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We study the correlation between the distributions of the net-charge, net-kaon, net-baryon and net-
proton number at hadronization and after the final hadronic decoupling by simulating ultra relativistic 
heavy ion collisions with the hybrid version of the ultrarelativistic quantum molecular dynamics (UrQMD) 
model. We find that due to the hadronic rescattering these distributions are not strongly correlated. The 
calculated change of the correlation, during the hadronic expansion stage, does not support the recent 
paradigm, namely that the measured final moments of the experimentally observed distributions do give 
directly the values of those distributions at earlier times, when the system had been closer to the QCD 
crossover.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In this paper we will question whether the fluctuations ob-
served in high energy nuclear collisions can be related to the fluc-
tuations close to the QCD pseudo critical line from lattice gauge 
calculations, an idea which has been recently advanced by several 
authors [1–4].

The collision of heavy ions at relativistic energies allows for 
the creation of ultra dense baryonic matter at very high energy 
densities and temperatures. It is expected from quantum chromo 
dynamics (QCD) that matter undergoes a transition to a novel state 
called the quark–gluon-plasma (QGP) [5] at high temperatures and 
even into a quarkyonic [6] or a color-flavor-locked phase [7] at 
high baryon densities and moderate temperatures. Event-by-event 
fluctuations of conserved charges, measured in relativistic nuclear 
collisions, moved recently in the center of attention in the search 
of a possible first order phase transition and critical endpoint in 
the phase diagram of QCD [8,9]. Higher order cumulants of the 
net-charge distributions (related to the susceptibilities) are sensi-
tive probes of the underlying equation of state and hence of the 
phase structure. However, they are also very sensitive to other 
effects which are not related to the underlying physics of inter-
est. Such effects include the correct understanding of efficiency 
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and acceptance effects in experimental setups [10–12], influences 
from cluster formation [13], influence of conservation laws [14,
15], corrections due to the finite size of the system created in 
relativistic nuclear collisions [16], fluctuations of the system vol-
ume [17,18] and fluctuations present in the initial state of the 
collision [19]. Experiments have reported on measurements of con-
served charge fluctuations (see e.g. [20–23]), but up to date most 
studies compare the cumulants computed on the lattice or within 
grand canonical effective models such as the hadron resonance gas 
(HRG) model, directly to the experimental data [24–26]. It is im-
portant to note that in fact experiments can measure directly only 
the net-electric charge distribution and, thus, one relies on mea-
surements of the net-proton and net-kaon distributions as proxies 
for the net-baryon and net-strangeness distributions [27]. As was 
shown by Shuryak and Stephanov, by solving the Fokker–Planck 
equation for hadronic rescattering, the hadronic phase does change 
the long range charge correlations [28]. Several other studies have 
also found that in fact the elastic and inelastic scattering in the 
hadronic phase, which follows the hadronization process in nu-
clear collisions, may have a significant impact on the observed 
cumulants [29–31], and may further blur the correlation of parti-
cle number fluctuations and net-charge fluctuations. Quantitative 
statements are, however, difficult as they require a microscopic 
transport treatment of the hadronic rescattering phase (see e.g. 
[32]).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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We will show in this letter that hadronic rescattering, based 
on known reaction cross sections, decorrelates strongly the distri-
butions of conserved charges between hadronization and kinetic 
freeze-out. Thus the experimentally observed moments of this dis-
tribution are only weakly correlated with the moments of the dis-
tribution at hadronization, i.e. at the boundary between the QGP 
and the hadronic world.

1. The model

For our investigations we will utilize the newest version of the 
UrQMD hybrid model [33], which employs the UrQMD hadronic 
transport model to simulate the non-equilibrium initial and final 
phases of the nuclear reactions. In the UrQMD model, all charges 
(baryon number, strangeness and electric charge) are exactly con-
served globally and for every individual scattering which is an 
important feature for any realistic model used to study correla-
tions and fluctuations. The bulk evolution of the hot and dense 
phase is simulated by a 3 + 1 dimensional ideal fluid dynamics 
code. The fluid dynamical equations for conservation of energy–
momentum as well as the conservation of the net-baryon number 
current are solved by the SHASTA algorithm [34]. The transition 
from the initial non-equilibrium phase to the fluid dynamical evo-
lution is done at a time tINI defined as the interpenetration time, 
the earliest instant at which local equilibration can be achieved 
(with the constraint that tINI ≥ 0.5 fm/c).

tINI = 2R

γCM v
= 2R√

γ 2
CM − 1

(1)

where R is the radius of the nucleus and γC M is the Lorentz 
gamma factor of the two nuclei in their center of mass frame. 
The transition back to discrete particles from the fluid dynam-
ical fields is done in the standard fashion, by employing the 
Cooper–Frye prescription [35] on a pre-defined hypersurface. In 
this work we will employ the iso-energy density hypersurface [36]
of eC F ≈ 350 MeV/fm3. To ensure global energy conservation as 
well as conservation of the different net-charges (electric, baryon 
number and strangeness) we also use a rejection method during 
the Monte-Carlo sampling of the Cooper–Frye equation (eq. (2)). 
Hadrons which have been produced at the hypersurface interact 
during the hadronic rescattering phase in the UrQMD model [37,
38]. To describe this stage we use the cascade version of the code, 
where all interactions between hadrons are determined by a geo-
metric criterion tied to their specific scattering cross section. The 
model includes close to 60 different baryonic species and their 
anti-particles as well as about 40 mesonic states.

The corresponding momentum dependent scattering cross sec-
tions are taken from experiment where known and from the ad-
ditive quark model otherwise. The reactions implemented in the 
model include elastic 2 ↔ 2 scatterings as well as inelastic reac-
tions like resonance excitations and decays, strangeness exchange 
and annihilation reactions. A detailed analysis of the reactions in 
the final hadronic stage of an ultra relativistic heavy ion colli-
sion can be found in [39]. We like to note that this kind of hy-
brid model, employing UrQMD as afterburner, has been used to 
successfully describe a wealth of experimental results including 
particle multiplicities, spectra, flow and HBT observables (see e.g. 
[40–44]).

As we intend to study the effects of the hadronic rescattering 
on fluctuation measures as the cumulants of the different net-
charge distributions, we first have to discuss some specific diffi-
culties associated with the current state-of-the-art fluid dynamical 
models. In the usual framework of fluid dynamical models, as well 
as of the hybrid models such as the one employed in this study, 
the transition from the fluid dynamical fields to a finite and dis-
crete number of particles is done by a Monte-Carlo sampling of the 
Cooper–Frye equation on a specific hypersurface σμ

E
dN

d3 p
=

∫
σ

f (x, p)pμdσμ . (2)

It is important to note that the single particle distribution func-
tions f (x, p) which enter the Cooper–Frye formula are usually as-
sumed to be the grand canonical Fermi or Bose distributions for 
a hadron resonance gas at a given temperature T and chemical 
potential μi . These single-particle distribution functions are gen-
erally uncorrelated, as expected for a non-interacting HRG, and, 
since the particle number in a given local computational cell is 
much smaller than 1, the particle number distributions locally fol-
low the Poisson distribution.1 It is therefore obvious that, using 
this standard method of particlization, one cannot obtain a net-
charge distribution which is significantly different from a Poisson 
distribution except for effects stemming from the global conserva-
tion of net-charges, as enforced by the particle production scheme 
employed in the UrQMD-hybrid model, as well as long range corre-
lations from inhomogeneities in the density distribution if a phase 
transition has occurred [45] (which is presently not included in 
the fluid dynamical model). Thus, the comparison of the (normal-
ized) cumulants before and after the hadronic rescattering phase 
will not lead to new insights as in this case one starts with a Pois-
son/Binomial distribution.

In the current paper we will take a different approach to make 
qualitative and quantitative statements. We will set-up a time-
dependent correlation function to explore the diffusion of con-
served charges during the hadronic phase. Following the standard 
definition of the correlation coefficient this function reads as

rIF(t) =
∑
n

(In(t) − I(t))(Fn − F )

√∑
n

(In(t) − I(t))2
∑
n

(Fn − F )2
, (3)

where In(t) denotes the number of a given charge (or a net-
particle number) in a given rapidity and momentum window at 
the time t in the event number n. Fn is the final number of that 
charge after all interactions have ceased, in the same event. Fi-
nally, the I(t) and F are the corresponding averages. The sum runs 
over all events in the sample. We want to make clear that this 
correlation relates the net charge at a given fixed time t with the 
final net-charge observed in the same acceptance. Since we use an 
iso-energy density hypersurface the definition of a fixed time cor-
relation does not make sense at a time which does not include 
all particles emitted through the hypersurface. Therefore we will 
mainly discuss this correlation for times t that are larger than the 
latest emission from the hypersurface that enters in the Cooper–
Frye sampling. In particular that means we mainly discuss times 
later than t = 10 fm/c at which point essentially all hadrons have 
been produced.

It is evident that if the net-charge in a given bin at a given 
time t is perfectly correlated with the net-charge at the end of the 
evolution, then the value of this correlation function rIF(t) will be 
equal to 1 whereas if the net-charge number at given time t is 
completely uncorrelated with the final value, then the rIF(t) will 
be equal to zero.

In the standard scenario [4], which is employed in most com-
parisons of the (normalized) cumulants with the HRG or lattice 

1 If global conservation laws are enforced the distributions are actually multino-
mial or binomial.



34 J. Steinheimer et al. / Physics Letters B 776 (2018) 32–37
Fig. 1. [Color online.] (a) Correlation of the finally observed net-proton and net-
baryon number in different rapidity intervals with an earlier time t in that same 
rapidity interval. Results for central collisions of Au+Au at a beam energy of √

sNN = 200 GeV are shown. (b) Same is in (a), just in this case we show the corre-
lation for a defined spatial volume, constrained by z < vz · t rather than rapidity.

QCD results one essentially assumes that this correlation is equal 
to zero before the chemical freeze-out of hadrons and then in-
stantly jumps to one at the chemical freeze-out, a value which 
does not change until the cumulants are observed by experiment. 
This scenario is shown in Fig. 1 by a gray dash dotted line for an 
exemplary freeze-out time of 10 fm/c. In such a scenario the final 
value of the cumulants correspond to that at chemical freeze-out, 
without any information about the QGP phase before freeze-out or 
about the hadronic rescattering which follows hadronization.

2. Results

We start by studying the correlation of different net-charges in 
central (b < 3.4 fm) collisions of gold nuclei at beam energy of √

sNN = 200 GeV, as measured at the Relativistic Heavy Ion Collider 
(RHIC) at the Brookhaven National Laboratory (BNL). We will inves-
tigate the correlation of the net-electric charge, the net-kaon num-
ber, the net-baryon number and the net proton number within our 
model. For the net-proton and net-baryon number we also apply 
a cut in transverse momentum of 0.3 < pT < 2.0 GeV, which cor-
responds approximately to the relevant experimental acceptance 
window. All these quantities, except the net-baryon number which 
is inaccessible with the current detectors, have been studied in ex-
periments at the RHIC.

To estimate the effect of the full local equilibration on the 
decorrelation of the different charges we will also contrast the hy-
brid model simulations with results obtained from the standard 
UrQMD model in its cascade version. In the cascade version of the 
model, the system remains essentially out of local equilibrium for a 
long time and, due to the finite cross sections, will retain more in-
formation and therefore show a stronger correlation with the early 
times.

First we focus on the influence of the size of the rapidity ac-
ceptance window, an effect which has also been discussed in a 
simplified picture [46]. Fig. 1 (a) depicts the correlation of the net-
baryon number and net-proton number as a function of time for 
central Au+Au reactions at 

√
sNN = 200 GeV. We present the cor-

relation for times t > 10 fm/c. The reason we choose to show the 
correlation only after 10 fm/c is that at this point all hadrons have 
been emitted from the fluid dynamical phase. At an earlier time 
part of the system would still be in the fluid dynamical phase and 
the calculation is indeed less meaningful. Furthermore the net-
proton number cannot be defined during the deconfined phase 
Fig. 2. [Color online.] Correlation of the net-charge, net-kaon, net-proton and net-
baryon number in the rapidity interval −0.5 < y < 0.5 with an earlier time t in that 
same rapidity interval.

which dominates the dynamics at earlier times and during the 
time period of hadron emission through the Cooper–Frye hyper-
surface.

A dependence on the size of the rapidity window is clearly 
present. As expected, a larger acceptance window leads to a 
stronger correlation of the initial and final net-charge number in 
a single event. We also observe a stronger correlation of the net-
baryon number with the finally observed number than for the 
net-proton number, which is also expected, as protons can eas-
ily exchange iso-spin and become neutrons during the rescattering 
phase, e.g. through the excitation and decay of a � resonance. To 
make sure that the de-correlation in coordinate space is of similar 
magnitude as the de-correlation in momentum space we also show 
rIF(t) for net-baryons in a given spatial volume which is defined by 
the longitudinal boundary |z| < vz · t , where vz is the maximal ve-
locity a particle can have and still belong to the rapidity interval 
of |y| < 0.5 or |y| < 0.3 respectively.

Fig. 2 shows the dependence of the correlation rIF(t), for differ-
ent net-charge and net-particle numbers, as a function of time. Un-
like in the standard scenario assuming instant freeze-out, the cor-
relation function strongly depends on the duration of the rescat-
tering phase for all considered quantities. At very late times (t >

40 fm/c) the correlation function approaches 1, which is expected 
as the system has essentially frozen out and interactions have 
ceased by that time. However, the correlation changes rapidly in 
the time interval between particle production (on the Cooper–Frye 
hypersurface) at around 10 fm/c and decoupling of the system at 
about 25 fm/c. At the time of interest for most studies, namely 
the particle production time, the correlation is approximately 0.5 
for most net-charges. Only the net-baryon number correlation is 
slightly stronger, as discussed above. However, the quantity that is 
measured experimentally, namely the net-proton number, shows a 
similar correlation as the net-charge, as significant iso-spin chang-
ing reactions take place during the rescattering phase. One should 
keep in mind that the fact that the correlation still changes at 
rather late times does not mean that the lifetime of the hadronic 
phase is on the order of 40 fm/c. At a time of 20 fm/c about 90% of 
all 2-body reactions have already occurred. After that we observe 
mainly resonance decays. These decays of course also de-correlate 
the number of charges in a given acceptance window. Therefore 
the slow convergence of the correlation is due to the long life-
time of the resonances and not to some late rescattering. The net 
protons in the case of the full cascade UrQMD simulation show a 
larger initial correlation and an even slower increase of the cor-
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Fig. 3. [Color online.] Correlation of the finally observed net-charge, net-kaon, net-
proton and net-baryon number in the rapidity interval −0.5 < y < 0.5, at the 
Cooper–Frye hypersurface, with the final net-charge density as a function of beam 
energy.

relation function compared to the hybrid simulation, hinting to a 
smaller number of scatterings in the early high density phase and 
an extended emission period. This is likely due to the smaller ra-
dial flow in the cascade simulation due to the lack of scatterings 
in the early stage of the collision.

There are two crucial points in time at which we want to 
study the correlation rIF(t) in more detail. One is the time at 
which hadrons are produced according to chemical equilibrium 
distributions. At this point, at the transition between the hadronic 
and quark phase, the hadrons are sampled from the transition 
(hadronization) hypersurface according to the Cooper–Frye equa-
tion. In fact since the iso-energy hypesurface does not correspond 
to a fixed time we would not compare the net charge at two dif-
ferent fixed times, but on the hypersurface volume and in the 
final state. The second one is an even earlier time at which the 
fluid dynamical evolution starts. The second point is of interest 
because one can identify possible correlations which survive the 
fluid dynamical evolution. This can be, for example, correlations 
which stem from the initial stopping of the participant nucleons 
and which may have an influence on the final net-charge distri-
butions. Therefore we show in Fig. 3 the correlation rIF(t = tCF)

which is defined as the correlation between the net-particle num-
ber going through the Cooper–Frye hypersurface and the final state 
particle number. Again this correlation does not compare two fixed 
times but two 4-volumes in which the relevant quantities are con-
served globally. The correlation between the Cooper–Frye surface 
and the final state apparently shows only a very weak beam en-
ergy dependence down to 

√
sNN = 7 GeV. This means that the 

importance of the hadronic rescattering does not change much 
within the beam energy range of the beam energy scan program 
at RHIC. The results from the standard cascade UrQMD simula-
tions show a similar correlation for all considered beam energies 
at t = 10 fm/c. More important the beam energy dependence of 
the correlation rIF(t = tINI), defined as the correlation between the 
net-particle number at the starting time of the fluid dynamical 
simulation and the final particle number, shows a clear energy 
dependence in Fig. 4. The results shown in Fig. 4 are interesting 
as they make clear that even if the system goes through a fluid 
dynamic phase, where one assumes local equilibrium, some infor-
mation of the initial state does survive the whole dynamics. In 
a naive scenario where one assumes particle production from a 
thermal heat bath, no information of the initial state on the fi-
nal net-charge distribution should survive. We show that in fact 
Fig. 4. [Color online.] Correlation of the net-charge, net-kaon, net-proton and net-
baryon number in the rapidity intervals −0.5 < y < 0.5 at the initial hydro time 
with the final net-charge density in that same rapidity interval, as a function of 
beam energy. Note that the addition decorrelation, with respect to Fig. 3 stems from 
the enforced local equilibration in the fluid dynamical evolution and the Cooper–
Frye sampling at its end.

some information survives due to the fact that charges are glob-
ally conserved and the fluid dynamical evolution also conserves 
the local energy–momentum and baryon number current. The cor-
relation increases with decreasing beam energy. While at the top 
RHIC energy, essentially no information on baryon stopping sur-
vives the fluid dynamical phase, at low energies the conservation 
of the stopped baryon number throughout the fluid dynamical evo-
lution generates a significant correlation. In general one would 
expect that the initial mapping of the conserved charges on the 
fluid dynamical grid would de-correlate the charges and the sub-
sequent expansion would do so further and our findings confirm 
this expectation.

As a last step we will demonstrate the effect of the de-
correlation of the different net-charge and net-particle numbers 
on their final number distributions. To do so we look at the dis-
tribution of the change of a particular net-particle number (i.e. 
the net-proton number) for different values of rIF(t) as extracted 
from our simulations. The change of the net-proton number �P
is defined as the final net-proton number in a single event mi-
nus the net-proton number at a given time t in that single event. 
If at time t the event has already its final net-proton number we 
find, rIF(t) = 1, and the distribution of �P would be a delta func-
tion with a possible shift along the �P -axis. The smaller the value 
of rIF(t) becomes, the broader we expect the distribution of the 
change to be. Fig. 5 shows this distribution function for two dif-
ferent values of rIF(t), at times t = 10 fm/c and t = 40 fm/c, for 
central collisions at a beam energy of 

√
sNN = 7.7 GeV. We observe 

that already for a small de-correlation rIF(t = 40) = 0.99, we obtain 
a distribution which does not closely resemble a delta function 
but rather a Gaussian with finite width, even though the width 
is very small compared to the mean net-proton number which 
is 46. However, for a correlation of rIF(t = 10) = 0.5, the change 
of the net-proton number has a broad distribution. We were able 
to fit this distribution with a Gaussian of width σ = 6.5, which is 
only slightly smaller than the width of the final net-proton number 
distribution which is 7.5. Finally, Table 1 shows the width of the 
gaussian fit to the change of the net proton number for different 
beam energies. The width of the Gaussian smearing is approxi-
mately constant for all beam energies, which is consistent with the 
observation in Fig. 3 that the de-correlation is almost independent 
of beam energy.
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Fig. 5. [Color online.] Probability distribution of the change of the net-proton num-
ber in the time interval between t = 10 fm/c (red line), t = 40 fm/c (black line) and 
the last scattering. We show results for √sNN = 7.7 GeV. The corresponding corre-
lation values rIF(t) are 0.5 for t = 10 and 0.99 for t = 40 fm/c. We also fitted the 
distribution for t = 10 fm/c with a Gaussian function and obtained a width σ = 6.5
which is close to the width of the final net-proton distribution σfinal = 7.5.

Table 1
Gaussian widths of the change of net-proton 
number, during the full hadronic rescattering, for 
different beam energies.

Beam energy
√

sNN [GeV] Gaussian width

7.7 6.5
11 6.3
200 6.9

3. Relevance for observations

At this point we want to put our results in context with previ-
ous publications [47,48] on interpreting data from heavy ion colli-
sions. It is important to keep in mind that, even though we have 
shown that the actual net-charge number in an acceptance win-
dow will change in every event due to the rescattering, this does 
not necessarily mean that also the measured cumulant of that net-
charge will also change. Let us take for example a system which 
does not entail any correlations between particles. Then the cumu-
lants of any order are merely the mean number of that charge (see 
e.g. [49]). So if the mean particle number is fixed at some point 
during the evolution the cumulants for a non correlated system 
will be fixed by definition at that same point, called the chemi-
cal freeze out point (not to be mistaken with the latest point of 
chemical equilibrium).

If the system has strong correlations present at the point where 
the mean particle numbers are fixed, due to a phase transition 
or critical endpoint, and these correlations are washed out by the 
hadronic rescattering, again the cumulants will simply reflect the 
mean values. Note that there is a small contribution to the cu-
mulants from conservation laws. These anti-correlation effects are 
small for high beam energies and they essentially cancel when tak-
ing ratios of same order cumulants, thus they are not relevant for 
the discussion presented here.

In consequence, if indeed the determination of the ‘freeze-
out’ point by use of net-charge cumulants is consistent with the 
‘freeze-out’ point of the mean particle values, one can only con-
clude that either no correlations where present near the ‘freeze-
out’ or they have been washed out by the rescattering. If the 
measurement shows practically independent particle production 
then no new information can be gained from the measurement 
of higher order cumulants as compared to the mean particle mul-
tiplicities.

4. Summary

We have explored the time dependence of the correlation func-
tion of conserved charges in Au+Au reactions at various beam 
energies. We found that the hadronic rescattering phase leads to 
a substantial decorrelation of the conserved charge distributions. 
This effect is present for all investigated conserved charges and is 
mostly energy independent. This means that the final distribution 
function, the only one which can be observed, is to a large extent 
uncorrelated to that of the newly born hadrons which may carry 
information on the quark phase of QCD. Hence, a naive compar-
ison of the experimentally measured correlations with the values 
as calculated by lattice QCD, appropriate for a stationary and in-
finite model system only, can produce unjustified and misleading 
conclusions on the phase structure of QCD.
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