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Abstract

The article reports three simulation studies conducted to find out whether the effect
of a time limit for testing impairs model fit in investigations of structural validity,
whether the representation of the assumed source of the effect prevents impairment
of model fit and whether it is possible to identify and discriminate this method effect
from another method effect. Omissions due to the time limit for testing were not
considered as missing data but as information on the participants’ processing speed.
In simulated data the presence of a time-limit effect impaired comparative fit index
and nonnormed fit index whereas normed chi-square, root mean square error of
approximation, and standardized root mean square residual indicated good model fit.
The explicit consideration of the effect due to the time limit by an additional compo-
nent of the model improved model fit. Effect-specific assumptions included in the
model of measurement enabled the discrimination of the effect due to the time limit
from another possible method effect.
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The limitation of the time span for completing the items of psychological scales can

prevent some or even all participants from processing all items. The effect of the
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limitation is obvious in the increasing number of omissions that means incomplete

data. In this article, this effect is considered as a method effect that has been sug-

gested to impair the validity of measurement (Lu & Sireci, 2007). It is studied how

this effect influences model fit in structural investigations and whether it is possible

to control for its influence by including a representation of the source of this effect

into the confirmatory factor model used for investigating the data. Furthermore, the

possibility to identify this effect and to discriminate it from another possible method

effect is investigated using simulated data.

The effect of a time limit for testing has for a long time been in the focus of scien-

tific discussion in the measurement area (see, Gulliksen, 1950). For a time, there was

the idea that such a limit simply means speeded testing that is the opposite of power

testing (Lord & Novick, 1968). However, the investigation of the details of the effect

of a time limit reveals a functional relationship to participants’ characteristics and

other influences and makes apparent that even the allowance of a very large time span

may be insufficient for very slow participants (Oshima, 1994). Recent research on the

effect of a time limit for testing has addressed parameter estimation (Bolt, Cohen, &

Wolack, 2002; Goegebeur, DeBoeck, Wollack, & Cohen, 2008), the influence on

validity (Lu & Sireci, 2007), and the possibilities of preventing it (van der Linden &

Xiong, 2013). Within the framework of item-response theory, this effect is referred to

as speededness (Oshima, 1994). Tailored testing and branched testing are proposed to

overcome problems resulting from omissions due to the time limit (Kubinger, 2016;

van der Linden & Xiong, 2013).

In investigations of the underlying structure of data using factor-analytic methods

traditional ways of treating omissions are the elimination of cases showing omissions

or their replacement by means of imputation methods (J. W. Graham, 2009). The

elimination of cases, however, leads to a decrease of the sample size while imputa-

tion methods mean extrapolation on the basis of an assumed underlying model. A

common characteristic of these approaches is that omissions are considered as miss-

ing data. In contrast, the present article regards omissions as information on the parti-

cipants’ processing speed. This means that a second source of responding is assumed

besides the source associated with the construct that is represented by the scale.

The Effect due to the Time Limit

A time limit for testing would only be a minor problem if all participants of a sample

would work at the same speed so that the construct captured by the scale was the only

source of systematic responding. However, there are well-known interindividual dif-

ferences in the speed of mental processing (Jensen, 2006; Roberts & Stankov, 1999),

and the most recent model of cognitive abilities includes cognitive processing speed,

decision and reaction speed, and also psychomotor speed as broad (stratum II) abil-

ities (McGrew, 2009). Because of interindividual differences in these abilities, some

participants may reach their highest possible scores within the time limit for testing
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whereas others stay below what they could reach otherwise. Therefore, a time limit

for testing is likely to mean distortion of measurement.

Processing speed as the result of the coaction of broad abilities may follow the

normal distribution. Although the normal distribution is frequently assumed but not

given (Micceri, 1989), it appears to be the best-possible assumption regarding the dis-

tribution of processing speed because of the large number of specific sources under-

lying the broad abilities contributing to what is observable. The idea regarding the

contributions of the specific sources originates from the theory of cognitive abilities

(McGrew, 2009) with three broad (stratum II) speed abilities (cognitive processing

speed, decision and reaction speed, and, tentatively identified, psychomotor speed).

Each of these broad abilities is built up on a number of specific (stratum I) abilities.

Assuming that subsets of specific abilities are stimulated repeatedly during the com-

pletion of the various items of a reasoning test, the various contributions to process-

ing speed in responding may create a normal distribution. This rationale is given by

the central limit theorem (Fischer, 2011), which suggests that composites of indepen-

dent contributions approximate a normal distribution. However, the details of the

contributions of the specific sources are not known so that the normal distribution of

processing speed in the population is a tentative assumption.

When starting from the assumption of the normal distribution, it can be expected

that the number of omissions increases from the first item not completed by all parti-

cipants to the last item according to the normal ogive. The use of the logistic function

simplifies the computations regarding the course of the ogive; the logistic function is,

for example, also preferred as basis of the item-characteristic curve of item-response

models (Lord, 1965).

These considerations suggest that the probabilities of omissions in the columns of

a data matrix due to a lack of processing speed are reflected by the logistic function.

Assume the probability of entry X of the ith column of the data matrix to be an omis-

sion is given by

Pr Xi is omissionð Þ= ei

1 + ei
: ð1Þ

A disadvantage of this equation is that specific time limits are not reflected.

Adaptability can be achieved by including a constant that fixes the .5-probability

point of this function to where this point is expected in the sequence of items. This

constant is addressed as turning point tp. To make the difference apparent, i is

replaced by k (k = 1, . . ., p) in such a way that

Pr Xk is omissionð Þ= ek�tp

1 + ek�tp
: ð2Þ

Correspondence of k and tp yields Pr(Xk is omission) = .5.

Figure 1 illustrates how individual differences in processing speed may influence

the percentage of omissions due to three different time limits addressed as strong,
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medium, and weak effects due to a time limit for testing when the course of the curve

follows the logistic function.

The solid curve illustrated the effect of a time limit that allows all participants to

complete about two thirds of a set of 36 items of a scale but virtually no one to com-

plete all items. The time limit leading to the dashed curve gives some participants the

opportunity to complete all items. In the remaining curve, 50% of the participants can

complete all items.

Omissions due to a time limit for testing mean a decrease of the number of valid

responses in some columns of the data matrix. The effect of the time limit can be so

strong that the remaining number of valid responses does no more satisfy the require-

ments for factor-analytic investigations (Hogarty, Hines, Kromrey, Ferron, &

Mumford, 2005; MacCallum, Widaman, Zhang, & Hong, 1999). The percentage of

remaining entries can be so small that the estimated probability of a specific entry

can no longer be considered as an accurate reflection of the probability for the same

column of entries when there is no time limit. Figure 2 illustrates how the three

effects due to a time limit change the percentage of the entries considered as correct

responses.

The dotted line that is merged with the other lines for most of its course represents

the percentage of correct responses due to the hypothetical increasing degree of item

difficulty that is similar to what can be found in many established scales with fixed

orders of items. Furthermore, the solid line departs from the dotted line in the last

Figure 1. Curves reflecting the percentages of omissions for strong, medium, and weak
effects due to a time limit.
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third of the sequence of items. Its separation from the other lines is because of the

strong effect. Furthermore, there are lines describing the medium and weak effects.

Before closing this section, it needs to be mentioned that in real data the separa-

tion between the areas of valid responses and of omissions due to the effect of a time

limit may not be so strict, as is suggested by the figures. A strict separation presup-

poses that all participants complete all items carefully and there is no checking of

response options at random or without sufficient consideration. However, research

regarding the attitude in test taking indicates that participants are increasingly aware

of the chance of reaching a higher score when checking the remaining items at ran-

dom before the time limit is reached (Must & Must, 2013) and behave accordingly.

The Treatment of Omissions

Nowadays imputation methods are the preferred means for replacing omissions. Most

of the imputation methods assume only one source of systematic responding (e.g., De

Ayala, Plake, & Impara, 2001; Finch, 2008; Hohensinn & Kubinger, 2011) whereas a

few model-based imputation methods additionally assume another unobserved and

unknown source (Holman & Glas, 2005; O’Muircheartaigh & Moustaki, 1999). All

these methods are concerned with the replacement of omissions by means of imputa-

tion in the sense of extrapolation on the basis of the available data (J. W. Graham,

2009).

The approach taken in this article differs from these imputation methods in that it

is assumed that omissions are because of a known specific source, which is (lack of)

Figure 2. Curves reflecting the percentage of correct responses resulting from the
dichotomization of continuous data and effects due to a time limit.
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processing speed. The information on this source is included in the shape of the distri-

bution of omissions. It needs to be transferred into the covariance pattern of the cov-

ariance matrix that serves as input to confirmatory factor analysis (Jöreskog, 1970).

According to the previous reasoning the logistic function provides this information so

that it is necessary to consider how this function influences the covariance pattern.

The probability-based covariance that does not require knowledge of the individual

entries of a data matrix serves this purpose. The covariance of two binary random vari-

ables Xi and Xj (i, j = 1, . . ., p) with zero and one as values cov(Xi, Xj) is defined as

cov Xi, Xj

� �
= Pr Xl = 1 ^ Xj = 1

� �
� Pr Xi = 1ð Þ Pr Xj = 1

� �
; ð3Þ

where Pr(Xi = 1) and Pr(Xj = 1) represent the probabilities that Xi and Xj are equal to

one (i.e., a correct response) and Pr(Xi = 1 ^ Xj = 1) represents the probability of the

combination of them.

Each one of the three probabilities of Equation (3) depends on the construct and

processing speed, as is especially obvious in the case of the probability that Xi is 1:

Pr Xi = 1ð Þ= Pr Xi = 1 jjð Þ3 1� Pr Xi is omissionð Þ½ �: ð4Þ

The first component of the product is the probability of one due to the influence of

the primary source that is construct j. The second one is the probability that an entry

of the ith column is no omission. It is obtained by means of the logistic function (see

Equation 2) that reflects processing speed. Since the logistic function varies between

0 and 1, the construct influence is assumed to be constant and the not explicitly con-

sidered difficulty may also be constant or vary to a minor degree only; it is mainly

the logistic function that finds its expression in the probability within the range of

columns with omissions. Similar considerations regarding the other components of

the product give rise to the expectation that covariances of Xi and Xj in the range of

columns with omissions mainly reflect the different values of the logistic function

for different columns. Using these covariances, omissions should not be replaced by

ones.

As a consequence of considering a second source of responding, the appropriate-

ness of the one-factor model of measurement needs to be questioned. There are a

number of one-factor models of measurement used in confirmatory factor analysis

(J. M. Graham, 2006). Structural investigations are mostly conducted by means of

the congeneric model (Jöreskog, 1971). This model is described by the following

equation:

x = lj + d; ð5Þ

where the p3 1 vector x represents the centered data, the p3 1 vector l the factor

loadings, j the latent variable and the p3 1 vector d the error components. It impli-

citly assumes that j is the only source of systematic responding, and a good model

fit is signified if there is actually only one such source. An additional source influen-

cing the pattern of entries of the data matrix that is roughly reflected by the logistic

Schweizer et al. 45



function of Equation (2) is unlikely to be represented by j unless the primary source

is missing.

The Representation of the Effect due to a Time Limit

The representation of the effect due to a time limit can be accomplished in differ-

ent ways if there is another source that is the primary source of responding. It is

convenient to concentrate on processing speed as source since the effect is due to

the coaction of the time limit for testing that can be assumed to be constant within

a sample and processing speed. First, processing speed can be considered as mod-

erator since processing speed determines in how many items the primary source of

responding is effective. It is thought that in these items the response mainly

depends on the primary source but not on processing speed. In the remaining items

any further response is prevented by (lack of) processing speed. Available statisti-

cal programs for using the traditional models of measurement do not support such

a kind of moderation.

Second, processing speed can be perceived as an independent source of variation

in data. This treatment is justified by theory suggesting speed as source of cognitive

performance and as component of models of cognitive ability (Jensen, 2006;

McGrew, 2009; Roberts & Stankov, 1999). The consideration of this source requires

the transformation of the one-factor model of measurement into the two-factor

model. In this model and the corresponding model of the covariance matrix the latent

variable representing this additional source can be expected to account for the varia-

tion due to the number of omissions from column to column of the data matrix.

The model of measurement considering this possibility includes two systematic

sources of responding: the source reflecting the construct and the source reflecting

processing speed. The latter one is identified by the subscript p-speed. A formal rep-

resentation of this model of measurement is given by

x = lconstructjconstruct + lp�speedjp�speed + d ð6Þ

where the p3 1 vector x represents the centered data, the p3 1 vectors lconstruct and

lp-speed the factor loadings, jconstruct and jp�speed the latent variables and the p3 1 vec-

tor d the error components.

Since it is assumed that the source representing the construct contributes to all

items equally, the factor loadings included in lconstruct are constrained to show equal

size. It is convenient to select the number one as factor loading so that

lconstruct =

1

1

:
:
1

2
66664

3
77775

ð7Þ
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and to estimate the variance of the latent variable representing the construct. The fac-

tor loadings of Equation (7) can be considered as realization of the tau-equivalent

model of measurement (J. M. Graham, 2006). The numbers of Equation (7) undergo

an additional link transformation before they are applied in confirmatory factor anal-

ysis (see method section of Study 1).

Processing speed can be reflected by the factor loadings in two different ways.

First, there is the possibility to design the representation according to the cumula-

tive distribution of omissions. This representation is based on the assumptions that

the increase of the number of omissions follows the normal ogive and that the nor-

mal ogive is approximated by the logistic function. Therefore, the kth factor load-

ing lk is in the first step defined as function flogistic(k2tp) of the difference

between k referring to the kth column of the matrix and the turning point of the

logistic function tp:

lk = flogistic k � tpð Þ: ð8Þ

The turning point of the logistic function is the point k that yields the .5-probability

according to Equation (2). Next flogistic(k2tp) is defined with respect to the logistic

function:

flogistic k � tpð Þ = ek�tp

1 + ek�tp
: ð9Þ

This definition assures that the constrained factor loadings reflect the effect due to

the time limit. Finally, the vector for representing processing speed lp-speed is speci-

fied as

lp�speed =

flog istic 1� tpð Þ
flog istic 2� tpð Þ

:
:

flog istic p� tpð Þ

2
66664

3
77775
: ð10Þ

Such a specification of the factor loadings already served well for representing pro-

cessing speed in an empirical investigation (Schweizer & Ren, 2013).

The two-factor model of measurement including constraints of factor loadings

according to Equations (7) and (10) is referred to as tp-specific model. It is a very

specific model since it can be expected to indicate good model fit only if the turning

point of the model corresponds with the turning point of the curve characterizing the

omissions of the data. If the turning point underlying the cumulative distribution of

omissions is not known, it is necessary to investigate a set of possible turning points

and to find the best-fitting one.

Second, the need to search for the best-fitting turning point when using the

tp-specific model can be overcome by selecting a less specific way of
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representing processing speed. The characterization as less specific refers to a

combination of free and fixed factor loadings. Zero is selected as factor loading

for the g items that can be assumed to fall into the range of items which can be

completed by all participants whereas the other factor loadings are free for estima-

tion. In this case, the vector for representing processing speed lp-speed is specified

as follows:

lp�speed =

0

:
0

lg + 1

lg + 2

:
lp

2
666666664

3
777777775
: ð11Þ

Uncertainty about g should not be considered as a disadvantage since the factor load-

ings that are especially important for the identification of the factor reflecting pro-

cessing speed are expected to show the larger sizes at the end of the sequence of

items. Furthermore, it is important that a few factor loadings are fixed to zero to

retain the confirmatory character of the model. This model is referred to as hybrid

model.

Considerations Regarding the Identification of the Type of Effect

This section addresses the question whether it is possible to identify a specific type

of method effect without drawing conclusions from the inspection of factor loadings.

There is a variety of types of method effects that may be found in a data set, as for

example, the ceiling effect (Wang, Zhang, McArdle, & Salthouse, 2009), the item-

position effect (Zeller, Krampen, Reiß, & Schweizer, 2016), the item-wording effect

(DiStefano & Motl, 2012), the effect of speededness (Oshima, 1994), and so on.

Distinguishing between effects on the basis of factor loadings can be difficult, as for

example, in the case of the item-position effect and the effect due to a time limit. In

both cases, the largest factor loadings are expected for the last items of the sequence

of items.

The identification of a specific method effect by means of model fit requires cor-

rectness of the model of measurement. In simulation studies correctness implies that

there is correspondence of the assumptions used for data generation and the model

designed for data analysis. Using a model of measurement with fixed factor loadings

demands exact correspondence. In the case of data showing the effect due to a time

limit, it is necessary that the vector of values for creating omission and the vector

including the constraints for the factor loadings on the p-speed latent variable: lp-

speed(data_generation) and lp-speed(data_analysis), correspond:
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lp�speed(data generation) =

flog istic 1� tpdata generation

� �
flog istic 2� tpdata generation

� �
:
:

flog istic p� tpdata generation

� �

2
66664

3
77775

=

flog istic 1� tpdata analysis

� �
flog istic 2� tpdata analysis

� �
:
:

flog istic p� tpdata analysis

� �

2
66664

3
77775

= lp�speed(data analysis): ð12Þ

Most important, the turning points must correspond. Any deviation of the turning

points can be expected to cause an impairment of model fit.

A good model fit can also be achieved by means of a model of measurement with

free factor loadings. Equation (13) provides a description of the situation resulting

from the use of free factor loadings for data analysis by means of the congeneric

model of measurement, lcongeneric_model(data_analysis):

lp�speed(data generation) =

flog 1� tpð Þ
flog 2� tpð Þ

:
:

flog p� tpð Þ

2
66664

3
77775

=

l1

l2

:
:

lp

2
66664

3
77775

= lcongeneric model(data analysis): ð13Þ

Parameter estimation can lead to estimates of the factor loadings corresponding to the

values obtained by means of the logistic function. This characteristic of the congene-

ric model is due to the high degree of adaptability of free parameters to the character-

istics of data. Using free factor loadings, it is not necessary to search for the turning

point. But it may also mean that there is no sensitivity for the characteristics of what

exactly is underlying the data.

In sum, only models including specific fixed factor loadings are likely to identify

a specific structural effect whereas a good model fit appears to be possible by means

of both free and fixed factor loadings.

Objectives

We report three partly overlapping studies. The main objective of the first study was

to investigate the impairment in model fit due to the effect of a time limit. Three dif-

ferent degrees of the effect were considered: strong, medium, and weak effects. The

effects were inserted in simulated data assuming one underlying source of respond-

ing. Another objective of this study was the identification of the fit index that was

most sensitive to the effect due to a time limit. The objective of the second study was

the investigation of the improvement in model fit that was expected due to the use of

two-factor models including a representation of the assumed source of the effect. The

tp-specific and hybrid models served this purpose. They were compared with one-

factor models using the fit index identified as especially sensitive to the effect due to

a time limit in the first study. In the third study the objective was to investigate how
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well models with fixed and free factor loadings discriminated between different

method effects.

Study 1: The Effect due to a Time Limit on Structural
Investigations

This study served the investigation of the impairment of model fit due to the effect of

the time limit when conducting structural investigations. Although different degrees

of the effect due to a time limit were realized in generating the data, for this investi-

gation it was supposed that the data would show one underlying source of responding

only. This supposition suggested the selection of a one-factor model of measurement

(J. M. Graham, 2006) for analyzing the data. It was expected that an increasing

degree of the effect would be associated with decreasing model fit. Furthermore,

information about the tolerable degree of the effect was expected.

Because of the specificity of the effect due to a time limit, the various fit indices

developed to reflect different characteristics of data (DiStefano, 2016) could be

expected to show different degrees of sensitivity regarding this effect. It was of inter-

est to classify the indices into two types: fit indices that were not sensitive to the

effect and fit indices that discriminated between the levels of the effect. The second

type of fit indices was of particular interest for the second and third studies reported

in this article.

Method
Data Generation. In this and the following studies, the investigated matrices of struc-

tured random data included 36 columns and 500 rows to have data showing major

characteristics of data sets originating from assessment using Advanced Progressive

Matrices, a frequently used scale of cognitive ability. Most data were generated by

means of a uniform relational pattern reflecting the assumption that there was only

one source of responding. In the last study, another relational pattern was additionally

used. The relational pattern was achieved by means of factor loadings of .40, and it

was also assumed that the contribution of random error would lead to variances of

1.0. The data generation was expected to yield matrices with columns composed of

ones and zeros as entries whereby the probabilities of ones decreased starting from

the first column (p = .95) to the last column (p = .50). The effect due to a time limit

was realized by randomly selecting an increasing number of rows using the logistic

function when moving from the 25th column to the last column. In the selected rows,

the entries were changed into omissions starting from the column where the row was

selected to the last column.

Five hundred 500 3 36 matrices of random data were generated and specified to

show four levels of the effect due to the time limit. At first each column consisted of

continuous and normally distributed data (N(0, 1)). The underlying structure accord-

ing to the relational pattern was induced by the procedure proposed by Jöreskog and

Sörbom (2001) that included the computation of regressions weights and their use for
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computing weighted composites. Subsequently, there was dichotomization into zeros

and ones to achieve the probabilities reported in the previous paragraph. Afterward,

the omissions were included as described to obtain matrices showing three levels of

omissions: omissions due to weak, medium, and strong effects in addition to no omis-

sions. These levels were realized by setting the turning point of the logistic function

to the 36th, 33th, and 30th items for the weak, medium, and strong effects. The turn-

ing point for the strong effect was selected so that virtually all rows of the last col-

umns of a data matrix showed omissions. The selection of the other turning points

was guided by the idea that there should be equal distances between the turning points

so that increasing degrees of good model fit could be expected.

Practical problems led to a minor deviation from the described procedure in rea-

lizing the strong effect. The last columns of some generated matrices included not a

single one so that the corresponding covariance matrices were not positive definite.

Therefore, the procedure was adjusted in such a way that in no column of a data

matrix the percentage of omission surmounted 98%.

Data Analysis. The data were investigated by means of confirmatory factor models

with one factor only to represent the single underlying source of responding. The

aim was to examine the impairment of model fit due to the effect of a time limit.

One model of measurement was the model with free factor loadings according to

Equation (5). The tau-equivalent model of measurement was the second model. It

differed from the first one in the type of factor loadings. The factor loadings were

constrained according to Equation (7). Both models could be considered as correct in

the absence of the effect since the relational pattern used in data generation assumed

factor loadings of equal size. In the model with free factor loadings the variance

parameter was set to one, and in the model with fixed factor loadings it was set free

for estimation.

Because of the binary nature of the simulated data it was necessary to select an

approach for overcoming the difference between the data included in the matrices

and the data expected by the model of measurement. The simulated data were binary

and followed the binomial distribution whereas continuous data following the normal

distribution were expected. The established way of overcoming the difference was to

use tetrachoric correlations as input to confirmatory factor analysis (Muthén, 1984).

However, such correlations could not be expected to do well because of the very low

probabilities of ones if there was a strong or medium effect due to a time limit. The

thresholds implicitly estimated as an intermediary step in computing such correlations

show a high degree of accuracy close to p = .5 but the accuracy decreases as the prob-

ability approaches either the upper or lower boundary. Furthermore, correlations did

not show additivity. An alternative way of overcoming the difference between simu-

lated and expected data was provided by the threshold-free approach (Schweizer,

2013; Schweizer, Ren & Wang, 2015). Characteristic features of this approach were

the computation and use of probability-based covariances and the use of a link trans-

formation (see, McCullagh & Nelder, 1985) in investigating the data. The link
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transformation was accomplished by assigning weights wi (i = 1, . . ., p) to the con-

straints for factor loadings. Theses weights were defined as

wi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr Xi = 1ð Þ 1� Pr Xi = 1ð Þ½ �

p
; ð14Þ

where Pr(Xi = 1) is the probability of a correct response. Since the weights

for accomplishing the link transformation comprise the probability of a correct

response as ingredients, they are specific for each item. This implicitly means

that the relationships among the constraints for the factor loadings are modified

by performing the link transformations. As a consequence, it is unlikely that, for

example, after the link transformation the constraints of Equation (7) still show

equal sizes. In simulation studies, probability-based covariances led to good fit

results in matrices with 200 rows only. This alternative approach was selected for

the study.

The parameter estimation in investigating the data was conducted using the maxi-

mum likelihood estimation method by means of LISREL (Jöreskog & Sörbom,

2006). The following fit indices were recorded for evaluating model–data fit: normed

x2, root mean square error of approximation (RMSEA), standardized root mean

square residual (SRMR), goodness-of-fit index (GFI), adjusted goodness-of-fit index

(AGFI), normed fit index (NFI), nonnormed fit index (NNFI), and comparative fit

index (CFI). Cutoffs provided by Kline (2005) and Hu and Bentler (1999) served the

evaluation of the results (normed x2 \ 3, RMSEA \ .06, SRMR \ .08, GFI . .90,

AGFI . .90, NFI . .95, NNFI . .95, CFI . .95; see also, DiStefano, 2016).

The comparisons between the levels were conducted by means of the CFI difference

(see, Chen, 2007; Cheung & Rensvold, 2002).

Results

The fit results observed in investigating sets of 500 matrices with no effect, weak,

medium, and strong effects due to a time limit were averaged. Table 1 presents the

means and standard deviations obtained by means of the one-factor model with free

factor loadings.

The means of the normed x2, RMSEA, and SRMR statistics indicated a good

model fit for all levels of the effect. According to GFI and AGFI, the mean model fit

was good with the exception of the level showing the strongest effect. NNFI and CFI

only indicated a good model fit for the level showing no effect due to a time limit.

For not even one level, the fit was good according to NFI. The comparisons of the

levels by means of the CFI difference (see last column) revealed that each pair of

neighboring levels differed from each other. The means and standard deviations are

included in Table 2. The same pattern of means signifying good or bad results was

observed for the model with fixed factor loadings as for the model with free factor

loadings with one exception. The AGFI results suggested a good model fit for the

first and second levels of the effect only instead of for the first to third levels. The
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comparison of the levels by means of the CFI difference revealed substantial differ-

ences between all pairs of neighboring levels.

In both models, CFI and NNFI showed the largest range of values (.25 and .27,

respectively) and included all categories of model fit from good to bad. All differ-

ences between the models with free and fixed factor loadings were smaller than .01

for NNFI. In contrast, only for no effect and the weak effect the CFI differences of

the two models were smaller than .01. For medium and large effects, the differences

were .016 indicating that the model with fixed factor loadings fitted the data worse

than the other one.

Discussion

Although the close inspection of the mean results revealed an effect on model fit in

all indices, there was considerable variation regarding the degree of impairment. No

model misfit was indicated by normed x2, RMSEA, and SRMR. NNFI and CFI

appeared to be most sensitive for the effect due to a time limit. They signified good

model fit only when the models were applied to data showing no effect due to a time

limit. The comparison of the CFIs for the different levels of the effect revealed a sig-

nificant difference between each pair of neighboring levels.

Table 1. Means and Standard Deviations of the Fit Results for Different Effect Levels (No
Effect, Weak Effect, Medium Effect, Strong Effect) Obtained by the Congeneric Model of
Measurement (N = 500).

Fit index

Effect level Normed x2 RMSEA SRMR GFI AGFI NFI NNFI CFI DCFI

No effect
Mean 1.11 .014 .041 .932 .923 .765 .961 .963 —
SD 0.06 .00 .00 .00 .00 .03 .02 .02 —

Weak effect
Mean 1.22 .021 .043 .925 .916 .724 .925 .929 .03*
SD 0.07 .00 .00 .00 .00 .03 .02 .02

Moderate effect
Mean 1.47 .031 .048 .911 .901 .668 .856 .864 .07*
SD 0.10 .00 .00 .01 .01 .04 .03 .03

Strong effect
Mean 2.11 .047 .058 .877 .863 .558 .691 .709 .16*
SD 0.29 .01 .00 .01 .02 .07 .09 .08

Note. SD = 0.00 means SD \ 0.005. SD = standard deviation. RMSEA = root mean square error

of approximation; SRMR = standardized root mean square residual; CFI = comparative fit index;

GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index; NFI = normed fit index;

NNFI = nonnormed fit index.

*p . .05.
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Study 2: The Influence of the Representation of the Effect on
Model Fit

This study served the investigation of whether the negative consequences of the effect

due to a time limit on model fit could be avoided by including a representation of the

source of this effect into the model of measurement. In the simulation study, the negative

consequences of the omissions created according to the logistic function were assumed

to reflect the influence of processing speed that could be traced back to broad cognitive

abilities (McGrew, 2009). There was good reason for expecting that a second latent vari-

able would capture the influence of processing speed on the pattern of covariances, as

outlined in the theoretical section, and would eliminate the negative consequences. To

investigate this idea, one-factor models neglecting the effect due to a time limit were

compared with two-factor models representing both the construct and the source.

Because of its particular sensitivity to the effect due to a time limit and the possibility to

check the statistical significance of differences, only CFI results were considered.

Method

Four models of measurement were used in confirmatory factor analysis. There were

the one-factor model with free factor loadings according to Equation (5), the one-

Table 2. Means and Standard Deviations of the Fit Results for Different Effect Levels (No
Effect, Weak Effect, Medium Effect, Strong Effect) Obtained by the Model of Measurement
With Fixed Factor Loadings (N = 500).

Fit index

Effect level Normed x2 RMSEA SRMR GFI AGFI NFI NNFI CFI DCFI

No effect
Mean 1.13 .016 .047 .927 .922 .747 .955 .955 —
SD 0.06 .00 .00 .00 .00 .03 .02 .02

Weak effect
Mean 1.24 .022 .048 .921 .915 .706 .920 .921 .03*
SD 0.07 .00 .00 .00 .00 .04 .02 .02

Moderate effect
Mean 1.52 .032 .054 .904 .898 .642 .848 .848 .07*
SD 0.10 .00 .00 .01 .01 .04 .03 .03

Strong effect
Mean 2.00 .048 .062 .870 .862 .533 .688 .692 .16*
SD 0.26 .01 .00 .01 .01 .07 .09 .08

Note. SD = 0.00 means SD \ 0.005. SD = standard deviation. RMSEA = root mean square error of

approximation; SRMR = standardized root mean square residual; CFI = comparative fit index; GFI =

goodness-of-fit index; AGFI = adjusted goodness-of-fit index; NFI = normed fit index; NNFI =

nonnormed fit index.
*p . .05.
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factor model with fixed factor loadings according to Equation (7), the two-factor

model according to Equations (6), (7), and (10) (the tp-specific model), and the two-

factor model with fixed and free factor loadings (the hybrid model). The first latent

variable of the hybrid model showed factor loadings according to Equation (7) and

the other one according to Equation (11). Since the turning point of the logistic func-

tion used in data generation was assumed to be unknown, the tp-specific model had

to be applied for different turning points, and the best-fitting model had to be

selected.

The data generated for the first study were also used in the second study. CFI dif-

ferences larger than .01 were considered as significant differences (Cheung &

Rensvold, 2002).

Results

The means and standard deviations of the CFI results for the combinations of the four

models and the four levels of the effect due to a time limit are given in Table 3.

The results for the levels reflected the degrees of the effect and also the absence

of an effect. The left-hand part of Table 3 provided the results for the one-factor

models and the right-hand part for the two-factor models. For the one-factor models,

the CFI means monotonously decreased from values slightly larger than .95 (no

effect) to values of about .70 (strong effect). For the two-factor models, a similar pat-

tern was observed but the decrease ended up with values of about .87.

Table 3 also reports the CFI differences between the one-factor models with free

and fixed factor loadings on one hand (see column 5) and between the tp-specific

Table 3. Means and Standard Deviations of the CFI Results for Different Effect Levels (No
Effect, Weak Effect, Medium Effect, Strong Effect) Obtained by One- and Two-Factor Models
with Free and Fixed Factor Loadings (N = 500).

Effect level

Type of model

Free,

one factor

Fixed,

one factor

tp-specific

model

Hybrid

model

Overall

comparisona

Mean (SD) Mean (SD) Comparisonb Mean (SD) Mean (SD) Comparisonc

No effect .963 (.02) .955 (.02) .008 .955 (.02) .960 (.02) –.005 –.002

Weak effect .929 (.02) .920 (.02) .009 .953 (.02) .948 (.02) .005 .026*

Medium effect .864 (.03) .848 (.03) .016* .934 (.02) .926 (.02) .008 .074*

Strong effect .709 (.08) .692 (.08) .017* .876 (.03) .873 (.03) .003 .174*

Note. CFI = comparative fit index.
aCFI difference between the means of the results for the two-factor models (tp-specific model and hybrid

model) and the one-factor models. bCFI difference between the results for the one-factor models. cCFI

difference between the results for the two-factor models (tp-specific model and hybrid model).

*p . .05.
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and hybrid models on the other hand (see column 10). All differences between the

CFI results of the two-factor models were negligible. In contrast, the comparison of

the results for the one-factor models revealed substantial difference for medium and

strong effects in favor of the model with free factor loadings.

The last column of this table contains the CFI differences between the means for

the two one-factor models and the two two-factor models. In the case of no speed

effect, the one-factor models described the data equally well as the two-factor mod-

els. In contrast, substantial differences between the one-factor models and the two-

factor models were observed in the cases of weak, medium, or strong effects. In the

weak effect, the model fit was not good for the one-factor models but could be con-

sidered as still acceptable and good or marginally good for the two-factor models. In

the medium effect the one-factor models showed model misfit whereas the model fit

of the two-factor models was still acceptable. In the strong effect, the results indi-

cated a bad model fit for all models despite a large improvement due to the represen-

tation of the effect due to a time limit.

Discussion

The representation of the source of the effect due to a time limit by means of an addi-

tional latent variable as part of the model of measurement in confirmatory factor anal-

ysis led to a large improvement of the mean CFI results. A good or an acceptable

model fit was indicated if there was a weak or even a medium effect. However, the

improvement by integrating a second latent variable in the confirmatory factor model

was not large enough to compensate for the impairment due to the strong effect.

The two two-factor models of measurement considered in this study did not sub-

stantially differ according to the CFI means. There was no advantage for the tp-

specific model because of the more accurate representation of the effect.

Consequently, the expense due to the search for the best-fitting turning point in the

application of the tp-specific model could be avoided if the aim was simply to mini-

mize the consequences of the effect for model fit.

Study 3: The Identification of the Effect due to a Time Limit

To deal appropriately with a method effect that found its expression in bad model fit

when conducting a structural investigation, it was important to know about the nature

of this effect. In impairment due to a subset of especially homogenous items, for

example, the removal of some items might be appropriate (Bandalos & Gerstner,

2016). If the impairment was due to a time limit that enabled processing speed to

contribute to performance, on the contrary, the preferable option for dealing with the

misfit could be the representation of this source as an additional latent variable in the

confirmatory factor model.

One problem in the identification of a method effect, when using factor-analytic

methods with free factor loadings, was that various sources could find their
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expression in the sizes of factor loadings and also in model fit. A way out of this

problem was using precise expectations for constraining the factor loadings since in

this case the suspected effect would find its main expression in model fit.

Expectations regarding the effect due to a time limit could be based on the assump-

tion that processing speed would follow the normal distribution. Furthermore, there

was the dependency of model fit on the correctness of the turning point. Because of

this dependency, the fit results for factor loadings fixed according to the effect due to

a time limit might show the inverse of a u-shaped course for a sequence of neighbor-

ing turning points.

The study reported in the following section investigated whether such a course

could be observed when the tp-specific model was applied to data showing a strong

effect due to a time limit. Furthermore, it was investigated how this model would per-

form when there was a uniform effect in a subset of the columns of the data matrix.

Method

A first set of five hundred 500 3 36 matrices was generated in basically the same

way as the data used in the previous study. These data showed a strong effect due to

a time limit similar to the one of the other studies. However, the maximum percent-

age of omissions per column of a matrix was modified so that CFIs larger than .90

could be expected. This modification led to a minimum of 4% of the rows of a matrix

that did not show omissions.

A second set of five hundred 500 3 36 matrices was generated according to a rela-

tional pattern that showed another method effect, as could be expected due to a sec-

ond source equally contributing to a subset of columns. The data generated by means

of this relational pattern were referred to as uniform-effect data. The relational pattern

used for data generation was realized by means of two latent variables. The first latent

variable received factor loadings from all 36 manifest variables of the model and the

second one from the 25th to 36th manifest variables only. All factor loadings showed

the same size that was 0.2828. As a consequence, the off-diagonal entries of the rela-

tional pattern were 0.08 if only one latent variable contributed and 0.16 if two latent

variables contributed. The selection of the exact sizes as part of a pilot study was

guided by the aim to achieve data matrices that could be expected to lead to the same

mean CFI when investigated by the hybrid model as when this model was applied to

the first set of matrices. Furthermore, the continuous data generated this way were

dichotomized into zeros and ones in such a way that the entries of the columns of

these matrices showed the same probabilities of one as the columns of the matrices of

the first set referred to as time-limit data.

Both sets of matrices were investigated by means of the tp-specific model and the

hybrid model that were also used in the second study. The tp-specific model was

applied repeatedly using different turning points of the logistic function. The CFI

results were recorded and averaged for each turning point.
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Results

The CFI results obtained for the tp-specific model varied as a function of the turning

point. The largest CFIs surmounted the .90 barrier for acceptable model fit.

Figure 3 illustrates these results as curves. The solid line resulting from the inves-

tigation of the time-limit data (first set of matrices) showed the expected inverse of a

u-shaped course. It should be noted, however, that the largest CFIs were found for

the turning points of 31 and 32 but not for 30, as was expected because of the turning

point for generating data showing the strong effect.

The application of the tp-specific model to the uniform-effect data (second set of

matrices) led to the dashed line. This line was not completely flat but did also not

show a distinct maximum so that it could not be interpreted as course reflecting the

effect of a time limit. The two lines showed distinctly different shapes.

Furthermore, the largest CFIs obtained by means of the tp-specific model differed.

It was .92 (SD = .02) in the case of the time-limit data and .87 (SD = .05) in the case

of the data showing the uniform effect due to a common source. There was a CFI dif-

ference of .04 that indicated significance.

The hybrid model led to a CFI of .91 (SD = .02) in the case of the time-limit data

(first set of matrices) and a CFI of .92 (SD = .05) in the case of the uniform-effect

data (second set of matrices). The CFI difference was marginally substantial, but the

CFI distributions showed a large overlap.

Figure 3. Curves based on the comparative fit index (CFI) results observed in simulated
data showing a strong time-limit effect and data showing a uniform effect by means of the tp-
specific model (N = 500).
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Discussion

The discrimination between the effect due to a time limit and the uniform effect due

to a source equally contributing to a subset of columns was in the focus of this study.

As expected, the tp-specific model discriminated between the effects, as was obvious

in the CFI difference and the different shapes of the CFI courses obtained by systema-

tically changing the turning point of the logistic function. These results suggested that

the tp-specific model was suitable for the identification of the effect due to a time

limit if the effect was strong.

The hybrid model was not expected to discriminate between the effects. Contrary

to this expectation the CFI difference between the CFIs for the two types of matrices

reached marginal significance in favor of the matrices showing the uniform effect.

This CFI difference simply indicated that the two relational patterns used for data

generation were not completely equivalent with respect to CFI although it was the

aim to generate two sets of data leading to the same CFI result when investigated by

means of the hybrid model.

General Discussion

A time limit for testing leads to a typical method effect caused by the assessment

procedure. The consequences of this effect have mainly been investigated within the

framework of item response theory. A major finding of this research is that a time

limit impairs the validity of measurement (Lu & Sireci, 2007). Such impairment

should also be apparent in factor-analytic investigations of the data if there is a simi-

lar sensitivity for the effect. The observed results are partly in line with this expecta-

tion. All considered fit indices change as a consequence of an increase of the effect

due to a time limit. However, only CFI (Bentler, 1990) and NNFI (Bentler & Bonett,

1980) show sensitivity in the sense that model fit changes from good to bad. Other

fit indices indicate good model fit even if there is a strong effect due to a time limit

or bad model fit although there is no such effect, as in the case of NFI.

The way of treating omissions due to a time limit is guided by the idea that omis-

sions are the result of a second underlying source of responding. The idea of a sec-

ond source of responding systematically influencing the outcome of assessment is

already well established. For example, the multitrait–multimethod approach pro-

posed by Campbell and Fiske (1959) suggests an influence of the observational

method on responding besides the influence due to the construct represented by the

scale. Furthermore, there is the approach of the model-based imputation methods that

considers a second source of responding (Holman & Glas, 2005; O’Muircheartaigh

& Moustaki, 1999). Since this second source is considered as unknown, the approach

shows broad applicability. In contrast, the way of treating omissions in the three

reported studies includes the assumption of a very specific source. The omissions are

assumed to originate from the coaction of an insufficient time limit and processing

speed. It enables the design of a representation that is especially sensitive to the

effect due to the time limit.
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An advantage of this representation is that it can be adapted to the actual degree of

the effect. Such adaptability is an advantage since it is not a stable effect. Instead the

effect depends on several influences, and some of them are independent of the time

limit (Oshima, 1994). An important influence appears to be the participants’ process-

ing speed. A stronger effect can be expected in an overall slow sample than in an

overall fast sample. As a consequence, in older participants the effect may be larger

than in younger participants because older participants tend to be slower (Salthouse,

2000). The special adaptability to the actual degree of the effect contributes to the

usefulness of this way of investigating the effect due to a time limit.

The integration of the representation of the source of the effect due to a time limit

into the model of measurement gives rise to the expectation that the impairment in

model fit disappears. The results of the second and third study are only partly in line

with this expectation. Despite large improvements of model fit, the reached CFIs are

below the CFIs for data without an effect. Since the models of measurement reflect

the model used for data generation, the models of measurement can be ruled out as

reason for the insufficient improvement. Another possible reason is the fit index

selected for the second and third studies, the CFI (Bentler, 1990). It appears to be

useful because of its sensitivity for the effect due to a time limit. But it may also

own a characteristic that is disadvantageous for the present purpose, as is suggested

by the comparison of the results of the second and third studies. The maximum per-

centage of omissions due to the strong effect was 98% in the second study and 96%

in the third study. The change of the percentage was accompanied by the change

from bad model fit to acceptable but not yet good model fit. The association of the

percentages and fit results suggests that CFI may also be sensitive to very high or

very low probabilities of binary responses.

Although the tp-specific and hybrid models perform equally well regarding model

fit in data showing the effect due to a time limit, they differ regarding the identifica-

tion of this effect. The tp-specific model shows a considerably better fit to data show-

ing this effect than to uniform-effect data. In contrast, a small preference in favor of

detecting the uniform effect is obvious for the hybrid model that, however, may sim-

ply reflect a difference originating from data generation rather than different sensitiv-

ities. The virtual correspondence of the fit results for the two models suggests that the

hybrid model may be the option for data analysis if the correct identification of the

turning point of the function underlying the effect is not necessary.

Finally, the generalizability of the results from simulated data to real data needs to

be addressed. Assumptions guided the generation and investigation of simulated data.

Although these assumptions are based on empirical grounds, demonstrations using real

data are necessary to assure generalizability. There is the possibility that in real data the

normality assumption regarding the distribution of processing speed is violated because

the sample may not be representative of the population that is assumed to show the nor-

mal distribution. It is an open question whether the logistic function used for generating

the primary constraints for factor loadings performs in samples that are very homoge-

neous or quite heterogeneous as well as in samples that show the normal distribution.
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So far there seem to be only two empirical studies using the described method. In the

first study, the representation of the effect by means of the logistic function improved

model fit in investigating reasoning data (Schweizer & Ren, 2013). In the second study,

the representation of the effect was used for demonstrating that processing speed con-

tributed to the relationship of cognitive ability and working memory (Ren, Wang, Sun,

Deng, & Schweizer, 2017). More studies are needed to overcome this limitation.

Another limitation is the design of the generated data matrices. The design of

these matrices mirrors a specific well-known reasoning scale. This design includes

enough items for both reasoning and processing speed to unfold so that there was a

good chance to be identified. The lack of the variation of the design is justified by

the focus on the effect that was varied and on the three objectives. However, there

are achievement scales including smaller numbers of items where it may be more

difficult to separate the influences of reasoning and processing speed. Furthermore,

the impact of reasoning on performance may show a moderating influence on the

detectability of the contribution of processing speed to performance. These are lim-

itations that need to be addressed in future research.

Regarding directions for future research we like to highlight that the effect due to

a time limit in testing is an important issue of assessment. It is insufficient just to flag

tests as speeded or unspeeded since speededness is the result of several sources

(Oshima, 1994) and the influence of these sources may vary from one application to

another one. This means that there is virtually always some chance that in investigat-

ing reasoning data and eventually also some other performance data the model fit is

impaired due to a time limit in testing. Therefore, it appears to be advisable to check

data originating from this content area in applied research for the presence of an

effect due to a time limit in testing. Another possible direction for future research is

working out guidelines for tolerable impairments of model fit due to the effect due to

a time limit in testing because the observed impairment is the result of the effect but

not because of an impaired representation of the construct underlying the scale.

Furthermore, it might be explored whether the type of models used for investigating

the data showing the effect due to a time limit can be useful for obtaining estimates

of the participants’ reasoning abilities that are unimpaired by this effect.
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