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The properties of open strange meson K ±
1 in nuclear matter are estimated in the QCD sum rule approach. 

We obtain a relation between the in-medium mass and width of K −
1 (K +

1 ) in nuclear matter, and show 
that the upper limit of the mass shift is as large as −249 (−35) MeV. The spectral modification of the K1
meson is possible to be probed by using kaon beams at J-PARC. Such measurement together with that of 
K ∗ will shed light on how chiral symmetry is partially restored in nuclear matter.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the QCD vacuum, chiral symmetry is spontaneously broken, 
which leads to the non-vanishing chiral order parameters and the 
existence of the Nambu-Goldstone (NG) bosons. It also leads to the 
mass difference between the vector meson and its axial partner 
[1,2]. This broken symmetry is expected to have been restored in 
the early universe, when the temperature was very high. Further-
more, it was noted that the chiral symmetry is partially restored 
even in normal nuclear density so that by exciting mesons inside 
the nucleus one could study the precursor phenomena of chiral 
symmetry restoration [3–6]. Furthermore, the enhanced repulsion 
of the s-wave isovector pion-nucleus interaction observed in the 
deeply bound pionic atoms [7] was shown to be a direct conse-
quence of the reduction of the in-medium quark condensate in 
nuclear medium [8].

According to the in-medium QCD sum rules developed in [5], 
in-medium change of the four-quark condensate (the strange quark 
condensate) is responsible for the spectral change of the ρ, ω
mesons (the φ meson). A number of experiments have since then 
carried out worldwide [9]. The KEK-PS experiments observed the 
invariant mass spectra of e+e− pairs from the nuclear targets and 
found excess signals at the lower end of the ω resonance peak 
that could be explained by the vector meson mass decrease of 9%
at the normal nuclear density [10]. The KEK-PS E325 collabora-
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tion reported evidence that the mass of the φ meson decreased 
by 3.4% at normal nuclear density [11]. Further measurements 
of dileptons from the in-medium φ-meson are planned at J-PARC 
E16 experiment [12]. Dilepton spectrum has the advantage of not 
suffering from strong interaction with the medium as the sig-
nal emerges from inside the nucleus but has the disadvantage of 
being low in the yield. Reactions involving hadronic final states 
have the opposite features. For example, CBELSA/TAPS Collabora-
tion observed that the ω meson decreased by about 60 MeV at 
an estimated average nuclear density of 0.6 ρ0 through the reac-
tion γ + A → ω + X → π0γ + X ′ [13]. However, the signal could 
have been contaminated by final state interactions. Furthermore, 
ω and f1 are chiral partners only in the limit where disconnected 
quark diagrams are neglected [14] and the QCD sum rule approach 
was found to have a large contribution from the scattering term 
[15–17], so that it is not clear if the sum rule leads to a decreas-
ing mass. Alternative approach by the CBELSA/TAPS collaboration 
is to extract meson-nucleus optical potentials from near-threshold 
meson productions in photo- and hadro-reactions off nuclei as well 
as in heavy-ion reactions by focussing on mesons with small width 
in the vacuum (K , η, η′, ω, φ) [18]. The momentum distribution of 
mesons, excitation functions and the transparency ratios are the 
key experimental observables.

Motivated by recent experimental progress, one of us (SHL) 
have recently estimated the spectral shift of the f1 meson, which 
is a chiral partner of ω in the limit where the disconnected di-
agrams are neglected, in the QCD sum rule approach [14]. Ex-
perimentally, the f1(1285) has been successfully identified by the 
CLAS collaboration in photoproduction from a proton target with a 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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small width of 18 ± 1.4 MeV [19], so that performing similar ex-
periments on a nuclear target and comparing the result with that 
from the ω would be extremely useful for partial restoration of 
chiral symmetry in nuclei as suggested in Ref. [14]. In fact, the 
individual meson masses could behave differently depending on 
whether the hadron is in nuclear matter or at finite temperature, 
while the mass difference between chiral partners will only de-
pend on the chiral order parameter and be universal [20].

The difference between the vector and axial-vector correlation 
functions in the open strange channel is also an order parameter 
of chiral symmetry [20]. This implies that their spectral densities 
will become degenerate if chiral symmetry is restored. In the vac-
uum, the low-lying modes that couple to the vector current are 
K ∗(892) and K ∗(1410) while for the axial vector current they are 
K1(1270) and K1(1400). There is a subtlety in the nature of the 
two K1 states: They are assumed to be a mixture of the 3 P1 and 
1 P1 quark-antiquark pair in the quark model [21]. However, if chi-
ral symmetry is partially restored, the spectral density will tend to 
become degenerate so that the lowest distinctive poles in the re-
spective current will approach each other. Therefore, in this work, 
we investigate the spectral modification of open strange meson K1
through the axial-vector current in nuclear matter using QCD sum 
rules.

Measuring the open strange meson in the vector channel, 
namely the K ∗+ through the decay K ∗+ → K + + γ was suggested 
as a promising signal to measure the spectral change of the vec-
tor meson in Ref. [22]. Both the K1(1270) and the K ∗(892) have 
widths smaller than their non strange counter parts, namely 90 
MeV and 47 MeV, respectively, compared to more than 250 MeV 
and 150 MeV for the a1 and the ρ . At the same time, they are 
also chiral partners so that their mass difference is sensitive to the 
chiral order parameter.

We note that K +
1 and K −

1 become non-degenerate in nuclear 
medium due to the presence of nucleons which break charge con-
jugation invariance in the medium. There are two approaches to 
treat such situation in QCD sum rules. One is to project out the po-
larization function into definite charge conjugation states [23,24]. 
The other is to extract the ground state of each charge state from 
the polarization functions [25]. In the present paper, we take the 
latter method in which some parameters for K −

1 are mixed into 
the sum rule for K +

1 and vice versa.
In section 2, we first discuss the QCD sum rules for K1 meson 

in the vacuum. In section 3, effects of nuclear matter are taken into 
account in the QCD sum rule through the local operators with spin. 
In section 3, the maximum mass shift of K ±

1 meson is estimated 
by the pole plus continuum approximation of the spectral function. 
Also, by considering the modification of the width and the mass 
shift, we obtain a relation between the in-medium change of these 
two quantities. Summary and discussion are given in section 4.

2. K1 meson in vacuum

The time-ordered current correlation function of the K1 current 
is given by

�μν(q) = i

∫
d4xeiq·x〈0|T [ūγμγ5s(x), s̄γνγ5u(0)]|0〉

= −i

∫
d4xeiq·x〈0|Tr[γμγ5i Ss(x)γνγ5i Su(−x)]|0〉, (1)

where i Ss and i Su represent u-quark and s-quark propagators re-
spectively. Including nonperturbative effect, these propagators are 
expanded as [26]:
i Sab(x) = i
� x

2π2x4
δab − m

4π2x2
δab + i

m2 � x
8π2x2

δab + ...

+χa(x)χb(0) − i
g

32π2

� xσαβ + σαβ � x
x2

F αβ

A (0)tab
A + ..., (2)

where a, b are color indices, and α, β Lorentz indices. The first 
line is the expansion of the perturbative part with respect to quark 
mass m, and the second line encodes the nonperturbative part. χa

is the background field of the quark, and F αβ

A that of the gluon. 
Because the masses of u and d quarks are small compared to the 
typical QCD scale, we consider only strange quark mass to be finite 
in this study.

The current correlation function in the vacuum is composed of 
two independent functions �1 and �2 as follows:

�μν(q) = −gμν�1(q
2) + qμqν�2(q

2). (3)

If the current is conserved, the two functions are related by �1 =
q2�2. However, the axial current of K1 is not conserved and �2
has contributions from pseudoscalar mesons. In principle, we may 
carry out QCD sum rule with either �1 or �2.

Let us first consider �1. Substituting Eq. (2) into Eq. (1), the op-
erator product expansion (OPE) of the current correlation function 
is obtained up to dimension 6 as

�1(q
2) = B0 Q 2 ln

Q 2

μ2
+ B2 ln

Q 2

μ2
− B4

Q 2
− B6

Q 4
, (4)

and

B0 = 1

4π2

(
1 + αs

π

)

B2 = 3m2
s

8π2

B4 = −ms〈ūu〉0 + 1

12
〈αs

π
G2〉0

B6 = 2παs

9

(
〈(s̄γμλas + ūγμλau)(

∑
q

q̄γμλaq)〉0

)

+2παs

(
〈(ūγμλas)((s̄γμλau)〉0

)

= 32παs

81

(
〈ūu〉2

0 + 〈s̄s〉2
0

)
+ 32παs

9

(
〈ūu〉0〈s̄s〉0

)
,

where Q 2 ≡ −q2, μ = 1 GeV is the renormalization scale, n in 
Bn indicates the canonical dimension of the operator, and 〈O〉0
denotes the condensate of operator O in the vacuum. We take 
the recently updated parameters as follows: αs = 0.5, mq = 4.26
MeV, ms = 117 MeV, where both quark masses are scaled to 
μ = 1 GeV from the values at μ = 2 GeV given by lattice calcu-
lations in 2 + 1 flavors as reported in Particle Data Group [27], 
〈ūu〉0 = (−0.262 GeV)3 from the Gell-Mann Oakes Renner relation 
2mq〈ūu〉0 = m2

π f 2
π with mπ and fπ being the mass and decay con-

stant of the pion respectively, 〈s̄s〉0 = 0.8〈ūu〉0, and 〈αs/πG2〉0 =
0.012 GeV4.1 For the four quark operators of dimension 6, a fac-
torization ansatz is adopted [2,5].

1 A recent work finds a larger gluon condensate from the analysis of the e+e− an-
nihilation data in the charm-quark region [28]. Considering the fact that the higher 
order αs corrections and the value of the gluon condensate are correlated [29,30], 
we choose, in this paper, a parameter set (Table II of [14]) that reproduces the 
masses and decay constants of the light quark system consistently in the leading 
order.
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It should be noted that for the corresponding vector correlation 
function obtained with the current J K ∗

μ = ūγμs, the OPE up to this 
order will be similar with B V

0 = B0, B V
2 = B2 and

B V
4 = +ms〈ūu〉0 + 1

12
〈αs

π
G2〉0

B V
6 = 2παs

9

(
〈(s̄γμλas + ūγμλau)(

∑
q

q̄γμλaq)〉0

)

+2παs

(
〈(ūγμγ 5λas)((s̄γμγ 5λau)〉0

)

= 32παs

81

(
〈ūu〉2

0 + 〈s̄s〉2
0

)
− 32παs

9

(
〈ūu〉0〈s̄s〉0

)
.

The difference between the axial and the vector correlation func-
tions is proportional to chiral symmetry breaking operators re-
sponsible for the mass difference between chiral partners. Specif-
ically, at dimension 4, the difference is proportional to ms〈q̄q〉, 
while at dimension 6, it is 〈s̄s〉〈q̄q〉. Both operators are proportional 
to 〈q̄q〉, but is dominated by the dimension 6 operator. It is inter-
esting to note that the larger mass difference between ma1 −mρ 	
1260 − 770 = 490 MeV compared to the corresponding mass dif-
ference in the open strange sector mK1 − mK ∗ 	 1270 − 892 = 378
MeV seems to be related to the difference in the four quark con-
densate 〈q̄q〉2 to 〈s̄s〉〈q̄q〉 in their respective sum rules. It should be 
also noted that the difference in the open charm sector is domi-
nated by the dimension 4 operators because the charm quark mass 
amplifies the contribution from the light quark condensate as was 
noted in Ref. [31,32].

As for the imaginary part of the correlation function, we use 
the phenomenological spectral function

1

π
Im�1(q

2) = m4
K1

g2
K1

δ(q2 − m2
K1

)

+(B0q2 − B2)θ(q2 − s0), (5)

where the first term on the right hand side represents the ground 
state and the second term the sum of all excited states, which 
is approximated by the continuum part starting from a threshold 
value s0. The factor multiplied to the step function is obtained by 
the perturbative part of Eq. (4), as shown in A. The imaginary part 
and the real part of the correlation function are related to each 
other through the dispersion relation:

1

π

∫
Im�1(s)

s + Q 2
ds = Re�1(q

2). (6)

In order to improve our approximations from both sides, 
namely the calculations of the real part up to dimension 6 and 
the step function for excited states and continuum, we take the 
Borel transformation defined as

B̂ ≡ lim
Q 2,n→∞ Q 2/n→M2

1

(n − 1)! (Q 2)n
(

− d

dQ 2

)n

,

where M is called the Borel mass. For our purpose, we use

B̂(Q 2)−k = 1

(k − 1)!
1

(M2)k
, (7)

B̂(Q 2)k ln Q 2 = −k!(−M2)k, (8)

B̂(Q 2 + M2
B)−k = 1

(k − 1)!
1

(M2)k
e−M2

B/M2
. (9)

Taking the Borel transformation has two advantages. First, as 
shown in Eq. (9), it introduces an exponential function in the left 
hand side of Eq. (6), which enhances the ground state but sup-
presses the continuum part. Second, the contribution from high-
dimension operators in the real part of the polarization function is 
suppressed by an additional 1/(n − 1)! factor.

Substituting the OPE and the phenomenological ansatz into 
Eq. (6), we obtain the following equation after the Borel transfor-
mation.

m4
K1

g2
K1

e
−m2

K1
/M2 = B0M4

{
1 −

(
1 + s0

M2

)
e−s0/M2

}

− B2M2
(

1 − e−s0/M2
)

− B4 − B6

M2
, (10)

where the continuum part was moved to the right hand side. 
Differentiating Eq. (10) with respect to 1/M2, and dividing it by 
Eq. (10), K1 mass is expressed as

m2
K1

= M2 2B0 E2 − B2 E1/M2 + B6/M6

B0 E1 − B2 E0/M2 − B4/M4 − B6/M6
, (11)

where

E0 = 1 − e−s0/M2
,

E1 = 1 −
(

1 + s0

M2

)
e−s0/M2

,

E2 = 1 −
(

1 + s0

M2
+ s2

0

2M4

)
e−s0/M2

.

Eq. (11) is the Borel sum rule for the K1 mass. In principle, the 
physical mass should be independent of M2. However, as men-
tioned above, the real part of the correlation function is truncated 
at dimension 6, and the excited states and continuum in the spec-
tral function is simplified into a step function. As a result Eq. (11)
depends on M2. Then, one introduces the so-called Borel window 
in M2 where the resultant K1 mass is reliable. The smallest M2

of the Borel window, M2
min, is determined from the condition that 

the contribution from the power corrections does not exceed 15% 
of the perturbative part:∣∣∣∣ B4 + B6/M2

B0M4 − B2M2

∣∣∣∣ < 0.15. (12)

The largest reliable M2, M2
max, is determined from the condition 

that the contribution from the continuum does not exceed 70%:∣∣∣∣ B0M2(1 − E1) − B2(1 − E0)

B0M2 − B2

∣∣∣∣ < 0.7. (13)

We note that the maximum percentage is taken to be larger than 
in Eq. (12), which is similar to the continuum contribution for the 
p-wave states using the �1 sum rule [33]. If M2

min becomes too 
small the large power correction spoils the stability, while if the 
M2

max becomes too small the sensitivity of the continuum thresh-
old is lost and one needs a large change in the continuum thresh-
old.

Applying Eqs. (12) and (13), the Borel window is given by 
1.06 ≤ M2 ≤ 2.17 GeV2. The continuum threshold s0 is chosen 
such that the extremum of the Borel curve is close to the phys-
ical mass of K1 ground state within the Borel window. Physically 
it should be close to the mass of the first excited state.

Fig. 1 shows the Borel curve for the mass of K1 at s0 = 2.4 GeV2

together with the fractional contributions from the power cor-
rections and the continuum. The Borel window which satisfies 
Eqs. (12) and (13) is shown by the black solid line. We find the 
minimum value of the Borel curve is consistent with the mass 
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Fig. 1. The Borel curve for K1 mass from the �1 sum rule together with the frac-
tional contributions from the power corrections and the continuum. The Borel win-
dow given in Eqs. (12) and (13) is shown by the black solid line. The unit for the 
mass is in GeV while for the fractional contributions it is unitless.

of K1(1270). The overlap strength of the current with the ground 
state F K1 ≡ m2

K1
/g2

K1
is about 0.048 GeV2 in this window. We note 

that 
√

s0 = 1.55 GeV is close to the mass of K1(1400).
We can also construct a QCD sum rule with �2. The real part 

is then given by

�2(q
2) = −B0 ln

Q 2

μ2
− B̃2

Q 2
+ B̃4

Q 4
+ B6

Q 6
, (14)

where

B̃2 = 3m2
s

4π2
,

B̃4 = ms〈s̄s〉0 + 1

12
〈αs

π
G2〉0,

and B0 and B6 are same as in �1, with B̃4 = B4 in the limit 
ms → 0. However, the imaginary part will then have contribution 
from the pseudoscalar meson and will not be useful for our pur-
pose as one would need additional input on the kaon properties 
in medium to use the corresponding sum rule to study the proper-
ties of the K1 meson in medium. Therefore, we use the Borel curve 
from �1 in this study to investigate the properties of K1 meson in 
nuclear matter.

3. K ±
1 meson in nuclear medium

In nuclear matter, there are two modifications in the real part 
of the correlation function. One is the change in the values of the 
condensates, and the other is the appearance of operators with 
spin. We take into account only twist-2 terms which are domi-
nant in OPE. (Here twist is the dimension of operator subtracted 
by spin.) Higher twist terms have been estimated before and are 
known to be less important [34]. The degeneracy of K −

1 and K +
1

in the vacuum does not hold in nuclear matter due to charge sym-
metry breaking, which leads the odd dimensional terms in the OPE 
to contribute with opposite sign for the two charged states.

3.1. In-medium OPE

In the limit q → 0, the OPE in nuclear matter can be written as

�1(q
2) = �e(q2) + q0�

o(q2), (15)

where
�e(q2) = B0 Q 2 ln
Q 2

μ2
+ B2 ln

Q 2

μ2
− B∗

4

Q 2
− B∗

6

Q 4
,

�o(q2) = 1

3Q 2
(Au

1 − As
1)ρ − 2m2

N

3Q 4
(Au

3 − As
3)ρ, (16)

with

B∗
4 = −ms〈ūu〉ρ + 1

12
〈αs

π
G2〉ρ,

+ mN

2
(Au

2 + As
2)ρ

B∗
6 = 32παs

9

{
〈ūu〉ρ〈s̄s〉ρ + 〈ūu〉2

ρ + 〈s̄s〉2
ρ

9

}

− 5

6
m3

N(Au
4 + As

4)ρ. (17)

�e(o) denotes even (odd) dimensional terms of correlation func-
tion. 〈O〉ρ is the condensate of operator O in nuclear matter, 
where we use the linear density approximation: 〈O〉ρ = 〈O〉0 +
〈O〉Nρ with ρ being the baryon density. 〈ūu〉N , 〈s̄s〉N , and 〈G2〉N

are the nucleon matrix elements taken from Refs. [5,14]:

mq〈ūu + d̄d〉N = 45 MeV, ms〈s̄s〉N = 35 MeV,

〈α/πG2〉N = −8/9mN . (18)

mN is the nucleon mass, and Aq
n(μ2) = 2 

∫ 1
0 xn−1{q(x, μ2) +

(−1)nq̄(x, μ2)}dx, where q(x, μ2) and q̄(x, μ2) are, respectively, 
quark and antiquark distribution functions in the nucleon at scale 
μ2, and are defined through the twist-two operators

〈ST (q̄γμ1 Dμ2 ...Dμn q(μ2))〉N

= (−i)n−1 Aq
n(μ

2)
Tμ1...μn

2mN
. (19)

Here, ST means ‘symmetric and traceless’, and expressed on the 
right side with the tensor Tμ1···μn . For our case,

Tμν = pμpν − p2

4
gμν,

Tμνρ = pμpν pρ − p2

6
(gμν pρ + gμρ pν + gνρ pμ),

Tμνρλ = pμpν pρ pλ − p2

8
(gμν pλpρ + gμλpν pρ

+gμρ pν pλ + gνλpμpρ + gνρ pμpλ + gλρ pμpν)

+ p4

48
(gμν gλρ + gμλgνρ + gμρ gνλ), (20)

where pμ is nucleon four momentum. We calculate Aq
n(μ2) us-

ing the MSTW parton distribution function [35] at the scale μ2 =
1 GeV2, which is same as our renormalization scale of 1 GeV:

Au
1 = 3.0, Au

2 = 0.62, Au
3 = 0.15, Au

4 = 0.0637,

As
1 = 0.0, As

2 = 0.048, As
3 = 0.00085, As

4 = 0.0011.

3.2. Phenomenological side

�e and �o appearing in Eq. (15) are respectively even and 
odd under charge conjugation. Therefore, the charge even and odd 
states will become non-degenerate in the medium, so that we have 
to introduce separate physical states for the positive and negative 
charge states. Then the imaginary part in Eq. (15) can be written 
as
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1

π
Im�1(q

2) =
m3

K −
1

2g2
K −

1

δ(q0 − mK −
1
) +

m3
K +

1

2g2
K +

1

δ(q0 + mK +
1
)

+(B0q2 − B2)

{
θ

(
q0 −

√
s−

0

)
+ θ

(
− q0 −

√
s+

0

)}
, (21)

in the limit q → 0. Using the definition of Eq. (16), we can then 
extract �e and �o separately. Since we are interested in the K ±

1
state separately, we consider the following combination of the po-
larization function;

2

π
Im(�e + mK +

1
�o) =

m4
K −

1

g2
K −

1

(
1 +

mK +
1

mK −
1

)
δ(q2 − m2

K −
1
)

+(B0q2 − B2)

{
(1 +

mK +
1

q0
)θ(q2 − s−

0 )

+(1 −
mK +

1

q0
)θ(q2 − s+

0 )

}
,

2

π
Im(�e − mK −

1
�o) =

m4
K +

1

g2
K +

1

(
1 +

mK −
1

mK +
1

)
δ(q2 − m2

K +
1
)

+(B0q2 − B2)

{
(1 +

mK −
1

q0
)θ(q2 − s+

0 )

+(1 −
mK −

1

q0
)θ(q2 − s−

0 )

}
. (22)

The first equation has the resonance of K −
1 and the continuum 

of K −
1 and K +

1 . On the other hand, the second equation has the 
resonance of K +

1 and the continuum of K −
1 and K +

1 . The detailed 
derivation of the imaginary part and Eq. (22) is given in B. We 
note that the two equations in Eq. (22) reduce to Eq. (5), when 
mK −

1
= mK +

1
, gK −

1
= gK +

1
, and s−

0 = s+
0 . We can see on the left hand 

side of Eq. (22) that the odd dimensional terms contribute to K −
1

with a positive sign and to K +
1 with a negative sign. It brings about 

the splitting between K −
1 and K +

1 in nuclear matter.

3.3. In-medium QCD sum rules

The dispersion relation for each combination

1

π

∫ Im (�e ± mK ±
1
�o)ds

s + Q 2
= Re (�e ± mK ±

1
�o), (23)

reduces to the following equations after the Borel transformation;

F±m2±
2M2

(
1 + m∓

m±

)
e−m2±/M2

+ 1

2M2

∞∫

s±0

(
1 + m∓√

s

)
(B0s − B2)e−s/M2

ds

+ 1

2M2

∞∫

s∓0

(
1 − m∓√

s

)
(B0s − B2)e−s/M2

ds

= B0M2 − B2 − 1

M2

{
B∗

4 ± m∓
3

(Au
1 − As

1)ρ

}

− 1

M4

{
B∗

6 ∓ 2m∓m2
N

3
(Au

3 − As
3)ρ

}
, (24)

where mK ±
1

and m2±/g2
K ±

1
are respectively abbreviated to m± and 

F± .
3.3.1. In-medium mass
For small nuclear density, the overlap strength, mass, and con-

tinuum threshold may be approximated as

F± = F K1 + F ′±ρ,

m± = mK1 + m′±ρ,

s±
0 = s0 + s′±

0 ρ. (25)

Keeping only terms linearly proportional to ρ , Eq. (24) reduces 
to

F (M2)F ′± + M(M2)m′± + S(M2)s′±
0 = C±(M2), (26)

where

F (M2) = −m2
K1

e
−m2

K1
/M2

,

M(M2) = F K1mK1

(
− 3

2
+ 2m2

K1

M2

)
e
−m2

K1
/M2

,

S(M2) = 1

2

(
1 + mK1√

s0

)
(B0s0 − B2)e−s0/M2

,

C±(M2) = −ms〈ūu〉N + αs

12π
〈G2〉N

+ mN

2
(Au

2 + As
2) ± mK1

3
(Au

1 − As
1)

+ 32παs

9M2

{
〈ūu〉N〈s̄s〉0 + 〈ūu〉0〈s̄s〉N

+ 2

9
(〈ūu〉N〈ūu〉0 + 〈s̄s〉N〈s̄s〉0)

}

− 5m3
N

6M2
(Au

4 + As
4) ∓ 2mK1m2

N

3M2
(Au

3 − As
3)

+ m′∓
{

F K1mK1

2
e
−m2

K1
/M2

}

+ s′∓
0

{
1

2

(
− 1 + mK1√

s0

)
(B0s0 − B2)e−s0/M2

}
. (27)

We now define V±(F ′±, m′±, s′±
0 ) from Eq. (26) as

V±(F ′±,m′±, s′±
0 ) ≡

M2
max∫

M2
min

{
F (M2)F ′± + M(M2)m′±

+ S(M2)s′±
0 − C±(M2)

}2

dM2, (28)

where M2
min and M2

max are the lower and upper limits of the Borel 
window, which are respectively taken to be 1.06 and 2.17 GeV2 as 
in the vacuum. This will be justified in the Borel analysis discussed 
in the next section, where we show that the most stable Borel 
curve has a plateau within this Borel window and that the ob-
tained mass shift and threshold change are consistent with those 
calculated in this section. Though Eq. (28) is supposed to vanish 
in the ideal case, it is always positive because of the approxima-
tions taken both in the OPE side and in the phenomenological 
side. Therefore, we search for F ′±, m′± , and s′±

0 which minimize the 
function V± , that is,

∂V±
∂ F ′±

= ∂V±
∂m′±

= ∂V±
∂s′±

0

= 0. (29)

These conditions result in three simultaneous linear equations 
as follows:
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F ′±
∫

dM2 F 2(M2) + m′±
∫

dM2 F (M2)M(M2)

+ s′±
0

∫
dM2 F (M2)S(M2) =

∫
dM2 F (M2)C±(M2),

F ′±
∫

dM2 F (M2)M(M2) + m′±
∫

dM2M2(M2)

+ s′±
0

∫
dM2M(M2)S(M2) =

∫
dM2M(M2)C±(M2),

F ′±
∫

dM2 F (M2)S(M2) + m′±
∫

dM2M(M2)S(M2)

+ s′±
0

∫
dM2 S2(M2) =

∫
dM2 S(M2)C±(M2). (30)

The above equations are coupled such that V+ is a function of 
m− and s−

0 as well as of m+ and s+
0 , while V− is a function of m+

and s+
0 as well as of m− and s−

0 . This is so because C±(M2) are 
functions of m∓ and s∓

0 . In other words, three simultaneous lin-
ear equations for F ′+ , m+ , and s′+

0 are coupled with those for F ′− , 
m′− , and s′−

0 . We solve these equations iteratively, with the final 
results of F±′ , m′± , and s′±

0 shown in Table 1. We find that with 
the obtained values, the ratios of V±(F ′±, m′±, s′) in Eq. (28) to the 

individual terms, 
∫ M2

max

M2
min

(F (M2)F ′±)2dM2, 
∫ M2

max

M2
min

(M(M2)m′±)2dM2, 
∫ M2

max

M2
min

(S(M2)s′±
0 )2dM2, and 

∫ M2
max

M2
min

(C±(M2))2dM2 are (1.8×10−6, 

2.2 × 10−5, 3.8 × 10−7, 9.5 × 10−7) and (1.7 × 10−7, 5.3 × 10−6, 
1.7 × 10−7, 7.3 × 10−6), respectively for ± states, justifying our 
optimization procedure.

In these calculations, mK1 and s0 are set to be 1.27 GeV and 
2.4 GeV2, respectively. As a result, the mass of K −

1 decreases by 
249 MeV in nuclear matter, which corresponds to 20% reduction 
of the mass from its vacuum value. On the other hand, the mass 
of K +

1 decreases only by 35 MeV, which is about 3% of its vac-
uum mass. Since we have neglected the in-medium width in this 
subsection, these numbers are the upper limits of the mass shift. 
Under such condition, the result indicates that K −

1 (sū) (K +
1 (s̄u)) 

feels attraction (repulsion) in nuclear matter. This tendency is con-
sistent with the expectation that nuclear matter attracts (repels) 
the u-anti-quark (the u-quark) as in the case of charged kaons, 
K −(sū) and K +(s̄u) [36].

The above results can be confirmed by using the traditional 
Borel stability analysis in nuclear matter as originally proposed in 
Ref. [5]. Shown in Fig. 2 are the Borel curves for the K1 mass 
in the vacuum (the black curve) and those in the medium. The 
most stable Borel curve for K +

1 occurs at s0 = 2.4 GeV2 with a 
slight decrease of the mass, while that for the K −

1 occurs at a 
much smaller threshold with a large reduction of the mass con-
sistent with the previous optimization method. Furthermore, one 
finds that for both of the charge states, the most stable curves have 
plateaux and extremums within the given Borel window.

3.3.2. In-medium width
So far, we have approximated the spectral function as the sum 

of a delta function for the ground state and a step function for 
excited states. However, in-medium spectral function would have 
more complicated structure, and the medium modification of the 
OPE side is reflected as a combination of the mass and width 
changes in QCD sum rules (see e.g. the 3rd reference in [6]). In 
order to investigate this possibility, we replace the delta function 
by the Breit-Wigner form,

δ(s − m2±) → 1

π

√
s �±

(s − m2 )2 + s�2
, (31)
± ±
Fig. 2. The Borel curve for K1 mass from �1 sum rule at nuclear matter density.

where �± is the width of K ±
1 . We will allow the width to change 

by �± = �K1 + �′±ρ in nuclear matter at low density. We expand 
F± , �± and s±

0 up to the linear order in ρ , while keeping m∓(ρ)

without expansion. This is to probe the maximum width change 
associated with the change in the OPE [37]. Eq. (26) and Eq. (27)
are then modified as

F(M2)F ′± +W(M2)�′± + S(M2)s′±
0 = C±(M2), (32)

where �′± is considered as variables instead of m′± , and the terms 
proportional to m′± are moved into C±(M2) as

F(M2) = − 1

π

∞∫
0

s3/2�K1

(s − m2
K1

)2 + s�2
K1

e−s/M2
ds,

W(M2) = − F K1

π

∞∫
0

s3/2�K1

(s − m2
K1

)2 + s�2
K1

×
(

1 − 2s�2
K1

(s − m2
K1

)2 + s�2
K1

)
e−s/M2

ds,

S(M2) = S(M2),

C±(M2) = −ms〈ūu〉N + αs

12π
〈G2〉N

+mN

2
(Au

2 + As
2) ± mK1

3
(Au

1 − As
1)

+32παs

9M2

{
〈ūu〉N〈s̄s〉0 + 〈ūu〉0〈s̄s〉N

+2

9
(〈ūu〉N〈ūu〉0 + 〈s̄s〉N〈s̄s〉0)

}

− 5

6M2
m3

N(Au
4 + As

4) ∓ 2mK1m2
N

3M2
(Au

3 − As
3)

+m′±
{

F K1

2πmK1

∞∫
0

s3/2�K1 e−s/M2

(s − m2
K1

)2 + s�2
K1

×
(

1 − 8m2
K1

(s − m2
K1

)

(s − m2
K1

)2 + s�2
K1

)
ds

}

+m∓′
{

− F K1

2πmK1

∞∫
s3/2�K1 e−s/M2

(s − m2
K1

)2 + s�2
K1

ds

}

0
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Table 1
Results for F ′±ρ , m′±ρ , and s′±

0 ρ at normal nuclear matter density ρ = ρ0 = 0.16 fm−3. The mass shift at nuclear matter density is δmK ±
1

= m′±ρ .

F ′−ρ0 (GeV2) m′−ρ0 (GeV) s′−
0 ρ0 (GeV2) F ′+ρ0 (GeV2) m′+ρ0 (GeV) s′+

0 ρ0 (GeV2)

−3.09 × 10−2 −0.249 −1.25 −2.72 × 10−3 −0.0348 −0.234
+s′∓
0

{
1

2

(
− 1 + mK1√

s0

)
(B0s0 − B2)e−s0/M2

}
.

Defining the function V (F ′±, �′±, s′±
0 ) similarly as before, the 

differential equations

∂V±
∂ F ′±

= ∂V±
∂�′±

= ∂V±
∂s′±

0

= 0,

are expressed as

F ′±
∫

dM2F2(M2) + �′±
∫

dM2F(M2)M(M2)

+ s′±
0

∫
dM2F(M2)S(M2) =

∫
dM2F(M2)C±(M2),

F ′±
∫

dM2F(M2)M(M2) + �′±
∫

dM2M2(M2)

+ s′±
0

∫
dM2M(M2)S(M2) =

∫
dM2M(M2)C±(M2),

F ′±
∫

dM2F(M2)S(M2) + �′±
∫

dM2M(M2)S(M2)

+ s′±
0

∫
dM2S2(M2) =

∫
dM2S(M2)C±(M2). (33)

We find that Eq. (33) has only a weak dependence on the 
vacuum width �K1 , so that we take �K1 = 0 in solving the cou-
pled equations since the input parameters F K1 and s0 were ob-
tained in this limit. Fig. 3 shows the constraints on the mass 
modification, δm±(ρ) = m±(ρ) − mK1 and the width modification 
δ�±(ρ) = �′±ρ obtained from Eq. (33). As for K −

1 , the maximum 
change of the width is +275 MeV, while +38 MeV for K +

1 . The de-
cay of the K1 is dominated by Kρ (42 ± 6%) in vacuum. Therefore, 
keeping the K1 mass the same, if the mass of K − (K +) decreases 
(remains the same) in the medium, the phase space for the corre-
sponding Kρ decay for K −

1 (K +
1 ) will increase (remain the same), 

which provides a possible physical mechanism for their asymmet-
ric width change in medium.

4. Summary and discussions

In this paper, we have carried out QCD sum rule analyses for 
the open strange meson K1 in the vacuum and in the medium. We 
first show that the experimental mass of K1(1270) in the vacuum 
is well reproduced by the QCD condensates with a proper choice 
of the continuum threshold and the Borel window. In nuclear mat-
ter, K −

1 and K +
1 become non-degenerate due to the breaking of 

the charge conjugation invariance. By extracting the ground state 
of each charge state from the polarization functions and by for-
mulating coupled QCD sum rules in nuclear matter, we obtained a 
relation between the in-medium mass and width of K ±

1 through 
the density dependence of the scalar and twist-two condensates. 
In particular, the upper limit of the mass shifts for K −

1 and K +
1

without width modifications are −249 MeV and −35 MeV, re-
spectively, which indicates that K −

1 (sū) (K −
1 (s̄u)) feels attraction 

(repulsion) in nuclear matter. Once the change of the widths is 
allowed, however, those mass shifts get smaller. Furthermore, the 
K1(1270) and K1(1400) are the analogues of a1 and b1 mesons 
and can be analyzed through the axial vector as well as tensor 
currents [38]. A more detailed discussion on how these currents 
Fig. 3. The constraints on the mass shift and the width change of K ±
1 in the nuclear 

matter.

couple to K1(1270) and K1(1400) in the medium together with 
their respective mass changes are important topics for future in-
vestigations.

Experimentally K −
1 is known to be produced through K −-nu-

cleon reactions [39,40], so that the modification of K −
1 in nuclei 

would be best searched through the K − reaction on various nu-
clear targets. Such experimental possibility may be provided by 
the kaon beam at J-PARC with the energy up to 2.0 GeV. Maxi-
mum 

√
s of a kaon and a nucleon is 2.23 GeV ignoring the fermi 

motion, and is as large as 2.48 GeV including the fermi motion. 
Those numbers are close to the threshold value of the K −

1 pro-
duction which is around 2.2 GeV. The measurement of hadronic 
decays (K1 → K ρ and K1 → K ∗π ) as well as the measurement 
of the excitation function would be possible probes to detect the 
spectral shift of K −

1 . Furthermore, similar experiments for the K ∗
(the chiral partner of K1) will give model-independent estimate of 
the chiral order parameter in the medium, and hence provide cru-
cial hints to the partial restoration of chiral symmetry in nuclear 
medium.
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Appendix A

Here we show that the multiplicative factor to the step function 
for the continuum part corresponds to the perturbative part of OPE 
side. Suppose

1

π
Im�1(s) = B0s − B2 + pole contribution, (34)

where the first two terms on the right hand side represent the 
continuum contribution. Taking the Borel transformation to the 
dispersion relation, we find

B̂
1

π

∫
Im�1(s)

s + Q 2
ds

= 1

M2

∞∫
0+

(
B0s − B2

)
e−s/M2

ds + pole contribution

= B0M2 − B2 + pole contribution. (35)

We find that the first two terms are exactly the same as the per-
turbative part of the OPE in the dispersion relation.

Appendix B

Using the integral form of step function

θ(t) = 1

2π i

∞∫
−∞

dw ′ eiw ′t

w ′ − iε
,

together with the decomposition of identity operator

I ≡
∑
λ

∫
d3p

(2π)3

1

2wp
|λp〉〈λp|

with the state (|λp〉) having definite polarization and dispersion re-

lation wp =
√

m2
λ + p2, the time ordered correlation function reads 

[41]

�μν(q) = i

∫
d4x eiq·x〈0|T [ūγμγ5s(x), s̄γνγ5u(0)]|0〉

=
∑
λ

∫
d4x eiq·x

∫
dw ′

2π

1

w ′ − iε

∫
d3p

(2π)3

1

2wp

×
{

eiw ′t〈0|ūγμγ5s(x)|λp〉〈λp|s̄γνγ5u(0)|0〉

+ e−iw ′t〈0|s̄γνγ5u(0)|λp〉〈λp|ūγμγ5s(x)|0〉
}
. (36)

Using the translation operators,

〈0|ūγμγ5s(x)|λp〉 = 〈0|ūγμγ5s(0)|λp〉e−i(wpt−p·x),

〈λp|ūγμγ5s(x)|0〉 = 〈λp|ūγμγ5s(0)|0〉ei(wpt−p·x), (37)

the polarization function is expressed as
�μν(q) =
∑
λ

∫
dw ′

w ′ − iε

{
1

2wq
δ(q0 − wq + w ′)

× 〈0|ūγμγ5s(0)|λq〉〈λq|s̄γνγ5u(0)|0〉
+ 1

2w−q
δ(q0 + w−q − w ′)〈0|s̄γνγ5u(0)|λ−q〉

× 〈λ−q|ūγμγ5s(x)|0〉
}

=
∑
λ

{
1

2wq(wq − q0 − iε)
〈0|ūγμγ5s(0)|λq〉

× 〈λq|s̄γνγ5u(0)|0〉
+ 1

2w−q(w−q + q0 − iε)
〈0|s̄γνγ5u(0)|λ−q〉

× 〈λ−q|ūγμγ5s(x)|0〉
}
. (38)

Furthermore, using

1

wq − q0 − iε
= wq + q0 + iε

w2
q − q2

0 − 2iεwq

= P

wq − q0
+ iπ(wq + q0)δ(w2

q − q2
0), (39)

where εwq is definitely positive, and the same for the second 
term, the imaginary part of correlation function reads

1

π
Im�μν(q) =

∑
λ

{(
1

2
+ q0

2wq

)
〈0|ūγμγ5s(0)|λq〉

× 〈λq|s̄γνγ5u(0)|0〉δ(q2
0 − w2

q)

+
(

1

2
− q0

2w−q

)
〈0|s̄γνγ5u(0)|λ−q〉

× 〈λ−q|ūγμγ5s(x)|0〉δ(q2
0 − w2−q)

}
. (40)

Note that |λp〉 can be any state whose quantum number is the 
same as that of ūγμγ5s. This interpolating field is coupled to both 
the pseudoscalar K meson and the axial vector K1 meson:

〈0|ūγμγ5s|K −〉 = 〈0|s̄γμγ5u|K +〉 = i f K qμ

〈0|ūγμγ5s|K −
1 〉 = 〈0|s̄γμγ5u|K +

1 〉 = m2
K1

gK1

εμ, (41)

where kaon decay constant f K = 160 MeV, and gK1 , εμ are the 
coupling constant and polarization vector of K1 respectively. The 
operator ūγμγ5s couples to K −

1 state, because it has the annihi-
lation operator of K −

1 , and s̄γμγνu couples to K +
1 for the same 

reason. Furthermore, the overlap strength to their respective states 
for both fields are the same in vacuum. Substituting Eq. (41) into 
Eq. (40),

1

π
Im�μν(q2) = qμqν f 2

K δ(q2 − m2
K )

+
(

− gμν + qμqν

q2

)
m4

K1

g2
K1

δ(q2 − m2
K1

)

+
∑
K ∗

(
− gμν + qμqν

q2

)m4
K ∗

1

g2
K ∗

δ(q2 − m2
K ∗

1
), (42)
1 1
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where K ∗
1 represents excited state. Decomposing Eq. (42) into �1

and �2,

1

π
Im�1(q

2) = m4
K1

g2
K1

δ(q2 − m2
K1

) +
∑
K ∗

1

m4
K ∗

1

g2
K ∗

1

δ(q2 − m2
K ∗

1
),

1

π
Im�2(q

2) = f 2
K δ(q2 − m2

K ) + m2
K1

g2
K1

δ(q2 − m2
K1

)

+
∑
K ∗

1

m2
K ∗

1

g2
K ∗

1

δ(q2 − m2
K ∗

1
). (43)

Since the excited states have broad widths and overlap with 
each other, they can be simplified into a step function with a 
threshold value s0,

1

π
Im�1(q

2) = m4
K1

g2
K1

δ(q2 − m2
K1

)

+(B0q2 − B2)θ(q2 − s0), (44)

1

π
Im�2(q

2) = f 2
K δ(q2 − m2

K ) + m2
K1

g2
K1

δ(q2 − m2
K1

)

+B0θ(q2 − s0). (45)

The multiplicative factors of the step functions correspond to the 
perturbative part of OPE side, as shown in A.

Since the charge conjugation between K −
1 and K +

1 is broken 
in nuclear matter and the Lorentz invariance is broken in the rest 
frame of nuclear matter, Eq. (41) changes into

〈n.m.|ūγμγ5s|n.m. + K −
1 〉 =

m2
K −

1

gK −
1

εμ,

〈n.m.|s̄γμγ5u|n.m. + K +
1 〉 =

m2
K +

1

gK +
1

εμ, (46)

in the pole approximation at q = 0. Here |n.m.〉 implies the ground 
state of nuclear matter. Then Eq. (44) at q = 0 changes into

1

π
Im�1(q

2) =
(

1

2
+ q0

2mK −
1

)m4
K −

1

g2
K −

1

δ(q2 − m2
K −

1
)

+
(

1

2
− q0

2mK +
1

)m4
K +

1

g2
K +

1

δ(q2 − m2
K +

1
)

+
∑
K −∗

1

(
1

2
+ q0

2mK −∗
1

)m4
K −∗

1

g2
K −∗

1

δ(q2 − m2
K −∗

1
)

+
∑
K +∗

1

(
1

2
− q0

2mK +∗
1

)m4
K +∗

1

g2
K +∗

1

δ(q2 − m2
K +∗

1
), (47)

which is decomposed into even and odd dimensions [23,42]:

1

π
Im�1 = 1

π
(Im�e + q0Im�o), (48)

where
1

π
Im�e =

m4
K −

1

2g2
K −

1

δ(q2 − m2
K −

1
) +

m4
K +

1

2g2
K +

1

δ(q2 − m2
K +

1
)

+
∑
K −∗

1

m4
K −∗

1

2g2
K −∗

1

δ(q2 − m2
K −∗

1
) +

∑
K +∗

1

m4
K +∗

1

2g2
K +∗

1

δ(q2 − m2
K +∗

1
),

1

π
Im�o =

m3
K −

1

2g2
K −

1

δ(q2 − m2
K −

1
) −

m3
K +

1

2g2
K +

1

δ(q2 − m2
K +

1
)

+
∑
K −∗

1

m3
K −∗

1

2g2
K −∗

1

δ(q2 − m2
K −∗

1
) −

∑
K +∗

1

m3
K +∗

1

2g2
K +∗

1

δ(q2 − m2
K +∗

1
).

K ±
1 poles are separated from the following linear combinations 

of �e and �o

2

π
Im(�e + mK +

1
�o) =

m4
K −

1

g2
K −

1

(
1 +

mK +
1

mK −
1

)
δ(q2 − m2

K −
1
)

+ (B0q2 − B2)

{
(1 +

mK +
1

q0
)θ(q2 − s−

0 )

+ (1 −
mK +

1

q0
)θ(q2 − s+

0 )

}

2

π
Im(�e − mK −

1
�o) =

m4
K +

1

g2
K +

1

(
1 +

mK −
1

mK +
1

)
δ(q2 − m2

K +
1
)

+ (B0q2 − B2)

{
(1 +

mK −
1

q0
)θ(q2 − s+

0 )

+ (1 −
mK −

1

q0
)θ(q2 − s−

0 )

}
, (49)

where the continuum parts are replaced by the step functions:

∑
K ±∗

1

m4
K ±∗

1

g2
K ±∗

1

δ(q2 − m2
K ±∗

1
) →

(B0q2 − B2)θ(q2 − s±
0 )

and

∑
K ±∗

1

m3
K ±∗

1

g2
K ±∗

1

δ(q2 − m2
K ±∗

1
) →

(B0q2 − B2)
1

q0
θ(q2 − s±

0 ). (50)
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