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Mathematical Notations

ϕ : M → N mapping of a manifold M onto another manifold N
ϕ : m 7→ n = ϕ(m) effect of ϕ on m ∈M
i imaginary unit

√
−1

Rn Euclidian space of dimension n
Cn complex hyperplane of dimension 2n

RP1 real projective line
CP complex projective space
D2 Poincaré disk of dimension 2

HP2 Siegel upper half plane of dimension 2
H Hilbert space
f ∈ F(M) C∞ functions on M
X ∈ X(M) vector fields in M
θ ∈ Ωk(M) k-forms on M
TM tangent bundle of M
T ∗M cotangent bundle of M
U ⊂M open submanifold or neighborhood in M
(U,ϕ), ϕ : U → V ⊂ Rn local chart of a manifold of dimension n
∧ exterior product
iX inner product, contraction
⊗ tensor product
d exterior derivative
£X Lie derivative with respect to (along) X
Lin(E,F ) linear map from E onto F
ω symplectic form
g Riemannian metric
D distribution
H Hamiltonian function
L Lagrangian function
H contact Hamiltonian
L contact Lagrangian
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Zusammenfassung

Zweck der Untersuchungen ist es, die statistisch-probabilistischen Inhalte der Quantenmechanik vom
üblichen Hilbertraum-Formalismus auf eine allgemeinere differentialgeometrische Beschreibung zu trans-
ferrieren, was zu einer Formulierung der Quantendynamik mittels nichtlinearer komplexer Riccati-Gleichungen
führt. Dies hat neben der formalen Verallgemeinerung nicht nur den Vorteil, dass wegen der quadratischen
Nichtlinearität der Riccati-Gleichung die intrinsische Verknüpfung von Real- und Imaginärteil (bzw. Am-
plitude und Phase) der für die Quantenmechanik essentiellen Komplexen Größen zum Ausdruck kommt,
sondern eröffnet auch neue Zugänge zur Beschreibung dissipativer Systeme.

In Kapitel 1 soll der Übergang von der linearen Schrödinger-Dynamik zu einer nichtlinearen Riccati-
Dynamik zunächst anhand eines N-Niveau-Quantensystems demonstriert werden. Um einen solchen
Übergang herbeizuführen, erinnern wir uns daran, dass ein reiner Zustand in der Quantenmechanik eine
Äquivalenzklasse ist, das heisst eine vollständige Messung in der Quantenmechanik liefert uns keinen
eindeutig definierten Vektor im Hilbert-Raum, sondern eine Äquivalenzklasse von Vektoren, erhalten
durch Multiplikation mit einer komplexen Zahl. Das heisst auf dem Hilbert-Raum gibt es eine natürliche
Wirkung der Abelschen Gruppe C0 = C− {0 }, gegeben durch |ψ〉 7→ λ |ψ〉 = % ei θ |ψ〉 mit % > 0. Ein
reiner Zustand ist ein Strahl im Hilbert-Raum.

Die Äquivalenzklasse kann infinitesimal durch zwei Vektorfelder in Involution beschrieben werden: Das
Dilatationsvektorfeld ∆ und das Vektorfeld Γ, verknüpft mit der Multiplikation mit einem Phasenfak-
tor. Diese Tatsache ermöglicht die Reduktion der Dynamik auf einen Raum mit niedrigerer Dimension,
insbesondere auf den komplexen projektiven Raum CP des Hilbert-Raums, was ein Beispiel für eine
Hilbert-Mannigfaltigkeit ist. Wenn wir nun konkret die Distribution D2 = {Γ, ∆} in Betracht ziehen,
welche involutiv ist, entsteht eine Blätterung ΦD2 , die regulär ist. Daraufhin lässt sich der Quotienten-
raum H0 zu CP(H0), mit H0 = H−{0}, definieren, der als komplexer projektiver Raum CP(H0) dem H0

zugeordnet ist, d.h. CP(H0) := {λ |ψ〉|λ ∈ C0 }. Die Projektion von H0 nach CP(H0) wird mit π und die
Elemente von CP(H0) mit [ψ] bezeichnet, wobei die [ψ] mit den reinen Zuständen eines Quantensystems
identifiziert werden können. Sie stehen Eins-zu-Eins in Korrespondenz mit Projektoren vom Rang-1, d.h.
[ψ] 7→ ρψ. Demzufolge ist CP(H0) der Raum physikalischer Zustände, die normiert sind und in dem man
die globale Phase beseitigt hat. Dies bedeutet, dass eine Beschreibung des Raumes reiner Zustände ohne
Redundanzen angestrebt wird. Diese Beschreibung der Quantendynamik wird als komplexes projektives
Bild von Quantensystemen bezeichnet. In dieser Arbeit werden wir uns an der Hilbert-Mannigfaltigkeit
orientieren und somit an dem komplexen projektiven Raum, um seine intrinsische ”Nichtlinearität” zu
betonen.

Für die Analyse auf dem CP wird ausgenutzt, dass es möglich ist, den komplexen projektiven Raum
mittels komplexer homogener Koordinaten vollständig zu beschreiben, so dass in diesen Koordinaten
die Schrödinger-Dynamik in die Riccati-Dynamik projiziert wird. Darüber hinaus beweisen wir, dass
nicht nur die Dynamik projizierbar ist, sondern auch wichtige geometrische Strukturen. Im komplexen
projektiven Raum CP werden eine symplektische Form ωFS, eine Riemannsche-Metrik gFS und das (1, 1)-
Tensorfeld JFS als komplexe Strukturen definiert. Folglich besitzt der komplexe projektive Raum eine
Kähler-Struktur (ωFS, gFS, JFS).

Die symplektische Form und die Riemannsche Metrik definieren ein Hamilton-Vektorfeld sowie ein
Gradientenvektorfeld. Dies bedeutet, dass jeder Funktion eA ∈ F(CP) ein Gradientenvektorfeld und ein
Hamilton-Vektorfeld mittels der intrinsischen Definitionen gFS(YeA , · ) = d eA und ωFS(XeA , · ) = d eA
zugeordnet werden, so dass JFS(XeA) = YeA gilt. Insbesondere soll der Erwartungswerts des Hamilton-
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Operators betrachtet werden, d. h.

eH =
1

1 + z† z
( z† , 1 )

 H1 V

V̄† H2

 z

1


=

1

1 + z† z

(
z†H1z + z†V + V†z +H2

)
, (1)

wobei die Matrix H1 eine (N − 1) × (N − 1)–dimensionale Matrix ist, V ein (N − 1)–Komponenten
Spaltenvektor und H2 eine reelle Zahl. Konkret bedeutet dies, dass die von der Hamilton-Funktion
induzierte Dynamik folgendermaßen dargestellt werden kann;

XeH =
i

~
(
zk V̄l z

l − |H1|kl zl +H2 z
k − V k

) ∂

∂zk
− i

~
(
z̄k V

l z̄l − |H1|lk z̄l +H2 z̄k − V̄k
)
Xz̄k

∂

∂z̄k
. (2)

Somit sind die Integralkurven dieses Hamilton-Vektorfeldes eines N-Niveau Quantensystems durch die
Lösungen der folgenden Matrix-Riccati-Gleichung gegeben

żk =
i

~
(
zk V̄l z

l − |H1|kl zl +H2 z
k − V k

)
. (3)

Ferner ist es möglich, die Poisson- und Jordan-Klammern für den komplexen projektiven Raum
einzuführen. Für gegebene Erwartungswerte eA und eB , die den Observablen A und B zugeordnet
sind, ergibt sich, dass

{eA, eB}ωFS = ωFS(XeA , XeB ) , {eA, eB}gFS = gFS(YeA , YeB ) . (4)

Nach weiteren Rechenschritten kann gezeigt werden, dass die Poisson-Klammen und Jordan-Klammen
wie folgt lauten:

{eA, eB}ωFS = e 1
i ~ [A,B]− und {eA, eB}gFS = −2

~

[
1

2
e[A,B]+ − eA eB

]
, (5)

wobei [A,B]− = AB−BA und [A,B]+ = AB+BA. Demzufolge besteht ein klarer Zusammenhang zwis-
chen den Poisson-Klammern und dem Quantenkommutator. Andererseits sind die Jordan-Klammern mit
der Dispersion und der Korrelation der Observablen verknüpft. Dies bedeutet, dass für jedes Observablen-
Paar A und B die Unbestimmtheiten und Korrelationen jeweils gegeben sind durch

σ2
A = eA2 − e2

A = −~
2
{eA, eA}gFS und σAB =

1

2
e[A,B]+ − eA eB = −~

2
{eA, eB}gFS . (6)

Demzufolge berücksichtigt die vom komplexen projektiven Raum getragene Riemannsche Metrik den
probabilistischen Charakter der Quantenmechanik.

Außerdem muss man feststellen, dass in der nichtlinearen Formulierung die Evolution reiner Zustände
durch Lösungen einer Riccati-Gleichung beschrieben wird, die, obwohl diese Gleichung nichtlinear ist,
ihren Ursprung in der linearen Schrödinger-Gleichung mit linearem Superpositionsprinzip haben. Dem-
nach muss es einen Weg geben, Lösungen der Riccati-Gleichung zu überlagern, was zu einem nichtlinearen
Superpositionsprinzip in CP führt. Der überlagerte Zustand |Ψ〉 = p1 |ψ〉 + p2 |φ〉 wird dann in den ho-
mogenen Koordinaten des CP durch den Vektorzustand Z mit Komponenten

Zk =
p1 z

k
ψ (zk0 − zkφ) + p2 z

k
φ (zkψ − zk0 )

p1(zkφ − zk0 ) + p2(zkψ − zk0 )
(7)

mit k = 1, . . . , n−1 dargestellt, wobei zkψ = ψk

ψn , zkφ = φk

φn gilt und zk0 die k-te Komponente einer beliebigen
Lösung z0 ist.

Für die weitere Untersuchung der nichtlinearen Dynamik in der Quantenmechanik wechseln wir von
endlichen zu unendlichen Quantensystem. Wir beschränken dabei unsere Studie in Kapitel 2 auf die
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sogenannten generalisierten kohärenten Zustände. Daraufhin wird in diesem Kapitel gezeigt, dass die Dy-
namik der verallgemeinerten kohärenten Zustände eine inhärente nichtlineare Evolution aufweist. Hierfür
bedienen wir uns der Tatsache, dass es in der Quantenmechanik möglich ist, eine ”klassische” Mannig-
faltigkeit in den Hilbert-Raum einzubettenn, so dass man die Zeitabhängigkeit der Wellenfunktion durch
die Variation der Parameter der klassischen Mannigfaltigkeit parametrisieren kann.

Es lässt sich erkennen, dass es keine eindeutige Parametrisierung der verallgemeinerten kohärenten
Zustände gibt. Tatsächlich findet man eine Parametrisierung durch die komplexe Zahl α ∈ C, eine
Beschreibung, die üblicherweise als kohärenter Zustand bezeichnet wird. Ferner lässt sich in der Quan-
tenoptik auch feststellen, dass die Gaußschen Wellenpakete durch den Squeezing-Parameter ξ ∈ C
parametrisiert werden können, was auch als Gequetschte Zustände (squeezed states) bekannt ist, oder
man parametrisiert sie mittels der Lösungen der nichtlinearen komplexen Riccati (oder reellen Ermakov)
Gleichung. Aus physikalischer Sicht sind alle diese Darstellungen gültig, daher sollte man in der Lage
sein, die Verbindungen zwischen diesen unterschiedlichen Beschreibungen herzustellen. In Kapitel zwei
fokussieren wir uns deshalb darauf, dieses Problem aus geometrischer Perspektive zu analysieren. Dies
bedeutet, dass wir den geometrischen Raum festlegen, in dem die verschiedenen Dynamiken stattfinden,
zeigen, wie diese im Hilbert-Raum H eingebettet (immersed) sind sowie den Zusammenhang zwischen
den verschiedenen Beschreibungen herstellen.

Der Einfachheit halber betrachten wir die verallgemeinerten kohärenten Zustände für ein eindimen-
sionales Quantensystem; dann wird die Einbettung wie folgt konstruiert: Für einen gegebenen normierten
Zustand |0〉 im Hilbert-Raum H, wenden wir die stark kontinuierliche Abbildung D̂ an, um die kom-
plexe Ebene C in den Hilbert-Raum einzubetten, i : α ∈ C 7→ |α〉 ∈ H mit |α〉 := D̂(α) |0〉. Der
Operator D̂(α) ist der bekannte Verschiebungsoperator (displacement operator). Betrachtet man nun
den Hilbert-Raum der quadratintegrablen Funktionen L2(R,dq), so entspricht die eingebettete Unter-
mannigfaltigkeit i(C) den Gaußschen Wellenpaketen, das heisst wir erhalten die bekannte Einbettung
i : C→ L2(R,dq) : α 7→ ψ(α, q).

Nachdem wir nun die kinematische Situation der verallgemeinerten kohärenten Zustände ermittelt
haben, interessieren uns nun für die dynamischen Eigenschaften des Systems. Die Evolution eines reinen
Zustands |α〉 ∈ H wird durch die Schrödinger-Gleichung festgelegt, die mit dem Hamilton-Operator Ĥ
verknüpft ist. Daher sei Ût : H → H die einparametrische Gruppe der Transformationen assoziiert
mit dieser Schrödinger-Gleichung. In dieser Arbeit interessieren wir uns nur für Hamilton-Operatoren,
die quadratisch in den Orts- und Impulsvariablen sind. Wenn in diesem Fall der Anfangszustand ein
generalisierter kohärenter Zustand ist, ist der Endzustand olcher, d. h. Ût|α0〉 = |α(t)〉. Dies impliziert,
dass die Untermannigfaltigkeit i(C) ∈ H invariant bezüglich des Flusses Ut ist.

Da C andererseits eine symplektische Struktur aufweist, ist sie mit einer symplektischen Form ω
ausgestattet. Dementsprechend lässt sich jeder differenzierbaren Funktion mit Domäne in der komplexen
Ebene, H ∈ F(C), ein Hamilton-Vektorfeld XH zuordnen, das intrinsisch durch iXHω = −dH definiert
ist. Im Allgemeinen kann die Lösung der Hamiltonschen Bewegungsgleichung in C als α(t) = Φtα0

dargestellt werden, wobei Φt : C → C eine einparametrische Gruppe symplektischer Transformationen
ist. Daher wird die Verbindung zwischen der unitären Evolution Ût und der (kanonischen) symplektischen
Evolution Φt durch Immersion erhalten; wir haben i ◦ Φt = i ◦ Ût.

Genauer gesagt beginnen wir unsere Untersuchung mit der Feststellung, dass die Evolution eines
Gaußschen Wellenpakets von der Evolution der Erwartungswerte (〈q̂〉, 〈p̂〉) und der komplexen zeitabhängi-
gen Funktionen (Q,P ) abhängt, so dass diese Zustände folgendermaßen

ψ(α, q) = 〈q|D̂(α)|0〉 =
1

(π ~)1/4

1√
Q

exp

{
i

2~
P

Q
(q − 〈q̂〉)2 +

i

~
〈p̂〉(q − 〈q̂〉) +

i

2~
〈q̂〉 〈p̂〉

}
, (8)

im Hilbert-Raum L2(R,dq) ausgedrückt werden können. Diese beiden Aspekte der kohärenten Zustände
bewegen sich in unterschiedlichen Mannigfaltigkeiten. Einerseits befinden sich gemäß des Ehrenfest-
Theorems die Erwartungswerte (〈q̂〉, 〈p̂〉) in einem euklidischen linearen Phasenraum T ∗R2 mit Hamilton-
scher Evolution. Andererseits befinden sich die Parameter (Q,P ) in der Mannigfaltigkeit M = {(Q,P ) ∈
C2 | Q̄P−QP̄ = 2 i}, die direkt mit der Dispersion und Korrelation (σq, σp, σqp) verbunden ist. Außerdem
ist die Dynamik in TM Hamiltonisch, wobei Hamiltons Gleichungen die gleiche Form wie die klassischen
Bewegungsgleichungen haben, jedoch mit komplexen Variablen.
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Jedoch ist die zuvor erwähnte Parametrisierung der kohärenten Zustände nicht eindeutig. In der Quan-
tenoptik ist es möglich, diese Zustände durch die sogenannten Squeezing-Parameter (τ, ϕ) zu beschreiben,
wobei diese Parameter ein System von Koordinaten darstellen, das an das Hyperboloid H2 angepasst ist,
und mit den Momenten (σq, σp, σqp) verbunden ist. Wir analysieren also die dynamischen Eigenschaften
in H2 und zeigen, dass eine symplektische Struktur darauf definiert ist und eine Hamiltonsche Dynamik
vorliegt, die außerdem noch nichtlinear ist.

Um den Zusammenhang zwischen der Beschreibungen in M und H2 zu zeigen, ist ein Zwischenschritt
erforderlich. Hierfür zeigen wir zunächst die bestehende Verbindung zwischen M und dem Hyperboloid
H3; es stellt sich heraus, dass die Verbindung zwischen den Hyperboloiden H3 und H2 nur die Konsequenz
der Beziehung zwischen der speziellen linearen Gruppe SL(2,R) und ihrer Lie-Algebra sl(2,R) ist und so
die Projectionsabbildung (covering map) χ : H3 → H2 erzeugt.

Der letzte Teil des zweiten Kapitels ist der nichtlinearen Riccati-Dynamik gewidmet. Diesbezüglich
beobachten wir, dass unter Berücksichtigung der Symmetrie der Dynamik Y ∈ X(TM) bei Multiplika-
tion mit einem globalen Phasenfaktor, M auf einen niedriger dimensionalen Raum reduziert werden kann,
der als Siegel-upper-half-plane HP2 bekannt und als Raum komplexer Zahlen mit streng positivem Ima-
ginärenteil definiert ist. Es kann nicht nur der Raum reduziert, sondern auch die Dynamik von M auf HP2

projiziert werden, wobei die projizierte Dynamik der nichtlinearen Riccati-Evolution entspricht, welche,
wie bereits bewiesen, eine Hamilton-Dynamik ist. Zudem wird in diesem Reduktionsprozess eine völlig
neue Parametrisierung des Gaußschen Wellenpakets gezeigt, was mittels des Punktes in der Poincaré-
Scheibe D2 gelingt, der sich als stereografische Projektion von H2 auf die Ebene herausstellt und dessen
Dynamik Hamiltonisch mit Riccati-Typ Evolution ist.

In Kapitel 3 wollen wir dissipative Phänomene in die nichtlineare Beschreibung physikalischer Sys-
teme einbeziehen. Im Anschluss werden wir uns mit einer Unterklasse dieser Systeme befassen, uns
zwar solche, die ein Zerlegungsprinzip (decomposition principle) besitzen. Dies bedeutet, dass die Dy-
namik in der Form Γ = ΓR + ΓP ausgedrückt werden kann, wobei der erste Term ΓR auch Referenzterm
(Vergleichsterm) genannt wird und mindestens einen Lagrangian (Hamiltonian) besitzt, z. B. L. Der
zweite Term ΓP ist der Störungsterm (perturbation term), der das System dissipativ macht. Wir nennen
ein System dissipativ, wenn ΓP die Lagrange-Energie EL des Referenzsystems dissipiert. Als Ergebnis
dieser Überlegungen kann gezeigt werden, dass diese Unterklasse dissipativer Systeme, obwohl sie keinen
Lagrange-Formalismus zulässt, dennoch eine Lagrange-(Hamilton-)Kontaktbeschreibung ermöglicht. Das
heisst, wir berücksichtigen den Fall, in dem eine Beschreibung im Rahmen der Kontaktgeometrie für einige
dissipative Kräfte möglich ist.

Es wird angenommen, dass der Raum für die Dynamik TQ × R mit einer exakten Kontaktstruktur
(η, ξ) versehen ist. Um die Dynamik zu definieren, kann man jeder glatten Funktion EC ein Vektorfeld
ΓC durch die Ausdrücke

iΓC
dη = dEC − (£ξEC)η und iΓC

η = −EC , (9)

zuordnen, wobei EC Kontakt-Lagrange-Energie genannt wird. Insbesondere nehmen wir an, dass die
1-Form η lokal wie folgt geschrieben werden kann:

η = dS − θL mit θL = dqj
∂L

∂q̇j
, (10)

wobei (qj , q̇j , S) lokale Koordinaten auf TQ×R sind, L stellt die Lagrange-Funktion des Referenzsystem
dar und die Kontakt-Lagrange-Energie kann in der form EC = EL + h(S) geschrieben werden. Der erste
Term EL ist die Lagrange-Energie des konservativen Referenzsystems, der zweite Term h(S) stellt eine
”Störung” des Systems dar, die eine effektive Beschreibung der Wechselwirkung zwischen dem konserva-
tiven System und der Umgebung repräsentiert. Unter Berücksichtigung dieser Überlegungen erhält man
die Kontakt-Euler-Lagrange-Gleichung und eine zusätzliche Gleichung für die Komponente des Vektor-
feldes in Richtung des Reeb-Vektors, nämlich

£ΓC
θL − dL = − dh

dS
θL , and Ṡ = iΓC

θL − EL . (11)

Entsprechend erhält man unter Verwendung der Definition für die 1-Form θL und Anwendung der Lie-
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Ableitung auf θL den Koordinatenausdruck der Kontakt-Euler-Lagrange-Gleichungen

d

dt

∂L

∂q̇k
− ∂L

∂qk
= − dh

dS

∂L

∂q̇k
, (12)

die implizite Differentialgleichungen darstellen. Diese Systeme lassen sich als eine Art Verallgemeinerung
des sogenannten dissipativen Caldirola–Kanai-Systems verstehen. Hier bleibt die Lagrange-Energie ent-
lang der dynamischen Trajektorien nicht erhalten, so dass

dEL
dt

= − dh

dS

∂L

∂q̇k
, (13)

wobei der Ausdruck je nach Vorzeichen von dh
dS sowohl positiv als auch negativ sein kann.

Es ist möglich, eine Kontakt-Mannigfaltigkeit im allgemeineren Sinne mittels einer globalen 1-Form η
und einer globalen 2-Form ωL näher zu definieren. Unsere Kontakt-Mannigfaltigkeit soll wieder TQ×R
sein. Dann definieren wir nun eine dynamische Evolution mittels eines Vektorfeldes mit zugeordneter
glatter Function EC unter Verwendung der beiden Bedingungen

iΓC
ωL = dEC − (£ξEC)η und iΓC

η = −EC . (14)

Ähnlich der Vorgehensweise bei den exakten Kontaktstrukturen nehmen wir hier an, η und ωL seien
durch η = dS − α und ωL = − dθL gegeben, wobei α eine 1-Form mit dem lokalen Ausdruck α =
ak dqk und ak ∈ F(TQ) ist. Da wir uns für die Charakterisierung dissipativer Systeme anhand eines
Zerlegungsprinzips interessieren, gehen wir davon aus, dass die Lagrange-Kontaktenergie EC = EL +h(S.)
entspricht. Genauer gesagt bekommt man die Bedingungen

£ΓCθL − dL = − dh

dS
α and Ṡ = iΓCα− EC , (15)

wobei die erste Bedingung ΓC eindeutig bis auf ein Vektorfeld proportional zu ξ bestimmt und dieser
zusätzliche Term durch die zweite Bedingung festgelegt wird. Indem wir Annahmen für α treffen, können
einige spezielle Klassen dissipativer Systeme identifiziert werden. Zum Beispiel kann man α = ∂F

∂q̇k
dqk

setzen, wobei F eine beliebige Funktion auf TQ darstellt. Diese besondere Situation führt zu einer
konformen Version der Rayleigh-Dissipation, die in Koordinaten wie folgt dargestellt werden kann

d

dt

∂L

∂q̇j
− ∂L

∂qj
= − dh

dS

∂F
∂q̇j

, (16)

wobei die Änderungsrate der Lagrange-Energie gleich

dEC

dt
= − dh

dS

∂F
∂q̇j

(17)

ist.
Nun wird der Kontaktformalismus in dem sogenannten Kontaktphasenraum eingeführt, der als Man-

nigfaltigkeit T ∗Q × R mit ungerader Dimension definiert ist. Daraufhin soll die Verbindung zwischen
den Kontakt-Mannigfaltigkeiten TQ× R und T ∗Q× R hergestellt werden. Um dies zu erreichen, betra-
chten wir den Diffeomorphismus FL , der mit L ∈ F(TQ×R) verknüpft ist und in lokalen Koordinaten
symbolisch in der Form

FL : (qk, q̇k, S) 7→
(
qk, pk =

∂L

∂q̇k
, S

)
(18)

geschrieben werden kann.
Wir möchten darauf hinweisen, dass die als pk = ∂L

∂q̇k
definierte Komponente der üblichen Definition

des Impulses entspricht. Unter einer solchen Transformation wird daher die Kontaktdynamik ΓC ∈
X(TQ × R) auf ein Vektorfeld T ∗Q × R durch ΓC = (FL )∗XC transferiert. Darüber hinaus existiert
die Kontaktform η ∈ Ω1(T ∗Q × R), so dass (FL )∗η = ηL, für alle L ∈ F(TQ). Das heißt, ηL ist der
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Rücktransport (pullback) bezüglich FL einer festgelegten Kontaktform η in T ∗Q × R, der unabhängig
von dem benutzten Lagrangian ist. Somit ist die Dynamik XC im Kontaktphasenraum durch

iXC dη = dH − (£ξH )η und iXCη = −H , (19)

gegeben, das heisst die Dynamik hängt nur vom Kontakt-Hamiltonian H ∈ F(T ∗Q × R) ab. Die Kon-
taktform und das Reeb-Vektorfeld können in den lokalen Koordinaten (qk, pk, S) als

η = dS − pkdqk , ξ =
∂

∂S
(20)

dargestellt werden. Der Kontakt-Hamiltonian hat die Form H = H+h(S), wobei H den Hamiltonian des
Referenzsystems darstellt. Außerdem kann das Kontakt-Hamilton-Vektorfeld XC in diesen Koordinaten
in der Form

XC =
∂H

∂pk

∂

∂qk
−
(
∂H

∂qk
+ pk

dh

dS

)
∂

∂pk
+

(
pk
∂H

∂pk
−H

)
∂

∂S
(21)

ausgedrückt werden, deren Integralkurven durch die Lösungen des Differentialgleichungssystems

q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
− pk

dh

dS
, Ṡ = pk

∂H

∂pk
−H . (22)

bestimmt sind. Der Kontakt Term führt die Dissipation in die Dynamik ein, wobei hier spezifisch der
Hamiltonian des Referenzsystems dissipiert wird. Die Dissipationsrate des Hamiltonians ist somit gegeben
durch

dH

dt
= −pk

dh

dS

∂H

∂pk
. (23)

Allgemein gilt, dass die Evolution für eine beliebige Funktion F ∈ C∞(T ∗ ×R) im Kontaktphasenraum
durch

dF

dt
= XC[F ] = −H

∂F

∂S
+ pk

[
∂F

∂S

∂H

∂pk
− ∂F

∂pk

∂H

∂S

]
+
∂F

∂qk
∂H

∂pk
− ∂F

∂pk

∂H

∂qk
(24)

festgelegt wird.
Es wurden insgesamt sowohl zeitunabhängig als auch zeitabhängig Kontaktsysteme untersucht, wobei

festgestellt werden konnte, dass in beiden Fällen die Transformationen (hier als Kontakttransformationen
bezeichnet) die die Hamilton-Kontaktgleichungen unverändert lassen, zeigen, dass kanonische Transfor-
mationen ein Spezialfall einer symplektischen Dynamik sind.



Introduction

A minimalistic description of physical systems (quantum or classical) requires the identification of: i)
states, ii) observables, iii) probability functions, iv) evolution equations and v) composition rules for
elementary systems. So, it should be clear that the mathematics involved in each element of our physical
model clearly belongs to different categories. The states (pure or mix) will have the structure of manifolds,
the observables will be (part of) an associative algebra over the real or the complex numbers. The
probability function: P (ρ,A,E) ∈ [0, 1], with E ∈ R, will represent the probability of finding a result in
the Borelian set E when we measure the observable A, while the system is in state ρ; then, these aspects
belong to measure theory. The evolution equations will be usually required to be differential equations.
For example, in Classical Mechanics quoting V. I. Arnold: “Many mathematical methods are used in
classical mechanics: differential equations and phase flows, smooth mappings and manifolds, Lie groups
and Lie algebras, symplectic theory and ergodic theory. Many modern mathematical theories arose from
problems in mechanics and only later acquired that axiomatic-abstract forms which make them so hard
to study” [1]. This emphasizes the fact that the best math teacher is nature.

Then, for a deep understanding of physical systems a theoretical physicist should be prepared in
different areas of modern mathematics, even one should be prepared to mix methods belonging to different
mathematical fields, which is not a trivial task. Having this in mind, in the second part of the last century
physicist and mathematicians started the study of Classical Mechanics from a modern mathematical
perspective; some excellent literature can be found in references [1, 2, 3, 4, 5, 6]. This geometrical studies
developed a set of techniques that transformed Classical Mechanics into a full-blown area of mathematics
and it led to important advances in many areas of classical physics.

Having in mind that our best description of the external world is provided by quantum mechanics and
the success of the geometrization of Classical Mechanics, the geometrization of the Quantum Mechanics
is the natural extension of research for many mathematicians and physicist. Recently the development of
geometrical description of Quantum Mechanics has an increasing interest and the literature is broad, for
some examples see [6, 7, 8] and references therein. In this work we follow this new perspective in the study
of quantum systems. In particular, it is very useful to consider the so-called principle of analogy, i.e.
using the procedures and available structures from the classical setting to employ them in the quantum
setting.

In this thesis we will take advantage of the principle of analogy to unveil ambiguities, and exhibit alter-
native nonlinear descriptions and additional mathematical structures in quantum theory. Partivularly in
Chapter one, the subject of study is to show that an interesting application of the statistical-probabilistic
contents of quantum mechanics is the nonlinear description of an N -level quantum system by means of
the nonlinear Riccati equation, as an alternative description of quantum evolution [9]. This constitutes
a transition from linear Schrödinger dynamics to a nonlinear Riccati equation. To introduce such a
transition, we first recall that a pure state in quantum mechanics is an equivalence class, i.e. a ray in
the Hilbert space, where the equivalence class may be described infinitesimally by two vector fields in
involution: the dilation vector field ∆ and the vector field Γ associated with the multiplication by a phase
factor. In addition, it is straightforward to see that these vector fields are symmetries of the Schrödinger
dynamics because ∆ and Γ permute solutions of the Schrödinger equation [4]. This allows to reduce the
dynamics to a lower dimensional space, specifically the complex projective space CP of the Hilbert space,
an example of a Hilbert manifold.

Usually in quantum mechanics, pure states are considered to be rank-one projectors and therefore are
studied as elements of the space of Hermitian, non-negative and trace one operators. However, in this
work we will stick to the Hilbert manifold, i.e., the complex projective space, to stress its intrinsic “non-

13
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linearity”. For the analysis on CP, it is used that it is possible to give a complete description of the complex
projective space by means of complex homogeneous coordinates [7, 6], such that in those coordinates the
Schödinger dynamics is projected into the Riccati dynamics. Furthermore, we prove that not only the
dynamics is projectable but also important geometrical structures may be projected. In particular, the
Khäler structure on the Hilbert space is also presented in the complex projective space [7, 5, 6]. This
structure allows to show that the nonlinear Riccati evolution is actually Hamiltonian.

In addition, we notice that in the nonlinear description the evolution of pure states is described by
solutions of a Riccati equation that, although it is nonlinear, originates from the linear Schrödinger
equation with linear superposition rule, thus there must be a way to superimpose solutions of the Riccati
equation, which leads to a nonlinear superposition rule in CP [10, 11, 12]. To conclude Chapter one, we
apply the formalism developed in a concrete physical system, particularly in the study of the evolution
of a 2-level atom irradiated by a laser source, i.e. the radiation is considered as a classical field [13].

Roughly speaking, we will start with a problem that, after the analysis of its symmetries, will be
reduced onto a more abstract and fundamental description. In this process we always preserve the
fundamental parts, i.e. we will preserve the physics behind the problem. So the natural question is:
why we want to replace a mathematically simpler linear form of Quantum Mechanics with a nonlinear
one? The answer is immediate: this is done in order to have a better and deeper understand of Quantum
Mechanics. As we already know the description of pure states of a N -level quantum systems may be given
in the Schrödinger picture in terms of wave functions or by means of the Von Neumann picture in terms
of rank-one projectors; however, as we will show it is also possible by the Complex Projective picture
in terms of the Hermitian manifold CP. Moreover, we will prove that all these pictures are physically
equivalent, in the sense that all of them leads to a complete description of the system.

To continue our study of nonlinear dynamics in Quantum Mechanics we transit from finite dimensional
quantum system to infinite ones. However, to analyze the problem in all its generality is quite difficult
because, from the mathematical point of view, one has to deal with all the technical difficulties related to
the differential geometry of infinit dimensions. For this reason in Chapter two we restrict our study to the
so-called generalized coherent states. Then, in this Chapter we show that there is an inherent nonlinear
evolution in the dynamics of the generalized coherent states. To show this, the fact that in Quantum
Mechanics it is possible to immerse a “classical” manifold into the Hilbert space is employed, such that
one may parametrize the time-dependence of the wave function through the variation of parameters in
the classical manifold [14]. The immersion allows to consider Dirac’s principle of analogy also for this
kind of systems.

One of the traditional problems in quantum mechanics is the study of Gaussian wave packets as
analytic solution of the Schrödinger equation for Hamiltonians that are at most quadratic (or bilinear)
in position and momentum variables. This kind of systems has been widely analized since the seventies
where there was a large activity in the semiclassical limit of the quantum mechanics. Even nowadays this
topic has relevance in several branches of physics.

For this reason there are several methods in the literature for the description of Gaussian wave
packets. For instance, one of the most effective and popular method is the one of so-called linear invariant
operators, introduced by Lewis in ref. [16] and Malkin, Man’ko and Trifonov in Ref. [17]. In this method
it is proved that all the dynamics is contained in a linear system of differential equations whose solutions
parametrize the time-dependence of the Gaussian wave packets. On the other hand there are other
important methods that involve nonlinear evolution, namely it has been proved in [18, 19] that the same
Gaussian wave packets may be also parametrized by the solutions of a nonlinear Riccati equation.

Hence, from the before mention models of the generalized coherent states, one may realize that there
is not a unique parametrization of these states. In fact, we have a parametrization by means of the
complex number α ∈ C, a description usually called the coherent states, also we may find in quantum
optics that the Gaussian wave packets are parametrized by the squeezing parameter ξ ∈ C, known as
the squezzing states, or one may parametrize by means of the solutions of the nonlinear Riccati (or
Ermakov) equation. From a physical point of view all this representations are valid, then one should be
able to establish the connections between these deferent description. The connection between the linear
and the nonlinear evolution of the generalized coherent state has been already studied in [20, 19], where
the transformations that connect the different descriptions of the time-dependent solutions of quadratic
Hamiltonian are explicitly established.
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In Chapter two, in contrast to the before mentioned approaches for the study of the generalized
coherent states, we will analize this problem from a geometrical point of view. This means that we
will establish the geometrical space where the different evolutions take place and show how they are
immersed in the Hilbert space H, as well as establish the connection among the different descriptions.
Moreover, it is shown that each space has a symplectic structure such that the dynamics on these spaces
are actually Hamiltonian. Then we not only deduce from a geometrical perspective the results previously
mentioned, but also it is showed that there are several nonlinear descriptions involved in the dynamics
of the generalized coherent states.

In Chapter three we are interested to include the dissipative phenomena in the nonlinear description
of physical systems. There are several ways to address dissipative phenomena in physics, see e.g. [21] for
a recent review. For example, one may introduce stochastic dynamics to model the effect of fluctuations
due to the environment on the system of interest. This leads to stochastic equations of the Langevin or
Fokker–Planck type with diffusion terms [22, 23]. A different although related approach is the system-
plus-reservoir technique, in which the system of interest is coupled to an environment (usually modeled
as a collection of harmonic oscillators). The system and the environment together are considered as an
isolated Hamiltonian system and after averaging out the environmental degrees of freedom one obtains
the equations of motion for the system of interest, including dissipative terms. This is the case for
example in the Caldeira–Laggett formalism [24, 25, 26]. An alternative approach is to propose effective
Hamiltonians with an explicit time-dependence that reproduce the correct Newtonian equation, including
the dissipative forces. A famous example is the Caldirola–Kanai (CK) model [27, 28]. Another proposal
based on a nonconservative action principle, allows for time-irreversible processes, such as dissipation, to
be included at the level of the action [29]. Finally, a more geometrical attempt towards the description
of dissipative systems is given by the so-called bracket formulation of dynamical systems [30]. Here one
generalizes the standard Poisson bracket to a non-canonical Poisson bracket and exploits the algebraic
properties of the latter to include dissipation. The literature on all these proposals is very extensive
and it is not our purpose here to review them in detail. We refer the interested reader to the standard
references cited above and references therein.

Even though there are several approaches to the descriptions of dissipative systems there is something
in common, the fact that dissipation is a relational concept, i.e., first one has to declare the reference
(comparison) system such that when it is considered a perturbation in this system as a result of its
interaction with the environment, one may observe then what has been dissipated. Thus, we want to
stress that if we want to declare a system to be dissipative, first we should say what is actually being
dissipated. Indeed, it is clear that one may deal with physical systems for which it might make sense to
say that the system is dissipating energy, mass, angular momentum or probability.

After realizing the relational nature of dissipation, we proceed to verbalize this concept in a mathe-
matical language, i.e. to give a formal definition of dissipation for a dynamical system. Then, given a
dynamical system, for example a second order vector field, is it possible to characterize its dynamics as
conservative or dissipative? From the dynamical point of view this question does not make sense, be-
cause it is necessary to declare first what is dissipating, i.e. there is information missing. To establish the
problem correctly let us consider the subclass of dynamical systems Γ that possesses the decomposition
principle

Γ = ΓR + ΓP (25)

where the first term ΓR describe the reference (comparison) and the second term ΓP is the perturbation
term, which turn the system dissipative. Then, one may say that the system is dissipative in the sense
that ΓP is dissipating some declared structure of ΓR.

Once the definition of dissipative dynamics is established, the problem is how to address this kind
of systems. One way is to look for a Lagrangian (or Hamiltonian) description of the dynamics Γ, i.e.
solve the the so-called inverse problem in the calculus of variations [31]; however, this is not an easy
task and even for some systems one may prove that it is impossible to find a Lagrangian (Hamiltonian)
description [31, 32]. So, when the system does not admit a Lagrangian description, we have to develop
new strategies in order to characterize dissipation. To avoid this problem we take advantage of the
decomposition principle of dissipative systems, so it is possible to think of the dynamical vector field as
the sum of a reference or comparison dynamics plus a perturbation term, but the reference dynamics has to
be selected in such a way that it admits at least one Lagrangian description, and the perturbation term
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turns the system into a dissipative one, dissipating the mechanical energy of the comparison system.
The advantage of this decomposition is that the system may be treated by means of the Lagrangian
(Hamiltonian) contact formalism [33, 34], which is a natural extension of the usual symplectic Lagrangian
(Hamiltonian) formalism.

Then in the third Chapter a detailed analysis of the Lagrangian and Hamiltonian contact formalism
for the mechanical description of dissipative systems is pursued. This new proposal consists in extending
the symplectic phase space of classical mechanics by adding an extra dimension, thus dealing with a
contact manifold instead of a symplectic one. Note that contact geometry arises naturally in mechanics.
First of all, in describing mechanical systems where the Hamiltonian function explicitly depends on
time, one usually appeals to an extended phase space, the additional dimension being time, endowed
with the Poincaré–Cartan 1-form, which defines a contact structure on the extended space [3, 1, 35].
Besides, the time-dependent Hamilton–Jacobi theory is naturally formulated in this extended phase
space [36, 37]. So, here it is not assumed that the additional dimension is time, letting the additional
dimension be represented by a non-trivial dynamical variable and hence one may derive the equations
of motion for the system from contact Hamiltonian dynamics, which is the most natural extension of
symplectic Hamiltonian dynamics [1]. Then contact formalism is a classical mechanical theory that not
only contains all the advantages of the Hamiltonian formalism, but also it may take into account the
effects of the environment on the system.



Chapter 1

Nonlinear Dynamics of Quantum
Systems. N-level Systems

The nonlinear description of quantum phenomena has currently gained considerable interest [9, 20, 38, 19].
Not only because this constitutes an alternative description of quantum theory, but also because this
evolution presents interesting properties allowing a better understanding of quantum theory itself.

There are several ways to introduce “nonlinearity” in quantum mechanics. For example, in the
non-relativistic Quantum Mechanics the evolution of the wave function ψ(q, t), in the Hilbert space
H = L2(Rn,dµ), is given by the linear Schrödinger equations

i ~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (q)ψ . (1.1)

However, using the polar representation ψ(q, t) = A(q, t)e−
i
~SQ(q,t), with A and SQ real functions, the

Schrödinger equation becomes a system of two coupled partial differential equations

∂SQ

∂t
=

1

2m
(∇SQ)2 + V (q)− ~2

2m

∇2A

A
(1.2)

∂A

∂t
=

1

2m
(2∇A · ∇SQ +A∇2SQ) (1.3)

which clearly is a nonlinear description of the quantum system. In fact, because the nonlinear change of
coordinates ψ = A e−

i
~SQ in the Hilbert space is performed, it should be clear that the superposition rule

is not trivial.
Another way to generate a nonlinear dynamics is to construct a nonlinear Schrödinger equation. To

see this, let us recalled that the evolution equation in (1.3) may be rewritten as the continuity equation
for the probability density considering ρ(q, t) = A2(q, t), namely

∂ρ

∂t
+∇ · j = 0 (1.4)

expressing conservation of probability, with the current density j given by1

j =
~

2mi
(ψ̄∇ψ − ψ∇ψ̄) . (1.5)

Then, from the hydrodynamical formulation of Quantum Mechanics it is possible to generalize the con-
tinuity equation by adding a diffusion term, which leads to the Fokker–Plank type equation

∂ρ

∂t
+∇ · j−D∇2ρ = 0 , (1.6)

1The overbar is used along this work to denote the complex conjugate quantity.
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in position space also called Smoluchowski equation, where D is a real diffusion coefficient. So, it has
been shown in Ref. [39] that the Schrödinger equation associated to this Fokker–Plank type equation has
the form

i ~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (q)ψ + F [ψ, ψ̄]ψ , (1.7)

where F [ψ, ψ̄] is a nonlinear function of ψ and ψ̄. For instance, in Ref. [40], considering the anzatz

D
∇2ρ

ρ
= −γ(ln ρ− 〈ln ρ〉) (1.8)

one can show that the associated nonlinear Schrödinger equation is

i ~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (q)ψ + γ

~
i
(lnψ − 〈lnψ〉)ψ . (1.9)

This nonlinear equation is employed in the description of quantum systems corresponding to a classical
system with a linear velocity dependent friction force [19]. Furthermore, in the same spirit of the quantum
treatment of dissipative systems, there are several approaches of nonlinear Schrödinger equations. For
instance, the ones proposed by Kostin, Albrecht, Süssmann and Hasse, all of them reviewed in Ref. [41];
however, different from the Schuch–Chung–Harmann and Doebner–Gisin approaches they do not add
a diffusion term in the continuity equation, the nonlinearity comes from a nonlinear potential added
suitably to the Schrödinger equation to obtain the correct classical equation of motion including the
friction force for the mean values.

From the examples presented before, one could think that the nonlinearity is a consequence of per-
forming nonlinear transformations in the Hilbert space or a consequence of interactions of the quantum
system with a suitable environment. However, as we will see along this Chapter the nonlinear dynamics
in Quantum Mechanics actually arises from a more fundamental aspect, namely from the statistical-
probabilistic contents of this theory. This perspective has already been considered in [9] and also taken
into account in spin Hamiltonian systems in [42].

1.1 Nonlinear dynamics from linear classical systems

Before the nonlinear dynamics in quantum mechanics is addressed, it is instructive to see first how one
may obtain a nonlinear dynamics from a linear one in Classical Mechanics. It is well-known in Classical
Mechanics that a nonlinear dynamics arises from a linear one by considering the homogeneity of the space,
where the nonlinear dynamics is given by the so-called Riccati transformation, introduced by Riccati in
1720. So, let us consider a linear system of differential equations describing the dynamical evolution of a
point in the linear phase space T ∗R ≈ R2 with coordinates (q, p) of the euclidean plane(

q̇
ṗ

)
=

(
b c
a −b

)(
q
p

)
, (1.10)

with a, b, c real and possibly time-dependent functions. Thus, the linear system is traceless and then
belongs to the Lie algebra sl(2,R), and the dynamics is given by the vector field

X = (b q + c p)
∂

∂p
+ (a q − b p) ∂

∂p
. (1.11)

Recall now, that linear systems are invariant under the action of the dilation group, associated to the
homogeneity of the phase space, and whose infinitesimal generator is the vector field

∆ = q
∂

∂q
+ p

∂

∂p
(1.12)

known as the Euler–Liouville vector field and it is straightforward to see that [X,∆] = 0. So, because
X commutes with ∆, the dynamics X is projectable with respect to a foliation obtained from ∆. The
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result of such a projection is a reduction of the dynamics to a lower dimensional space, a review of the
reduction procedure is in Appendix A.

To reduce the dynamics, let us notice that there is a foliation Φ∆ of R2 obtained by the integral
curves of the Euler–Liouville vector field. This integral curves are open half-lines starting at the origin
of R2 and the origin itself, therefore the foliation is singular at the origin. In spite of having a singular
foliation, we may define the equivalence relation

(q1, p1) ∼ (q2, p2) iff q1p2 − q2p1 = 0 , (1.13)

for points in R2 − {0}, i.e. two points in the same half-line are equivalent; then, we may define the
quotient space R2/Φ∆ with respect to the equivalence relation defined by the foliation. This quotient
space may be identifed with the circle

S1 = {(q, p) ∈ R2 | q2 + p2 = 1} . (1.14)

Also the quotient space R2/Φ∆ it is known in the literature as real projective line denoted by RP1. The
connection between S1 and RP1 is simply the stereographic projection of the circle onto the line. The
description of the real projective line is complete by means of the homogeneous coordinates, i.e. let
Vj ⊂ RP1, with j = 1, 2, we denotes the coordinate charts

φ1 : V1 → R : [q, p] 7→ z =
p

q
, for q 6= 0 (1.15)

and
φ2 : V2 → R : [q, p] 7→ ζ =

q

p
, for p 6= 0 (1.16)

such that the set of (Vj , φj) constitutes an atlas for the real projective line. Therefore one has arrived at
the Riccati transformations

π : R2 − {0} → RP1 : (q, p) 7→ p

q
, and π̃ : R2 − {0} → RP1 : (q, p) 7→ q

p
, (1.17)

where these transformations are actually the projection with respect to the equivalence relation described
above, where the two charts φ1 and φ2 are covering RP1. In addition, the Riccati transformation provides
a local expression of the vector field Y ∈ X(RP1) induced by X ∈ X(R2 − {0}), namely

Yz = −(c z2 + 2 b z − a)
∂

∂z
and Yζ = −(a ζ2 − 2 b ζ − c) ∂

∂ζ
(1.18)

whose integral curves are given by the solution of the nonlinear Riccati equations

ż + c z2 + 2 b z − a = 0 , and ζ̇ + a ζ2 − 2 b ζ − c = 0 . (1.19)

Therefore, the vector field X described by the linear system of differential equations has been projected
onto a vector field Yz, or Yζ , described by a Riccati equation, i.e. a nonlinear differential equation
involving only one degree of freedom.

The same procedure may be considered in the quantum setting to obtain a nonlinear dynamics instead
of the linear Schrödinger dynamics. However, the reduction procedure, as will be shown in the next
section, comes from a completly different interpretation.

1.2 From Linear Schrödinger Equation to Nonlinear Evolution

For simplicity the study starts with a 2-level systems, also known as q-bit systems, and later the results
will be extended to N -level systems. The quantum evolution for a 2-level system on the Hilbert space is
obtained from the solutions of the Schrödinger equation

i~
(
ψ̇1

ψ̇2

)
=

(
H1 V
V̄ H2

)(
ψ1

ψ2

)
, (1.20)
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where H1, H2 ∈ R and V ∈ C are possibly time-dependent functions. Alternatively, defining the Hilbert
space H0 = H−{0 }, i.e. the Hilbert space H with the origin removed, one may introduce homogeneous
coordinates

π : H0 → C : (ψ1, ψ2) 7→ z =
ψ1

ψ2
, (1.21)

which associates to each point in H0 a point in the complex plane. It is clear that the transformation π
is not defined for states with ψ2 = 0; however, in order to take into account those states one simply may
consider a different chart, i.e., the transformation

π̃ : H0 → C : (ψ1, ψ2) 7→ ζ =
ψ2

ψ1
. (1.22)

Then, it is straightforward to prove that the dynamics in the Hilbert space H0, given by the Schrödinger
equation (1.20), induces a nonlinear dynamics in the complex plane given by the Riccati equation

ż =
i

~
[
V̄ z2 − (H1 −H2)z − V

]
, (1.23)

or equivalently for ζ = 1/z by the Riccati equation

ζ̇ =
i

~
[
V ζ2 + (H1 −H2)ζ − V̄

]
. (1.24)

These equations constitute nonlinear evolution equations for quantum states.
Before adressing the dynamical properties of the Riccati equations (1.23) and (1.24), the geometrical

nature of the transformations (1.21) and (1.22) it is established. For this purpose it is necessary to
introduce some geometrical structures in quantum mechanics [7, 6].

It is well-known that a complete measurement in quantum mechanics does not provide us with a
uniquely defined vector in the Hilbert space, but rather with an equivalence class of vectors, obtained by
multiplication with a complex number, i.e. on the Hilbert space there is a natural action of the Abelian
group C0 = C− {0 } given by

|ψ〉 7→ λ |ψ〉 = % ei θ |ψ〉 with % > 0 . (1.25)

A pure state will be an equivalence class, i.e. a ray in the Hilbert space.
Thus, we consider an N -level quantum system with Hilbert space H0. Selecting an orthonormal basis

{|ek〉}k=1,...,n in H0 we may introduce a Cartesian coordinate system {xk, yk}k=1,...,n on H0, namely for
any element |ψ〉 ∈ H0 we have that

|ψ〉 = ψk|ek〉 = (xk + i yk)|ek〉 . (1.26)

Then, the group action defining the equivalence class may be described infinitesimally by means of two
commuting linear vector fields, given in Cartesian coordinates as

∆ = xk
∂

∂xk
+ yk

∂

∂yk
and Γ = yk

∂

∂xk
− xk

∂

∂yk
, (1.27)

where ∆ is the infinitesimal generator of dilations, while Γ is the infinitesimal generator of the multipli-
cation by a global phase factor.

Then, on the space H0 there are two regular distributions related with ∆ and Γ. The first one is
D = {∆}, and it is possible to see that the quotient space H0/Φ

∆ may be represented by the unit sphere
in H0, namely

S2n−1 := {|ψ〉 ∈ H0 | 〈ψ|ψ〉 = 1} . (1.28)

In the following, the projection from H0 to S2n−1 will be denoted by τ , while, an element of S2n−1 will
be denoted as |ψ), whereas |ψ〉 is a vector in H0.

If one considers the distribution D2 = {Γ, ∆}, which is involutive, it gives rise to a foliation ΦD2

which is regular. The quotient space H0/Φ
D2 is known as the complex projective space CP(H0) associated

with H0, namely
CP(H0) := {λ |ψ〉|λ ∈ C0 } . (1.29)
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The projection from H0 to CP(H0) will be denoted by π and the elements of CP(H0), denoted by [ψ]
with |ψ〉 ∈ H0, [ψ] are identified with the pure states of a quantum system. They are in one-to-one
correspondence with rank-one projectors, i.e.,

[ψ] 7→ ρψ :=
|ψ〉〈ψ|
〈ψ|ψ〉

. (1.30)

Furthermore, because the vector field Γ is tangent to S2n−1, it is possible to consider its restriction
Γs to S2n−1 and build the distribution Ds associated with it. Clearly, the quotient space S2n−1/ΦDs will
be precisely the complex projective space CP(H0), and the canonical projection from S2n−1 to CP(H0)
will be denoted by υ, and hence it holds that π = υ ◦ τ . Then, we arrive at the following diagramme

H0

S2n−1

τ

>

CP(H0)

π

∨ υ
<

Therefore, CP(H0) is the space of physical states where they have been normalized and one has gotten
rid of the global phase, i.e., we are aiming at a description on the space of pure states described without
redundancies.

Q-bit system

To better visualize the situation, let us again consider a 2-level quantum system. In this case the Hilbert
space is isomorphic to C2 where the vectors are given by

|ψ〉 =

(
ψ1

ψ2

)
, (1.31)

with ψk ∈ C. In this case the unit sphere S3 ∈ C2 of normalized states is given by the normalized vectors

τ(|ψ〉) = |ψ) =
1√

ψ1ψ̄1 + ψ2ψ̄2

(
ψ1

ψ2

)
. (1.32)

On the other hand, the complex projective space may be thought of as the unit sphere S2 ∈ R3. By
using the covering map π : H0 → S2, we associate a pure state

ρψ =
|ψ〉〈ψ|
〈ψ|ψ〉

= |ψ)(ψ| (1.33)

with a vector |ψ〉. In coordinates we have that

π(|ψ〉) = ρψ =
1

ψ1ψ̄1 + ψ2ψ̄2

(
ψ1ψ̄1 ψ1ψ̄2

ψ2ψ̄1 ψ2ψ̄2

)
. (1.34)

In general, we may immerse the complex projective space for the q-bit in the space of 2 × 2 Hermitian
matrices where a basis is provided by Pauli matrices and the identity matrix

I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
, (1.35)

i.e. every density matrix may be expressed as

ρ =
1

2
(I + xjσj) . (1.36)
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P (∞)

P (0)

CP

z

x

S2

Figure 1.1: The stereographic projection from the north pole onto the equatorial plane, which maps every
point x = (x1, x2, x3) ∈ S2 into points in the complex plane z ∈ CP.

This means that every quantum state is represented by the vector (x1, x2, x3) ∈ S2, such that xj =
Tr{σjρ}, and the purity condition ρ2 = ρ identifies the unit sphere

S2 = {(x1, x2, x3) ∈ R3 | (x1)2 + (x2)2 + (x3)2 = 1} . (1.37)

However, the description of the complex projective space is complete by means of complex homoge-
neous coordinates, this is, let Uj ⊂ CP, with j = 1, 2, denote the coordinate patch where ψj 6= 0 defined
by

φ1 : [ψ1, ψ2] 7→ z =
ψ1

ψ2
and φ2 : [ψ1, ψ2] 7→ ζ =

ψ2

ψ1
, (1.38)

such that the set of (Uj , φj) constitutes an atlas for the complex projective space. Thus, we may consider
the alternative expression of the vector states |ψ) ∈ S3 and its image ρψ ∈ S2 by means of

|ψ) =
eiϕ

√
1 + zz̄

(
z
1

)
, ρψ = |ψ)(ψ| = 1

1 + zz̄

(
zz̄ z̄
z 1

)
, (1.39)

where ϕ is a real and possibly time-dependent function. Then, we may compare this expression of the
density matrix with the one given in Eq. (1.36) to obtain the transformation

x1 =
2zR

1 + zz̄
, x2 =

2zI

1 + zz̄
, x3 =

−1 + zz̄

1 + zz̄
, (1.40)

where z = zR + i zI.
This transformation is simply the stereographic projection from the “north pole” of the sphere onto

the equatorial plane, see Fig. 1.1. For the map ζ = ψ2

ψ1 , one obtains the stereographic projection from the
“south pole” of the sphere onto the equatorial plane, i.e.

x1 =
2ζR

1 + ζζ̄
, x2 =

−2ζI

1 + ζζ̄
, x3 =

1− ζζ̄
1 + ζζ̄

, (1.41)

with ζ = ζR + i ζI. Therefore, we have a complete covering of S2. The obtained complex plane CP is
known in quantum physics as the ray space description of the quantum system.

For the general case, i.e. for an N-level quantum system, it is straightforwards to adapt the complex
homogeneous coordinates. This is, let Uj ⊂ CP denote the coordinates patch defined by

φj : Uj → Cn−1 : [ψ1, . . . , ψn] 7→
(
z1, . . . , zj−1, zj+1, . . . , zn

)
, with zk =

ψk

ψj
. (1.42)
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with ψj 6= 0, then the set of (Uj , φj), with j = 1, . . . , n, constitutes an atlas for the complex projective
space. Therefore the projection of H0 onto the complex projective space may be expressed as

π : H0 → CP : |ψ〉 7→ |ψ) =
1√

1 + z† z

(
z
1

)
, (1.43)

where the chart φn has been employed, so z is an (N − 1)-dimensional complex vector, with components

zk = ψk

ψn for k = 1, . . . , n− 1.
Now that we have established the canonical projection π from the Hilbert space H0 to the complex

projective space CP, we may apply this results to the dynamics of the system. The Schrödinger dynamics
defines a dynamical vector field XH in the carrier space TH ≈ H×H, given by

XH =
i

~
ψ̄j H

j
k

∂

∂ψ̄k
− i

~
Hk
j ψ

j ∂

∂ψk
(1.44)

with Hj
k being an entry of the Hamiltonian matrix operator, where the upper index denotes the column

and the lower the row. Therefore, a major question is whether there is a vector field which describes the
Schrödinger motion on CP(H0), or as is said, whether XH is projectable. In fact, a suficient condition
for projectability (see reference [4] for the formal proof) is

[XH ,∆] = [XH ,Γ] = 0 . (1.45)

It is interesting to mention that because the dynamics is projectable, it carries leaves of the foliation ΦD2 ,
into leaves, i.e. the foliation is invariant under XH [4]. In this sense the group action is a symmetry for
the Schrödinger dynamics.

1.3 A Digression to the Schrödinger Picture

So far it has been shown that the Schrödinger dynamics is projected onto the complex projective space in a
nonlinear Riccati equation; however, not only the dynamics is projectable but also important geometrical
structures may be projected. In this section the geometrical structure of the Hilbert space will be
introduced in the usual description of quantum systems, in order to project them later onto CP.

Thus, an important mathematical property of the Hilbert space is the fact that there is an inner
product defined on it. Then, from the system of coordinates introduced in (1.26), we define the complex
coordinate functions

|dψ〉 = dψk|ek〉 = (dxk + i dyk)|ek〉 , (1.46)

such that the Hermitian product acquires the form

〈dψ|dψ〉 = ~ δkj (dxk ⊗ dxj + dyk ⊗ dyj) + i ~ δkj (dxk ⊗ dyj − dyk ⊗ dxj) , (1.47)

which is decomposed into the real and the imaginary parts

gH = ~ (dxk ⊗ dxk + dyk ⊗ dyk) and ωH = ~ (dxk ⊗ dyk − dyk ⊗ dxk) . (1.48)

It is clear from the above definitions that gH is a symmetrical tensor, a metric, and ωH is a skew-
symmetrical tensor, a 2-form. Therefore, the Hilbert space may be seen as a real space HR ≈ R2n with
a metric tensor gH = Re{〈φ|ψ〉} and a symplectic structure ωH = Im{〈φ|ψ〉} [7, 6].

As a further remark, we recall that the Hilbert space is endowed with the natural complex structure
J defined simply by JH : |ψ〉 7→ |iψ〉, and then J2 = −1. This endomorphism in local coordinates has
the form

JH = dyk ⊗
∂

∂xk
− dxk ⊗

∂

∂yk
, (1.49)

and then in the realification of the Hilbert space JH connects the metric tensor and the symplectic
structure as

gH(φ, ψ) = −ωH(JHφ, ψ) , ωH(φ, ψ) = gH(JHφ, ψ) . (1.50)
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Moreover, the relations

gH(JHφ, JHψ) = gH(φ, ψ) , ωH(JHφ, JHψ) = ωH(φ, ψ) , (1.51)

show that JH is an infinitesimal generator for transformations preserving the metric and the symplectic
structures. All the results presented before summarize the fact that the Hilbert space has a Kähler
structure [7, 6, 5].

The symplectic form ωH and the metric gH define two relevant vector fields. Let f be an arbitrary
function in H, i.e. f ∈ F(H), then the gradient vector field ∇f and the Hamiltonian vector field Xf are
defined by

gH(∇f, · ) = df , ωH(Xf , · ) = df , (1.52)

such that J(∇f) = Xf .
Upon adopting the complex coordinates ψk = xk + i yk and ψ̄k = xk − i yk previously defined in

Eq. (1.26) one may express

gH =
~
2

(dψk ⊗ dψ̄k + dψ̄k ⊗ dψk) and ωH =
i ~
2

(dψk ⊗ dψ̄k − dψ̄k ⊗ dψk) , (1.53)

and the complex structure

JH =
1

i

(
dψk ⊗ ∂

∂ψk
− dψ̄k ⊗

∂

∂ψ̄k

)
. (1.54)

Hence, in this local coordinates and taking into account the definitions (1.52), it is possible to deduce
the form of the Hamiltonain vector field and the gradient vector field, namely

Xf =
2 i

~

(
∂f

∂ψk
∂

∂ψ̄k
− ∂f

∂ψ̄k

∂

∂ψk

)
(1.55)

and

∇f =
2

~

(
∂f

∂ψk
∂

∂ψ̄k
+

∂f

∂ψ̄k

∂

∂ψk

)
, (1.56)

respectively. In the Hilbert space one may describe observables in terms of bilinear functions fA =
1
2 〈ψ,Aψ〉, which are proportional to the expectation values and in local coordinates has the form

fA =
1

2
ψ̄k Akj ψj . (1.57)

From the definitions in Eq. (1.52) it is possible to obtain the gradient vector field YfA = ∇fA and the
Hamiltonian vector field XfA associated to the observable. Namely

XfA =
i

~
ψ̄j A

j
k

∂

∂ψ̄k
− i

~
Akj ψ

j ∂

∂ψk
, YfA =

1

~
ψ̄j A

j
k

∂

∂ψ̄k
+

1

~
Akj ψ

j ∂

∂ψk
. (1.58)

The Hamiltonian vector field introduces a dynamics in the Hilbert space whose integral curves are deter-
mined by the solution of the linear equation

ψ̇k = − i

~
Akj ψ

j . (1.59)

In particular, if the observable is the Hamiltonian then the before presented equation corresponds to the
Schrödinger equation. In addition, it is possible to obtain the Poisson and the Jordan brackets, this is
for given f, h ∈ F(H) one has that

{f, h}ωH = ωH(Xf , Xh) , {f, h}gH = gH(Yf , Yh) . (1.60)

Extending both these brackets to complex functions via complex linearity, we obtain the complex bracket

{f, g}H := {f, h}gH + i {f, h}ωH , (1.61)

expressed in complex coordinates by

{f, g}H =
4

~
∂f

∂ψ̄k

∂g

∂ψk
. (1.62)
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1.4 Nonlinear Evolution of N-level Quantum Systems

For the q-bit system it has been shown that the evolution of the states is, in homogeneous coordinates,
given by a nonlinear Riccati equation. In this section we would like to generalize this result to any N -level
system as well as to discuss, in some details, the structure of the complex projective space of the Hilbert
space.

It is well-known that the Hilbert space H0 is a Kähler manifold [7, 6], i.e., there are a symplectic form
ωH, a Riemannian metric tensor gH and a complex structure JH such that gH = JH ◦ ωH. Hence, it is
expected that the same structures are defined on the complex projective space CP. In fact, considering
the homogeneous coordinates in Eq. (1.43) we proceed to introduce the 1-form

θFS =
~
i

1√
1 + z z̄

( z̄ , 1 )

[
1√

1 + z z̄

(
dz
0

)
+

(
z
1

)
d

(
1√

1 + z z̄

)]
=

~
2 i

z̄k dzk − zk dz̄k
1 + z̄ z

. (1.63)

Thus, the symplectic form ωFS on CP is then defined as

ωFS = dθFS =
~
i
(dψ | ∧ | dψ)

=
−i ~

(1 + z̄ z)2

[
(1 + z̄ z) dz̄k ∧ dzk − 1

2
(z̄l dz

l + zl dz̄l) ∧ (z̄k dzk − zk dz̄k)

]
. (1.64)

Furthermore, by means of the map π in (1.43), we may look at the pullback of ωH to H0 and see
that ωH = π∗ ωFS. The same is also true for the metric, i.e., gH = π∗ gFS, where gFS is the so-called
Fubini–Study metric [7], which in homogeneous coordinates has the form

gFS = (dψ | ⊗S |dψ)

=
−~

(1 + z z̄)2

[
(1 + z z̄) dz̄k ⊗S dzk +

1

2
(z̄k dzk − zk dz̄k)⊗ (z̄l dz

l − zl dz̄l)

− 1

2
(z̄k dzk + zk dz̄k)⊗ (z̄l dz

l + zl dz̄l)

]
, (1.65)

where dz̄k ⊗S dzk = dz̄k dzk + dzk dz̄k. On the other hand, the complex structure on the complex
projective space may be obtained by a (1, 1)-tensor which contains vector fields and forms. While vector
fields may be projected (if projectable), forms cannot be projected. Therefore one may speak of “related”
(1, 1)-tensor fields by a related (1, 1)-tensor field

JFS =
1

i

(
dzk ⊗ ∂

∂zk
− dz̄k ⊗

∂

∂z̄k

)
. (1.66)

Therefore, the complex projective space has a Kähler structure (ωFS, gFS, JFS) [7, 5].
The symplectic form and the Riemannian metric define a Hamiltonian vector field and a gradient

vector field, respectively. This means to any function eA ∈ F(CP) a gradient and a Hamiltonian vector
fields is associated by means of the intrinsic definitions

gFS(YeA , · ) = d eA , ωFS(XeA , · ) = d eA , (1.67)

such that
JFS(XeA) = YeA . (1.68)

To introduce the definitions in Eq. (1.67) in complex homogeneous coordinates on CP, then in these
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coordinates the expectation value of an arbitrary observable A may be expressed in general as

eA = (ψ|A|ψ)

=
1

1 + z† z
( z† , 1 )

 A1 V

V† A2

 z

1


=

1

1 + z† z

(
z†A1z + z†V + V†z +A2

)
, (1.69)

where the matrix A1 is an (N − 1) × (N − 1)–dimensional matrix, V is an (N − 1)–component column
vector and A2 a real quantity. In particular we can consider the Hamiltonian as the observable with
representative matrix

H =

 H1 V

V̄† H2

 . (1.70)

Thus, the Hamiltonian vector field may be obtained from the right-hand expression in Eq. (1.67), taking
into account the expression in coordinates of the symplectic form in Eq. (1.64). Namely, we have that
the dynamics induced by the Hamiltonian corresponds to

XeH = Xzk
∂

∂zk
+Xz̄k

∂

∂z̄k
, (1.71)

where the component Xz̄k is the complex conjugated of Xzk , and Xzk is given by

Xzk =
i

~
(
zk V̄l z

l − |H1|kl zl +H2 z
k − V k

)
. (1.72)

Therefore, the integral curves of this Hamiltonian vector field are provided by the Hamiltonian equations
of motion

żk = − i

~
(1 + z† z)

(
∂eH
∂z̄k

+ zk z̄l
∂eH
∂z̄l

)
=

i

~
(
zk V̄l z

l − |H1|kl zl +H2 z
k − V k

)
,

˙̄zk =
i

~
(1 + z† z)

(
∂eH
∂zk

+ z̄k z
l ∂eH
∂zl

)
= − i

~
(
z̄l V

l z̄k − z̄l |H1|lk +H2 z̄k − V̄k
)
. (1.73)

Therefore the equation of motion of the N -level quantum system is given by the well-known matrix Riccati
equation [9]

żk =
i

~
(
zk V̄l z

l − |H1|kl zl +H2 z
k − V k

)
. (1.74)

Hence, the matrix Riccati equation is simply the coordinate expression of the Schrödinger equation on
the complex-projective space. Moreover, we have proved that the nonlinear Riccati evolution is actually
a Hamiltonian dynamics.

The gradient vector field can be obtained similarly, i.e. considering now the left-hand expression in
Eq. (1.67) and the expression in coordinates of the Riemannian metric in Eq. (1.65). However, because
we have already determined the Hamiltonian vector field and we also know the complex structure JFS in
Eq. (1.66), so it is easier to obtain the gradient vector field from the property in Eq. (1.68). Hence the
gradient vector field is simply

YeH = JFS(XeH )

=
1

~
[
zk V̄l z

l − |H1|kl zl +H2 z
k − V k

] ∂

∂zk
+

1

~
[
z̄l V

l z̄k − z̄l |H1|lk +H2 z̄k − V̄k
] ∂

∂z̄k
. (1.75)

In addition, we may introduce the Poisson and Jordan brackets for the complex projective space [6, 7].
So, given the expectation values eA and eB associated to the observables A and B

{eA, eB}ωFS = ωFS(XeA , XeB ) , {eA, eB}gFS = gFS(YeA , YeB ) , (1.76)
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where in complex homogeneous coordinates these brackets have the form

{eA, eB}ωFS = − i

~
(1 + z† z)

[(
∂eA
∂zk

∂eB
∂z̄k
− ∂eA
∂z̄k

∂eB
∂zk

)
+

(
zk
∂eA
∂zk

z̄l
∂eB
∂z̄l
− z̄l

∂eA
∂z̄l

zk
∂eB
∂zk

)]
(1.77)

and

{eA, eB}gFS = −1

~
(1 + z† z)

[(
∂eA
∂zk

∂eB
∂z̄k

+
∂eA
∂z̄k

∂eB
∂zk

)
+

(
zk
∂eA
∂zk

z̄l
∂eB
∂z̄l

+ z̄l
∂eA
∂z̄l

zk
∂eB
∂zk

)]
. (1.78)

In addition, after some calculations it is possible to prove that the Poisson and the Jordan brackets
are such that

{eA, eB}ωFS = e 1
i ~ [A,B]− and {eA, eB}gFS = −2

~

[
1

2
e[A,B]+ − eA eB

]
, (1.79)

where [A,B]− = AB−BA and [A,B]+ = AB+BA. Therefore, we have a clear connection between the
Poisson brackets and the quantum commutator. In particular, considering the Hamiltonian of the system
H with expectation value eH , then the evolution of the expectation value eA of an arbitrary observable
A is given by

deA
dt

= {eH , eA}ωFS
= e 1

i ~ [H,A]− . (1.80)

This result implies immediately that for the time-independent case eH is a first integral of the flow,
i.e., the expectation value of the Hamiltonian is conserved. In addition, the expectation value of any
observable commuting with H is also a first integral.

On the other hand, the Jordan bracket is connected with the dispersion and the correlation of the
observables. This is, for every couple of observables A and B their uncertainties and correlations are
given by

σ2
A = eA2 − e2

A = −~
2
{eA, eA}gFS

(1.81)

and

σAB =
1

2
e[A,B]+ − eA eB = −~

2
{eA, eB}gFS

, (1.82)

respectively. Thus, the Riemannian metric carried by the complex projective space takes into account
the probabilistic character of quantum mechanics [43].

Q-bit system

For the q-bit example the expectation value of the Hamiltonian is expressed in homogeneous coordinates
by

eH = (ψ|H|ψ)

=
1

1 + zz̄
( z̄ , 1 )

 H1 V

V̄ H2

 z

1


=

1

1 + zz̄

(
z̄H1z + z̄V + V̄ z +H2

)
. (1.83)

The Hamiltonian dynamics intrinsically defined in (1.67) may be found explicitly employing Hamil-
ton’s equations in Eq. (1.73). Then, Hamiliton’s equations of motion are given by

ż = − i

~
(1 + zz̄)2 ∂eH

∂z̄
=
i

~
[
V̄ z2 − (H1 −H2)z − V

]
˙̄z =

i

~
(1 + zz̄)2 ∂eH

∂z
= − i

~
[
V z̄2 − (H1 −H2)z̄ − V̄

]
, (1.84)
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and are identical with the Riccati equation (1.23). Therefore the Hamiltonian vector field has the form

XeH =
i

~
[
V̄ z2 − (H1 −H2)z − V

] ∂
∂z
− i

~
[
z̄2V − (H1 −H2)z̄ − V̄

] ∂
∂z̄

. (1.85)

Furthermore, with the help of the complex structure we may obtain the gradient vectorfield, i.e.

YeH = JFS(XeH ) (1.86)

=
1

~
[V̄ z2 − (H1 −H2)z − V ]

∂

∂z
+

1

~
[V̄ z̄2 − (H1 −H2)z̄ − V̄ ]

∂

∂z̄
, (1.87)

which is orthogonal to the Hamiltonian vector field.

Time-dependent Hamiltonian systems

For the N-level quantum system whose Hamiltonian depends explicitly on time the definition (1.67) for
the Hamiltonian vector field is no longer valid, because the differential of the expectation value of the
Hamiltonian depends on time. In order to deal with time-dependent systems, as in classical Hamiltonian
theory [1], one usually extends the space with an extra dimension representing time. The extended space
CPE = CP× R is a manifold endowed with the 1-form

θE

FS = θFS + eH dt , (1.88)

where θFS is the one-form defined in (1.63) and the expectation value eH may depend explicitly on time.
We may notice that in this manner one is dealing with a contact Hilbert manifold [33, 32]. Then one
proceeds to define a dynamics on CPE that correctly extends the Hamiltonian dynamics. The dynamics
XE

eH ∈ X(CPE) is now defined by the intrinsic condition

dθE(XE

eH , · ) = 0 , (1.89)

which is satisfied if and only if the extended vector field XE
eH takes the form

XE

eH = XeH +
∂

∂t
, (1.90)

where XeH is given by Eq. (1.71). Therefore, one obtains the Hamiltonian equations (1.73), augmented
with the trivial equation ṫ = 1. It follows that the evolution of an arbitrary time-dependent expectation
value of eA is given by

deA
dt

= XE

eH [eA] = {eH , eA}ωFS
+
∂eA
∂t

, (1.91)

with the Poisson bracket {eH , eA}ωFS
defined in Eq. (1.77). Consequently for time-dependent Hamilto-

nian systems the expectation value of its Hamiltonian is not any longer conserved.

1.5 Nonlinear Superposition Rule

In the Hilbert space, given two solutions of the Schrödinger equation |ψ〉 and |φ〉, the state given by linear
superposition

|Ψ〉 = p1 |ψ〉+ p2 |φ〉 , (1.92)

with p1, p2 ∈ R, is also a solution of the Schrödinger equation. Physically, quoting Dirac, this means
that: “Any state may be considered as the result of a superposition of two or more other states, and
indeed in an infinite number of ways. Conversely any two or more states may be superposed to give a
new state” [44]. To obtain such a superposition rule in CP, we notice that in the nonlinear description
the evolution of pure states is describe by solutions of a Riccati equation, that although it is nonlinear,
originates from the linear Schrödinger equation with linear superposition rule, thus there must be a way
to superimpose its solutions.
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Let us first establish the superposition rule for the q-bit system. So, employing the superposition
principle on the Hilbert space then in the complex projective space the superimposed solution |Ψ〉 in
homogeneous coordinates (1.42) is given by

Z =
p1ψ

1 + p2 φ
1

p1ψ2 + p2 φ2
, (1.93)

which by construction is a solution of the Riccati equation (1.23). It is not difficult to realize that it

is impossible to express Z just in terms of the particular solutions zψ = ψ1

ψ2 and zφ = φ1

φ2 . However,
introducing the auxiliarly solution

z0 =
ψ1 + φ1

ψ2 + φ2
, (1.94)

after some algebra the superposed solution can be expressed as

Z =
p1 zψ (z0 − zφ) + p2 zφ (zψ − z0)

p1(zφ − z0) + p2(zψ − z0)
. (1.95)

This relation between solutions of the Riccati equation is known in the literature as the nonlinear super-
position rule [10, 11, 12]. Note that in order to obtain the expression (1.95) we have chosen the particular
solution (1.94); however, the nonlinear superposition principle establishes that the general solution of a
Riccati equation may be expressed as a function Z = Φ(z0, zψ, zφ, κ) of three particular solutions and an
arbitrary constant κ, thus any arbitrary solution z0 may be employed to obtain the relation (1.95), for a
formal proof see [12].

Therefore, we have proven that the linear superposition principle on the Hilbert space (1.92) is trans-
lated into the complex projective space as a nonlinear superposition rule (1.95). This means, given three
particular solutions {z0, zψ, zφ} of the Riccati equation (1.23) the general solution can be written as

(Z − zψ)(z0 − zφ)

(Z − zφ)(z0 − zψ)
= κ , (1.96)

where κ is a constant determined by the initial conditions [11, 6].
The use of an auxiliary solutions in order to obtain a superposition principle of pure states is not

new. In fact, in terms of the density matrix description, the rule to add two pure states, by their density
operators ρψ and ρφ, involves the use of a fiducial projector ρ0 such that the superimposed operator is

ρΨ =
1

N

(
p1ρψ + p2ρφ +

√
p1p2(ρψ ρ0 ρφ + h.c.)√

Tr(ρψ ρ0 ρφ ρ0)

)
(1.97)

with N a normalization constant, for details see [45]. From this point of view, one should not be surprised
that the nonlinear superposition principle involves an auxiliary solution.

Finally, it is straightforwards to generalize the nonlinear superposition rule to N -level systems. The
superimposed state |Ψ〉 = p1 |ψ〉+ p2 |φ〉 is then represented in the homogeneous coordinates of CP(H0)
by the vector state Z with components

Zk =
p1 z

k
ψ (zk0 − zkφ) + p2 z

k
φ (zkψ − zk0 )

p1(zkφ − zk0 ) + p2(zkψ − zk0 )
(1.98)

with k = 1, . . . , n − 1, where zkψ = ψk

ψn , zkφ = φk

φn and where zk0 is the k-th component of an arbitrary
solution z0. For example, one may consider z0 with components

zk0 =
ψk + φk

ψn + φn
. (1.99)
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(a) (b)

Figure 1.2: Phase portrait of (a) the Hamiltonian vector field and (b) the gradient vector field associated
to the time-independent case ω = 0 and parameters: ωa = 1, α = 1 + i.

1.6 Semiclassical Jaynes–Cummings model

As an example of nonlinear evolution of quantum systems, let us consider the Jaynes–Cummings model of
quantum optics. This model consists of a single two-level atom interacting with a single quantized cavity
mode of the electromagnetic field [13]. Employing the rotating wave approximation, this interaction is
described by the Hamiltonian

H = HF +HA +HI = ~ω â†â+
1

2
~ωaσ3 + 2 ~ g(σ+â+ σ−â

†) , (1.100)

where {â†, â} represent the photon creation and annihilation operators, and {σ+, σ−} are the transition
operators acting on the atomic states {E1, E2}. In terms of the Pauli matices {σ1, σ2, σ3} the transition
operators have the form

σ+ =
1

2
(σ1 + iσ2) , σ− =

1

2
(σ1 − iσ2) . (1.101)

Besides, ω represents the frequency of the electromagnetic field, ~ωa is the difference of energy between
the two states of the atom, i.e. ~ωa = E2 − E1, and g is the atom-field coupling constant.

Then, let us consider an effective description of the 2-level atom (reference system) in iteraction with
the electromagnetic field (environment). By effective description we mean that given a conservative (ref-
erence) system we want to take into account the coupling with the environment without the consideration
of additional degrees of freedom with respect to those possessed by the system. Hence we may consider
the expectation value of the Jaynes–Cumming Hamiltonian (1.100) with respect to the coherent states
of the quantum oscillator system HF, i.e. with respect to the states |α e−iωt〉 such that it satisfies the
eigenvalue equation â|α e−iω t〉 = α e−iω t|α e−iω t〉 , with α ∈ C. It is not difficult to show that these
states are solutions of the Schrödinger equation associated to HF. Hence, taking this expectation value,
the effective Hamiltonian

HEff(t) =
1

2
~ωa σ3 + ~ [ ξR(t)σ1 − ξI(t)σ2 ] (1.102)

is obtained, where we have defined the complex number ξ(t) = g α e−iω t and ignored constant terms. In
physical terms, we found the Hamiltonian that describes a 2-level atom irradiated by a laser source, i.e.
the radiation is considered as a classical field [13].

The expectation value of the Hamiltonian (1.102) defined on the complex projective space CP is given
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Figure 1.3: Time evolution of the two-level atom in interaction with a classical source of radiation with
initial condition z0 = 0 and parameters: (a) ωa = 1, ω = 1, g = 1, β = 1 + i and (b) ωa = 1, ω = 1, g = 1
and β = 1.

by

eH = (ψ|HEff|ψ)

=
1

1 + zz̄
( z̄ , 1 )

 1
2ωa ξ(t)

ξ̄(t) − 1
2ωa

 z

1


=

1

1 + zz̄

(
1

2
ωaz̄z + ξ(t)z̄ + ξ̄(t)z − 1

2
ωa

)
, (1.103)

and hence the Hamiltonian equations of motion (1.84) lead, as it should be, to the Riccati equation

ż =
i

~
[
ξ̄(t) z2 − ωa z − ξ(t)

]
. (1.104)

For the time-independent case, i.e. ω = 0 it is possible obtain the phase portrait of the Hamiltonian
vector field and the gradient vector field. The phase portraits of both vector fields are plotted in Fig. 1.2a
and Fig. 1.2b, respectively. Here we can see that the solutions of the Hamilton vector field for this case
are periodic curves except for the two singular solutions where the vector field vanishes. These singular
solutions for the gradient vector fields become an attractive and a repulsive singular point.

For the time-dependent case, i.e. ω 6= 0, the solution of the Riccati equation is well-known, see for
example [10, 11, 20, 38]. These solutions are Möbius transformations in CP, namely

Φ(U, z0) 7→ z(t) =
a(t)z0 + b(t)

c(t)z0 + d(t)
with U =

(
a(t) b(t)
c(t) d(t)

)
(1.105)
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and z0 being the initial condition. For our case of interest we have the matrix

U(t) =

 e−iωt/2
(
cos Ωt− i∆

2Ω sin Ωt
)

− i g β
Ω e−iωt/2 sin Ωt

− i
g β eiωt/2

(
Ω− ∆2

4Ω

)
sin Ωt eiωt/2

(
cos Ωt+ i∆

2Ω sin Ωt
)
 , (1.106)

where ∆ = ωa − ω is the difference between frequencies and Ω2 = ∆2

4 + ξξ̄ is a time-independent
frequency. Important solutions of the Riccati equation are the periodic ones, i.e. the solutions such that
z(t) = z(t + T ) with the period T . This condition of periodicity is reflected by U(t) = U(t + T ), which
is satisfied under the constraint

ωa = ω ±
√
ω2 − 4ξξ̄ , (1.107)

with period T = nπ
Ω . From this constraint we see that not all physical systems have periodic solutions,

because it is necessary that ω2 ≥ 4 ξ ξ̄ to obtain a real frequency ωa. Some examples of the quantum
evolution in CP and in S2 are plotted in Fig. 1.3. For the case in Fig. 1.3a, we have a periodic orbit with
period T = 2π and initial condition z0 = 0. On the other hand, in Fig. 1.3b we consider the same initial
condition but, due to the choice of the parameters, one does not obtain a closed curve, but as the time
progresses the curve becomes dense on the sphere.



Chapter 2

Nonlinear Dynamics of Quantum
Systems. Generalized Coherent

States

One of the traditional problem in quantum mechanics is the study of Gaussian wave packets as analytic
solution of the Schrödinger equation for Hamiltonians that are at most quadratic (or bilinear) in position
and momentum variables, including problems whose Hamiltonian depends explicitly on time.

The rise of the Gaussian wave packets goes back to the seventies, where there was a large activity in the
semiclassical limit of quantum mechanics; for example, many aspects of the molecular quantum dynamics
fall into the semiclassical domain [46, 47]. The study of such a domain goes from the expansion in ~, by
introducing the description of the wave function in terms of phase and amplitude real functions [46], to
the Feynman path integral approach [47] or equivalently the linear time-dependent invariants, i.e., time-
dependent Gaussian wave packets [16, 17, 48]. In addition, it has been found, for narrow wave packets
and smooth potentials, that the wave packet feels only the first terms of the Taylor series expansion of the
potential around its center [48]. A review of Hamiltonian models which have integrable solutions within
the framework of the time-dependent Schrödinger equation is presented in [49]. The before mentioned
works have had impact on studies of several fields in the domain of time; for example, in matter wave
optics the changes in the energy spectrum of ultra-cold neutrons [50], in atom optics experiments using a
time-modulated mirror [51] or studies of diffraction of a Bose–Einstein condensate in the time domain [52].

As we have already mention, there are several methods in the literature to study Gaussian wave
packets. One of the most popular is the use of the so-called linear invariant operators introduced by
Lewis in ref. [16] and Malkin, Man’ko and Trifonov in Ref. [17]. This approach is based on the construction
of operators Î such that their total derivative with respect time is equal to zero and they are linear in
the position and momentum variables, i.e.

Î = a(t)q̂ + b(t)p̂ . (2.1)

The time-dependent functions a(t) and b(t) are determined from the invariance of the operator, because
this invariance defines a system of linear differential equation for these functions, which together with
the initial conditions one fixes the units of the functions a(t) and b(t), further details are given in [17].
In addition, one may demonstrate that these linear time dependent invariants are obtained from the
Hamiltonian formulation of Nöther’s theorem. The variations are related to the time dependent functions
a(t) and b(t) [53].

In this approach, the solution of the Schrödinger equation is obtained from the fact that an invariant
operator Î is an operator that transforms every solution |ψ〉 of the Schrödinger equation into a solution
Î|ψ〉 of the same equation, this is clear from the fact that Î satisfies the equation[(

i~
∂

∂t
− Ĥ

)
, Î

]
|Ψ, t〉 = 0 . (2.2)

33
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Therefore, with a single solution of the Schrödinger equation it is possible to find a family of them. In
particular, it is possible to construct the invariant creation and annihilation operators Â and Â† with
the usual commutation relation [Â, Â†] = 1. Thus we define the eigenvalue equation for the annihilation
operator

Â|αInv〉 = αInv|αInv〉 , (2.3)

where the eigenvalue αInv = 〈αInv|Â|αInv〉 is a complex constant of motion and the eigenvector |αInv〉 is
a solution of the Schrödinger equation. To prove that the state |αInv〉 is a solution of the Schödinger
equation, let us consider the fiducial state |0〉 that is not only a solution of the Schrödinger equation but
also satisfies that Â|0〉 = 0; thus, we may define the state

|αInv〉 = eαInvÂ
†−ᾱInvÂ|0〉 . (2.4)

Then, because invariants transform solution of the Schrödinger equation into a solution of the same
equation, as we mentioned before, from the expression (2.4) it should be clear that |αInv〉 is a solution of
the the Schrödinger equation. For example, for the one-dimensional system with Hamiltonian operator

Ĥ =
1

2
( q̂ , p̂ )

 H1 V

V H2

 q̂

p̂

 , (2.5)

where H1, H2 and V are possibly time-dependent functions, the bosonic linear invariant operators are

Â =
i√
2~

(P q̂ −Q p̂) and Â† =
−i√
2~
(
P̄ q̂ − Q̄ p̂

)
. (2.6)

Now, in order to fulfill [Â, Â†] = 1 the time-dependent complex functions Q and P are constrained to
satisfy

Q̄P −QP̄ = 2 i . (2.7)

On the other hand, from the invariance of the operators one may prove that these functions obey a linear
system of differential equations, i.e. Q̇

Ṗ

 =

 V H2

−H1 −V

 Q

P

 . (2.8)

Then, the Gaussian solution of the Schrödinger equation may be obtained with the help of the linear
invariant operators and establishing the definition (2.4) in the position representation,

〈q |αInv〉 =
1

(π ~)1/4

1√
Q

exp

{
i

2~
P

Q
(q − 〈q̂〉)2 +

i

~
〈p̂〉(q − 〈q̂〉) +

i

2~
〈q̂〉 〈p̂〉

}
. (2.9)

The state |αInv〉 defined by the condition (2.3) is called in the literature the generalized coherent state [54],
where at difference to the coherent state the correlation between p̂ and q̂ may be different from zero, and
hence these states are such that they minimize the so-called Robertson–Schrödinger uncertainty relations,
i.e.

σqσp − σ2
qp =

~2

4
, (2.10)

where

σq = 〈q̂2〉 − 〈q̂〉2 , σp = 〈p̂2〉 − 〈p̂〉2 and σqp =
1

2
〈q̂p̂+ p̂q̂〉 − 〈q̂〉〈p̂〉 . (2.11)

The linear invariant approach for the study of Gaussian wave packets depends on the solution of
the linear equation of motions defined for the time-dependent functions a(t) and b(t), which may be
complex or real functions. However, there are different approaches that involve non-linear differential
equations, specifically an evolution through the Ermakov–Lewis and Riccati solutions [16, 55, 20, 38, 19].



2.1. Linear Description of Generalized Coherent States 35

For example, according to the Wei–Norman method [56] employed in [55] there are complex functions
Ck(t), with k = 1, 2, 3 and Ck(0) = 0, such that the unitary evolution operator may be expressed as

Û(t) = e
i

2~ C1(t)q̂2

e
i

2~ C2(t)[q̂,p̂]+ e
i

2~ C3(t)p̂2

= ÛC1(t)ÛC2(t)ÛC3(t) , (2.12)

con The time-dependent functions Ck are determined by direct substitution of the evolution operator into
the equation of motion

i~
d Û

dt
= ĤÛ , (2.13)

with initial condition Û(0) = 1̂. For the Hamiltonian given in (2.5) one may prove that the complex
functions Ck obey the system of differential equations

Ċ1 = −H2 C2
1 − 2V C1 − H1 , (2.14)

Ċ2 = −H2 C1 − V , (2.15)

Ċ3 = −e2C2 H2 . (2.16)

Notice that the evolution operator may be constructed with different orders of the operators, ÛCk(t),
given rise to different Riccati differential equations; however, all of them are connected by Möbius trans-
formations, for the details see Ref. [55]. Furthermore, according to reference [19], the Gaussian wave
function solution of the Schrödinger equation may be expressed as

ψ(q) =
1

(π ~)1/4
exp

{
i

2~
(
C (q − 〈q̂〉)2 + 2〈p̂〉(q − 〈q̂〉) + 〈q̂〉 〈p̂〉

)
− 1

2

∫
[H2 C(τ) + V ]dτ

}
. (2.17)

where C is a complex time-dependent function with imaginary part strictly positive and different from
zero. In addition, this function obeys the nonlinear Riccati equation

Ċ +H2 C2 + 2V C +H1 = 0 , (2.18)

which is the same Riccati equation given in Eq. (2.14) for the determination of the unitary evolution
operator.

Hence, from the before mention models of the generalized coherent states, one may realize that there
is not a unique parametrization of these states. In fact, we have a parametrization by means of the
complex number α ∈ C, a description usually called the coherent states, also we may find in quantum
optics that the Gaussian wave packets are parametrized by the squeezing parameter ξ ∈ C, known as the
squeezed states, or one may parametrize by means of the solutions of the nonlinear Riccati (or Ermakov)
equation. From a physical point of view all this representations are valid, then one should be able to
establish the connections between these deferent description. In this Chapter, different from the before
mentioned approaches for the study of the generalized coherent states, this problem will be analized
from a geometrical point of view. This means that the geometrical space where the different evolutions
take place will be established and it is shown how they are immersed in the Hilbert space H, as well as
establish the connection among the different descriptions will be established. Moreover, it is shown that
each space has a symplectic structure such that the dynamics on these spaces are actually Hamiltonian.
Then here the results previously mentioned are not only deduced from a geometrical perspective but
also it is shown that there are several nonlinear descriptions involved in the dynamics of the generalized
coherent states.

2.1 Linear Description of Generalized Coherent States

To start our study we establish some geometrical aspects of the usual description of the generalized
coherent states, for a more complete review see [14, 57, 6]. So, in quantum mechanics it is possible to
immerse a manifold M ⊂ Rn in the Hilbert space H of a physical system, i.e.,

ϕ : M → H : x 7→ |ψ(x)〉 , (2.19)
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Figure 2.1: Representative picture of the immersion ϕ of the submanifold M ∈ Rn into the Hilbert space
H, leading to the submanifold ϕ(M) ⊂ H.

such that ϕ(M) is a submanifold of H [58], see Fig. 2.1. Recall that an immersion ϕ is a differentiable
map in which Tϕ is injective, i.e. Txϕ : TMx → TH|ψ〉 is an injective function at every point x ∈ M .
Hence, we may parametrize the time dependence of the wave function |ψ〉 through the variation of the
parameters x, whose physical significance will depend on the problem at hand.

Let us now show for the case of the generalized coherent state that we may define an immersion. For
simplicity, we consider the case of the generalized coherent states for a one-dimensional quantum system,
the generalization is straightforward; then, the immersion is constructed as follows [14, 58].

Given a fiducial normalized state |0〉 in the Hilbert space H, we employ the strongly continuous map
D̂ to immerse the complex plane C in the Hilbert space,

i : α ∈ C 7→ |α〉 ∈ H with |α〉 := D̂(α) |0〉. (2.20)

The operator D̂(α) is the well-known displacement operator given by

D̂(α) = eα â
†−ᾱ â , (2.21)

where â the annihilation and â† the creation operators with α and ᾱ their respective expectation values.
Now, considering the Hilbert space of quadratically integrable function L2(R,dq), the immersed subman-
ifold i(C) corresponds to the Gaussian wave packets, i.e. one have the well-known immersion [58, 15]

i : C→ L2(R,dq) : α 7→ ψ(α, q) . (2.22)

It should be clear that this immersion corresponds to a pure state with a fixed dependence on the
parameter α. So, the superposition of generalized coherent states does not belong to i(C), because such
superposition is not a Gaussian wave packet. An important consequence of this is that the subset i(C)
of the Hilbert space is a nonlinear space. As a final remark, it is not difficult to see from the definition
of the displacement operator that

D̂†(α) D̂†(β) D̂(α) D̂(β) = e
i
~ ω(α,β) , (2.23)

where ω(α, β) is the standard symplectic form ω = dx ∧ dy in C, which is represented by the matrix

J =

(
0 1
−1 0

)
. (2.24)

Thus, being α = x+ i y and β = x′ − i y′ we have that

ω(α, β) = (x , y)

(
0 1
−1 0

)(
x′

y′

)
= x y′ − x′ y . (2.25)
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The relation (2.23) is known as the Weyl form of the commutation relations and together with the
immersion (2.20) allows to see that we are actually dealing with a Weyl system [59, 7], i.e., a projective
unitary representation of the linear manifold C in the Hilbert space. An important consequence of dealing
with a Weyl system is the fact that we are avoiding domain problems of the Hermitian operators, that
is, the domain of the creation and annihilation operator are well defined in the submanifold i(C) ⊂ H.

Now that the kinematical situation involved in the generalized coherent states has been established,
we are now interested in the dynamical properties of the system. So, the evolution of a pure state |α〉 ∈ H
is given by the Schrödinger equation

i ~
∂ |α〉
∂ t

= Ĥ |α〉 , (2.26)

with Ĥ the Hamiltonian operator. Thus assuming that the solution of the system can be extended to
the whole time, let be Ût : H → H the one-parameter group of unitary transformations associated to
the Schrödinger equation (2.26). In this work only Hamiltonian operators quadratic in the position and
momentum variables are considered. Then for these cases, it has been shown in [60, 61] that if the initial
state is a generalized coherent state, the final state is also a generalized coherent state,

Ût|α0〉 = |α(t)〉 , (2.27)

this implies that the submanifold i(C) ⊂ H is invariant with respect to the flow Ut.
On the other hand, because C has a symplectic structure, i.e. it is naturally endowed with a symplectic

form ω. Then, one may associate to every differentiable function with domain in the complex plane, i.e.,
H ∈ F(C), the vector field XH , which is described by the internal product iXH acting on the symplectic
form ω, that is,

iXHω = ω(XH , ·) = −dH . (2.28)

The Hamiltonian vector field XH defines the dynamics of the system, and its integral curves are fixed by
the solutions of the Hamiltonian equations of motion. In addition, it is possible to introduce the Poisson
brackets, namely given the functions F,G ∈ F(C) with associated vector fields XF and XG, so one has
that

{F,G} = ω(XF , XG) . (2.29)

In general, the solution of the Hamiltonian equations of motion in C may be expressed as

α(t) = Φtα0 , (2.30)

where Φt : C → C is the one-parameter group of symplectic transformations, i.e. Φt ∈ Sp(2n,M)1.
Therefore, the connection between the unitary evolution Ût and the (canonical) symplectic evolution Φt
is obtained by means of the immersion (2.20), namely

i ◦ Φt = i ◦ Ût . (2.33)

Quantum parametric oscillator

To exemplify the situation, we consider the Schrödinger equation of a Hamiltonian operator quadratic
in the position and the momentum variables given in Eq. (2.5). This Hamiltonian can be equivalently
expressed in terms of bosonic operators

â =
i√
2~

(P q̂ −Q p̂) and â† =
−i√
2~
(
P̄ q̂ − Q̄ p̂

)
, (2.34)

1 The Sp(2n,M) is the symplectic group of degree 2n over M defined as

Sp(2n,M) = {S ∈ M2n×2n |ST J S = J} , (2.31)

where J is the symplectic matrix

J =

(
0 In×n

−In×n 0

)
. (2.32)
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where in order to have [â, â†] = 1, (Q,P ) are points in the manifold M defined as

M = {(Q,P ) ∈ C2 | Q̄P −QP̄ = 2 i} . (2.35)

Thus in terms of the creation and annihilation operators we have the equivalent Hamiltonian

Ĥ =
~
4

( â , â† )

 Ḡ W

W G

 â

â†

 , (2.36)

where the time-dependent functions G and W are connected with H1, H2 and V by

G = H1Q
2 + 2V QP +H2P

2 , (2.37)

W = H1|Q|2 + V (QP̄ + PQ̄) +H2|P |2 . (2.38)

Let us now explicitly establish the immersion (2.22). So, the normalized state |0〉 is defined by the
usual condition: â|0〉 = 0. Thus, the wave function of the ground state is obtained by means of the
relation 〈q|â|0〉 = 0, which in the position representation defines a partial differential equation for the
ground state wave function, whose normalized solution is given by

ψ(0, q) =
1

(π ~)1/4

1√
Q

exp

{
i

2~
P

Q
q2

}
. (2.39)

Now, the immersion defined in (2.22) allows to establish a correspondence between the complex number

α = 〈α|â|α〉 =
i√
2~

(P 〈q̂〉 − Q 〈p̂〉) (2.40)

and the Gaussian wave packet

ψ(α, q) = 〈q|D̂(α)|0〉

=
1

(π ~)1/4

1√
Q

exp

{
i

2~
P

Q
(q − 〈q̂〉)2 +

i

~
〈p̂〉(q − 〈q̂〉) +

i

2~
〈q̂〉 〈p̂〉

}
(2.41)

in the Hilbert space L2(R,dq). Furthermore, it should be clear that one may also consider the immersion

i : C→ L2(R,dp) : α 7→ ψ̃(α, p) . (2.42)

where for this case the Gaussian wave packet in the momentum representation is given by

ψ̃(α, p) = 〈p|D̂(α)|0〉

=
1

(π ~)1/4

√
i

P
exp

{
− i

2~
Q

P
(p− 〈p̂〉)2 − i

~
〈q̂〉(p− 〈p̂〉)− i

2~
〈q̂〉 〈p̂〉

}
. (2.43)

With the help of the Gaussian wave function ψ(α, q) (or its Fourier transform ψ̃(α, p)), one may prove
that there is a direct connection between the uncertainties σq, σp and their correlation σqp, all of them
defined in (2.11), with the complex quantities (Q,P ) by

σq =
~
2
|Q|2 , σp =

~
2
|P |2 and σqp =

~
4

(P Q̄+QP̄ ) . (2.44)

Establishing the covariance matrix Σ, one has that it may be factorized as

Σ =
2

~

 σqp σp

−σq −σqp

 =
1

2

 P̄ P

−Q̄ −Q

 Q P

Q̄ P̄

 . (2.45)

Therefore, the quantities (σq, σp, σqp), along with its constraint (2.10) determine the values of (Q,P ).
Note that the minimization of the Robertson–Schrödinger uncertainty directly introduce the constraint
in Eq. (2.7) for (Q,P ).
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Let us now address the dynamical properties of this example. Considering the unitary evolution in
the Hilbert space L2(R,dq) generated by the Hamiltonian operator (2.5) (or its complexification the
Hamiltonian (2.36)). One has then that the associated symplectic evolution in C is determined by the
Hamiltonain dynamics X ∈ X(TC) defined by

iXω = −deĤ , (2.46)

where ω is the symplectic form, which in terms of the complex coordinates given in Eq. (2.40), has the
form

ω = d〈p̂〉 ∧ d〈q̂〉 = i ~dᾱ ∧ dα , (2.47)

and the Hamiltonian function eĤ corresponds to the expectation value of the Hamiltonian, i.e.,

eĤ = 〈α|Ĥ|α〉 =
~
4

(α , ᾱ )

 Ḡ W

W G

 α

ᾱ

 . (2.48)

So, inserting the expression in coordinates of the symplectic form and the expectation value into the
definition (2.46), one may prove that

X =
i

2

(
Ḡ α+W ᾱ

) ∂

∂ᾱ
− i

2
(G ᾱ+W α)

∂

∂α
, (2.49)

whose integral curves are given by the solutions of the Hamiltonian equations of motion

α̇ = − i

~
∂ eĤ
∂ᾱ

= − i

2
(G ᾱ+W α) ,

˙̄α =
i

~
∂ eĤ
∂α

=
i

2

(
Ḡ α+W ᾱ

)
. (2.50)

Moreover, one may use the Poisson brackets defined by the relation (2.29), thus given the expectation
values eA ∈ F(C) and eB ∈ F(C) associated with the observables Â and B̂. The corresponding Poisson
bracket is given by

{eA, eB} =
i

~

[
∂eA
∂α

∂eB
∂ᾱ
− ∂eA

∂ᾱ

∂eB
∂α

]
. (2.51)

This definition allows to introduce the evolution of an arbitrary function in C, because of the evolution
of the expectation value eA of an arbitrary observable Â is simply given by

d eA
dt

= {eH , eA} . (2.52)

Note that the formalism presented may be extended to the time-dependent case, i.e., for the evolution
of functions which explicitly depend on time. For such cases, as usual, one simply considers the extended
space TC× R as a carrier space, such that the evolution of any function in this space is given by

d eA
dt

= {eH , eA}+
∂eA
∂t

. (2.53)

See that until here there is nothing new, because the Hamiltonian equations (2.50) are simply the com-
plexification of the well-known Ehrenfest theorem, which establishes that the maximum of the Gaussian
wave packet follows the classical trajectories of motion

˙〈q〉 =
∂ eĤ
∂〈p〉

= V 〈q〉+H2〈p〉 ,

˙〈p〉 = −
∂ eĤ
∂〈q〉

= −H1〈q〉 − V 〈p〉 . (2.54)
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In addition, by construction the complex quantities (Q,P ) are constant parameters; thus, from the
relations in Eq. (2.44), it is clear that we have considered Gaussian wave packets which preserve the
values of the second momenta (σq, σp, σqp) during their evolution.

In order to consider the general situation, i.e., to have Gaussian wave packets with time dependent
second moments, it is necessary to introduce the dynamics in the manifold M , defined in Eq. (2.35).
To define such dynamics we use the vector field Y , which lives in the tangent bundle of the manifold,
Y ∈ X(TM). As the manifold M has a symplectic structure of the form

ωM = dP̄ ∧ dQ+ dP ∧ dQ̄ , (2.55)

then the dynamics is symplectic, iY ωM = −dHM , where the Hamiltonian function corresponds to

HM = ( Q̄ , P̄ )

 H1 V

V H2

 Q

P

 . (2.56)

Therefore the vector field is given by

XM = (V Q+H2P )
∂

∂Q
− (H1Q+ V P )

∂

∂P
+ (V Q̄+H2P̄ )

∂

∂Q̄
− (H1Q̄+ V P̄ )

∂

∂P̄
, (2.57)

with linear Hamilton’s equations of motion Q̇

Ṗ

 =

 V H2

−H1 −V

 Q

P

 . (2.58)

Note that these are the equations of motion obtained in the linear invariant approach, see Eq. (2.8). This
is not a mere coincidence as it is seen next. Taking into account the evolution of the complex quantities
(Q,P ) into the definition (2.40), we obtain the time-dependent functions

αInv(t) =
i√
2~

(P (t) 〈q̂〉 − Q(t) 〈p̂〉) , (2.59)

which obey that
dαInv

dt
= {eH , αInv}+

∂αInv

∂t
= 0 , (2.60)

i.e., αInv(t) is a constant of motion of the dynamics defined by the Hamiltonian function eH in Eq (2.48).
The bosonic creation Â† and annihilation Â operators for the time-dependent case are given by

Â =
i√
2~

(P (t) q̂ −Q(t) p̂) and Â† =
−i√
2~
(
P̄ (t) q̂ − Q̄(t) p̂

)
, (2.61)

where (Q,P ) are solutions of the linear system of equations (2.58). These operators are actually the
linear invariant operators defined in Eq. (2.6), they are such that

dÂ

dt
= i~ [Â, Ĥ] +

∂Â

∂t
= 0 . (2.62)

Therefore in the most general case, one has the immersion of the constant of motion αInv = 〈Â〉 into
the Hilbert space L2(R,dq) (or L2(R,dp)), i.e.

i : αInv 7→ ψ(αInv, q) . (2.63)

Such immersion gives rise to the Gaussian wave packet Eq. (2.41) in the position representation (or
(2.43) in the momentum representation) as a solution of the Schrödinger equation, where the maximum
of the packet follows the classical Hamiltonian equations of motion in Eq. (2.54), whereas the evolution
of the uncertainties and their correlations may be obtained by the Hamiltonian equations of motion in
Eq. (2.58).
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2.2 From Linear to Nonlinear Dynamics

So far it has been shown that the evolution of the second moments (σq, σp, σqp) may be determined by
means of the solution of the equation of motion (2.58) under the constraint (2.7). This section is devoted
to show that this evolution is connected directly to a nonlinear one, which has important applications in
quantum optics.

Let us start studying the geometrical implications involved in the relation (2.45). The action of the
Lie algebra sl(2,R) in R2 consists of the matrices Σ,

ϕ̃ : sl(2,R)→ Lin(R2,R2) : a 7→ Σ , (2.64)

such that Tr Σ = 0 and det Σ = 1. Then, it is immediate that the covariance matrix Σ, defined in
Eq. (2.45), is an element of sl(2,R). Thus a general element Σ ∈ sl(2,R) may be expressed in terms of
the basis

e1 =

(
0 1
−1 0

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 1
1 0

)
(2.65)

as
Σ = ykek . (2.66)

This expression directly establishes a one-to-one correspondence between real traceless matrices and
vectors in R3 by  y2 y3 + y1

y3 − y1 −y2

 7→ (y1, y2, y3) . (2.67)

Moreover, the constraint det Σ = 1 defines the hyperboloid of two sheets H2 ⊂ R3 as the manifold2

H2 = {(y1, y2, y3) ∈ R3 | (y1)2 − (y2)2 − (y3)2 = 1} . (2.68)

Then considering only the upper sheet, see Fig. 2.2, one may see that each point in this manifold represent
a generalized coherent state. For example, a coherent state, characterized by σqp = 0, corresponds to the
points with y2 = 0 of the hyperboloid, i.e. with the points in the curve

H1 = {(y1, y3) ∈ R3 | (y1)2 − (y3)2 = 1} . (2.69)

This curve is plotted in Fig. 2.2 in a red-dashed line. In particular, the point (1, 0, 0) ∈ H2 corresponds
to the state with equal uncertainties σq = σp; then, all point on the hyperboloid different from this
minimum characterize a squeezed state. Another example of interest is to consider states that preserve
the correlation between the position and momentum, these are represented in Fig. 2.2 as green-dotted
lines, where all of them are curves parallel to H1.

In consequence the upper sheet of H2 plays an important role in the description of the Squeezed
states [62]. To connect with the usual squeezing parameters (τ, ϕ), we describe the coordinates yk by
means of the Hyperbolic coordinates, this is considering the atlas

φ : H2 → R2 : (y1, y2, y3) 7→ (τ, ϕ) (2.70)

defined by

y1 = cosh τ , y2 = sinh τ cosϕ , y3 = sinh τ sinϕ . (2.71)

The system of coordinates (τ, ϕ) is connected with the Squeezed operator Ŝ, which allows to immerse
H2 into the Hilbert space H as follows. Given the fiducial normalized state |w〉 in the Hilbert state H,
one employs the operator Ŝ to immerse H2 in the Hilbert space by

s : ξ ∈ H2 → |ξ〉 ∈ H given by |ξ〉 = Ŝ(ξ)|w〉 , (2.72)

2This description of the quantum system is also known as the “Pseudosphere” [63].
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y
1

Zero correlation

Figure 2.2: Upper sheet of hyperboloid H2, where each point on it represent a generalized coherent state.
In particular, in the dashed red line we have plotted the coherent states and in green dotted lines the
states with constant correlation.

where ξ = 2 τ eiϕ 3. The operator Ŝ(ξ) is defined as

Ŝ(ξ) = eξ̄ K̂−− ξ K̂+ (2.73)

where the operators K̂± are elements of the su(1, 1) algebra, which is defined in terms of the creation
and annihilation operators by

K̂− =
1

2
â2 , K̂+ =

1

2
(â†)2 , K̂0 =

1

4
(ââ† + â†â) , (2.74)

with the commutation relations

[K̂+, K̂−] = −2K̂0 , [K̂0, K̂±] = ±K̂± . (2.75)

Let us be more explicit in the immersion (2.72). The fiducial normalized state |w〉 is usually defined by
means of the condition K−|w〉 = 0, this condition is satisfied by the Fock states |0〉 and |1〉. Considering
the Hilbert space of quadratically integrable functions L2(R,dq), the immersed submanifold s(H2) ⊂ H
depends on the choice of the fiducial state; then, considering the state |0〉 the immersed submanifold in
H corresponds to the Gaussian wave packets ψ(ξ, q) = 〈q|Ŝ(ξ)|0〉. These states are known in quantum
optics as the squeezed vacuum states, whose expectation values are (〈q̂〉, 〈p̂〉) = (0, 0). On the other hand,
considering the state |1〉 the immersed submanifold clearly does not belong to the space of Gaussian wave
functions; therefore, it will not be considered further in this work.

In quantum optics the generalized coherent state is also known as the squeezed coherent state [62] and
is denoted by |α, ξ〉 being the result of the following immersion

h : H2 × C→ H defined as D̂(α)Ŝ(ξ)| 0〉 = |α, ξ〉 . (2.76)

From this definition we see that the parametrization of the generalized coherent state is composed by two
different parametrizations. The immersion of the complex plane C parametrizes the expectation values,
whereas the immersion of the hyperboloid H2 parametrizes the second moments. For instance, in the

3The coordinate ξ ∈ C is simply a complexification of (τ, φ) ∈ R2.
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immersion defined before, i.e. in Eq. (2.76), the action of the operator Ŝ(ξ) on |0〉 fixes the point in the
hyperboloid, later the action of the operator D̂(α) fixes the point in the complex plane.

As it has been seen, an important consequence of immersing a “classical” submanifold in the Hilbert
space is the fact that the time-dependence of the wave function is completely parametrized by the evo-
lution on such a submanifold. The manifold H2 is embedded with the symplectic form

ωH2 =
1

1 + y1

[
(1 + y1)dy3 ∧ dy2 + y3dy3 ∧ dy2 + y2dy3 ∧ dy2

]
= sinh τ dφ ∧ dτ . (2.77)

Thus there is a Hamiltonian dynamics, XH2 ∈ X(TH2), which is defined by

iXH2ωH2 = −deH .

To construct the Hamiltonian function eH ∈ F(H2), let us notice that in quantum mechanics the special
linear Lie algebra sl(2) is given by the operators

L̂1 =
1

4

(
p̂2 − q̂2

)
, L̂2 =

1

4
(q̂p̂+ p̂q̂) , and L̂0 =

1

4

(
p̂2 + q̂2

)
(2.78)

with the commutation relations4

[L̂1, L̂2] = −i ~ L̂0 , [L̂0, L̂1] = i ~ L̂2 and [L̂0, L̂2] = −i ~ L̂1 . (2.80)

In terms of these operators the quadratic Hamiltonian operator (2.5) has the form

Ĥ = (H2 +H1) L̂0 + 2V L̂2 + (H2 −H1) L̂1 , (2.81)

and hence the Hamiltonian function in the hyperboloid is simply the expectation value

eH = 〈 ξ |Ĥ| ξ 〉
= (H2 +H1) y1 + 2V y2 + (H2 −H1) y3

= (H2 +H1) cosh τ + 2V sinh τ cosφ+ (H2 −H1) sinh τ sinφ . (2.82)

Finally, from the definition of the symplectic evolution, it is not difficult to find that the Hamiltonian
dynamics has the form

XH2 = −(2V sinφ+ (H1 −H2) cosφ)
∂

∂τ
− [H1 +H2 + (2V cosφ+ (H2 −H1) sinφ) coth τ ]

∂

∂φ
, (2.83)

with the Hamiltonian equations of motion

τ̇ =
1

sinh τ

∂eH
∂φ

= −2V sinφ− (H1 −H2) cosφ

φ̇ = − 1

sinh τ

∂eH
∂τ

= − [2V cosφ− (H1 −H2) sinφ] coth τ − (H1 +H2) , (2.84)

which clearly is a nonlinear dynamics.

Now, the connection between the manifold M defined in Eq. (2.35) and the hyperboloid H2 in
Eq. (2.68) is established. To do that, recall that we may represent an element of the group SU(2,R)
by

s = xµeµ , (2.85)

4The connection between the elements of sl(2,R) and the elements of su(1, 1) is

K̂− =
1

~
(L̂1 − i L̂2) , K̂+ =

1

~
(L̂1 + i L̂2) , K̂0 =

1

~
L̂0 (2.79)
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where µ = 0, 1, 2, 3, being e0 the identity matrix and ek given in (2.65). Hence, one may introduce the
map  x0 + x2 x3 + x1

x3 − x1 x0 − x2

 7→ (x0, x1, x2, x3) . (2.86)

Moreover, the coordinates xµ define

H3 = {(x0, x1, x2, x3) ∈ R4 | (x0)2 + (x1)2 − (x2)2 − (x3)2 = 1} , (2.87)

from the constraint det s = 1.
Now, expressing the complex coordinates Q and P in terms of their real and imaginary parts, that is,

Q = QR + iQI and P = PR + iPI, such that

QR = x1 − x3 , QI = x2 − x0 ,

PR = x2 + x0 , PI = x1 + x3 . (2.88)

So, the constraint (2.7) in this real variables reproduces the condition in definition (2.87), i.e., one has the
transformation ν : M → H3 and the Hamiltonian dynamics XH3 ∈ TH3 is defined by iXH3ωH3 = −dHH3

with
HH3 = ν ◦HM , ωM = ν∗ωH3 and XH3 = ν∗XM . (2.89)

Explicitly the components of the vector field XH3 define the Hamiltonian equations of motion

ẋ0 = −1

2
(H2 +H1)x1 − 1

2
(H2 −H1)x3 − V x2 ,

ẋ1 =
1

2
(H2 +H1)x0 +

1

2
(H2 −H1)x4 − V x3 ,

ẋ2 =
1

2
(H2 +H1)x3 +

1

2
(H2 −H1)x1 − V x0 ,

ẋ3 = −1

2
(H2 +H1)x2 − 1

2
(H2 −H1)x0 − V x1 . (2.90)

Now, to obtain the connection between the hyperboloids H3 and H2, notice that

SL(2,R)→ sl(2,R) : s 7→ s e1 s−1 ≡ ykek , (2.91)

where, as one may prove the matrix s e1 s−1 is a traceless matrix. To show that ykek is an element of
H2, it is enough to compute

det
(
ykek

)
= det

(
s e1 s−1

)
= 1. (2.92)

To show the way (y1, y2, y3) ∈ H2 depends on (x0, x1, x2, x3) ∈ H3, one simply uses the explicit form of
the matrices s and e1 to obtain

y1 = (x0)2 + (x1)2 + (x2)2 + (x3)2 ,

y2 = 2 (x1x2 − x0x3) ,

y3 = 2 (x1x3 + x0x2) . (2.93)

Then one arrives at the covering map

χ : H3 → H2 : (x0, x1, x2, x3) 7→ (y1, y2, y3) . (2.94)

Note that the generalization of the results in this sections for more degrees of freedom is not simple,
because the connection between the Lie group SL(2n,R) and its Lie algebra sl(2n,R), for n > 1, is more
complex.
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2.3 Nonlinear Riccati Evolution

In the last section it has been shown that for the one-dimensional parametric oscillator system it is
possible to associate a nonlinear dynamics with the evolution of the Gaussian wave packets; however,
this nonlinear description appears to be more difficult for more degrees of freedom. Here we will show
that there is another nonlinear description of the quadratic Hamiltonian systems independently of the
degrees of freedom of the system; such a nonlinear description is the Riccati evolution. The nonlinear
Riccati evolution has currently gained considerable interest and has been widely studied and applied to
quantum systems [20, 38, 19].

Let us introduce the Riccati evolution for one-dimensional quantum systems by means of the trans-
formation

π : M → HP2 : (Q,P ) 7→ C =
P

Q
, (2.95)

where the manifold M has been defined in (2.35), whereas the space HP2 is known as the Siegel upper
half plane [64, 5] and is defined as

HP2 = {C ∈ C | CI > 0} , (2.96)

considering C = CR + i CI. Then, by means of the linear equations (2.58) follows that the dynamics on
the tangent space of the manifold TM induces a nonlinear dynamics in the space T HP2 such that the
integral curves of this dynamics are the solution of the Riccati equation (associated with the Hamiltonian
defined in Eq. (2.5))

Ċ +H2 C2 + 2V C +H1 = 0 . (2.97)

In fact, one may express the Gaussian wave packet (2.41) in terms of the Riccati variables C ∈ HP2 as5

ψ(α, C, q) =
1

(π ~)1/4
exp

{
i

2~
C (q − 〈q̂〉)2 +

i

~
〈p̂〉(q − 〈q̂〉) +

i

2~
〈q̂〉 〈p̂〉 − 1

2

∫
[H2 C(τ) + V ]dτ

}
. (2.98)

On the other hand, it is also posible to consider the coordinates

π̃ : M → HP : (Q,P ) 7→ C̃ =
Q

P
, (2.99)

where for this case we may express the generalized coherent state in the momentum representation as

ψ̃(α, C̃, p) =

√
i

(π ~)1/4
exp

{
− i

2~
C̃ (p− 〈p̂〉)2 − i

~
〈q̂〉(p− 〈p̂〉)− i

2~
〈q̂〉 〈p̂〉+

1

2

∫
[H1 C̃(τ) + V ]dτ

}
,

(2.100)
where now the complex time dependent function C̃(t) obeys the nonlinear Riccati equation

− ˙̃C +H1 C̃2 + 2V C̃ +H2 = 0 . (2.101)

Therefore, these nonlinear Riccati equations are closely connected to the evolution of the generalized
coherent states.

The geometrical nature of the transformations (2.95) and (2.99) is the following. As one can see the
linear system of equations (2.58) together with its constraint (2.7) is invariant under the multiplication
by a global phase factor, i.e. it is invariant under the tranformation

(Q,P ) 7→ eiφ(Q,P ) . (2.102)

This invariance allows to reduce the dynamics into a manifold of a lower dimension for the dynamical
system, for a complete review about reduction procedure see Ref. [4]. The multiplication by the global
phase factor is the group action of U(1), which may be described infinitesimally by means of the linear
vector field

Γ = PR

∂

∂QR

−QR

∂

∂PR

+ PI

∂

∂QI

−QI

∂

∂PI

. (2.103)

5Remember that the parameter α is given in terms of the expectation values of p̂ and q̂, see Eq. (2.40).
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Then, on the carrier space TM there is defined a regular distribution D = {Γ}, whose integral curves

`(r1,r2) = {(QR, PR, QI, PI) ∈ R4 |P 2
R +Q2

R = r2
1 ∪ P 2

I +Q2
I = r2

2 } (2.104)

are a family {`(r1,r2)} of disjoint subsets which foliates the manifold M , with r1 and r2 real constant
quantities. Furthermore, the foliation defines the equivalence relation ΦΓ as

(QR, PR, QI, PI) ∈ ΦΓ iff (QR, PR, QI, PI) ∈ `(r1,r2) . (2.105)

Thus, it is possible to define the quotient space M/ΦΓ with respect to the equivalence relation defined
by the foliation, which is identified with the Siegel upper half plane HP2 [64, 5].

Now that the canonical projection π from the manifold M to the Siegel upper half plane HP2 has
been established, one may apply this results to the dynamics of the system. Then, the dynamical vector
field XM ∈ X(TM), given in (2.57), is projectable onto a dynamics XHP2 ∈ X(THP2), iff

[XH ,Γ] = 0 , (2.106)

for a formal proof of this result see reference [4]. Then, because the dynamics is projectable, it carries
leaves of the foliation ΦΓ, into leaves, i.e. the foliation is invariant under XH [4]. In this sense the group
action of U(1) is a symmetry for the dynamics. Therefore, HP2 is the space that results after taking
into account the symmetry of the multiplication by a global phase factor in the linear equation of motion
(2.58), which gives rise to a nonlinear evolution.

To have a closed picture of our study, now the connection between the upper sheet of the hyperboloid
with the Siegel upper half plane is established. So, it is well-known that every point on the hyperboloid
H2, defined in Eq. (2.68), may be projectable onto the Poincaré disk or in the Siegel upper half plane.
In the first case, one considers the projection point (−1, 0, 0) ∈ R3, such that a point (y1, y2, y3) ∈ H2 is
projected onto the plane y1 = 0, see Fig. 2.3a, given by the map

ζ =
y2 + i y3

1 + y1
, (2.107)

i.e., the result is the projection

v : H2 → D2 : (y1, y2, y3) ∈ R3 7→ ζ ∈ C , (2.108)

where the complex number ζ = ζR + i ζI is an element of the Poincaré disk defined as the open disk

D2 = {ζ ∈ C | |ζ| < 1} . (2.109)

This projection is displayed in Fig. 2.3a, where in addition it is possible to see that the curves for zero
correlation and constant correlation are mapped in parallel lines on the Poincaré disk. It is interesting
to mention that the evolution in the hyperboloid has induced a nonlinear evolution in D2 given by the
Riccati equation

ζ̇ − 1

2
(H1 −H2 − 2 iV )ζ2 + i (H2 +H1)ζ +

1

2
(H2 −H1 + 2 iV ) = 0 . (2.110)

Finally, it is possible obtain the upper half Siegel plane from the Poincaré disk as follow. First,
we consider the stereographic projection of the Poincaré disk onto the“north hemisphere” of a sphere,
employing as a projection point the “south pole” of the sphere, see Fig 2.3b. Later, the hemisphere
points are projected onto the tangent plane to the sphere by means of another stereographic projection,
see Fig. 2.3b. In Fig. 2.3b it is plotted the projection on the sphere and in HP2 the curves for σqp = 0
(red lines) and σqp = cte (green lines).

Therefore, the open disk D2 is mapped bijectively to the half plane HP2 by the map

u : D2 → HP2 : ζ ∈ C 7→ C ∈ C (2.111)
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Figure 2.3: a) Projection of the upper sheet of the hyperboloid H2 onto the Poincaré disk D2 with the
projection point (−1, 0, 0). b) Stereographic projection of the Poincaré disk onto the “north hemisphere”
of the sphere, later the hemisphere points are projected onto the Siegel upper half plane HP2.

by means of the Möbious transformation

C =
ζ + i

iζ + 1
. (2.112)

Consequently we may construct the map u ◦ v : H2 → HP2 to obtain the relations

y1 =
1 + CC̄

2 CI

, y2 =
CR

CI

, y3 =
−1 + CC̄

2 CI

, (2.113)

or directly from the uncertainties and the correlation we have that

C =
σqp
σ2
q

+
i ~
2

1

σ2
q

. (2.114)

We have obtained two different new immersions for the generalized coherent states

d : D2 × C→ H : (ζ, α) 7→ |ζ, α〉 and g : HP2 × C→ H : (C, α) 7→ |C, α〉 . (2.115)

Finally, we may summarize all the connections in the following diagramme

M
ν
> H3

H2

χ
∨

HP2

π

∨
<
u

D2

v
∨

After the kinematical picture has been completed, the dynamical properties of the Riccati descriptions
are now the subject of interest. Even though the dynamics on HP2 is nonlinear, it is possible to prove
that it is Hamiltonian. To see this, notice that the upper half plane is endowed with the symplectic form
ωWP (the Weil–Petersson symplectic form), defined in coordinates as

ωWP =
−2 i

(C − C̄)2
d C̄ ∧ d C . (2.116)
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Furthermore, by means of the map in (2.95), one may look at the pullback of ωM in Eq. (2.55) to C2 and
see that ωM = π∗ωWP. Hence, with the help of this symplectic form the evolution in HP2 is given by the
Hamiltonian vector field XHP ∈ T HP2 defined intrinsically by

iXHPωWP = −dHHP , (2.117)

where the Hamiltonian function in the coordinates C ∈ HP2 has the form

HHP =
2 i

C − C̄
( 1 , C̄ )

 H1 V

V H2

 1

C

 . (2.118)

Using the symplectic form (2.116) and the Hamiltonian function in (2.118), it is straightforward to obtain
the Hamiltonian vector field in the explicit form

XHP = XC
∂

∂C
+XC̄

∂

∂C̄
, (2.119)

where XC is the complex conjugated of XC̄ and it is given by

XC = −H2 C2 − 2V C −H1 . (2.120)

Hence, the integral curves of this Hamiltonian vector field are given by the solutions of the Hamiltonian
equations of motion

Ċ = − (C − C̄)2

2 i

∂H

∂C̄
= −H2 C2 − 2V C −H1 ,

˙̄C =
(C − C̄)2

2 i

∂H

∂C
= −H2 C̄2 − 2V C̄ −H1 . (2.121)

These equations are identical with the Riccati equation presented in Eq. (2.97) as it should be. Moreover,
we may introduce the Poisson brackets for the upper Siegel half plane space. So, given the functions
A,B ∈ F(HP2) the Poisson bracket is given by

{A,B}WP =
(C − C̄)2

2 i

[
∂A

∂C
∂B

∂C̄
− ∂A

∂C̄
∂B

∂C

]
. (2.122)

In particular, the time evolution of any (not explicitly time-dependent) function on the Siegel half plane
A ∈ F(HP2) is given by

dA

dt
= XH [A] = {H,A}WP . (2.123)

As it has pointed out, one may also describe the evolution on the Poincaré disk, with a Riccati
evolution. Furthermore, now we are able to prove that the dynamics is also Hamiltonian, where the
symplectic structure in D2 is obtained via the pullback u∗(ωWP) = ωD, which in coordinates has the form

ωD =
2 i

(1− ζζ̄)2
dζ̄ ∧ dζ (2.124)

such that the Hamiltonian dynamics given by iXωD = −dHD has the Hamiltonian function HD =
u−1(HHP), i.e.,

HD =
1

1− ζ̄ζ
(−iζ̄ + 1 , ζ̄ − i )

 H1 V

V H2

 iζ + 1

ζ + i

 . (2.125)

Then the Hamiltonian equations of motion are given by

ζ̇ = − (1− ζζ̄)2

2 i

∂HD

∂ζ̄
=

1

2
(H1 −H2 − 2 iV )ζ2 − i (H2 +H1)ζ − 1

2
(H2 −H1 + 2 iV ) ,

˙̄ζ =
(1− ζζ̄)2

2 i

∂HD

∂ζ
=

1

2
(H1 −H2 + 2 iV )ζ̄2 + i (H2 +H1)ζ̄ − 1

2
(H2 −H1 − 2 iV ) , (2.126)
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and hence the evolution of an arbitrary time-independent function F ∈ F(D2) is given by

dF

dt
= XD2 [F ] = {H,F}D2 , (2.127)

where { · , · }D2 is the Poisson bracket defined as

{H,F}D2 =
(1− ζζ̄)2

2 i

[
∂H

∂ζ

∂F

∂ζ̄
− ∂H

∂ζ̄

∂F

∂ζ

]
. (2.128)

2.4 Examples

2.4.1 Degenerate parametric amplification

In order to apply all the formalism previously developed to a concrete physical system, in this Section
the study of the degenerate parametric amplifier [62] is considered . In quantum optics the parametric
amplifier is an optical device in which there is a coupling of three modes of the electromagnetic field in
a nonlinear optical crystal. The frequencies involved are ωp (pump), ωi (idler) and ωs (signal) and they
are such that ωp = ωs + ωi, where for the case of degenerate parametric amplification the idler and the
signal frequencies coincide, i.e. ω = ωs = ωi and then ωp = 2ω. The Hamiltonian describing this device is

Ĥ = ~ω â†â+ 2 ~ω b̂†b̂+ ~κ [ (â†)2 b̂+ â2 b̂† ] . (2.129)

Here b̂ and â are the annihilation operators for the pump and the signal (idler) modes, respectively,
κ is the coupling constant that depends on the properties of the nonlinear crystal. Because, we are
interested in the parametric approximation, i.e. when the pump field is treated as a classical field6, then
the expectation value of the Hamiltonian (2.129) with respect the coherent state |β e−iωt〉 of the pump

field it is considered, such that b̂ |β e−iωt〉 = β e−iωt|β e−iωt〉, thus one has the effective Hamiltonian

ĤEff =
~ω
2

[â†â+ ââ†] + ~κ [ (â†)2 β e−iωt + â2 β̄ eiωt ]

=
~
4

( â , â† )

 ξ̄ eiωt 2ω

2ω ξ e−iωt

 â

â†

 , (2.130)

where constant terms has been ignored and ξ = 4κβ is considered. Then, the dynamics of the complex
parameter α = 〈α|â|α〉 is given by the Hamiltonian equations of motion (2.50), which, for our case of
interest, have the form

α̇ = − i

2
(ξ e−iωtᾱ+ 2ωα) ,

˙̄α =
i

2
(ξ̄ eiωtα+ 2ωᾱ) . (2.131)

The integral curves of this system of differential equations are given by

α(t) =



(
1
Ω [2α̇0 + iω α0] sin Ωt

2 + α0 cos Ωt
2

)
e−

i
2ωt for Ω =

√
ω2 − |ξ|2 ,

([
α̇0 + iω

2 α0

]
t+ α0

)
e−

i
2ωt for Ω = 0 ,

1
Ω̃

(
[2α̇0 + iω α0] sinh Ω̃t

2 + α0 cosh Ω̃t
2

)
e−

i
2ωt for Ω̃ =

√
|ξ|2 − ω2 ,

(2.132)

6The interaction of different radiation modes through nonlinear crystals allow the generation of interesting states of light.
Most of the theoretical analysis refers to situations where one mode is placed in a high amplitude coherent state. This is
called the parametric approximation.
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with α0 and α̇0 the initial conditions. Thus, the expectation value of the quadratures of the field (q̂, p̂)
may be obtained by the expression

α =
1√
2~

(√
ω 〈q〉+

i√
ω
〈p〉
)
. (2.133)

The immersion of the complex number α, given in Eq. (2.132), into the Hilbert space L2(R,dq) gives
rise to the evolution of the coherent states with constant second moments, namely

σq =
~ω
2
, σp =

~
2ω

and σqp = 0 . (2.134)

Because the aim is not to solve this system in all its generality, let us characterize the integral curves
α(t) in the complex plane only for the first case Ω =

√
ω2 − |ξ|2. So, we may express the solution as

α(t) =

(
1

2

[
1 +

ω

Ω

]
α0 −

i α̇0

Ω

)
e

i
2 (Ω−ω)t +

(
1

2

[
1− ω

Ω

]
α0 +

i α̇0

Ω

)
e−

i
2 (Ω+ω)t , (2.135)

and considering the polar forms

1

2

[
1 +

ω

Ω

]
α0 −

i α̇0

Ω
= r1e

iϕ1 and
1

2

[
1− ω

Ω

]
α0 +

i α̇0

Ω
= r2e

iϕ2 (2.136)

one arrives at the final form

α(t) = r1e
i
2 (Ω−ω)(t+

2ϕ1
Ω−ω ) + r2e−

i
2 (Ω+ω)(t− 2ϕ2

Ω+ω ) . (2.137)

On the other hand, in complex calculus it is well-known that every curve defined by a parametrization
of the form

C(θ) = (a+ b)eiµ(θ−θ1) + dei ν(θ−θ2) , (2.138)

where θ1, θ2, a, b and d are real arbitrary constants while the real constants µ and ν are such that
µ ν > 0, are denominated as epicycloid if |d| = |b| and epitrochoid for any other case. Geometrically this
curves are traced by a point attached to a circle of radius b rolling around the outside of a fixed circle of
radius a, where the point is at a distance d from the center of the exterior circle. Moreover, the curves
defined before will be closed and periodic iff the quotient ν/µ ∈ Q is a rational number. Comparing the
expression of the integral curves in Eq. (2.137) with the curves in Eq. (2.138), it is straightforward that
the curves α(t) are epicycloids or epitrochoids in the complex plane with the identification

a+ b = r1 , d = r2 , θ1 = − 2ϕ1

Ω− ω
, θ2 =

2ϕ2

Ω + ω
, µ =

1

2
(Ω− ω) , ν = −1

2
(Ω + ω) . (2.139)

Therefore we have a periodic and closed curve iff

ν

µ
=
ω + Ω

ω − Ω
∈ Q . (2.140)

It is clear that this condition is fulfiled when Ω2+|ξ|2 = ω2, i.e. when (Ω, |ξ|, ω) are Pythagorean numbers.
Equivalently, we have a periodic and close curve iff we consider the parameters (Ω, |ξ|, ω), which are such
that (

Ω

ω

)2

+

(
|ξ|
ω

)2

= 1 . (2.141)

Some examples of these periodic cases are displayed in Fig. 2.4.
For this system, the auxiliary variables (Q,P ) evolve according to the linear system of equations Q̇

Ṗ

 =

 2κ (βI cosωt− βR sinωt) 1− 2 κω (βR cosωt+ βI sinωt)

−ω2 − 2κω (βR cosωt+ βI sinωt) −2κ (βI cosωt− βR sinωt)

 Q

P

 , (2.142)
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Figure 2.4: Time evolution on the complex plane of solutions α(t) with initial conditions α0 = 1 + i and
parameters a) (ω, |ξ|,Ω) = (6, 4

√
2, 2) and b) (ω, |ξ|,Ω) = (5, 3, 4).

where the solutions are such that they must obey the constraint Q̄(t)P (t) − Q(t)P̄ (t) = 2i. One may
prove by direct substitution that the solution of the linear system of equations (2.142) is given by

Q(t) = a(t)Q0 + b(t)P0

=
Q0

2

[(
1− ω

Ω

)
cos

{
Ω− ω

2
t

}
+
(

1 +
ω

Ω

)
cos

{
Ω + ω

2
t

}
+

4κ%

Ω

(
cos

{
−Ω + ω

2
t+ θ

}

− cos

{
Ω− ω

2
t+ θ

})]
+
P0

2ω

[(
1 +

ω

Ω

)
sin

{
Ω + ω

2
t

}
−
(

1− ω

Ω

)
sin

{
Ω− ω

2
t

}

+
4κ%

Ω

(
sin

{
−Ω + ω

2
t+ θ

}
− sin

{
Ω− ω

2
t+ θ

})]
(2.143)

and similarly

P (t) = c(t)Q0 + d(t)P0

=
ωQ0

2

[(
1− ω

Ω

)
sin

{
Ω− ω

2
t

}
−
(

1 +
ω

Ω

)
sin

{
Ω + ω

2
t

}
+

4κ%

Ω

(
sin

{
−Ω + ω

2
t+ θ

}

− sin

{
Ω− ω

2
t+ θ

})]
+
P0

2

[(
1− ω

Ω

)
cos

{
Ω− ω

2
t

}
+
(

1 +
ω

Ω

)
cos

{
Ω + ω

2
t

}

+
4κ%

Ω

(
cos

{
Ω− ω

2
t+ θ

}
− cos

{
−Ω + ω

2
t+ θ

})]
. (2.144)

where in the last expression β = % eiθ and the initial conditions are (Q0, P0). Besides, one may prove that
these solutions satisfy

Q̄(t)P (t)−Q(t)P̄ (t) = Q̄0P0 −Q0P̄0 , (2.145)

then one has to choose the initial conditions (Q0, P0) such that our solutions satisfy the constraint
Q̄(t)P (t)−Q(t)P̄ (t) = 2 i.

With the help of the auxiliary variables (Q,P ), one is able to obtain the nonlinear dynamical descrip-
tions of the coherent states. To obtain the evolution in the Hyperboloid H2 considering the connections
in Eqs. (2.88) and (2.93), some examples of the evolution on the hyperboloid are displayed in the first
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Figure 2.5: Time evolution in the hyperboloid H2 (first column), in the Poincaré disk D2 (second column)
and in the Siegel upper half HP2 (third column), respectively. In both cases the initial conditions
(Q0, P0) = (1, i) are considered, but in a) the parameters are (ω, |ξ|,Ω) = (3/4, 1/2,

√
5/4), while in b)

the parameters are (ω, |ξ|,Ω) = (1, 1/2,
√

3/4).

column in Fig. 2.5. In addition to the evolution of the coordinates (y1, y2, y3), its projection in the
Poincaré disk is obtained by the transformation in Eq. (2.107). In the second column of Fig. 2.5, one
may notice the evolution in the Poincaré disk. Finally, in general the solution of the associated Riccati
equation is a Möbius transformation of the form

Φ(S, C0) 7→ C(t) =
a(t)C0 + b(t)

c(t)C0 + d(t)
with S =

(
a(t) b(t)
c(t) d(t)

)
, (2.146)

being C0 = P0

Q0
the initial condition and the time-dependent entries a(t), b(t), c(t) and d(t) of the

symplectic matrix S are given in Eqs. (2.143) and (2.144). Some examples of the solutions of the Riccati
equation are displayed in the third column of Fig 2.5.

2.4.2 Parametric oscillator with frequency ω = 1
at+b

Another interesting example with analytic solutions is the parametric oscillator

Ĥ =
1

2
p̂2 +

1

2
ω2(t) q̂2 (2.147)

with time dependent frequency

ω(t) =
1

a t+ b
, (2.148)



2.4. Examples 53

with a and b arbitrary real constants. Then, for this system there are three different cases for the solutions
of the classical equations of motion (2.54). Namely, for a > 2 the solutions have the form

〈q̂〉(t) = a1(t)〈q̂〉0 + b1(t)〈p̂〉0

=
a 〈q̂〉0√
a2 − 4

[
λ1b

λ1−1(at+ b)λ2 − λ2b
λ2−1(at+ b)λ1

]
+

〈p̂〉0√
a2 − 4

[
bλ2(at+ b)λ1 − bλ1(at+ b)λ2

]
〈p̂〉(t) = c1(t)〈q̂〉0 + d1(t)〈p̂〉0

=
a2λ1λ2〈q̂〉0√

a2 − 4

[
bλ1−1(at+ b)λ2−1 − bλ2−1(at+ b)λ1−1

]
+

a〈p̂〉0√
a2 − 4

[
λ1b

λ2(at+ b)λ1−1 − λ2b
λ1(at+ b)λ2−1

]
,

(2.149)

with parameters

λ1 =
a+
√
a2 − 4

2a
and λ2 =

a−
√
a2 − 4

2a
. (2.150)

For the case a = 2 one has

〈q̂〉(t) = a2(t)〈q̂〉0 + b2(t)〈p̂〉0

=

√
at+ b

b

[
1 + ln |b|1/2 − ln |at+ b|1/2

]
〈q̂〉0 +

√
b(at+ b)

a
[ln |at+ b| − ln |b|] 〈p̂〉0

〈p̂〉(t) = c2(t)〈q̂〉0 + d2(t)〈p̂〉0

=
a

2

〈q̂〉0√
b(at+ b)

[
ln |b|1/2 − ln |at+ b|1/2

]
+

√
b

at+ b

[
ln |at+ b|1/2 + 1− ln |b|1/2

]
〈p̂〉0 . (2.151)

Finally, for the case a < 2 one has the set of solutions

〈q̂〉(t) = a3(t)〈q̂〉0 + b3(t)〈p̂〉0

=
a 〈q̂〉0

i
√

4− a2

[
λ̃1b

λ̃1−1(at+ b)λ̃2 − λ̃2b
λ̃2−1(at+ b)λ̃1

]
+

〈p̂〉0
i
√

4− a2

[
bλ̃2(at+ b)λ̃1 − bλ̃1(at+ b)λ̃2

]
〈p̂〉(t) = c3(t)〈q̂〉0 + d3(t)〈p̂〉0

=
a2λ̃1λ̃2〈q̂〉0
i
√

4− a2

[
bλ̃1−1(at+ b)λ̃2−1 − bλ̃2−1(at+ b)λ̃1−1

]
+

a〈p̂〉0
i
√

4− a2

[
λ̃1b

λ̃2(at+ b)λ̃1−1 − λ̃2b
λ̃1(at+ b)λ̃2−1

]
,

(2.152)

where now the parameters are

λ̃1 =
a+ i

√
4− a2

2a
and λ̃2 =

a− i
√

4− a2

2a
. (2.153)

Examples of the behaviour of these solutions in the phase space (〈q̂〉, 〈p̂〉) are displayed in Fig. 2.6,
where Fig. 2.6a corresponds to the case a < 2, Fig. 2.6b corresponds to a = 2 and Fig. 2.6c corresponds
to a > 2.

Now, as has been shown in this Chapter, to obtain a complete description of the dynamics it is also
necessary to obtain the solutions of the set of equations in (2.58) associated with our system of interest.
The solution of the equations in (2.58) for the auxiliar variables (Q,P ) are simply Q(t)

P (t)

 =

 ai(t) bi(t)

ci(t) di(t)

 Q0

P0

 , (2.154)

where the set of time-dependent functions {ai(t), bi(t), ci(t), di(t)}i=1,2,3 are defined in the solutions
(2.149), (2.151) and (2.152), depending on the case that one wants to consider and the initial condi-
tons (Q0, P0) must be chosen such that the constraint

Q̄(t)P (t)−Q(t)P̄ (t) = Q̄0P0 −Q0P̄0 = 2i . (2.155)
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a) b)

c)

Figure 2.6: Time evolution in the phase space (〈q̂〉, 〈p̂〉) with initial conditions (〈q̂〉0, 〈p̂〉0) = (1, 1) with
parameters: a) (a, b) = (1/8, 1/8), b) (a, b) = (2, 1/4) and c) (a, b) = (3, 1/4).

a)

b)

c)

Figure 2.7: Time evolution in the hyperboloid H2 (first column), in the Poincaré disk D2(second column)
and in the Siegel upper half HP2 (third column), respectively. In all the cases the initial conditions
(Q0, P0) = (1, i) are considered, with the parameters: a) (a, b) = (1/8, 1/8), b) (a, b) = (2, 1/4) and c)
(a, b) = (3, 1/4).

is satisfied. Alternatively, one may look for the solution of the nonlinear Riccati equation (2.121) associ-
ated with the system. This solution corresponds to the Möbius transformation

Φ(S, C0) 7→ C(t) =
ai(t)C0 + bi(t)

ci(t)C0 + di(t)
with S =

(
ai(t) bi(t)
ci(t) di(t)

)
, (2.156)

where C0 is the initial condition. From this example it is clear that it is sufficient to know the solutions
of the classical equation of motion to obtain the solutions (Q,P ) or C, which contain implicitly the
information of the uncertainties of position and momentum variables as well as their correlation.
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Some examples of the evolution in the Hyperboloid, connected with the squeezing phenomena, the
evolution in the Poincare Disk and the evolution in the Siegel half planes are displayed in Fig. 2.7. More
specifically, in Fig. 2.7a the evolution in the different spaces it is ploted for the case a < 2, in Fig. 2.7b
for the case a = 2, whereas in Fig. 2.7c for the case a > 2.





Chapter 3

Contact Hamiltonian Mechanics and
Dissipation

So far, in this thesis we have consider classical and quantum dynamics without introducing the concept of
dissipation. Dissipation is playing an increasing role in the description of dynamical systems. This is in
part due to the interest in describing open quantum systems in relation with many physical applications
like quantum computing, quantum information and quantum thermodynamics. While in classical physics
the “coupling” with the environment may be idealized to be negligible in the consideration of fundamental
aspects, in the quantum realm the situation is more complex because of the probabilistic-statistical
interpretation which gives rise to indetermination relations and other inequalities.

In the Newtonian picture, the interaction of the system with an environment is usually expressed
by means of forces which in general are not conservative. What is called dissipative forces is usually
an effective way to take into account the coupling with the environment without considerig additional
degrees of freedom with respect to those possessed by the system. For example, the introduction of
explicitly time-dependent forces is a way to take into account the effect of the environment and possible
interactions with it [38].

In this classical setting, dissipation is usually understood as the fact that energy is not conserved along
a given dynamical trajectory. However, if one wants to declare a system to be dissipative, first one should
say what is actually being dissipated. Indeed, one may deal with physical systems for which it might
make sense to say that the system is dissipating mass, angular momentum or probability. For instance,
in the Quantum Mechanics context the phase-damping evolution for a finite-level quantum system may
be thought of as a dynamical evolution which is dissipating the off-diagonal terms of the quantum states
with respect to a fixed orthonormal basis depending on the dynamical evolution itself [58].

On the other hand, given a system whose dynamics is described by means of a vector field on a
suitable carrier space, one must realize that it does not make sense to say that the system is conservative
or dissipative per se because dissipation is a relational concept. For instance, in the Newtonian setting
dynamical vector fields Γ are second-order vector fields on the tangent bundle TQ of some configuration
space Q, one may be interested in systems dissipating for example energy, and in order to analyze such
dissipation, first of all one must define and fix what we mean by energy of the system. Therefore, a major
question is whether it is possible to characterize a dynamics as conservative or dissipative.

For this purpose, let us consider a Newtonian dynamical system, i.e. a dynamical system for which
the dynamics is expressed by means of a second-order vector field on the tangent bundle TQ of some
configuration space Q. Roughly speaking, a second order vector field means that there is a coordinate
system (qk, q̇k) on TQ such that the equation of motion has the form

q̈k = fk(q, q̇) . (3.1)

Given a Newtonian dynamical system, it makes sense to ask if the “forces” generating the motion are
derived from a potential because in this way we would find that the kinetic energy plus the potential one
would be conserved. A covariant way to look for a potential is the search for a Lagrangian description.
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Thus, in order to address the characterization of a given second order dynamical system as conservative or
dissipative, we may proceed as follows. First of all, one may look for a possible Lagrangian description of
the given second order vector field, i.e. solve the so-called inverse problem in the calculus of variations [31].
It may happen one finds none, one or many solutions for this problem, that is, either one does not find a
Lagrangian description, or one finds a “unique”1 Lagrangian description, or one finds different alternative
Lagrangian descriptions. Then, if a Lagrangian description exists, in the time independent case we would
say that the system preserves the Lagrangian energy function

EL = q̇j
∂L

∂q̇j
− L , (3.2)

associated with the Lagrangian L for the second order vector field Γ. There will be an associated
“Lagrangian energy” for each alternative Lagrangian description of the second order vector field. However,
the actual Lagrangian energy EL need not to coincide with what one may want to call the “physical
energy” E of the system, therefore, it is possible to qualify the system to be dissipative even if it admits
a description by means of a Lagrangian.

To clarify what we mean let us give an example. Consider a second order differential equation on
TQ = R× R with a friction force proportional to the velocity with a friction coefficient γ, i.e.

q̈ + γ q̇ = 0 . (3.3)

A possible (local) Lagrangian for this system with its corresponding Lagrangian energy are

L = q̇ (ln q̇)− γ q and EL = q̇ + γ q , (3.4)

respectively. Then, the system allows for a Lagrangian description, but the Lagrangian energy does not
coincide with the mechanical energy

E =
m

2
q̇2 , (3.5)

and one may look at this Lagrangian dynamical system as being dissipative with respect to the mechanical
energy E, although it preserves its Lagrangian energy, i.e. ĖL = 0. Namely, the rate of dissipation of the
mechanical energy is

dE

dt
= − γ q̇2 . (3.6)

When the system does not admit a Lagrangian description, it is necessary to develop new strategies
in order to characterize dissipation. In order to explain such a strategy, let us consider the physically
relevant situation represented by linear dynamical systems.

In several instances, either because of approximations or because of specific requirements, the equa-
tions of motion may be given in a linear form

mjkq̈k + γjkq̇k + ωjkqk = 0 (3.7)

where ||mjk||, ||γjk|| and ||ωjk|| are numerical matrices. Notice that this equation is in general an implicit
differential equation because the matrix ||mjk|| could be degenerate. When ||mjk|| is non-degenerate, the
differential equation defines a second order vector field. In this case, there is a necessary and sufficient
condition for this vector field to admit a Hamiltonian (or Lagrangian) description in terms of a constant
Poisson structure on TRn [65, 6].

Consider the linear vector field Γ associated with the equations of motion (3.7) on the linear manifold
T IRn, with representative matrix ||Gjk|| defined by

Γ = Gjk ξ
k ∂

∂ξj
, (3.8)

1As it is well-known, we may always add a global time derivative to every Lagrangian, or multiply the Lagrangian by
a real number without altering the explicit form for the equation of motions, hence, uniqueness here has always to be
understood modulo the addition of a global time derivative or multiplication by a real number.
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where {ξj}j=1,...,2n is a collective Cartesian coordinates system on TRn with the first n coordinates
representing position variables. The system may be given a description by means of a constant Poisson
structure Λ on T IRn, represented in the coordinate system {ξj}j=1,...,2n by an antisymmetric numerical
matrix ||Λjk||, and a quadratic Hamiltonian function:

H =
1

2
Hjkξ

jξk , (3.9)

if and only if the representative matrix ||Gjk|| is traceless with all its odd powers, namely,

Tr{G2k+1} = 0 for all k . (3.10)

It is also posible to see that this condition also implies that the representative matrix G may be expressed
as the product of a skew-symmetric matrix times a symmetric one, i.e. Gjk = −Λjl · Hlk. Even powers
G2k will act as non-canonical symmetries of the dynamics which take from one Hamiltonian description
to an alternative one.

For instance, let us consider the following system of two coupled differential equations representing
coupled oscillations with different frequencies ωk, different damping coefficients γk and coupling constants
κ and δ,

q̈1 + γ1q̇1 + ω2
1q1 + κq2 + δq̇2 = 0

q̈2 + γ2q̇2 + ω2
2q2 + κq1 + δq̇1 = 0 . (3.11)

Then, the representative matrix is

G =


0 0 1 0
0 0 0 1
−ω2

1 −κ −γ1 −δ
−κ −ω2

2 −δ −γ2

 . (3.12)

This matrix cannot be expressed as the product of a skew-symmetric matrix times a symmetric one
because its trace is different from zero, and hence according to the before presented result this system
does not allow for a Hamiltonian description. Actually, in full generality, one may prove (what will
be shown in the next section) that this system does not allow for any Lagrangian description even if
one allows the Lagrangian to be any function of position and velocity. If the system does not admit a
Lagrangian description, one may manipulate the system of differential equations in (3.11) in order to
obtain a particularly useful decomposition of the dynamical system. For instance, the representative
matrix of the system given in Eq. (3.12) can be decomposed as

Gjk = Ajk +Dj
k , (3.13)

where Ajk is a traceless matrix. Clearly, this decomposition is arbitrary, but once a choice has been made,
it is possible to think of the dynamical vector field as the sum of a reference or comparison dynamics
plus a perturbation term. Then, one selects the reference dynamics in such a way that it admits at least
one Lagrangian description, and the perturbation term turns our system into a dissipative system which
is dissipating the Lagrangian energy of the comparison system. For the system described by the flow in
Eq. (3.11), the linear vector field Γ may be decomposed as

Γ = Ajk ξ
k ∂

∂ξj
+Dj

k ξ
k ∂

∂ξj
, (3.14)

where the first term on the right-hand side plays the role of the comparison dynamics admitting a
Hamiltonian description, while the second term may be thought of as the perturbation term responsible
for the dissipation of the Hamiltonian energy function associated with the comparison dynamics. This
analysis can be extended to the general linear systems in Eq. (3.7); however, it is important to remark
that the decomposition is not going to be unique and thus we will have many alternative energy functions
which are going to be dissipated by the same perturbation.

The established decomposition principle has a natural meaning in the contact formalism, where a
dissipative system may be described in terms of a contact Hamiltonian formalism [33, 34, 32]. However,
before the description of dissipative systems by a contact structure is studied, some notions on Lagrangian
symplectic forms and contact manifolds in geometry are introduced in the next sections.
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3.1 A Digression to Lagrangian symplectic forms

Before introducing the contact Lagrangian theory it is necessary first to review some aspects of the
Lagrangian formalism and its connection with symplectic forms to generalize these concepts in the next
section. So, it is well-known that it is easy to construct one-forms out of functions on any manifolds by
means of the exterior derivative map d : F(M)→ Ω1(M) : F 7→ dF . However, this construction cannot
be applied twice, because d2 = 0, and then one needs to found another way to construct two-forms. For
the purpose to introduce a two-form in TQ it is convenient to consider the C∞ mapping

dS : Ωk(TQ)→ Ωk+1(TQ) , (3.15)

which is called the vertical derivative. In all generality the vertical derivative is discussed in references
[4, 6], here we are just interested in its application on functions. The map dS is the exterior derivative
associated with the (1, 1)-tensor S = ∂

∂q̇k
⊗ d qk and locally

dSF := S[dF ] =
∂F
∂q̇k

dqk . (3.16)

Then, the exterior derivative d and the vertical derivative dS are used to defined one-forms and two-forms
in terms of a function F throught

θF = dSF and ωF = −dθF , (3.17)

respectively. In local coordinates the two-form is given by

ωF =
∂2F
∂q̇k∂q̇j

dqk ∧ dq̇j +
∂2F
∂q̇k∂qj

dqk ∧ dqj . (3.18)

One may prove straightforwardly that the two-form ωF is closed, recalling that a close form is a differential
form whose exterior derivative is zero. To see that ωL is nondegenerate let us consider Γ as a vector field
in TQ, having a local expression

Γ = Γqk
∂

∂qk
+ Γq̇k

∂

∂q̇k
, (3.19)

then the interior product of Γ on the 2-form ωF is

iΓωF =
∂2F
∂q̇k∂q̇j

Γqk dq̇j +

[(
∂2F
∂q̇k∂qj

− ∂2F
∂q̇j∂qk

)
Γqk −

∂2F
∂q̇j∂q̇k

Γq̇k

]
dqj . (3.20)

Hence ωF will be nondegenerate (i.e., iΓωF = 0 iff Γ = 0) iff the determinant of the Hessian matrix is
different from zero, ∣∣∣∣ ∂2F

∂q̇k∂q̇j

∣∣∣∣ 6= 0 , (3.21)

i.e., iff F is a regular function. Therefore, one has constructed a closed and non degenerate two-form
for the tangent bundle TQ, i.e. ωF is a symplectic form on TQ. In addition, it is said that a dynamics
Γ ∈ X(TQ) is ωF–Hamiltonian iff there is a function EF ∈ F(TQ) such that

iΓ ωF = d EF . (3.22)

This definition introduces a Hamilonian dynamics on TQ.
Let us now connect the Hamiltonian formalism on TQ with the well-known Lagrangian formalism.

Employing Cartan’s identity : £Γθ = diΓθ + iΓdθ into definition (3.22), one has that

dEF = iΓωF = −iΓdθF = −£ΓθF + diΓθF , (3.23)

which is equivalent to the definitions

£ΓθF = dL , where L = iΓθF − EF , (3.24)
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where the Lagrangian L and the energy EF depend on the function F and the dynamics Γ. Therefore it
has been shown, under the condition that there is a θF such that ωF = −dθF , that the equation (3.22)
is equivalent to (3.24). Then if Eq. (3.22) is the equation for the Hamiltonian formalism, Eq. (3.24) is
called the equation for the Lagrangian formalism [4].

To obtain the conventional Lagrangian formalism, where the vector field is recover form a single
function, the Lagrangian L, one considers the special case in which Γ is a second order vector field, i.e.
in local coordinates the vector field has the form

Γ = q̇k
∂

∂qk
+ fk(q, q̇)

∂

∂q̇k
, (3.25)

which is associated with the second order differential (Newtonian) equation q̈k = fk(qk, q̇k). Then for
these vector fields the Lagrangian function is

L = q̇k
∂F
∂q̇k
− EF , (3.26)

which is independent of Γ. In fact for the case of the second order vector field it is possible to prove that
θF = θL. To show this, according to definitions (3.17) and (3.26)

θL =
∂L

∂q̇k
dqk =

[
∂2F
∂q̇k∂qj

dq̇j +
∂F
∂q̇k
− ∂EL
∂q̇k

]
dqk , (3.27)

but from the definition (3.22) and the expression (3.20) in coordinates one has that

∂EL
∂q̇k

=
∂2F
∂q̇k∂qj

dq̇j , (3.28)

and then

θL =
∂F
∂q̇k

dqk = θF . (3.29)

Therefore, for a second order dynamics the Lagrangian function alone can be used to recover the
dynamical vector field and hence the Eq. (3.24) for the Lagrangian formalism becomes

£ΓθL = dL . (3.30)

Besides Γ is ωL-Hamiltonian on the symplectic manifold TQ; then, the Eq. (3.22) for the Hamiltonian
formalism now has the form

iΓωL = dEL , (3.31)

where the Lagrangian L and the Lagrangian energy EL are related by

EL = iΓθL − L . (3.32)

Therefore, the Lagrangian function alone may be used to recover the dynamical vector field Γ, as long as
Γ is both second order and ωL-Hamiltonian.

In local coordinates Eq. (3.30) leads to the Euler–Lagrange equations, because the part in dq̇j is an
identity, and the dqj part yields

∂L

∂qj
=

∂2L

∂q̇j∂qk
q̇k +

∂2L

∂q̇j∂q̇k
fk =

∂2L

∂q̇j∂qk
q̇k +

∂2L

∂q̇j∂q̇k
dq̇k

dt
, (3.33)

and then one has the usual Euler–Lagrange equations

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0 , (3.34)

which in general is an implicit differential equation on the tangent bundle.
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Notice that there are two conditions for arriving at Eq. (3.34): i) Γ is a second order dynamics and
ii) Γ has to be Hamiltonian with respect to the symplectic form ωL obtained from a Lagrangian function.
This means that the existence of the Lagrangian function has been always assumed. However, one may
formulate the problem in reverse, i.e., given a second order dynamics Γ, is it possible to find a Lagrangian
function such that Eq. (3.30) (or equivalently Eq. (3.31)) holds? In other words, one may look for a
solution of Eq. (3.33), thought of as a partial differential equation for L when the forces fk(q, q̇) are
given, with the constraint that the function L being a regular function, namely∣∣∣∣ ∂2L

∂q̇k∂q̇j

∣∣∣∣ 6= 0 . (3.35)

This problem, i.e. to discuss the possibility of a Lagrangian description for a given set of Newtonian
equations is called the inverse problem in the calculus of variations, which has been quite extensively
studied both for finite dimensional systems and fields. Here we will not deal with this problem in
complete generality, for this we refer to existing literature, see for example [31] and references therein.

Then, to formulate the inverse problem there is an important result obtained from the Lagrangian
symplectic forms developed before. In particular, it should be clear that instead of seeking for the
Lagrangian, one may look for the Lagrangian symplectic form ωL, because they are univocally connected.
Hence, if ωL is unique also the Lagrangian is unique, or if one can show that there are many Lagrangian
symplectic forms hence there are many alternative Lagrangians. All the before mention results are
contained in the following theorem on Lagrangian symplectic forms [31].

A two-form ω on TQ is derivable from a Lagrangian function (at least at the local level) if and only if

i)
〈
ω | ∂∂q̇i ∧

∂
∂q̇j

〉
= 0, for all i, j ,

ii) £Γ ω = 0, for some second order vector field Γ ,

iii) dω = 0,

where 〈 · | · 〉 stands for the fully-contacted multiplication of ω with the bivector ∂
∂q̇i ∧

∂
∂q̇j , such that

ω(X,Y ) =
1

2
〈ω |X ∧ Y 〉 , where X,Y ∈ X(TQ) . (3.36)

Taking successive Lie derivatives of i) with respect to Γ, and taking into account ii), one obtains after
iterating k times, the set of constrains〈

ω
∣∣∣(£Γ)k

(
∂

∂q̇i
∧ ∂

∂q̇j

)〉
= 0 . (3.37)

If n is the dimension of the configuration space Q, the dimension of the space of bivectors is the same as
that of 2-forms, i.e. n(2n− 1), and hence this is the maximal number of independent constrains that can
be generated. It is important to observe that if for certain k the k+1-th bivector depends on the previous
ones, then the same will be true for the subsequent ones, i.e. k will be the maximum of independent
constrains. In particular, if k = n(2n − 1), the bivector generated for a basis, which implies ω = 0, and
the inverse problem has no solution [6]. As a matter of fact, the codimention of the set of bivectors will
be the maximum number of possible alternative Lagrangians [6].

To better visualize the situation let us consider the system of two coupled oscillators in TR2, i.e.
n = 2, with coordinates (q1, q2, q̇1, q̇2) and second order vector field

Γ = q̇1 ∂

∂q1
+ q̇2 ∂

∂q2
− (γ1 q̇

1 + ω2
1 q

1 + κ q2 + δ q̇2)
∂

∂q̇1
− (γ2 q̇

2 + ω2
2 q

2 + κ q1 + δ q̇1)
∂

∂q̇2
, (3.38)

whose integral curves are given by the solutions of the system of equations in (3.11). Let us now take
the successive Lie derivatives of the bivector with respect this vector field. However, at each step one
will obtain a bivector which gives zero upon contraction with ω. Then, two bivectors are equivalent, and
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we will use the symbol ' for such equivalent relation, if they differ by a vector which gives zero upon
contraction. Under this consideration one has that

£Γ

(
∂

∂q̇i
∧ ∂

∂q̇j

)
' ∂

∂q1
∧ ∂

∂q̇2
+

∂

∂q̇1
∧ ∂

∂q2
(3.39)

(£Γ)2

(
∂

∂q̇i
∧ ∂

∂q̇j

)
' 2

∂

∂q1
∧ ∂

∂q2
+ δ

(
∂

∂q1
∧ ∂

∂q̇1
+

∂

∂q̇2
∧ ∂

∂q2

)
(3.40)

(£Γ)3

(
∂

∂q̇i
∧ ∂

∂q̇j

)
' 0 , (3.41)

and hence it is clear that the maximal number of independent bivectors is given by

X0 =
∂

∂q̇1
∧ ∂

∂q̇2
X1 =

∂

∂q1
∧ ∂

∂q2

X2 =
∂

∂q1
∧ ∂

∂q̇1
X3 =

∂

∂q1
∧ ∂

∂q̇2

X4 =
∂

∂q2
∧ ∂

∂q̇1
X5 =

∂

∂q2
∧ ∂

∂q̇2
. (3.42)

Therefore, the dimension is maximal and the Lagrangian does not exist. As is proven next, it is possible
to describe this systems by means of the contac Lagrangian theory, but before introducing this formalism
it is important to introduce the notion of contact structure on manifolds.

3.2 A Digression to Contact Manifolds in Geometry

The aim of this section is to introduce the basic notion of contact structures on a manifold and the
definition of contact Hamiltonian dynamics, for its further application in the description of dissipative
systems. The results mentioned here are given without proof, all the proofs may be found in Ref. [66].

The contact geometry is the odd-dimensional counterpart of the symplectic geometry. A (2n + 1)-
dimensional manifold M is said to be an exact contact manifold or to carry a contact structure if it carries
a global differentiable 1-form η such that

η ∧ (dη)n 6= 0 , (3.43)

everywhere on M , η is called a contact form. In addition, the left hand side of (3.43) provides the
standard volume form on M , i.e. the contact manifold in this sense is orientable.

Most geometrically, a contact structure on a manifold may be thought of in term of a hyperplane field
on M , i.e. by means of a 2n-dimensional sub-bundle D of the tangent bundle TM . The hyperplane is often
called a Pfaffian equation. A Pfaffian equation on M is a codimension one distribution D : M → TM .
The subspace D⊥ ⊂ T ∗M , defined by

D⊥ = {η ∈ T ∗M} (3.44)

is one dimensional and locally it can be represented by a 1-form η. The class of D at m ∈ M is the
integer C(m) = max{2p + 1|α ∧ (dα)p 6= 0 at m}. A point m ∈ M is said to be a singular point of D if
C(m) < n, n being the dimention of the manifold M . Therefore a contact structure in the wider sense is
a codimension one distribution without singularities.

The condition (3.43) implies that D is not integrable, actually it is as far from integrable as possible.
D is also called the contact distribution. Moreover, the orientability of M and the regularity of D implies
that the line bundle TM/D admits a cross section s on which 〈η|s〉 = 1. Thus M admits a global
non-vanishing vector field, say ξ, such that

iξη = 1, iξdη = 0 , (3.45)

ξ is called the characteristic vector field of the contact structure (or also the Reeb vector field). Two
basic properties of ξ are the invariance of η and dη under its 1-parameter group, i.e.

£ξη = 0 and £ξdη = 0 . (3.46)
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Finally, it is said that a contact structure is regular if ξ defines a regular distribution, i.e. M
πξ−→M/{ξ}

is a smooth projection onto the quotient M/{ξ}.
Form the definition of the contact structure by means of a contact distribution we can define a

contact manifold in a more general sense. In general, a contact manifold is defined as an odd-dimensional
differential manifold admitting a global 1-form η and a global 2-form ω such that

η ∧ ωn 6= 0 (3.47)

everywhere. Similarly to what happens in the case of exact contact manifolds, the (2n+ 1)-form η ∧ ωn
provides a volume form. It is clear that the exact contact manifold is a special case whit ω = dη.

In the contact manifold one may define a dynamical evolution in terms of a vector field associated
with a smooth function F by means of the intrinsic relation:

iΓ (η ∧ ωn) = n (dF ∧ η) ∧ ωn−1 + F ωn . (3.48)

Notice that for F = 1 one obtains that Γ corresponds to the Reeb vector field. Furthermore, it is proven
in Ref. [66] that definition (3.48) is equivalent to the two intrinsic conditions

iΓdη = (£ξF )η − dF and iΓη = F . (3.49)

Now given a manifold with contact structure (η, ω, ξ) it is possible define a Lie algebra structure of
the space of functions by means of

[F ,G ] (η ∧ ωn) = (n− 1) (dF ∧ dG ∧ η) ∧ ωn−1 + (F dG − G dF )ωn (3.50)

which is called the Jacobi brackets. Although it defines a Lie algebra, i.e., antisymmetry and Jacobi
identity are satisfied, the Leibniz rule of derivation is not satisfied in general. In a more standard form
the Jacobi brackets may be expressed as

[F ,G ] = F (£ξ G ) + G (£ξ G ) + Λ(dF ,dG ) (3.51)

where Λ is the bivector associated to the two-form ω. Therefore, in general, one may define the contact
Hamiltonian vector field Γ associated to the Hamiltonian function F by means of

Γ = F ξ + Λ(dF , · ) , (3.52)

and this association is a homomorphism of a Lie algebra, i.e.

[ΓF ,ΓG ] = Γ[F ,G ] . (3.53)

3.3 Lagrangian contact forms and dissipation

So far it has been shown that given a physical system with dynamics described by a second vector field
Γ in a suitable carrier space, the condition that exist a Lagrangian (or Hamiltonian) formalism is that
there is a Lagrangian function L for Γ with respect to ωL, such that one can define the equation of
the Lagrangian formalism (3.30) with Lagrangian energy defined in Eq. (3.32). However, it has been
also observed that there is the possibility that the second order dynamics does not allow a Lagrangian
description, even for the linear case. Then, one may deal with a subclass of such systems, the one that
possesses a decomposition principle. This means, the dynamics that can be expressed in the form

Γ = ΓR + ΓP (3.54)

where the firs terms ΓR is known as the reference (comparison) term and it has at least one Lagrangian
(Hamiltoanian), say L, and the second term ΓP is the perturbation term, which turns the system dissi-
pative. It is said that the system is dissipative in the sense that ΓP is dissipating the Lagrangian energy
EL of the reference system. After these consideration, in this section it is shown that this subclass of
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dissipative systems, even though it does not admit a Lagrangian formalism, it accepts a Lagrangian
(Hamiltonian) contact description.

Once a “decomposition principle” for the system has been defined, it is possible to go to a contact
formalism to show that a “dissipative” system may be described in terms of a “contact Hamiltonian
formalism” [33, 34]. Here, the case is considered where a description in terms of contact geometry is
possible for some dissipative forces.

Now, assuming that the carrier space for the dynamics is TQ × R with an exact contact structure
(η, ξ), in order to define the dynamics on TQ × R one may associate with every smooth function EC a
vector field ΓC on TQ× R by means of:

iΓC
dη = dEC − (£ξEC)η and iΓC

η = −EC , (3.55)

where EC is called the contact Lagrangian energy.
In particular, we assume that, locally, the 1-form η can be written as:

η = dS − θL with θL = dqj
∂L

∂q̇j
, (3.56)

where (qj , q̇j , S) are local coordinates on TQ×R, L is the Lagrangian function of the comparison system,
and the contact Lagrangian energy may be written as:

EC = EL + h(S) . (3.57)

The first term EL is the Lagrangian energy in Eq. (3.2) of the conservative “comparison system”, while
the second term h(S) is a “perturbation” of the system giving an effective characterization of the in-
teraction between the conservative system and the environment. The system is thus decomposed into a
“conservative (Lagrangian) comparison dynamics” and a “dissipative term”, and what is being dissipated
is the Lagrangian energy of the conservative comparison dynamics.

Introducing definitions (3.56) and (3.57) into the conditions in (3.55) one obtains the contact Euler–
Lagrange equation and the equation for the component of the vector field in the direction of the Reeb
vector, namely

£ΓCθL − dL = − dh

dS
θL , (3.58)

Ṡ = iΓC
θL − EL . (3.59)

Equivalently, using the definition for the 1-form θL in Eq. (3.56) and applying the Lie derivative and
employing Cartian’s identity one obtains on θL, one obtains the coordinate expression of the contact
Euler–Lagrange equations

d

dt

∂L

∂q̇k
− ∂L

∂qk
= − dh

dS

∂L

∂q̇k
, (3.60)

which in general are implicit differential equations. In addition, one has in coordinates that

Ṡ = L− h(S) . (3.61)

One may look at these systems as a sort of generalization of the so-called Caldirola–Kanai dissipative
systems. Here, the Lagrangian energy is not preserved along the dynamical trajectories, indeed

dEL
dt

= − dh

dS

∂L

∂q̇k
, (3.62)

which may be positive or negative according to the sign of dh
dS . Additionally, the vector field associated

with the dynamical system can be easily decomposed into a comparison dynamics admitting a Lagrangian
description and a perturbation term (contact corrections).

Defined the contact dynamics ΓC ∈ X(TQ× IR) a natural question is whether it is possible to project
such dynamics onto a second order vector field Γ ∈ X(TQ) to relate such dynamics with a second order
dynamics in the original variables. This means that one gets an effective equation of motion in the
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original variables (q, q̇) which is decoupled from the equation on the auxiliary variable S. Then, it is
clear from the contact Euler–Lagrange Eq. (3.60), that it reproduces a second order dynamics on TQ if
h(S) is proportional to S.

Formally to see when the contact dynamics is projectable into a second order dynamics, recall from the
last subsection that the Reeb vector field of a regular contact manifold defines a regular one-dimesional
distribution Dξ. Then, the integral curves of this Reeb distribution introduce a foliation Φξ and hence
an equivalence relation with respect to it, which defines a quotient set TQ× R/ ∼Dξ≈ TQ, where

π : TQ× R→ TQ (3.63)

is the canonical projection. Therefore, as one can see in Appendix A, the contact dynamics ΓC is
projectable with respect to the foliation generated by the Reeb distribution iff

[ΓC, ξ] ∧ ξ = 0 . (3.64)

In addition, this directly implies that the contact energy EL, associated with the contact vector field, is
linear in S.

Concrete examples of second order linear systems which have a clear physical interpretation are
provided by electric circuits. For instance, for the description of the basic circuit in Fig. 3.1a we can
consider the Lagrangian and the perturbation term as

L =
1

2
L İ2 − 1

2C
I2 and h(S) = RS , (3.65)

respectively, using the notation indicated in the figure. Thus, the contact Euler–Lagrange equation (3.60)
for this case corresponds to the usual RLC equation

L Ï +Rİ +
1

C
I = 0 , (3.66)

together with the equation

Ṡ =
1

2
L İ2 − 1

2C
I2 −RS . (3.67)
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Figure 3.1: (a) Diagram of a basic RLC circuit. (b) Diagram of the coupling of two RLC circuits connected
in parallel by means of the resistance R.

It is clear that Eq. (3.66) is the generalization of the Caldirola–Kanai dissipation allowing to describe
dissipative systems which are “linear in the velocity”. However, in order to handle more general situations
like the one considered in Fig. 3.1b, it is necessary to extend the formalism and consider a more general
definition of contact structure.
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As has been shown in the last section, it is possible to define in a more general sense a contact manifold
by means of a global 1-form η and a global 2-form ωL. The contact manifold is assumed to be again
TQ×R; then, one defines now a dynamical evolution in terms of a vector field associated with a smooth
function EC by means of the two conditions

iΓCωL = dEC − (£ξEC)η and iΓCη = −EC . (3.68)

Then, similarly to what has been done in the case of exact contact structures on TQ × IR, here it is
assumed that η and ωL are given by

η = dS − α and ωL = −dθL , (3.69)

where α is a semi-basic 1-form with the following local expression2

α = ak dqk , (3.72)

with ak ∈ F(TQ). Because we are interested in characterizing dissipative systems in terms of a decompo-
sition principle, one shall assume that the Lagrangian contact energy EC has the form defined in (3.57).
Inserting these definitions into equation (3.68) one gets the conditions

£ΓC
θL − dL = − dh

dS
α and Ṡ = iΓC

α− EC . (3.73)

The first condition in (3.73) determines uniquely ΓC up to a vector field proportional to ξ, and this
additional term is fixed by the second requirement in (3.73). Because ΓC should be projectable onto a
second order dynamics Γ ∈ X(TQ), it is necessary and sufficient that h(S) is linear in S and besides α
must be a semi-basic 1-form independent of S. Therefore, one may associate the contact dynamics with
a second order differential equation with respect to the q variables in TQ.

One may identify some special classes of dissipative systems by making specific choices for α. For
instance, one may take

α = dSF . (3.74)

where F is an arbitrary function on TQ, and the operator dS as defined in Eq. (3.16). This particular
situation gives rise to a conformal version of the Rayleigh dissipation that in coordinates has the form

d

dt

∂L

∂q̇j
− ∂L

∂qj
= − dh

dS

∂F
∂q̇j

, (3.75)

and where the rate of change of the Lagrangian energy is

dEC

dt
= − dh

dS

∂F
∂q̇j

. (3.76)

One may now employ the conformal version of the Rayleigh dissipation for the description of the
circuit in Fig. 3.1b. This consists in the composition of two RLC circuits connected in parallel, where
the coupling is carried out by a resistance R. Then, the dynamics of the system is determined by

L =
1

2
Ljk İk İj −

1

2
CjkIkIj , h(S) = S and F = −1

2
Rjk İk İj , (3.77)

with j, k = 1, 2 and where here I1 and I2 denotes the currents in the branches and according to the
notation in Fig. 3.1b the matrices are

L =

(
L1 0
0 L2

)
, C =

(
1/C1 0

0 1/C2

)
and R =

(
R1 R
R R2

)
. (3.78)

2Semi-basic forms allow to introduce forces that do not admit a Lagrangian description. To see this one may consider
the usual notion of dissipative systems

d

dt

∂L

∂q̇k
−

∂L

∂qk
= Qk , (3.70)

where Qk does not admit a Lagrangian description. This intrinsically is expressed as

£ΓC
θL − dL = α , (3.71)

where locally α = Qk dqk is a one-form.
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Therefore, the Euler–Lagrange equations associated with this system correspond to

Ljk Ïk +Rjk İk + CjkIk = 0 , (3.79)

which are in agreement with the equations obtained from Kirchhoff’s circuit laws. In addition, it is clear
that if the coupling parameter R→ 0 the system is reduced to two non-interacting RLC circuits.

3.4 Contact Hamiltonian Mechanics

In the last section we introduced the contact Hamiltonian formalism in the carrier space TQ×R. Here we
are interested in introducing the contact formalism in the so-called contact phase space, which is defined
as the odd-dimensional manifold T ∗Q× R [33].

To introduce the transition from TQ× R to T ∗Q× R, it is illustrative to recalled how one performs
this transition in the usual transition from TQ to T ∗Q. Consider a second order dynamical system Γ
with Hamiltonian representation on TQ, i.e. Γ has associated the functions L and EL by Eqs. (3.24).
Moreover, let us assume that L is hyperregular such that one transforms the vector field Γ ∈ X(TQ) into
a vector field X ∈ X(T ∗Q) by means of

X = (FL)∗Γ , (3.80)

such that our dynamical system will be represented on T ∗Q by the family of equivalent vector fields on
TQ through the diffeomorphism FL known in the literature as the fiber derivative of L [3], and it is
defined by its action on any element vq ∈ TqQ by

FL : vq 7→ DLq(vq) ∈ Lin(TqQ,R) ≡ T ∗qQ , (3.81)

where DLq(vq) is by definition a linear map from TqQ to R, thus FL, maps each element vq ∈ TqQ to an
element in Lin(TqQ,R), or to an element of T ∗qQ. To put this definition in local coordinates, let (qk, q̇k)

be the natural coordinates in TQ, and let the coordinates of vq ∈ TqQ be q̇j = vj . Then, the components
of DLq(vq) are denoted by pj and are equal to the derivatives ∂L

∂q̇j evaluated at vj . Namely, if wq with

components wj is a general point in TqQ, then DLq(vq) maps it according to

DLq(vq) : wq 7→ pjw
j = wj

∂L

∂q̇j

∣∣∣
vq
. (3.82)

Consequently, for an arbitrary point in TQ we may write this definition as

FL : (qk, q̇k)→
(
qk,

∂L

∂q̇k

)
, (3.83)

where the component pk = ∂L
∂q̇k

corresponds to the definition of the momentum as given usually in
Classical Mechanics.

An important property of the fiber derivative of the Lagrangian function is that there is a unique
symplectic form ω ∈ Ω2(T ∗Q) such that

(FL)∗ω = ωL , (3.84)

independently of the Lagrangian function used [3]. Hence ωL is the pullback with respect to FL of the
symplectic form ω in T ∗Q. The advantage of this is that a Lagrangian L dynamical system in TQ is
mapped over T ∗Q to always yield a dynamical system Hamiltonian with respect to the same symplectic
structure ω on T ∗Q, given in local coordinates by

ω = dpk ∧ dqk . (3.85)

The Hamiltonain function H on T ∗Q may be defined by means of the diagramme

TQ
FL

> T ∗Q

R
H

<
EL >
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where one may see that
H = EL ◦ (FL)−1 ≡ (FL)∗EL . (3.86)

This may be written in local coordinates taking into account the definition of EL in Eq. (3.32)

H = q̇k ◦ (FL)−1pk − L ◦ (FL)−1 , (3.87)

which is the well-known expression of the Legendre transformation for the Hamiltonian, except that it is
usually written without (FL)−1.

After this short digression to fiber derivatives as the diffeomorphism form TQ to T ∗Q, let us now
establish the connection between the contact manifolds TQ×R and T ∗Q×R. To do that we consider the
natural projections π : TQ× R→ TQ and π̃ : T ∗Q× R→ T ∗Q, such that according to the diagramme

TQ× R FL
> T ∗Q× R

R
H

<
EC >

TQ

π

∨
FL

> T ∗Q

π̃

∨

one has a well defined diffeomorphism FL associated to L ∈ F(TQ× R) and given by

FL = (π̃)−1 ◦ FL ◦ π . (3.88)

In local coordinates, it is possible to write this symbolically in the form

FL : (qk, q̇k, S) 7→
(
qk, pk =

∂L

∂q̇k
, S

)
. (3.89)

We emphasize that the component defined as pk = ∂L
∂q̇k

corresponds to the usual definition of the mo-

mentum. Thus, under such map a contact dynamics ΓC ∈ X(TQ× R) will be carried over a vector field
on T ∗Q× R by

ΓC = (FL )∗XC . (3.90)

Recall that the definition of contact manifold and the dynamics on it is closely related to the contact
form ηL defined in Eq. (3.56). So there is a contact form η ∈ Ω1(T ∗Q× R) such that

(FL )∗η = ηL . (3.91)

for all L ∈ F(TQ). This is, ηL is the pullback with respect to FL of the fixed contact form η in T ∗Q×R,
which is independent of the Lagrangian used. Thus the dynamics XC on the contact phase space is given
by the conditions

iXC dη = dH − (£ξH )η and iXCη = −H , (3.92)

i.e. the dynamics only depends on the contact Hamiltonian function defined form the contact Lagrangian
formulation as

H = EC ◦ (FL )−1 . (3.93)

In addition, the vector field ξ in the left condition of (3.92) is the Reeb vector field defined intrinsically
by

iξ η = 1 , and iξ dη = 0 . (3.94)

In the local coordinates (qk, pk, S) induced by (3.89) the contact form and the Reeb vector field may
be written as

η = dS − pkdqk , ξ =
∂

∂S
, (3.95)
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and the contact Hamiltonian given by (3.93) has the form

H = H + h(S) , (3.96)

with H the Hamiltonian of the reference system. Besides in this coordinates, the contact Hamiltonian
vector fields XC has the form

XC =
∂H

∂pk

∂

∂qk
−
(
∂H

∂qk
+ pk

dh

dS

)
∂

∂pk
+

(
pk
∂H

∂pk
−H

)
∂

∂S
(3.97)

whose integral curves are determined by the solutions of the system of differential equations

q̇k =
∂H

∂pk
,

ṗk = −∂H
∂qk
− pk

dh

dS
,

Ṡ = pk
∂H

∂pk
−H . (3.98)

It is clear that the contact dynamics accepts a decomposition principle, because it may be expressed as

XC = XH +Xp (3.99)

where

XH =
∂H

∂pk

∂

∂qk
− ∂H

∂qk
∂

∂pk
, (3.100)

corresponds to the reference dynamics with Hamiltonian description, whereas the perturbative term
corresponds to

Xp = −pk
dh

dS

∂

∂pk
+

(
pk
∂H

∂pk
−H

)
∂

∂S
. (3.101)

Then it is clear that the perturbation term becomes the dissipative dynamics, where what is being diss-
pated is the Hamiltonian of the comparison dynamics. In fact, the rate of dissipation of the Hamiltonian
is

dH

dt
= Xp(H) = −pk

dh

dS

∂H

∂pk
. (3.102)

In general, given any function in the contact phase space F ∈ C∞(T ), its evolution according to Eq. (3.98)
is given by

dF

dt
= XC[F ]

= −H
∂F

∂S
+ pk

[
∂F

∂S

∂H

∂pk
− ∂F

∂pk

∂H

∂S

]
+
∂F

∂qk
∂H

∂pk
− ∂F

∂pk

∂H

∂qk

= −H
∂F

∂S
+ pk {F ,H }(S,pk) + {F ,H }(qk,pk) , (3.103)

where { · , · }(qk,pk) is the standard Poisson bracket and the remaining terms are contact corrections. We
point out that the bracket { · , · }(S,pk) is just a shorthand notation and we do not provide any intrinsic
definition for it. We say that a function F ∈ C∞(T ) is a first integral (or invariant) of the contact
dynamics given by XC if F is constant along the flow of XC, that is if XC[F ] = 0.

As an example, given the (1-dimensional) contact Hamiltonian system

HS =
p2

2m
+ V (q) + γ S = Hmec + γ S , (3.104)
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where V (q) is the mechanical potential and γ is a constant parameter, the equations of motion in (3.98)
take the form

q̇ =
p

m
, (3.105)

ṗ = −∂V (q)

∂q
− γ p , (3.106)

Ṡ =
p2

2m
− V (q)− γ S . (3.107)

From (3.105) and (3.106) one can derive the damped Newtonian equation

q̈ + γ q̇ +
1

m

∂V (q)

∂q
= 0 , (3.108)

which describes all systems with a friction force that depends linearly on the velocity. Besides, we may
compute the rate of dissipation of the mechanical energy given by

dHmec

dt
= −mγ q̇2 , (3.109)

which agrees with standard results based on Rayleigh’s dissipation function [35].

3.4.1 Contact transformations and Liouville’s theorem

In the preceding sections we have introduced the contact phase space for time-independent mechanical
systems, equipped with the local coordinates (qk, pk, S), called contact coordinates. In these variables the
equations of motion are expressed in terms of the contact Hamiltonian equations (3.98) and the contact
form is expressed as in (3.95). As in the symplectic case, we are now interested in introducing those trans-
formations that leave the contact structure unchanged, which are known as contact transformations [1].
Here we consider only time-independent contact transformations and in the next subsection we introduce
the time-dependent case.

A contact transformation is a transformation that leaves the contact form invariant up to multiplica-
tion by a conformal factor [36, 37], that is

η̃ = f η . (3.110)

From (3.110), an arbitrary transformation of coordinates from (qk, pk, S) to (Q̃k, P̃k, S̃) is a contact
transformation if

f(dS − pkdqk) = dS̃ − P̃kdQ̃k , (3.111)

which is equivalent to

f =
∂S̃

∂S
− P̃k

∂Q̃k

∂S
(3.112)

−fpi =
∂S̃

∂qi
− P̃k

∂Q̃k

∂qi
(3.113)

0 =
∂S̃

∂pi
− P̃k

∂Q̃k

∂pi
. (3.114)

As in the standard symplectic theory, it is possible to obtain the generating function of a contact
transformation. Assuming that the coordinates (qk, Q̃k, S) are independent, we compute the differential
of the generating function S̃(qk, Q̃k, S), namely

dS̃ =
∂S̃

∂S
dS +

∂S̃

∂qk
dqk +

∂S̃

∂Q̃k
dQ̃k . (3.115)

Substituting (3.115) into (3.111) one obtains the following conditions for S̃

f =
∂S̃

∂S
, f pk = − ∂S̃

∂qk
, P̃k =

∂S̃

∂Q̃k
. (3.116)
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In particular, for contact transformations with f = 1 the conditions in (3.116) imply that the generating
function has the form

S̃ = S − F1(qk, Q̃k) , (3.117)

where F1(qk, Q̃k) is the generating function of a symplectic canonical transformation. This result is
remarkable, since it implies that all canonical transformations are a special case of contact transformations
corresponding to f = 1.

While canonical transformations preserve the symplectic volume form, we show now that contact
transformations induce a re-scaling of the contact volume form η ∧ (dη)

n
. Let us assume that we have a

transformation that induces the change η̃ = f η; then, dη̃ = df ∧ η + f dη. It follows that

η̃ ∧ (dη̃)
n

= fn+1η ∧ (dη)
n
, (3.118)

i.e. the volume form is rescaled by a term fn+1, with f given in general in (3.112). Note that canonical
transformations are a special case with f = 1 and therefore they preserve the contact volume form.

Finally, applying the contact Hamiltonian vector field XC to η, one sees from (3.92) that

£XCη = −∂H

∂S
η . (3.119)

Comparing (3.119) with (3.110), one can conclud that contact Hamiltonian vector fields are the
infinitesimal generators of contact transformations [36, 37]. Again, this is the analogue of the fact
that symplectic Hamiltonian vector fields are the infinitesimal generators of canonical transformations.
Moreover, equation (3.119) also implies that the volume element contracts (or expands) along the contact
Hamiltonian flow according to [67]

£XC (η ∧ (dη)n) = −(n+ 1)
∂H

∂S
(η ∧ (dη)n) , (3.120)

which means that the contact flow has a non-zero divergence

div(XC) = −(n+ 1)
∂H

∂S
(3.121)

and therefore Liouville’s theorem does not hold. However, an analogous statement of Liouville’s theorem
for contact flows has been proved in [67]. In fact, although the volume element η∧ (dη)

n
is not preserved

along the contact Hamiltonian flow, nevertheless a unique invariant measure depending only on H can
be found whenever H 6= 0, given by

dµ = |H |−(n+1) (η ∧ (dη)
n
) , (3.122)

where the absolute value | · | has been introduced in order to ensure that the probability distribution is
positive. As it provides an invariant measure for the flow, this is the analogue of Liouville’s theorem for
contact Hamiltonian flows.

3.4.2 Time-dependent contact Hamiltonian systems

In the preceding sections it has been seen that contact Hamiltonian mechanics may account for the
dynamics of mechanical systems with dissipation and it has been proven some results that extend the
symplectic formalism to the contact case. However, so far we have considered only time-independent
systems. Now we introduce contact Hamiltonian systems that explicitly depend on time.

To begin, let us extend the contact phase space by adding the time variable to it. Therefore we have
an extended manifold T E = T ∗Q× R× R with natural coordinates derived from contact coordinates as
(qk, pk, S, t). Then we extend the contact 1-form (3.95) to the 1-form

ηE = dS − pkdqk + H dt , (3.123)

where H is the contact Hamiltonian, that in this case is allowed to depend on t too. Notice that when-
ever H depends on S, dηE is non-degenerate (and closed) and therefore (T E,dηE) is a symplectification
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of (T , η). However, such a symplectification is not the standard (natural) one defined e.g. in [1]. The
proposed symplectification depends on the Hamiltonian of the system as it is clear from equation (3.123).
Besides, the coordinates (qk, pk, S, t) are non-canonical coordinates for dηE, as it is easy to check. An
interesting set of canonical coordinates for dηE is given by (qk, pk,H , t). This shows that H is the
canonically conjugated variable to t, which, together with the fact that H contains a ‘dissipation poten-
tial’ through its dependence on S, is calling for an interpretation of H in terms of the total energy of
the system (conservative plus dissipative).

Now we want to define the dynamics on T E. To do so, we set the two (intrinsic) simultaneous
conditions

£XE
C
ηE = gH ηE and ηE (XE

C) = 0 , (3.124)

with gH ∈ C∞(T E) a function depending on H to be fixed below, cf. equation (3.129). Notice that
(3.124) is the natural extension of (3.92) to T E. We argue that these two conditions define a vector field
XE

C on T E which is completely equivalent to the contact Hamiltonian flow (3.97). To prove this, let us
first use Cartan’s identity to re-write (3.124) as

dηE(XE

C) = gH ηE and ηE(XE

C) = 0 . (3.125)

Then, using the second condition in (3.125) it can be written in local coordinates as

(
dS − pkdqk + H dt

)(
XS ∂

∂S
+Xqk ∂

∂qk
+Xpk

∂

∂pk
+Xt ∂

∂t

)
= 0 , (3.126)

where the Xi are the general components of the vector field XE
C in these coordinates. One is free to fix

a normalization for XE
C such that Xt = 1. Now condition (3.126) yields

XS = pkX
qk −H . (3.127)

Using (3.127) one may write the first condition in (3.125) as

dηE

(
[pkX

qk −H ]
∂

∂S
+Xqk ∂

∂qk
+Xpk

∂

∂pk
+
∂

∂t

)
= gH ηE , (3.128)

and, after a direct calculation, one arrives at

gH = −∂H

∂S
, Xqk =

∂H

∂pk
, Xpk = −∂H

∂qk
− pk

∂H

∂S
. (3.129)

Finally, considering all the above conditions, it is possible to write the resulting vector field XE
C

satisfying both conditions in (3.125) in its general form as

XE

C = XC +
∂

∂t
, (3.130)

with XC given by (3.97). From this it is immediate to recognize that the equations of motion given by
such field on T E are the same as those of the contact Hamiltonian vector field (3.97), with the addition
of the trivial equation ṫ = 1. We call a system defined by a contact Hamiltonian H (qk, pk, S, t) and
by the vector field XE

C of the form (3.130) a time-dependent contact Hamiltonian system. From (3.130)
and (3.103) it follows that the evolution of any function F ∈ C∞(T E) under the dynamics given by a
time-dependent contact Hamiltonian system reads

dF

dt
= −H

∂F

∂S
+ pk {F ,H }(S,pk) + {F ,H }(qk,pk) +

∂F

∂t
. (3.131)

Now that a formal prescription to write the equations of motion for time-dependent contact Hamilto-
nian systems has been found , let us discuss time-dependent contact transformations and their generating
functions. Time-dependent contact transformations are transformation of coordinates

(qk, pk, S, t) 7→ (Q̃k, P̃k, S̃, t) , (3.132)
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that leave the equations of motion, i.e. the vector field XE
C , invariant. By definition, this amounts at

finding a transformation that leaves both conditions in (3.125) unchanged. To find such a transformation,
we start with the second condition and write the invariance as the fact that the transformed extended
1-form must have the same form as the original one up to multiplication by a non-zero function f , that
is

f
(
dS − pkdqk + H dt

)
= dS̃ − P̃kdQ̃k + K dt , (3.133)

where K is a function on T E which is going to be the new contact Hamiltonian in the transformed
coordinates. This condition provides a way to check whether a transformation of the type (3.132) is a
time-dependent contact transformation. Indeed, inserting the differentials of Q̃k and S̃ into (3.133) one
obtains the standard conditions (3.112)-(3.114) for a time-independent contact transformation, together
with the following rule for the transformation of the Hamiltonians

f H =
∂S̃

∂t
− P̃k

∂Q̃k

∂t
+ K . (3.134)

As in the time-independent case, in order to find the conditions on the generating function S̃(qk, Q̃k, S, t)
we assume that the coordinates (qk, Q̃k, S, t) are independent. Thus, from (3.133) one finds that S̃ must
satisfy (3.116) and the additional constraint

fH =
∂S̃

∂t
+ K , (3.135)

which defines the new contact Hamiltonian for the new coordinates. In the special case f = 1 the
generating function reduces to S̃ = S−F1(qk, Q̃k, t), where F1(qk, Q̃k, t) is the generating function of the
time-dependent canonical transformation.

To illustrate the formalism developed so far, we consider an important application of the time-
dependent contact transformation. Systems with explicit time dependence are used for the effective
description of dissipative systems within the symplectic-Hamiltonian formalism. The idea is to introduce
a convenient time dependence into the Hamiltonian so that it reproduces the phenomenological equations
of motion with energy dissipation. As an example, let us consider the approach by Caldirola [27] and
Kanai [28] for a 1-dimensional dissipative system with a friction force linear in the velocity. This model
considers the time-dependent Hamiltonian

HCK = e−γt
p2

CK

2m
+ eγt V (qCK) , (3.136)

where pCK and qCK are the canonical coordinates in phase space, which are related to the physical positions
and momenta by the non-canonical transformation

pCK = eγtp , qCK = q. (3.137)

It is easy to show that Hamilton’s equations for HCK as in (3.136) give the correct equation of motion for
the position including the friction force, i.e. the damped Newton equation

q̈ + γ q̇ +
1

m

∂V (q)

∂q
= 0 . (3.138)

However, although this model reproduces the correct phenomenological equation of motion, it has the
drawback that in order to describe dissipative systems one needs to take into account the non-canonical
relationship (3.137) between canonical and physical quantities. As a consequence, at the quantum level
this model has generated quite a dispute on whether it can describe a dissipative system without violating
the Heisenberg uncertainty principle; we refer to e.g. the discussion in [68, 18, 20, 38] and references
therein.

We may prove that the Caldirola–Kanai Hamiltonian (3.136) and the contact Hamiltonian (3.104),
which both give the same damped Newtonian equation, are related by a time-dependent contact transfor-
mation with f = eγt. To do so, let us consider the Caldirola–Kanai Hamiltonian HCK as a function on the
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extended contact phase space T E written in the coordinates (qCK, pCK, SCK, t) and the contact Hamiltonian
HS as a function on T E written in the coordinates (q, p, S, t). Defining the change of coordinates

(q, p, S, t)→ (qCK = q, pCK = eγtp, SCK = eγtS, t) , (3.139)

which is the connection between canonical coordiantes and physical coordinate previously given in (3.137).
Hence, it is easy to check that the conditions (3.112)-(3.114) and (3.134) are satisfied and therefore (3.139)
is a time-dependent contact transformation.

3.4.3 The damped parametric oscillator

Here an important example is provided, which enables us to show the usefulness of the formalism. The
example considered here is the one-dimensional damped parametric oscillator with mass m and time-
dependent frequency ω(t), whose contact Hamiltonian is

H =
p2

2m
+

1

2
mω2(t)q2 + γ S . (3.140)

Clearly the damped harmonic oscillator is obtained for ω(t) = ω0 and the damped free particle is recovered
when ω(t) = 0. The dynamics of the system is given by the contact Hamiltonian equations (3.105)-(3.107),
with the time-dependent potential V = 1

2mω
2(t)q2. The aim is to use the tools of contact geometry to

solve the dynamics. To find the solution of this contact dynamics the method of invariants of motion is
employed.

As in the standard symplectic theory, an important tool to solve the contact Hamiltonian equations
are the invariants (or first integrals) of the system, which are functions of the (extended) contact phase
space that do not vary along the flow.

Let us then prove that I (q, p, t) and G (q, p, S, t) given in equations (3.157) and (3.158) are two
invariants of the damped parametric oscillator defined by the contact Hamiltonian (3.140). An invariant
is a function F of the (extended) contact phase space that satisfies the partial differential equation

−H
∂F

∂S
+ pa {F ,H }(S,pa) + {F ,H }(qa,pa) = −∂F

∂t
, (3.141)

where the same notation as in (3.103) has been used. To find a solution, one may propose the ansatz

F (q, p, S, t) = β(t)p2 − 2ξ(t)qp+ η(t)q2 + ζ(t)S . (3.142)

Inserting (3.142) into (3.141), one gets the system of ordinary differential equations

β̇ =
2

m
ξ + 2γβ − 1

2m
ζ , (3.143)

η̇ = −2mω2ξ +
1

2
mω2ζ , (3.144)

ξ̇ =
1

m
η + γξ −mω2β , (3.145)

ζ̇ = γ ζ . (3.146)

Then clearly
ζ(t) = ζ0e

γt , (3.147)

and one is left with the problem of solving the system (3.143)-(3.145). To do so, one considers the change
of variables β̃(t) = e−γtβ(t), η̃(t) = e−γtη(t) and ξ̃(t) = e−γtξ(t), which yields the equivalent system

˙̃
β =

2

m
ξ̃ + γβ̃ − ζ0

2m
, (3.148)

˙̃η = −2mωξ̃ − γη̃ +
ζ0
2
mω2 , (3.149)

˙̃
ξ =

1

m
η̃ −mω2β̃ . (3.150)
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To solve this system, we re-write it as a third-order ordinary differential equation for β̃(t)

...
β̃ + 4 Ω2 ˙̃

β + 4Ω Ω̇ β̃ = 0 , (3.151)

where for simplicity Ω2 = ω2− γ2

4 is defined. The above equation is known as the normal form of a third
order equation of maximal symmetry [69].

Now, using the further change of variable

β̃(t) =
1

2m
α2(t) (3.152)

in (3.151), one obtains that β̃(t) is a solution of (3.151) if and only if α(t) is a solution of the Ermakov
equation

α̈+

(
ω2(t)− γ2

4

)
α =

1

α3
. (3.153)

Moreover, from (3.152) one may re-write the remaining two equations as

η̃(t) =
m

2

([
α̇(t)− γ

2
α(t)

]2
+

1

α2(t)

)
, (3.154)

ξ̃(t) =
α(t)

2

(
α̇(t)− γ

2
α(t)

)
+

1

4
. (3.155)

Finally, using (3.147), (3.152)-(3.155) and β(t) = eγtβ̃(t), η(t) = eγtη̃(t), ξ(t) = eγtξ̃(t) into the ansatz
(3.142), we find that

F (q, p, S, t) = I (q, p, t) + ζ0G (q, p, S, t) , (3.156)

with

I (q, p, t) =
meγ t

2

[(
α(t)

p

m
−
[
α̇(t)− γ

2
α(t)

]
q
)2

+

(
q

α(t)

)2
]
, (3.157)

and

G (q, p, S, t) = eγt
[
S − q(t)p(t)

2

]
. (3.158)

Because F (q, p, S, t) is an invariant for any choice of the initial conditions and because ζ0 only depends
on the initial conditions, it follows that I (q, p, t) and G (q, p, S, t) separately are invariants of the system.
As a final remark let us notice that the invariant I (q, p, t) is a generalization of the canonical invariant
found by H. R. Lewis Jr. for the parametric oscillator3 [16], which is recovered when γ → 0. Besides, the
invariant G is completely new.

With the help of these invariant we may find the solution of the contact Hamilton’s equation of motion
for the damped parametric oscillator as follows. To solve the equations of motion of the system (3.140)
in the general case, we use the invariants I and G to define the time-dependent contact transformation

Q̃ = arctan

(
α
[
α̇− γ

2
α
]
− α2 p

mq

)
, (3.159)

P̃ = I (q, p, t) , (3.160)

S̃ = G (q, p, S, t) , (3.161)

t = t . (3.162)

The conformal factor in equation (3.133) for this transformation is f = eγt and the new contact Hamil-
tonian, from equation (3.134), takes the simple form

K =
I

α2
. (3.163)

3It is interesting to mention that this invariant is also found in Quantum Mechanics in the descriprion of the dissipative
parametric oscillator using a logarithmic nonlinear Schrödinger equation [19].
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Thus, as K does not involve the variables Q̃ and S̃, the new contact Hamiltonian equations have the
trivial form

˙̃Qa =
1

α2
, ˙̃Pa = 0 , ˙̃S = 0 , (3.164)

with solutions

Q̃(t) =

∫ t dτ

α2(τ)
, P̃ (t) = I and S̃(t) = G . (3.165)

Now, inverting the transformation (3.159)-(3.161) and using (3.165), one obtains the solutions in the
original (physical) coordinates, namely

q(t) =

√
2I

m
eγtα(t) cosφ(t) , (3.166)

p(t) =
√

2mI eγt
[(
α̇− γ

2
α
)

cosφ(t)− 1

α
sinφ(t)

]
, (3.167)

S(t) = e−γt G +
q(t)p(t)

2
, (3.168)

where φ(t) = Q̃(t) and the values of the constants I and G are determined by the initial conditions.
Therefore, we have derived here the solutions of the equations of motion of the damped parametric
oscillator using the invariants of the contact Hamiltonian system and a proper contact transformation.
From (3.166)-(3.168) one can see that all the dynamics of the system is encoded in the Ermakov equation
(3.153).





Chapter 4

Conclusions and Perspectives

In this thesis we have been dealing with the major problem to show that the nonlinear dynamics is
intrinsically related with the description of quantum system. The nonlinearity of the theory goes beyond
performing nonlinear transformations in the Hilbert space or considering suitably an environment by
introducing nonlinear terms into the Schrödinger equation. Here it has been shown that the nonlinearity
of Quantum Mechanics is a fundamental part of it.

At the beginning of the analysis we started with the linear Schrödinger dynamics in the 2n–dimensional
Hilbert space H0. However, after taking into account the symmetry of the dynamics under the action of
the dilation group, the Hilbert space has been reduced to the odd-dimensional sphere S2n−1 of normalized
states. Moreover, the symmetry of the Schrödinger dynamics under the multiplication by a phase factor
has been considered, which leads to the (2n − 2)–dimensional complex projective space CP(H0), also
know in the physics literature as the ray space. Then, it was been see that the complex projective space
is a Hilbert space of states which are normalized and one has gotten rid of the global phase, i.e. one has a
description on the space of pure states described without redundancies. For the analysis of the quantum
systems in CP the complex homogeneous coordinates have been employed, such that in those coordinates
the Schrödinger dynamics is projected onto the nonlinear Riccati dynamics.

Later, it was not only proved that the Schrödinger dynamics is projectable onto CP, but also it
has been possible to see that the Kähler structure of the Hilbert space is preserved and defined by
(ωFS, gFS, JFS). This structure allows to define a Hamiltonian dynamics on CP whose integral curves are
defined by the solutions of the matrix Riccati equation. Furthermore, the Poisson and Jordan brackets
have been introduced, where the former brackets allows to obtain the evolution of the expectation values
of the observables, while the second brackets are connected to the dispersion and the correlation of the
observables.

Finally, even though one has a nonlinear dynamics, it has been shown that it is possible to introduce
a nonlinear superposition rule on CP, which is consistent with the linear superposition rule defined in the
Hilbert space H0. This nonlinear superposition rule is also a consequence of working with a Lie-Scheffer
system [12, 11]. Therefore it has been shown that the description of a finite quantum system is complete
in the complex projective space. So, the description in this space will be denominated as the Complex
Projective picture, in addition to the well-known pictures in Quantum Mechanics.

To continue the study of the nonlinear description of quantum dynamics, in the second Chapter of
this thesis infinite dimensional quantum systems have been considered, particularly generalized coherent
states evolving under the action of Hamiltonian operators quadratic in position and momentum variables.
To perform the study of this kind of systems the fact has been used that in Quantum Mechanics it is
possible to immerse a “classical” manifold into the Hilbert space, such that the evolution of the wave
function is parametrized by the variation of points in this manifold. Besides, the motion of the wave
function has been restricted to lie in a certain predetermined region of the Hilbert space. The advantage
of this immersion is that there is an interplay between quantum and classical concepts that allows to
consider the procedures and structures available in the classical theory to be employed in Quantum
Mechanics.
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The study has been started realizing that the evolution of Gaussian wave packets is encoded in the
evolution of the expectation values (〈q̂〉, 〈p̂〉) and the complex time-dependent functions (Q,P ), such that
these states may be expressed as in (2.41) (or (2.43)). So, these two aspects of the generalized coherent
states reside in different manifolds. On the one side the expectation values (〈q̂〉, 〈p̂〉) live in a Euclidean
linear phase space T ∗R2 with Hamiltonian evolution, according to the Ehrenfest theorem. On the other
hand, the parameters (Q,P ) live in the manifold M defined in Eq. (2.35) and are directly connected with
the dispersions and correlation (σq, σp, σqp) as is shown in Eq. (2.44); besides, the dynamics in TM is
Hamiltonian where the Hamiltonian equations have the same form as the classical equations of motion,
but with complex variables, see Eq. (2.58).

However, the before mentioned paremetrization of the generalized coherent states is not unique. Recall
that in Quantum Optics it is possible to describe these states by the so-called Squeezing parameters (τ, ϕ),
where such parameters are the system of coordinates adapted in the hyperboloid H2, which is connected
with (σq, σp, σqp) by Eq. (2.66). The dynamical properties in H2 have also been analized, showing that
there is a symplectic structure defined on it and allows to see that one has a Hamiltonian dynamics which
in addition is nonlinear.

To show the connection between the descriptions in M and in H2 an intermediate step was necessary.
This is, first one has to show the connection between M and the hyperboloid H3 by Eq. (2.88); thus,
the connection between the hyperboloids H3 and H2 turns out to be a mere consequence of the relation
between the special linear group SL(2,R) and its Lie algebra sl(2,R), giving rise to the covering map in
Eq. (2.93).

Finally, the last part of Chapter two was devoted to the nonlinear Riccati dynamics. Then, taking
into account the symmetry of the dynamics Y ∈ X(TM) under the multiplication by a global phase factor
one may reduce M to a lower dimensional space known as the Siegel upper half plane HP2 defined as the
space of complex numbers with imaginary part strictly positive. So, one not only is able to reduce the
space but also it is possible to project the dynamics from M onto HP2, where the projected dynamics is
the nonlinear Riccati evolution, which is a Hamiltonian dynamics. In this process of reduction also one
may show a completely new parametrization of the Gaussian wave packets by means of the points in the
Poincaré disc D2, which turns out to be the stereographic projection of H2 onto the plane, see Fig. 2.3a.,
and whose dynamics is also Hamiltonian with Riccati-type evolution. All the analized parametrizations
and their connections are summarized in the following diagramme

M
ν
> H3

H2

χ
∨

HP2

π

∨
<
u

D2

v
∨

The generalization for more degrees freedom of the reductionM → HP has been considered in Ref. [71].
Given the Schrödinger equation

i ~
∂ψ

∂t
= − ~

2m
∇2Ψ + V (q)ψ (4.1)

where q ∈ Rn and ∇2 stands for the Laplacian in Rn, it has been proven in Ref. [72] that the Gaussian
wave packet solution has the parametrization

ψ(q, t) =
1

(π~)n/4
1√

det Q
exp

{
i

2~
(q− 〈q̂〉)T

P

Q
(q− 〈q̂〉) +

i

~
〈p̂〉 · (q− 〈q̂〉) +

i

~
S(t)

}
, (4.2)

where (Q,P) are complex (n× n)-dimensional matrices in M defined as

M = {(Q,P)|Q̄P− P̄Q = 2 i I} . (4.3)
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In order ψ(q, t) to be solution of the Schorödinger equation, these matrices must satisfy the system of
equations

Q̇ =
P

m
,

Ṗ = −∇2V (Q) , (4.4)

and the time dependent function S(t) stands for the classical action

S(t) =

∫ t

t0

(
p2(τ)

2m
− V (q(τ))

)
dτ . (4.5)

On the other hand, it has been proven in Refs. [48, 72, 71] that it is also possible to parametrize the
Gaussian wave packet as

ψ(q, t) =

(
det CI

(π~)n

)1/4

exp

{
i

2~
(q− 〈q̂〉)TC(q− 〈q̂〉) +

i

~
〈p̂〉 · (q− 〈q̂〉) +

i

~
φ(t)

}
(4.6)

where in this generalization the (n×n)-dimensional matrix C = CR + i CI is an element of the Siegel upper
half space [64, 5] defined as

HP = {C|CT = C, CI > 0} , (4.7)

which satisfies the matrix Riccati equation

Ċ = − 1

m
C2 −∇2V (q) (4.8)

and the time-dependent phase is given by

φ(t) = S(t)−
∫ t

t0

tr{CI(τ)}dτ . (4.9)

The connection between the symplectic spaces M and HP was already established by Siegel in 1943 [64]
and is given by the submersion

π : M→ HP : (Q,P) 7→ C =
P

Q
, (4.10)

which generalizes the Riccati transformation to more degrees of freedom. From a geometrical point of
view it is provn in Ref. [71] that the submersion π is actually a projection that allows to reduce the
dynamics in M onto the dynamics in HP; further details will be presented in a future work.

In Chapter three a new geometric perspective for the Lagrangian and Hamiltonian description of
mechanical systems has been proposed. The defining features of this formulation are that the carrier
space of the mechanical system is assumed to be a contact manifold and that the evolution equations are
given in an implicit way by the contact Euler–Lagrange equation (3.75) or explicitly given by the contact
Hamiltonian equations (3.98). Furthermore, it has been shown that contact dynamics on the one hand
recovers all the results of standard symplectic dynamics when the contact Lagrangian L and the contact
Hamiltonian H do not explicitly depend on S and on the other hand can account for the evolution of
systems with different types of dissipation in the more general case in which L or H depend on S.
In this work we only consider cases linear in the S variable, but recently more general cases have been
considered, see Ref. [73].

In this Chapter both time-independent and time-dependent contact systems have been considered and
in both cases the transformations (called contact transformations) that leave the contact Hamiltonian
equations invariant have been found, showing that canonical transformations of symplectic dynamics are
a special case. To show the usefulness of contact transformations, an explicit example has been provided
(the Caldirola–Kanai model for systems with linear dissipation) in which a non-canonical but contact
transformation (3.139) allows to move from the usual time-dependent canonical description in terms of
non-physical variables to a contact description in terms of the physical variables.
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The contact description of Classical Mechanics is still far from being complete. For instance, to have a
complete picture of the contact theory one still has to establish the contact Hamilton–Jacobi description;
some first attempts have already been considered in Ref. [33]. On the other hand, given the importance
of the symplectic perspective in the quantum mechanics of conservative systems, one may wonder if the
contact perspective could play a similar role in Quantum Mechanics of dissipative systems, i.e. a relevant
question is whether a quantization of this formalism is possible.

So, if one agrees that the most fundamental description of our external world is Quantum Mechanics,
it makes no sense to go from classical contact theory to a quantum one. The best option is to construct
a contact description from inside Quantum Mechanics. Actually, as has been pointed out in Ref. [32],
there is already a contact manifold defined in quantum theory. The contact manifold we are referring to
is the (2n− 1)-dimensional sphere

S2n−1 = { |ψ〉 ∈ H | 〈ψ|ψ〉 = 1 } (4.11)

of normalized vectors in H and the dynamical system is generated by a contact Hamiltonian system as
has been proven in [32]. However, one could proceed in a different way, i.e. constructing first a contact
Hilbert manifold; let us sketch briefly such a possibility. As has been seen in the first Chapter, it is
possible to give a description of quantum states in the complex projective space, in addition this picture
of Quantum Mechanics has a Kähler structure defined on it (ωFS, gFS, JFS). Using this description as a
reference system one could enlarge this space adding an extra dimension obtaining a contact Hermitian
manifold and the dynamics may be described by a contact Hamiltonian system. This description of
dissipation in Quantum Mechanics will be completely new and is presented in future work.

The contact Hamiltonian theory has been well received in the physics community and has now been
applied in classical theories as Thermodynamics [74, 75, 76], Fluid Theory [77, 78], Astrophysics [79, 80],
Relativity [81, 82, 83] and Information Geometry [84] to mention some examples.



Appendix A

Reduction of Dynamical Systems

The reduction of a dynamical system is employed in all the branches of theoretical physics. In fact,
this procedure is often used in the physics literature without always having been mentioned explicitly
and sometimes without a careful definition. The purpose of this Appendix is to give an introduction
of the formal idea of the reduction procedure and how to deal with projections based on the results in
references [4, 5, 6].

Let us consider a time independent vector field Γ on a differential manifold M of dimension µ. Then,
given a dynamical system one attempts to integrate it, i.e. to find the integral curves of Γ. To integrate
Γ one could go from Γ to a reduced vector field Γ̃ defined on a manifold N of dimension ν < µ. Then in
some way one has partially solved the problem of integration of the system and one may hope that the
reduced dynamics Γ̃ is easier to integrate.

Roughly speaking, to applied the reduction procedure one proceeds as follows. One attempts to find
a foliation Φ on the carrier space M on which Γ lives. Then, assuming that the quotient set N = M/Φ
has a differential manifold structure and that Γ is projectable onto Γ̃ with respect to the projection
π : M → N , one then tries to integrate lower dimensional dynamics Γ̃. In the next sections every step of
this procedure is discussed in detail.

A.1 Foliations

A foliation of a differential manifold M is a family {`α} of disjoint subsets `α (the leaves of the foliation)
one of them is passing through each point m ∈M , on each of which a differential structure may be given.
So, the natural injection i : `α → M is an embedding1. Moreover, it shall be required that all of the `α
be of the same dimension, that they all be connected, and that as submanifold they all be regular.2

For example, the solutions of a differential equation constitute a foliation by curves. A foliation
by curves is a geometric object, whose associated differential equation is considered the infinitesimal
expression of such an object. To show that the solutions of the differential equation constitute a foliation,
it is sufficient to recalled that from the theorem of existence and uniqueness of solutions of analytic
differential equations for each point m ∈M only one integral curve is passing through it; then, the set of
integral curves constitutes an infinite family of analytic curves whose intersection is empty.

In general to obtain a foliation on a manifold is not an easy task; however, in physical systems there
are three ways to generate foliations: i) submersions, ii) distributions and iii) differential forms.

1An embedding is an injective mapping ϕ from a connected manifold, for which Tϕ is also injective.
2 All these assumptions are not strictly necessary but we are considering them for simplicity, and so we will not get tied

up in details. A more general discussion of foliation can be found in [4].
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Submersions

Because the leaves of the foliation are submanifolds, submersions are helpful in understanding foliations.
A submersion is a mapping ϕ : M → N , with N being a differential manifold and dim(N) = ν ≤
dim(M) = µ, such that Tϕ is surjective. It follows that ϕ−1(n), n ∈ N , is a regular submanifold of M of
dimension µ− ν. Then, the family of these submanifolds, as n runs through N , is a foliation of M whose
codimentsion is ν. This foliation is said to be generated by the submersion.

To see how one generates a foliation by submertion in physics, let us recalled that to integrate a
physical system one may employ the so-called constants of motion. Then, the submersion is defined as
the function F = (f1, f2, . . . , fν), where each {fk}k=1 ∈ F(M) is a constants of motion. This introduces
an invariant submanifold that serves as a carrier manifold of lower dimension for the dynamical system.

Distribution

A distribution on M is a set of vector fields, all of the same dimension κ, defined as follows: at each
point m ∈ M the distribution D consists of a subspace of TmM such that there is a neighbourhood U
around m in which it is possible to find κ independent vector fields Xj ∈ X(U), with the property that
Xj(m

′), with j = 1, . . . , κ, span Dm′ at all points m′ ∈ U . One may thus think of D as the set of linear
spaces formed by the Xκ with coefficients in F(U), then local vector fields can be said to belong or not
to a given distribution.

Foliations Φ generate distributions, namely for each m ∈M one may chose Tm`α to be a subspace of
TMm which defines DΦ at that point, i.e.

Tm`α = DΦ(m) . (A.1)

However, the converse is not true, because not every distribution can be integrated to form a foliation.
When for a given distribution D Eq. (A.1) can be solved for the `α, then `α is called an integral manifold
of D, and D is said to be integrable. The Frobenius theorem tells us that a necessary and sufficient
condition in order that D be integrable is that it be involutive [5], i.e. that

X,Y ∈ D then [X,Y ] ∈ D . (A.2)

Therefore every involutive distribution is also integrable.

Differential forms

.
A third consideration to generate foliations is by differential forms. Let ω be a p-form of M . Its

kernel, consisting of all X ∈ X(M) such that iXω = 0, may then form a distribution D if the dimension
of span {X(m)} is the same for every m ∈ M and for all X ∈ kerω. But even if D exists, it may
not be involutive. The condition on ω, which is implied by the Frobenius theorem, is somewhat more
complicated than the condition (A.2) on the distribution itself. It may be stated in the following way.
Let X, Y ∈ kerω, then

i[X,Y ]ω = (£X iY − iY £X)ω = −iY iXdω . (A.3)

and thus
iY iXdω = 0 for all X, Y ∈ kerω (A.4)

is a necessary and sufficient condition for involutivity of kerω. It is sufficient, for example, that dω = 0
or, less stringently, that there exists a one-form λ such that dω = λ∧ω. It follows, therefore, that closed
p-forms through their kernels generate foliations.

When a foliation is used in analyzing a dynamical system it is important to understand how the
system moves from one leaf to another, i.e. how the index α of the `α changes with time. This requires
an understanding of the quotient of M with respect to the foliation.
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Let Φ = {`α} be a foliation of M . Then Φ defines an equivalence relation rΦ on M according to

(m1,m2) ∈ rΦ iff m1, m2 ∈ `α for some α . (A.5)

Then the foliation defines the quotient set M/rΦ with respect to the equivalence. We write simply M/Φ
for the quotient set M/rΦ. The point here is that because the leaves of the foliation need not be invariant
submanifolds of the motion, the integral curves will in general intersect more than one leaf (the dynamical
point will move from leaf to leaf). This motion from leaf to leaf is in fact the projected motion, and it
takes place on M/Φ. Let

π : M →M/Φ : m→ [m] (A.6)

be the canonical projection, where [m] is the equivalence class of m. What will actually be required is
that M/Φ = N be a quotient manifold, i.e. that a differential structure on M/Φ can be found such that
π is a submersion. For the case in which the foliation is given by a submersion π, the submersion and
the projection are the same map.

It is opportune at this point to add a few words about symplectic manifolds. A submersion given by
a function F of the type already mentioned can sometimes be used to obtain more than one foliation on
a symplectic manifold. Each function fi in F uniquely defines a Hamiltonian vector field Xj through

iXjω = dfj , (A.7)

(here ω is the symplectic form on M), and under certain conditions the Xj so defined form an involutive
distribution DX . When this is so, one has two foliations: the first, which may be called ΦF , is defined
by the submersion F , the second, which may be called ΦX , is defined by the distribution DX . These two
foliations intersect and they have interesting and important properties for the reductions of dynamical
systems on symplectic manifolds. The condition on the fj , incidentally, in order that the foliation ΦF

exists (i.e. that the distribution DX is involutive) is that they form a function group. This means that
the Poisson brackets of any two functions is not independent of the function in the set [4, 5]. A converse
procedure is also possible on a symplectic manifold. If an involutive distribution DX has the property
that it is spanned by a set of Hamiltonian vector fields, then their Hamiltonian function can also generate
a second foliation.

A.2 Projectability

As already mentioned, the point of the foliation is to study not the entire motion of the system, but how
it moves from leaf to leaf of the foliation M , i.e. how it moves in N = M/Φ = π(M). The first question is
whether there exists a vector in X(N) which describes the motion, or as is said, whether Γ is projectable.

Let Φ a foliation of the differential manifold M and assume that M/Φ ≡ N can be provided with a
manifold structure. Let π : M → N be the projection with respect to the foliation. Then a vector field
Y ∈ X(M) is said to be projectable with respect to π (or with respect to Φ) iff a vector field Ỹ ∈ X(N)
exists such that the following diagram commutes:

TM
Tπ

> TN

M

Y

∨
π

> N

Ỹ

∨

When Ỹ exists, it is called the projection of Y .
The second definition is the following. Let g ∈ F(M) be any function constant on the leaves of Φ.

Then there exists a unique g̃ ∈ F(N) such that

g = g̃ ◦ π . (A.8)
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Conversely, for every g̃ ∈ F(N) the function g defined by (A.8) is unique and constant on the leaves of
Φ. In terms of such functions we have the following definition of projectability. A vector field Y ∈ X(M)
is projectable with respect to Φ iff for every g̃ ∈ F(N) there exists a g̃′ ∈ F(N) such that

g′ ≡ £Y g = £Y (g̃ ◦ π) = g̃′ ◦ π . (A.9)

In other words, the Lie derivative with respect to Y of every function constant on leaves is itself a function
constant on the leaves. The equivalence of the commutative diagram and (A.9) can be demostrated by
noticing first that (A.9) defines a derivation and hence the vector field Y ′ ∈ X(M), for further details see
reference [4].

If what we want to project is the dynamical vector field, one must have a way of finding a foliation with
respect to which that vector field is projectable. Because a foliation will be generated by submersions,
distributions or differential forms, what must be found are relations between these geometrical objects
and the vector field of interest which will guarantee that the vector field is projectable with respect to
the foliation generated.

Projection by submersions

As before, we consider first submersion in its simple functional form. Let us assume that the regular
foliation Φ is generated by a submersion ϕ : M → N . Then essentially everything that was said about
projection remains valid, except that π must be replaced everywhere by ϕ.

Projection by distribution

Let us consider now distributions. If Φ is a foliation generated by a involutive distribution D, then any
function g constant on leaves has the property that £Xg = 0 for all X ∈ D, and conversely. Therefore Y
is projectable with respect to Φ iff:

£Xg = 0 for all X ∈ D then £X£Y g = 0 for all X ∈ D . (A.10)

A necessary and sufficient conditions for (A.10) is that [X,Y ] ∈ D for all X ∈ D. Therefore a vector field
Y is projectable with respect to a foliation generated by an involutive distribution D iff:

[Y,D] = £YD ⊂ D , (A.11)

or, as may be said, iff D is invariant under Y .

Projection by differential forms

Finally, suppose that the foliation is generated by a differential form ω ∈ Ωp(M) through the involutive
distribution D ∈ kerω (of course we assume that ω satisfies the requirements of the Frobenius theorem).
A vector field Y is projectable with respect to the foliation so generated if (A.11) is satisfied. But, since
D is given by the kernel of ω, this means that for any X ∈ D, the vector field [X,Y ] must be also in
kerω, or that:

0 = i[X,Y ]ω = £Y iXω − ix£Y ω = −iX£Y ω ∀X ∈ D . (A.12)

In other words, kerω ⊂ ker £Y ω.
As before, when dealing with differential forms the conditions become less transparent, and we there-

fore state a sufficient condition. If ω is what may be called conformally invariant under Y , i.e. if there
exists an f ∈ F(M) such that:

LY ω = fω , (A.13)

then (A.12) is satisfied. Therefore a conformally invariant, closed (this is a sort of double sufficient
condition) differential form generates a foliation with respect to which the vector field is projectable.
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