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The polarization of virtual photons produced in relativistic nucleus–nucleus collisions provides informa-
tion on the conditions in the emitting medium. In a hydrodynamic framework, the resulting angular 
anisotropy of the dilepton final state depends on the flow as well as on the transverse momentum and 
invariant mass of the photon. We illustrate these effects in dilepton production from quark–antiquark an-
nihilation in the QGP phase and π+π− annihilation in the hadronic phase for a static medium in global 
equilibrium and for a longitudinally expanding system.
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1. Introduction

In relativistic heavy-ion collisions strongly interacting matter at 
very high temperatures and densities is created [1,2]. At such ex-
treme conditions, quarks and gluons are deconfined and form a 
new phase of quantum chromodynamics (QCD), the quark–gluon 
plasma (QGP). Therefore relativistic nucleus–nucleus collisions pro-
vide a unique opportunity to study and characterize thermody-
namic phases of QCD matter.

Since, experimentally, the matter produced in nuclear colli-
sions can be probed only by observing and analyzing the spectra 
of emitted particles, it is important to understand their produc-
tion mechanisms and interactions. Hadronic observables interact 
strongly and do not probe the entire space-time volume of the 
collision because they are emitted only from the surface and in 
the final state of the medium. On the other hand, because their 
mean-free paths in nuclear matter are much larger than nuclear 
sizes, electromagnetic probes such as photons and dileptons are 
emitted throughout all stages of the collision and escape from the 
system essentially without final-state interactions. Therefore elec-
tromagnetic radiation carries direct information on the space-time 
evolution of the matter created in such collisions [3–5].

Recently, it was proposed that the polarization of real and vir-
tual photons can be used to study the momentum anisotropy of 
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the distributions of quarks and gluons [6–8]. In a first measure-
ment of the dilepton angular anisotropy, the NA60 Collaboration 
found that the anisotropy coefficients in 158 AGeV In–In collisions 
are consistent with zero [9], while the HADES Collaboration [10]
finds a substantial transverse polarization in Ar-KCl at 1.76 AGeV.

In general, multiply differential cross sections for dilepton emis-
sion provide information needed to disentangle the various pro-
duction channels. The polarization state of the virtual photon is 
reflected in anisotropies of the angular distribution of the lepton 
pair. Thus, different photon production mechanisms give rise to 
characteristic shapes for the dilepton angular distribution [11–14].

The angular distribution of the leptons originating from the de-
cay of a virtual photon, expressed in the photon rest frame, is of 
the form [11,12,15,16]:

d�

d4qd��

= N
(

1 + λθ cos2 θ�

+ λφ sin2 θ� cos 2φ� + λθφ sin 2θ� cosφ�

+ λ⊥
φ sin2 θ� sin 2φ� + λ⊥

θφ sin 2θ� sinφ�

)
, (1)

where � ≡ dN
d4x

is the dilepton production rate per unit volume, 
qμ the virtual photon momentum while θ� and φ� are the polar 
and azimuthal angles of, e.g., the negative lepton in the rest frame 
of the photon and d�� = d cos θ� dφ� . The normalization N is in-
dependent of the lepton angles. The coefficients λθ , λφ , λθφ , λ⊥

φ

and λ⊥ are the anisotropy coefficients, λ⊥ and λ⊥ being non-zero 
θφ φ θφ
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Fig. 1. (Color online) Illustration of the two reference frames employed in this paper. 
The production plane, indicated in gray, is spanned by the three momenta of the 
initial ions in the rest frame of the virtual photon, pA and pB , and is orthogonal 
to the y axis. The axes zH X and zC S define the helicity and Collins–Soper frames, 
respectively. The two frames are connected by a rotation through the angle δ about 
the y axis [16].

only for processes that are not symmetric with respect to reflec-
tions in the production plane.

The anisotropy coefficients depend on the choice of the quan-
tization axis. In this work we employ two reference frames (see 
Fig. 1). In the helicity frame, the quantization axis is along the pho-
ton momentum, while in the Collins–Soper frame the quantization 
axis is the bisector of the angle formed by the beam and target 
momenta in the photon rest frame [16,17]. We compute dilepton 
emission from quark–antiquark annihilation in the QGP phase (the 
Drell–Yan process) and π+π− annihilation in the hadronic phase.

The invariant mass spectrum and qT dependence of low-mass 
dileptons (M < 1 GeV) produced in heavy-ion collisions are con-
sistent with an equilibrated, collectively expanding source [18,19]. 
Moreover, the lack of dilepton anisotropy found in Ref. [9] has 
been interpreted as evidence for a thermalized medium. However, 
as noted in Ref. [3], also a fully thermalized medium in general 
emits polarized photons. In this letter, we present results on the 
anisotropy coefficients for dileptons emitted from a thermalized 
static medium and explore the effect of longitudinal (Bjorken) flow 
on the polarization observables.

While in Ref. [4] the coefficient λθ has been discussed for some 
relevant reactions in vacuum as well as in a thermal system, a sys-
tematic study of the dilepton anisotropy coefficients in heavy-ion 
collisions has so far not been performed. Here we present a general 
framework for studying the angular anisotropy of dileptons ema-
nating from the decay of polarized virtual photons produced in a 
hot, expanding medium. In order to characterize the angular distri-
bution of the dilepton final state, we introduce the anisotropy co-
efficients and demonstrate explicitly their dependence on the flow 
velocity and temperature profile of the medium. We first consider 
the simplest case of a static uniform medium and then incorporate 
the non-trivial dynamics of a longitudinally expanding system.

QCD matter formed in high-energy heavy-ion collisions exhibits 
a striking collective behavior and its space-time evolution can 
be described quite accurately with relativistic hydrodynamics (for 
a recent review, see [20]). We use one-dimensional longitudinal 
Bjorken flow to account for the expansion of the medium along the 
beam axis. We find that in general the anisotropy coefficients in a 
thermalized medium are nonvanishing and depend on the flow of 
the medium as well as on the transverse momentum and invariant 
mass of the virtual photon.

Throughout the text we use natural units, with c = h̄ = kB = 1.
2. Angular distribution

Consider the annihilation process X1 X2 → γ ∗ → �+�− , where 
X1 and X2 denote a particle and its antiparticle, while γ ∗ is the 
intermediate virtual photon, which decays into a lepton–antilepton 
pair. The rate per unit volume for this process can be written 
as [21,22]

d�

d4q
= e4

q4

∫
d3l+

(2π)32E+
d3l−

(2π)32E−
W μν Lμνδ(4)(q − l+ − l−),

(2)

where E± =
√

|l±|2 + m2
� , m� is the lepton mass, e its charge and 

Lμν the lepton tensor

Lμν = 2(−q2 gμν + qμqν − �lμ�lν). (3)

Here lμ+ and lμ− are the antilepton and lepton momenta, while qμ ≡
lμ+ + lμ− is the virtual photon momentum, and �lμ ≡ lμ+ − lμ− .

For dilepton emission from a medium in local thermodynamic 
equilibrium, the tensor W μν , which describes the annihilation of 
X1 and X2 into a virtual photon, is given by an ensemble average

W μν = 〈wμν〉. (4)

The tensor wμν , which describes the elementary process, will be 
discussed below and in Sect. 2.2. The ensemble average, denoted 
by the brackets in (4), is of the form

〈A〉 =
∫

d3 p1

(2π)32E1

d3 p2

(2π)32E2
(2π)4δ(4)(q − p1 − p2)

× 1

e(u·p1)/T ± 1

1

e(u·p2)/T ± 1
A. (5)

Here pμ
1 and pμ

2 are the momenta of X1 and X2, respectively, 
E1,2 = √|p1,2|2 + m2, T is the temperature and

uμ = (γ ,γ v) (6)

is the four velocity of the medium. The plus and minus signs in 
the distribution functions in (5) apply when the particles X1 and 
X2 are fermions or bosons, respectively.

The tensor wμν in Eq. (4) is given in terms of the matrix ele-
ments of the electromagnetic current operator Jμ ,

wμν =
∑
pol

Mprod
μ Mprod∗

ν , (7)

where

Mprod
μ = 〈0| Jμ|X1 X2〉. (8)

The sum in (7) is over the spin states of X1 and X2.
The most general structure for W μν is composed of the metric 

tensor gμν and the two four vectors that we have at our disposal, 
qμ and uμ . By requiring that W μν is symmetric and current con-
serving, one finds

W μν = W1

(
gμν − qμqν

q2

)

+ W2

(
uμ − u·q

q2
qμ

)(
uν − u·q

q2
qν

)
, (9)

where W1 and W2 are Lorentz invariant functions, similar to the 
structure functions in deep inelastic scattering, that depend on q2, 
u ·q and the temperature T . The Lorentz scalars in (9) are given by
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W1 = αa − β

2a
, W2 = 3β − αa

2a2
, (10)

where α ≡ gμν W μν , β ≡ uμuν W μν and a = 1 − (u·q)2

q2 .

2.1. Dilepton production rate

Starting from Eq. (2), we can write the angular distribution of 
the lepton pair in the photon rest frame as

d �

d4qd��

= α2

32π4

1

q4

√
1 − 4m2

�/q2 Wμν Lμν, (11)

where α = e2/4π . In the helicity frame the polar angle is mea-
sured relative to the three momentum of the photon in a reference 
frame, while the azimuthal angle is measured with respect to the 
plane formed by the beam axis and the photon momentum, the 
production plane.

Using Eq. (3) and Eq. (9), the angular distribution becomes

d �

d4qd��

= α2

16π4

1

q4

√
1 − 4m2

�/q2
[
(−3q2 − �l2)W1

+ [−q2 + (u·q)2 − (u·�l)2]W2

]
. (12)

The angular dependence is expressed in polar coordinates in the 
helicity frame:

�lμ = (0,2|l| sin θ� cosφ�,2|l| sin θ� sinφ�,2|l| cos θ�). (13)

We note that the only dependence on lepton angles in (12) is in 
the (u· �l)2 term. The angular distribution is parametrized in the 
general form (1).

As mentioned in the introduction, the anisotropy coefficients 
depend on the choice of the quantization axis. The coefficients 
in different coordinate systems are related by rotations [16]. For 
a fluid cell with a given velocity uμ , the anisotropy coefficients 
λθ , λφ , λθφ , λ⊥

φ , λ⊥
θφ and the normalization N are obtained from 

Eq. (12).

2.2. Drell–Yan and pion annihilation

For the Drell–Yan process (i.e., quark–antiquark annihilation 
qq̄ → e+e−), the current is given by Jμq = ∑

f e f ψ̄ f γ
μψ f , where 

ψ is the quark field and e f the quark charges. Thus, the explicit 
expression for the wμν tensor of Eq. (7) is formally the same as 
the lepton tensor:

wμν = 2 Cq (−q2 gμν + qμqν − �pμ�pν), (14)

where pμ
1 and pμ

2 are the quark and antiquark momenta and 
�pμ = pμ

1 − pμ
2 . The sum over quark flavors and colors yields 

the factor Cq = Nc
∑

f e2
f , where Nc is the number of colors. For 

two flavors and three colors Cq = 5/3. The scalar contractions 
α ≡ gμν W μν and β ≡ uμuν W μν are given by

α = 2 Cq (−3q2 − �p2)〈1〉, (15)

β = 2 Cq

[
((u · q)2 − q2)〈1〉 − 〈(u · �p)2〉

]
, (16)

where we use the notation introduced in Eq. (5).
In the case of the pion annihilation process (i.e., π+π− →

e+e−), the photon couples to the pion convection current Jμπ =
(�−∂μ�+ −�+∂μ�−), where �+ (�−) is the field of the positive 
(negative) pion. For the annihilation process, the current is propor-
tional to the difference of the momenta of the two pions �pμ . 
One thus finds

wμν = �pμ�pν, (17)
which leads to

α = �p2〈1〉, β = 〈(u · �p)2〉. (18)

We note that �p2 = 4m2 − q2 is a constant for a given value 
of the photon invariant mass M = √

q2. Here m is the mass of the 
incident particles.

3. Medium and flow

In this section, we compute the anisotropy coefficients for 
dilepton emission from a medium. We consider two cases:
(i) a static medium with uniform temperature and (ii) a longi-
tudinally expanding system with Bjorken flow.

3.1. Static uniform medium

In the photon rest frame, the collective velocity of the fluid is in 
the direction opposite to the photon momentum in the fluid rest 
frame. Thus, in the helicity frame, where the z-axis is along the 
photon momentum, the fluid velocity is given by

uμ = γz(1, 0, 0, vz) = 1

M
(Eγ ,−q), (19)

where γz ≡ 1/
√

1 − v2
z = Eγ /M , vz = −|q|/Eγ , while Eγ = q0 and 

q are the energy and momentum of the virtual photon in the fluid 
rest frame, respectively.

In the photon rest frame, the phase-space integrals in Eq. (5)
are, using the azimuthal symmetry, reduced to an integral over the 
angle ϑ between the momentum of one of the incident particles 
(q or π−) and the fluid velocity

〈A〉 = 1

8π

1∫
−1

d(cosϑ)χ
1

e(u·p1)/T ± 1

1

e(u·p2)/T ± 1
A. (20)

Here χ ≡ √
1 − 4m2/M2 and

u · p1 = Eγ

2
+ |q|

2
χ cosϑ, (21)

u · p2 = Eγ

2
− |q|

2
χ cosϑ. (22)

For a static system, the multiplicity is given by an integral of 
the rate d � over space-time. This yields an overall factor V te
(volume × emission time), which cancels in the anisotropy coef-
ficients.

Owing to the azimuthal symmetry of the static uniform system 
in the helicity frame,1 the only non-vanishing anisotropy coeffi-
cient is in this case λθ , corresponding to a tensor polarized virtual 
photon [23]. Moreover, in the limit q → 0, the distribution func-
tions of the initial state in Eq. (20) are spherically symmetric, 
leading to zero polarization and vanishing anisotropy coefficients.

We note that in the Boltzmann limit, u · p1, u · p2 � T , the 
angular dependence of the distribution functions in (20) cancels, 
implying that W2 vanishes and that the virtual photon is unpolar-
ized [21]. Thus, the anisotropy of dileptons emitted from thermal 
systems in annihilation processes is a consequence of quantum 
statistics. It follows that the anisotropy coefficients approach zero 
for large photon momenta, or large invariant masses, where the 
distribution functions of the initial particles are well approximated 
by the Boltzmann distribution.

1 We stress that, for a static system, the azimuthal symmetry is a general prop-
erty, independent of the elementary emission process.
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Furthermore, for particles of non-zero mass m in the initial 
state, the anisotropy coefficients vanish also in the limit M → 2m, 
since in this limit, the distribution functions in (20) are indepen-
dent of the orientation of the momenta2 p1 and p2.

3.2. Longitudinal flow

In the case of a purely-longitudinal boost-invariant expan-
sion of a transversely homogeneous system first considered by 
Bjorken [24], all scalar functions of space and time depend only on 
the longitudinal proper time τ ≡ √

t2 − z2. The fluid four-velocity 
is, in the center-of-momentum (c.m.) frame, given by

uμ = (coshη, 0, 0, sinhη) , (23)

where η ≡ tanh−1(z/t) is the space-time rapidity. In the absence 
of viscosity, the temperature evolution of the system is given by 
the Bjorken scaling solution,

T ∝ τ−1/3. (24)

Here a conformal equation-of-state is assumed, with ε = 3P ∝ T 4, 
where ε is the energy density and P the pressure of the system.

The photon momentum can, in the c.m. frame, be written as

qμ =(MT cosh y, qT cosφγ , qT sinφγ , MT sinh y), (25)

where y is the longitudinal rapidity of the photon, qT its trans-

verse momentum and MT ≡
√

M2 + q2
T its transverse mass. In the 

rest frame of a cell, moving with fluid rapidity η, the same photon 
has momentum

(q′)μ = (MT cosh(y − η), qT cosφγ , qT sinφγ , MT sinh(y − η)).

(26)

For a given fluid cell, the z-axis of the corresponding helic-
ity frame is aligned with the momentum of the photon in the 
rest frame of the cell (26). Consequently, the helicity frames for 
photons emitted from cells with different fluid velocities do not 
coincide. However, in order to define the polarization of the en-
semble of photons, emitted from all fluid cells, one needs to 
choose a unique reference frame. A natural choice is the helic-
ity frame of a cell, which is at rest in the c.m. frame. The z-axis 
is then aligned with the spatial part of qμ , (25). In the follow-
ing this frame is denoted H X . It follows that the helicity frame 
of a cell moving with rapidity η, H X ′ , is rotated with respect to 
H X . The rotation angle equals that between the spatial parts of qμ

and (q′)μ , (25) and (26). For a photon emitted transversely to the 
beam axis in the c.m. frame, i.e., with y = 0, this angle is given by 
ξ = arctan (−(MT /qT ) sinhη).

Another tenable choice for the reference frame is defined by 
choosing the z-axis perpendicular to the beam axis, irrespective of 
the direction of the photon. Clearly, this frame coincides with H X
for y = 0.

The Lorentz invariant structure functions W1 and W2 are, for 
each cell, computed as in a static, uniform medium. Consequently, 
in the corresponding helicity frame (H X ′), the emitted photon is 
tensor polarized and the only non-zero anisotropy parameter is λθ . 
The contribution of the fluid cell to the angular distribution of the 
lepton pairs in H X is then obtained by evaluating (12) in that 
frame. Clearly, the fluid four-velocity uμ in H X depends on the 

2 Since all averages defined by (20) vanish for χ → 0, this is the case also for the 
cross section (1). However, the contributions to the dilepton anisotropy vanish with 
a higher power of χ , implying that λθ ∝ χ2 for χ → 0.
fluid rapidity η in the c.m. frame. The rotation from H X ′ to H X
yields non-zero contributions to λφ and λθφ [16].

Finally, the integration of the dilepton rate over the space-time 
evolution of the system is in a symmetric, central collision per-
formed using

dN

d2qT dM2dy
= π R2

A

τ f∫
τi

dτ τ

∞∫
−∞

dη

(
1

2

dN

d4xd4q

)
, (27)

where τi and τ f are initial and final proper time of the specific 
phase we are considering and R A = 1.2A1/3 is the nuclear radius, 
A being the nucleon number of the incident ions. The integrand in 
Eq. (27) depends on the integration variables τ and η through T
and u· q.

At this point, several comments are in order. i) The integra-
tion over fluid cells with different rapidities in Eq. (27), leads 
to non-vanishing λφ and λθφ in the H X frame.3 Thus, not only 
anisotropies in the momentum distribution of the emitting par-
ticles [8], but also collective flow is reflected in the polarization 
observables. ii) Even though the Bjorken solution is boost invariant, 
the resulting anisotropy coefficients, defined in the reference frame 
H X , depend on the photon rapidity y. This is because the quanti-
zation axis in the H X frame is aligned with the photon momentum 
in the c.m. frame (25). Nevertheless, for the photon emission rate 
per unit volume d�/d4q, obtained by integrating Eq. (1) over the 
lepton angles �� , longitudinal boost invariance is recovered. This 
implies that the combination N (1 + λθ/3), integrated over d4x, 
is independent of y. iii) Moreover, for the Bjorken solution, the 
combination N (λθ + 3λφ) is invariant under longitudinal Lorentz 
boosts.

We stress that the above invariances follow from the assump-
tions of local thermodynamic equilibrium and longitudinal boost 
invariance and are independent of the production process. As 
noted above, the anisotropy coefficients, λn (n = θ, φ etc.), are 
frame dependent, i.e., they depend on the choice of quantization 
axis. However, it is possible to define frame-invariant combina-
tions, like [16,25]

λ̃ ≡ λθ + 3λφ

1 − λφ

. (28)

In the case of the Bjorken expansion, λ̃ is also invariant under 
Lorentz boosts along the beam axis.

4. Numerical results

In this section, we present numerical results for the anisotropy 
coefficients λθ and λ̃ for the Drell–Yan and pion-annihilation 
processes.4 We compute these coefficients for a static uniform 
medium and for a medium with longitudinal Bjorken expansion. 
In the Bjorken case, we evolve the system from the initial temper-
ature, Ti = 500 MeV (at initial proper time τi = 0.4 fm) to the 
final temperature T f = 160 MeV for the Drell–Yan process and 
from Ti = 160 MeV (τi = 12.2 fm) to T f = 120 MeV for the pion-
annihilation process. In the case of a static uniform medium, we 
use, in order to facilitate the comparison between the scenarios, 
the relevant average temperature for each process,

3 For zero photon rapidity y, λθφ is an odd function of fluid rapidity and hence 
vanishes after integrating over η with the Bjorken solution.

4 In the pion-annihilation process we use mπ = 139.6 MeV, while in the Drell–
Yan process we set the quark masses to zero.
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Fig. 2. (Color online) Anisotropy coefficients as functions of the virtual photon trans-
verse momentum at an invariant mass M = 0.6 GeV for (a) the Drell–Yan process, 
and (b) pion annihilation. The red dashed lines refer to λθ in the case of a static 
uniform medium, while the blue solid lines show λθ in the helicity frame for the 
longitudinal Bjorken expansion and the green dot-dashed lines the corresponding λ̃.

Fig. 3. (Color online) Anisotropy coefficients integrated over transverse momentum 
in the range between 0.6 GeV and 2 GeV as functions of the invariant mass M
for (a) the Drell–Yan and (b) the pion-annihilation processes. The red dashed lines 
refer to λθ in the case of a static uniform medium, the blue solid lines show λθ in 
the helicity frame for the longitudinal Bjorken expansion, and the green dot-dashed 
lines the corresponding λ̃.

Tav = 3

2
Ti T f

(
Ti + T f

T 2
i + Ti T f + T 2

f

)
, (29)

obtained using the Bjorken evolution, Eq. (24).
In Fig. 2, we show the anisotropy coefficients λθ and λ̃ against 

the photon transverse momentum at an invariant mass M =
0.6 GeV. The coefficients are shown for the Drell–Yan and pion 
annihilation processes for two velocity profiles describing a static 
and uniform medium and a longitudinal Bjorken expansion. We 
observe that, in the static case, the anisotropy coefficient tends 
to zero for small values of the photon transverse momentum and 
vanishes at qT = 0 GeV, for both processes, as expected.

For large values of qT the anisotropy coefficients again approach 
zero, because the momentum distribution functions are well ap-
proximated by the Boltzmann distribution, leading to unpolarized 
photons. We note that the anisotropy coefficients for pion annihi-
lation tend to zero faster than for the Drell–Yan process, owing to 
the non-zero pion mass and the lower average temperature in the 
hadronic phase.

In the case of the Bjorken expansion, (Fig. 2), the anisotropy 
coefficients do not vanish in the limit qT → 0. This is a conse-
quence of the fact that a photon with vanishing momentum in 
the c.m. frame, has a non-zero momentum in the local fluid rest 
frame, if emitted from a fluid element with flow. As in the static 
case, we observe that for large momenta the anisotropy coefficients 
approach zero, because the momentum distribution functions ap-
proach the Boltzmann limit.

In Fig. 3 the anisotropy coefficients, integrated over qT be-
tween 0.6 and 2 GeV, are shown as functions of the pho-
ton invariant mass M . Here the Boltzmann limit, with vanish-
ing anisotropy, is approached for large M . Moreover, the pion-
annihilation anisotropy coefficients vanish also in the limit M →
2mπ , as discussed in section 3.1 for a static medium.

Interestingly, the two processes considered yield rather simi-
lar anisotropy patterns, although the photon polarizations in the 
corresponding elementary reactions are distinctly different. In the 
Drell–Yan process, the photons are purely transverse (λθ = 1), 
while in the pion-annihilation process they are purely longitudi-
nal (λθ = −1) in a frame where the z-axis is along the “beam” axis, 
defined by the momenta of the incident particles in the c.m. frame. 
Now, when the incident particles are drawn from a Bose–Einstein 
distribution, momenta along the z axis of the helicity frame are 
preferred, while for a Fermi–Dirac distribution function, there is a 
slight preference for momenta in the plane orthogonal to that axis. 
These effects conspire to yield the resulting negative values for λθ

in the helicity frame, shown in Figs. 2 and 3.
In order to make a qualitative comparison with the data of 

NA60 [9], we perform an integration over the invariant mass, the 
photon transverse momentum and the rapidity in the intervals 
0.4 GeV < M < 0.9 GeV, 0.6 GeV < qT < 2 GeV and 0.3 < y < 1.3, 
respectively. To be precise, the resulting λn (n = θ, φ etc.) is the 
ratio of 

∫
Nλn and 

∫
N , where the integral signs indicate the in-

tegration over photon kinematics (cf. Eq. (1)). In this context, we 
note that the relations between anisotropy coefficients in different 
frames [16] are at best approximate for the “integrated” quanti-
ties, since the rotation angle δ (cf. Fig. 1) depends on the photon 
kinematics, i.e., on the integration variables.

We use Ti = 250 and T f = 160 MeV for the Drell–Yan pro-
cess and Ti = 160 and T f = 120 MeV for pion annihilation. In 
the helicity frame, we find λH X

θ 
 −0.008 and λH X
φ 
 −0.009

for the Drell–Yan and λH X
θ 
 −0.014 and λH X

φ 
 −0.016 for the 
pion-annihilation processes. Correspondingly, in the Collins–Soper 
frame, the Drell–Yan process yields λC S

θ 
 0.002 and λC S
φ 
 −0.012

and the pion annihilation process λC S
θ 
 0.007 and λC S

φ 
 −0.023, 
respectively.

We have also computed λ̃, which is frame invariant, also when 
integrated over the photon kinematics. For the Drell–Yan pro-
cess, we find λ̃ 
 −0.034, while for pion annihilation we obtain 
λ̃ 
 −0.061. We note that the integrated λ̃ in all cases differs con-
siderably from the corresponding λθ , and that the integrated λφ

is similar in magnitude or even larger than λθ . This implies that, 
for Bjorken flow, the y-dependence of the anisotropy coefficients 
is fairly strong both in the H X and C S frames and that both λθ

and λφ are important for characterizing the polarization of virtual 
photons emitted from a longitudinally expanding system.

5. Summary and outlook

In this work we studied the polarization of virtual photons in 
heavy-ion collisions. In particular, we presented a general frame-
work for studying photon polarization and the associated angular 
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anisotropies of dileptons produced at high collision energies. We 
showed, using two examples, how the velocity and temperature 
profiles describing the evolution of the medium are reflected in 
the anisotropy coefficients.

Two basic processes were considered: quark–antiquark annihi-
lation in the QGP, and pion annihilation in the hadronic phase. We 
specifically studied the dilepton anisotropies for emission from a 
static uniform system in global thermodynamic equilibrium and a 
longitudinally expanding hydrodynamic system. Our results show 
that virtual photons originating from a static medium in thermal 
equilibrium are in general tensor polarized in the helicity frame. 
For annihilation processes, this effect is due to quantum statistics, 
since the polarization vanishes in the Boltzmann limit for the emit-
ting particles.

For both processes we found a negative anisotropy coefficient 
λθ , with a maximum magnitude of about 5%. Integrated over M , qT

and y, the coefficient λθ is on the order of 1% or smaller. The latter 
is compatible with the finding of the NA60 Collaboration [9] that 
the anisotropy coefficients are small, and within the experimental 
error, compatible with zero. Nevertheless, our results indicate that 
future experiments with higher statistics, could provide an unam-
biguous signal of virtual photon polarization effects in heavy-ion 
collisions, using, e.g., the frame-invariant combination λ̃.

In this context, we note that the large transverse polarization 
obtained by the HADES Collaboration [10] in Ar-KCl at 1.76 AGeV
is not consistent with the annihilation processes in local thermal 
equilibrium considered here. The observed anisotropy may be due 
to non-equilibrium effects or dominated by another process, like, 
e.g., the � Dalitz decay.

The consequences of transverse flow and viscous effects on 
photon polarization are under study and will be presented in a fu-
ture publication. More generally, the framework presented in this 
paper can be easily implemented in a realistic hydrodynamic sim-
ulation of relativistic heavy-ion collisions in order to explore the 
consequences of non-trivial medium properties on the dilepton 
anisotropy. Specifically, the role of magnetic fields, fluid vorticity 
and non-equilibrium configurations are problems of current inter-
est, where photon polarization may provide useful complementary 
information. These problems require a straightforward extension 
of the formalism presented here, to allow for additional anisotropy 
axes.

Finally, since the anisotropy coefficients depend on the elemen-
tary reaction, a systematic study of polarization observables for all 
important dilepton emission processes would be useful. In partic-
ular, the polarization of photons (real and virtual) emitted in the 
so called Compton processes g + q → q +γ and g + q → q +γ � →
q + �+�− (and the corresponding processes involving antiquarks) 
may provide information on the anisotropies of the momentum 
distributions of the emitting particles [6–8].
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