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In the present paper we try to connect the Bardeen black hole with the concept of the recently proposed 
black hole chemistry. We study thermodynamic properties of the regular black hole with an anti-deSitter 
background. The negative cosmological constant � plays the role of the positive thermodynamic pressure 
of the system. After studying the thermodynamic variables, we derive the corresponding equation of state 
and we show that a neutral Bardeen-anti-deSitter black hole has similar phenomenology to the chemical 
Van der Waals fluid. This is equivalent to saying that the system exhibits criticality and a first order 
small/large black hole phase transition reminiscent of the liquid/gas coexistence.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Black holes are among the most fascinating and mysterious as-
trophysical objects, predicted theoretically in the context of general 
relativity (GR). At the same time, GR brings about its own down-
fall by predicting singularities at the center of a black hole, due to 
the ignorance of quantum mechanical effects. A complete theory 
of quantum gravity is supposed to cure these problems but such 
a formulation is still an ongoing research. In the 1970’s, Hawk-
ing showed that black holes emit semiclassically thermal radiation 
like almost perfect black bodies [1]. For the standard Schwarzschild 
black hole, the Hawking temperature is inversely proportional to 
its mass, signaling a negative heat capacity for the black hole 
along with its instability. In 1980’s, Hawking and Page [2] studied 
thermodynamical aspects of a black hole inside an anti-deSitter 
(AdS) background revealing that it can undergo a phase transi-
tion between pure radiation and a stable black hole, known also 
as Hawking–Page phase transition. After that, black holes in AdS 
background became of much theoretical interest until today. One 
of the most successful theories is the AdS/CFT duality [3,4] which 
relates AdS gravitational theories to conformal field theories for-
mulated on a boundary. Another recent interesting proposal [5] is 
the treatment of the negative cosmological constant � of an AdS 
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background as a thermodynamic variable related to the positive 
pressure P of the system through the relation

P = − �

8π
. (1)

The introduction of a pressure term revealed new interesting prop-
erties for semiclassical black holes analogous to known chemical 
phenomena, such as P –V criticality for charged AdS black holes 
like in Van der Waals gas [6], triple points like water [7] or reen-
trant phase transitions like in nicotine/water mixture [8,9]. Fur-
thermore, the mass of the black hole is identified with the chem-
ical enthalpy H inside the extended phase space [10], rather than 
the internal energy U , through the relation

M ≡ H = U + P V , (2)

where V is the conjugate variable of P identified as the thermo-
dynamic volume of the black hole [11,12]. Recently, it has been 
shown that the enthalpy approach is directly connected to the 
quasilocal energy path integral Euclidean approach [13]. The in-
terpretation of the mass as the total energy of the system, i.e., the 
energy U needed to form a black hole plus the energy PV needed 
to place it inside a cosmological background, makes the 1st law of 
black hole mechanics [14] consistent with the known Smarr rela-
tion [15] which connects extensive with intensive thermodynamic 
variables:

dM = T dS + P dV , (3)

M = 2T S − 2P V . (4)
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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This whole new scientific area is called black hole chemistry [16], 
with the word ‘chemistry’ interpreted here as the black hole ther-
modynamics with �.

As mentioned above, the existence of singularities is an inter-
esting problem for GR but they can be avoided by effective ap-
proaches [17–27]. Such effective theories cure the short-distance 
pathologies by introducing a minimal cut-off length, close to the 
Planck length, under which gravity cannot be tested, providing us 
with singularity-free black holes.

One of the first models of regular black hole is proposed by 
Bardeen [28] in 1968 (see [29] for a review). Bardeen black hole 
is a spherically symmetric solution resulting from Einstein equa-
tions in the presence of a nonlinear electromagnetic field coupled 
to matter [30]. Thus it is parametrized by two quantities; a mass M
and a charge q both having dimensions of length in geometric 
units (c = G = 1). The Bardeen line element reads

ds2 = −
(

1 − 2m(r)

r

)
dt2 +

(
1 − 2m(r)

r

)−1

dr2 + r2d�2 (5)

with

m(r) = M

[
1 +

(q

r

)2
]−3/2

(6)

and d�2 = dθ2 + sin2 θdφ2. It is our goal to connect Bardeen black 
holes with the concept of black hole chemistry. The procedure 
adopted here is strongly inspired by [6,31]. The paper is organized 
as follows: in Sec. 2 we extend the work of [30] by including 
a negative cosmological constant in the gravitational action and 
we derive the Bardeen-anti-deSitter (BAdS) line element. In Sec. 3
we investigate the chemical properties of BAdS black hole, i.e., 
the thermodynamics with a �-term, and we connect it with the 
known chemical Van der Waals fluid. Specifically, we derive the 
corresponding equation of state and we show that the black hole 
appears a first order phase transition between small/large black 
hole, along with a P –V criticality with critical exponents identical 
to those of a Van der Waals gas. In Sec. 4 we summarize our con-
clusions. We are working in Planck units where h̄ = c = G = kB = 1.

2. Bardeen-anti-deSitter black hole

The corresponding action with a negative �-term, resulting 
from the extension of [30], reads

S = 1

16π

∫
d4x

√−g

(
R + 6

l2
− 4L(F )

)
, (7)

where R is the Ricci scalar, g is the determinant of the metric 
tensor, l is the positive AdS radius connected with � through the 
relation � = −3/l2 and L(F ) is a function of F = 1

4 Fμν F μν given 
by

L(F ) = 3M

|q|3

⎛
⎜⎝

√
4q2 F

1 +
√

4q2 F

⎞
⎟⎠

5/2

, (8)

with q being a U(1) charge and Fμν the field tensor. Varying the 
above action with respect to the metric and the electromagnetic 
field, we get the following field equations of motion:

Gμν − 3

l2
gμν = 2

(
∂L(F )

∂ F
Fμλ Fν

λ − gμνL(F )

)
, (9)

0 = ∇μ

(
∂L(F )

F μν

)
, (10)
∂ F
Fig. 1. The function f (x) vs x for Q = 0.3. The solid curves with colors red, blue and 
black, correspond to m = 0.6, m = m0 ≈ 0.448 and m = 0.32 respectively. The dotted 
lines correspond to Q = 0 for each case and represent the usual Schwarzschild-anti-
deSitter (SAdS) black hole.

where Gμν is the known Einstein tensor. We imply a static and 
spherically symmetric line element of the form (5). With this met-
ric ansatz and with the help of (10), we find that

Fμν = 2δθ [μδφ
ν] q(r) sin θ . (11)

Using also the condition dF = dq
dr sin θ dr ∧ dθ ∧ dφ = 0, we con-

clude to the relation q(r) = const. = q and, hence, the field strength 

is Fθφ = q sin θ with F = q2

4r4 . Substituting these expressions in (8), 
we get

L(F ) = L(r) = 3Mq2

(r2 + q2)5/2
. (12)

Now the above field equations of motion yield a solution for m(r)
that reads

m(r) = Mr3

(q2 + r2)3/2
− r3

2l2
, (13)

fixing the BAdS metric potential to have the form of

f (r) = 1 − 2Mr2

(q2 + r2)3/2
+ r2

l2
. (14)

The charge q has dimensions of length and thus it can be in-
terpreted alternatively as a minimal cut-off length that makes 
gravity ultraviolet self-complete [32]. From now on we will con-
sider q as the minimal length for the BAdS black hole rather than 
a charge.

It would be more convenient to study the horizon structure in l
units and this can be achieved by writing (14) as

f (x) = 1 − 2mx2

(Q 2 + x2)3/2
+ x2 , (15)

where

x = r/l , m = M/l , Q = q/l . (16)

In Fig. 1 we give the plot of (15) for a fixed Q and a vary-
ing m. One sees the regularity at the center (x = 0) of the black 
hole. The parameter Q plays the role of the “fictitious charge” 
analogous to the electric charge of the conventional Reissner–
Nördstrom-AdS black hole, which is responsible for different causal 
structures [33,34]. Similar behavior appears also the minimal cut-
off length

√
θ in the noncommutative case [35]. Specifically, we 

get:
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• Two horizons for m > m0 (red solid curve in Fig. 1); one inner 
(Cauchy) x− and one outer (event) horizon x+ .

• One degenerate horizon x0 = x− = x+ for m = m0, represent-
ing the BAdS black hole with the smallest possible radius and 
mass (blue solid curve in Fig. 1).

• No horizons for masses below m0 (black solid curve in Fig. 1).

The values x0 and m0 of the degenerate black hole case can be 
determined from the solution of the system

f (x) = 0 = ∂ f (x)

∂x
, (17)

which gives

x0 =
√

−1 +
√

1 + 24Q 2
√

6
,

m0 =

(
Q 2 + 1

6

(
−1 +

√
1 + 24Q 2

))5/2

2Q 2 − 1

6

(
−1 +

√
1 + 24Q 2

) . (18)

For our example in Fig. 1 where Q = 0.3, the mass range for a 
black hole to exist is m ≥ m0 ≈ 0.448 providing a lower bound to 
the black hole radius x ≥ x0 ≈ 0.36.

For very large distances (x 	 |Q |), the line element (15) coin-
cides with the conventional SAdS black hole where

f (x) ≈ 1 − 2m

x
+ x2 , (19)

while near the origin (x 
 |Q |) the metric potential can be ap-
proximated by

f (x) ≈ 1 − �eff

3
x2 , (20)

where

�eff = 3

(
2m

Q 3
− 1

)
. (21)

Depending on the value of m, the origin can be seen as:

• a repulsive deSitter core (�eff > 0) if m > Q 3/2;
• an attractive AdS core (�eff < 0) if m < Q 3/2;
• a local Minkowski core (�eff = 0) with no gravitational inter-

action if m = Q 3/2.

In the case of an AdS core at the origin, the curve (20) keeps grow-
ing and never reaches the x-axis, admitting no horizons. Therefore, 
black holes exist only when m ≥ m0 ≥ Q 3/2.

3. Chemistry of BAdS black hole

In order to see if there are any chemical aspects, we have to de-
rive all possible thermodynamic variables that describe our system. 
As shown and discussed in [35,36], we can extend the known ther-
modynamic relations to the case in which a specific microscopic 
structure of the quantum spacetime is prescribed. Furthermore, the 
metric (14) appears an asymptotic behavior at infinity, allowing us 
to define a conserved mass-energy with respect to the event hori-
zon without taking into account the inner horizon. The relation 
f (r+) = 0 gives the black hole mass

M = H = (l2 + r2+)(q2 + r2+)3/2

2l2r2
, (22)
+

Fig. 2. The temperature T = T l vs the horizon x+ = r+/l for Q = 0.05 (red solid 
curve) with a zero temperature remnant at x0 = 0.0702, for Q = Q c ≈ 0.0987
(blue dashed curve) with x0 = 0.136 and for Q = 0.18 (green solid curve) with 
x0 = 0.236. The black dotted curve corresponds to the conventional SAdS solution 
(Q = 0).

which also represents the chemical enthalpy H of the system in 
the extended phase space. From (14), we find that the temperature 
reads

T = 3r4+ + l2(r2+ − 2q2)

4π l2r+(q2 + r2+)
(23)

and re-expressing it in dimensionless units through (16), we get

T = 3x4+ + x2+ − 2Q 2

4πx+(Q 2 + x2+)
. (24)

The temperature has to be non-negative, i.e., 3x4+ + x2+ − 2Q 2 ≥ 0, 

leading to the condition x+ ≥
√

−1 +
√

1 + 24Q 2√
6

= x0. A plot 

of the temperature (24) is illustrated in Fig. 2. For values below 
the critical ‘charge’ (Q < Q c), the temperature appears two ex-
trema; one maximum and one minimum (red solid curve in Fig. 2). 
For Q = Q c the two extrema merge at one inflexion point (blue 
dashed curve in Fig. 2), while for Q > Q c the temperature is a 
monotonically increasing function of the radius (green solid curve 
in Fig. 2). The entropy of the black hole can be evaluated from 
thermodynamic arguments, T =

(
∂M
∂ S

)
P ,q

. Since no black hole ex-

ists below r0, we integrate the above relation from the minimum 
radius r0 up to the horizon radius r+ and we retrieve the en-
tropy

S =
r+∫

r0

dr 2πr

(
1 + q2

r2

)3/2

= πr2

⎡
⎣(

1 − 2q2

r2

)√
1 + q2

r2
+ 3q2

r2
ln

(
r +

√
r2 + q2

)⎤
⎦

∣∣∣∣∣
r+

r0

,

(25)

which concludes to the usual area law (S ≈ πr2+) up to logarithmic
corrections in the classical limit.

The cosmological term allows for the definition of the pres-
sure (1) of the system along with its conjugate quantity, the black 
hole volume V =

(
∂M
∂ P

)
S,q

. Moreover, one may consider that the 

black hole mass is a function of three thermodynamic variables 



222 A.G. Tzikas / Physics Letters B 788 (2019) 219–224
instead of two, i.e., M = M(S, P , q). This way, we include thermo-
dynamic contributions of the minimal length q inside the 1st law 
and the Smarr relation. Here we take into account the above form 
of the entropy by using (25) in the forthcoming calculations. The 
differential of the mass will give

dM =
(

∂M

∂ S

)
P ,q

dS +
(

∂M

∂ P

)
S,q

dP +
(

∂M

∂q

)
S,P

dq , (26)

with the quantity ϕ =
(

∂M
∂q

)
S,P

being the conjugate variable of q. 

Thus the new 1st law for our system reads

dM = T dS + V dP + ϕdq . (27)

Below we gather all the desired thermodynamic quantities of the 
BAdS black hole that satisfy (27):

M = (l2 + r2+)(q2 + r2+)3/2

2l2r2+
, ϕ =

3q(l2 + r2+)

√
q2 + r2+

2l2r2+
, (28)

T = 3r4+ + l2(r2+ − 2q2)

4πr+l2(q2 + r2+)
, V = 4πr3+

3

(
1 + q2

r2+

)3/2

,

P = 3

8π l2
, (29)

S = πr2

⎡
⎣(

1 − 2q2

r2

)√
1 + q2

r2
+ 3q2

r2
ln

(
r +

√
r2 + q2

)⎤
⎦

∣∣∣∣∣
r+

r0

.

(30)

In the classical limit (r+ 	 q) where the length q is considered 
negligible, all the above quantities coincide with the conventional 
variables of a SAdS black hole, retrieving all the well-known ther-
modynamic phenomenology of SAdS spacetime [16].

For the new Smarr relation, we use Euler’s theorem for ho-
mogeneous functions [10], such as the black hole mass in our 
case, which provides us with a route between the 1st law of 
black hole mechanics and the Smarr formula for stationary black 
holes. Since q has dimensions of length, the scaling argument will 
give

M = 2T S ′ − 2P V + ϕq . (31)

The entropy S ′ , resulting from (31), reads

S ′ = πr2+

(
1 + q2

r2+

)3/2

(32)

and is different from the entropy (25) that satisfies the 1st law, 
i.e., S �= S ′ . Therefore, the 1st law is inconsistent with the Smarr 
formula for the BAdS black hole at distances where q is compara-
ble with the event horizon (see also [37]), unless we are working 
in the large-distance regime (r+ 	 q) where corrections of q can 
be ignored and the two entropies coincide, satisfying that way the 
usual area law, i.e., S ′ = S ≈ πr2+ .

As for the physical thermodynamic interpretation of q and ϕ , 
we can connect them with an extra pressure and a conjugate 
volume term respectively. Specifically, based on the discussion of 
[38,39], we could interpret the quantity

Pq = − 1
2

(33)

8πq
Fig. 3. The isotherms of BAdS black hole on the P –V plane are displayed for q = 1. 
The red solid curves stand for T < Tc , the black dashed curve for T = Tc ≈ 0.025
and the gray solid curves for T > Tc .

as the pressure resulting from the existence of the minimal 
length q, in the same way the pressure P results from the exis-
tence of l, and the quantity

Vq =
(

∂M

∂ Pq

)
S,P

= 6πq5

r2+

(
1 + r2+

l2

)√
1 + r2+

q2
(34)

as its conjugate variable having dimensions of volume. The pres-
sure Pq should be negative, namely the tension of the self-
gravitating droplet of anisotropic fluid doing work to the thermo-
dynamic system by pushing against gravitational collapse. There-
fore, the two pressures P and Pq have opposite effects on the 
system and, hence, opposite signs. Also, the volume Vq turns out 
to be positive this way (for more details on the meaning of Pq

and Vq see the aforementioned papers [38,39]). The pair of con-
jugate variables (Pq, Vq) is used in the physical system and is 
expected to appear in the new Smarr relation and the 1st law as 
an extra pressure-volume term:

M = 2T S ′ − 2P V − 2Pq Vq , (35)

dM = T dS + V dP + VqdPq . (36)

Combining now the expressions of the temperature T and the 
volume V with the pressure P given by (29), we find that the 
equation of state P = P (V , T ) for the BAdS black hole is given by

P =
12q2 +

(
6V

π

)2/3
⎛
⎝−1 + 2π T

√(
6V

π

)2/3

− 4q2

⎞
⎠

2π

((
6V

π

)2/3

− 4q2

)2
. (37)

As can be seen in Fig. 3, the isotherms of (37) appear a char-
acteristic unstable branch similar to Van der Waals theory when 
T < Tc , with all thermodynamic quantities (P , V , T ) of the BAdS 
black hole identified with the same quantities of the Van der Waals 
gas. The unstable branch resulting from (37) can be investigated 
through the two specific heats and the Gibbs free energy G(T , P ). 
The specific heats indicate the local stability of the system and di-
vergences of them signal the existence of a phase transition, while 
the Gibbs energy indicates the global stability of the system and 
the global minimum of G corresponds to the preferred state. Hav-
ing clear interpretation of the black hole volume and the pressure, 
we can define the two specific heats; one with constant volume 
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Fig. 4. The plots are displayed in l units for Q = 0.05 (red solid curves), for Q = Q c ≈ 0.0987 (blue dashed curves) and for Q = 0.18 (green solid curves).
CV = 1
T

(
∂ S
∂T

)
V ,q

= 0, which turns out to be zero in our case and 

one with constant pressure C P = 1
T

(
∂ S
∂T

)
P ,q

which reads

C P = 2π(3r4+ − 2q2l2 + l2r2+)(q2 + r2+)5/2

3r5+(3q2 + r2+) + l2r+(2q4 + 7q2r2+ − r4+)
. (38)

The Gibbs energy can be evaluated through the relation G =
M − T S , whose expression is omitted here. We plot C P and G in 
Fig. 4. As can be seen, we can distinguish 3 different cases:

• For Q = 0.05 < Q c we get three branches (red solid curves 
in Fig. 4); one small locally stable BAdS black hole (C P > 0)

for 0.0702 � r+/l � 0.14, one intermediate unstable black hole 
(C P < 0) for 0.14 � r+/l � 0.55 and one large stable black hole 
(C P > 0) for r+/l � 0.55. The divergences of C P occur at the 
two phase transition points rs/l 
 0.14 and rl/l 
 0.55 where 
the temperature appears a maximum and a minimum respec-
tively (Fig. 2) while the Gibbs energy appears a minimum and 
a maximum respectively (Fig. 4(b)). Therefore, a first order 
phase transition seems to take place between small/large sta-
ble black hole.

• For Q = Q c ≈ 0.0987 we get two branches (blue dashed 
curves in Fig. 4); one small and one large stable black hole 
coexisting at one inflexion point ri/l ≈ 0.392 where C P → ∞.

• For Q = 0.18 > Q c no phase transition occurs and so there 
exists one thermodynamically stable black hole (green solid 
curves in Fig. 4). The preferred states are those with larger 
horizons because the Gibbs energy decreases with the increase 
of r+ .

The P –V criticality of BAdS black hole can be checked from the 
condition

∂ P

∂V
= 0 = ∂2 P

∂V 2
. (39)

The solution of (39) yields a critical point with

Pc 
 0.0012

q2
, V c 
 287.44q3 , Tc 
 0.0251

q
, (40)

at which one cannot distinguish between small/large black hole. 
The universal constant

ε = Pc V 1/3
c

Tc
≈ 0.31 (41)

characterizes the thermodynamic system and for the BAdS black 
hole is slightly different from the value 0.375 of the Van der Waals 
gas, making the analogy between them even stronger but not iden-
tical.

Last but not least, we evaluate the critical exponents α, β, γ , δ, 
which describe the behavior of physical quantities near the critical 
point [31]. Defining the dimensionless quantities

p = P

Pc
, v = V

V c
, τ = T

Tc
, (42)

we extract the law of corresponding states by substituting the above 
expressions (42) into the equation of state (37):

p =
0.354 + v2/3

(
−1.978 + 0.312 τ

√
−4 + 67.045 v2/3

)
(

0.06 − v2/3
)2

.

(43)

The above law is universal and valid under more general assump-
tions than eq. (37). Expanding around the critical point by intro-
ducing the quantities

t = τ − 1, ω = v − 1 , (44)

we can approximate (43) as

p ≈ 0.965 + 2.802t − 1.112ωt − 0.054ω3 . (45)

The critical exponents can be found through the relations:

C V = T
∂ S

∂T

∣∣∣
V

∝ |t|−α , (46)

η = Vl − V s ∝ |t|β , (47)

κT = − 1

V

∂V

∂ P

∣∣∣
T

∝ |t|−γ , (48)

|P − Pc|T =Tc ∝ |V − V c|δ , (49)

where V s and Vl are the volumes of the small and large black hole 
respectively and κT is the compressibility coefficient.

The first exponent α describes the behavior of the specific heat 
with constant volume and in our case is zero, α = 0, because C V =
0 and so there is no dependence on |t|.

The second exponent β can be evaluated by using (45), as well 
as the known Maxwell’s area law∮

V dP = 0 , (50)

which replaces the oscillating part of the isotherm with an isobar 
in a canonical ensemble, implying that the pressure of the system 
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remains constant during the transition instead of oscillating. The 
differential of (45) for fixed t gives

dp = −(0.162ω2 + 1.112t)dω . (51)

From (45), (50) and (51) we get the following system:

0 =
ωl∫

ωs

dω(0.162ω2 + 1.112t)ω , (52)

p = 0.965 + 2.802t − 1.112ωst − 0.054ω3
s

= 0.965 + 2.802t − 1.112ωlt − 0.054ω3
l . (53)

The solutions of the above two equations are

ωl = −ωs , ωl = −0.5ωs + 0.097
√

−81ω2
s − 2224t , (54)

giving

ωl = −ωs 
 4.547
√−t . (55)

Thus eq. (47) can be written as

η = Vl − V s = V c(ωl − ωs) 
 9.1V c
√−t , (56)

identifying the exponent β with the value β = 1/2.
For the third exponent γ , we substitute (42), (44) and (51) into 

the compressibility (48), retrieving

κT = − 1

(ω + 1)Pc

dω

dp
∝ 1

6.86t
. (57)

Therefore, the exponent γ equals to unity, γ = 1.
For the fourth exponent δ, we set T = Tc having that way t = 0

and so eq. (49) takes the form

p − 1 = 0.965 − 0.054ω3 , (58)

identifying the exponent δ with the value δ = 3. One sees that the 
critical exponents of BAdS black hole (α, β, γ , δ) = (0, 1/2, 1, 3)

are identical to those of a Van der Waals gas.

4. Conclusions

We have presented a geometric and thermodynamic analysis 
of the Bardeen black hole inside an extended AdS phase space. 
From a geometrical point of view, we derived the line element of 
BAdS black hole where the center is described by a regular core 
and we showed that such a black hole can have two, one or no 
horizons depending on the value of the black hole mass relative 
to the mass of the minimum black hole set by the minimal cut-
off length q and the AdS radius l. From a thermodynamical point 
of view, we considered that the cosmological constant plays the 
role of the positive pressure of the system and, after having calcu-
lated the desired thermodynamic variables, we derived the black 
hole equation of state which appears an unstable branch similar 
to that of a Van der Waals gas. The resultant forms of the spe-
cific heat and the Gibbs free energy indicate a first order phase 
transition between small/large black hole reminiscent of the liq-
uid/gas coexistence. Moreover, we considered the minimal length q
as a thermodynamic variable and we saw that the new Smarr rela-
tion is inconsistent with the 1st law at distances where the event 
horizon is comparable with q. Finally, we showed that the sys-
tem appears criticality and we derived the critical exponents of 
the black hole which are identical to those of a Van der Waals gas, 
making the analogy between them even stronger.
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