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We present a systematic study of the normalized symmetric cumulants, NSC(n,m), at the eccentricity 
level in proton-proton interactions at 

√
s = 13 TeV within a wounded hot spot approach. We focus our 

attention on the influence of spatial correlations between the proton constituents, in our case gluonic hot 
spots, on this observable. We notice that the presence of short-range repulsive correlations between the 
hot spots systematically decreases the values of NSC(2, 3) and NSC(2, 4) in mid- to ultra-central collisions 
while increases them in peripheral interactions. In the case of NSC(2, 3) we find that, as suggested by 
data, an anti-correlation of ε2 and ε3 in ultra-central collisions, i.e. NSC(2, 3) < 0, is possible within the 
correlated scenario while it never occurs without correlations when the number of gluonic hot spots is 
set to three. We attribute this fact to the decisive role of correlations on enlarging the probability of 
interaction topologies that reduce the value of NSC(2, 3) and, eventually, make it negative. Further, we 
explore the dependence of our conclusions on the number of hot spots, the values of the hot spot radius 
and the repulsive core distance. Our results add evidence to the idea that considering spatial correlations 
between the subnucleonic degrees of freedom of the proton may have a strong impact on the initial state 
properties of proton-proton interactions [1].

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The vast amount of high-precision data collected in the recent 
years at the Large Hadron Collider (LHC) has allowed to go beyond 
the analysis of event-averaged observables and explore higher or-
der moments of their probability distributions. In the context of 
heavy ion collisions, a very recent tool to study the properties of 
the Quark Gluon Plasma (QGP) are the correlations between dif-
ferent flow harmonics vn i.e. the symmetric cumulants defined as 
[2,3]

SC(n,m) = 〈v2
n v2

m〉 − 〈v2
n〉〈v2

m〉 (1)

or in their normalized version

NSC(n,m) = 〈v2
n v2

m〉 − 〈v2
n〉〈v2

m〉
〈v2

n〉〈v2
m〉 (2)
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that eliminate the dependence on the absolute magnitude of vn(m) . 
The measurement of Eq. (1) would be zero by definition, if the 
fluctuations of vn and vm were totally uncorrelated, in the same 
way as the Pearson’s correlation coefficient. Instead, a positive 
value of Eq. (1) implies that an event with vn > 〈vn〉 would be 
more likely to have vm > 〈vm〉. In particular, by measuring SC(2,3) 
we can gain information about initial state fluctuations whereas 
SC(2,4) is mostly sensitive to the strongly interacting medium 
properties [4].

The experimental study of symmetric cumulants was pioneered 
by the ALICE Collaboration [5] in Pb+Pb collisions at 

√
sNN =

2.76 TeV. Recently, the CMS Collaboration has performed an ex-
perimental analysis of the symmetric cumulants as a function of 
the multiplicity in the three collision systems available at the LHC: 
p+p, p+Pb and Pb+Pb [6]. The experimental results suggest a 
similar pattern across systems. Concretely, SC(2, 4) is always posi-
tive although its multiplicity dependence varies from p+p to Pb+Pb. 
Further, NSC(2, 4) is clearly modified when varying the system 
size. On the contrary, the sign of SC(2, 3) is strongly multiplicity-
dependent: at low multiplicities SC(2, 3) is found to be positive. 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2018.01.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:albacete@ugr.es
mailto:petersen@fias.uni-frankfurt.de
mailto:ontoso@fias.uni-frankfurt.de
https://doi.org/10.1016/j.physletb.2018.01.011
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.01.011&domain=pdf


J.L. Albacete et al. / Physics Letters B 778 (2018) 128–136 129
However, it turns out to be negative for very high multiplicities, 
Noffline

trk > 60 in both p+Pb and Pb+Pb and Noffline
trk ∼ 100 in p+p. 

Moreover, NSC(2, 3) in the high-multiplicity regime is found to 
have not only the same sign in the three collision systems but 
the same quantitative value as well. It should be noted that in 
the p+p case although the trend of NSC(2, 3) to smaller values 
when increasing the multiplicity is visible, the systematic uncer-
tainties make it compatible with zero. Relating the negative sign 
of NSC(2, 3) at very high multiplicities with the initial geometry of 
the proton is the main goal of this work.

Previous to the symmetric cumulants study the similarities be-
tween high-multiplicity proton-proton interactions with p+Pb and 
Pb+Pb were already observed in the individual flow harmonic 
coefficients [7–9] and the enhanced production of multi-strange 
hadrons measurements [10]. All together, the experimental data 
is constantly reigniting the debate on whether collective effects, 
precedently attributed to the formation of QGP droplets, are be-
ing observed in small collision systems such as p+p and p+Pb 
[11–14].

From a theoretical point of view, the well established paradigm 
of either Monte Carlo Glauber [4] or Color Glass Condensate 
[15–17] initial conditions followed by viscous hydrodynamic evolu-
tion has successfully described the data on SC(n,m) in the Pb+Pb 
case. Turning to smaller systems, the situation is less conclusive. 
On the one hand, there have been attempts to describe the values 
of SC(n,m) in p+Pb by computing them in terms of eccentricities, 
i.e. replacing vn(m) by εn(m) in Eqs. (1)–(2), within wounded quark 
models. These studies lead to the correct negative sign of SC(2,3) 
at high multiplicities but the magnitude is off [18–20]. Also with-
out hydrodynamic evolution, qualitative agreement with the p+Pb 
results has been achieved in an initial state model where the par-
tons in the projectile coherently scatter off the color fields in the 
heavy nuclear target [21,22]. Up to today we are unaware of any 
theoretical prediction for the values of SC(n,m) in p+p interactions 
at LHC energies, although results for RHIC energies were presented 
in [18].

A key ingredient in the computation of the symmetric cumu-
lants in any of these frameworks is the parametrization of the 
initial geometry of the collision. Especially the smaller systems ex-
hibit a high degree of sensitivity to the description of the proton 
structure and its fluctuations. The importance of considering sub-
nucleonic degrees of freedom when describing the elliptic flow in 
p+Pb within the IP-Glasma framework was realized in [23]. In par-
allel, considering the proton constituents to be subjected to spatial 
correlations has been shown to have a substantial impact on the 
values of ε2 and ε3 [1] beside other features of hadronic interac-
tions such as the hollowness effect [24,25]. This work constitutes 
the natural extension of our previous studies on the initial state 
properties of proton-proton collisions in terms of eccentricities [1]
by exploring not only their mean but their fluctuations. As we shall 
explain along the manuscript we rely, for simplicity, on a geomet-
rical picture of the collision. Therefore we use Monte Carlo Glauber 
[26] simulations, where the proton is composed by, in principle, 3 
gluonic hot spots. By relating the hot spots to the gluon clouds ra-
diated by the valence quarks considering the proton to be formed 
by 3 constituents becomes natural. However, the possibility of hav-
ing a different number, Nhs , that may account for other elements 
such as the large-x sea quarks is explored in this work. The cen-
trality selection is done in terms of the entropy deposition as a 
proxy of particle production. We find that the inclusion of short-
range repulsive correlations has a critical impact on the sign of 
NSC(2, 3) in ultra central collisions. The net effect of the presence 
of correlations is to reduce the value of NSC(2, 3) with respect to 
the uncorrelated scenario in the more central collisions and even 
push it to negative values in the highest centrality bins. An in-
tuitive interpretation of this result is given by characterizing the 
topology of the interaction in terms of the number of wounded 
hot spots and of collisions between them. In the case of NSC(2, 4), 
the results are qualitatively the same as for NSC(2, 3) although it 
always remains positive within the regions of the parameter space 
explored in this work. In order to disentangle the possible phe-
nomena that could contribute to the negative sign of NSC(2, 3) we 
compute it for different values of the parameter space. We con-
clude that, as expected, not only the presence of correlations is 
important but also the interplay between the different scales of 
the problem, that is, the number of gluonic hot spots, their ra-
dius and the value of the repulsive distance. The radius of the hot 
spot, Rhs , has been studied, in terms of the correlation length of 
the gluon field strengths inside hadrons, via lattice QCD calcula-
tions [27] and within perturbative [28] and non-perturbative [29]
frameworks. On the contrary the value of the repulsive distance, 
rc , apart from being different from zero [25], is essentially uncon-
strained. So it is the number of gluonic hot spots. Thus, this study 
guided by the experimental data on NSC(n,m) helps to restrict the 
values of Nhs , Rhs and rc within our model.

The organization of the paper is as follow. We begin by review-
ing the main ingredients of our model in Sec. 2. Then, in Sec. 3, 
the results for NSC(2, 3) and NSC(2, 4) as a function of centrality 
are presented. As the most interesting results occur on the 0–1% 
centrality bin, we focus on it in Sec. 4 and study the role of the 
interaction topology together with a scan of the parameter space. 
Further, we study the sensitivity of our results to the number of 
constituents in each proton in Sec. 5. Finally, our conclusions and 
future lines of work are given in Sec. 6.

2. Wounded hot spots model

In this section, we briefly expose the main ingredients of our 
Monte Carlo Glauber event generator for proton-proton interac-
tions that follows similar steps than others in the literature [30,
31]. For a detailed description of the model see [1]. In the fol-
lowing, a proton is considered to be formed by 3 hot spots. The 
comparison of our results for Nhs = (2, 4) are given in Sec. 5.

In each p+p event, after generating a random impact parameter 
for the collision, we sample the transverse positions of the three 
hot spots in each proton {�si} according to the distribution

D(�s1,�s2,�s3) = C
3∏

i=1

e−s2
i /R2

δ(2)(�s1 + �s2 + �s3)×

3∏
i< j

i, j=1

(
1 − e−μ|�si−�s j |2/R2

)
. (3)

where C is a normalization constant and R is the average radius. 
It should be noted that the extension of Eq. (3) to an arbitrary 
number of hot spots is direct. Most of the models in the literature 
[12,20,23,32–35] implement a proton geometry following the two 
first terms of Eq. (3) i.e. the hot spots are distributed according to 
Gaussian functions with the natural constraint of fixing the cen-
tre of mass of the constituents system to the centre of the proton. 
However, with this set up the most probable configurations are the 
ones with three hot spots in the middle of the proton and the one 
with two hot spots fully or partially overlapping and the third one 
separated due to the δ-function like in the quark-diquark model. 
The third term of Eq. (3) allows us to go beyond these approaches 
by implementing short range repulsive correlations among all pairs 
of hot spots that effectively enlarge the mean transverse separation 
|�si −�s j | between them. The size of this correlation is controlled by 
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an effective repulsive core distance r2
c ≡ R2/μ. The original moti-

vation to consider these additional spatial correlations within our 
model was their critical impact on the dynamical explanation of 
the hollowness effect [25]. Although it constitutes the main nov-
elty of our phenomenological model with respect to others in the 
literature in this context it should be noted that the necessity of 
spatial correlations has been already entertained in the nuclear 
case [36–38]. Further, a similar mechanism prevents the ropes in 
the DIPSY event generator to be in a highly energetic color state 
[39]. All along the manuscript we will focus on comparing the 
results obtained in the uncorrelated scenario (μ → ∞) with the 
correlated case.

Once the hot spots are located in both target and projectile, 
the next step in the Monte Carlo simulation is to decide which of 
them have been wounded [40,41] i.e. have collided at least once. 
Our collision criterion consists of sampling the inelasticity density

G in(d) = 2e−d2/2R2
hs − (1 + ρ2

hs)e−d2/R2
hs (4)

that depends on the radius of the hot spot Rhs , the transverse dis-
tance between the pair of hot spots considered d and the ratio of 
real and imaginary parts of the hot spot-hot spot scattering ampli-
tude ρhs . Thus, in each event, the maximum number of wounded 
hot spots Nw and collisions Ncoll is 6 and 9 respectively. In Sec-
tion 4.1 we will use these two variables to characterize interaction 
topologies.

Subsequently, we consider that each wounded hot spot located 
at (xw , yw ) deposits a random amount of entropy according to

s(x, y) = s0
1

π R2
hs

exp

(
− (x − xw)2 + (y − yw)2

R2
hs

)
(5)

where s0 fluctuates independently for each wounded hot spot 
following a double Gamma distribution where parameters, given 
in Table 2, are fixed by the assumption that entropy deposi-
tion is related to particle production [1]. Moreover, the centrality 
classes considered ([0–0.1%], [0.1–1%], [1–5%], [5–10%], [10–20%],
[20–30%] . . . [90–100%]) are defined via the entropy deposition.

At this point, all the wounded hot spots contribute to the cal-
culation of the spatial eccentricity moments that characterize the 
initial geometry anisotropy of the collision

εn =

√√√√〈
Nw∑
i=1

rn
i cos(nφi)〉2 + 〈

Nw∑
i=1

rn
i sin(nφi)〉2

〈
Nw∑
i=1

rn
i 〉

(6)

where 〈·〉 in Eq. (6) denotes the average weighted by the entropy 
deposition given by Eq. (5). We compute Eq. (6) in the participant 
plane on an event-by-event basis.

Regarding the model parameters, by default we use the same 
values as the ones from [1] at 

√
s = 13 TeV given in Table 1. How-

ever, in Section 4.2 we extend our calculation to other regions of 
the parameter space. The three correlation scenarios under consid-
eration in this work are the following: first, rc = 0.4 refers to the 
correlated scenario with {Rhs , R , ρhs} constrained to reproduce the 
extrapolated values of the total cross section and the ratio of real 
and imaginary parts of the scattering amplitude [42]. In the second 
case we impose the latter constraints to {Rhs , R , ρhs} after setting 
rc = 0. However, in order to do a more realistic comparison be-
tween the correlated and uncorrelated scenarios it is necessary to 
avoid the intrinsic swelling effects due to the presence of repulsive 
correlations. The case labeled as “〈s1〉 fixed” constitutes an attempt 
Table 1
Default values of the parameters characterizing the hot spots distribution Eq. (3)
and their probability to interact Eq. (4). We set ρhs = 0.1 in all cases. On the last 
column, the values of R for the “〈s1〉 fixed” case are shown.

rc = 0.4 fm rc = 0 〈s1〉 fixed

Rhs [fm] R [fm] R p [fm] Rhs [fm] R [fm] R p [fm] R [fm]

0.32 0.76 1.34 0.41 0.75 1.28 0.87

Table 2
Default values of the parameters of the double Gamma distribution that character-
izes the fluctuating amount of entropy each wounded hot spot deposits, s0.

n1 κ1 n2 κ2 α

rc = 0.4 fm 27.29 1.51 4.68 1.66 0.37
rc = 0 26.26 1.55 4.16 1.79 0.31
〈s1〉 fixed 26.47 1.42 4.54 1.73 0.37

to perform this task by fixing the r.m.s of the spatial probabil-
ity distribution given by Eq. (3) to be the same as in the rc = 0.4
scenario. In the following plots the uncorrelated results will be ex-
hibited as a band bounded by the rc = 0 and 〈s1〉 fixed cases to 
display the different possibilities considered.

Once the building blocks of our model have been presented in 
the next sections we display its results for the normalized sym-
metric cumulants given by Eq. (2) obtained after generating 4.5 
million events. Only the events with at least two wounded hot 
spots contribute to the averages in the following plots.

3. Normalized symmetric cumulants vs centrality

The most important result of this paper is shown in Fig. 1
where we represent the event-averaged value of NSC(2, 3) as a 
function of centrality. A common feature in the three correlation 
scenarios is the fact that NSC(2, 3) decreases from peripheral to 
central collisions as suggested by data. Focusing on the effect of 
the short-range repulsive correlations we observe how they en-
large the positive correlation of ε2 and ε3 in the peripheral regime. 
However, their repercussion in the very central collisions is pre-
cisely the opposite. Finally, the most striking effect of the spa-
tial correlations is observed in the ultra-central bins [0–0.1%] and 
[0.1–1%]: only in the rc = 0.4 case there exists an anti-correlation 
of ε2 and ε3 as data dictates. Then, we conclude that the exper-
imental evidence of NSC(2, 3) < 0 may back up the necessity to 
consider correlated proton constituents.

An important comment is in order at this point. A direct com-
parison with the experimental data is not straightforward espe-
cially in the low multiplicity regime where non-flow dijet con-
tributions, totally absent in our initial state coordinate space ap-
proach, dominate the measured values of NSC(n,m). Another im-
portant issue is to ensure that the centrality bin selection is exactly 
the same both in our approach based on the entropy deposition 
and in the data in terms of Noffline

trk [7]. Extending our calculation 
to higher centrality bins is doable but computationally expensive. 
However, a precise theory-to-data comparison, although desirable, 
is not the main objective of this work. Our purpose is to present, 
for the first time in the literature, a particular mechanism i.e. the 
presence of spatial correlations inside the proton that builds up a 
negative value of NSC(2, 3) in the highest centrality bin at the ge-
ometric level.

In the case of NSC(2, 4), the role of the repulsive correlations 
is qualitatively the same as in the NSC(2, 3) calculation: in periph-
eral collisions the value of NSC(2, 4) is larger in the rc = 0.4 case 
than in the uncorrelated scenarios and the situation gets reversed 
at barely the same centrality bin. As well, we find the absolute 
value of NSC(2, 4) to be larger than NSC(2, 3) in all the central-
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Fig. 1. Average value of NSC(2, 3) as a function of the centrality range for rc = 0
(blue short-dashed line connecting open blue circles), 〈s1〉 fixed (purple short-
dashed line connecting filled purple circles) and rc = 0.4 fm (red solid line con-
necting filled red squares). The error bars represent statistical uncertainties while 
the light violet band indicates the theoretical uncertainty associated to the choice 
of parameters that define the uncorrelated scenario. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 2. Average value of NSC(2, 4) as a function of the centrality range for rc = 0
(blue short-dashed line connecting blue open circles), 〈s1〉 fixed (purple short-
dashed line connecting filled purple circles) and rc = 0.4 fm (red solid line con-
necting filled red squares). The error bars represent statistical uncertainties while 
the light violet band indicates the theoretical uncertainty associated to the choice 
of parameters that define the uncorrelated scenario. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

ity bins as it is the case in the data (Fig. 2). We would also like to 
remark that in our approach the symmetric cumulants are almost 
flat in the mid-to-peripheral interactions but thanks to a dissection 
of the very central bins we see a clear centrality dependence. This 
is consistent with our previous calculations of the average values 
of the spatial eccentricity moments [1].

A geometric and intuitive interpretation of the fact that only 
in the correlated case NSC(2, 3) < 0 in the [0–1%] centrality bin 
is given in the following section. It should be noted that, for this 
purpose, we have merged the two highest centrality bins, [0–0.1%] 
and [0.1–1%], into a single one in order to improve the statistics.
Fig. 3. Average number of collisions as a function of the number of wounded hot 
spots for rc = 0 (open blue circles), 〈s1〉 fixed (filled purple circles) and rc = 0.4 fm 
(filled red squares). (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

4. Ultra-central events

All the results presented in this Section refer to the [0–1%] cen-
trality bin. We restrict our calculations to this bin because as we 
have emphasized in the previous section, we are interested in the 
change of sign of NSC(2, 3).

4.1. Role of the interaction topology

In order to capture the effect of the spatial correlations we 
characterize each proton-proton interaction by its number of 
wounded hot spots and the number of collisions (Nw , Ncoll), the 
two basic quantities of any Monte-Carlo Glauber calculation. We 
dub each (Nw , Ncoll)-configuration as interaction topology. In our 
case, given that we consider the proton to be formed by three hot 
spots Nw ∈ [2, 6] and Ncoll ∈ [1, 9].

We begin our analysis by computing the average number of col-
lisions as a function of the number of wounded hot spots for the 
three different scenarios introduced above. The results are shown 
in Fig. 3. First of all, as we describe the entropy deposition in an 
incoherent way i.e. on average the more wounded hot spots the 
more entropy is deposited, the configurations in which only two 
hot spots collide cannot create enough entropy to be part of the 
[0-1%] centrality bin. Then, the minimum number of wounded hot 
spots is three and, in this case, 〈Ncoll〉 = 2 in all the correlation sce-
narios as it is the only existing configuration. However, for Nw > 3
the average number of collisions starts to differ between the three 
different cases. We observe that 〈Ncoll〉 is systematically reduced 
when including repulsive correlations with respect to the uncor-
related cases. This effect has a very straightforward interpretation: 
enlarging the mean transverse distance between the hot spots re-
duces the probability of having interaction topologies with a high 
number of collisions. In other words, the repulsive correlations 
spread the hot spots in the transverse plane and as a consequence 
enhance the probability of the hot spots to collide by pairs over 
the configurations in which all hot spots in the projectile interact 
with all the others in the target, as it is schematically represented 
in Fig. 4.

To connect this fact with the total value of NSC(2, 3) we would 
like to understand the individual contributions from the different 
interaction topologies. For this purpose we define a weighted ver-
sion of NSC(n,m) denoted NSCw(n,m) as follows

NSCw(n,m) ≡ P(Nw) ·P(Nw |Ncoll) · NSC(n,m)

∣∣∣ (7)

Nw ,Ncoll
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Fig. 4. Sketch representing the interaction topologies preferred in the correlated case 
(left) and in the uncorrelated one (right). The purple arrows represent the collisions 
between the hot spots. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 5. Average value of NSCw(2,3) as a function of the number of collisions after se-
lecting the events with Nw = 6 for 〈s1〉 fixed (filled purple circles) and rc = 0.4 fm
(filled red squares). (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

where

• P(Nw) is the probability of having a certain number of 
wounded hot spots.

• For a given Nw , P(Nw |Ncoll) represents the probability of hav-
ing a certain number of collisions between the hot spots.

• NSC(n,m)

∣∣∣
Nw ,Ncoll

is the value of NSC(n,m) for each interaction 

topology.

The error of NSCw(n,m)is computed by adding the statistical uncer-
tainties of each term in Eq. (7) in quadrature. Essentially, by sum-
ming NSCw(n,m) over all the possible configurations (Nw , Ncoll) 
one recovers NSC(n,m). This new quantity allows us to decom-
pose the value of NSC(2, 3) and investigate the contribution of 
each interaction topology separately. From now on, to facilitate the 
discussion, we only show the comparison between 〈s1〉 fixed and 
rc = 0.4 scenarios. We have checked that the same conclusions as 
in the 〈s1〉 fixed case hold for rc = 0.

In Fig. 5 we show a particular example of the output of our cal-
culation for NSCw(2,3) by selecting the events with Nw = 6. Two 
important results can be extracted from this figure. First, as already 
suggested by Fig. 3, configurations with a large number of colli-
sions, e.g. Ncoll > 6, only occur in the uncorrelated case where the 
three hot spots are closer to each other or, equivalently, clustered. 
Second, and more important, the value of NSCw(2,3) shows a clear 
dependence on Ncoll: configurations with a smaller number of col-
lisions reduce the value of NSC(2, 3) and, eventually, contribute 
negatively. Then, in our picture, the inclusion of spatial correlations 
inside the proton modifies the weight of each interaction topology 
in such a way that these configurations are enhanced. This feature 
Fig. 6. Average value of NSCw(2,3) as a function of the number of collisions for 
different number of wounded hot spots. Top: rc = 0.4 fm case. Bottom: 〈s1〉 fixed 
case. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

provides a natural explanation for the different sign of NSC(2, 3)

in the uncorrelated and correlated scenarios.
Far from being a casual coincidence or an artifact this effect is 

observed for any number of wounded hot spots as it is depicted 
in Fig. 6. In the top pannel we show the event-averaged value of 
NSCw(2,3) with respect to the number of collisions for Nw = 3 to 
Nw = 6 for the rc = 0.4 case. Once again, the configurations that 
contribute more to the total value of NSC(2, 3) are the ones with a 
large number of wounded hot spots that interact a small amount 
of times. In opposition, as displayed in the bottom pannel, the in-
teraction topologies that have associated a negative NSC(2, 3) are 
extremely suppressed in the uncorrelated scenario where the con-
figuration with the biggest weight and precisely positive value of 
NSC(2, 3) is (Nw = 4, Ncoll = 3).

Then, by computing NSCw(2,3) for the different interaction 
topologies we find that the origin of the negative sign of NSC(2, 3)

in the rc = 0.4 scenario is due to the decisive role of correlations in 
modifying the weights of the diverse configurations in the Monte-
Carlo Glauber simulations.

4.2. Scan of the parameter space

To conclude our study we check the sensitivity of the obtained 
results on the values of the model parameters. Thus, we focus 
on the correlated scenario and study the dependence of NSC(2, 3)

on the radius of the hot spot and the repulsive core distance in 



J.L. Albacete et al. / Physics Letters B 778 (2018) 128–136 133
Fig. 7. Average value of NSC(2, 3) as a function of the radius of the hot spot for 
two different values of the repulsive distance: rc = 0.25 fm (filled green circles) and 
rc = 0.4 fm (filled red squares). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

the [0–1%] centrality bin. As it could be argued that rc = 0.4 fm 
is a large repulsive distance that may be unrealistic we explore 
the results of our model for rc = 0.25 fm. In the case of Rhs , 
we choose 4 different values in our scan {0.15, 0.25, 0.32, 0.4} fm. 
Consequently, the parameters of the Gamma distribution for the 
entropy deposition (see Eq. 9 in [1]) are extracted in all the cases 
by fitting the experimental charged-particle multiplicity distribu-
tions P(Nch) [43]. The other two parameters of our model, namely 
R and ρhs , remain fixed to their default values given in Table 1. 
Except in the chosen values for Rhs and rc appearing in Table 1, 
i.e. Rhs = 0.32 fm and rc = 0.4 fm, the requirement that our model 
reproduces the p+p total cross section and ρ is not fulfilled. Re-
moving these phenomenological constraints allows to pinpoint the 
effect of just varying the radius of the hot spot or the correlation 
distance in our results.

In Fig. 7 we represent the event-averaged value of NSC(2, 3) as 
a function of Rhs for the two different values of the correlation dis-
tance considered. First, we observe that by reducing the value of rc
for a given value of Rhs we get closer to the uncorrelated case and 
thus the value of NSC(2, 3) is enlarged and pushed to the positive 
regime, as expected. However, this statement is not universal as it 
breaks down when Rhs � 0.22 fm. In this scenario of very small 
values of the radius of the hot spot, i.e. Rhs � 0.22 fm, ε2 and ε3
are positively correlated for both values of the repulsive core dis-
tance and the value of NSC(2, 3) is larger in the rc = 0.4 case. This 
result indicates that NSC(2, 3) is not sensitive to Rhs and rc in-
dependently but to the interplay of both scales. In other words, 
NSC(2, 3) depends on a generic function of the radius of the hot 
spot and the repulsive core distance f (Rhs, rc).

As a first and simple guess to the functional form of f (Rhs, rc)

we choose it to be the ratio of the two scales involved i.e. 
f (Rhs, rc) = Rhs/rc . This ratio has a transparent interpretation by 
characterizing the degree of repulsion: if Rhs/rc � 1 the shape 
of the proton resembles the uncorrelated scenario where the 
hot spots can largely overlap in transverse space. The results of 
NSC(2, 3) for different values of Rhs/rc are displayed in Fig. 8. 
We can distinguish three regimes in this plot. On the one hand, 
when Rhs/rc ≥ 1 the geometric picture of the proton approaches 
the uncorrelated scenario and the value of NSC(2, 3) increases 
monotonically starting to be positive for Rhs/rc � 1.3. Moreover, 
when Rhs/rc = 1 the value of NSC(2, 3) is identical within error 
bars for both correlation scenarios rc = 0.25 and rc = 0.4 sup-
porting the idea that NSC(2, 3) depends on f (Rhs, rc) = Rhs/rc . 
Fig. 8. Average value of NSC(2, 3) as a function of the ratio Rhs/rc for two different 
values of the repulsive distance: rc = 0.25 fm (filled green circles) and rc = 0.4 fm 
(filled red squares). (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

However, on the second regime characterized by 0.6 � Rhs/rc � 1, 
we find an abrupt change of the value of NSC(2, 3) when slightly 
increasing the ratio Rhs/rc from 0.6 to 0.63. This suggests that a 
residual dependence of NSC(2, 3) on the other scale of the prob-
lem, R , may exist. Finally, configurations in which the hot spots 
are much smaller than the repulsive core distance between them 
i.e. Rhs/rc � 0.6 result into a positive correlation between ε2 and 
ε3. Then, our study favors values of 0.6 � Rhs/rc � 1.3 in order to 
be compatible with the experimental observation of NSC(2, 3) < 0
in the highest centrality bin. Unfortunately, this interval is large 
enough to be compatible with a picture of the proton in which 
the hot spots transverse separation is larger than in the uncor-
related case but still they can overlap (Rhs/rc ∼ 1.3) and with a 
much more dilute description in which the probability of two hot 
spots to overlap is highly suppressed (Rhs/rc ∼ 0.6).

5. Sensitivity of NSC(2, 3) to Nhs

All along the manuscript we have considered that the proton is 
constituted by 3 gluonic hot spots. This is the most natural sce-
nario when a direct correspondence between the Fock space of va-
lence partons and the hot spots is assumed. However, this relation 
is arguable as, while being extensively used as a phenomenologi-
cal tool, the ultimate dynamical origin of the hot spots remains as 
an open debate. Therefore, it is opportune to check the reliability 
of our results after variations of this parameter, Nhs .

Following the ideas of the previous sections, we focus our dis-
cussion on the results for NSC(2, 3) after considering the two more 
straight-forward extensions of our model: Nhs = 2 and Nhs = 4. 
In order to make a fair comparison between the three different 
scenarios, Nhs = (2, 3, 4), we choose representative values of the 
parameters {Rhs, R} that fulfill two constraints. As in the previ-
ous sections, the experimental value of the total p+p cross sec-
tion is reproduced. Further, the proton radius defined as R p =√

Nhs

√
〈s2

1〉 + R2
hs , where 〈s1〉 is the r.m.s of the spatial probabil-

ity distribution given by Eq. (3), should not depend on the number 
of hot spots that the proton contains so we fix it to be the same 
in all the cases. All in all, the values of the parameters for the cor-
related and 〈s1〉 fixed cases are given in Tables 3 and 4.

We start by exploring the dependence of the event-averaged 
value of NSC(2, 3) on the number of hot spots in the correlated 
scenarios as displayed in Fig. 9 as a function of centrality. The dif-
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Table 3
Default values of the parameters characterizing the hot spots distribution Eq. (3)
and their probability to interact Eq. (4) for different number of hot spots both in 
the correlated and “〈s1〉 fixed” cases.

Correlated 〈s1〉 fixed

Rhs [fm] R [fm] rc [fm] R p [fm] R [fm]

Nhs = 2 0.51 1.04 0.35 1.31 1.13
Nhs = 4 0.21 0.55 0.32 1.2 0.64

Table 4
Default values of the parameters of the double Gamma distribution that charac-
terizes the fluctuating amount of entropy each wounded hot spot deposits, s0, for 
different number of hot spots both in the correlated (top) and “〈s1〉 fixed” cases 
(bottom).

Correlated

n1 κ1 n2 κ2 α

Nhs = 2 26.22 1.21 4.64 1.79 0.45
Nhs = 4 25.68 1.46 4.54 1.82 0.34

〈s1〉 fixed

n1 κ1 n2 κ2 α

Nhs = 2 24.66 1.05 4.55 2.05 0.49
Nhs = 4 23.04 1.15 4.37 2.14 0.4

Fig. 9. Average value of NSC(2, 3) as a function of the centrality range in the cor-
related scenario for Nhs = 2 (filled green circles), Nhs = 3 and (filled red squares) 
Nhs = 4 (filled violet triangles). The error bars represent statistical uncertainties. 
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

ferences between the three cases start to appear in mid-to-ultra 
central collisions. There exists a clear trend towards smaller val-
ues of NSC(2, 3) when a bigger number of hot spots is considered. 
Specifically, the negative sign of NSC(2, 3) in the high centrality 
bins is not achieved when Nhs = 2 even with correlations. Thus, we 
conclude that with the selected parameters the minimum number 
of hot spots to describe the onset of the anti-correlation between 
ε2 and ε3 is Nhs = 3. It should also be noted that the inclusion of 
an additional hot spot i.e. Nhs = 4 helps to make NSC(2, 3) even 
more negative in the highest centrality bins although the effect 
is small when compared to the drastic impact of changing from 
Nhs = 2 to Nhs = 3.

To conclude the discussion on the sensitivity of our model to 
the number of gluonic hot spots, in Fig. 10 the comparison be-
tween the correlated and 〈s1〉 fixed scenarios for Nhs = 2 (top) and 
Nhs = 4 (bottom) is displayed. First and foremost, the effect of in-
cluding spatial correlations is invariant under changes in the num-
ber of hot spots: in peripheral collisions they enlarge the positive 
correlation of ε2 and ε3 while favoring a negative sign of NSC(2, 3)
Fig. 10. Average value of NSC(2, 3) as a function of the centrality range for 〈s1〉 fixed 
(purple short-dashed line connecting filled purple circles) and rc = 0.4 fm (red solid 
line connecting filled red squares). The error bars represent statistical uncertainties. 
Top: Nhs = 2. Bottom: Nhs = 4. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

with respect to the uncorrelated scenario. Albeit the correlated 
curve is always below the uncorrelated scenario in the highest 
centrality bins an important comment is in order: NSC(2, 3) is 
compatible with negative values, within statistical uncertainty, in 
the [0-0.1%] bin for the uncorrelated case. This fact reinforce the 
idea remarked in Sec. 4.2: the interplay of the different scales 
{Rhs, rc, Nhs} is decisive in the sign of NSC(2, 3) within our frame-
work. For Nhs = 4 the weight of the configurations with a large 
number of wounded hot spots and a small number of collisions is 
large enough so that the spatial correlations are not essential to 
obtain a negative NSC(2, 3) in the [0–0.1%] bin. However, as these 
configurations are enhanced in the correlated scenario, the anti-
correlation of ε2 and ε3 is stronger than in the uncorrelated case 
just as in the case of Nhs = 3. Finally, we have checked that the 
effect of spatial correlations on the average values of ε2 and ε3 is 
qualitatively the same as in the Nhs = 3 case studied in [1]. To sum 
up, although the negative sign of NSC(2, 3) in the highest central-
ity bins is not a unique feature of the correlated scenario but relies 
on the interplay of the different scales, the inclusion of repulsive 
correlations provides a mechanism to reduce its value in the high-
est centrality bins.

6. Discussion and outlook

The experimental finding of a resembling behavior of the fluc-
tuations of the Fourier harmonic coefficients vn , in terms of the 



J.L. Albacete et al. / Physics Letters B 778 (2018) 128–136 135
symmetric cumulants SC(n,m) in p+p, p+Pb and Pb+Pb collisions 
at LHC energies constitutes a new piece of the puzzle on whether 
collective effects are being observed in small systems. Data sug-
gests that the fluctuations of v2 and v3 are anti-correlated i.e. 
SC(2, 3) < 0 in proton-proton collisions with Noffline

trk ∼ 100. In this 
very-high multiplicity regime, where the non-flow contributions 
arising from jet correlations are subleading, the value of the sym-
metric cumulant is sensitive to the initial state fluctuations of the 
collision.

In this article, we perform a systematic study of the normalized 
symmetric cumulants NSC(2, 3) and NSC(2, 4) in proton-proton in-
teractions at 

√
s = 13 TeV in terms of the initial geometry of the 

collision. We rely on the wounded hot spot model used in [1]
where the proton is regarded as a system of three gluonic hot spots 
whose transverse positions are not independent but correlated via 
a repulsive core distance. We find that the effect of these repulsive 
correlations is key, within our relatively simple geometric model, 
to obtain an anti-correlation of the fluctuations of ε2 and ε3 in the 
highest centrality bin. More precisely, they enhance the probability 
of having interactions with a large number of wounded hot spots 
colliding a small amount of times. These interaction topologies are 
responsible in our set up of the negative sign of the symmetric cu-
mulant NSC(2, 3) in the correlated scenario. Further we explore the 
dependence of NSC(2, 3) on the values of the repulsive distance 
and the radius of the hot spot concluding that it is not a func-
tion of these two variables independently but to a combination of 
both such as their ratio Rhs/rc . We also show that the values of 
NSC(2, 3) are sensitive to the variation of the number of hot spots 
that constitute the proton. Specifically, we find that, within the 
correlated scenario, adding an extra hot spot to our description re-
inforces the negative sign of NSC(2, 3) while reducing it to Nhs = 2
pushes NSC(2, 3) towards positive values. Moreover, the enhanced 
probability of having configurations with a large Nw/Ncoll when 
Nhs = 4 permits a negative value of NSC(2, 3) within the uncor-
related scenario although its absolute value is smaller than in the 
correlated case. This fact reinforces the argument that the sign of 
NSC(2, 3) is sensitive to the interplay of the different scales.

Our study confirms the idea that NSC(2, 3) in proton-proton in-
teractions is extremely sensitive to the initial state fluctuations. 
Further, as we have shown, it can help to discriminate between dif-
ferent parameterizations of the proton’s geometry and, concretely, 
to realize the importance of spatial correlations. A precise char-
acterization of the proton’s geometry has a direct impact in the 
flow studies in proton-proton collisions. Furthermore, parametriz-
ing how are the subnucleonic degrees of freedom arranged inside 
the proton is an essential input in event generators that aim to 
describe multi-parton interactions, the mechanism that dominates 
the underlying event at LHC energies.

In order to confirm the conclusions exposed in this manuscript 
the natural continuation of this work would consist on feeding a 
relativistic viscous hydrodynamic simulation with our initial en-
tropy density profiles and check if the effect of these spatial cor-
relations is washed out by the evolution or, on the contrary, it 
impacts the values of the Fourier flow coefficients.
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