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Ischaemic heart disease (IHD) is the leading cause of morbidity and 

mortality worldwide. Two major pathways of disease development are 

acute coronary syndrome (ACS) and stable chronic angina.1,2 The 

success of prevention measures and early treatment pathways in ACS 

has helped to reduce the heart failure (HF) burden due to post-infarction 

remodelling and systolic dysfunction. However, accurately identifying 

patients with stable angina and relevant obstructive coronary artery 

disease (CAD) remains an on-going clinical challenge. The guidance on 

effective therapy for prognostic benefit is also continuously refined.3 

In patients with chronic IHD, therapeutic strategies include medical 

management – which is a combination of risk-factor modification – or 

revascularisation in the presence of persistent symptoms and evidence 

of significant ischaemia.4 The need for revascularisation continues to 

be guided by way of pre-test probability (PTP) for CAD as a gatekeeper 

to the next diagnostic step and to evaluate the presence of relevant 

myocardial ischaemia. 

If the PTP is high, an invasive strategy accompanied by measurement 

of fractional flow reserve (FFR) is advised.5,6 In the more prevalent 

group who have intermediate PTP, a non-invasive diagnostic test is 

first used. Then, if significant ischaemia is proven, the patient 

proceeds to coronary angiography and revascularisation of the target 

vessel. Patients with low PTP are deemed to not have any relevant 

ischaemia at all and other options of cardiovascular diseases are not 

routinely considered.

In the intermediate PTP group, a plethora of reasonably accurate non-

invasive diagnostic tests exists. These include stress echocardiography, 

cardiac magnetic resonance (CMR) and nuclear imaging methods, 

single-photon emission CT (SPECT) and PET.2 Among these, the overall 

body of evidence – including validation, comparative diagnostic 

accuracy and, more recently the clinical effectiveness of directly-

guided revascularisation – distinguishes CMR among the available 

imaging options.7 In addition to the many practical advantages, which 

include the absence of ionising radiation, non-invasiveness and 

accurate and reproducible measurements, it is the unique ability of 

ischaemia imaging and tissue characterisation that further separates 

this diagnostic approach. The three imaging readouts, myocardial 

perfusion, late gadolinium enhancement (LGE) and myocardial T1 

mapping techniques, together allow a comprehensive assessment with 

diagnostic and prognostic relevance.8–11 In this article, we summarise 

the evidence behind these imaging readouts and outline the ways of 

supporting an informed individual approach to treatment of patients 

with stable chronic CAD. 

Ischaemia Detection and Quantification 
The primary utility of angiographical assessment of the severity and 

extent of epicardial coronary artery stenosis in stable CAD is based on 

historical evidence that significant (>70% lumen reduction) triple vessel 

disease and/or left main CAD lead to poor outcomes if left untreated.4 

The many limitations regarding the visual or quantitative assessment of 

coronary artery anatomy, rather than haemodynamic significance, have 
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been well covered elsewhere.6,12–14 The results of the Clinical Outcomes 

Utilizing Revascularization And Aggressive Drug Evaluation (COURAGE) 

trial indicated that revascularisation did not reduce the risk of major 

cardiovascular and cerebral adverse events (MACCE) in stable patients.15 

The Fractional Flow Reserve Versus Angiography For Multivessel 

Evaluation (FAME) trials highlighted the need for an objective 

measurement of the significance of high-grade stenoses in terms of 

their functional relevance prior to intervention.6,16 While the superiority 

of an FFR-supported strategy in determination of haemodynamic 

significance corroborated the notion of previous observational imaging 

studies, it also opened up further unresolved questions for various 

non-invasive options of detection and quantification of myocardial 

ischaemia: which patients, which method and with what aim.16,17 

The choice of imaging approaches in guidelines – stress echo, SPECT, 

PET and perfusion CMR – remains guided primarily by the local 

availability of technique and expertise.2 Numerous studies have 

assessed their comparative diagnostic performance against clinical 

gold standards, angiographically determined luminal coronary stenosis 

and FFR, reporting good diagnostic accuracy for significant obstructive 

CAD (Figure 1). NB: data for stress-echo versus FFR are not available, 

and there are limited data for SPECT versus FFR. 

The comprehensive body of evidence for CMR further strengthens its 

position, along with the available comparative data with SPECT, which 

reveals the superior diagnostic performance of CMR.17–19 This is also 

supported by data from meta-analyses.20,21 Furthermore, CMR can be 

distinguished from nuclear imaging methods in several practical ways, 

including the absence of exposure to ionising radiation and accurate 

multiparametric assessment (cardiac function, structure, flows and 

both scar and ischaemia imaging). 

Shorter acquisition and post-processing times have cut the time and 

the costs of investigation and there is a much wider availability 

compared with PET. Although currently less used in favour of the 

simpler and safer vasodilatory test of myocardial perfusion, high 

dose dobutamine CMR yields an even higher diagnostic accuracy. CMR 

is also the only technique offering insight into comparative performance 

against dobutamine stress echocardiography.22 This prevailing data on 

the superiority of CMR (and PET) has now also been adopted in the 

European Society of Cardiology guidelines.2 

Perfusion Techniques
Perfusion CMR imaging uses dynamic image acquisition of contrast 

agent wash-in into the myocardium using saturation-prepulse 

prepared T1 weighted gradient echo sequence. Saturation prepulse 

helps to blacken the background signal, allowing visualisation of the 

contrast-agent-induced brightness while washing into the myocardial 

muscle. A vasodilator substance – adenosine or the more specific 

A2A receptor agonist regadenoson – is typically used to stimulate 

blood flow through the myocardium. Although these medications are 

relatively safe, adenosine infusion is often accompanied with 

considerable chest discomfort.

These adverse effects are much milder with regadenoson, which is 

injected as a slow bolus mandating only one IV line. This allows much 

more amenable proceedings and an overall better image quality. During 

subsequent administration of gadolinium contrast agent, typically three 

short-axis images per cardiac cycle are obtained continuously and 

consecutively for about 60 heart beats to acquire the myocardial 

wash-in and wash-out (e.g. gadobutrol dose 0.05–0.1 mmol/kg 

bodyweight).7,23,24 

In routine clinical practice, visual assessment is the mainstay 

approach to recognition of relevant hypoperfusion. Normal 

myocardium exhibits a characteristic homogenous distribution of 

rapid contrast uptake. The typical contrast agent wash-in begins at 

the epicardium of the left anterior descending coronary artery and 

then proceeds rapidly towards the endocardium as well as the right 

coronary artery territory. 

Perfusion defects are recognised as areas of visually perceived 

low signal indicating reduced contrast uptake (i.e. hypoperfusion), 

which follow a typical segmental distribution of an epicardial 

coronary vessel and persist for four or more consecutive cardiac 

cycles (Figure 2). Areas of hypoperfusion are compared against the 

LGE images. Where there is post-infarction scar, careful assessment 

is made to identify peri-infarct ischaemia. Quantitative approaches 

to myocardial blood flow and flow reserve assessment continue to 

be an active research area and have been well covered elsewhere.25 

They may be particularly useful in assessment of intermediate 

stenoses given the on-going lack of clarity in defining its presence, 

as there is considerable discrepancy between the FFR and 

angiography, as well as an overall absence of outcome data on their 

prognostic relevance.17

Figure 1: Clinical Likelihood of Diagnostic Modalities to 
Rule In or Rule Out Significant Coronary Artery Disease
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Ranges of likelihood of CAD for each functional diagnostic test to rule in (red) and rule out 
(green) when the reference standard is (A) anatomical assessment using invasive coronary 
angiography and (B) functional assessment using FFR. Values are shown as SD ± 95% CI. 
CAD = coronary artery disease; CMR = cardiac magnetic resonance; CTA = CT angiography; FFR 
= fractional flow reserve; ICA = invasive coronary angiography; SPECT = single-photon emission 
CT. Source: Knuuti et al. 2020.56 Reproduced with permission from Oxford University Press.
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Perfusion Cardiovascular Magnetic 
Resonance as a Tool to Guide Therapy
Functional proof of ischaemia remains the major criterion for 

prognostically relevant CAD.3,26 Furthermore, the extent of ischaemia 

(in addition to the presence of postinfarction scar and native T1 of non-

infracted myocardium) is directly related to the number of subsequent 

CAD events. Primarily based on SPECT studies, the yearly CAD event 

rates generally range from approximately 1% for normal stress imaging 

findings to as high as 10% for severely abnormal studies. Several 

observational studies have also shown that the degree of relative risk 

reduction with treatment is related to the amount of ischaemia 

observed on non-invasive imaging.3,26 Yet the exact definition of 

ischaemic burden and thresholds for initiating revascularisation 

remains a subject of considerable debate, in part because of the 

difficulty in translating the proof and severity of ischaemia into 

comparable categories across other imaging modalities.3 

Observational evidence indicates that medical therapy alone may be 

associated with a reduced risk of death compared with revascularisation 

for patients with less extensive and severe ischaemia (i.e. <10% of the 

myocardium). Conversely, patients with ≥10% ischaemic myocardium 

demonstrated a reduced risk of CAD and all-cause death with coronary 

revascularisation compared with medical therapy.26 Thus, the current 

practice guidelines support the requirement of moderate–severe 

ischaemia before elective revascularisation, whereby a threshold of 

≥10% ischaemic myocardium provides a benchmark from which to 

define treatment effectiveness.26–28

Thresholds for relevant ischaemia using perfusion CMR follow this 

concept, with slight modification reflecting its technical advantages. 29,30 

For example, the spatial resolution techniques of SPECT (10 mm × 10 mm  

in-plane spatial resolution) only to detect transmural hypoperfusion, 

which can be recorded using a standard American Heart Association 

16-segment model, meaning that relevant ischaemia will be defined as 

the presence of two adjacent hypoperfused segments. In contrast, 

higher spatial resolution of CMR allows recording of even smaller 

myocardial areas of hypoperfusion (with standard sequences of 3 mm × 

3 mm in-plane resolution, with some advanced techniques perhaps also 

achieving 1 mm × 1 mm). Consequently, in CMR a 32-segment model is 

used, with division of each segment into endocardial and epicardial 

subsegments, also accounting for physiological distribution of contrast 

agent wash-in from epicardium into endocardium. In CMR, four or more 

affected subsegments are required to indicate relevant myocardial 

ischaemia (Figure 3). New data suggest that a further subdivision of 

segments may foster an even better diagnostic performance.31

The recently published MR Perfusion Imaging To Guide Management Of 

Patients With Stable Coronary Artery Disease (MR-INFORM) study is an 

international, multicentre, randomised controlled clinical effectiveness 

trial that has clarified several aspects of the therapeutic conundrum in 

patients with medium to high PTP for CAD.7 It investigated the ability of 

perfusion CMR to directly guide revascularisation compared with the 

standard of care based on FFR measurement. In the MRI-guided group, 

a positive CMR perfusion finding followed the above-mentioned 

definition, which was expanded for ease of interpretation to either two 

or more neighbouring segments, two adjacent slices, or a single 

transmural segment (approximately 6% of the myocardium). In the FFR 

arm, a measurement of ≤0.80 was defined as positive for relevant 

ischaemia in the target vessel. Revascularisation was recommended 

for patients in the CMR group with ischaemia in at least 6% of the 

myocardium or in the FFR group with an FFR of ≤0.8. Patients with a 

positive index test underwent revascularisation and all patients 

received guideline-directed medical therapy. The trial was designed to 

assess non-inferiority of the non-invasive ischaemic test to FFR in 

terms of 1-year outcome, defined by the composite primary outcome 

of death, nonfatal MI, or target-vessel revascularisation. The most 

important result was the non-significant difference between 

approaches in guiding treatment in terms of major adverse events 

(p=0.21). CMR was associated with a lower incidence of coronary 

revascularisation than FFR (36% versus 44.2%; p<0.01), which led to a 

considerable reduction in unnecessary invasive angiography to 51% of 

patients owing to having negative CMR test. These findings support 

perfusion CMR as the first-line approach in identifying patients who 

would benefit from treatment by revascularisation.

Chronic Coronary Artery Disease: 
Interstitial Myocardial Remodelling
Diffuse interstitial myocardial fibrosis is the histological hallmark of 

myocardial remodelling, including in patients with CAD.32,33 Chronic 

neurohormonal stimulation and changes in gene expression 

promote the extracellular matrix remodelling processes in non-

infarcted segments, eventually leading to accumulation of diffuse 

fibrosis.34 Although adaptive at first, this process becomes 

maladaptive, eventually leading to HF and poor prognosis.35–46 The 

considerable success of anti-remodelling therapies indicates that – 

despite the often late diagnosis – there is considerable potential for 

improvement prior to definitive or irreversible ventricular systolic 

dysfunction and abnormal remodelling with increased ventricular 

volumes and stiffness.32 Traditionally, low left ventricular ejection 

fraction (LVEF) has been the marker of poor outcome in post-MI 

patients, with LVEF ≤35% denoting high-risk and used as a surrogate 

Figure 2: Perfusion in Four Consecutive Cardiac Cycles
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Perfusion in four consecutive cardiac cycles in three short axis slices in the base (A) mid (B) 
and apical left ventricular segments (C). Panel D shows late gadolinium enhancement pictures 
in the same segments. There is significant ischaemia in the inferior and inferolateral wall. 
Note that perfusion defects exceed the gadolinium enhancement area.
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for a more aggressive management.1 The extent of scar is also a 

strong predictor for adverse outcome.38,43–46

In modern populations of CVD patients receiving revascularisation 

therapies and strong prevention measures, the residual infarct size is 

relatively small and cardiac function is frequently preserved. With an 

overall reduced importance of the two traditional parameters, LVEF 

and LGE, the focus has shifted onto the non-infarcted myocardium. 

Studies have shown that T1 mapping indices, expressed by native T1 

and extracellular volume and measured in the non-infarcted 

myocardium, increase in response to accumulation of diffuse 

myocardial fibrosis (Figure 3).38–41 These measures generally reflect 

the presence of the diffuse pathological processes that underlie 

myocardial remodelling, including inflammation, infiltration or 

fibrosis.41,42 Recent studies have demonstrated that T1 mapping 

measures are predictive of adverse outcome.9,47,48 

A single multicentre study in patients with chronic CAD revealed that 

native T1, the gadolinium-contrast free measure of non-infarcted 

myocardium was the strongest independent predictor of survival and 

major cardiocerebrovascular events.9 Moreover, with rising native T1 

values, the likelihood of events was significantly increased. Patients 

with values in the upper tertile had 6.2-times greater likelihood of all-

cause mortality and 4.5-times for MACCE, compared with those with 

native T1 within the normal range (Figure 4). However, the presence of 

LGE remained an important predictor of outcome only in those patients 

with considerably large scars and functional impairment. The findings 

of this study are important for several reasons. 

Firstly, they are a testament to the importance of a direct measure 

of myocardial pathology, exposing the limitations of population-

based risk scores that rely on indirect indicators such as 

cardiovascular risk factors. Native T1 reflects the presence and 

severity of myocardial changes and pathological myocardial 

remodelling, directly relating to the intrinsic myocardial disease 

such as the presence of myocardial oedema, inflammation, diffuse 

fibrosis and infiltration.49,51 These intrinsic disease mechanisms are, 

on one hand, pathophysiologically different and separate from the 

ischaemic injury as a result of MI, and on the other hand, central to 

prognosis in a prevalently scar-free CAD population. Secondly, native 

T1 is a quantitative biomarker; thus unsurprisingly, the prognosis is 

proportionally related to disease severity. 

As a sensitive measure of pathological myocardial remodelling, 

native T1 may reflect a modifiable substrate and act as a potential 

therapeutic target, providing means of risk modification and 

improved prognosis. Sustained monitoring of native T1 levels may 

allow for an individual optimisation of treatment, possibly ahead of 

the symptom manifestation and development of phenotypically 

expressed, often an irreversible disease. Technical diversity in a 

field littered with various T1 mapping methodologies underlies 

the fact that the findings of the various studies are not transferable  

owing to the different choices of T1 mapping sequences used.38,50 

However, CMR with T1 mapping provides an important refinement 

of the current concept of risk assessment and may help to 

overcome an important gap in clinical management and discovery 

of therapies.51

Cardiovascular Magnetic Resonance 
and Health Socioeconomics
The cardiology practice guidelines set out the role of cardiac MRI as a 

part of clinical routine practice more firmly than ever before. Admittedly, 

Figure 3: Non-infarcted Myocardium and its Relation to Clinical Outcome in Patients with Coronary Artery Disease

Improved management of CAD

LVEF dominates outcome

SCAR dominates outcome

Native T1 dominates outcome

CAD = coronary artery disease; LVEF = left ventricular ejection fraction. Source: Puntmann et al. 2018.9 Reproduced with permission from Elsevier.
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the phrasing remains cautious: ‘a promising’ diagnostic tool with a 

‘great potential’ to illuminate the underlying aetiology of heart disease. 

This rather reserved status of cardiac MRI continues to reflect an overall 

poor availability of CMR in routine practice and there are several 

aspects responsible for this. 

Firstly, there is an on-going lack of scanner access, skill and expertise, 

in part a result of the perpetuating cardiology and radiology conflict 

over equipment sharing. Although there are international and all-

inclusive CMR accreditation schemes, in most countries these are 

neither recognised nor integrated into traditional cardiology curriculum. 

Ironically, the absence of formal expertise remains the main argument 

of the national healthcare providers, precluding the rollout of the 

reimbursement in clinical practice. 

Secondly, there is an overwhelming perception that the clinical 

market is not only saturated with MRI-based imaging, but that it is at 

risk of ‘overuse’, as overall morbidity and mortality has not been 

reduced despite a considerable increase in imaging over the last two 

decades. The caveat of this misconception is exposed by an organ-

based breakdown of scanner utilisation, revealing that over 70% of 

MR scanner time worldwide goes to brain, spine and extremities, 

whereby cardiac MR imaging amounts to a mere 1%.52 Clearly, this 

deployment is illogically disproportionate to the magnitude of a 

problem created by heart disease, the major contributor to morbidity 

and mortality worldwide. 

Finally, as imaging requires no regulatory evidence of clinical 

effectiveness in delivery of medical care (such as guiding treatment to 

change outcome), use is guided by a market of existing reimbursement 

schemes rather than a recognised clinical need. This also explains the 

persistent use of methods that are entitled to reimbursement despite 

recognised significant disadvantages and inferior evidence – such as 

nuclear medicine methods – and are simply underpowered to deliver 

the insights to a complex pathophysiology, for example, serial 

echocardiography, cardiac CT or invasive catheterisation.53–55 A move 

towards evidence-based use of imaging techniques in guiding 

treatment and improve outcome by way of regulation is pertinent to 

improve the current state of the art and stove off the rising HF epidemic, 

fuelled by the currently inadequate approaches. 

Conclusion
The accurate diagnosis of underlying pathophysiology is paramount 

to safeguard good prognosis and the patient’s quality of life. Of the 

available diagnostic tools, CMR is distinguished by the overall body of 

evidence, ranging from validation, comparative diagnostic accuracy 

studies and, more recently, of clinical effectiveness of the direct 

guidance of revascularisation, showing that CMR is safe, delivering 

measurements that are accurate and highly reproducible, as well as 

provide valuable prognostic information. In addition to coronary 

artery disease and its complications, it is also able to elucidate the 

many non-ischaemic causes of symptoms in patients with relatively 

low pre-test probability for CAD.51 In survivors of acute MI, CMR can 

Figure 4: Kaplan-Meier Curves for Native T1 Values and All-cause Mortality
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