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The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite 
temperature and imaginary chemical potential. These can be compared to the predictions of various 
phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical 
potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we 
consider the hadron resonance gas (HRG) model with repulsive baryonic interactions, which are modeled 
by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the net-
baryon density at imaginary baryochemical potential – corresponding to the fugacity or virial expansion 
at real chemical potential – are calculated within this model, and compared with the Nt = 12 lattice data. 
The lattice QCD behavior of the first four Fourier coefficients up to T � 185 MeV is described fairly well 
by an interacting HRG with a single baryon–baryon eigenvolume interaction parameter b � 1 fm3, while 
the available lattice data on the difference χ B

2 − χ B
4 of baryon number susceptibilities is reproduced up 

to T � 175 MeV.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The Monte Carlo lattice QCD simulations provide the equa-
tion of state of the (2 + 1)-flavor strongly interacting matter at 
zero chemical potential [1–3]. A crossover-type transition is ob-
served [4]. The pseudocritical temperature T pc of the transition 
depends on the observable used to define it, estimates based on 
chiral condensate and its susceptibility give T pc ≈ 155 MeV [5,6], 
while observables based on strangeness suggest somewhat higher 
temperatures [5,7]. Below the transition one expects to find the 
confined hadronic phase. Many lattice QCD observables in that 
temperature range are indeed well described by a simple ideal 
hadron resonance gas (HRG) model [7–10].

It was pointed out recently, that the behavior of lattice ob-
servables in the crossover region, particularly of correlations and 
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fluctuations of conserved charges, is very sensitive to the model-
ing of the baryonic interactions [11,12]. This sensitivity is of great 
interest, since hadronic modeling of conserved charge fluctuations 
is often used to extract freeze-out parameters of heavy ion colli-
sions [13,14]. Lattice observables at finite net baryon density can 
certainly be expected to be even more sensitive to the modeling of 
these interactions. Unfortunately, direct Monte Carlo calculations at 
finite μB are hindered by the sign problem. Main methods to cir-
cumvent this problem include the reweighting techniques [15–18], 
the Taylor expansion around μ = 0 [19–22], and the analytic con-
tinuation from imaginary μ [23–31]. These methods have allowed 
to calculate some thermodynamic features of QCD at small but fi-
nite chemical potentials [32–34].

In the present work we consider the imaginary μ method. 
We use the updated version of the lattice data, shown previously 
in Ref. [35]. However, instead of performing analytic continua-
tion from imaginary chemical potential to real chemical potential, 
we instead directly compare lattice data at imaginary μ to the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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corresponding predictions of the phenomenological models. Some 
phenomenological models were considered at imaginary chemical 
potential before, such as the quasiparticle model [36] or the PQM 
model [37]. Comparison of phenomenological models with lattice 
simulations at imaginary μ was considered in [24,38–40]. In the 
present work, our focus is on the HRG model with repulsive inter-
actions for baryon–baryon and antibaryon–antibaryon pairs, mod-
eled by means of the excluded volume (EV) correction.

The paper is organized as follows: in Sec. 2 the lattice observ-
ables at imaginary baryochemical potential, which are studied in 
the present work, are introduced. Sec. 3 lists the predictions for 
these observables from several phenomenological models. The lat-
tice method is described in Sec. 4, and in Sec. 5 lattice results are 
compared to the predictions of interacting HRG models. Summary 
in Sec. 6 closes the article.

2. QCD observables at imaginary baryochemical potential

Due to the baryon–antibaryon symmetry, the QCD pressure is 
an even function of a real baryochemical potential μB at a finite 
temperature. This quantity can then be written as the following 
series expansion:

p(T ,μB)

T 4
=

∞∑
k=0

pk(T ) cosh(k μB/T ), (1)

provided that the expansion is convergent at a given T -μB pair.1

At μB = 0, the pressure is simply the sum of all coefficients pk(T ). 
Therefore these can be interpreted as the partial pressures, com-
ing from the sectors of the Hilbert space with a different baryon 
number.

The first-order net baryon susceptibility χ B
1 (T , μB) ≡ ∂(p/T 4)/

∂(μB/T ) is proportional to the net baryon density and it is equal 
to

χ B
1 (T ,μB) = ρB(T ,μB)

T 3
=

∞∑
k=1

bk(T ) sinh(k μB/T ), (2)

where, by definition,

bk(T ) ≡ k pk(T ). (3)

It is clear that the knowledge of all pk(T ) coefficients provides 
complete information about the thermodynamic properties of QCD 
in the region of the phase diagram where the series expansion 
given by Eq. (1) is convergent.

One can consider the susceptibility χ B
1 in Eq. (2) at a purely 

imaginary value of the baryochemical potential, i.e. at μB = i μ̃B . 
The analytic continuation yields

χ B
1 (T , iμ̃B) = i

∞∑
k=1

bk(T ) sin(k μ̃B/T ), (4)

i.e. χ B
1 itself becomes purely imaginary. The imaginary part of 

χ B
1 in Eq. (4) has explicit form of the trigonometric series expan-

sion, with bk(T ) being the corresponding temperature dependent 
Fourier coefficients. If the μ̃B -dependence of χ B

1 is known (e.g. 
from lattice simulations), then the coefficients bk(T ) can be calcu-
lated in the standard way:

bk(T ) = 2

π

π∫
0

dμ̃B [Imχ B
1 (T , iμ̃B)] sin(k μ̃B/T ). (5)

1 Throughout this work we assume that strangeness and electric charge chemical 
potentials are zero, i.e. μS = μQ = 0.
3. Phenomenological models

In some analytic models of the equation of state, the coeffi-
cients bk(T ) can be worked out explicitly.

3.1. Ideal HRG

A popular model to describe the confined phase of QCD at 
low temperatures is the hadron resonance gas model. In its sim-
plest implementation, the system is modeled as a non-interacting 
mixture of all known hadrons and resonances. It is argued [41], 
that the inclusion into the model of all known resonances as free 
non-interacting (point-like) particles, may allow for an effective 
modeling of the attractive interactions between hadrons, includ-
ing the formation of narrow resonances and of Hagedorn states. 
This ideal HRG model has a long history of being used to describe 
the hadron production in heavy-ion collisions at various collision 
energies [42–46].

In the present HRG analysis we employ the Boltzmann approx-
imation for all baryons. This is a good approximation for the ob-
servables of interest. We do not include the light nuclei into the 
HRG particle list. The inclusion of nuclei would induce nonzero 
b2, b3, . . ., but always with a positive sign. This is in contrast to 
our lattice results, e.g. that b2 < 0, indicating that the next impor-
tant correction to the HRG model is not from these states, but from 
repulsive interactions. The net baryon density ρ id

B in the ideal HRG 
model reads

ρ id
B (T ,μB) = 2φB(T ) sinh(μB/T ), (6)

where

φB(T ) =
∑
i∈B

∫
dm ρi(m)

di m2 T

2π2
K2

(m

T

)
(7)

is the baryonic spectrum, with di and ρi being, respectively, 
the degeneracy and a properly normalized mass distribution for 
hadron type i, and where the sum goes over all baryons in the 
system. Note that the summation does not include antibaryons. 
We include the baryon states, which are listed in the Particle Data 
Tables [47] and have a confirmed status there. The function ρi
takes into account the non-zero widths of the resonances by the 
additional integration over their Breit–Wigner shapes, following 
Refs. [48,49].

It is evident from Eq. (6) that all Fourier coefficients bid
k are 

equal to zero for k ≥ 2. For the first coefficient one obtains 
bid

1 (T ) = 2 φB(T )/T 3.

3.2. HRG with repulsive baryonic interactions

In a more realistic HRG model one has to also take into account 
the attractive and repulsive interactions between hadrons which 
cannot be attributed to the resonance formation. In particular, the 
nucleon–nucleon interaction is known to be largely repulsive at 
short distances and the corresponding scattering phase shifts are 
not known to exhibit any resonance structure. The importance 
of the van der Waals like interactions between baryons for lat-
tice QCD observables was recently pointed out in Ref. [11]. In the 
present work we perform similar analysis for the observables at 
imaginary chemical potential. To keep things simple, we focus on 
the short-range repulsion between baryons.

Following Refs. [11,50] we assume that repulsive interactions 
exist between all baryon–baryon and antibaryon–antibaryon pairs. 
These interactions are modeled by means of the excluded-volume 
(EV) correction [51]. At the same time, the EV interactions between 
all other hadron pairs are explicitly omitted. It is not clearly es-
tablished whether significant EV-type interactions exist between 
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hadron pairs other than (anti)baryons (see Ref. [11] for discussion). 
We denote this setup as the EV-HRG model. Note that this model 
is quite different from the usual EV prescription used in HRG 
model analysis: normally it is assumed that all hadrons, including 
mesons, have identical eigenvolume, and, thus, all hadron pairs in-
teract repulsively at short distances [52–54]. However, a presence 
of a significant mesonic eigenvolume leads to a notable suppres-
sion of thermodynamic functions at μ = 0, which appears to be at 
odds with the lattice data [55,56]. Note that EV corrections were 
recently considered also for a glueball gas in Yang–Mills theory, in 
the context of the corresponding lattice data [57].

The EV-HRG model consists of three independent sub-systems: 
Non-interacting mesons, interacting baryons, and interacting
antibaryons. The (anti)baryonic partial pressure pev

B(B̄)
satisfies

the transcendental equation pev
B(B̄)

(T ,μB) = pid
B(B̄)

(T ,μB − b pev
B B̄

),

which can be written in the Boltzmann approximation as follows:

pev
B(B̄)

(T ,μB) = T φB(T ) exp

(
μB − b pev

B(B̄)

T

)
. (8)

Let us denote the total densities of baryons and of antibaryons 
as nev

B ≡ (∂ pev
B /∂ μB)T and nev

B̄
≡ −(∂ pev

B̄
/∂ μB)T , respectively. By 

definition, the net baryon density is then ρev
B = nev

B − nev
B̄

. In the 
Boltzmann approximation one has the following transcendental 
equations for nev

B and nev
B̄

[11]

nev
B = (1 − b nev

B )λB φB(T ) exp

(
− b nev

B

1 − b nev
B

)
, (9)

nev
B̄

= (1 − b nev
B̄

)λ−1
B φB(T ) exp

(
− b nev

B̄

1 − b nev
B̄

)
, (10)

with λB ≡ eμB /T . Let us assume nB and nB̄ in the following fugac-
ity expansion form:

nev
B

T 3
= 1

2

∞∑
k=1

bev
k (T )λk

B , (11)

nev
B̄

T 3
= 1

2

∞∑
k=1

bev
k (T )λ−k

B . (12)

The prefactor 1/2 is chosen such that the corresponding fugacity 
expansion for the net baryon density ρev

B ≡ nev
B −nev

B̄
coincides with 

Eq. (2).
Putting this into Eq. (9) and truncating at the fourth power of 

λB one obtains analytic expressions for bev
k :

bev
1 (T ) = 2

φB(T )

T 3
, (13)

bev
2 (T ) = −4 [bφB(T )] φB(T )

T 3
, (14)

bev
3 (T ) = 9 [b φB(T )]2 φB(T )

T 3
, (15)

bev
4 (T ) = −64

3
[b φB(T )]3 φB(T )

T 3
. (16)

The first coefficient, bev
1 (T ), coincides with the ideal HRG model 

result. Thus, it is unaffected by the baryon–baryon EV interac-
tions.2 Contrary to the ideal HRG model, the higher-order coeffi-
cients are non-zero. They seem to follow a generic pattern: even 
order coefficients are negative while odd order coefficients are 

2 Note, however, that b1(T ) are potentially affected by the meson-baryon EV-type 
interactions, which are not considered in the present work.
positive. This sign-changing pattern was verified to be present in 
the EV-HRG model at least up to the 10th order. As seen from 
Eqs. (13)–(16), the coefficients scale with the eigenvolume param-

eter as bev
k ∝ bk−1. The ratios bev

k / 
(
bev

1

)k
scale as (−1)k+1(bT 3)k−1, 

meaning that more and more Fourier coefficients become non-
negligible as the temperature is increased.

One may also consider a more general case, where both the 
repulsive and also the attractive van der Waals (vdW) interactions 
between baryons are present. For this vdW-HRG model [11] the 
coefficients bk(T ) can also be calculated analytically. The details 
are given in Appendix.

3.3. High-temperature limit of massless quarks and gluons

Let us also mention the high-temperature limit, where the ther-
modynamic features of QCD are expected to resemble those of a 
massless ideal gas of quarks and gluons. In this Stefan–Boltzmann 
(SB) limit the pressure is

pSB

T 4
= 8π2

45
+

∑
f =u,d,s

[
7π2

60
+ 1

2

(μ f

T

)2 + 1

4π2

(μ f

T

)4
]

. (17)

Since we only consider the case μS = μQ = 0, one has μ f = μB/3. 
The net baryon susceptibility at imaginary μB reads

χ B
1 (T , iμ̃B) = ∂(p/T 4)

∂(μB/T )

∣∣∣∣
μB=i μ̃B

= i

3

[
μ̃B

T
− 1

9π2

(
μ̃B

T

)3
]

. (18)

At high temperatures, Roberge–Weiss transition is expected at 
μ̃B = π T [58]. Thus, the polynomial behavior given by Eq. (18)
should only be considered up to this imaginary chemical potential 
value.

The coefficients bSB
k are calculated according to Eq. (5). One ob-

tains:

bSB
k = (−1)k+1

k

4 [3 + 4 (πk)2]
27 (πk)2

. (19)

The Fourier coefficients at very high temperatures show a sign 
structure: even coefficients are negative, odd coefficients are pos-
itive. This is exactly the same sign structure as predicted by the 
EV-HRG model. On the other hand, as opposed to the strong tem-
perature dependence in the ratios predicted by the EV-HRG model, 
namely bev

k / 
(
bev

1

)k ∝ (−1)k+1(bT 3)k−1, in the free quark limit this 
ratio is temperature independent.

4. Lattice method

Our lattice simulations use the tree-level Symanzik improved 
gauge action and 2 +1 +1 flavors of four times stout smeared stag-
gered quarks, with the smearing parameter ρ = 0.125. The same 
4stout lattice setup was also used in [10,31–33,59]. We use phys-
ical quark masses. The details of the lattice action can be found 
in [10]. We generate configurations with Im μB > 0, in the tem-
perature range 135 ≤ T ≤ 230 MeV. The geometry of our lattices is 
483 × 12. A continuum extrapolation was not attempted so far. We 
run roughly 1000–2000 configurations at each simulation point, 
separated by 10 HMC trajectories. We measure the imaginary part 
χ B

1 on the lattices, and carry out a discrete Fourier transform to 
obtain the observables b1, b2, b3 and b4. The errors on the lat-
tice data points are purely statistical, calculated from 48 jackknife 
samples.

The crucial observation is that the Fourier coefficients at imag-
inary chemical potential correspond to partial pressures coming 
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Fig. 1. The temperature dependence of the first four Fourier coefficients bk (4), calculated on the lattice with the 4stout, Nt = 12 setup (symbols), and within the EV-HRG 
model with baryonic eigenvolume parameter b = 1 fm3 (solid lines). This dependence is shown on (a) the linear and (b) the logarithmic scales. The dashed lines in (a) show 
the calculations within the vdW-HRG model, with van der Waals parameters a and b fixed by the properties of the nuclear ground state [11]. The arrows in (a) correspond 
to the Stefan–Boltzmann limit (19) of the massless gas of quarks and gluons.
from different sectors of the Hilbert space. These can also be 
identified with the fugacity or relativistic virial expansion coeffi-
cients for real chemical potential. From a phenomenological point 
of view, this makes the Fourier coefficients particularly sensitive 
to the details of hadronic models. This was pointed out in [31], 
where the different strangeness sectors of the theory were sep-
arated, and later used to constrain the hadronic spectrum in the 
context of the ideal HRG model. Note that the fugacity expansion 
of the logarithm of the partition function, log Z, employed in the 
present work, is quite different from the fugacity expansion of the 
fermion determinant, which corresponds to the fugacity expansion 
of Z and which had also been used in some lattice studies [60,61]. 
Strong finite volume scaling effects in the fugacity expansion of 
log Z are not expected, in contrast to the fugacity expansion of Z.

Other studies [62] exploit the connection of the virial coeffi-
cients to the fluctuations of conserved charges at μ = 0. E.g., if 
one neglects the third and higher order coefficients in the expan-
sion (1), i.e. a3 = a4 = · · · = 0, then the difference χ B

4 − χ B
2 of the 

fourth and second order baryon susceptibilities is simply propor-
tional to the second coefficient a2. The validity of the truncation 
to only the second coefficient breaks down as the temperature 
is increased, and such a method no longer works correctly. In 
this work we use a different approach, and calculate the expan-
sion coefficients directly, by exploiting the fact that they become 
Fourier coefficients at an imaginary chemical potential. This allows 
us to consider the higher order coefficients as well, apart from b2. 
Moreover, in [31] we show by explicit lattice calculations of the 
strangeness sectors in the confined phase, that in the cases where 
the truncation of the virial expansion is warranted, and the two 
methods should agree, our method produces smaller statistical er-
rors for the same computational cost. We note that coefficients bk
were considered in the lattice studies before (see e.g. Refs. [40,
63–65]), where they were estimated by fitting the lattice data with 
the truncated fugacity expansion.

5. Results and discussion

5.1. Hadronic description

Fig. 1 depicts the temperature dependence of the first four 
Fourier coefficients bk (4), calculated on the lattice with the 4stout, 
Nt = 12 setup (symbols), and within the EV-HRG model with bary-
onic eigenvolume parameter b = 1 fm3 (solid lines). This depen-
dence is shown (a) on the linear scale, and (b) on the logarithmic 
scale.
As mentioned above, the b1 coefficient is not affected by the 
baryon–baryon interactions. Its behavior in the EV-HRG model is 
the same as in the ideal HRG model, and it is determined solely 
by the input particle list and, less so, by the modeling of the finite 
resonance widths. The HRG model with the PDG-based hadron list, 
employed in the present work, stays rather close to the lattice data 
for b1 up to T � 185 MeV, but does not reproduce the inflection, 
and therefore does not describe the temperature derivative of the 
b1(T ) curve well from T � 175 MeV.

Lattice calculations predict non-zero values for the higher-order 
coefficients. For instance, the second coefficient b2 is negative in 
the considered temperature range. As seen from Fig. 1(a), this co-
efficient starts to notably deviate from zero at about T � 160 MeV. 
This deviation signals the end of the applicability range of the ideal 
HRG model, which predicts b2 ≡ 0 at all temperatures.

The negative sign is expected in the case where the second 
Fourier coefficient is dominated by the elastic two-to-two baryon–
baryon scattering with a repulsive interaction. In this case the 
second Fourier coefficient is given by the Beth–Uhlenbeck for-
mula [41,66], and its sign is therefore given by the sign of the 
energy derivative of the scattering phase shift, which is negative 
in the case of a repulsive interaction.

The third and fourth order coefficients, as calculated on the 
lattice, start to notably deviate from zero at successively higher 
temperatures. Lattice calculations show a peculiar alternating sign 
hierarchy: odd order coefficients, b1 and b3, are positive while the 
even order coefficients, b2 and b4, are negative.3 We note that indi-
cations for such behavior of the first four coefficients were already 
seen in lattice simulations before [40,63–65], and, in particular, 
the alternating sign structure of the first four coefficients was ob-
tained in Ref. [40]. Interestingly, this structure is also predicted by 
the EV-HRG model with repulsive baryonic interactions, as seen 
in Eqs. (13)–(16). In fact, the EV-HRG model with appropriately 
chosen baryonic eigenvolume parameter describes the lattice data 
fairly well: as seen in Fig. 1, all four coefficients calculated in the 
EV-HRG model with b = 1 fm3 are in good agreement with the lat-
tice data at temperatures T � 185 MeV. Thus, such a choice of the 
b value includes many of the non-perturbative corrections, which 
are otherwise very complicated. The lattice results for bk do con-
tain the inflection points in the temperature dependence, which 
are not predicted by the EV-HRG model. All four coefficients, as 

3 This proliferation of Fourier coefficients at high temperature can also be re-
garded as a signal for the Roberge–Weiss transition [58].
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calculated on the lattice, appear to converge slowly towards the 
corresponding Stefan–Boltzmann limiting values, which are given 
by Eq. (19).

For completeness, we also depict the results obtained within 
the vdW-HRG model [11], with vdW parameters a and b ex-
tracted from the nuclear ground state properties. Unlike EV-HRG 
model, this model describes correctly the basic binding proper-
ties of nuclear matter at low temperatures and high baryochemical 
potentials, and it has no free parameters which can be adjusted 
to fit lattice data. The vdW-HRG model gives a fair description 
of b2 at lower temperatures, but misses the b3 and b4. It ap-
pears that nuclear matter based values of vdW parameters, namely 
a = 329 MeV fm3 and b = 3.42 fm3, are overestimated when ap-
plied to the description of the lattice data at T = 130–190 MeV. 
The EV-HRG model with a smaller b = 1 fm3 does a much better 
job in describing the lattice data. It would be interesting to rec-
oncile both models, and obtain a simultaneous description of the 
lattice data and of the nuclear matter properties.

The Fourier expansion coefficients bk(T ) can be contrasted with 
the net baryon number susceptibilities χ B

k (T ) at zero baryochemi-
cal potential, which are defined as follows:

χ B
k (T ) ≡ ∂k(p/T 4)

∂(μB/T )k

∣∣∣∣∣
μB=0

. (20)

χ B
k are proportional to the coefficients of the Taylor expansion of 

the QCD pressure with respect to μB , they correspond to the cu-
mulants of the baryon number distribution at a given temperature 
and, therefore, they are more directly connected to the observ-
ables which are measured in heavy-ion collision experiments. It 
is particularly instructive to consider the difference χ B

2 − χ B
4 . The 

fugacity expansion (2) for this quantity reads

χ B
2 − χ B

4 = −
∞∑

k=2

k (k2 − 1)bk(T ) . (21)

In the ideal HRG this quantity is strictly zero. This is no longer the 
case when baryonic interactions are included. When the effects of 
baryon–baryon interactions are small, the third and higher order 
coefficients in Eq. (21) can be neglected. In this case χ B

2 − χ B
4 is 

directly proportional to b2, which is in turn proportional to the 
second virial coefficient of baryon–baryon interactions. This fact 
was exploited in Ref. [62]. When the total density of baryons is 
high, however, higher order terms of the expansion (21) have to 
be considered as well.

We calculate the temperature dependence of the difference 
χ B

2 − χ B
4 using the EV-HRG model with b = 1 fm3. To study the 

breakdown of the truncated fugacity expansion at high tempera-
tures, we consider the expansion (21), which is truncated at the 
second, third, or fourth order. It is calculated using Eqs. (14)–(16)
for the bk coefficients in the EV-HRG model. These calculations are 
compared with the full, untruncated result, obtained by directly 
solving the transcendental equation (8) for the pressure and us-
ing the definition (20) for χ B

k . Lattice QCD results from Refs. [10]
and [34,67] are also shown.

Results exhibited in Fig. 2 demonstrate the validity range for 
the different orders of truncation used for calculating χ B

2 − χ B
4 . 

The second order works well up to T � 150 MeV, the third order is 
applicable up to T � 160 MeV, and the fourth order reproduces the 
full result until T � 170 MeV. We note that the validity range of a 
particular truncation scheme can be different if used for a different 
observable. Our above conclusions apply specifically to χ B

2 − χ B
4 .

As seen from Fig. 2, the full EV-HRG model reproduces the 
lattice data quite well up to T � 175 MeV. The non-zero values 
Fig. 2. The temperature dependence of χ B
2 − χ B

4 , calculated within the EV-HRG 
model with baryonic eigenvolume parameter b = 1 fm3 (solid line). Other lines de-
pict the EV-HRG model calculations using the fugacity expansion (21), truncated at 
the second (dashed blue line), third (dash-dotted red line), and fourth (dotted black 
line) orders. Lattice QCD data from Refs. [10] and [34,67] are depicted, respectively, 
by open and full symbols.

of the χ B
2 − χ B

4 difference were suggested as a possible indica-
tor of deconfinement in [68], our analysis suggests an alterna-
tive possibility in terms of repulsive baryonic interactions. The 
model predictions are no longer consistent with the lattice data 
at T > 185 MeV. For example, it was checked that χ B

4 becomes 
negative at T � 187 MeV, a behavior not seen in lattice simula-
tions.

The success of the EV-HRG model in describing the Fourier 
coefficients and the baryon number susceptibilities does not auto-
matically mean that such a model describes all other QCD observ-
ables, for instance the correlations and fluctuations involving the 
electric charge and strangeness, in the same temperature range. 
These observables are sensitive to the baryon–baryon interactions 
as well [11]. At the same time, they are also sensitive to inter-
actions involving mesons, as these carry both electric charge and 
strangeness, and to the strangeness-dependent baryonic interac-
tions [62,69]. These extensions are beyond the scope of the present 
paper.

5.2. Parameters extracted from lattice

We consider a modification of the EV-HRG model, where the 
first two Fourier coefficients, i.e. the partial pressures from the 
|B| = 1 and |B| = 2 sectors, are treated as temperature dependent 
free parameters, and are fitted to the lattice data. This corresponds 
to calculating the functions φB (T ) and b(T ), defined by:

φB(T ) = b1(T )

2
T 3, (22)

and

b(T ) = − b2(T )

[b1(T )]2

1

T 3
, (23)

where b1(T ) and b2(T ) are taken from lattice simulations. These 
relations follow from Eqs. (13) and (14). The lattice-extracted b(T )

is plotted in Fig. 3.
The values of b(T ) are fairly consistent with 1 fm3 at T <

190 MeV. It is interesting that b(T ) shows plateau slightly above 
the pseudocritical temperature. b(T ) monotonously decreases at 
high temperatures, in the regions where one does not expect to 
find hadrons in their normal form. In fact, to reproduce the asymp-
totic expectation of the bk/(b1)

k ratios being independent of tem-
perature, the parameter b has to scale as b ∝ 1/T 3 at high temper-
atures.
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Fig. 3. The temperature dependence of the “eigenvolume parameter” b(T ), as esti-
mated from the lattice according to Eq. (23).

Fig. 4. Same as Fig. 1, but calculated for the modified EV-HRG model, where the 
first two Fourier coefficients are not taken from standard EV-HRG, but are tuned to 
exactly reproduce the lattice data by construction, using Eqs. (22) and (23), and the 
higher coefficients are calculated from these b1 and b2 using the formulas given by 
the EV-HRG model.

Of course, the estimate plotted in Fig. 3 is only a model-
dependent interpretation of the lattice data, which should be 
treated with care. This scenario corresponds to a hadronic de-
scription with eigenvolume interactions for baryon–baryon and 
for antibaryon–antibaryon pairs, while all other hadron pairs are 
considered to be non-interacting. In general, even for the purely 
hadronic description, the b(T ) values extracted from the lattice 
reflect the net contribution to the 2nd virial coefficient of both 
the repulsive and the attractive baryonic interactions. This contri-
bution is averaged over all baryon–baryon pairs. Thus, it cannot 
distinguish possible differences in virial coefficients for different 
baryon pairs, for instance involving the strange baryons [69]. If 
the attractive interactions are non-negligible, then b(T ) cannot 
be attributed exclusively to the baryonic eigenvolume. Since the 
nucleon–nucleon interaction is attractive at the intermediate range, 
it is predicted that b(T ) should become negative at sufficiently 
small temperatures, where the hadron gas is dilute and where the 
average distance between baryons becomes larger.

At high temperatures, T > 185 MeV, the lattice data for the b1
coefficient cannot be described by the standard baryonic spectrum 
in HRG, as seen from Fig. 1. The function φB , as extracted from 
the lattice with Eq. (22), no longer reflects baryons in their nor-
mal vacuum form. Nevertheless, it is interesting that the EV-HRG 
model with the lattice-extracted φB (T ) and b(T ) gives a reason-
able description of the b3 and b4 coefficients even at temperatures 
T > 200 MeV (Fig. 4). This is quite notable since the b3 and b4 co-
efficients are not used to extract φB(T ) and b(T ) from the lattice. 
One can expect a similar picture for the higher order coefficients, 
which define the properties of the more and more dense baryon 
medium. The result suggests that the EV-HRG model has a certain 
predictive power, particularly regarding the baryon-rich region of 
the phase diagram, which is presently unaccessible by the lattice 
simulations. These questions will be explored in the future studies.

6. Summary

We presented the lattice QCD observables at an imaginary bary-
ochemical potential, and analyzed them in the framework of a 
hadron resonance gas model with repulsive interactions between 
baryons. More specifically, the temperature dependent Fourier co-
efficients of the Fourier series expansion of the net baryon density 
at imaginary μB were considered. The ideal hadron resonance gas 
model predicts zero values for the 2nd and higher-order coeffi-
cients. Thus, significant deviations from zero of the higher-order 
coefficients signal the end of the applicability of the ideal HRG 
model. Lattice calculations predict that the onset of this behavior 
takes place at about T = 160 MeV. They also predict an alternat-
ing sign structure for the coefficients: the odd order coefficients, 
b1 and b3 are positive, while the even order ones, b2 and b4, are 
negative.

Remarkably, the behavior of the first four Fourier coefficients 
at T � 185 MeV appears to be well described by the HRG model 
with the excluded-volume interactions between baryons, charac-
terized by a single eigenvolume parameter b � 1 fm3. We do note 
that some finer structures, such as the temperature derivatives 
of the coefficients, or the difference χ B

2 − χ B
4 of baryon number 

susceptibilities at μB = 0, are reproduced by this simple model 
only up to a lower temperature of about 175 MeV. The EV-HRG 
model also predicts the alternating sign structure analytically. At 
the same time, the van der Waals HRG model, with vdW param-
eters a and b fixed by the properties of the nuclear ground state, 
does a worse job in describing the Fourier coefficients. It will be 
interesting to reconcile these two approaches in order to obtain a 
unified model for the hadronic equation of state. This model would 
describe both, the nuclear matter properties at low temperatures 
and high baryon densities, and the lattice QCD data at high tem-
peratures. A proper hadronic baseline is crucially important for the 
ongoing experimental effort in determining the properties of QCD 
from the heavy-ion collision experiments at different collision en-
ergies.

The present study elucidates the potential of the lattice QCD 
observables at imaginary chemical potentials to shed light on the 
properties of QCD, particularly regarding the hadronic interactions 
in the confined phase. Such analysis should also be performed for 
other imaginary μ observables, e.g. involving the electric charge 
and strangeness, as well as for the more accurate, and continuum 
extrapolated lattice data, which will be available in the future.4
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Appendix A

This appendix presents the calculation of the Fourier coeffi-
cients bk(T ) in the Fourier expansion of the net baryon suscep-
tibility χ B

1 at an imaginary baryochemical potential (4) for the 
vdW-HRG model [11]. In the vdW-HRG model, the attractive and 
repulsive baryonic interactions are described by the van der Waals 
equation, with common a and b parameters for all baryons. For 
a = 0 this model reduces to the EV-HRG model in Sec. 3.2.

Following results of Ref. [11], in the Boltzmann approximation 
one has the following transcendental equations for nvdw

B and nvdw
B̄

nvdw
B = (1 − b nvdw

B )λB φB(T ) exp

(
− b nvdw

B

1 − b nvdw
B

)

× exp

(
2 a nvdw

B

T

)
, (24)

nvdw
B̄

= (1 − b nvdw
B̄

)λ−1
B φB(T ) exp

(
− b nvdw

B̄

1 − b nvdw
B̄

)

× exp

(
2 a nvdw

B̄

T

)
. (25)

The calculation of the coefficients bvdw
k proceeds in essentially 

the same way as it was done for the EV-HRG model. One assumes 
the fugacity expansions for nvdw

B(B̄)
in the form (11)–(12), and calcu-

lates the bvdw
k by plugging in the fugacity expansion into Eq. (24). 

The result is

bvdw
1 (T ) = 2

φB(T )

T 3
, (26)

bvdw
2 (T ) = −4

(
b − a

T

)
φB(T )

φB(T )

T 3
, (27)

bvdw
3 (T ) = 9

(
b2 − 8

3

a b

T
+ 4

3

a2

T 2

)
[φB(T )]2 φB(T )

T 3
, (28)

bvdw
4 (T ) = −64

3

(
b3 − 39

8

a b2

T
+ 6

a2 b

T 2
− 2

a3

T 3

)

× [φB(T )]3 φB(T )

T 3
. (29)
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