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We discuss different models for the spin structure of the nonperturbative pomeron: scalar, vector, and 
rank-2 symmetric tensor. The ratio of single-helicity-flip to helicity-conserving amplitudes in polarised 
high-energy proton–proton elastic scattering, known as the complex r5 parameter, is calculated for these 
models. We compare our results to experimental data from the STAR experiment. We show that the 
spin-0 (scalar) pomeron model is clearly excluded by the data, while the vector pomeron is inconsistent 
with the rules of quantum field theory. The tensor pomeron is found to be perfectly consistent with the 
STAR data.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

High-energy small-angle hadron–hadron scattering is domi-
nated by the exchange of the soft pomeron. The nature of this 
pomeron has been discussed in a great number of articles; for 
reviews see, for instance, [1–4]. It is clear that it has vacuum 
internal quantum numbers. What is much less clear is the spin 
structure of the soft pomeron. Indeed, the present authors have 
frequently been asked the following question: The pomeron has 
vacuum quantum numbers, should it then not also have spin zero? 
However, a vector pomeron is widely used in the literature follow-
ing [5–7]. In [8] it was proposed to describe the soft pomeron as 
an effective rank-2 symmetric tensor exchange. There, all reggeon 
exchanges with charge conjugation C = +1 (C = −1) were de-
scribed as effective tensor (vector) exchanges and a large number 
of the couplings of these objects to hadrons were determined from 
experimental data. This tensor-pomeron model was then applied 
to various reactions in [9–13].

The authoritative answer to the question for the spin structure 
of the soft pomeron should be given by experiment. In this article 
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we want to show that experimental data on the helicity structure 
of small-t proton–proton high-energy elastic scattering from the 
STAR experiment [14] indeed give decisive information on the spin 
structure of the soft pomeron.

We emphasise that in the following we shall be interested only 
in soft hadronic scattering where, according to standard wisdom, 
perturbative QCD methods cannot be applied.

2. Theoretical framework

We will consider pp elastic scattering

p(p1, s1) + p(p2, s2) −→ p(p3, s3) + p(p4, s4) , (2.1)

where p j are the four-momenta and s j ∈ {1/2, −1/2} the helicity 
indices, respectively. The standard kinematic variables are

s = (p1 + p2)
2 = (p3 + p4)

2 ,

t = (p1 − p3)
2 = (p2 − p4)

2 , (2.2)

u = (p1 − p4)
2 = (p2 − p3)

2 .

At high energies, s � m2
p , |t|, the reaction (2.1) is dominated by 

pomeron exchange; see Fig. 1. In the following all non-leading 
reggeon exchanges will be neglected. For 

√
s � 200 GeV their con-

tribution to the total cross section is only � 1% [1].
We shall test three hypotheses for the pomeron and the ef-

fective pomeron–proton–proton (Ppp) vertex. We shall treat the 
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Fig. 1. Proton–proton elastic scattering via pomeron exchange.

pomeron either as a scalar, a vector, or a rank-2 symmetric tensor 
exchange. For all three cases it turns out to be possible to adjust 
the effective pomeron propagators and the couplings in such a way 
that at high energies the helicity-conserving pp amplitudes have 
the standard form as given in the vector-pomeron model due to 
Donnachie and Landshoff; see [5–7] and [1]. We will choose the 
parameters for the scalar and the tensor pomeron accordingly.

2.1. Tensor pomeron PT

Here we describe the pomeron, as discussed in [8], as a sym-
metric, rank-two, tensor PTμν(x) and its interaction with protons 
by coupling it to a tensor current J Tμν(x),

L′
T (x) = J Tμν(x)Pμν

T (x) ,

J Tμν(x) = −3βPN N
i

2
ψ̄p(x)

[
γμ

↔
∂ν +γν

↔
∂μ −1

2
gμνγ

λ
↔
∂λ

]
ψp(x);

(2.3)

see (6.27) of [8]. Here ψp(x) is the proton field operator and

3βPN N = 3 × 1.87 GeV−1 (2.4)

is the standard coupling constant describing the pomeron–nucleon 
interaction; see [1,8]. From (2.3) we get the PT pp vertex (see 
(3.43) of [8]) as2

i�(PT pp)
μν (p′, p)

= −i 3βPN N F1[(p′ − p)2]
{

1

2

[
γμ(p′ + p)ν + γν(p′ + p)μ

]

− 1

4
gμν(/p′ + /p)

}
.

(2.5)

A form factor, F1(t), has been introduced in the vertex (2.5). Con-
ventionally this is taken as the Dirac electromagnetic form factor 
of the proton, following [5–7]. The normalisation is

F1(0) = 1 . (2.6)

In the sequel the precise form of F1(t) will not be relevant.
The ansatz for the effective PT propagator is given in (3.10) and 

(3.11) of [8] and reads

2 Note that from now on we will choose the orientation of the diagrams such 
that the t-channel is in horizontal and the s-channel in vertical direction.
i	(PT )
μν,κλ(s, t)

= 1

4s

(
gμκ gνλ + gμλgνκ − 1

2
gμν gκλ

)
(−isα′

P
)αP(t)−1 .

(2.7)

We assume a standard linear form for the pomeron trajectory 
(see [1,8])

αP(t) = 1 + εP + α′
P

t ,

εP = 0.0808 ,

α′
P

= 0.25 GeV−2 .

(2.8)

2.2. Vector pomeron PV

Here the pomeron has a vector index and is coupled to a vector 
current

L′
V (x) = J V μ(x)Pμ

V (x) ,

J V μ(x) = −3βPN N M0 ψ̄p(x)γμψp(x) ,
(2.9)

where M0 ≡ 1 GeV is introduced for dimensional reasons. The cor-
responding PV pp vertex and PV propagator are as follows (see 
(B.1) and (B.2) of [9]):

i�(PV pp)
μ (p′, p) = −i 3βPN N M0 F1[(p′ − p)2]γμ , (2.10)

i	(PV )
μν (s, t) = 1

M2
0

gμν (−isα′
P
)αP(t)−1 . (2.11)

2.3. Scalar pomeron PS

Finally, for comparison, we discuss also a scalar pomeron PS

coupled to a scalar current

L′
S(x) = J S(x)PS(x) ,

J S(x) = −3βPN N M0 ψ̄p(x)ψp(x) .
(2.12)

Here we have as PS pp coupling and as PS propagator the following 
expressions:

i�(PS pp)(p′, p) = −i 3βPN N M0 F1[(p′ − p)2] , (2.13)
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i	(PS )(s, t) = s

2m2
p M2

0

(−isα′
P
)αP(t)−1 . (2.14)

3. Helicity amplitudes

There are 16 helicity amplitudes for the reaction (2.1), defined 
as the T -matrix elements

〈p(p3, s3), p(p4, s4) |T | p(p1, s1), p(p2, s2)〉
≡ 〈2s3,2s4 |T | 2s1,2s2〉 ,

s j ∈ {1/2,−1/2}, j = 1, . . . ,4 .

(3.1)

The standard references for the general analysis of these ampli-
tudes are [15–17]; see also [18]. Using rotational, parity (P ), and 
time reversal (T ) invariance, and taking into account that protons 
are fermions one finds that only five out of the 16 helicity ampli-
tudes (3.1) are independent. Conventionally these are taken as

φ1(s, t) = 〈++|T |++〉 ,

φ2(s, t) = 〈++|T |−−〉 ,

φ3(s, t) = 〈+−|T |+−〉 ,

φ4(s, t) = 〈+−|T |−+〉 ,

φ5(s, t) = 〈++|T |+−〉 .

(3.2)

The amplitudes with no helicity flip are φ1 and φ3, with single 
flip φ5, and with double flip φ2 and φ4. Our normalisation is such 
that the differential cross section for unpolarised protons is

dσ(pp → pp)

dt
= 1

16π s(s −4m2
p)

1

4

∑
s1,...,s4

|〈2s3,2s4 |T |2s1,2s2〉|2

= 1

32π

1

s(s − 4m2
p)

{
|φ1(s, t)|2 + |φ2(s, t)|2

+ |φ3(s, t)|2 + |φ4(s, t)|2 + 4 |φ5(s, t)|2
}

.

(3.3)

The total cross section for unpolarised protons is3

σtot(pp) = 1√
s(s − 4m2

p)

1

4

∑
s1,s2

Im 〈2s1,2s2 |T |2s1,2s2〉 |t=0

= 1

2
√

s(s − 4m2
p)

Im [φ1(s,0) + φ3(s,0)] .

(3.4)

Now it is straightforward to calculate the amplitudes φ j(s, t)
in the tensor-, vector-, and scalar-pomeron models of section 2. 
We use the phase conventions for the proton spinors of definite 
helicity as given in (4.10) of [15] and find the following results.

Tensor pomeron

i 〈2s3,2s4 |T |2s1,2s2〉
= i

〈
p(p3, s3)

∣∣ J Tμν(0)
∣∣ p(p1, s1)

〉
i	(PT )μν,κλ(s, t)

× i 〈p(p4, s4) | J T κλ(0) | p(p2, s2)〉 ,〈
p(p′, s′)

∣∣ J Tμν(0)
∣∣ p(p, s)

〉 = ū(p′, s′)�
(PT pp)
μν (p′, p) u(p, s) .

(3.5)

3 We note that the amplitudes φBGL
j (s, t) defined in [16] are related to ours by 

φBGL
j (s, t) = φ j(s, t)/(8π).
Table 1
Results for the reduced pp scattering amplitudes φ̂ j (3.7), j = 1, . . . , 5, for the 
tensor-, vector-, and scalar-pomeron ansätze. Terms of relative order m2

p/s and |t|/s
are neglected.

pomeron ansatz

tensor vector scalar

φ̂1(s, t) 8 s2 8 s2 8 s2

φ̂2(s, t) 10 m2
pt 16 m2

pt 2 s2t/m2
p

φ̂3(s, t) 8 s2 8 s2 8 s2

φ̂4(s, t) −10 m2
pt −16 m2

pt −2 s2t/m2
p

φ̂5(s, t) −8 smp
√−t −8 smp

√−t −4 s2√−t/mp

Inserting here the expressions from (2.5) and (2.7) we get the am-
plitudes φ j(s, t). It is convenient to pull out a common factor

F(s, t) = i [3βPN N F1(t)]2 1

4s
(−isα′

P
)αP(t)−1

= [3βPN N F1(t)]2 1

4s
(sα′

P
)αP(t)−1

×
[

sin
(π

2
(αP(t) − 1)

)
+ i cos

(π

2
(αP(t) − 1)

)]
(3.6)

and to define reduced amplitudes by

φ̂ j(s, t) = φ j(s, t)/F(s, t) , j = 1, . . . ,5. (3.7)

The results for φ̂ j(s, t) in the tensor-pomeron model are given in 
the column ‘tensor’ of Table 1. Terms of relative order m2

p/s and 
|t|/s are neglected.

Vector pomeron

i 〈2s3,2s4 |T |2s1,2s2〉
= i

〈
p(p3, s3)

∣∣ J V μ(0)
∣∣ p(p1, s1)

〉
i	(PV )μν(s, t)

× i 〈p(p4, s4) | J V ν(0) | p(p2, s2)〉 ,〈
p(p′, s′)

∣∣ J V μ(0)
∣∣ p(p, s)

〉 = ū(p′, s′)�
(PV pp)
μ (p′, p) u(p, s) .

(3.8)

Inserting here the expressions from (2.10) and (2.11) we get the 
reduced amplitudes φ̂ j(s, t) (3.7) in the column ‘vector’ of Table 1.

Scalar pomeron

i 〈2s3,2s4 |T |2s1,2s2〉
= i 〈p(p3, s3) | J S(0) | p(p1, s1)〉 i	(PS )(s, t)

× i 〈p(p4, s4) | J S(0) | p(p2, s2)〉 ,〈
p(p′, s′)

∣∣ J S(0)
∣∣ p(p, s)

〉 = ū(p′, s′)�(PS pp)(p′, p) u(p, s) .

(3.9)

Inserting here the expressions from (2.13) and (2.14) we get the 
reduced amplitudes φ̂ j(s, t) (3.7) in the column ‘scalar’ of Table 1.

Let us now discuss the question whether our amplitudes should 
obey the so-called Regge factorisation which, according to standard 
lore, should hold for amplitudes governed by a single Regge-pole 
exchange; see for instance chapter 6.8g of [19]. In our case, Regge 
factorisation would require

〈2s3,2s4 |T |2s1,2s2〉
〈
2s′

3,2s′
4

∣∣T ∣∣2s′
1,2s′

2

〉
= 〈

2s3,2s′
4

∣∣T ∣∣2s1,2s′
2

〉 〈
2s′

3,2s4
∣∣T ∣∣ 2s′

1,2s2
〉

= 〈
2s′

3,2s4
∣∣T ∣∣2s′

1,2s2
〉 〈

2s3,2s′
4

∣∣T ∣∣ 2s1,2s′
2

〉 (3.10)

for any si , s′
j . It is straightforward to deduce the conditions which 

the amplitudes φ j from (3.2) would have to fulfil for (3.10) to hold. 
These are
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φ1(s, t) = φ3(s, t) ,

φ2(s, t) = −φ4(s, t) ,
(3.11)

and

φ1(s, t)φ2(s, t) = −φ5(s, t)φ5(s, t) . (3.12)

From Table 1 we see that the relations (3.11) are satisfied by 
all three pomeron models whereas (3.12) is only satisfied by the 
scalar-pomeron model. How can we understand this?

In all three of our models the amplitudes (3.1) have the struc-
ture

〈2s3,2s4 |T |2s1,2s2〉
∝ (vertex factor v)(3,1)(P propagator)(vertex factor v)(4,2),

(3.13)

where the superscripts refer to the particle labels. For the scalar 
pomeron PS this leads to

〈2s3,2s4 |T |2s1,2s2〉 ∝ v(3,1)
PS

v(4,2)
PS

. (3.14)

That is, the amplitudes are proportional to a single product of two 
vertex factors. Clearly, in this case the factorisation relations (3.10)
will hold, as we also see from Table 1. For a vector pomeron PV

and a tensor pomeron PT , on the other hand, we get

〈2s3,2s4 |T |2s1,2s2〉 ∝ v(3,1)
PV μ vμ(4,2)

PV
(3.15)

and

〈2s3,2s4 |T |2s1,2s2〉 ∝ v(3,1)
PT μν vμν(4,2)

PT
, (3.16)

respectively. Now the amplitudes are given by sums of products 
where, in general, the relations (3.10) will not hold.

We conclude that even if amplitudes are governed by a sin-
gle Regge-pole exchange the Regge factorisation relations will not 
necessarily hold if the spin carried by the reggeon is taken into 
account. This remark applies not only to our tensor pomeron but, 
for instance, also to the ρ and ω reggeons which are considered 
as effective vector exchanges in [8]. We further note that also 
single-photon exchange in pp elastic scattering does not satisfy 
the relations (3.10). This can be seen explicitly from Table 1: For 
single-photon exchange, keeping only the Dirac form factor of the 
proton, the corresponding amplitudes are proportional to the en-
tries of the column ‘vector’ where (3.12) is not satisfied.

4. Discussion and comparison with experiment

We note first that, by construction, the non-flip amplitudes 
φ1(s, t) and φ3(s, t) are the same for all three pomeron hypotheses. 
Thus, from (3.4), we get the same total cross section

σtot(pp) = 2 (3βPN N)2 cos
(π

2
(αP(0) − 1)

)(
sα′

P

)αP(0)−1
. (4.1)

This is the standard expression for the soft-pomeron contribution 
to σtot(pp); see [1] and (6.41) of [8].

Now we consider the vector-pomeron case. There, big problems 
arise if we consider pp and p̄p scattering. For p̄p elastic scattering 
we get an expression analogous to (3.8),

i 〈p̄(p3, s3), p(p4, s4) |T | p̄(p1, s1), p(p2, s2)〉
= i

〈
p̄(p3, s3)

∣∣ J V μ(0)
∣∣ p̄(p1, s1)

〉
i	(PV )μν(s, t)

× i 〈p(p , s ) | J (0) | p(p , s )〉 .

(4.2)
4 4 V ν 2 2
A charge-conjugation transformation C gives〈
p̄(p3, s3)

∣∣ J V μ(0)
∣∣ p̄(p1, s1)

〉
= − 〈

p(p3, s3)
∣∣ J V μ(0)

∣∣ p(p1, s1)
〉
,

(4.3)

as follows from the standard C-transformation rules of the
(anti)proton states and of the bilinear expression for the vector 
current in terms of the proton fields (2.9). Thus, we get for a vec-
tor pomeron

〈p̄(p3, s3), p(p4, s4) |T | p̄(p1, s1), p(p2, s2)〉
= −〈p(p3, s3), p(p4, s4) |T | p(p1, s1), p(p2, s2)〉

(4.4)

and hence from (3.4)

σtot(p̄p) = −σtot(pp) . (4.5)

Clearly, this result does not make sense for a non-vanishing cross 
section and would contradict the rules of quantum field theory. 
Thus, we shall not consider a vector pomeron any further.4

We are left with the tensor- and scalar-pomeron hypotheses. 
We note that the C transformation here gives (see (2.3) and (2.12))〈

p̄(p3, s3)
∣∣ J Tμν(0)

∣∣ p̄(p1, s1)
〉

= 〈
p(p3, s3)

∣∣ J Tμν(0)
∣∣ p(p1, s1)

〉
,

(4.6)

and

〈p̄(p3, s3) | J S(0) | p̄(p1, s1)〉 = 〈p(p3, s3) | J S(0) | p(p1, s1)〉 .

(4.7)

This implies in both cases the equality of the pomeron contribu-
tions to the pp and p̄p scattering amplitudes, as should be the 
case.

In order to discriminate between the tensor and scalar pomeron 
cases we turn to data from the STAR experiment at RHIC [14]. 
There, a measurement of the ratio of single-flip to non-flip am-
plitudes at 

√
s = 200 GeV was performed. The relevant quantity is

r5(s, t) = 2mp φ5(s, t)√−t Im [φ1(s, t) + φ3(s, t)]
. (4.8)

From (3.6), (3.7) and Table 1 we find for the tensor pomeron

rPT
5 (s, t) = −m2

p

s

[
i + tan

(π

2
(αP(t) − 1)

)]
. (4.9)

For the scalar pomeron, on the other hand, we get

rPS
5 (s, t) = −1

2

[
i + tan

(π

2
(αP(t) − 1)

)]
. (4.10)

The measurement of r5 in [14] is done for 0.003 � |t| � 0.035 GeV2

and no t-dependence of r5 is observed in this range. The latter 
observation is in agreement with our results (4.9) and (4.10) which 
also imply only a weak t-dependence of r5(s, t). Therefore, we can 
approximately set t = 0 in (4.9) and (4.10) and obtain with 

√
s =

200 GeV

rPT
5 (s,0) = (−0.28 − i 2.20) × 10−5 , (4.11)

rPS
5 (s,0) = −0.064 − i 0.500 . (4.12)

It is worth pointing out that in the high-energy limit (s � m2
p) 

these results have very small remaining uncertainties since only 

4 Let us remark here, however, that for proton–proton scattering the parameter 
r5 discussed below would be the same in the vector-pomeron case as in the tensor-
pomeron case as can be inferred from the amplitudes in Table 1.
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Fig. 2. The experimental results for r5 at √s = 200 GeV from Fig. 5 of [14] together 
with our results for the tensor and the scalar pomeron; see (4.11) and (4.12). The 
first figure shows the experimental data together with the results for both pomeron 
models. The second figure shows a magnified view of the relevant region around 
zero and contains only the clearly favoured tensor-pomeron point.

the pomeron intercept αP(0) enters which is rather well deter-
mined experimentally. However, as the result (4.11) for the tensor 
pomeron is very small in absolute terms, it is conceivable that in 
this case subleading terms might be relevant for a calculation of r5

with very high precision. But as we will see momentarily, the cur-
rent experimental uncertainty does not allow a determination of 
r5 to that precision anyway.

In Fig. 2 we show the experimental result for r5 of [14] (as 
given in Fig. 5 there) together with our results (4.11) and (4.12). 
Clearly, the tensor-pomeron result is perfectly compatible with 
the experiment. The scalar-pomeron result, on the other hand, is 
far outside the experimental error ellipse. The tensor pomeron is 
hence strongly favoured by the data, while the scalar pomeron is 
ruled out.

5. Conclusions

In this article we have confronted three hypotheses for the soft 
pomeron – tensor, vector, and scalar – with experimental data on 
polarised high-energy pp elastic scattering from the STAR Collabo-
ration [14]. Studying the ratio r5 of single-helicity-flip to non-flip 
amplitudes we found that the STAR data are consistent with a ten-
sor pomeron while they clearly exclude a scalar pomeron. We have 
further argued that a vector pomeron assumption is in contradic-
tion to the rules of quantum field theory. We therefore conclude 
that the tensor pomeron is the only viable option.
Attempts to relate the pomeron to tensors were, in fact, already 
discussed in the 1960’s [20–22]. In [20] the energy–momentum 
tensor was considered and from that and some further assump-
tions the ratio of meson–baryon to baryon–baryon cross sections 
was obtained giving, for instance,

σtot(π p)

σtot(pp)
≈ mK

mB
≈ 1

2
. (5.1)

Here mK and mB are a mean meson mass, taken as the one of 
the K meson, and a mean baryon mass, respectively. This does not 
work phenomenologically, as in fact σtot(π p)/σtot(pp) ≈ 2/3. Also, 
we cannot see the physics which would make the π p cross section 
proportional to the K mass.

In this connection we may discuss the consequences of the hy-
pothesis that the tensor current J Tμν(x) in (2.3) is proportional 
to the energy–momentum tensor with a universal constant of pro-
portionality, independent of the hadron considered. It is easy to 
see that this leads to the same pomeron part of the total cross 
section for all hadron–hadron scatterings, for instance σ(pp) =
σ(π p) = σ( J/ψ p). Clearly, also this does not work phenomeno-
logically. Our J Tμν(x) in (2.3) cannot be universally proportional 
to the energy–momentum tensor.

In [21,22] attempts were made to relate the pomeron prop-
erties, in particular its couplings to hadrons, to those of tensor 
mesons of the qq̄ type. However, with the advent of QCD and glu-
ons it has become clear that the pomeron is a predominantly glu-
onic object; see the pioneering papers [23,24]. Thus, if one wants 
to relate the pomeron properties to mesonic ones it is natural to 
look for glueballs, and this, indeed, has been and is being done 
frequently. Here, one problem is that even today the status of glue-
balls is not particularly clear; for a review see [25]. A vast literature 
exists dealing with the pomeron in perturbative QCD, starting from 
the celebrated work [26,27]. Questions similar to those addressed 
in the present paper for the soft pomeron could be interesting also 
in the context of the perturbative pomeron, but this would be be-
yond the scope of the present paper.

For the soft pomeron phenomenology, for a long time then, 
a sort of vector pomeron was commonly used, following [5–7], al-
though it was clear that this could not be completely correct due 
to the problems with charge conjugation explained in section 4. 
A first attempt to understand the soft pomeron in the frame-
work of a toy model of nonperturbative QCD was made in [28]. 
In [29] functional integral techniques were used to analyse high-
energy soft hadron–hadron scattering in QCD in a nonperturbative 
framework. It was shown in chapter 6 of [29] that the pomeron ex-
change can be understood as a coherent sum of exchanges of spin 
2 + 4 + 6 + . . . . Going through the arguments there one can see 
that basically this structure is due to the helicity conserving fun-
damental quark–gluon coupling in QCD. In [8] a tensor pomeron 
was introduced which again can be viewed as a coherent sum of 
exchanges of spin 2 + 4 + 6 + . . . (see appendix B of [8]) thus 
making contact with the considerations in QCD of [29]. We note 
that writing a regge exchange as a coherent sum of elementary 
spin exchanges goes back to [30]. Concerning specific experimen-
tal tests for the spin structure of the pomeron we should mention 
[31] where such tests were proposed for diffractive deep inelas-
tic electron–proton scattering. Similar techniques were proposed in 
[32,33] for central production of meson resonances in pp collisions

p + p −→ p + meson + p . (5.2)

In the light of our discussion here we cannot support the conclu-
sions of [32,33] that the pomeron couples like a non-conserved 
vector current. In [9,11,12] the question of central production (5.2)
was taken up again from the point of view of the tensor pomeron 
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and it was shown that this does quite well in reproducing the data 
where available. It turned out, however, that central production 
with pomeron–pomeron fusion,

P+ P −→ meson , (5.3)

was not too sensitive to the nature of the pomeron, tensor or vec-
tor. But central production with fusion of a C = −1 object with the 
pomeron, e.g.

γ + P −→ π+ + π− (5.4)

is extremely sensitive to the nature of pomeron. For a tensor 
(vector) pomeron the π+π− pair in (5.4) is in an antisymmet-
ric (symmetric) state under the exchange π+ ↔ π− . Needless to 
say that since the pomeron has C = +1 the π+π− pair in (5.4)
must be in an antisymmetric state. Thus also from this point, 
a vector pomeron is excluded. Finally, also investigations of the 
pomeron using the AdS/CFT correspondence prefer a tensor nature 
for pomeron exchange [34,35].

According to the results for the helicity-amplitudes in polarised 
high-energy pp elastic scattering presented in this work the soft 
pomeron should be described as a rank-2 symmetric tensor ex-
change, as for example in the model of [8]. It is not a priori clear 
that the pomeron exhibits the same spin structure also in reac-
tions involving high momentum transfers, i.e. reactions with the 
exchange of a hard (perturbative) pomeron. We would find it par-
ticularly desirable to study the spin structure of the pomeron in 
the interesting transition region between soft and hard reactions. 
It would therefore be useful to discuss further observables that are 
sensitive to the spin structure of the pomeron and that can be ex-
perimentally studied in a wide range of kinematic regimes.
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