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Recently the LIGO and VIRGO Collaborations reported the observation of gravitational-wave signal 
corresponding to the inspiral and merger of two black holes, resulting into formation of the final black 
hole. It was shown that the observations are consistent with the Einstein theory of gravity with high 
accuracy, limited mainly by the statistical error. Angular momentum and mass of the final black hole were 
determined with rather large allowance of tens of percents. Here we shall show that this indeterminacy in 
the range of the black-hole parameters allows for some non-negligible deformations of the Kerr spacetime 
leading to the same frequencies of the black-hole ringing. This means that at the current precision of the 
experiment there remains some possibility for alternative theories of gravity.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A century after the formulation of General Relativity the LIGO 
and VIRGO Collaborations [1,2] detected gravitational waves from 
a pair of merging black holes and answer thereby a number of 
appealing questions related to our understanding of astrophysics, 
black holes, and gravitation. Interaction of two black holes can be 
conditionally divided into the four stages:

1. Newtonian stage, when the distance between two black holes
is much larger than their sizes; it includes rotation of the black 
holes around each other in close orbit, inspiral [3,4];

2. the merger of two black holes into a single one which ends up 
with;

3. the ringdown phase characterized by the quasinormal modes
[5] of the resultant black hole.

The last stages of formation of a single black hole and the con-
sequent quasinormal ringing, corresponding to the regime of a 
strong gravitational field, cannot be described in terms of the post-
Newtonian approximation. These last stages represent essential in-
trinsic characteristics of a theory of gravity.

Indeed, there is a number of alternative theories of gravity 
which produce the same black-hole behavior at a far distance from 
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its surface, i.e. in the asymptotic region, but lead to qualitatively 
different features near the event horizon. One of the aims of de-
tection of gravitational waves from black holes is testing the black-
hole near-horizon geometry and distinguishing Kerr spacetime [6]
from, possibly, another black-hole geometry corresponding to some 
alternative theory of gravity.1

Comparison of numerical simulations of the gravitational-wave 
signal, made within the Einstein gravity, with the observations 
(fig. 1 in [1]) shows very good agreement up to a few percents. 
However, there is a rather large range of possible values of mass 
and angular momentum of the black hole (see fig. 3 in [2]) leading 
to the same gravitational-wave signal within the achieved accu-
racy. This range of allowed values of the black-hole parameters could 
naturally be imagined as opportunity for deviation from the Kerr space-
time instead of deviation from given values of black-hole parameters 
within the same Kerr geometry. This intuitive thought is supported 
by understanding that the quasinormal frequencies strongly de-
pend on mass and angular momentum of a black hole, so that two 
black holes with different masses and momenta in two different 
theories of gravity may produce very close dominant quasinor-
mal frequencies. If it is so, agreement of the observed gravitational 
wave signal with the one predicted by General Relativity (GR) for 
the Kerr spacetime would rule out all alternatives only if param-
eters of the final black hole were determined with high accuracy 

1 In some cases the Kerr metric can also be a solution of non-Einsteinian theories 
of gravity, for example, of some f (R) theories, though the perturbations equations 
and, thereby, the ringdown profile will be different from the Einsteinian one [7,8].
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(and, preferably, independently on the supposition of the validity 
of GR) and shown to be equal to the Kerr’s ones. At the moment 
this is not the case, though the precision of the experiment will be 
increasing in the near future, what should, one way or the other, 
give us more constrained range of the black-hole parameters.

Here we shall show that the current indeterminacy in the val-
ues of the black-hole parameters allows for non-negligible devia-
tions from the Kerr spacetime which leads to essentially the same 
quasinormal ringing. This may mean that not only the Einsteinian 
theory of gravity is consistent with the latest observations of grav-
itational waves, but also some deviations from it do not contradict
the ringdown picture.

For this purpose in Sec. 2 we shall “prepare” a rather arbi-
trary deformation of the Kerr spacetime, which preserves asymp-
totic properties of the Kerr metric, such as its post-Newtonian ex-
pansion coefficients, relation between quadrupole momentum and 
mass, but drastically changes its near-horizon behavior. For sim-
plicity, the deformation is described by only one parameter, which 
is also fully justified by purely illustrative aim of our note. Then, 
we shall show that the large indeterminacy in a and M of such a 
deformed black hole allows for a wide range of values of the de-
formation parameter. In Sec. 3 we shall give another example: the 
Kerr black hole with a fixed angular momentum will be shown to 
produce quasinormal modes which are close to those of the Sen 
black hole with different value of the angular momentum and a 
nonzero dilaton.

2. Kerr vs deformed Kerr space-time

For convenience, we shall consider the line element of an arbi-
trary axially symmetric black hole in the following form [9]

ds2 = − N2(r, θ) − W 2(r, θ) sin2 θ

K 2(r, θ)
dt2

− 2W (r, θ)r sin2 θdtdφ + K 2(r, θ)r2 sin2 θdφ2

+ �(r, θ)

(
B2(r, θ)

N2(r, θ)
dr2 + r2dθ2

)
, (1)

where the Kerr metric is given as

N2(r, θ) = r2 − 2Mr + a2

r2
,

B(r, θ) = 1 ,

�(r, θ) = r2 + a2 cos2 θ

r2
,

K 2(r, θ) = (r2 + a2)2 − a2 sin2 θ(r2 − 2Mr + a2)

r2(r2 + a2 cos2 θ)
,

W (r, θ) = 2Ma

r2 + a2 cos2 θ
, (2)

where M is the mass and a is the rotation parameter.
Now, we shall deform the above Kerr spacetime by adding a 

static deformation which changes the relation between the black-
hole mass and position of the event horizon, but preserves asymp-
totic properties of the Kerr spacetime. Namely, the substitution

M → M + η

2r2
, (3)

once it is used in (2), modifies the Kerr metric as follows

N2(r, θ) = r2 − 2Mr + a2

r2
− η

r3
,

B(r, θ) = 1 ,
�(r, θ) = r2 + a2 cos2 θ

r2
, (4)

K 2(r, θ) = (r2 + a2)2 − a2 sin2 θ(r2 − 2Mr + a2)

r2(r2 + a2 cos2 θ)

+ a2η sin2 θ

r3(r2 + a2 cos2 θ)

W (r, θ) = 2Ma

r2 + a2 cos2 θ
+ ηa

r2(r2 + a2 cos2 θ)
,

where M is the ADM mass and a = J/M is the rotation parameter.
The above constructed spacetime of the deformed black hole 

possesses the following important for us properties:

1. it allows for the separation of radial and angular variables in 
the field equation, what allows us to reduce the perturbation 
problem to a radial, master wave-like equation,

2. it has the same post-Newtonian asymptotic (β = γ = 1) as the 
Kerr metric,

3. the quadrupole momentum of such a deformed spacetime 
obeys the same relation Q = −Ma2 as the Kerr black hole,

4. the deformed metric has quite different (from Kerr) near-
horizon geometry, expressed, in particular, in a different po-
sition of the spherical event horizon.

Similarly to the Kerr black hole, the Killing horizon obeys the 
following relation,

grr ≡ N2(r, θ)

B2(r, θ)
= r2 − 2Mr + a2

r2
− η

r3
= 0, (5)

and coincides with the event horizon.
It is convenient to parametrize the considered family of metrics 

with an additional parameter r0, so that

η = r0(r
2
0 − 2Mr0 + a2).

We shall use the parameter δr measuring deviation of the position 
of the event horizon from the Kerr one rKerr,

r0 = rKerr + δr = M +
√

M2 − a2 + δr,

so that δr = 0 implies η = 0 and corresponds to the Kerr metric. 
Although δr is a coordinate dependent measure of deviation from 
the Kerr geometry, the coordinates (4) are indistinguishable from 
the Boyer–Lindquist coordinates at infinity, so that different distant 
stationary observers should in principle agree on what is accepted 
as “large deviation from Kerr”.

As our aim is only to evaluate the order of an allowed range of 
the deformation parameter δr at a given relatively small allowance 
for the quasinormal frequency (a few percents), we do not need to 
be tied to a particular theory, type of perturbation or even fixed 
value of the quasinormal frequency. Therefore, we shall consider 
a test scalar field in the deformed background (2) and use sim-
ple semi-classical WKB estimates. Such a test-field approach will 
not distinguish the Kerr space-time as a solution of the Einstein 
field equations from the same Kerr space-time as solution of some 
non-Einsteinian gravity mentioned above [7,8]. However, our aim 
here is not to include all the possible alternative theories into 
consideration, but to show that at least some deviations from the 
Einstein gravity are still allowed by the observations. Analysis of 
gravitational perturbations would obviously constrain the possible 
alternatives better.

A massless minimally-coupled scalar field obeys the equation

	
;μ
;μ = 1√ ∂μ

(√−g gμν∂ν	
) = 0. (6)
−g
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Fig. 1. Parametric region (gray) of possible deformations δr/rKerr leading to the ring-
down frequency ωM = 0.635–0.0901i (which corresponds, according to the WKB 
formula for the Kerr metric with a/M ≈ 0.65) within 3% accuracy.

Substituting the ansatz

	(t, r, θ,φ) = exp(−iωt + imφ)R(r)S(θ)(r2 + a2)−1/2 ,

into (6) we find that S(θ) satisfies the equation for the spheroidal 
functions(

d2

dθ2
+ cot θ

d

dθ
− m2

sin2 θ
− a2ω2 sin2 θ + λ�m(ω)

)
S(θ)

= 0 , (7)

where the values of the separation constant λ�m(ω) can be enu-
merated, for each given integer azimuthal number m, by the mul-
tipole number

� = |m|, |m| + 1, |m| + 2, . . . .

For the radial function R(r) we obtain the wave-like equation

d2 R

dr2
�

+
(
ω2 − V (r,ω)

)
R(r) = 0,

where

dr� =
(

r2 − 2Mr + a2

r2 + a2
− η

r3 + ra2

)−1

dr,

is the tortoise coordinate, and the effective potential is given by 
the following relation

V (r,ω) = 2am(2Mr2 + η)

r(r2 + a2)2
ω − m2a2

(r2 + a2)2

+
(

r2 − 2Mr + a2

r2 + a2
− η

r3 + ra2

)
×(

λ�m(ω)

r2 + a2
+ a4 + a2r2 − 4Ma2r + 2Mr3 + 3rη

(r2 + a2)3

)
. (8)

Application of the WKB formula [10] at fixed values of ω

ω2 = Q (�,m,ω, M,a, δr), (9)

where the explicit form of the operator Q depends on the order 
of the WKB series, allows one to find those values of the deforma-
tion parameter δr, which, in the allowed indeterminacy range for a
and M , reproduce the quasinormal frequency ω within the desired 
few percents accuracy. We have chosen � = m = 2 mode for Kerr 
and the rate of rotation about a/M ≈ 0.65 and tested possible val-
ues of δr (see Fig. 1) against the allowed range of a/M determined 
in fig. 3 of [2]. From Fig. 1 we can see that the deformation δr/rKerr
can achieve several tens of percents. Although the particular shape of 
the region depicted in Fig. 1 depends on the spin of perturbation, 
type of the chosen deformation and a number of computational 
details of quasinormal modes, the above statement on the order of 
allowed deformation from Kerr geometry evidently must not de-
pend on any of these details. Indeed, a reader could repeat our 
computations for vector and spinor fields, as well as choose a dif-
ferent value of ω for comparison. The analysis of dependence of 
quasinormal modes for a great variety of black holes [5] shows 
that the order of “sensitivity” of ω as to the change of the black 
hole parameters is the same for gravitational perturbations as for 
perturbation of test fields.

In the next section we shall give another illustration of the 
same idea and go over from the “ad-hoc deformation” to consider-
ation of the particular alternative theory, Einstein-dilaton gravity, 
where the nonzero dilaton parameter b plays the role of deforma-
tion.

3. Kerr–Sen vs Kerr black holes

It is natural to expect that determination of not only a sin-
gle mode (that could “by accident” be close to the corresponding 
mode in some alternative theory), but one or more subdominant 
frequencies would help to identify the black hole geometry much 
easier [11]. Here, we shall consider another example: a compari-
son between scalar quasinormal frequencies of Kerr and Kerr–Sen 
black holes. We shall show that, quite counter-intuitively, knowing 
of a few higher modes within a few percents accuracy does not 
remedy the situation, leaving the above discussed indeterminacy.

The Sen black hole is a rotating, charged black hole in the four-
dimensional heterotic string theory which can be described by the 
line element

ds2 = �r

�
(dt − a sin2 θdϕ)2 − �

(
dr2

�r
+ dθ2

)

− �θ sin2 θ

�
[adt − (r2 + 2br + a2)dϕ]2, (10)

where

�r = r2 − 2(M − b)r + a2,

� = r2 + 2br + a2 cos2 θ,

a is the rotation parameter, M is the ADM mass and M > b ≥ 0. 
The Maxwell and dilaton fields are given by

Aμdxμ = Q
r

�
(dt − a sin2 θdϕ), (11)

e2φ = W
r2 + a2 cos2 θ

�
, (12)

where the electric charge Q is related to b as

Q 2 = 2W Mb. (13)

Quasinormal modes were computed with the help of the Leaver 
method [12] in [13] for Kerr and in [14] for Kerr–Sen black holes. 
From Table 1 we can see that the � = m = 2 quasinormal modes 
for Kerr black hole with a = 0.65M and for Sen black hole with 
a = 0.55M and the value of the dilaton parameter b = 0.1M are as 
close as one percent at the real oscillation frequency and as about 
two percents at the damping rate. This occurs not only for the fun-
damental mode, but also for higher overtones. In addition, it takes 
place for higher multipoles � as can be seen from Table 2. There-
fore, if in the future we see the coalescence of two black holes 
of considerably different masses, so that � = 3, 4 modes are highly 
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Table 1
Quasinormal modes for Kerr (b = 0) and Kerr–Sen (b �= 0) black holes ωM for 
� = m = 2. Last two columns give the difference between Kerr and Kerr–Sen quasi-
normal frequencies in percents.

n a = 0.65M , b = 0 a = 0.55M , b = 0.1M Re(%) Im(%)

0 0.635603–0.0896663i 0.637270–0.0914843i 0.262% 2.028%
1 0.625909–0.2709374i 0.627168–0.2765441i 0.201% 2.069%
2 0.608566–0.4573669i 0.609178–0.4671567i 0.101% 2.140%
3 0.586811–0.6504648i 0.586793–0.6649052i 0.003% 2.220%
4 0.563709–0.8498708i 0.563277–0.8693261i 0.077% 2.289%

Table 2
Quasinormal modes for Kerr (b = 0) and Kerr–Sen (b �= 0) black holes ωM for 
� = m = 3. Last two columns give the difference between Kerr and Kerr–Sen quasi-
normal frequencies in percents.

n a = 0.65M , b = 0 a = 0.55M , b = 0.1M Re(%) Im(%)

0 0.904059–0.0893540i 0.904496–0.0911598i 0.048% 2.021%
1 0.897288–0.2690321i 0.897398–0.2745294i 0.012% 2.043%
2 0.884493–0.4514534i 0.884014–0.4608656i 0.054% 2.085%
3 0.867011–0.6379172i 0.865805–0.6515619i 0.139% 2.139%
4 0.846474–0.8290498i 0.844545–0.8472661i 0.228% 2.197%

excited, that probably would not remedy the situation unless the 
precision of the determination of the black hole’s parameters will 
be greatly improved. Notice, that the Kerr–Sen metric is considered 
here only as another toy model for an illustration of the parametric 
indeterminacy within an alternative theory, because the considered 
value of the parameter b is not realistic and implies a much larger 
electric charge than an astrophysical black hole can possess.

4. Conclusion

Using simple semi-classical arguments as well as numerical 
data for quasinormal modes of various black holes, in this letter 
we have shown that the indeterminacy with which gravitational-
wave signal constrains the mass and angular momentum of the 
black hole allows not only the Kerr spacetime to be consistent 
with the gravitational ringdown profile, but also leaves a win-
dow for non-negligibly deformed (from Kerr) spacetimes with the 
same asymptotic properties. As mass and angular momentum of 
the system are measured by comparison with simulations of the 
earlier stages of the black holes’ interaction, that is before the final 
ringdown, these parameters are found within the post-Newtonian 
formalism at some order. Thus, one could admit that there might 
exist a strongly deformed Kerr-like black hole, corresponding to an 
alternative theory of gravity, such that its behavior in the post-
Newtonian regime is quite similar to Kerr black hole, while its 
near-horizon behavior is different. Here we have illustrated this 
idea with the help of WKB computations, as shown in Fig. 1. An-
other, even simpler illustration of the same idea has been given 
here through comparison of the quasinormal spectra of Kerr and 
Kerr–Sen black holes at different values of black hole parameters. It 
has been shown that the Kerr black hole with a = 0.65M produces 
quasinormal modes which are very close to the ones of rotating 
dilaton black holes with a = 0.55M and not negligible value of the 
dilaton parameter b = 0.1M . All the values of a/M are taken in the 
range allowed by the observation of gravitational-waves [1], while 
the difference in the quasinormal spectra of Kerr and dilatonic 
black holes is less than the accuracy of determination of the de-
tected quasinormal mode. Quite unexpectedly, this “proximity” of 
quasinormal spectra occurs not only for a single mode � = m = 2, 
but also for higher modes as well as for other multipoles �.

The comparison of the detected gravitational wave profile at 
the inspiral and merger phases which requires post-Newtonian ap-
proach at high orders will definitely constrain our freedom until 
some extend. Though constraints given at these earlier stages (see 
table 1 of [2]) are quite loose and, apparently, should not change 
our conclusions qualitatively.

In order to disprove the above proposal, one needs to deter-
mine the black-hole parameters with high accuracy. In the future 
this could be done either by improving the accuracy of detection 
of the gravitational-wave profile or with complementary observa-
tions of black holes in the electromagnetic spectrum, which could 
potentially give us an image of a black hole.

This letter in no way contradicts the Einstein theory of gravity 
or cast shadows on the great importance of the recent outstand-
ing discovery of gravitational waves. In essence, we simply show 
that the current experimental allowance in the determination of 
the black hole parameters can be interpreted as freedom for alter-
native theories of gravity as well.
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