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Abstract

Accurate item calibration in models of item response theory (IRT) requires rather large samples.
For instance, N.500 respondents are typically recommended for the two-parameter logistic
(2PL) model. Hence, this model is considered a large-scale application, and its use in small-
sample contexts is limited. Hierarchical Bayesian approaches are frequently proposed to reduce
the sample size requirements of the 2PL. This study compared the small-sample performance of
an optimized Bayesian hierarchical 2PL (H2PL) model to its standard inverse Wishart specifica-
tion, its nonhierarchical counterpart, and both unweighted and weighted least squares estima-
tors (ULSMV and WLSMV) in terms of sampling efficiency and accuracy of estimation of the
item parameters and their variance components. To alleviate shortcomings of hierarchical mod-
els, the optimized H2PL (a) was reparametrized to simplify the sampling process, (b) a strategy
was used to separate item parameter covariances and their variance components, and (c) the
variance components were given Cauchy and exponential hyperprior distributions. Results show
that when combining these elements in the optimized H2PL, accurate item parameter estimates
and trait scores are obtained even in sample sizes as small as N = 100. This indicates that the
2PL can also be applied to smaller sample sizes encountered in practice. The results of this study
are discussed in the context of a recently proposed multiple imputation method to account for
item calibration error in trait estimation.
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Item response theory (IRT) models such as the two-parameter logistic (2PL) model are currently

the state of the art of measuring individual competences. Because of their complexity, however,

they are associated with high sample size requirements. For instance, for accurate item calibra-

tion a minimum sample size of N = 500 is typically recommended for the 2PL (Baker, 1998;

Liu & Yang, 2018). These sample size requirements pose a considerable challenge for applying

the 2PL (or more complex models) to small-sample situations (De Ayala, 2009), such as
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university exams or computerized adaptive tests, and items are calibrated with sample sizes

smaller than recommended, introducing error in the subsequent estimation of trait scores (de la

Torre & Hong, 2010; Feuerstahler, 2018).

To reduce item calibration error in small-sample IRT modeling, Bayesian approaches are

proposed as alternatives to maximum likelihood (ML) estimation (Fox, 2010; Kim, 2001). The

single-stage fully Bayesian estimation of IRT models, however, is criticized for being concep-

tually complex and computationally inefficient (Yang et al., 2012). Moreover, to increase the

accuracy of item parameters in small samples, researchers are required to introduce prior infor-

mation about the model parameters (or generally, about the population distribution of the para-

meters of interest) into the analysis (Swaminathan et al., 2003). When appropriate prior

information is not available, a hierarchical approach to Bayesian estimation of IRT models

offers a viable alternative; Swaminathan and Gifford (1985) and Mislevy (1986) were among

the first to propose hierarchical versions of the 2PL (H2PL) model and to note their benefits for

small-sample item calibration. Hierarchical Bayesian IRT models, such as the H2PL, exhibit a

hierarchical structure of the prior distributions for the item parameters (Fox, 2010). The first

level consists of a (usually multivariate) prior distribution for the vector of item parameters j.

The hyperparameters of this distribution, the vector of grand means of the item parameters mj,

and their variance–covariance matrix S (which contains the covariance of the item parameters

and their variance components ta and tb), are not specified by the researcher directly but are

given prior distributions themselves. These hyperprior distributions for mj and S constitute the

second level of the prior structure. This hierarchical structure yields more accurate parameter

estimates in small samples than their nonhierarchical counterparts by pooling information

across parameters of the same type, depending on ta and tb (Fox, 2010; Jackman, 2009). This

beneficial characteristic was demonstrated for the H2PL, for instance, by Sheng (2013) and

Natesan et al. (2016). Moreover, the hierarchical structure requires researchers to specify prior

distributions only for the hyperparameters mj and S. This is an important advantage because in

nonhierarchical models, the benefits of the Bayesian approach in small samples can only be

realized with adequate informative prior distributions (Sheng, 2010). Their specification, how-

ever, is not straightforward (Ames & Smith, 2018). Thus, utilizing a hierarchical approach alle-

viates this problem (Kim et al., 1994; Sheng, 2013). Nonetheless, the specification of prior

distributions for S and ta and tb still requires careful consideration.

In the standard H2PL, S is commonly given a conjugate inverse Wishart prior distribution

with k3k scale matrix S and degrees of freedom y, where k equals the number of item para-

meters and y.k � 1. This is well known to be problematic (for a more detailed summary, see

Alvarez et al., 2016) for three reasons: (a) uncertainty for all variances is controlled only by the

hyperparameter y; (b) if v.1, the resulting marginal distribution for the variances has low den-

sity near zero, which biases associated estimates for variance components; and (c) the distribu-

tion contains a priori dependencies between correlations and variance components. The

alternative is to separate covariance and variance components to give them individual prior dis-

tributions (Barnard et al., 2000). The use of the inverse gamma distribution as prior distribution

for variance components, however, is discouraged in the recent Bayesian multilevel literature.

Alternatives have been proposed in the form of the Cauchy and exponential distributions: both

are heavy-tailed with higher mass around zero, compared to the inverse gamma distribution,

which is known to be problematic when variance components are close to zero (Gelman, 2006;

Polson & Scott, 2012). Using heavy-tailed distributions for variance components in hierarchical

models in small-sample situations, however, has negative effects on the efficiency of the

Markov chain Monte Carlo (MCMC) sampling (Betancourt & Girolami, 2013). Sampling inef-

ficiencies may lead to bias in item parameter estimates, counteracting the reduction of item

calibration error promised by the hierarchical approach. In the context of IRT models, these
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alternatives to the inverse gamma distribution became the focus of attention only recently (Liu

& Yang, 2018; Sheng, 2017), while alternatives to the inverse Wishart distribution, or questions

of sampling efficiency, were widely ignored.

The main assumption underlying this article is as follows. To utilize the full potential of the

hierarchical approach for small-sample IRT modeling, an optimized H2PL is necessary which

(a) increases the sampling efficiency when using heavy-tailed hyperprior distributions for ta

and tb; (b) applies a separation strategy to S instead of the standard inverse Wishart distribu-

tion; and (c) avoids the inverse gamma distribution as hyperprior for ta and tb.

Thus, the goal of the following simulation study, and its primary contribution, is to investi-

gate and quantify the combined effect of these optimizations on the accuracy of estimation of

the variance components ta and tb, item parameters ai and bi, and trait scores uj in small-

sample IRT modeling, compared to its standard inverse Wishart specification and its nonhier-

archical counterpart. In addition, two limited-information estimators, namely, the unweighted

and weighted least squares estimators (ULSMV and WLSMV), were included in the simulation

as popular counterparts for latent variable modeling with categorical data. The results of the

simulation study will provide answers to the question of whether the hierarchical approach to

small-sample IRT modeling outlined above indeed offers an efficient way to estimate complex

IRT models, yielding accurate parameter estimates even in smallest sample sizes. The opti-

mized H2PL is described next.

The Optimized H2PL IRT Model

Let yij 2 f0, 1g be the response of person j to item i, uj be the ability of person j, and ai and bi

be the discrimination and difficulty parameters of item i, respectively. The ability parameter is

typically given a standard normal prior distribution, and the item parameters ji = flog ai, big
have a joint multivariate normal prior with mean vector mj = fma, mbg and variance–covariance

matrix S =
ta sba

sab tb

� �
, where ta and tb are the variance components, and sab and sba are

the covariances of the item parameters. The log-transformation of ai makes it possible to sam-

ple the transformed discrimination and difficulty parameters as correlated draws from a bivari-

ate normal distribution (Glas & van der Linden, 2003). If the logit of a function x is defined by

logit =
exp xð Þ

1 + exp xð Þ , ð1Þ

then the first level of the optimized H2PL can formally be expressed as follows:

Pr yij = 1juj, ai, bi

� �
= logit ai uj � bi

� �� �
ð2:1Þ

uj;N 0, 1ð Þ ð2:2Þ

eji;N 0, 1ð Þ, ð2:3Þ

where eji;N (0, 1) is a vector of uncorrelated z�scores related to the item parameters.

Equation (2.3) implies a reparametrization of the H2PL to simplify the sampling process and

to increase the efficiency of the MCMC sampler, which is commonly found to be restricted in

models with highly correlated posterior distributions, such as hierarchical models, irrespective

of the MCMC sampler used (Betancourt & Girolami, 2013; Papaspiliopoulos et al., 2007).

Posterior distributions with correlated dimensions are frequently associated with convergence

problems and low effective sample sizes (ESSs; Turner et al., 2013). The ESS indicates the
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number of independent samples from the typical set of the target distribution included in an

MCMC chain (Annis et al., 2017). It is defined by ESS = (n=(1 + 2
P‘

l = 1 r(l))), where n is the

total number of samples in the chain, and r(l) is the autocorrelation of two adjacent samples

(Betancourt, 2018). Autocorrelation depends on the correlation in a joint posterior distribution

and indicates sampling inefficiencies that negatively affect the ESS.

The noncentered parameterization of the optimized H2PL alleviates sampling inefficiencies

in two steps following Betancourt and Girolami (2013) for general Bayesian hierarchical mod-

els. First, it removes the cross-level dependency of the vectors of correlated item parameters ji

and their grand means mj, which is present when ji is sampled from a multivariate normal dis-

tribution ji;MVN(mj, S), by subtracting the grand means and factoring out the variance com-

ponents ta and tb. Second, the reparameterization removes the remaining correlation between

the item parameters ji by utilizing the general fact that draws from a multivariate normal distri-

bution can be obtained by a Cholesky decomposition of the correlation matrix LΩ (with

Ω = LLT, where L is a lower triangular matrix). In the noncentered H2PL, for each item

i, i = 1, . . . , I , a vector of uncorrelated z�scores eji = ( ej1 , . . . , ejI ) is drawn from a standard nor-

mal distribution. Each individual vector is then multiplied by L, the diagonal matrix of variance

components ta and tb, and the Cholesky factor LΩ to obtain the vector of item parameters ji

for each item. The deterministic transformations ji = (LLΩ
eji)

T, ai = ma + jai, and bi = mb + jbi

effectively remove all dependencies of the H2PL from the sampling process, leaving only the

uncorrelated uj and eji as actively sampled variables on the first level of the optimized H2PL.

The resulting joint posterior distribution has a much more convenient form, which the MCMC

sampler is able to explore more efficiently, yielding lower autocorrelations and a higher ESS,

because the parameter space is uncorrelated. A Stan implementation of the optimized H2PL is

provided in the supplementary material.

The second level of the optimized H2PL includes the hyperpriors for mj, that is, the grand

means of the discrimination and difficulty parameters, the hyperprior for LΩ, and for the var-

iance components ta and tb:

ma;N 0, 1ð Þ ð2:4Þ

mb;N 0, 2ð Þ ð2:5Þ

LΩ;LKJ 4ð Þ ð2:6Þ

ta, b;Cauchy 0, 1ð Þ: ð2:7Þ

The separation strategy based on LΩ in equations (2.6) and (2.7) follows Barnard et al.

(2000) and is implemented to avoid the well-known problems of the inverse Wishart distribu-

tion as hyperprior for S (Alvarez et al., 2016). It eliminates the a priori dependencies between

the variance components and the covariances and offers more flexibility in prior specification,

that is, an increased control of the uncertainty associated with the variance components. In the

optimized H2PL, LΩ is given a LKJ(LΩjh) prior distribution with the shape parameter h

(Lewandowski et al., 2009). For a k3k lower triangular Cholesky factor of a correlation matrix

LΩ and h.0, this distribution is defined by LKJ(LΩjh) =
QK

k = 2 L
K�k + 2h�2
kk (Stan Development

Team, 2016). The shape parameter h controls the degree of information contained in the prior

distribution; as h! ‘, extreme correlations become less probable. This prior distribution is

currently widely used in Bayesian analyses involving covariance matrices (a) because it pro-

vides direct control over how closely the sampled matrix resembles the identity matrix and (b)

314 Applied Psychological Measurement 44(4)



because of its numerical stability compared to the standard inverse Wishart distribution (Stan

Development Team, 2016).

There are several alternatives regarding the choice of a weakly informative prior distribution

for the variance components ta and tb. The inverse gamma distribution

IVG(ta, bja, b) = (ba=G(a))ta, b
�(a + 1)exp(� (b=ta, b)), with shape and scale hyperparameters

a, b.0, is commonly used because of its conjugacy. However, if the variance component is

estimated to be near zero, because of its relatively low mass around zero, inference is sensitive

to the choice of the hyperparameters (Gelman, 2006). Thus, based on findings from the current

methodological literature (Polson & Scott, 2012; Sheng, 2017), the optimized H2PL utilizes the

Cauchy distribution CAU(ta, bjm, s) = (1=ps)(1=(1 + ((ta, b � m)=s)2)), with location m and

scale s. Due to its broad peak, it concentrates more mass around zero, leading to better perfor-

mance around the origin and because of its thick tails, it also allows larger values if necessary

(Polson & Scott, 2012). This might be problematic in nonlinear models with logit links, given

possible floor and ceiling effects, because extreme values of the variance components are

equally likely (McElreath, 2016). Based on the results of their simulation study on the utility of

Cauchy prior distributions for logit link models, Ghosh et al. (2018) also state that for such

(nonlinear) models, it may be necessary to consider alternatives to the heavy-tailed Cauchy dis-

tribution. The exponential distribution EXP(ta, bjb) = bexp(� bta, b) with inverse scale b.0 is

such a possible alternative. The peak around its mean is broader than that of the inverse gamma

distribution, but thinner than that of the Cauchy distribution, and its tail is thinner, yielding esti-

mates that are more conservative (McElreath, 2016). Figure 1 illustrates the difference in densi-

ties of these distributions, equivalently specified to match m = 1 and s = 1. These weakly

informative specifications can be found frequently in the context of the adaptive regularization

of hierarchical models (McElreath, 2016).

Figure 1. Densities of the IVG, CAU, and EXP distributions.
All three distributions are equivalently specified with m = 1 and s = 1. For each distribution, the 95% HDI is shown.

Since the variance components ta and tb cannot be negative, but the Cauchy distribution has support on the real line,

it is truncated at zero, that is, it is a half-Cauchy distribution.

Note. IVG = inverse gamma; CAU = Cauchy; EXP = exponential; HDI = highest density interval.
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Simulation Study

To examine the combined effect of the three optimizations, (a) sample size

(N = 50, 75, 100, 150, 200, 500), (b) test length (k = 25, 50), and (c) specification (hierarchical

and nonhierarchical) of the 2PL model were manipulated in a simulation study. The hyperprior

distributions (inverse gamma, Cauchy, and exponential) and the parameterization (centered and

noncentered) were nested in the specification factor. In total, the design consisted of

63236 = 72 cells. The design covered sample sizes typically regarded as suboptimal for item

calibration under the 2PL because deriving accurate parameter estimates was shown to be pro-

blematic (De Ayala, 2009; Stone, 1992). The sample size of N = 500, which was considered the

minimum sample size required for the 2PL, served as the baseline condition. Furthermore, the

design covered test lengths that are commonly found in operational tests and prior research on

Bayesian estimation of IRT models (Sheng, 2017). To give an even better indication of the per-

formance of the optimized H2PL, it was furthermore compared to the standard inverse Wishart

specification of the H2PL and to two popular limited-information estimators for categorical

data (ULSMV and WLSMV).

Data Generation and Analysis

For each cell of the simulation design, 100 data sets were generated from a unidimensional 2PL

model with correlated item parameters. Based on an analysis of descriptive statistics of item

parameters from several large-scale assessments and based on recommendations from the litera-

ture, generating values for the variance components were set to ta = 0:25 and tb = 1, and the

correlation of the item parameters was set to ra, b = :30 (Fox, 2010). These generating values

reflect variance components and dependencies of item parameters typically found in operational

tests. Thus, item parameters were drawn from a multivariate distribution with mean vector

mj = f0, 0g and covariance matrix S =
0:0625 0:075

0:075 1:000

� �
. This yielded typical item parameters

(99% confidence intervals [CI] = ½0:47, 2:17� and ½�3:10, 3:08� of the generated discrimina-

tions and difficulties, respectively). Person parameters were drawn from a standard normal dis-

tribution uj;N (0, 1), generating a 99% CI = ½�3:11, 3:11� for the person parameters. Different

sets of item and person parameters were drawn for each of the 100 data sets.

The centered H2PL was specified with ji;MVN (mj, Ω) instead of equation (2.3). The

equivalent specifications of the hyperprior distributions, as shown in Figure 1, represent weakly

regularizing hyperprior distributions for variance components in general hierarchical models

(McElreath, 2016). Given that ta, tb � 0, the Cauchy distribution is a half-Cauchy distribution

truncated at zero. The standard inverse Wishart H2PL was specified with

uj;N (0, 1), ji;MVN(mj, S), ma;N (0, 1), mb;N (0, 2), and S;IW (3, I), where I is the

identity matrix. The nonhierarchical 2PL was specified with uj;N (0, 1),ai;logN(0, 1), and

bi;N (0, 2). These prior configurations are widely used in Bayesian IRT modeling (Fox, 2010;

Levy & Mislevy, 2016).

Stan (Carpenter et al., 2017) and its R interface RStan (Stan Development Team, 2016) were

used for Bayesian estimation. Four chains each with a length of 10,000 were set up with 5,000

burn-in cycles and a thinning interval of five, yielding a maximum ESS of 4,000 draws.

Different random starting values were supplied to each of the four chains. Convergence was

assessed using the Gelman–Rubin R-statistic (Gelman & Rubin, 1992), where R\1:05 indi-

cated convergence. In the case of the centered specification of the H2PL, there was a small

number of nonconvergent replications (under 10%). In the case of the noncentered specifica-

tions of the H2PL (and the standard inverse Wishart specification), all replications converged.
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For the ULSMV and WLSMV estimation, lavaan (Rosseel, 2012) was used with ‘‘Theta’’ para-

meterization; since lavaan uses the probit link, loadings and thresholds were transformed into

discriminations and difficulties using the correct formulas given by Paek et al. (2018). There

were large numbers of nonadmissible replications (nonconvergent, negative variances, and not

positive definite matrices) for both estimators across all sample sizes (up to 43%). Moreover,

for k = 50, there were no admissible solutions for N = 50 and N = 75.

Dependent Measures

First, the sampling efficiency of the candidate hyperprior distributions for the variance compo-

nents ta and tb was investigated to quantify the benefit of the noncentered parameterization of

the optimized H2PL. Sampling efficiency was indicated by the average ESS of the variance

components ta and tb and the average number of divergent transitions. Divergent transitions

indicate that the MCMC chain was not able to adequately explore a region of high curvature in

the posterior distribution (Betancourt, 2018). It was expected that the noncentered parameteri-

zation would increase the average ESS and eliminate divergent transitions; this pattern was

expected to be more distinct for the Cauchy and exponential distributions, because of their

thicker tails, compared to the inverse gamma distribution.

Second, the three hyperprior distributions of the optimized H2PL and the standard inverse

Wishart specification of the H2PL were compared in terms of the accuracy of estimation of the

variance components ta and tb. Accuracy of parameter estimation was indicated by the average

bias (BIAS) and the root mean squared error (RMSE). Let t be the true value of the variance com-

ponent, and tr its estimate in the rth replication (r = 1, . . . , R). Then BIASt = (
PR

r = 1 (tr � t))=R

and RMSEt =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
PR

r = 1 (tr � t)2)=R

q
. Careful consideration must be given to the choice of hyper-

prior distribution because, given the borrowing principle (depending on ta and tb, information is

pooled across parameters of the same type, yielding item parameter estimates balanced between

their respective grand means and their item-specific estimates), bias in estimates of the variance

components may lead to bias in item parameter estimates. It was expected that the inverse gamma

distribution, due to its distinct peak, thin tail, and low mass in the region near zero, would perform

worse than the Cauchy and Exponential distributions.

Third, the optimized H2PL was compared to the standard inverse Wishart specification, its

nonhierarchical counterpart, and the ULSMV and WLSMV estimators in terms of the accuracy

of estimation of the item parameters ai and bi and the accuracy of the trait scores uj estimated

based on the estimated item parameters in the common two-stage approach. The BIAS and

RMSE of ai,bi, and uj were averaged across items and persons, respectively, for each replica-

tion. To obtain the final BIAS and RMSE values, these replication-specific summary indices

were averaged across replications. It was expected that the optimized H2PL would perform

best. This implies that IRT models behave differently from general hierarchical models: typical

values of ai and bi fall into a quite narrow range, which restricts their variances to be relatively

small. Therefore, bias introduced by shrinkage might be negligible, and the increased amount

of information available may fully contribute to an increase in the accuracy of estimation.

Results

Noncentering the H2PL Increases Sampling Efficiency

The noncentered parameterization is most beneficial for the optimized H2PL when its specifi-

cation includes either the Cauchy or the exponential distribution as hyperprior for the variance

components. As illustrated in Figure 2 (showing the average number of divergent transitions
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for k = 25), when using the inverse gamma distribution, the optimized H2PL exhibits hardly

any divergent transitions, regardless of parameterization. Using either the Cauchy or the expo-

nential distribution, the centered parameterization is associated with a considerable number of

divergent transitions for all sample sizes of N\500. When k = 50 (not shown), the average

number of divergent transitions considerably increases for N\100. Thus, the Cauchy and expo-

nential distributions do not work well in smaller samples unless the H2PL is reparameterized.

Noncentering the H2PL allows these alternative distributions to be utilized without restrictions

in terms of validity of the parameter estimates when sample sizes are small.

The increase in sampling efficiency in terms of decreasing average numbers of divergent

transitions is further reflected by the increase in the average ESS. There is an increase in the

average ESS across all hyperprior distributions; it is most pronounced in the case of the Cauchy

and exponential distributions, where the average ESS of the variance components is increased

threefold for some sample sizes. Similar to the changes in the average number of divergent tran-

sitions, this indicates that the Cauchy and exponential distributions do not work well in the cen-

tered H2PL. Figure 2 illustrates the increase in average ESS for ta across parameterizations for

all hyperprior distributions and k = 25; the increase is similar for k = 50. In the case of tb, the

general pattern is similar, but the increase in the average ESS is not as large.

In sum, the Cauchy and exponential distributions do not work well in terms of sampling effi-

ciency, compared to the inverse gamma distribution, unless the H2PL is reparameterized.

Noncentering the optimized H2PL, however, effectively eliminates sources of bias in parameter

estimates related to the efficiency of the sampling process. Thus, the following sections are

based on results from the noncentered H2PL.

Using Alternatives to the Inverse Gamma Distribution Increases Accuracy of ta

Figure 3 illustrates differences in average BIAS and RMSE in estimates of the variance compo-

nents between the candidate hyperprior distributions, compared to the standard inverse Wishart

specification of the H2PL, across sample sizes and test lengths. Differences in average BIAS

are most pronounced in the case of ta: except for N = 500 and k = 50, the inverse gamma distri-

bution overestimates the variance of the item discriminations. The decreasing sample size intro-

duces less bias in estimates of ta when using either the Cauchy or the exponential distribution.

Overall, the optimized H2PL yields more accurate estimates of ta compared to the standard

inverse Wishart specification of the H2PL across all test lengths and sample sizes. In the case

of the average BIAS of tb, the candidate hyperprior distributions perform equally well.

Regarding ta, the advantages of the optimized H2PL over the standard inverse Wishart spe-

cification of the H2PL are also apparent in terms of RMSE. Differences between the inverse

gamma, Cauchy, and exponential distributions emerge for sample sizes N\150 for k = 25. The

inverse gamma distribution exhibits a larger RMSE than the Cauchy or exponential distribu-

tions. For k = 50, the differences are negligible. In the case of tb, however, the inverse gamma

distribution shows smaller RMSEs across sample sizes for k = 25. For k = 50, the largest differ-

ences in RMSE can be observed for sample sizes N\100. The Cauchy distribution, however,

shows the most consistent performance in terms of RMSE.

In sum, using either the Cauchy or the exponential distribution as hyperpriors for the var-

iance components increases the accuracy of estimation for ta only. This leads, however, to a

better adaptation of the item discrimination estimates to the amount of information in the data.

Overall, the optimized H2PL outperforms the standard inverse Wishart specification of the

H2PL in the case of ta across all test lengths and sample sizes.
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The H2PL Yields Accurate Item Parameters and Trait Scores for Samples of N = 100

Figure 4 illustrates differences in average BIAS and average RMSE in item parameter estimates

across sample sizes and test lengths between the optimized H2PL, its nonhierarchical

Figure 2. Sampling efficiency of the inverse gamma, Cauchy, and exponential distributions across
parameterizations and sample sizes for k = 25.
Note. The nominal ESS of ta was 4,000.
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counterpart, the standard inverse Wishart specification, and the ULSMV and WLSMV estima-

tors. The nonhierarchical 2PL underestimates the item discrimination for all sample sizes and

test lengths, except for N = 50 and k = 25. For the smallest sample sizes, there are also differ-

ences in average BIAS between the candidate hyperprior distributions in the optimized H2PL

and its standard inverse Wishart specification. Both ULSMV and WLSMV estimators are out-

performed by the Bayesian H2PL specifications when N\500 for both test lengths. In the case

of the item difficulty differences are less pronounced, both specifications perform equally well

across sample sizes. Taking N = 500 as the nominal level, the average BIAS in item parameters

Figure 3. Differences in the accuracy of estimation of the variance components ta and tb between the
inverse gamma, Cauchy, and exponential distributions across sample sizes for for k = 25 (short) and k =
50 (long).
Note. Error bars indicate 62 SE.
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does not considerably increase until N = 100 in the case of the optimized H2PL. In terms of

average RMSE, the candidate hyperprior distributions perform equally well. Overall, differ-

ences in the average RMSE are most distinct between the hierarchical and nonhierarchical spec-

ifications (including the ULSMV and WLSMV estimators) for both item parameters across all

sample sizes and test lengths: the hierarchical specifications consistently show smaller average

RMSEs in item parameters.

Figure 5 illustrates if and how the increased accuracy of the item parameters translates into

the accuracy of the trait scores for the Bayesian specifications of the 2PL. Overall, for both test

lengths, the accuracy of the trait scores does not markedly decrease until N = 100, in terms of

Figure 4. Differences in the accuracy of estimation of the item parameters between the optimized
H2PL (with inverse gamma, Cauchy, and exponential distributions) and its standard inverse Wishart
specification, its nonhierarchical counterpart, and the ULSMV and WLSMV estimators across sample sizes
for k = 25 (short) and k = 50 (long).
Note. Error bars indicate 62 SE.
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average BIAS. There are no marked differences between the Bayesian specifications and the

ULSMV and WLSMV estimators. Judging by the average RMSE, when N\100, the accuracy

of the trait scores becomes sensitive to the choice of specification; moreover, there is a slight

increase in accuracy in the case of the optimized H2PL for N\100 and k = 25, compared to its

nonhierarchical counterpart. Compared to the ULSMV and WLSMV estimators, the average

RMSE of the trait scores is lower in the case of the longer test length and N.150.

Discussion

The goal of this study was to investigate and quantify the effect of the optimized H2PL on the

accuracy of estimation of the item parameters ai and bi and their variance components ta and

tb in small-sample situations, and to investigate how this translates into the accuracy of trait

scores uj. The optimized H2PL included (a) a noncentered parameterization, (b) the use of the

Cholesky factor LΩ to separate variances and covariances, and (c) the use of the Cauchy and

exponential distributions as alternative hyperprior distributions for the variance components.

Noncentering the H2PL considerably increased the sampling efficiency in small sample sizes,

especially when using the alternative hyperprior distributions for the variance components. It

was further demonstrated that utilizing these alternative hyperprior distributions yields estimates

of the variance components that are more accurate compared to the commonly used inverse

gamma distribution. Moreover, when combining these elements in the optimized H2PL, this

specification yields accurate item parameter estimates and trait scores even in sample sizes as

small as N = 100, which is considerably smaller than sample sizes recommended for item

Figure 5. Differences in the accuracy of the trait scores between the optimized H2PL (with inverse
gamma, Cauchy, and exponential distributions) and its standard inverse Wishart specification, its
nonhierarchical counterpart, and the ULSMV and WLSMV estimators across sample sizes for k = 25
(short) and k = 50 (long).
Note. Error bars indicate 62 SE.
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calibration or scoring (e.g., N = 1, 000 or N = 500; Stone, 1992). As the 2PL is often regarded as

a large-scale application, while typically only the simpler Rasch model is applied to sample

sizes of approximately N\500 (Stone & Yumoto, 2004), this finding is of practical importance

since it shows that the 2PL can also be applied to sample sizes commonly encountered in

practice.

This enhanced applicability of the 2PL can be attributed to the increased accuracy in the esti-

mation of the item discrimination parameter and its associated variance component. The bias

introduced by the underestimation of the item discrimination parameter in the standard, nonhier-

archical 2PL across all sample sizes and test lengths has consequences for the estimation of trait

scores. The accuracy of the trait score estimates includes, but is not limited to, item calibration

error (Feuerstahler, 2018). The optimized H2PL reduces item calibration error in smaller sample

sizes; as the item discrimination parameter is important for the calculation of the test informa-

tion under the 2PL model, it is to be expected that the standard error of measurement of the trait

scores is reduced as well. As the first indication of this effect, this study demonstrates the better

performance of the optimized H2PL in terms of the average RMSE of the trait scores. It has to

be noted that its performance is furthermore similar to both the ULSMV and the WLSMV esti-

mators, where the trait scores are estimated without considering item calibration error.

Thus, the optimized H2PL may be most beneficial if applied to small-sample item calibra-

tion when item calibration error in the trait scores is to be accounted for. The common two-

stage approach to trait estimation, where estimates of the item parameters are treated as true

values without error, ignores the uncertainty carried over from the item calibration. Recently, a

multiple-imputation-based approach has been proposed, in which m plausible item parameter

values are drawn from a multivariate normal distribution with the ML-estimates of the item

parameters as means and their asymptotic covariance matrix as scale (Yang et al., 2012). An

alternative may be to draw m plausible item parameter values directly from their respective

means and standard errors obtained under the optimized H2PL; the calculation of the asympto-

tic covariance matrix of the item parameters, based on the respective Fisher information matrix,

would be no longer required (Liu & Yang, 2018). It may be promising to compare these two

alternatives within the multiple-imputation-based approach to trait estimation, with a special

focus on their performance in small samples. Nevertheless, the findings of this study indicate

that the optimized H2PL could also be used in a single-stage approach to trait estimation;

although item calibration error is taken into account, it yields an accuracy in the trait scores

comparable to the ULSMV and WLSMV estimators. Its proposed use in the aforementioned

two-stage approach, however, is conceptually easier to integrate into the standard operating

procedures in applied testing situations (Yang et al., 2012).

The advantage of the optimized H2PL over its nonhierarchical counterpart in terms of bias

in estimates of the item discrimination parameter is somewhat surprising. A potential explana-

tion involves its variance component. Shrinkage of parameter estimates toward their grand

means, hence their bias, depends on the variance of a given parameter. The increased accuracy

of the item discrimination parameter might indicate that its variance is at a level where the bias,

usually introduced by shrinkage, is outweighed by the increased amount of information avail-

able for the estimation of the item discrimination parameter. Thus, this result indeed points out

the possibility that IRT models behave differently than general hierarchical models because

typical values of ai and bi fall into a quite narrow range, which restricts their variances to be

relatively small. Future simulations could address this general idea and remedy one limitation

of this study: its focus on a single set of true values of the variance components. Although the

choice of their generating values is based on operational item sets, it might be promising to

investigate this pattern for different sets of generating values. Another limitation of this study is

the focus on a single specification for the candidate hyperprior distributions. Although it was
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chosen to make them comparable and to take up recommendations from the current methodolo-

gical literature, it may be fruitful to investigate how sensitive the results are to different specifi-

cations of the distributions, especially in small sample sizes. This may provide further evidence

for their utility for small-sample IRT modeling.

Finally, the results of this study contribute to the growing body of literature discouraging the

use of the inverse gamma distribution (Gelman, 2006; Polson & Scott, 2012). Even in a weakly

informative specification, it overestimates the variance of the item discrimination parameter

across almost all sample sizes and test lengths. The advantages of both the Cauchy and expo-

nential distributions, as shown in this study, contribute to recent studies investigating these dis-

tributions as viable alternatives (Liu & Yang, 2018; Sheng, 2017). However, the use of either

the Cauchy or the exponential distribution requires a reparameterization of the H2PL to ensure

the validity of item parameter estimates. In summary, this study illustrates how to apply the

2PL model, usually considered a large-scale application, to small-sample situations.
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