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Supplementary information 
 

 
Experimental procedures. High-pressure experiments were carried out using a belt-
apparatus at the Goethe-Universität Frankfurt and a large volume multi-anvil press at 
the Universität Bayreuth. The experimental assembly follows the design of Matjuschkin 
et al. [33] and consists of (i) an outer Au capsule containing the mineral starting 
material (Table S1), (ii) a reduced fluid source (e.g. stearic acid), (iii) an inner capsule 
containing a reduced metal buffer assemblage (Fe-FeO or Mo-MoO2) plus H2O, as well 
as (iv) an outer pressure cell made of a material (CaF2) to provide a hydrostatic 
environment and to minimize H2-loss from the capsule. The ƒO2 inside the outer 
capsule was determined using the Ir-Fe redox sensor technique [34] as is reported in 
Table S2. Part of the starting material was packed into a single-crystal capsule of San 
Carlos Olivine that was initially anhydrous (~0 ppm H2O, see Figure S2). This capsule 
was used to trap fluid inclusions that could be investigated ex situ by Raman 
spectroscopy. Details are provided in a separate manuscript by Matjuschkin et al. [33]. 
The buffer assemblage was always detected by microprobe investigation after the 
experiment. An example of such an image is provided in Matjuschkin et al. [33]. 
 
Amount of fluid added was calculated from the decomposition reaction of stearic acid: 
C18H36O2 = 8 CH4 + 2 H2O + 10 C [32, 43]. (In practice, a small amount of C6H6 may 
also form [31]). The amount of CH4 and H2O is 58 wt% of the total mass of stearic acid 
added, or ~4wt% of the total sample mass (i.e. ol+opx, buffer excluded). The graphite-
saturated CH4-H2O bearing fluid produced at the onset of each experiment was 
reduced to ~IW+0.2 to IW+0.8 (Table S2). The previous study of Matjuschkin et al. [33] 
demonstrated that these ƒO2 conditions could be maintained for at least 24 hours and 
that CH4 remains in equilibrium with a harzburgite (±cpx, ±grt) and silicate melt (1-3%) 
during this time. Following the model of Huizenga [39] and elaborated by Matjuschkin 
et al. [33], the fluid composition should exhibit only a limited variation over the 
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temperature range of our experiments (Figure S1). A significant change in CH4 mole 
fraction only occurs upon cooling below 1000°C and the extent is ƒO2-dependent. 

 
Figure S1: Fluid composition calculated from the model of Huizenga [39] at 7 GPa, for 
∆logƒO2 between IW and IW+2 for unit activity of carbon (aC=1). Note that decreasing 
temperature only has a significant effect on fluid composition at ∆logƒO2 > IW+1.0 and 
T <1100°C. At IW+0.5 (solid line) the fluid has a methane mole fraction of 0.96, similar 
to experimental results reported in this study and by Matjuschkin et al. [33]. 
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Figure S2: Diamond-bearing experiments in a P-T-field. The graphite-diamond 
boundary was calculated after Kennedy&Kennedy [2] and Day [4] and melting point of 
pure gold after by Akella [58].  
 
 
Analytical techniques. The recovered capsules were mounted in epoxy and ground 
down to expose the sample material. They were then polished with paraffin, Al2O3 
since liquid oils can penetrate deep into graphite pockets and is difficult to remove, 
even when placed under vacuum. Samples were treated in an ultrasonic bath to 
remove the grinding material from the surface. No Al2O3 was detected during the 
subsequent microprobe investigation. The samples were investigated promptly after 
experiments using a Renishaw micro-Raman spectrometer (RM-1000), which is 
equipped with a Leica DMLM microscope, a 1800 groove per mm grating and a CCD 
detector. The spectra were obtained using the 532nm emission line of a Nd:YAG laser 
or the 633nm emission line of a HeNe laser that were calibrated using the 519 cm-1 
band of a Si wafer. Spectra were collected over several accumulations operating at 
10-50% laser power with 3-6min acquisition time for each scan. Analysis of fluid 
inclusions was mostly performed in confocal mode, while other measurements were 
made in non-confocal mode to investigate the olivine host for the inclusions. Large 
areas of each sample were investigated and in several cases additional measurements 
were made after repeated regrinding and polishing, allowing the sample to be 
sequentially investigated in the third dimension.  
 
The run products, including the Ir-Fe redox sensors were chemically analysed using a 
JEOL JXA-8900 Superprobe at the University Frankfurt am Main. Analyses were 
performed at 15kV and 20nA for the silicate phases and at 20kV and 20nA for the Ir-
Fe alloys employing a 1-3µm diameter beam. Fayalite, forsterite, wollastonite, albite, 
KTiPO4 as well as pure Ir, Fe, Au and Ni were used as standards and peak calibration.  
 
The Fe3+/∑Fe content of the orthopyroxene starting material was determined by 57Fe 
Mössbauer spectroscopy on optically clean, hand-picked separates following the 
procedure given by Woodland et al. [59]. 
 
Unpolarised FTIR spectra were obtained on selected samples using a Bruker Tensor 
27 infrared spectrometer at the Australian National University in Canberra. Samples 
were prepared as doubly-polished 80-200 µm thick sections of the capsule 
assemblage to avoid the presence of fluid inclusions, During analysis, the sample 
chamber was purged with dry air to minimise interferences, while the background 
information was collected prior to each analysis. The crystal thickness was calculated 
by integrating the absorbance in the silicate overtone between 1625 and 2150 cm-1 
divided by the 0.553 coefficient for unpolarised measurements [60]. 
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Figure S3: Raman spectra documenting the occurrence of diamonds depicted in 
Figures 1c,f g-h. Note that diamond is not in contact with graphite. Diamonds in figures 
f-h are exposed to the atmosphere. Therefore, the absence of CH4 peak and/or 
additional presence of H2O or other higher hydrocarbons can be expected. Unlike fluid 
inclusion in (c) trapped in olivine, which demonstrates the absence of H2O and a sharp 
peak of CH4. 
 
Other experimental techniques 
A number of previous studies with similar starting materials were apparently 
unsuccessful in producing diamond, such as we observe in our experiments [25, 61, 
62]. Although we have no exact answer for these differences, there are number of 
possible reasons that can be considered. An overriding aspect is the formation and 
maintenance of CH4-rich fluids over at least 2 hours [25]. The following factors can 
influence the fluids stability and composition. (i) Catalytic reaction of fluid with metal 
capsules (e.g. Fe, Ni, Pd, Pt), as observed and described by Sokol et al.[25], Matveev 
et al.[63] Matjuschkin et al. [33] leading to fluid disequilibrium and methane instability 
[33]. In addition, the formation of carbides with Fe and Ni capsules can lead to a net 
loss of carbon from the fluid (sample). (ii) Hydrogen loss from the sample related to the 
choice of pressure medium material surrounding the capsule [33,64,65,66,67]. Such 
loss causes fluid oxidation and disequilibrium. (iii) Configuration of the experimental 
assembly is important for achieving as close to equilibrium conditions as possible and 
maintaining the system during the experiment. For instance, the position of H2-metal 
buffer is crucial for minimizing the H2-loss (see above). The inner buffer capsule should 
not be in contact with external outer capsule in order to prevent direct H2-diffusion out 
of the sample (rather than into the sample) [33,67]. On the other hand, placing the 
buffer external to the sample, can lead to hydrogen-loss from the assembly rather than 
imparting the ƒH2 on the sample [43,62]. (iv) Instable buffering due to use of talc, to 
produce higher ƒH2 [43,61,67]. Dehydration of talk does not guarantee a stable ƒH2 in 
experiment, which can affect the fluid composition. (v) Finally, but not least, an 
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adequate experimental duration is required in order for solid organic materials (e.g. 
stearic acid) to produce the fluid phase. Run durations of at least 2 hours appear to be 
necessary [25,62]. 
All these aspects together may help to explain the differences between our study and 
previous work. However, there are maybe additional reasons, which we did not 
consider here. For example, even the production of the identical assembly may lead 
to differences due to use of materials from different suppliers (e.g. dense 
polycrystalline CaF2 vs. pressed CaF2 powder [33,67]. 
 
Table S1: Starting mix composition obtained by mixing of 40% F7-olivine and 60% F7-
orthopyroxene from the Finsch mine, South Africa [36]. Rare Earth Elements (REE) Zr, 
Hf, Sc, V, Ce,Yb were added to the starting mix in 130 ppm concentrations in form of 
oxides. b.d.l. = below detection limit. 
 

  SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 NiO Cr2O3 REE 

Bulk 51.31 0.01 0.35 4.95 0.23 0.10 42.29 0.29 0.03 b.d.l. <0.01 0.16 0.19 0.11 

Ol 41.51 b.d.l. b.d.l. 6.71 - 0.09 51.25 0.03 b.d.l. b.d.l. b.d.l. 0.41 b.d.l. - 

Opx 57.84 0.02 0.59 3.78 0.39 0.11 36.32 0.47 0.05 b.d.l. b.d.l. b.d.l. 0.32 - 

 
Table S2: Summary of experimental conditions and run product compositions where 
diamond crystallized. Values of logƒO2 were calculated from Ir-Fe redox sensors [34]. 
Note that additional experiments at 5 GPa that did not produce diamond are reported 
in Matjuschkin et al. [33]. In all experiments a Mo-MoO2-H2O buffer was employed.  
 

exp. P GPa / T °C duration, h Mg# 
ol/opx 

XFe in Ir-
Fe 

alloy 

redox 
sensor 
logƒO2 

redox 
sensor 

∆IW 

detected fluid 
components 

No diamond in experiment 
1583a 5/1200 20 93/94 0.35(14) -9.5(9) +0.5(9) CH4-H2, HCb 

1585 5/1250 23 93/94 0.3 -8.66 +0.78 CH4-H2, HCb 

1611 5/1280 12 94/94 0.33 -8.45 +0.47 CH4-H2, HCb 

Diamond bearing experiments (1332cm-1 Raman peak confirmed) 

1612 5/1250 15 91/93 0.35 -8.61 +0.5 CH4-H2, HCb 

1632 6/1100 13.5 - - - - CH4-H2, HCb 

1837 6/1200 11 93/94 0.35 -8.95 +0.64 CH4-H2, HCb 

1633 6/1300 19 - - - - CH4-H2, HCb 

1805 7/1200 7.5 - - - - CH4-H2, HCb 

1836 7/1220 7 92/95 0.42 -7.49 +0.23 CH4-H2, HCb 

1838 7/1220 4 94/94 - - - CH4-H2, HCb 

1839 7/1250 to 
850 

6h run; 2h 
cooling 92/94 0.37 - +0.52 to 

+0.69c 
CH4-H2O-H2, 

HCb 

1766 7/1300 15 93/94 0.35 -7.42 +0.63 CH4-H2, HCb 
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2008 7/1300 13 94/94 0.32 -7.78 +0.40 CH4-H2, HCb 

2007 7/1300 10 93/94 0.32 -7.66 +0.52 CH4-H2, HCb 

 
Conservative uncertainty of ƒO2 measurements is ±0.05 log units, as determined by 
the standard deviation calculated from 5 to 20 analyses in each sample. 
a Fe-FeO buffered experiment [33] 
b Unspecified higher hydrocarbons, including C2H6 
c Estimated for the temperature range 1250 – 850°C 
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