.0 27.8 h (19.0 h) 1.0
worst_2step 1.4 h 3.1 15.3 h (11.6 h) 1.0

Table 4: Performance of REC_APPROX on various graph
classes [AMV12]. Note that the diameter approximation ratio
is provided including the improved tie breaking rule and the
master movement routine. The BFS-time includes the double
sweep lower bound heuristic.

Exact Basic Adaptive Tie break Move All
sk-2005 40 185 196 173 182 168
ratio 4.625 4.900 4.325 4.550 4.200√

n-level graph 16385 16594 16416 16604 16597 16408
ratio 1.013 1.002 1.013 1.013 1.001

Θ(n)-level graph 67108864 67212222 67131347 67212123 67174264 67131036
ratio 1.002 1.000 1.002 1.001 1.000

worst_2step_k32 3867 138893 38643 137087 17321 13613
ratio 35.918 9.993 35.450 4.479 3.520

Table 5: The approximation quality of our improvements on
REC_APPROX on the four graph classes [AMV12] compared
to other configurations. Note, that the

√
n- and Θ(n)-level

graphs are the smaller versions due to the time for a run and
the missing impact of the improvements on these graph classes.
The graph worst_2step_k32 is another instance of our worst-
case graph class with |V | = 228, k = 32 and thus a size of
x = 896 for the fans (refer to Section 3.11).
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3 DIAMETER APPROXIMATION

as master vertex). In Figure 21 we depicted the distribution of the distance of
the vertices to their masters for the graph worst_2step_k32 with and without our
improvements. With our improvements the vertices have a smaller distance to their
master on average.

[Probability of a vertex being selecting a master]

[ratio]

2−14 2−13 2−12 2−11 2−10 2−9 2−8 2−7 2−6 2−5 2−4
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35 k = 2
k = 4
k = 8
k = 16
k = 32

Figure 20: Approximation error for several instances of the
REC_APPROX worst case graph class with |V | = 228, ε =
0.025 and growing values for k [AMV12].

3.14 Conclusion

We have developed an external-memory diameter approximation method, which
can handle huge data sets in appropriate time with feasible approximation quality
and has only little hardware requirements.
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Figure 21: The distance distribution of the vertices to their
masters on worst_2step_k32 after the second cluster growing
- in the basic approach with no improvements and a second
line with all extensions [AMV12].
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4 DYNAMIC BREADTH-FIRST SEARCH

4 Dynamic Breadth-First Search

Preliminaries Some parts of this chapter have already been published at ESA
2013 [BMV13].

4.1 Introduction

Initially we give a definition of the external-memory Dynamic Breadth-First Search
problem:

Definition 4.1. The Dynamic Breadth-First Search problem (short D-BFS) deals
with the following issue: given a graph G = (V,E) with undirected and unweighted
edges and a BFS tree T for G from a fixed source s ∈ V , the graph G is transformed
into a new graph G′ by an edge insertion or an edge deletion. The task is now to
compute the BFS tree T ′ for source s on G′, on the base of T in a way that needs
less I/Os than by a recalculation T ′ from scratch.

The idea to dynamically update the BFS tree after a single update plays a minor
role in internal memory. This is due to the fact that the worst-case RAM time
complexity is the same for the dynamic as for the static case. We discuss this in
Section 4.2 in more detail. However, the situation changes for the I/O-complexity
in the external-memory setting. In 2008 Meyer [Mey08a] published a dynamic
BFS algorithm which is able to transform the BFS tree T of the original input
graph G into the BFS tree T ′ for the updated graph G′ with asymptotically less
I/Os than the static MM_BFS, which is the currently best external-memory BFS
algorithm for general undirected graphs (see Section 2.11). An upper bound of
O(n/B2/3+sort(n) · log (n)) I/Os on sparse graphs with high probability per update
was proven for n consecutive edge insertions [Mey08a]. In the following, we examine
how a practical implementation of dynamic BFS behaves. In the work of Meyer, no
statements about the constant factors as well as the behavior on individual updates
are included. We research for which graphs the dynamic algorithm provides a speed
up even on single updates and in which cases we have to compute many or batched
updates to gain a benefit from the dynamic implementation compared to the static
one.

59



In order to implement the dynamic BFS algorithm, we had to implement a new
clustering algorithm for the preprocessing to improve the clustering used in the
original MM_BFS publication (refer to Section 4.3 for further details). In addition,
we need a dynamic reorganization of the clustering. The spadework for the new
clustering was done by Beckmann and Meyer within a first draft in 2009. A first
prototype was implemented by Asmaa Edres in her master thesis in 2012 in C++
using the external-memory C++ library STXXL [Edr12]. In order to improve the
performance we implemented a streamed version of the clustering and adapted the
interfaces to our implementation project that resulted in our ESA 2013 publication
about D-BFS. We rewrote the implementation with several optimizations in order
to reduce our main memory consumption whenever possible, avoiding unnecessary
context switches. Besides the streaming operations we used many ideas from
time-forward processing [CGG+95]. Details about the reimplementation are given
in Section 4.3.
We mainly focus on edge insertions in this thesis. In 2016 Fabian Knöller wrote a
bachelor thesis about the case of edge deletions [Knö16]. Knöller analyzes in more
detail the various cases an implementation has to regard during the deletion of an
edge. Furthermore, a scheme for the implementation of edge deletion is designed
and a prototype is evaluated. Details can be found in Section 4.5.

4.2 Dynamic BFS: the algorithm

Figure 22 depicts an instance of a graph class where each update requires Ω(n)
BFS-level updates if the edge updates are inserted as alternating shortcuts. In the
figure the dashed lines are edge insertions from s to u1,u2,u3,u4,u5, and u6 in this
fixed order. With each of theses updates the distance from the start vertex S to
each vertex in X respectively in Y is shrunken. The respective distances from s to
all vertices in Z are decreased by one in each update step. If the size of the subsets
|X|, |Y | and |Z| in the graph satisfy Ω(n), we enforce Ω(n) BFS-level updates. In
this scenario a dynamic BFS does not obtain any cost saving in the computation
time. Therefore we concentrate on the reduction of the I/O-complexity. We can
try to avoid I/Os by using the knowledge of the graph structure we have from the
previous BFS results. We write this down in Observation 4.2.
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4 DYNAMIC BREADTH-FIRST SEARCH
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Figure 22: A graph with two lines and a block element of three
sets as an example for an instance of a graph class where each
update requires Ω(n) BFS-level updates if the edge updates
are inserted as alternating shortcuts.

Observation 4.2. The number of potential changes of BFS-levels in a graph
G = (V,E) with |V | = n and |E| = m and a fixed start vertex s for one edge
insertion is bounded by Ω(n). Refer to Figure 22 for an example.

Both, algorithm and implementation of dynamic BFS are based on modifications
of the MM_BFS reference implementation by Ajwani et al. [AMO06]. During the
computation of the BFS tree, the MM_BFS implementation feeds several clusters
of adjacency lists into its hotpool H. The hotpool keeps track of the graph data
of components that are reached in the near future. The near future is defined by
the maximal diameter of each cluster, called µ. In Section 2.11 we argued that the
optimal trade-off for the value of µ on sparse graphs is

√
B. In the dynamic setting

we use the knowledge about the structure (BFS-levels) of the vertices in a cluster
of the previous BFS result.

Notation 4.3. In a sequence of n edge insertions e1, . . . , en we denote the insertion
of the i-th edge (u, v) to the graph by Gi(di). The variable di denotes the depth
of the BFS tree in the graph Gi. The value di(v) denotes the BFS-level of vertex
v ∈ V in Gi. Note, that the value of di respectively all di(v) are unknown before
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the dynamic BFS is calculated. G0(d0) represents the original graph G = (V,E)
without any modifications.

As mentioned in the introduction of this chapter we mainly focus on edge insertions
in this thesis. If we deal with edge deletions, it is explicitly mentioned in the
corresponding paragraph.

Observation 4.4. To update the BFS tree of Gi(di) after an edge insertion into
Gi−1(di−1), we can simply keep a data window of size di−1(v∗)−di(v∗) = O(n)
BFS-levels in the hotpool, where the vertex v∗ is the vertex with the largest level
change in the updated BFS tree. We use the parameter α > 1 to estimate the data
window size.

If we follow the idea presented in Observation 4.4, we can construct a dynamic
BFS algorithm in external memory quite simple. However, as already explained in
Notation 4.3, the correct value for di(v∗) is unknown in the beginning and thus the
same holds for the data window size. Furthermore, di−1(v∗)−di(v∗) is bounded by
O(n). We can derive two main targets the dynamic implementation has to fulfill:

1 We have to keep track of the consumed I/Os. If we consume too many I/Os,
α was too small and we have to adapt the data window size.

2 If we increase the estimator for α, we have to adapt our clustering to the new
alpha within at most sorting complexity.

We deal with the first target by assigning a small starting value to α for the cluster
size and so the levels we look ahead. We fix the size of our clusters to be in
the range of α = 21, 22, 23, . . . ,

√
B. Clusters of size larger than

√
B contradict

the observation of MM_BFS that cluster diameters greater than
√
B violate our

trade-off between the cluster size and the long residence time of clusters in the
hotpool (refer to Section 2.11 for details). On the other hand, clusters of a too small
size are not efficient due to the overhead by maintaining the cluster while it has
only a few elements. In theory, we can use the same parameter α for prefetching
levels into a hotpool and the cluster size. In practice, we split α into two values,
namely α1 and α2, in order to separately maintain the growing cluster size and the
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4 DYNAMIC BREADTH-FIRST SEARCH

levels we load into the hotpool. We refer to Section 4.7 for details about the values
for α we used for our experiments.
For performance reasons, we have to keep track of the random I/Os, caused by
cluster fetches into the hotpool. We allow up to α ·n/B random I/Os. If the number
of allowed random I/Os is exceeded, the original algorithm by Meyer [Mey08a]
stops, doubles the value of α and restarts the computation from scratch. In our
implementation, we continue the calculation with the increased α, reinitialize the
hotpools from the current level and keep the already computed results.
Later, we extended our implementation to split α into two distinct parameters α1

and α2. The number of simultaneously levels which are kept in the static hotpool
H is denoted by α1, whereby the diameter of the clusters that are fetched into the
dynamic hotpool HC is limited by α2. This is helpful in order to keep the number
if random I/Os small by having larger clusters. For the insertion of a new edge
into the graph, we determined the first level in which changes can happen so that
we start prefetching our α BFS from this level (refer to Lemma 4.5).

Lemma 4.5. Using the notation of Definition 4.1, let G = (V,E) and T be given
as well as a new edge {v1, v2}, i.e. G′ = (V,E∪{v1, v2}). For each vertex v ∈ V let
d(v) denote the BFS-level of v in T and d′(v) its BFS-level in T ′. Let l1 := d(v1) and
l2 := d(v2) be the BFS-levels of the vertices v1 and v2 in T , and w.l.o.g. be l1 ≤ l2.
Furthermore, let l0 be the smallest BFS-level in T , at which a vertex v0 exists with
d′(v0) < d(v0) = l0. We can calculate the BFS-level l0 by l0 = l1+d l2−l12 e+1.

Proof. Let v be a vertex with BFS-level d(v) ≤ l2 such that d′(v) < d(v). Then
there exist non-negative integers x, y, such that d(v) = l1 + x = l2 − y. Since the
BFS-level of v is decreased after inserting the new edge, the length of any shortest
path P between v2 and v in G is at least y (otherwise we would get d(v2) < l2 by
combining P with the shortest path between s and v in G) and therefore it holds
that

d(v) = l1 + x > d′(v) ≥ l1 + 1 + y ⇔ x− y > 1 ⇔ x− y ≥ 2

Moreover, since y ≥ 0, it follows that x ≥ 2 and we obtain l2 ≥ l2−y = l1+x ≥ l1+2
as a necessary condition for the existence of such a vertex v. However, the condition
l2 − l1 ≥ 2 is also sufficient because it holds that d′(v2) = l1+1 < l2.
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For the rest of the proof let us assume that l2− l1 ≥ 2. Now let v0 be a vertex with
BFS-level d(v0) = l0 and d′(v0) < d(v0) (clearly, at least one such vertex exists,
namely v2 or one of its predecessors in T ), then there exist non-negative integers
x0, y0, such that l0 = l1 + x0 = l2 − y0 (and therefore x0 − y0 ≥ 2 as shown above)
and we have

l0 ≤ d(v) ⇔ l1 + x0 ≤ l1 + x ⇔ x0 ≤ x

l0 ≤ d(v) ⇔ l2 − y0 ≤ l2 − y ⇔ y0 ≥ y

for any vertex v with d′(v) < d(v) and associated integers x, y as above. Using
these inequalities we obtain 2 ≤ x0− y0 ≤ x− y, and by combining this result with
the definition of l0, we can deduce that either x0 − y0 = 2 (if l2 − l1 is even) or
x0 − y0 = 3 (if l2 − l1 is odd) holds (otherwise we could simply replace v0 by one of
its predecessors in T in contradiction to the definition of l0).

Case 1: x0 − y0 = 2
On the one hand we have the equation l0 = l1+x0, and on the other we have the
equation l0 = l2−y0 = l2−x0+2. By adding these two equations we obtain

2 · l0 = l1 + x0 + l2 − x0 + 2 = l1 + l2 + 2

⇔ l0 = l1 + l2
2 + 1 = l1 + l2 − l1

2 + 1,

which is the desired result.

Case 2: x0 − y0 = 3
Analogously, we have the equations l0 = l1+x0 and l0 = l2−y0 = l2−x0+3. Again,
by adding these two equations we obtain the desired result

2 · l0 = l1 + x0 + l2 − x0 + 3 = l1 + l2 + 3

⇔ l0 = l1 + l2
2 + 3

2 = l1 +
⌈
l2 − l1

2

⌉
+ 1,

where the last equality holds because l2 − l1 is odd in this case, as mentioned
above.
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4 DYNAMIC BREADTH-FIRST SEARCH

Alternatively we can prove the Lemma by using some properties of the BFS tree T
as follows:

Proof. For each vertex v ∈ V let P (v) = (w0(v), . . . , wd(v)(v)) denote the (unique)
path of length d(v) from the source s to v in the BFS tree T (i.e. w0(v) = s,
wd(v)(v) = v, wi(v) 6= wj(v) for i 6= j, and {wi(v), wi+1(v)} ∈ E for all i). Observe
that for each vertex v the path P (v) is a shortest path in G, and that each neighbor
u of v in G has a BFS-level d(v)−1 ≤ d(u) ≤ d(v)+1 in T . Furthermore, after
inserting the edge {v1, v2}, the path P (v1) still remains a shortest path in G′

(otherwise there would exist a path from s to v2 of length at most d(v1)−1 in G
contradicting l1 ≤ l2) and therefore it holds that d′(v1) = l1.

On one hand, we still have the path P (v2) of length l2 in G′, which is a shortest
path in G, and on the other we can now extend the shortest path P (v1) in G′

with the edge {v1, v2} and obtain the path P ′(v2) := (s, . . . , v1, v2) of length l1+1.
Hence, at least one of these two paths is a shortest path in G′ which allows us to
determine d′(v2): if P (v2) is a shortest path in G′, then we have d′(v2) = l2 ≤ l1+1
(and thus T ′ = T ), else we have d′(v2) = l1+1 < l2 and therefore l1 ≤ l2−2 as a
necessary and sufficient condition for the existence of a BFS-level l0 (and thus
T ′ 6= T ).

Now in order to calculate l0 let us assume that l1 ≤ l2−2. As we have seen above,
in this case we have d′(v2) = l1+1 < l2 and therefore l1+1 ≤ d′(u) ≤ l1+2 for
each neighbor u of v2 (since we have l1+1 ≤ l2−1 ≤ d(u) and we can extend the
path P ′(v2) by the edge {v2, u} to obtain a path of length l1+2 in G′). However,
as we want to calculate l0, we are only interested in vertices v with BFS-levels
l1 < d(v) < l2, therefore it suffices to observe the vertices along the path P (v2) (in
reverse order) between the BFS-levels l2 and l1. For each such vertex wl2−i(v2) the
shortest path P (wl2−i(v2)) in G is of length l2−i, while the path P ′(wl2−i(v2)) :=
(s, . . . , v1, v2, wl2−1(v2), . . . , wl2−i(v2)) in G′ (an extension of P ′(v2)) is of length
l1+1+i. Thus d′(wl2−i(v2)) < d(wl2−i(v2)) holds if and only if

l1+1+i < l2−i ⇔ i <
l2 − l1 − 1

2 .
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Since l0 is the smallest of these BFS-levels, we obtain

l0 =
⌊
l2 −

l2 − l1 − 1
2

⌋
+ 1 =

⌊
l2 + l1 + 1

2

⌋
+ 1 =

⌊
l1 + l2 − l1 + 1

2

⌋
+ 1

= l1 +
⌊
l2 − l1 + 1

2

⌋
+ 1 = l1 +

⌈
l2 − l1

2

⌉
+ 1

which completes the proof.

4.3 Level-aligned Hierarchical Clustering

The high level idea for our hierarchical clustering for undirected graphs is rather
easy: we renumber each vertex with a new bit representation 〈br, . . . , bq+1, bq, . . . , b1〉
that is interpreted as a combination of prefix 〈br, . . . , bq+1〉 and suffix 〈bq, . . . , b1〉.
Different prefixes denote different clusters, and for a concrete prefix (cluster) its
suffixes denote vertices within this cluster. Depending on the choice of q we get
the whole spectrum between few larger clusters (q big) or many small clusters (q
small). In particular we would like the following to hold:
For any 1 ≤ µ = 2q ≤

√
B, (1) there are dn/µe clusters, (2) each cluster comprises

µ vertices (one cluster may have less vertices), and (3) for any two vertices u and v
belonging to the same cluster, their distance in G is O(µ). In order to make this
work the new vertex numbers have to be carefully chosen. Additionally, a look-up
table is built that allows to find the sequence of disk blocks for adjacency lists of
the vertices associated with a concrete cluster using O(1) I/Os.
In order to group close-by vertices into clusters (such that an appropriate renum-
bering can take place) we start with an arbitrary spanning tree T 0

s rooted at source
vertex s. Then we work in p =

⌈
log2
√
B
⌉
phases, each of which transforms the cur-

rent tree T js into a new tree T j+1
s having d|T js |/2e vertices. (The external-memory

BFS algorithms considered here only use clusters up to a size of
√
B vertices so this

construction is stopped after p phases. The hierarchical clustering approach itself
imposes no limitations and can be applied for up to dlog ne phases for other applica-
tions.) The tree shrinking is done using time-forward processing [Arg03, CGG+95]
from the leaves towards the root (for example by using negated BFS numbers for
the time order of the vertices in T js ). Consider the leaves v1, . . . , vk with highest
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Figure 23: Three cases of merging vertices into pairs during
the clustering. Note, that each vertex can represent a set of
vertices that have been clustered in previous iterations. Case
1: merge two siblings. Case 2: merge a parent with its only
child. Case 3: an example for a more complex merge with a
combination of case one and two.

BFS numbers, what is equal to the smallest time indexes, and common parent
vertex u in T js . If k is even, then v1 and v2 form a cluster (and hence a vertex in
T j+1
s ), v3 and v4 are combined, v5 and v6, etc. (sibling-merge, see Figure 23 on

the left). In case k is odd, v1 is combined with u (parent-merge, Figure 23 in the
middle) and (if k ≥ 3) v2 with v3, v4 with v5, etc. Merged vertices are removed
from T js and therefore each vertex is a leaf at the time it is reached by TFP, e.g.
node w1 shown in Figure 23 on the right was already merged with vertex w2 and
removed, so it is no longer present at the time v1 and v2 get processed. Thus,
each vertex of T j+1

s is created out of exactly two vertices from T js , except for the
root which may only consist of the root from T js . Note that the original graph
vertices kept in a cluster are not necessarily direct neighbors but they do have
short paths connecting them in the original graph. The following lemma makes
this more formal:

Lemma 4.6. The vertices of T js form clusters in the original graph having size
size(j) = 2j (excluding the root vertex which may be smaller), maximum depth
depth(j) = 2j−1, and maximum diameter diam(j) = 2j+1−2.

Proof. By induction (obvious for size(j)). The clusters defined by T 0
s consist of

exactly one vertex each and satisfy diam(0) = 0 and depth(0) = 0. For j > 0, three
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ways of merging vertex v1 have to be considered (with a sibling ({v1, v2}), the
parent ({v1, u}) or not merged at all ({v1})), resulting in

depth(j) = max


depth(j)({v1, v2}),
depth(j)({v1, u}),
depth(j)({v1})


= max


max

{
depth(j−1)(v1),depth(j−1)(v2)

}
,

depth(j−1)(v1) + 1 + depth(j−1)(u),
depth(j−1)(v1)


= 2 · depth(j−1) + 1 = 2 · (2j−1 − 1) + 1 = 2j − 1

diam(j) = max


diam(j)({v1, v2}),
diam(j)({v1, u}),
diam(j)({v1})


= max


depth(j−1)(v1) + 1 + diam(j−1)(u) + 1 + depth(j−1)(v2),
depth(j−1)(v1) + 1 + diam(j−1)(u),
diam(j−1)(v1)


= 2 · depth(j−1) + diam(j−1) + 2 = 2 · (2j−1 − 1) + diam(j−1) + 2

= 2j + diam(j−1) = 2j + 2j − 2 = 2j+1 − 2

Note that while diam(j) and depth(j) denote the maximum diameter and depth
possible for a cluster with 2j vertices the actual values may be much smaller.

For each 1 ≤ µ = 2q ≤
√
B, the hierarchical approach produces a clustering

with Θ(n/µ) clusters containing Θ(µ) vertices (excluding the root cluster) and a
diameter of O(µ).

Details on the construction of T j+1
s . Two types of messages (connect(ID) and

merged(ID)) are sent during the time-forward processing. When two vertices u and
v are combined, the vertex u visited first sends the ID of the new vertex in T j+1

s

to v in a merged() message. The connect() messages are used to generate edges of
T j+1
s using the new IDs. The merged() messages are sorted, so that a vertex v (if
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any has been sent) can read it, before the connect() messages of that vertex, so
checking whether the current minimum entry in the priority queue has received
such a message can be done in O(1) I/Os.

Renumbering the vertices. The p phases of contracting the spanning tree
each contribute one bit of the new vertex number 〈br, . . . , bp+1, bp, . . . , b1〉. The
construction of T j+1

s defines the bit bj+1 for the vertices from T js to be 0 for the
left and 1 for the right child in case of a sibling-merge, to be 0 for the parent and
1 for the child in case of a parent-merge, and to be 1 for the root vertex (unless
it was already merged with another vertex). After p contraction phases T ps with
c = dn/2pe vertices/clusters remains. The remaining (r−p) bits are assigned by
computing BFS numbers (starting with (2dlog2 ce−c) at the root) for the vertices of
T ps . These BFS numbers are inserted (in their binary representation) as the bits
〈br, . . . , bp+1〉 of the new labels for the vertices of T ps .
In order to efficiently combine the label bits from different phases and propagate
them to the vertices of G again time-forward processing can be applied. The trees
T ps , . . . , T

0
s are revisited in that order and vertices of T js can be processed e.g. in

BFS order and each vertex v of T js combines the label bits received from T j+1
s

with the bit assigned during the construction phase and then sends messages with
its partial label to the vertices in T j−1

s it comprises. The resulting new vertex
numbering of G covers the integers from [n′−n, n′) where n′ = 2dlog2 ne. There is
a single gap [0, n′−n) (unless n is a power of two) that can be easily excluded
from storage by applying appropriate offsets when allocating and accessing arrays.
Thereafter the new labeling has to be propagated to adjacency lists of G and the
adjacency lists have to be reordered using O(sort(n+m)) I/Os.
We assume that the adjacency lists are stored as an adjacency array sorted by
vertex numbers, i.e. two arrays, the first with vertex information, e.g. offsets into
the edge information; the second with edge information, e.g. destination vertices.
Hence, there is no need for an extra index structure to retrieve any cluster in
O(1+ x

B
) I/Os, where x is the number of edges in that particular cluster. This is

possible because all vertices of a cluster are numbered contiguously (for all values
of 1 ≤ µ = 2q ≤

√
B) and the numbers of the first and last vertex in a cluster can

be computed directly from the cluster number (and cluster size µ).
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Lemma 4.7. For an undirected connected graph G with n vertices, m edges, and
a given spanning tree Ts the Hierarchical Bottom-Up Clustering for all cluster sizes
1 ≤ µ = 2q ≤ n can be computed using O(sort(n)) I/Os for constructing the new
vertex labeling and O(sort(n+m)) I/Os for the rearrangement of the adjacency lists
of G.

4.4 The I/O-complexity of dynamic BFS for the incremen-
tal algorithm

For sparse graphs, the static external-memory BFS algorithm MM_BFS has an
I/O-complexity of O( n√

B
+sort(n+m)+MST(n,m)) I/Os (refer to Section 2.11).

We aim to reduce the first term of O( n√
B

) I/Os.
The dynamic BFS algorithm consists of a preprocessing, where we compute a
balanced clustering, which can be efficiently reorganized and a computation phase,
in which we update the BFS tree to deal after an edge update. Meyer proved
in 2008 [Mey08a] that for Θ(n) edge insertions on sparse graphs, even if we
start with a list graph, the amortized expected number of I/Os is bounded by
O( n

B2/3 +sort(n) · log (B)) I/Os per update. This is deduced from the potential
number of changes of the distances of the vertices to the source s of the BFS tree
the over all updates. The proof of the I/O-complexity of dynamic BFS distinguishes
two major cases for edge insertions, in order to count the I/Os over all updates.

Case I deals with edge insertions, where a single vertex v or a whole sub component
Cv of the graph G, which includes v, is connected to the component Cs, which
includes the source s of the BFS tree. The two components Cs and Cv are merged
to the new component C ′s. While an added singleton is trivial (the level of v is the
level of u plus one), the BFS-level of vertices in a larger sub component can be
computed by traversing Cv with MR_BFS. With MR_BFS the complexity of a
merge is bounded by O(|Cv|+sort(|Cv|)) I/Os for computing the BFS-levels of Cv
and O(sort(|Cv|)+scan(n)) I/Os to update the data structure that contains the
BFS tree. Obviously, this case can occur at most n−1 times until all vertices are
part of the component that belongs to s. We summarize the I/O-complexity of
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this case in Lemma 4.8.

Lemma 4.8. The graph G = (V,E) contains at least two disjoint components. Let
Cs be the connected component that contains the root of the BFS tree. Let Cv be
the connected component that contains v and Cv 6= Cs, the I/O-complexity of an
edge insertion {u, v} (u ∈ Cs) is bounded by O(|Cv|+sort(|Cv|)+scan(n)) I/Os for
sparse graphs.

Case II deals with edge insertions, where both vertices of the new edge are already
member of the component Cs. We potentially update the BFS-levels of up to Ω(n)
vertices as already demonstrated within the example depicted in Figure 22. The
algorithm prefetches α = 32 · 2j BFS-levels into the static hotpool H, where α
is a parameter of the algorithm with a size based on the j-th attempt. During
computation, the the number of random I/Os is counted, that are needed to fetch
clusters into the second hotpool HC. If too many random I/Os are encountered,
we increase the value for α by increasing the attempt j and continue the dynamic
BFS computation as long as the value for α is smaller than B1/2. In that case
we do not count the random I/Os anymore, because we ran in the case that the
dynamic BFS turned into the static version (MM_BFS).
Note, if ∆di = di−1(v)−di(v) ≤ α, we can prefetch α BFS-levels in the static
hotpool H and compute the updated BFS tree within O(α · n

B
) I/Os. The timers

to memorize the age of loaded data are set to tj = Θ(2j) for the dynamic hotpool
HC, in order to avoid that some clusters stay in this hotpool during the update, if
cluster information is loaded but not consumed. This sometimes happens if vertices
are in a cluster and loaded by an unstructured access but close to the border of the
cluster and the prefetching window of size α such that the information is prefetched
and read from the static hotpool and therefore not read and eliminated from the
dynamic hotpool.
We recapitulate the proof of Meyer [Mey08a] over n updates on the next few pages
which leads to an amortized I/O-complexity of O( n

B2/3 +sort(n) · log (B)) I/Os over
n updates on sparse graphs.

First, we prove that if the dynamic BFS algorithm can complete an update within
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the j-th attempt, with j ≥ 1, the I/O-complexity for this update is bounded by
O(2j · n/B+sort(n) · log (B)) I/Os. The initial value for α is α := 32 · 2j. The
clustering starts with chunks of size α/4 = 8 · 2j = µ. We allow at most Θ(n/α)
random cluster fetches during the successful j-th attempt. Thus, we only count
the costs for the last attempt because the I/Os for previous attempts are bounded
by the last attempt (refer to Lemma 4.10). Beforehand, we shortly prove that we
have less than log (B) attempts (Lemma 4.9) to successfully finish dynamic BFS.

Lemma 4.9. Dynamic BFS never needs more than O(log (B)) attempts to update
the BFS tree.

Proof. The parameter j is used to derive the size of the clusters in the j-th
attempt. Starting with j = 1 in the first attempt, we double j each time, too
many random I/Os are observed. Doubling j after each attempt means that after
log (B) attempts the cluster size is in the range of B. However, we already stop the
dynamic algorithm, as soon as we reach a cluster size larger than

√
B and switch

to MM_BFS. So, we need O(log (B)) attempts for each update.

Lemma 4.10. Assume that the dynamic BFS computation on a sparse connected
graph succeeds during the j-th attempt with 1 ≤ j < log (B). Then the algorithm
performed O(2j · n/B+sort(n) · log (B)) I/Os.

Proof. For each attempt, we compute a new clustering within
O(sort(n) · log (B)) I/Os (refer to Section 4.3). The recomputation of the clustering
can be done within O(sort(n)) I/Os. So, in total O(sort(n) · log (B)+j · sort(n)) =
O(sort(n) · log (B)) I/Os suffice for the preprocessing in the worst case, since we
ensure that j < log (B).
The dynamic BFS computation consumes O(sort(n)) I/Os for the static hotpool
H. For the random loading of clusters we allow at most 2k · n/B I/Os in the k-th
attempt. In total, we achieve an I/O-complexity of O(∑k≤j 2k · n/B+sort(n)) =
O(2j · n/B+sort(n) · log (B)) I/Os.

For single updates it can happen, that MM_BFS is cheaper than the dynamic
BFS. We need an argument that dynamic BFS is cheaper over Θ(n) updates.
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To prove the expected I/O-complexity over Θ(n) updates, we first look at the less
common scenario that we insert an edge which connects the component Cs to another
component. The original paper [Mey08a] states that O(n · sort(n) · log (B)) I/Os
are needed to compute up to n updates, in which a new component is added to
Cs. This comes from the pessimistic recomputation of connected components in
each update step. We argue that we can compute these updates with less I/Os,
if we maintain a data structure that stores the information in which connected
component each vertex is.

Lemma 4.11. At most n−1 updates, called Type A updates, will add a subgraph
to the component Cs until all vertices v ∈ V have a BFS-level dn−1(v) < n. These
n−1 updates on sparse graphs cause O(n · sort(n)) I/Os in total.

Proof. It is easy to see that at most n−1 updates of type A can occur. The graph
has |V | = n vertices and if we exclude our starting component Cs that contains
at least s, we can have at most n−1 non-empty components of size at least one.
Each update is of the following pattern: insert a new edge {u, v}, with u ∈ Cs
and v ∈ Cnc, where Cnc is a component that was not reachable from s prior to
this update. The first update of type A needs a computation of the connected
components of G. After each further update of type A we can update the connected
components within an additional sorting step plus the parallel scanning of the
added vertices in a temporary vector and the vector that stores the connected
component information.
The computation of the BFS-levels of the new component can be done by MR_BFS
in O(|Cnc|+sort(n)) I/Os. Altogether we achieve O(n · sort(n)) I/Os for connected
components and MR_BFS over the up to Θ(n) updates of type A.

Now we analyze the I/O-complexity of the type B updates: an edge is inserted
between two vertices that are member of the connected component Cs. We use our
strategy to work with growing cluster sizes in each attempt.

Lemma 4.12. Θ(n) updates on unweighted and undirected sparse graphs inside a
connected component Cs (type B updates) require
O(n · ( n

B2/3 +sort(n) · log (B))) I/Os with the level-aligned hierarchical clustering.
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Proof. We add a new edge {u, v} /∈ Ei−1 to Ei. We assume w.l.o.g. that d(u) ≤ d(v).
Furthermore let ∆di(v) = di−1(v)−di(v). We have clusters of size µ = α/4 = 8 · 2j .
If the insertion of the new edge causes at least one random I/O for a cluster fetch,
while operating with advance value αk = 32 · 2k in the k-th attempt, it holds that
∆di(v) > αk. For all vertices v′ in the cluster C(v) containing v it holds that
∆di(v′) = di−1(v′)−di(v′) =
di−1(v′)−di−1(v)︸ ︷︷ ︸

≥−µ

+ di−1(v)−di(v)︸ ︷︷ ︸
>αk

+ di(v)−di(v′)︸ ︷︷ ︸
≥−µ

> αk−2µ ≥ αk/2.

The last statement expresses that the distance of each vertex in the cluster C(v)
to s has been decreased by at least αk/2 through the update.

If we succeed in the j-th attempt, we have fetched at most O(αj · n/B) times
a cluster into the dynamic hotpool HC. So, we have fetched Θ(αj−1 · n/B =
2j+4 · n/B) clusters in the previous attempt j−1 to the dynamic hotpool with
Θ((2j+4 ·n/B) · (α/4)) = Θ(22·j+3 ·n/B) = γ vertices. For these γ vertices we know
that their distances are decreased by at least ∆di(·) ≥ αj−1/2 = 2j+3.
With the decreased distances of these γ vertices, we reduced the potential over the
whole graph of the case that we need at least j attempts during a later update
again. To express this more formally, we summarize the potential of the distance
reduction by Di for the i-th update by Di = ∑

v∈V s di(v) and ∆Di = |Di−1−Di|.
For the i-th update we can now formalize that if this update succeeds within the
j-th attempt, we have a change of the potential of distance decrements in the next
update by ∆Di ≥ 23·j+5 · n/B := Yj with a probability of at least 1

2 . We call such
an event a large j-yield with yield-factor Yj.

Let us consider two updates i′ and i′′ that both succeed after the same number of
attempts j. The two updates are computed independently and both have a large
yield-factor with probability of at least 1

2 . Concerning several independent updates,
we can show, using Chernoff bounds [HR90], that out of k ≥ 16 · c · ln (n) updates,
with a constant c > 0, at least k/4 updates cause a large yield event with high
probability, namely 1− 1

nc
.

For a sequence of z = Θ(n) edge insertions it holds that n2 > D0 ≥ D1 ≥ · · · ≥
Dk−1 ≥ Dz > 0. For a large j-yield event in the i-th update it holds that ∆Di ≥ Yj .
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Thus, in the worst case there can be at most n2

Yj
= n2

23·j+5·n/B = n·B
23·j+5 of such j-yield

events during such an update sequence. The reason is that we cannot reduce the
distance of any vertex anymore because we already have build a clique and the
distance of any pair of disjoint vertices is 1 and no smaller distance is possible on
unweighted graphs.
In order to continue our previous results, we have to distinguish between two
types of updates again. Updates, where the value for α never becomes larger
than α′j < B1/3 (Type B1) and thus need not more than j′ attempts and those
updates where B1/3 ≤ α ≤ B1/2 (Type B2). For updates of type B1 we know by
Lemma 4.10 that at most O(2j′ · n/B+sort(n) · log (B)) I/Os are needed. With
2j′ = B1/3 we have an I/O-complexity of O( n

B2/3 +sort(n) · log (B)) I/Os for each
type B1 update. Each update in a sequence of Θ(n) updates can be of type B1. For
the type B2 update with high probability there are at most O(n ·B/23·j′) updates
that succeed with at most j′ attempts each. As previously discussed, at least k/4
updates produce a large j-yield with high probability. Hence, with high probability,
we need at most kj = 4 · n ·B/23·j+5 updates that succeed within the j-th attempt
in order to achieve the desired number of j-large yield updates.
Altogether with Boole’s inequality the total amount of I/Os caused by the type B2
updates is bounded by O

((∑
g≥0

n·B
(B1/3·2g)3 · B

1/3·2g ·n
B

)
+ n · sort(n) · log (B)

)
=

O(n · ( n
B2/3 + sort(n) · log (B))) I/Os with high probability.

The analysis, which was originally given by Meyer in 2008 [Mey08a], is independent
of the structure of the graph. It does not matter, if the diameter is small, huge or
the BFS-levels contain only O(1) vertices each. In addition, the original analysis
assumed a randomized clustering.

4.5 Dynamic BFS with edge deletions

The original work on dynamic BFS states for the decremental version of dynamic
BFS that the complexity over Θ(n) updates is the same as for the incremental
version with the following arguments: if we delete an edge, we can only increase
the distance reduction potential Di. For the incremental version Di can be only
decreased. Therefore, the arguments of the proof in Section 4.4 slightly change
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but the bound stays the same. The potential Di grows over time but is bounded
in total by O(n2). We still have the same mechanisms for increasing values for α,
counting random I/Os and the same two hotpools for static and dynamic data. In
cooperation with Fabina Knöller we worked on a prototype of an implementation
for the edge deletion on dynamic BFS in external memory [Knö16]. Together, we
described the possible impacts of an edge deletion {u, v} ∈ Ei during the i-th
update. W.l.o.g. let l(v) ≥ l(u).
We distinguish the following cases for the deleted edge {u, v}:

• Case I: The vertices u and v belong to the same BFS-level. This case has no
impact on the BFS tree.

• Case II: The vertex v has no other edge and is now an isolated vertex. The
BFS-level of v is set to n to mark it unreachable.

• Case III: The vertex v has another edge into the previous level. This can be
checked with O(1 + (x+ y)/B) I/Os, where x is the length of the adjacency
list of v and y the number of vertices in the previous level.

• Case IV: The vertices v and w are in the same BFS-level, and v has no
remaining edge to the previous level. Thus, the BFS-level of v is increased by
one. Then, the children of v in the BFS tree have to be checked if their level
is increased by one, too. If we have a data structure that stores the adjacency
lists in sorted order (by the BFS-levels), we can do this as follows: we start a
local MR_BFS from v and only check for vertices below, if they have another
connection to the upper level. We can scan the levels downwards with a small
value for α and determine vertices that are only connected to s by a path
going through v. The total I/O-complexity is sort(n) I/Os.

• Case V: The vertex v is not isolated but none of its edges connect v to another
vertex in the previous or at least in the same BFS-level. We distinguish two
sub cases: in case Va the deletion of the edge {u, v} isolates a whole sub
component of the graph. Case Vb deals with the search for the shortest
replacement path that connects v to s now. The BFS-level of v is increased
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by at least 2. Sub case Va can be covered by computing the connected
components with O(sort(n + m) · log (B) I/Os. Sub case Vb needs a total
reordering of the BFS tree by dynamic BFS. We can start the dynamic BFS
from the level l(u).

The cases I to IV are more likely in settings like social networks or web graphs due
to the small diameter and large connectivity between the vertices. Case V is more
likely for small clusters in the outer regions or on road networks (e.g. when a road
to the highway is closed for a while, a detour of several kilometers and sometimes
through a few smaller cities is not uncommon).
The prototype implementation by Knöller showed in experiments that the deletion
of edges is only a constant factor slower than the edge insertion in practice due to
the overhead when we have to deal with heavy updates as described in case Vb.
We tried to avoid some update overhead by excluding vertices and regions that will
not be affected. Knöller’s experiments showed that dynamic BFS is slower by a
factor between 1.5 and 30 for edge deletion compared to edge insertion.

4.6 Configuration and test data

Our external-memory dynamic BFS implementation relies on the STXXL library in
version 1.3.1 [DKS08, BDS09] and highly uses pipelining. For our static EM-BFS
results we used the MM_BFS implementation from Ajwani et al. [AMO06] which
also applies STXXL functions. We performed our experiments on a machine with
an Intel dual core E6750 processor @ 2.66GHz, 4GB main memory (3.5GB free),
3 hard disks with 500GB each as external memory for STXXL, and a separate
disk for the operating system, graph data, log files etc. The operating system was
Debian GNU/Linux amd64 ’wheezy’ (testing) with kernel 3.2. We compiled with
GCC 4.7.2 in C++11 mode using optimization level 3.
We use four different graphs to evaluate the performance of dynamic BFS. As for
the diameter approximation the web graph sk-2005 with a diameter of 40, the
two synthetic graphs

√
n-level and Θ(n)-level with diameters of Θ(

√
n) and Θ(n)

respectively. Further details about these three graphs are given in Section 2.14.
The fourth graph is an instance of a tree pattern T = (k, L, µ) that is designed
to elicit poor performance on static MM_BFS: k parallel lists of the same length
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L = l ·µ−116 are combined into a tree by attaching the lists to the same root vertex.
Such a tree has n = k · L+1 vertices. Now, the deterministic Euler-Tour clustering
will divide this graph in a way such that on each chain O(l) clusters of length µ
are produced. The root is part of the first cluster and therefore an offset of two is
encountered whenever the Euler-Tour enters a new chain. As a consequence, for
the static BFS computation of the first level, k different clusters have to be loaded
and kept in the hotpool. Based on this offset, for the computation of each following
level Θ(k/µ) clusters have to be loaded into the hotpool which results in the same
amount of I/Os. This sums up to Θ(k/µ · L) = Θ((n/µ) = Θ(n/

√
B) I/Os. A

schematic of the tree pattern and the offset of the clusters is depicted in Figure 24.
The implementation of MM_BFS is tuned to recognize such cases and try to keep
adjacency lists cached in the main memory for structures that seem to be list like.
However, for reasonable large k this attempt fails due to the too small main memory
and therefore MM_BFS cannot benefit from the caching heuristic as it does for a
single or even a few parallel lists. The level-aligned hierarchical clustering benefits
from two advantages that avoid this bad performance: there is no offset in the
clusters and clusters in the same level in a tree are stored with consecutive cluster
IDs. Therefore, k clusters are loaded at the same time within O((k · µ)/B) I/Os
each µ levels. This results in a total I/O-complexity of O(scan(n)) over the L levels
to load the clusters. We summarize these observations in Lemma 4.13.

Lemma 4.13. With the tree pattern T = (k, L, µ) we require Ω(n/
√
B) I/Os for

loading the clusters into the hotpool while executing MM_BFS with the deterministic
Euler-Tour based clustering and O(scan(n)) I/Os with the level-aligned hierarchical
clustering.

4.7 Experimental results of the first study in 2013

In some of our experiments we inserted new edges (v1, v2) into the graph, where
we set v1 = s (the source of the BFS tree) and select the other vertex v2 from
BFS-levels 0.1 · d, 0.2 · d, ..., d where d denotes the height of the BFS tree. The
experiments were executed independently. For each inserted edge the initial BFS

16Note that the cluster size µ =
√
B (see Section 2.11)
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Figure 24: Our cl_n2_29 graph has the same shape as the
graph in this picture but with 1048576 lists of length 511 each.
In this picture the result of an Euler tour based clustering with
µ = 6 is shown as it is used in MM_BFS.

tree / graph was the same. We intentionally fixed one vertex of the inserted edge
as the source vertex s in order to increase the number of vertices whose BFS-levels
have to be updated. Two vertices far away from the source might have a small
distance to each other and then usually only a small fraction of the tree has to
be reassigned to new BFS-levels in data sets. We measured the time for dynamic
BFS plus the time to write the result and the number of vertices whose BFS-levels
have been updated. Experiments during the implementation showed that for a
small initial cluster size α2, e. g. α2 = 64, the value of α2 is algorithmically never
increased. This leads to a high number of random I/Os, because a too small fraction
of each read block is loaded into the hotpool during a cluster fetch. Thus we set
α2 = 1024 which causes only a small amount of random cluster fetches and yields in
a better performance. For smaller α2 our performance was slightly better for each
graph but not for the

√
n-level graph. The number of elements in the static hotpool

H is influenced by the value of α1. We set the initial α1 = 4 in order to avoid too
many sequential I/Os for repeatingly reading the same contents of the hotpool for
each level computation. Table 6 contains the time for computing static EM-BFS
for each graph divided into the preprocessing and the BFS computation. The
cl_n2_29 graph stands out with a slow BFS computation while the preprocessing
is almost as fast as the preprocessing for the other graph classes. Table 7 contains
the time for the hierarchical clustering and the time that is needed to reorganize the
adjacency lists (add cluster information to edges, sort them, ...). The hierarchical
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clustering is slower than the preprocessing of the static BFS because logarithmically
many phases, each of which containing Euler Tour and list-ranking computations,
have to be done instead of one.

sk-2005
√
n-level Θ(n)-level cl_n2_29 graph

Preprocessing 0.91 1.35 1.19 1.29
BFS computation 2.41 3.26 1.36 > 17

Table 6: Running time (in hours) of static EM-BFS with
source 0.

sk-2005
√
n-level Θ(n)-level cl_n2_29 graph

Compute hierarchical 0.39 1.64 1.35 3.01
level-aligned clustering

Reorganization of 1.38 0.94 0.84 0.54
adjacency lists

Table 7: Running time (in hours) of level-aligned hierarchical
clustering.

Figure 25 depicts the performance of our dynamic BFS computing during the
updates of the BFS tree. A huge amount of the vertices of the web graph sk-2005
are in a hub region and thus close to the source vertex of the BFS tree. Vertices
with a larger distance to the source seem to have a list-like connecting path to
the source which affects only a few vertices to be updated. In our experiments
the worst performance is observed on the

√
n-level graph. Due to a huge amount

of vertices in each of the
√
n levels, we encounter many BFS-level updates for an

inserted edge so that we are slower than static BFS in some cases.
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[number of BFS-levels spanned by inserted edge in % of max. BFS-level d]

[time in hours] [vertices changed in %]
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√
n-level graph
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cl_n2_29 graph

Figure 25: Results of dynamic BFS. The time of each static
BFS is plotted in as a dashed line in the left plot for sk-2005
(2.41 h),

√
n-level graph (3.26 h) and Θ(n)-level graph (1.36 h).

The static BFS time of cl_n2_29 graph was not drawn because
it is too huge with 17 hours to fit into the plot.

Results of our experiments with cl_n2_29 graph: as expected the hotpool of static
MM_BFS with the Euler-tour based clustering had to go external and read/wrote
Terabytes of data (input data set size: 8GB) and needed more than 17 hours
to compute the BFS tree. In contrast, each update during the dynamic BFS
computation needed at most 0.23 hours.

Our results using hard disks were viable due to the choice of a comparatively large
value for α2. In experiments on a similar machine using solid state drives we were
able to improve our results. We outperform the static BFS for each graph class in
each test scenario by using a smaller value for α2 = 256. For our

√
n-level graph we

were able to outperform static BFS by a factor of at least 1.14. This is explained
by the fact that for smaller α2 the CPU work is much smaller but the I/O-time
increases.
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4.8 Some detailed analysis of real-world data

Almost five years after the original experiments with our implementation of dynamic
BFS the graph community designs more and more algorithms that depend on the
properties of real-world data. So does a colleague of us – Manuel Penschuck. In
2017 he published a graph generator that is able to generate random hyperbolic
graph data in linear time [Pen17]. Graphs generated by this generator have the
feature that their graph properties are close to real-world data with controllable
edge distribution. We generated a data set with the parameters n = 28, degree = 10
and γ = 3.0.
The largest connected component has 258.3 million vertices and 1.3 billion edges.
The height of the BFS tree for source 0 is 80. This data set is denoted by
hyp_n_28_d_10_g_3. We used the sk-2005 web graph to compare our synthetic
graph to an actual real-world data set (recall that sk-2005 has about 50 million
vertices and 1.8 billion edges; refer to Section 2.14 for further details about the
web graph).
We ran experiments on a machine with Ubuntu 16.04.1, Kernel version 4.13.0-36-
generic and compiled with gcc 5.4.1. The hardware of the machine was an Intel
i5-4590 CPU @ 3.30GHz with 32 GB main memory and six SSDs of 512 GB each.

SBFS_TC[s] SBFS_TL[s] DBFS_TC[s]
hyp_n_28_d_10_g_3 1979.81 1315.74 3360.03

sk-2005 1337.8 1200.41 3102.37

Table 8: The times to compute the Euler-Tour based clustering
(SBFS_TC) and the BFS-levels (SBFS_TL) for source 0.
Furthermore the time to computer the level-algined hierarchical
clustering for dynamic BFS (DBFS_TC).

We computed an external-memory BFS followed by 100 dynamic BFS runs with
random edge insertions. In Table 8 the times for the static BFS computation and
the clustering for the static as for the dynamic BFS are given. The results for the
100 runs were grouped by the delta of the BFS-levels between the two vertices u
and v of the inserted edge {u, v}. In the Tables 9 and 10 it can be seen that at
least 33% of the total execution time can be saved compared to the static BFS.
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∆ # cases avg. time[s] min[s] max[s] avg. speed up to static BFS
0 23 0.01 0 0.02 99.99 %
1 29 0.01 0.01 0.01 99.99 %
2 20 453.15 115.83 819.07 65.56 %
3 12 510.15 22.71 1007.71 61.23 %
4 5 746.57 616.28 1132.8 43.26 %
5 3 263.23 66.3 602.71 79.99 %
6 2 92.56 62.35 122.76 92.97 %
7 1 105.9 105.9 105.9 91.95 %
9 1 105.2 105.2 105.2 92.00 %
10 1 57.48 57.48 57.48 95.63 %
13 1 65.73 65.73 65.73 95.00 %
16 1 46.12 46.12 46.12 96.49 %
25 1 23.94 23.94 23.94 98.18 %

Table 9: Dynamic BFS performance on hyp_n_28_d_10_g_3
over 100 experiments with random edge insertions.

∆ # cases avg. time[s] min[s] max[s] avg. speed up to static BFS
0 25 0.01 0.01 0.02 99.99 %
1 33 0.01 0.01 0.02 99.99 %
2 26 612.64 50.4 1190.5 48.96 %
3 9 800.02 173.79 1110.29 33.35 %
4 5 805.92 10.45 1217.04 32.86 %
5 2 86.8 14.61 158.99 92.77 %

Table 10: Dynamic BFS performance on sk-2005 over 100
experiments with random edge insertions.

The results of these experiments demonstrate that dynamic BFS is viable for
current application in real-world data with small diameter and huge hub regions.
In the hub regions, we can store updates in a buffer to evaluate them later, due to
their small impact. We use this idea for the dynamic part of our distance oracle
(refer to Section 5.9).
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4.9 Conclusion

We implemented dynamic BFS in external memory and researched in more detail
a dynamic and level-aligned hierarchical clustering that is versatile for further
purposes. Our experiments demonstrate that dynamic algorithms can be an
feasible option in external-memory settings. We tuned the hotpool by splitting it
into two separate structures for the structured and unstructured external-memory
accesses. During our experiments, we achieved a viable speed-up of at least 33%
on real-world data.
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5 Distance Oracle on Real-World Data Sets

Preliminaries Some parts of this chapter have already been published at ALENEX
2015 [AMV15].

5.1 Introduction

When we have a look at the short history of the external-memory model and the
derived graph algorithms, breakthroughs in the provided applications were focused
on adapting algorithms we have known since the 1950s such as BFS, DFS or SSSP.
It took many years for BFS to tune two implementations so that they cover all pos-
sible input graphs in a reasonable I/O-complexity. With our dynamic BFS we did
the first step on a journey to a library of external-memory algorithms that provide
results on queries or updates faster in order to be used in an online application.
Unfortunately, the proposed solution is still too slow for most real-time applications.

The data sets of applications like social media or scientific research grow each day
by several hundred gigabytes and more. Algorithms that run for weeks or even a
few days to answer a single query are not viable in these settings. As mentioned in
Chapter 1 the industry tries to solve this issue by using in-memory databases on
machines with an extra-large main memory. In addition, companies as Facebook
Inc. developed an improved version of the programming language PHP to make
it ready for big data applications on servers with tools as filtering, sorting and
parallel and distributed computation on huge data sets. Refer to Ottoni [Ott18] for
some information about the underlying compiler architecture. To be competitive
to the development that larger machines and clusters are used if the main memory
becomes to small for an application, we demonstrate on a single desktop computer
that with a design pattern based on the external-memory model, it is possible
to implement real-time applications that can handle a updates and queries of
a dynamic shape. Based on the work of Ajwani et al. on geometric distance
oracles [AKSS14], we focus on a graph algorithm application with the following
constraints:

• Huge (undirected, unweighted) graphs containing real-world patterns.
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• Distance queries for any pair of vertices (u, v) ∈ V with u 6= v.

• A query time in milliseconds on single queries and a query time in microseconds
on batched queries is desired.

• Limited availability of advanced the hardware – for example a standard
desktop computer.

In order to deal with these constraints, we need a data structure that can be
initialized efficiently and needs only a small amount of memory for each data
element. We call this data structure a distance oracle (refer to Section 2.6).

5.2 The idea behind our distance oracle

We target to answer distance queries on a real-world graph such as a social network
or a web graph using a constant number of I/Os. On a single BFS tree for an
arbitrary root vertex r, we can give an approximate answer for a distance query
between u and v with two I/Os – one I/O to get dist(u) and one I/O to get
dist(v). The approximated distance is then dist(u)+dist(v). However, we might
have overestimated the distance between u and v because we might have ignored
shared subpaths on the paths of from u respectively v to the root r. If the two
vertices have a lowest common ancestor lca(u, v) 6= r (refer to Definition 5.1), we
can improve our answer by the subtraction of dist(lca(u, v)) two times from our
naive result and obtain the exact distance of u and v restricted to the BFS tree
(refer to Lemma 5.2). We introduce the concept of lowest common ancestors in
more detail in Section 5.3.

Definition 5.1. The lowest common ancestor of two vertices u and v, with u 6= v,
in a tree T , rooted by an arbitrary root r, is given by the first shared vertex lca(u, v)
on the paths from u respectively v to r. If u and v share no vertex but on their
paths to the root, lca(u, v) = r. Another notable case is that u is a descendant of v,
so that lca(u, v) = u

Lemma 5.2. The exact distance between two vertices u and v in a BFS tree T
with root r is determined by dist(r, u)+dist(r, v)−2 · dist(r, lca(u, v)) whereby the
function dist(r, x) returns the distance from the root r to a vertex x ∈ V in T and
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lca(u, v) returns the lowest common ancestor of two vertices u and v in the BFS
tree.

If we can provide an implementation that gives an answer for the lca(u, v) function
with a constant number of I/Os, we achieve our target to give an answer in real time.
However, the approximation quality using a single BFS tree might be arbitrarily
bad - even if we use the lowest common ancestor to improve our computations. A
worst-case example is, that for two vertices u and v with farthest distance to the
root r the lowest common ancestor lca(u, v) = r but there is a connecting edge
between u and v, which is not part of the tree. The returned answer is O(n) but
in fact, the distance is only 1.
Hence, in order to achieve a better approximation ratio on average, we compute a
set of BFS trees from different root vertices that shall cover as many shortest paths
in the graph as possible. Two new questions come up: how many trees should we
use and how do we ensure that the different roots cover as many shortest paths as
possible.
We use observations of previous work on geometric distance oracles by Ajwani
et al. [AKSS14], to answer these questions. They dealt with the same issues and
found out that there is a strong relationship between the degree deg(v) of a vertex
v and its betweenness centrality in real-world graphs as stated in Observation 5.3.
The betweenness centrality bc(v) of a vertex v is a measurement for the ratio of the
number of shortest paths among all existing shortest paths in G that go through
v. A simple example to explain the meaning of the betweenness centrality: on a
list graph, an endpoint has no influence on any shortest path between any two
other vertices in the list. On the other hand, every shortest path pi starting at an
arbitrary vertex in the left part of the list to an arbitrary vertex in the right part of
the list goes through the center vertex c of this list graph. Therefore, c has a high
betweenness centrality value in this list graph, while the endpoint has not. Thus, a
vertex with a high betweenness centrality is suitable as a root of a BFS tree in a
distance oracle because it covers many shortest paths. A typical distribution of the
betweenness centrality and the vertex degree in real-world graphs is depicted in
Figure 26.
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Figure 26: The relationship between the betweenness centrality
and the degree of a vertex in a social network based on a part
of the Santa Barbara Facebook graph [AKSS14].

Observation 5.3. In real-world graphs, there is a strong relationship between the
degree of a vertex and its betweenness centrality value. Usually, in social networks
and web graphs there are a few vertices that have a high degree (hub nodes) and these
vertices also have a high betweenness centrality value. This observation is supported
by the work of Ajwani et al. [AKSS14] where they experimentally evaluated this
relationship on various real-world data sets from science and industry and is known
as power law distribution. The relationship between the structure of many real-world
networks and the power law was shown by Price with an statistical approximation
of the beta function [Pri76] and is used as power-law distribution for many graph
applications [JJKP19, Blo17, VdS16].

In experiments by Ajwani et al. it turned out that O(log (n)) BFS trees result into
a good approximation ratio compared to the needed memory [AKSS14]. In this
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thesis, we adopt this number of BFS trees and evaluate the quality of the given
answers based on a distance oracle with 20 BFS trees on various input graphs.
We compute 20 BFS trees T1, . . . , T20 rooted at the twenty vertices with highest
degree in G to empirically cover as many shortest paths as possible. In order to
answer a distance query dist(u, v) we compute the distance between u and v in
each of these trees as described in Lemma 5.2 and return the minimum result over
all trees.

5.3 I/O-efficient LCA computation

In order to answer real-time distance queries in time, we need an efficient data
structure that can provide the result of the lca(u, v) function using not more than
O(1) I/Os. The height of the BFS tree is bounded by the diameter of the graph.
Real-world data sets as social or web networks usually have a diameter asymptoti-
cally bounded by O(log (n)). A common ancestor of two vertices in a tree means
that these two (or potentially even more) vertices share one or more nodes on
their paths form the root r to these two vertices in a tree (refer to Definition 5.1).
We can encode the path of a vertex v to the root by symbols (e. g. bit strings):
compare the encoded paths of the two vertices and extract the common suffix on
the encoded paths. The last common symbol of the suffixes of two vertices in their
encoded paths is the last common ancestor on their paths. In the following we refer
to the encoded path of each vertex as the label of vertex v. Previous work provided
labels of size O(log (n) [Fis09, AHL14] for fast LCA computation. However, these
sophisticated approaches need a complex memory management. Labels might be
of different size, a large set of symbols is needed and, depending on the labeling
algorithm, we have to group vertices into clusters to ensure a shorter label size.
This overhead to label the vertices is efficiently manageable for internal-memory
algorithms, but in external memory the overhead provokes a larger amount of
I/Os if the labels can be arbitraryly large17. Therefore, as in the work of Harel
and Tarjan [HT84], we focus on binary labels. We bound the label size for our
implementation by 64 bit. Our labels shall be compared by an exclusive-OR (XOR)

17We discussed a label size of O(n) for general graphs during the implementation, but the
STXXL external-memory dictionary of our approach has to be replaced by a data structure that
maintains labels of different sizes in a hierarchical way.
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operator in order to achieve a fast LCA computation. We transform our general
BFS tree into a binary tree, but we have to keep the path- and distance information.
We do this by adding dummy vertices to reorganize vertices with more than two
children such that we have at most two children for each vertex in our binary tree
representation. Dummy vertices have no influence on the distance computation nor
can they be part of an input of a distance query – they are just virtual vertices.
In the following we construct an algorithm to transform a BFS tree into a corre-
sponding binary tree with a bounded height of O(log (n)+h), where n = |V | and h
is the height of the BFS tree. For a graph with a diameter bounded by O(log (n)),
the BFS tree height is h = O(log (n)) and therefore our labels are of size O(log (n)).

In order to transform a BFS tree T into a corresponding binary tree T ′ that
represents the original tree in a binary structure, we implement a top-down approach
from the root to the leaves. We add dummy vertices such that a vertex v with
more than two children has only two children left. In order to restrict the height of
the transformed tree, we compute the number of descendants using time-forward
processing and keep vertices with more more descendants closer to their parent
vertex. Refer to Lemma 5.4 for the pattern of the construction. The number of
dummy vertices is bounded by O(n) as stated in Lemma 5.5.

Lemma 5.4. For a vertex v with x children and x ≥ 3, x − 2 dummy vertices
suffice to construct a binary representation of v and its children.

Proof. We prove the lemma by induction.
Base cases: Let x = 3: we name the three children of vertex v, sorted decreasingly
by the number of their descendants: c1, c2, and c3. One dummy vertex d1 suffices
to rearrange the children into a binary representation of v and its children. The
child c1 has the largest amount of descendants in our sorted sequence, hence c1

remains as a child of v and we add the dummy vertex d1 as the second child of v.
Now, the vertices c2 and c3 are assigned to d1 as its children. No vertex has more
than two children and we have a valid binary representation of v and its children.
Let x = 4: we name the four children c1, c2, c3, and c4. Two dummy vertices d1

and d2 suffice to rearrange the children. There are two possible transformations: if
the number of descendants of the child c1 is greater than the sum of the numbers
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of descendants of the other three children, c1 remains a direct child of v and d1

becomes the other direct child of v. Then the dummy d1 has the dummy vertex d2

assigned to it as a child and c2 as the other. Finally, the remaining two children
c3 and c4 are assigned to d2. Otherwise, both dummy vertices become children of
v and the four previous children c1 to c4 of v are assigned to the two dummy vertices.

Induction step with x→ x+1: We use the observation that it is never the case
that a dummy vertex has only one child. Otherwise such a dummy vertex can
be removed and replaced by its own child. For x children, that are sorted by the
number of their descendants, we have already added x−2 dummy vertices. So we
select the dummy vertex dx−2 and add a new dummy vertex dx−1 as a child of dx−2.
We move the original second child from dx−2 to dx−1 and add the new vertex x+1
to dx−1, too. We now have x−1 dummy vertices for x+1 vertices.

If we adapt Lemma 5.4 from a single vertex to the whole tree, this results in
Lemma 5.5.

Lemma 5.5. In total, if we transform a BFS tree T with n vertices into its
corresponding binary representation T ′, the number of added dummy vertices is
bounded by O(n).

We used the same argumentation as in the Huffman coding [Huf52, vL76] to
construct and prove the above lemmas. Note, that the dummy vertices can be
seen as virtual vertices only. The distance between a vertex v and its children is
still counted as one, therefore we implicitly added edges with a weight wi = 0 to
the binary tree representation. The edges of the BFS tree have weight wi = 1. In
Lemma 5.6, which has been already published in 2015 [AMV15], we proved in that
the distances between two vertices in the transformed tree remains the same as in
the original BFS tree.

Lemma 5.6. For any two vertices u, v in our BFS tree T , it holds that dT (u, v) =
dT ′(u, v). Thus, we can use the binary representation T ′ of T to construct a distance
oracle.

Proof. The lemma follows by a simple induction on the number of nodes in T

with degree greater than 2 which we have to transform. In the case there are no
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such nodes, T ′ is the same as T (with all edges having length 1) and therefore
dT (u, v) = dT ′(u, v). Now let us assume the statement to be true for the tree T ′k−1

after k − 1 high degree node transformations (induction hypothesis), and we prove
it for T ′k formed after k transformations. Consider a node pair u,w, let P ′k−1(u,w)
be the path between u and w in T ′k−1 of length dT ′

k−1
(u,w), and let v be the next

node to be transformed having ` children v1, . . . , v`. By induction hypothesis we
have dT (u,w) = dT ′

k−1
(u,w) and we want to show that dT (u,w) = dT ′

k
(u,w). There

are three cases:

1. P ′k−1(u,w) does not pass through v, v1, . . . , v`. In this case, the transformation
of node v does not affect this path and P ′k(u,w) = P ′k−1(u,w) and therefore,
dT ′

k
(u,w) = dT ′

k−1
(u,w) = dT (u,w).

2. P ′k−1(u,w) contains exactly one edge from the edges {v, v1}, {v, v2}, . . .,
{v, v`}. Let us call this edge {v, vi} and let us assume w.l.o.g. that there is
a path P ′k−1(u, v) between u and v as well as a path P ′k−1(vi, w) between vi
and w without including this edge. After the transformation there is a path
between v and vi of distance 1. Thus, there is a path P ′k(u,w) in T ′k consisting
of P ′k−1(u, v) followed by the path between v and vi and then P ′k−1(vi, w). The
total length of this path is dT ′

k−1
(u, v)+1+dT ′

k−1
(vi, w) = dT ′

k−1
(u,w). Since

in a tree there is only one simple path between any two nodes (P ′k(u,w) of
length dT ′

k−1
(u,w)), it holds that dT ′

k
(u,w) = dT ′

k−1
(u,w) = dT (u,w).

3. P ′k−1(u,w) consists of two edges from {v, v1}, {v, v2}, . . ., {v, v`}. Let us call
these edges {v, vi} and {v, vj} and let us assume w.l.o.g. that there is a path
P ′k−1(u, vi) between u and vi as well as a path P ′k−1(vj, w) between vj and w
without including v. After the transformation there is a path between vi and
vj of distance 2 through their least common ancestor (which may not be v)
in T ′k. Note that this is because the edges {v1

l , vi} and {v1
m, vj} introduced

in the transformation have both length 1. Thus, there is a path P ′k(u,w)
in T ′k consisting of P ′k−1(u, vi) followed by the path between vi and vj and
then P ′k−1(vj, w). The total length of this path is dT ′

k−1
(u, vi)+2+dT ′

k−1
(vj, w)

= dT ′
k−1

(u,w). Again, since in a tree there is only one simple path between
any two nodes (P ′k(u,w) of length dT ′

k−1
(u,w)), it holds that dT ′

k
(u,w) =

dT ′
k−1

(u,w) = dT (u,w).
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The dictionary for the LCA detection stores dummy vertices with the BFS-level
of v. With the knowledge that the distances between the vertices are the same in
the BFS tree T as in its corresponding binary representation T ′, we can construct
labels that can be used to determine the LCA of two vertices fast, based on the
path information in T ′. The construction of the LCA labels follows the idea of the
in-order traversal [Mor79]. In a binary tree the in-order traversal visits the left
child first, continues with the root and visits the right child last (left root right).
This traversal is done recursively for each child.
While the labels are constructed, we use data words of fixed size. We start with
the root and assign the label 263 in binary representation. If we go to the left from
a vertex u to a vertex v, the label lv is created out of the label lu of the vertex u by
shifting the last 1 in the binary representation one position to the right. A simple
example: lu = 1010 and thus lv = 1001.
If we go to the right from u to a vertex w while we traverse T ′, we add a 1 after the
the last occurrence of a 1 in the binary representation of the label lu to construct
the label lw for w. A simple example: lu = 1010 and thus lw = 1011. Figure 27
gives an example for a small tree.

100

010 110

001 011

Figure 27: An example of a small binary tree that is encoded
with our LCA label scheme.

In a general binary tree with height h′, we need h′ bits for each label to encode
an in-order matchable numbering pattern. From the transformation T to T ′ we
know that h′ ≥ h. Now, we prove that h′ ≤ log (n)+h so that the size of our vertex
labels for LCA computation can be bounded by O(log (n)+h). We prove that any
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vertex u with distance dist(r, u) in T with dist(r, u) ≤ h has a distance of at most
dist(r, u)+ log (n) in T ′. The following lemma was published in our ALENEX 2015
publication [AMV15] in slightly different structure and notation with the following
remarks:

“We can encode distances in T by encoding distances in T ′. The distances
in tree T ′ are encoded using two hash-maps: IN that maps a node u ∈ V ′ to
its in-order numbering in T ′ and DIST that maps an in-order numbering to the
distance of the corresponding node from the root in T ′. In practice, we can reduce
the space further by keeping the IN hash-map only for nodes in V (rather than V ′).

The inorder numbering requires h′ bits, where h′ is the height of T ′. Next,
we show that h′ ≤ log n+ h, thereby proving that the in-order number of a node
can be stored in O(log n+ h) bits. Consider a node u with degree greater than 2.
Let the weight of its children u1, u2, . . . , uk be w1, w2, . . . , wk. It follows from the
optimality of Huffman coding that the node ui is placed at most dlog

∑
j
wj

wi
e hops

away from the node u. Since in our case, the weight w of node u is greater than∑
j wj, it follows that each child ui is at most dlog w

wi
e hops away from u”.

Lemma 5.7. A BFS tree T with root r can be transformed into a binary tree T ′

with the same root r such that the height of T ′ is bounded by O(log (n)+h), whereby
n = |V | and h is the diameter of the original graph G. In other words: a vertex u
at distance l(u) from the root in T is at most l(u) + log n hops away from the root
in T ′.

Proof. Let u = uk, uk−1, uk−2, . . . , u1 = r be the path p from an arbitrary vertex
u to the root r in T . Furthermore let wk, wk−1, . . . , w1 be the weights of the
corresponding vertices uk, uk−1, . . . , u1 on the same path p respectively. An edge
{ui, ui+1} in this path p in T gets replaced by a path p′ of at most dlog wi

wi+1
e hops

inserted by the dummy vertices added to T ′. The bound for the number of hops
follows from the optimality of Huffman coding [Huf52, vL76]. The vertex ui is
placed at most dlog

∑
j
wj

wi
e hops away from the node u. Since in our case, the

weight w of vertex u is greater than ∑j wj, it follows that each child ui is at most
dlog w

wi
e hops away from u.

Thus, the number of hops in the corresponding path p in T ′ is at most∑k−1
i=1 dlog wi

wi+1
e ≤

dist(u, r)+∑k−1
i=1 log wi

wi+1
= dist(u, r)+ log w1

wk
. Clearly, w1

wk
≤ n as the number of
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descendant at any vertex is at least 1 (as it includes itself) and at most n. Thus,
the vertex u is at most dist(u, r)+ log (n) hops away from the root r in T ′.
Since we know that dist(u, r) is bounded by h for any vertex u ∈ V , and we know
for each of these vertices that their distance to the root is at most dist(u, r)+ log (n)
in T ′, the height of T ′ is bounded by at most h+ log (n).

1000

1100

1010 1110

1101

Right

Left Right

Left

Figure 28: The distance between the two green marked vertices
is requested. The answer is constructed by the sum of their
BFS-levels minus twice the distance of the LCA to the root.
The LCA (1100) is determined by the XOR operation on the
labels to find the first position, in which the labels of the
vertices 1010 and 1101 differ. All bits until this position are
copied, the position, in which the labels differ is 1 and all
other bits to the right are 0. This results in the distance
2+3− 2 · 1 = 3.

The label LCA(u, v) of the LCA of two vertices u and v is computed as follows: all
labels have the same length. So, the new label is initialized as the label of the root
(a one followed only by zeros). The labels of u and v are read in parallel from the
left to the right. As long as the bits are equal, the value at the current position is
written into the same position of the label to be constructed. We stop at the first
position, where the labels differ. This position is kept as 1 an all following bits are
zero. Note, that if one vertex is part of the left sub-tree and the other is one of the
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first tree ...

u: DIST,LCA label v: DIST,LCA label

LCA = u
⊙
v

Map tells LCA distance

Figure 29: For two vertices u and v we get their BFS-Levels
and their LCA labels from an array We combine their labels
by bit operations to get the label of the LCA. Then we request
the distance of the LCA from an external-memory map.

right sub-tree, e.g. the label of u is 0111 and the label of v is 1010, the label of the
root 1000 is the result.
In Figure 28 an example is depicted, where u and v have the labels 1010 respec-
tively 1101. The two labels are equal in the first position. Therefore the label
LCA(u, v) = 1100. Note, that the LCA can be a dummy vertex. To return the
BFS-level of any vertex, including dummy vertices, we have to store the BFS-levels
into a dictionary, where the binary label of each vertex is the key and the BFS-
level is the value. The dummy vertices store the BFS-level of the non-dummy above.

So far, we have described how we efficiently encode the BFS tree in an equivalent
binary tree representation with bounded height and label size. In our implementa-
tion we create an array that stores the distance and the corresponding LCA label
for each vertex v ∈ V for each BFS tree T1, . . . , T20. So, using a constant number
of I/Os, we can extract all information about two arbitrary vertices u and v: their
BFS-levels and binary labels for LCA computation in all trees. Then we compute
the related set of LCA labels without any I/O and extract the BFS-level of each
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LCA in the associated tree by a look up into our external-memory dictionary,
which is provided by the STXXL, using O(log (n)) I/Os per request. Therefore, in
total we achieve an I/O-complexity of O(log (n)) I/Os for a single query.
We achieve a query time of O(log (n)/B) I/Os for batched queries, if we collect
Θ(n) queries and compute their results in a batched way by several scanning and
sorting steps. Observe that we have computed all LCA labels afterward. In order
to avoid random accesses to the STXXL dictionary implementation, we sort the
labels and scan the dictionary array. Figure 29 depicts the query accesses to the
data structures for one BFS tree.

5.4 Data sets

In order to evaluate the quality of our distance oracle we used a set of smaller graphs
that represent different real-world network instances such as web graphs, p2p net-
work data, a snapshot from the astro physics collaboration network and the DBLP
co-author network. These graphs can be found in the SNAP database18. These
graphs (ca-AstroPh, dblp, Facebook NY, hyperGrid, p2p-Gnutella31, Facebook
Santa Barbara and web-BerkStan) have a few thousand up to a million vertices
and diameters between 5 and 23. Details about these graphs can be found in the
previous work on geometric distance oracles by Ajwani et al. [AKSS14]. For these
data sets we solved APSP and ran our distance oracle for all possible queries. We
compared the results to obtain a baseline of the quality we are able to achieve on
real-world data sets in realistic use cases. Furthermore, we used the LOEWE-CSC
super computer to compute a baseline on one of our larger web graphs, namely
sk-2005, which is definitely too large to solve APSP for all possible queries in a
realistic time setting (refer to Section 2.14 for more details about this graph). We
use two more graphs in our external-memory implementation: com-friendster and
twitter-2009. The com-friendster network has around 65 million vertices and 1.8
billion edges. The diameter is 32, the graph is a snapshot of the old Friendster
network and it is listed in the SNAP data base. The twitter-2009 graph is an
anonymized crawl of followers in August 2009, has about 52.2 million vertices, 1.6
billion edges and a diameter of 18 [GGL+13]. To demonstrate that our approach

18https://snap.stanford.edu
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can deal with huge data sets we additionally generated a graph similar to our
Θ(
√
n)-diameter graphs (refer to section 2.14) with 2.1 billion vertices, 8.4 billion

edges and a diameter of 30. We refer to it by graph_2b_8b_d30 later this chapter.

5.5 Configuration of our machines

We implemented our external-memory distance oracle with C++11 and the external-
memory library STXXL in version 1.3.1 [DKS08]. We performed our experiments
on a machine A with an AMD FX(tm)-4170 Quad-Core Processor processor @
4.2GHz, 16GB main memory (15GB free), 4 hard disks with 1TB each as external
memory for STXXL, and a separate disk for the operating system, graph data, log
files etc. Machine B has a AMD A10-6800K APU with Radeon(tm) @ 4.1GHz,
32GB main memory (31GB free), 6 solid state drives with 512GB each as external
memory for STXXL, and a separate disk for the other data. The operating system
on A and B was Debian GNU/Linux amd64 with kernel 3.14-2. We compiled on A
and B with GCC 4.9.1 in C++11 mode using optimization level 3.
We also used 40 nodes of the LOEWE-CSC (http://csc.uni-frankfurt.de) with
128GB main memory per node for the evaluation of the accuracy with a Linux
Red Hat 2.6.32 kernel and a GCC 4.4.5 in C++0x mode using optimization level 3.

5.6 Experimental evaluation of the approximation quality

To experimentally evaluate the approximation quality of our distance oracle we solve
exact APSP on our set of small real-world data sets, we described in Section 5.4,
and compare the distance for every vertex pair to the result an internal-memory
version of our distance oracle would provide. It turned out that on the set of
real-world graphs we achieved a high accuracy rate, covering more than 80% of the
queries with an error of at most 1 (refer to Figures 30 and 31).
For the DBLP graph we achieved only in 41% of the queries a matching distance
result. A larger amount of queries, namely 48%, have an error of 1 and 11% of the
queries have an error larger than 1.
Figure 32 depicts the results of the computation of 60,000 BFS trees in main
memory from distinct random sources on the web graph sk-2005, which is equal
to 1.2% of the vertices. We compared the results to our internal-memory distance
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Figure 30: Results of our distance oracle with 20 BFS trees
compared to the APSP for three graphs with a small diameter.
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Figure 31: Results of our distance oracle with 20 BFS trees
compared to the APSP for four graphs with a medium diame-
ter.
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Figure 32: Detailed results of the web graph sk-2005 for 60,000
BFS computations from random sources. We observed an
accuracy of almost 80% with both, random and high degree
vertices as sources for the BFS trees of our distance oracle.

oracle simulation We needed almost 100,000 compute hours on our university’s
cluster computer Loewe-CSC19. Even though we could not test all n2 distance pairs,
the trendline shows that the answers of the distance oracle seem to provide the
same quality as for the smaller graphs.

5.7 Preprocessing time

The preprocessing of our distance oracle involves the computation of the 20 BFS
trees, the computation of the LCA labels for each BFS tree and the setup of the
data structures like the external-memory map for each BFS tree. For the sk-2005
web graph the total time for the preprocessing of our distance oracle (with the
semi-external MR_BFS variant) is 2.71 hours with 20 BFS trees on machine A.
It took less than five minutes to compute one BFS tree with a tuned MR_BFS
implementation with a switch to go semi-external and less than four minutes to
encode such a tree using time forward processing. With a fully external MR_BFS

19https://csc.uni-frankfurt.de/wiki/doku.php?id=public:start
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it takes around 20 minutes per tree. The resulting data is stored on disk and can
be easily reused. Analyzing the preprocessing time for sk-2005 in more detail, we
found that it takes around 6.8 hours with 50 BFS trees and around 14.1 hours with
100-BFS tress with the semi-external variant on machine A.
On the twitter-2009 graph the preprocessing time was almost the same as for
sk-2005 with 2.69 hours in total with 20 BFS trees on machine A. On the graph
com-Friendster, it tool 3.8 hours to compute the preprocessing with 20 BFS trees.
On our synthetic graph graph_2b_8b_d30 the computation of one BFS tree took
2.1 hours on machine A and 1.4 hours on machine B. The computation of the
labels took 2.1 hours on machine A and 0.8 hours on machine B.
The size of the preprocessing result of sk-2005, stored in a file, is between 8.7 GB
for 5 BFS trees and 173.6 GB for 100 trees. For 20 BFS trees the required space
on disk is 34.7 GB. For graph_2b_8b_d30 the file size for one BFS tree is about
56 GB. A file for 20 BFS trees would have a size of 1.1 TB and it would need about
3.5 days on machine A and 1.9 days on machine B to compute it.

5.8 Online queries on SSDs and batched queries on HDDs

Online distance queries are a common application of distance oracles, especially in
the web. A user might want to know how close an item is related to another one in
a network. Therefore, we evaluated randomized online distance queries on the web
graph sk-2005 on machine A and B. We need a constant number of I/Os per tree
for one query. With four HDDs in parallel on machine A, the query time is about
a second for 20 BFS trees on sk-2005. The result on SSDs is similar if the same
block size of 512KB per disk is set. However, we found that by decreasing the
block size on SSDs to 8-16 KB, we can achieve a query time of a few milliseconds
for the same scenario. For 16KB we get an average query time of 8.1ms and for
8KB, we even achieved a query time of 6.7ms. An access to a single memory cell
on a flash memory is quite fast but reading too many cells in a row wastes time to
read a big block without any value for this scenario. On the other hand, the block
size should not be too small so that the overhead to maintain the STXXL data
structures and fetching blocks from the SSD do not slow down the performance for
batched queries.
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Batched distance queries work for applications without real-time requirements such
as those in some learning systems which are used in many applications today in
order to adapt interfaces to their users. By batching Θ(n) queries, we achieved a
query time in the range of 15 to 26 microseconds per query for sk-2005, depending
on the architecture. For various batch sizes on the web graph sk-2005, we refer the
readers to Table 11.
For the twitter-2009 graph, we observed that the query time only differs by a small
factor as compared to sk-2005.

Number of queries Avg time [A] Avg time [B]
~227 26,078 µs 16,274 µs
~228 24.562 µs 15,571 µs
~229 23.926 µs 15,626 µs
~230 23.616 µs 15,759 µs
~231 23.709 µs 16,144 µs

Table 11: Average query time for a query on machine A with
HDDs and on machine B with SSDs for different natch sizes
on sk-2005.

5.9 Dynamic setting

Our implementation supports edges updates in the following pattern: when a
new edge (u, v) is requested to be added to the graph, we determine the distance
dist(u, v) between u and v in the graph without this edge. If dist(u, v) is smaller
or equal to a threshold, which can be defined by the user, we insert the new edge
into a buffer and our distance oracle contains outdated data. Edge insertions with
a larger distance dist(u, v) directly force to a recomputation of our distance oracle.
While the BFS trees can be updated as in previous dynamic BFS implementations,
the LCA encoding is recomputed from scratch. If the buffer is full we recompute
the distance oracle from scratch for all updates. A chart of the program flow is
provided in Figure 33.
We found that the average update time for an edge insertion depends on the
threshold that determines whether an edge is incorporated immediately into the
recomputation of BFS trees or whether it is batched for a future update, and also
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on the size of the buffer that we keep for the update. These two parameters allow
us to control the update time vs. accuracy trade-off. For the extreme scenario
where we batch a million or more edges, we can easily get the amortized update
time down to milliseconds per edge. Our preliminary experiments suggested that
for random edge insertions the resulting accuracy loss, is still a small additive
factor, particularly when the initial graph already has a large number of edges. On
the other hand, updating a BFS tree with our dynamic BFS implementation for a
single edge can take many minutes. Similarly, updating the LCA encoding of a
tree from scratch takes a few minutes on our real-world graphs. Thus, in order to
keep our average update time small, which is a requirement for some applications,
we choose the threshold fairly high (relative to the graph diameter) and the buffers
fairly large. Note that most vertices in real-world graphs lie in a tightly connected
core (hub region) and thus, most vertex pairs have a very small distance between
them as compared to the graph diameter. So, many edge insertions do not require
an immediate update.

5.10 Conclusion and open problems

We demonstrated that we are able to implement a real-time data structure for
external-memory graph algorithms with our distance oracle. The preprocessing
of our implementation needs only a few hours on our data sets. We have chosen
data sets of typical size. The presented data sets have been used in several
publications over the past few years. Even larger data sets like our synthetic data
set graph_2b_8b_d30, which is more complex than the typical real-world data
sets, is processed within a few days. We store less than a kilobyte per vertex for 20
BFS trees in our oracle. On SSDs, we can answer online queries in milliseconds due
to our efficient data structures and constant I/O-complexity. On both architectures,
SSDs and HDDs we can answer batched queries in microseconds per query for a
reasonable large number of queries. In addition, our distance oracle can be updated
I/O-efficiently for edge insertions by either buffering updates with less impact or
processing new edges immediately if their impact is too high.
Observe that the idea of small LCA labels, designed for a specific use case, is
used in various algorithms nowadays to achieve fast answers for queries in several
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Figure 33: Chart of the program flow in our distance oracle if
we allow edge insertions.
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applications. One example is given by Barros et al. who answer queries on XML
data streams [BLMdS16]. There is still potential for further applications that use
simple label schemes to develop algorithms that can answer queries in real-time.
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6 CONCLUSION AND FUTURE WORK

6 Conclusion and future work

We presented some results of external-memory algorithms that have been imple-
mented and improved by methods from algorithm engineering. In Chapter 3,
we presented techniques to approximate the diameter of huge graphs faster than
with BFS, with a feasible approximation quality. During the work with different
synthetic and real-world data sets, we learned that real-world data sets usually have
structures as hub regions, that make it possible to use less complex implementations
which are faster in the average case and easier to understand. For PAR_APPROX
(refer to Section 3.7), we concluded in our PASA 2012 publication [ABMV12] as
follows: “Our experiments have shown that the parametrized diameter approxi-
mation method is in fact faster than plain external-memory BFS and typically
produces much better approximation bounds than the theory predicts. Nevertheless,
it turns out that it is currently not suited as a section guide between different
BFS approaches: as soon as the condensed graph does not fit into main memory,
the overhead to run the semi-external memory SSSP is not worth the subsequent
savings of a carefully chosen BFS approach. [...] Hierarchical clustering seems to be
the natural choice but as the condensed graphs become weighted already after the
first round, the parallel cluster growing of the next rounds needs to appropriately
handle these weights, too. Currently, this step relies on the fact that the edges are
unweighted”.

We tackled this problem by our recursive extension REC_APPROX, where we
included improvements as master movement, tie breaking and adaptive master
vertex selection for the recursive steps (refer to Section 3.10 for details). With
the recursive extension, we could process significantly larger external-memory
graphs than before while keeping approximation ratio and computation time
reasonable [AMV12]. As an interesting open question we stated the we have not
looked at directed graphs. For directed graphs, the computation of BFS is more
complex because the idea behind the algorithm of MR_BFS does not work anymore.
MR_BFS looks two BFS-levels back to determine, if a vertex v has been visited or
is part of the new level. The same is true for MM_BFS, which uses MR_BFS as a
subroutine. We have done some work in the field of directed BFS together with
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Rafael Franzke [Fra16] in 2016 but we have not solved the problem for efficient
directed diameter approximation yet.
In Chapter 4, we provided the first dynamic external-memory implementation of
a graph algorithm. We have experimentally shown that even for single updates
on the BFS tree, a significant speed up can be seen between the dynamic and the
static BFS tree computation. On real-world data with small diameter of log (n)
many updates only take a few seconds up to a few minutes instead of hours or even
days. Only in some edge cases, respectively on synthetic data, we were as slow as
a computation from scratch or even slightly slower. Furthermore, we introduced a
new deterministic level-aligned hierarchical clustering.
In Chapter 5, we presented our external-memory distance oracle. We used a set of
BFS trees with root vertices selected by their vertex degrees and therefore, in many
cases, on vertices in hub regions which cover many shortest paths. Previous work on
geometric distance oracles supporting this section strategy was done by Ajwani et
al. in 2014 [AKSS14]. We used vertex labels to improve the distance computation
in BFS trees. In combination with real-world data with small diameters, we were
able to store distance oracles with only a few kilobytes per vertex and query times
of milliseconds for a single query on machines that use SSDs and even microseconds
for batched queries on both kinds of hardware devices - HDDs and SSDs.
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Graph algorithms for approximate and
dynamic settings in the external-memory

model

von
David Veith

Graphalgorithmen. Graphen sind seit langer Zeit ein äußerst beliebtes
mathematisches Modell, um Beziehungen in Daten zwischen den einzelnen
Datenpunkten zu modellieren. Schon 1736 entwickelte der Schweizer Mathematiker
Leonhard Euler Graphen zur Lösung eines praktischen Problems bestehend aus
der Suche nach einer Rundreise durch eine Stadt über sieben Brücken, wobei Euler
anhand seiner Konstruktion zeigen konnte, dass im geforderten Fall keine Lösung
existiert. Ein Graph G wird über seine Knotenmenge V und seine Kantenmenge E
modelliert. In Eulers Fall waren die Inseln der Stadt die Knoten und die Brücken
die Kanten. Er konnte zeigen, dass keine Rundreise existiert, bei keine Brücke
zweimal verwendet werden muss, indem er sich die Knotengrade angeschaut hat.
Es konnte nur einen Weg geben, wenn die Inseln so oft besucht werden, wie sie
verlassen werden oder aber, wenn es eine Insel gibt, in der die Reise startet und
eine Insel, in der die Reise endet. Daraus wurde die Bedingung, dass ein Eulerweg
existiert, wenn alle Konten einen geraden Knotengrad haben oder genau zwei Knoten
einen ungeraden Knotengrad besitzen. Die Benutzung von Graphen setzte sich
aufgrund der Einfachheit und der vielseitigen Verwendbarkeit durch. Auf Graphen
können Eigenschaften wie Distanzen zwischen Knoten, der Durchmesser eines
gegebenen Graphs G (das Maximum unter allen kürzesten Distanzen) oder auch
Beziehungen zwischen Knoten als Gemeinschaft (community detection) effizient
bestimmt werden. Viele elementare Graphalgorithmen gelten seit Jahrzehnten in
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Forschung und Lehre als fester Bestandteil der Werkzeugpalette zur Konstruktion
effizienter Algorithmen. Anwendungsgebiete finden sich in maschinellem Lernen,
dem Betreiben von Echtzeitsystemen zur Planung von Aufgaben (topologische
Sortierung), zur Planung von Infrastruktur oder zur Navigation.

Externspeichermodell. Schneller Speicher ist nach wie vor ein knappes und
teures Gut. Während Desktopcomputer inzwischen problemlos 16 bis 32 Gigabyte
Hauptspeicher vorweisen können, haben Smartphones typischerweise 2 oder 3
Gigabyte, teure Geräte bis zu 8 Gigabyte (Stand 2019). Nach Abzug aller
Arbeitsdaten reicht der Platz selten für mehr als ein bis zwei Applikationen
gleichzeitig. Dementsprechend werden Arbeitsdaten auf einem langsameren, aber
persistenten, Speicher wie SD-Karten abgelegt. Während der Arbeitsspeicher
etwa 100 Nanosekunden für eine Datenabfrage benötigt, sind es bei der SD-Karte
Millisekunden. Dieser Unterschied von mehreren Größenordnungen führt dazu,
dass Smartphones scheinbar stillstehen, wenn Daten ständig zwischen der SD-Karte
und dem Arbeitsspeicher ausgetauscht werden. Die Kommunikationslatenz wird in
solchen langsameren Speichern durch eine hohe Transferrate von Datenblöcken der
Größe B pro Kommunikationsschritt wieder wettgemacht.
1987 veröffentlichten Aggarwal und Vitter [AV87] ein Modell, welches dieses
Verhalten im Externspeichermodell formalisiert.
Das Externspeichermodell beschreibt einen Computer durch einen Zentralprozessor
(CPU), einen schnellen, aber in der Größe auf M begrenzten Hauptspeicher sowie
einen Externspeicher unbeschränkter Größe mit hoher Latenz, auf dem die Eingabe
der Länge N gespeichert wird, wobei N � M , sowie eine Kommunikation in
Blöcken der Größe B. Ein Kommunikationsvorgang zwischen dem Hauptspeicher
und dem Externspeicher wird als ein I/O (input/output) bezeichnet.
Ziel eines Algorithmus im Externspeichermodell ist es, die Anzahl der I/Os zur
Lösung eines Problems für eine Eingabe von N Datenelementen zu minimieren.
Dabei wird jedoch darauf geachtet, dass die Minimierung nicht durch eine
überproportionale Last auf der CPU ersetzt wird. Zwei elementare Routinen
werden im Externspeichermodell regelmäßig zum Implementieren von Algorithmen
genutzt. Zum einen das Lesen einer konsekutiven Eingabe von N Elementen,
wofür O(N/B) I/Os benötigt werden, zum anderen das Sortieren von N Daten,
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welches mit O(N/B · logM/B (N/B)) I/Os durchgeführt werden kann, wobei der
logarithmische Term in der Praxis Werte zwischen 2 und 5 erreicht.

Externspeicheralgorithmen auf Graphen. Breitensuche und Tiefensuche
sind zwei gängige Algorithmen, um Graphen zu traversieren. Die Breitensuche wird
in dieser Arbeit als vielseitige Basismethode eingesetzt, da mit einer Breitensuche
die kürzeste Distanz (Anzahl der Zwischenknoten) eines jeden erreichbaren Knotens
v ∈ V \ {s} von einem Startknoten s ∈ V bestimmt werden kann. 1999 wurde
von Munagala und Ranade [MR99] der Externspeicheralgorithmus MR_BFS zur
Breitensuche veröffentlicht, welche die triviale I/O-Komplexität von O(n+m) I/Os
auf O(n+ sort(n+m)) I/Os senken konnte. Für Graphen mit einem Durchmesser
d kann MR_BFS sogar mit O(d · scan(m) + sort(n+m)) I/Os analysiert werden,
was für d < B zu einer besseren Schranke führt.
Erst 2002 wurde mit MM_BFS ein für alle Graphdurmesser effizienter
Algorithmus veröffentlicht, wobei dieser mit einer worst-case-I/O-Komplexität
von Ω(N/

√
B) I/Os immer noch um einen Faktor von fast Ω(

√
B) teurer als die

Sortierkomplexität ist [MM02]. Diese Lücke konnte bis heute nicht geschlossen
werden und hat Auswirkungen auf die Verwendung von Breitensuche als Subroutine
für komplexere Algorithmen.

Ergebnisse in dieser Arbeit. In dieser Arbeit werden drei Themenkomplexe
aus dem Bereich der Externspeicheralgorithmen näher beleuchtet:
Approximationsalgorithmen, dynamische Algorithmen und Echtzeitanfragen.
Das Thema Approximationsalgorithmen wird sowohl im Kapitel 3 als auch
im Kapitel 5 behandelt. In Kapitel 3 wird ein Algorithmus vorgestellt,
welcher den Durchmesser eines Graphen heuristisch bestimmt. Im RAM-
Modell ist eine modifizierte Breitensuche selbst ein günstiger und äußerst
genauer Algorithmus. Dies ändert sich im Externspeicher. Dort ist die
Hauptspeicher-Breitensuche durch die O(n+m) unstrukturierten Zugriffe auf den
externen Speicher zu teuer. 2008 wurde von Meyer ein Verfahren zu effizienten
Approximation des Graphdurchmessers im Externspeicher gezeigt, welches
O(k · scan(n+m) + sort(n+m) +

√
n·m
k·B · log2 (k) +MST (n,m)) I/Os bei einem

multiplikativen Approximationsfehler von O(
√
k · log (k)) [Mey08b] benötigt.
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Die Implementierung, welche in dieser Arbeit vorgestellt wird, konnte
in vielen praktischen Fällen die Anzahl an I/Os durch Rekursion auf
O(k · scan(n + m) + sort(n + m) + MST (n,m)) I/Os reduzieren. Dabei
wurden verschiedene Techniken untersucht, um die Auswahl der Startpunkte
(Masterknoten) zum rekursiven Schrumpfen des Graphen so wählen zu können,
dass der Fehler möglichst klein bleibt. Weiterhin wurde eine adaptive Regel
eingeführt, um nur so viele Masterknoten zu wählen, dass der geschrumpfte Graph
nach möglichst wenigen Rekursionsaufrufen in den Hauptspeicher passt. Es wird
gezeigt, dass die untere Schranke für den worst-case-Fehler dabei auf Ω(k 4

3−ε) mit
hoher Wahrscheinlichkeit steigt. Die experimentelle Auswertung zeigt jedoch, dass
in der Praxis häufig deutlich bessere Ergebnisse erzielt werden.

In Kapitel 4 wird ein Algorithmus vorgestellt, welcher, nach dem Einfügen einer
neuen Kante in einen Graphen, den zugehörigen Baum der Breitensuche unter
Verwendung von O(n · ( n

B2/3 + sort(n) · log (B))) I/Os mit hoher Wahrscheinlichkeit
aktualisiert. Dies ist für hinreichend große B schneller als die statische
Neuberechnung. Zur Umsetzung des Algorithmus wurde eine neue deterministische
Partitionsmethode entwickelt, bei der die Größe der Cluster balanciert und effizient
veränderbar ist. Hierfür wird ein Dendrogramm des Graphen auf einer geeigneten
Baumrepräsentation, wie beispielsweise Spannbaum, berechnet. Dadurch hat jeder
Knoten ein Label, welches aufgrund seiner Lage innerhalb der Baumrepräsentation
berechnet worden ist. Folglich kann mittels schneller Bit-Operationen das Label um
niederwertige Stellen gekürzt werden, um Cluster der Größe µ = 2i zu berechnen,
wobei der Clusterdurchmesser auf µ beschränkt ist, was für die I/O-Komplexität
gewährleistet sein muss, da der Trade-off aus MM_BFS zwischen Cluster- und
Hotpoolgröße genutzt wird. In der experimentellen Auswertung wird gezeigt, dass
die Performanz von dynamischer Breitensuche sowohl auf synthetischen als auch
auf realen Daten oftmals schneller ist als eine statische Neuberechnung des Baums
der Breitensuche. Selbst wenn dies nicht der Falls ist, so sind wir nur um kleine,
konstante Faktoren langsamer als die statische Implementierung von MM_BFS.
Schließlich wird in Kapitel 5 ein Approximationsalgorithmus vorgestellt, welcher
sowohl dynamische Komponenten beinhaltet als auch die Eigenschaft besitzt,
Anfragen in Echtzeit zu beantworten. Um die Echtzeitfähigkeit zu erreichen,
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darf eine Anfrage nur O(1) I/Os hervorrufen. Im Szenario dieser Arbeit
wurden Anfragen zu Distanzen zwischen zwei beliebigen Knoten u und v auf
realen Graphdaten mittels eines Distanzorakels beantwortet. Es wird eine
Implementierung sowohl für mechanische Festplatten als auch für SSDs vorgestellt,
wobei kontinuierliche Anfragen im Onlineszenario von SSDs in Millisekunden gelöst
werden können, während ein großer Block von Anfragen auf beiden Architekturen
in Mikrosekunden pro Anfrage amortisiert gelöst werden kann. Die experimentelle
Auswertung zeigt, dass die Anfragen typischerweise nur einen geringen Fehler
enthalten, wodurch das Distanzorakel praktische Relevanz erhält.
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