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In the initial stage of relativistic heavy-ion collisions, strong magnetic fields appear due to the large 
velocity of the colliding charges. The evolution of these fields appears as a novel and intriguing feature 
in the fluid-dynamical description of heavy-ion collisions. In this work, we study analytically the one-
dimensional, longitudinally boost-invariant motion of an ideal fluid in the presence of a transverse 
magnetic field. Interestingly, we find that, in the limit of ideal magnetohydrodynamics, i.e., for infinite 
conductivity, and irrespective of the strength of the initial magnetization, the decay of the fluid energy 
density e with proper time τ is the same as for the time-honoured “Bjorken flow” without magnetic 
field. Furthermore, when the magnetic field is assumed to decay ∼ τ−a , where a is an arbitrary number, 
two classes of analytic solutions can be found depending on whether a is larger or smaller than one. In 
summary, the analytic solutions presented here highlight that the Bjorken flow is far more general than 
formerly thought. These solutions can serve both to gain insight on the dynamics of heavy-ion collisions 
in the presence of strong magnetic fields and as testbeds for numerical codes.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Very intense magnetic fields of the order of B ∼ 1018–1019 G
are produced orthogonal to the direction of motion in a typi-
cal non-central Au–Au collision at top RHIC energy (i.e., with a 
centre-of-momentum energy per nucleon pair of 

√
sNN � 200 GeV). 

Recent studies show that the strength of the produced magnetic 
field grows approximately linearly with the centre-of-momentum 
energy of the colliding nucleons [1–3]. It is now an experimen-
tally well-established fact that in high-energy nucleus–nucleus col-
lisions a very hot and dense phase of nuclear matter composed 
of quarks and gluons is formed. This hot and dense form of nu-
clear matter is also known as quark–gluon plasma (QGP). In the 
presence of a strong magnetic field as created in heavy-ion colli-
sions, a charge current will be induced in the QGP, leading to what 
is known as the “chiral magnetic effect” (CME) [3]. At the same 
time, particles with the same charge but different chirality will 
also be separated, yielding what is called the “chiral separation 
effect” (CSE). A density wave induced by these two effects, called 
the “chiral magnetic wave” [4], is suggested to break the degener-
acy between the elliptic flows of positive and negative pions [5]. 
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Moreover, it has also been found that there exists a deep con-
nection between these effects and the Berry phase in condensed 
matter [6–8]. Research on these topics is developing rapidly and 
a series of recent reviews and references can be found in Refs. 
[9–11].

The initial electric fields are also found to be quite large in 
event-by-event simulations of heavy-ion collisions [2]. Such elec-
tric fields induce other novel effects such as the “chiral electric 
separation effect” (CESE) and the “chiral electric wave” (CEW), 
which represent chiral currents and density waves induced by the 
electric fields, respectively [12,13]. When the electric field is per-
pendicular to the magnetic field, just like for the Hall effect, a 
chiral current is expected, called the “chiral Hall separation effect” 
(CHSE), which might cause an asymmetric charge distribution in 
rapidity [14].

Relativistic hydrodynamics has been proven to be quite suc-
cessful in describing the experimentally measured azimuthal dis-
tribution of particle emission in non-central nucleus–nucleus col-
lisions [15–20]. It is then important to understand the effect 
of initial large magnetic fields on the fluid evolution. To this 
scope one needs a numerical code that solves the equations 
of (3 + 1)-dimensional relativistic magnetohydrodynamics (MHD). 
There is consensus that due to very high velocities of the charges 
inside the colliding nuclei (i.e., with Lorentz factors γ ∼ 100 for 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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collisions at 
√

sNN = 200 GeV), the magnetic fields decay very 
rapidly (i.e., decreasing by ∼ 3 orders of magnitude within a 
timescale ∼ 1 fm for 

√
sNN = 200 GeV Au–Au collisions) before the 

system reaches local thermal equilibrium and the fluid description 
is applicable. However, the presence of a medium with finite elec-
trical conductivity can substantially delay the decay of the mag-
netic field [21–23].

Lattice-QCD simulations and theoretical models show that the 
QGP possesses a finite temperature-dependent electrical conduc-
tivity [24,25]. However, the interaction of the initial magnetic field 
with the QGP and its subsequent evolution is still an open issue 
and a topic of current research. An estimate of the relative impor-
tance of an external magnetic field on the fluid evolution can be 
obtained from the dimensionless quantity σ ≡ B2/e, which rep-
resents the ratio of the magnetic-field energy density to the fluid 
energy density e. Clearly, values of σ � 1 indicate that one must 
consider the effect of the magnetic field on the fluid evolution. 
For a typical mid-central (i.e., with impact parameter b ∼ 10 fm) 
Au–Au collision at top RHIC energy (

√
sNN = 200 GeV) the average 

magnetic field can be as high as ∼ 10 m2
π ∼ 1019 G [1,2], where 

mπ is the pion mass, which corresponds to an energy density of 
∼ 5 GeV/fm3. Hydrodynamical model studies show that the ini-
tial energy density for such cases is ∼ 10 GeV/fm3, thus implying 
σ ∼ 1 under these conditions.

We note that the estimates made above are based on the as-
sumption that the magnetic field (evaluated at time τ = 0 fm) 
remains unchanged until the fluid starts expanding after reaching 
local thermal equilibrium at τ0 ∼ 0.5 fm. We also note that the es-
timate of σ as given above is based on the event-averaged values 
for the initial magnetic field and energy density of the fluid. How-
ever, the situation can be very different. In fact, it is possible that 
the initial energy density distribution is very “lumpy”. Under these 
conditions, the produced magnetic fields also show large variations 
and can be very large in some places where the corresponding 
fluid energy–density is small. In these cases, even for a quickly de-
caying initial magnetic field we may locally have σ > 1 up to the 
time when the hydrodynamical expansion starts.

It is not the goal of this work to investigate the temporal evolu-
tion of the magnetic field produced in heavy-ion collisions. Rather, 
we concentrate here on the special case of one-dimensional, lon-
gitudinally boost-invariant fluid expansion à la Bjorken [26] under 
the influence of an external magnetic field which is transverse to 
the fluid velocity. In our analysis the evolution of the magnetic 
field is either regulated from the flux-freezing condition in ideal 
MHD or imposed in terms of a parameterized power law in proper 
time. The ultimate goal is that of finding analytic solutions for this 
flow that can be used both to gain insight in the dynamics of ultra-
relativistic MHD flows as well as an effective test for more complex 
and realistic numerical codes (see also Ref. [28] for a work with 
similar intentions).

The paper is organized as follows. Section 2 introduces our 
mathematical setup, while Section 3 presents the energy–density 
evolution when considering two representative prescriptions for 
the evolution of the magnetic field. A discussion of our main re-
sults is presented in Section 4, while a conclusive summary is 
given in Section 5.

Following the predominant convention in relativistic hydro-
dynamics of heavy-ion collisions, we use a timelike signature 
(+, −, −, −) and a system of units in which h̄ = c = kB = 1. Greek 
indices are taken to run from 0 to 3, Latin indices from 1 to 3 
and we adopt the standard convention for the summation over re-
peated indices. Finally, we indicate three-vectors as bold face letter 
with an arrow and use bold letters without an arrow to denote 
four-vectors and tensors.
2. Mathematical setup

We consider an ideal but magnetized relativistic fluid with an 
energy–momentum tensor given by1 [29–32]

T μν =
(

e + p + B2
)

uμuν −
(

p + B2

2

)
gμν − BμBν , (1)

where e, p, and u are the fluid energy density, pressure, and four-
velocity, respectively. Since our considerations are restricted to 
special-relativistic flows, the metric tensor is that of flat spacetime, 
i.e., gμν = ημν = diag(1, −1, −1, −1). Here Bμ = 1

2 εμναβ Fναuβ

is the magnetic field in the frame moving with the veloc-
ity uβ , εμναβ is the completely antisymmetric four tensor, ε0123 =√

det |g|. The magnetic field four-vector Bμ is a spacelike vector 
with modulus BμBμ = −B2, and orthogonal to uμ , i.e., Bμuμ = 0, 
where B = |�B| and �B is the magnetic field three-vector in the 
frame moving with four-velocity uμ .

As mentioned above, we are here interested in obtaining ana-
lytic solutions representing the MHD extension of one-dimensional 
Bjorken flow along the z-direction with velocity uμ =γ (1,0,0, vz),
where vz ≡ z/t [26]. Hence, hereafter we will assume the special 
case of a fluid flow in which the external magnetic field �B is di-
rected along the direction transverse to the fluid velocity �v; as 
remarked above, this represents a rather good approximation of 
what happens in a typical non-central Au–Au collision at top RHIC 
energy. This setup is also known as “transverse MHD”, since the 
magnetic field is contained in the transverse (x, y) plane [27]. In 
addition, since the fluid is expected to be ultrarelativistic, the rest-
mass contributions to the equation of state (EOS) can be neglected 
and the pressure is simply proportional to the energy density, i.e.,

p = c2
s e = 1

3
e , (2)

where cs is the local sound speed which is assumed to be constant. 
The second equality in Eq. (2) refers to the case of an ultrarelativis-
tic gas, or isotropic “radiation fluid” [33], where cs = 1/

√
3 and 

which we will often consider in the remainder of this work.
Rather than using a standard Cartesian coordinate system 

(t, x, y, z), for longitudinally boost-invariant flow it is more con-
venient to adopt Milne coordinates,

(τ , x, y, η) ≡
(√

t2 − z2, x, y,
1

2
ln

(
t + z

t − z

))
. (3)

In these coordinates, the convective derivative is defined as 
uμ∂μ = ∂τ , while the expansion scalar takes the simple form 
� ≡ ∂μuμ = τ−1.

As customary, the projection of the energy–momentum conser-
vation equation ∂ν T μν = 0 along the fluid four-velocity,

uμ∂ν T μν = 0 , (4)

will express the conservation of energy. After some steps that 
can be found in Appendix A, we obtain the following energy–
conservation equation

∂τ

(
e + B2

2

)
+ e + p + B2

τ
= 0 . (5)

Similarly, the projection of the energy–momentum conservation 
equation onto the direction orthogonal to u,

(ημν − uμuν)∂αT αν = 0 (6)

1 Note that expression (1) for the energy–momentum tensor is different from the 
one usually adopted in general-relativistic MHD (GRMHD) formulations and that we 
briefly review in Appendix A.
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leads to the momentum–conservation, or Euler, equation (see Ap-
pendix A),

(
e + p + B2

)
∂τ uμ − (ημν − uμuν)∂ν

(
p + B2

2

)
= 0 . (7)

Note that for μ = η, it reads

∂

∂η

(
p + 1

2
B2

)
= 0 , (8)

thus showing that all thermodynamical variables depend only on τ
and are otherwise uniform in space. Considering instead μ = x, y, 
Eq. (7) gives the MHD equivalent of the Euler equation

∂τ ui − 1

e + p + B2
∂i

(
p + 1

2
B2

)
= 0 . (9)

With a uniform pressure and a magnetic field that depends only 
on τ , the second term in Eq. (9) will vanish, thus implying that if 
the velocities in the x- and y-directions are initially zero, they will 
remain so also at later times (i.e., ∂τ ui = 0).

3. Energy–density evolution

This section is dedicated to the discussion of two different cases 
for the evolution of the energy density depending on whether 
the magnetic field evolves according to the ideal-MHD limit (Sec-
tion 3.1) or whether it follows an arbitrary power–law decay in 
proper time (Section 3.2).

3.1. Ideal-MHD limit

The solution of Eq. (5) requires the knowledge of the evolution 
of the magnetic field and hence of the induction equation. In the 
limit of infinite electrical conductivity, i.e., in the ideal-MHD limit, 
the magnetic field obeys the frozen-flux (or Alfvén) theorem and 
is thus simply advected with the fluid. In this case, setting B ≡√

Bi Bi , the induction equation takes the simple form

B(τ ) = B0
ρ

ρ0
, (10)

where τ0 is taken to mark the beginning of the fluid expansion 
and ρ0 ≡ ρ(τ0), B0 ≡ B(τ0), are the initial fluid rest-mass density 
and magnetic field, respectively.

As written, Eq. (10) is of little use. In relativistic heavy-ion 
collisions, in fact, the net-baryon number is vanishingly small at 
mid-rapidity and the flux-freezing condition expressed by Eq. (10)
needs to be modified to account for this. As we show in Ap-
pendix B, this is rather easy to do and yields, for an ultrarelativistic 
fluid with EOS (2), an evolution equation for the magnetic field,

�B(τ ) = �B0
s

s0
= �B0

(
e

e0

)1/(1+c2
s )

= �B0

(
e

e0

)3/4

, (11)

where s is the entropy density, s0 ≡ s(τ0), and the third equality in 
Eq. (11) refers to the case cs = 1/

√
3. Note that the second equality 

in Eq. (11) is the result of the first law of thermodynamics and 
reflects the relation between entropy and energy densities in an 
ultrarelativistic fluid [33].

Using Eq. (11) in Eq. (5), we obtain

∂τ

[
e + B2

0

2

(
e

e0

)2/(1+c2
s )

]
+ e + p + B2

0 (e/e0)
2/(1+c2

s )

τ
= 0 ,

(12)
which can also be written in dimensionless form as

∂τ

[
ẽ + σ0

2
ẽ2/(1+c2

s )
]
+ ẽ + p̃ + σ0ẽ2/(1+c2

s )

τ
= 0 , (13)

where ẽ ≡ e/e0, p̃ ≡ p/e0, and σ0 ≡ B2
0/e0.

Not surprisingly, in the limit of vanishing magnetic field, i.e., 
for σ0 → 0, Eq. (13) takes the form of the Bjorken expansion, for 
which the energy density evolves according to

∂τ ẽ = − ẽ + p̃

τ
= −(1 + c2

s )
ẽ

τ
, (14)

where the second equality is written using the EOS (2).
Using again Eq. (2), we find that both terms on the left-hand 

side of Eq. (13) contain a common factor that can be removed: 
1 +σ0ẽ(1−c2

s )/(1+c2
s )/(1 + c2

s ). As a result, Eq. (13) can be written as

∂τ ẽ = −(1 + c2
s )

ẽ

τ
= −4

3

ẽ

τ
, (15)

where the second equality refers to the more specific case of an 
EOS with cs = 1/

√
3.

Thus, Eq. (15), which was derived within ideal MHD, coincides 
with Eq. (14), which instead refers to Bjorken flow in the absence 
of an external magnetic field. After a more careful look, this result 
is not so surprising. In the ideal-MHD limit, in fact, the ratios �B/s

and thus �B/e1/(1+c2
s ) are conserved [cf. Eq. (11)] and although the 

total energy density will be larger in the presence of a magnetic 
field, the evolution of the fluid energy density will not be affected 
by the magnetic field which will be equally diluted as the fluid ex-
pansion takes place. This is essentially because the magnetic field 
has no active role in ideal MHD, but is simply passively advected 
in the expansion. Stated differently, a Bjorken flow is more general 
than formerly thought, as it applies not only to purely hydrody-
namical flows, but also to transverse MHD flows. To the best of 
our knowledge, this result, albeit natural, was not remarked before 
in the literature.

Equation (15) has an analytic solution of the form

ẽ(τ ) = cτ−1/(1+c2
s ) =

(τ0

τ

)1+c2
s =

(τ0

τ

)4/3
, (16)

where c is a constant that could be chosen, for instance, from the 
initial value of the energy density: ẽ0 ≡ ẽ(τ0) = 1, and where the 
last equality again refers to cs = 1/

√
3. In the light of the remarks 

made above, it follows that Eq. (16) is also the solution for the 
energy density for Bjorken flow without magnetic field, cf. Eq. (14).

Two final remarks: first, we note that combining Eqs. (11) and 
(16), it is easy to see that the evolution of the magnetic field in 
this case will be

B̃(τ ) ≡ B(τ )

B0
= ẽ1/(1+c2

s ) = ẽ3/4 = τ0

τ
. (17)

Second, our conclusion that the Bjorken flow is recovered in trans-
verse MHD could have been reached also using entropy conserva-
tion and the Maxwell equations as long as the thermodynamical 
relations are not affected by the presence of a magnetic field (zero 
magnetization vector), i.e., as long as de = T ds, where T is the 
temperature [34]. In this case the derivation does not even require 
the specification of an EOS.

3.2. Power-law decay

Next, we explore cases where the external magnetic field does 
not vary according to the ideal-MHD flux-freezing condition (11), 
but has a different temporal evolution. Because we are in search 
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of analytic solutions, we consider here a rather simple prescrip-
tion and, in particular, one in which the magnetic field follows a 
power–law decay in proper time, i.e.,

�B(τ ) = �B0

(τ0

τ

)a
, (18)

where a is a constant. Clearly, expression (18) is a simple ansatz 
but, as remarked in Eq. (17), it is sufficiently realistic to include 
the ideal-MHD case when a = 1. In addition, the range a > 1, i.e., 
of magnetic-field decay steeper than the ideal-MHD case, can be 
taken as a phenomenological description of a resistive regime. Un-
der these conditions, in fact, a finite electrical conductivity will 
lead to a more rapid decay of the magnetic field and, in turn, to a 
slower decay of the fluid energy density, which is “heated up” by 
the decaying field [cf. Eq. (20)].

Let us start by considering the equation of energy conserva-
tion (5), which for a general EOS of the form (2) and a magnetic-
field evolution given by Eq. (18) yields

∂τ

[
ẽ + σ0

2

(τ0

τ

)2a
]

+
(

1 + c2
s

) ẽ

τ
+ σ0

τ

(τ0

τ

)2a = 0 . (19)

It is not difficult to find the analytic solution of this equation with 
initial condition ẽ0 = 1,

ẽ(τ ) =
(τ0

τ

)1+c2
s + σ0

1 − a

1 + c2
s − 2a

[(τ0

τ

)1+c2
s −

(τ0

τ

)2a
]

. (20)

Once again, it is possible to see that in the limit of vanishing 
magnetization σ0 → 0, Eq. (20) coincides with the solution (16) for 
Bjorken flow. Furthermore, for σ0 	= 0 but a = 1, the solution (20)
also coincides with Eq. (16), thus highlighting that Eq. (18) with 
a = 1 represents the evolution equation for a magnetic field in the 
ideal-MHD limit.

Note that, for the second term in Eq. (20), the sign of the 
expression in brackets divided by 1 + c2

s − 2a is always negative 
(remember that c2

s ≤ 1 by causality). Thus, for the case a > 1 the 
second term is always positive. As a result, it always leads to a 
slower decay (and sometimes, as we will show below, even to an 
intermittent increase) of the fluid energy density than in the case 
a = 1. Viceversa, for a < 1 the second term in Eq. (20) is always 
negative, leading to a faster decay than in the case a = 1.

Equation (20) seems to have a divergent behaviour at a =
(1 + c2

s )/2, but this is only a first impression. We demonstrate in 
Appendix C that in the limit a → (1 + c2

s )/2,

lim
a→(1+c2

s )/2

(τ0/τ )1+c2
s − (τ0/τ )2a

1 + c2
s − 2a

=
(τ0

τ

)1+c2
s

ln
(τ0

τ

)
. (21)

Collecting things, the final solution of the energy–conservation 
equation (19) for a = (1 + c2

s )/2 is

ẽ(τ ) =
(τ0

τ

)1+c2
s + σ0

1 − c2
s

2

(τ0

τ

)1+c2
s

ln
(τ0

τ

)
. (22)

Note that for τ ≥ τ0 the second term on the right-hand side of 
Eq. (22) is negative, hence increasing the decay of the fluid energy 
density with respect to the a = 1 case. Furthermore, while in the 
ideal-MHD case the solution ẽ = 0 is obtained only asymptotically, 
for a = (1 + c2

s )/2 this extreme case is obtained after a finite time 
τ̄ = τ0e2/[(1−c2

s )σ0] .
In summary, Eqs. (20) and (22) represent the solutions to 

Eq. (19); furthermore, since Eq. (20) comprises also the case a = 1, 
these equations provide a rather complete description of the full 
solution to the energy–conservation equation (19). As an example, 
we quote the solutions for c2

s = 1/3. For a 	= 2/3,

ẽ(τ ) =
(τ0

)4/3 + σ0 1 − a
[(τ0

)4/3 −
(τ0

)2a
]

, (23)

τ 2 2/3 − a τ τ
Fig. 1. Evolution of the normalized total energy density ẽ + 1
2 σ0(B/B0)2. Different 

lines refer to different values of the initial magnetization, ranging from σ0 = 0 (solid 
black line) up to cases with initial magnetization of σ0 = 1 (light-blue dotted line) 
and σ0 = 10 (red dashed line). Note that the fluid energy density decays like τ−4/3

for all values of σ0, i.e., as in traditional Bjorken flow. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.)

and for a = 2/3,

ẽ(τ ) =
(τ0

τ

)4/3 + σ0

3

(τ0

τ

)4/3
ln

(τ0

τ

)
. (24)

4. Discussion

This section is devoted to a discussion of the various ana-
lytic solutions found in the previous section. For the sake of def-
initeness, we will always use the value c2

s = 1/3. We start by 
considering the ideal-MHD case, in which case the time evolu-
tion of the energy density and the magnetic field is given by 
Eqs. (16) and (17), respectively. These solutions are shown in Fig. 1
which reports the evolution of the normalized total energy density 
ẽ + 1

2 σ0(B/B0)
2 for τ0 = 0.6 fm. Different lines refer to different 

values of the initial magnetization, ranging from σ0 = 0 (Bjorken 
flow without magnetic field; black solid line) up to cases with ini-
tial magnetization of σ0 = 1 (light-blue dotted line) and σ0 = 10
(red dashed line). As already discussed in the previous section, the 
evolution of the fluid energy density does not depend on σ0 [cf. 
Eq. (16)] and scales like τ−4/3, while the magnetic energy density 
scales like τ−2. As a result, increasing σ0 (as we do in Fig. 1) only 
adds energy density to the system, but does not alter the temporal 
evolution of the fluid energy density.

Having considered the simple case a = 1, we next discuss the 
behaviour of the solutions when the magnetic field varies accord-
ing to the more general power law (18). We have already men-
tioned that a > 1 corresponds to the case when the magnetic field 
decays faster than in the ideal-MHD limit and could therefore be 
associated to a resistive regime. Conversely, a magnetic-field evolu-
tion with a < 1 would correspond to a decay that is slower than in 
the ideal-MHD limit. As the case a = 1 is the limit of infinite con-
ductivity, and thus of a maximal magnetic induction, it is at first 
sight hard to imagine how to produce a magnetic field that de-
cays even slower than in the ideal-MHD case. However, in heavy-
ion collisions the remnants of the colliding nucleons can give an 
additional contribution to the magnetic field, slowing down its de-
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Fig. 2. Evolution of the normalized fluid energy density ẽ for a = 2/3. Different 
lines refer to different levels of the initial magnetization: σ0 = 0.5 (black solid line), 
σ0 = 1 (dotted light-blue line), and σ0 = 2.0 (red dashed line). Note that the de-
crease of the energy density is always faster than in the ideal-MHD case (green 
dot-dashed curve). (For interpretation of the references to colour in this figure leg-
end, the reader is referred to the web version of this article.)

cay [2]. Thus, considering also the case a < 1 is reasonable in this 
context. Within this range, a particularly interesting solution is the 
one where a = 2/3, for in this case the general solution (23) needs 
to be replaced by the special solution (24).

Such a solution is shown in Fig. 2, which reports the evolution 
of ẽ for a = 2/3 and where different lines refer to different lev-
els of the initial magnetization: σ0 = 0.5 (black solid line), σ0 = 1
(dotted light-blue line), and σ0 = 2.0 (red dashed line). As already 
anticipated in the previous section, for τ > τ0 the log term always 
reduces the value of ẽ, leading to a faster decrease of the energy 
density when compared with the ideal-MHD limit (this is shown 
with a green dot-dashed line in Fig. 2). Furthermore, it is also clear 
that larger values of σ0 will lead to a faster decrease in ẽ, as shown 
in Fig. 2 (note that for σ0 = 2, ẽ = 0 at τ � 2.7 fm).

Finally, we consider in Fig. 3 the evolution of normalized fluid 
energy density ẽ in the case a = 2. Also in this case, different 
lines refer to different levels of the initial magnetization, σ0 = 0.01
(black solid line), σ0 = 1 (light-blue dotted line), and σ0 = 10 (red 
dashed line). Because the second term in Eq. (23) is always posi-
tive, the evolution of the energy density is expected to be slower 
than in standard Bjorken flow (see also Fig. 4). At the same time, 
the second term in Eq. (23) is not a monotonically decreasing func-
tion of τ . As a result, it may produce even a temporary increase in 
the fluid energy density. This increase, which can be associated 
with a resistive “heating up” of the fluid, will depend on the val-
ues of σ0 and a and will be larger for larger values of the latter. 
This is clearly shown in Fig. 3 for τ � 1 fm in the case σ0 = 10.0; 
after this time the evolution of the energy density is monotonically 
decreasing and asymptotically dominated by the term ∼ τ−4/3.

As a way to summarize the various results presented so far we 
show in Fig. 4 the evolution of the normalized energy density ẽ in 
the different cases but keeping the initial magnetization fixed to 
σ0 = 1. More specifically, we show the evolution for a = 2/3 (black 
solid line), a = 1 (light-blue dotted line), and a = 2 (red dashed 
line). Clearly, ẽ decreases more rapidly for a = 2/3 when compared 
to the case a = 1, whereas for a = 2 it initially decreases more 
Fig. 3. Evolution of normalized fluid energy density ẽ for a magnetic field with a 
power–law decay a = 2. Also in this case, different lines refer to different levels of 
the initial magnetization, ranging from σ0 = 0.01 (black solid line), σ0 = 1 (light-
blue dotted line), and σ0 = 10 (red dashed line). Note the initial “heat-up” in the 
case of large magnetizations. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Evolution of the normalized energy density ẽ in the different cases and when 
the initial magnetization is set to σ0 = 1. Different lines refer to the evolution for 
a = 2/3 (black solid line), a = 1 (light-blue dotted line), and a = 2 (red dashed line). 
Clearly, ẽ decreases more rapidly for a = 2/3 when compared to the case a = 1, 
whereas for a = 2 it initially decays more slowly and then decays asymptotically at 
the same rate as for the ideal-MHD case a = 1. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.)

slowly and then decays asymptotically at the same rate as for the 
ideal-MHD a = 1 case.

5. Conclusions

Driven by the interest in exploring the effects of strong mag-
netic fields in the hydrodynamical description of relativistic heavy-
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ion collisions, we have studied the evolution of the fluid energy 
density following the instant of the collision and considering an 
ultrarelativistic fluid with EOS p = c2

s e. Because we are mainly 
interested in finding analytic solutions, our setup is somewhat 
idealized and we have therefore considered one-dimensional, lon-
gitudinally boost-invariant flow with transverse magnetic field, i.e., 
a transverse-MHD flow. When no magnetic fields are present, this 
flow is known as the Bjorken flow [26] and although it represents 
a simplified prescription, it has served to gain significant insight 
on the dynamics of nucleus–nucleus collisions.

We have first considered the dynamics of a one-dimensional 
MHD flow in the limit of infinite electrical conductivity and found 
a somewhat surprising result, namely that in the ideal-MHD limit 
the Bjorken flow applies unmodified. The evolution of the fluid 
energy density, in fact, is regulated by the same equation found 
for Bjorken flow and thus with an analytic decay in proper time 
as τ−4/3. Of course large values of the initial magnetization will 
change the values of the total energy density, but the evolution 
of the fluid energy density will not be modified because of the 
passive role played by the magnetic field in this regime. This re-
sult widens considerably the range of applicability of the Bjorken 
model and shows that it can be used, unmodified, also to describe 
collisions in transverse MHD.

We have also considered the cases in which the magnetic-field 
evolution is not the one prescribed by the ideal-MHD limit but, 
rather, follows a power–law behaviour in proper time with expo-
nent a. The solutions in this case need to be distinguished between 
the scenario in which the magnetic field decays more slowly than 
in the ideal-MHD case, i.e., for a < 1 and when the decay is more 
rapid, i.e., for a > 1. In the first scenario, which could be realized 
when remnants of the colliding nuclei slow down the decay of 
the magnetic field, the decay of the energy density is faster. Fur-
thermore, the rate at which this decay takes place is determined 
entirely by the level of the initial magnetization and modelled in 
terms of the dimensionless magnetic-to-fluid energy σ0 ≡ B2

0/e0. 
In the second scenario, which could be associated to a resistive 
regime in which magnetic field energy is converted to fluid energy 
via resistive losses, the evolution of the energy density is more 
complex. In the initial stages of the evolution, in fact, the fluid 
energy density may increase as it would in terms of a resistive 
“heating up” of the fluid. The amount of this increase depends on 
the magnetic field strength and dissipation and hence will increase 
with σ0 and a. However, as the fluid further expands, its energy 
density will decrease with an asymptotic rate that is the same as 
in the Bjorken flow, i.e., ∝ τ−4/3.

The work presented here could be extended in a number 
of ways. First, one could search for analytic solutions in one-
dimensional MHD in a Landau-type flow scenario. Second, one can 
consider an explicitly finite electrical conductivity as the simplest 
model for a one-dimensional MHD flow with chiral fermions. Re-
sults on these topics will be presented in forthcoming papers.
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Appendix A. Covariant derivative for Bjorken expansion

In this appendix we sketch briefly the steps that are needed 
to derive the energy– and momentum–conservation equations dis-
cussed in the main text. Before we start, we should comment 
about the notation used in defining the energy–momentum ten-
sor (1). Bearing in mind that in general-relativistic calculations 
the standard choice for the signature is a spacelike one, i.e., 
(−, +, +, +), the energy–momentum tensor in GRMHD is normally 
defined as [31,32]

T μν =
(

e + p + b2
)

uμuν +
(

p + b2

2

)
gμν − bμbν , (A.1)

where b is the magnetic field four-vector measured in a comoving 
frame and has components given by

bμ =
(
γ �v · �B,

�B
γ

+ γ �v · �B �v
)

, (A.2)

with γ ≡ 1/
√

1 − v2 the Lorentz factor and �B is the magnetic field 
three-vector measured by an Eulerian (or normal) observer. The 
modulus of bμ is then given by

b2 ≡ bμbμ = �B2

γ 2
+

(
�v · �B

)2
. (A.3)

With this clarification in mind, we go back to our special-
relativistic setting with energy–momentum (1) and consider the 
projection of the energy–momentum conservation equation
∂ν T μν = 0 along the fluid four-velocity uμ , which reads

uμ∂ν T μν = 0

uμuμuν∂ν

(
e + p + B2

)
+

(
e + p + B2

)
uμ∂ν

(
uμuν

)
− uμ∂ν

[(
p + B2

2

)
gμν

]
− uμ∂ν

(
BμBν

) = 0 ,

uν∂ν

(
e + p + B2

)
+

(
e + p + B2

)
∂νuν

− uν∂ν

(
p + B2

2

)
+ BμBν∂νuμ = 0 ,

∂τ

(
e + p + B2

)
+ e + p + B2

τ
− ∂τ

(
p + B2

2

)
= 0 ,

∂τ

(
e + B2

2

)
+ e + p + B2

τ
= 0 , (A.4)

where we have used Eq. (1), uμBμ = 0 and Bν∂νuμ = 0, since 
uμ = (u0,0,0, uz) and Bμ = (

0, Bx, B y,0
)

in our transverse-MHD 
setup.

Similarly, the projection of the conservation equation ∂ν T μν = 0
in the direction orthogonal to the fluid four-velocity gives

hμν∂αT αν = 0 ,

(e + p + B2)hμν∂α(uαuν) − hμν∂ν

(
p + B2

2

)
− hμν∂α(Bα Bν) = 0 ,

(e + p + B2)uα∂αuμ − hμν∂ν

(
p + B2

2

)
− Bα∂α Bμ

− Bμ∂α Bα + uμuν∂α

(
Bα Bν

) = 0 ,

(e + p + B2)∂τ uμ − hμν∂ν

(
p + B2

2

)
− Bα∂α Bμ − Bμ∂α Bα

− uμBα Bν∂αuν = 0 , (A.5)

where we have introduced h as the orthogonal projector to u, i.e., 
h · u = 0, where hμν ≡ ημν − uμuν . The last three terms vanish, 
because Bμ is assumed to be constant in transverse direction. This 
then leads to Eq. (7).
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Appendix B. Frozen-flux theorem

In this appendix we show that the evolution of the magnetic 
field and of the entropy density are strictly related in the ideal-
MHD limit. The arguments reported below are well known and 
can be found in a number of textbooks (e.g., Refs. [33,35]), but we 
recall them here for completeness. We start from the definition of 
the covariant (or Lagrangian or convective) time derivative given 
by

D

Dt
≡ ∂

∂t
+ �u · �∇ , (B.1)

where �u is the fluid velocity. If �x is the position of a fluid element, 
this will be advected with the flow and hence have

D�x
Dt

= 0 . (B.2)

However, if �ξ is a vector separating two fluid elements at a given 
instant, the corresponding Lagrangian derivative will not be neces-
sarily be zero, but is actually given by

D�ξ
Dt

= �ξ · �∇ �u . (B.3)

Stated differently D�ξ/Dt = 0 only for a fluid with uniform veloc-
ity �u. In all other cases, the vector �ξ will change its length and/or 
orientation in the presence of a velocity gradient.

Next, we consider the conservation of rest mass, which can be 
expressed as

Dρ

Dt
= −ρ �∇ · �u, (B.4)

where ρ is the rest-mass density of the fluid. In ideal MHD the 
induction equation takes the well-known form

∂ �B
∂t

= �∇ ×
(
�u × �B

)
, (B.5)

and the frozen-flux theorem states that the magnetic field lines 
are frozen in the fluid and can be identified with the worldlines of 
fluid elements. To see this, we use the following vector identity

�∇ ×
(
�u × �B

)
= �B · �∇ �u − �B

( �∇ · �u
)

− �u · �∇ �B + �u
( �∇ · �B

)
,

(B.6)

together with �∇ · �B = 0 in Eq. (B.5) to obtain

D �B
Dt

= �B · �∇ �u − �B
( �∇ · �u

)
. (B.7)

Together with the conservation of mass, the above equation can 
then be written as

D

Dt

( �B
ρ

)
= �B

ρ
· �∇ �u . (B.8)

This is exactly the same equation satisfied by the separating 
vector �ξ [Eq. (B.3)]. Therefore a magnetic field line is advected and 
distorted by the fluid in the same way as a fluid element. If the 
fluid expansion takes place isentropically, the total entropy of the 
system remains constant and the entropy density s will satisfy the 
same conservation equation as the rest-mass density, i.e.,

Ds = −s �∇ · �u . (B.9)

Dt
From the arguments made above, it follows that the quan-
tity �B/s will behave as the quantity �B/ρ and hence satisfy the 
equation

D

Dt

( �B
s

)
= �B

s
· �∇ �u , (B.10)

which is identical with Eq. (B.8) except ρ is replaced by s, i.e., for 
this case we also have the magnetic fluxes frozen in the system.

Appendix C. Limit for the log term

In this appendix we discuss how to evaluate the second term 
in Eq. (23) in the limit in which a → (1 + c2

s )/2, i.e., the limit

lim
a→(1+c2

s )/2

(τ0/τ )1+c2
s − (τ0/τ )2a

1 + c2
s − 2a

. (C.1)

We first increase the power exponent a by an infinitesimal amount 
ε > 0 and then take the limit ε → 0. In this case, Eq. (C.1) becomes

lim
ε→0

(τ0/τ )1+c2
s − (τ0/τ )2(a+ε)

1 + c2
s − 2 (a + ε)

, (C.2)

and setting a = (1 + c2
s )/2 we obtain the desired result(τ0

τ

)1+c2
s

lim
ε→0

1 − (τ0/τ )2ε

(−2ε)
=

(τ0

τ

)1+c2
s

ln
(τ0

τ

)
.
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