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BACKGROUND Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein con-

vertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C).

OBJECTIVES A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute

coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently

predicted major adverse cardiovascular events (MACE).

METHODS One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab

or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months

thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke,

or hospitalization for unstable angina.

RESULTS Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C

[corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl

(IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE

(hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a)

and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both

lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was

associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p ¼ 0.0081).

CONCLUSIONS Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the

risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction,

which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes:

Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab;

NCT01663402) (J Am Coll Cardiol 2020;75:133–44) © 2020 The Authors. Published by Elsevier on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ACS = acute coronary

syndrome

CI = confidence interval

HR = hazard ratio

IQR = interquartile range

LDL-C = low-density

lipoprotein cholesterol

MACE = major adverse

cardiovascular events

non�HDL-C = nonLhigh-

density lipoprotein cholesterol

PCSK9 = proprotein
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L ipoprotein(a), a genetically determined low-
density lipoprotein particle that contains
apolipoprotein(a) and apolipoprotein B-100

moieties, is believed to possess pro-atherogenic,
pro-thrombotic, pro-inflammatory, and pro-
oxidative properties (1). High levels of lipoprotein(a)
have been associated with incident cardiovascular
disease in most, but not all, population-based epide-
miological analyses (1,2) and in patients with estab-
lished coronary heart disease (3,4). Moreover,
Mendelian randomization analysis supports a linear
relationship between lipoprotein(a) concentration
and incident coronary heart disease in the general
population (5). Based on available data, European
Sanofi, AstraZeneca, Patient Centered Outcomes Research Institute, Ferring

terolemia Foundation, and Bayer; and has received consulting fees or honora

Roche-Genentech, Janssen Pharmaceuticals, Regeneron, Novo Nordisk, Pfiz

Sinnaeve has received personal fees from Sanofi, Abbott, Boehringer Ingel

received personal fees and nonfinancial support from AstraZeneca and Merck

fees from Daiichi-Sankyo and Bayer. Dr. Tsimikas has served as a consultan

receives royalties from patents owned by UCSD on oxidation-specific antibo

teins; has a dual appointment at UCSD and Ionis Pharmaceuticals; and is a co-

and Kleanthi Diagnostics, LLC; (Although these relationships have been ide

the overall scope of the project and its potential benefit to Oxitope and Klean

this particular publication may not necessarily relate to the interests of Oxito

this arrangement have been reviewed and approved by the University of Ca

interest policies.). Dr. Vogel has received grants and personal fees from San

institution and fees for serving on a steering committee for the ODYSSEY

comes After an Acute Coronary Syndrome During Treatment With Alirocum

the ACCELERATE study (A Study of Evacetrapib in High-Risk Vascular Disea

Study to Assess Statin Residual Risk Reduction With EpaNova in High CV Ris

Pharmaceuticals, for the SPIRE trial (The Evaluation of Bococizumab [PF-049

Cardiovascular Events in High Risk Subjects) from Pfizer USA, for the HEART

FCM as Treatment for Heart Failure With Iron Deficiency) from American

Evaluate the Effect of Long-term Treatment With BELVIQ [Lorcaserin HC]

Events and Conversion to Type 2 Diabetes Mellitus in Obese and Overweig

Cardiovascular Risk Factors) from Eisai Inc, for the dal-GenE study (Effect o

Defined Population With a Recent ACS) from DalCor Pharma UK Inc., for th

trial (Effect of Sotagliflozin on Cardiovascular and Renal Events in Patients W

Who Are at Cardiovascular Risk) and the SOLOIST-WHF trial (Effect of Sota

Type 2 Diabetes Post Worsening Heart Failure) from Sanofi-Aventis Austr

(Evaluation of Major Cardiovascular Events in Patients With, or at High Risk f

Treated With Bempedoic Acid [ETC-1002] or Placebo) from Esperion Thera

Acetelion, Sirtex, and Genentech, Inc. (an affiliate of F. Hoffmann-La Roch

European Society of Cardiology); and has received lecture fees from AstraZen

ODYSSEY OUTCOMES trial and the SCORED trial, both funded by Sanofi; an

Ingelheim, NovoNordisk, and Sanofi. Dr. Zeiher has received fees for servi

COMES trial from Sanofi; and has received Advisory Board and speaker fee

Novartis, Pfizer, AstraZeneca, and Vifor. Dr. Baccara-Dinet is an employee

grants and nonfinancial support (co-chair of the ODYSSEY OUTCOMES trial

tution has received funding for the time he has devoted to trial coordination

to trial meetings) from Sanofi; has received research grants and personal fees

epidemiological study), Merck (speaker fees, grant for epidemiological studie

cochair of the SCORED trial; consulting, speaking), Servier (Chair of the CLAR

Amarin (executive steering committee the REDUCE-IT trial [Disease Reduct

Intervention Trial]; consulting); has received personal fees from Amgen,

Novartis, Regeneron Pharmaceuticals, Lilly, and AstraZeneca; and has a Euro

October 26, 2016 (No. 15712241.7), for a method for reducing cardiovascular r

University of Colorado from Resverlogix, Roche, Sanofi, and The Medicines

62/806313 “Methods for Reducing Cardiovascular Risk,” assigned in full to Un

that they have no relationships relevant to the contents of this paper to dis

Manuscript received June 17, 2019; revised manuscript received October 7, 2
(but not United States) guidelines suggest
that lipoprotein(a) is a potential target for
treatment if concentrations are $50 mg/dl
(6,7).

Although observational data with apher-
esis suggest a possible benefit of lip-
oprotein(a) lowering on cardiovascular
outcomes (8), no randomized data to date
indicate that medications that lower lip-
oprotein(a) reduce cardiovascular risk
through that mechanism. Niacin reduces lip-
oprotein(a) by 15% to 25% but does not
reduce death or ischemic cardiovascular
events (9,10), and anacetrapib lowers
Pharmaceuticals, Myokardia, Familial Hypercholes-

ria from AstraZeneca, Amgen, Cytokinetics, Eli Lilly,

er, Sanofi, Signal Path, and Elsevier Publishers. Dr.

heim, Bristol-Myers Squibb, Pfizer, and Amgen; has

Sharp Dohme; and has received grants and personal

t to Boston Heart Diagnostics; is a co-inventor and

dies and of biomarkers related to oxidized lipopro-

founder of and has an equity interest in Oxitope, Inc.

ntified for conflict of interest management based on

thi Diagnostics LLC, the research findings included in

pe, Inc. and Kleanthi Diagnostics, LLC. The terms of

lifornia, San Diego in accordance with its conflict of

ofi. Dr. White has received grant support paid to the

OUTCOMES trial (Evaluation of Cardiovascular Out-

ab) from Sanofi and Regeneron Pharmaceuticals, for

se) from Eli Lilly, for the STRENGTH trial (Outcomes

k Patients With Hypertriglyceridemia) from Omthera

50615; RN 316] in Reducing the Occurrence of Major

-FID study (Randomized Placebo-Controlled Trial of

Regent, for the CAMELLIA-TIMI study (A Study to

on the Incidence of Major Adverse Cardiovascular

ht Subjects With Cardiovascular Disease or Multiple

f Dalcetrapib vs Placebo on CV Risk in a Genetically

e AEGIS-II study from CSL Behring, for the SCORED

ith Type 2 Diabetes and Moderate Renal Impairment

gliflozin on Cardiovascular Events in Patients With

alia Pty. Ltd., and for the CLEAR Outcomes Study

or, Cardiovascular Disease Who Are Statin Intolerant

peutics Inc.; has served on the Advisory Board for

e Ltd., “Roche”; Lytics Post-PCI Advisory Board at

eca. Dr. Zahger serves as National Coordinator for the

d has consulted for Bayer, AstraZeneca, Boehringer

ng on a steering committee for the ODYSSEY OUT-

s from Sanofi, Amgen, Boehringer Ingelheim, Bayer,

of and holds shares in Sanofi. Dr. Steg has received

; as such he received no personal fees, but his insti-

, and he has received support for some travel related

from Bayer (Steering Committee MARINER, grant for

s), Sanofi (co-chair of the ODYSSEY OUTCOMES trial;

IFY registry; grant for epidemiological research), and

ion of Cardiovascular Events With Icosapent Ethyl–

Bristol-Myers Squibb, Boehringer Ingelheim, Pfizer,

pean application number/patent number, issued on

isk. Dr. Schwartz has received research grants to the

Company; and is co-inventor of pending U.S. patent

iversity of Colorado. All other authors have reported

close.

019, accepted October 28, 2019.

convertase subtilisin/kexin

type 9



Bittner et al. J A C C V O L . 7 5 , N O . 2 , 2 0 2 0

Lipoprotein(a) and Cardiovascular Events J A N U A R Y 2 1 , 2 0 2 0 : 1 3 3 – 4 4

136
lipoprotein(a) by 25% with only modest cardiovascu-
lar benefits, which are likely explained by other ef-
fects on the lipid profile (11). Proprotein convertase
subtilisin/kexin type 9 (PCSK9) inhibitors lower lip-
oprotein(a) concentrations by approximately 25%
(12,13) and reduce cardiovascular events (14–16), but
it is uncertain whether, and to what extent, reduction
of lipoprotein(a) contributes to this benefit, inde-
pendent of the concurrent reduction of low-density
lipoprotein cholesterol (LDL-C).

In a pre-specified analysis of the ODYSSEY Out-
comes (ODYSSEY Outcomes: Evaluation of Cardio-
vascular Outcomes After an Acute Coronary
Syndrome During Treatment With Alirocumab) trial,
we tested the hypotheses that baseline lipoprotein(a)
predicted recurrent major adverse cardiovascular
events (MACE) following an index acute coronary
syndrome (ACS) in patients who received intensive
statin therapy. We also examined if the decrease in
lipoprotein(a) concentration with treatment using the
PCSK9 inhibitor, alirocumab, was associated with a
decreased risk of MACE, independent of the concur-
rent reduction of LDL-C.
SEE PAGE 145
METHODS

PATIENTS. Details of the ODYSSEY OUTCOMES trial
design and results have been previously published
(16,17). In brief, the trial included 18,924 patients age
40 years or older who experienced an ACS 1 to
12 months before randomization and who had a
LDL-C level of $70 mg/dl (1.81 mmol/l), non�high-
density lipoprotein cholesterol (non�HDL-C) level
of $100 mg/dl (2.59 mmol/l), or an apolipoprotein B
level of $80 mg/dl on high-intensity statin therapy
(atorvastatin 40 to 80 mg daily, rosuvastatin 20 to
40 mg daily, or the maximum tolerated dose of
either). Study inclusion was not based on lip-
oprotein(a) concentrations. The trial was approved by
the institutional review board of each site, and all
patients provided informed consent.

TREATMENTS. Patients were randomly assigned to
treatment with alirocumab 75 mg subcutaneously
every 2 weeks or matching placebo. Among patients
assigned to alirocumab, the dose was blindly
increased to 150 mg in patients who did not achieve
an LDL-C level of <50 mg/dl (1.29 mmol/l). Placebo
was blindly substituted for alirocumab in patients
who had 2 consecutive LDL-C measurements
of <15 mg/dl (0.39 mmol/l).

ENDPOINTS. The primary endpoint (MACE) was a
composite of coronary heart disease death, nonfatal
myocardial infarction, fatal or nonfatal ischemic
stroke, or unstable angina that required hospitaliza-
tion. Secondary endpoints considered in the present
analysis were coronary heart disease death or
nonfatal myocardial infarction, fatal or nonfatal
ischemic stroke, cardiovascular death, and all-cause
death. Unstable angina was not considered individu-
ally because of a small number of events. All end-
points were adjudicated by a committee blinded to
treatment assignment and lipid levels under the
auspices of the Duke Clinical Research Institute.

MEASUREMENT OF LIPOPROTEINS. Lipoprotein(a)
mass was measured once at randomization, at
4 months, and at 12 months at COVANCE Central
Laboratories (Los Angeles, California) using an auto-
mated immunoturbidimetric assay on a Siemens BNII
(Siemens, Healthcare Diagnostics, Malvern, Pennsyl-
vania) validated against the International Federation
of Clinical Chemistry and World Health Organization
standards (18). The interassay coefficient of variation
ranged from 3.1% to 4.8%, depending on the lip-
oprotein(a) concentration. Apolipoprotein(a) size
heterogeneity had only a moderate effect on lip-
oprotein(a) recovery with this assay. LDL-C was
calculated by the Friedewald formula (19), except
when triglycerides were >400 mg/dl (4.52 mmol/l) or
when the Friedewald-calculated LDL-C was <15 mg/dl
(0.39 mmol/l). In these cases, LDL-C was measured by
beta-quantification.

Calculated or directly measured LDL-C levels
include cholesterol contained in lipoprotein(a), which
corresponds to approximately 30% of the lip-
oprotein(a) mass (20,21). To account for this and
derive an estimate of cholesterol contained in LDL
particles, we calculated corrected LDL-C (referred to
herein as LDL-Ccorr) using the formula (21):

LDL-Ccorr ¼ LDL-C�0:3� lipoproteinðaÞ mass

Similarly, to derive an estimate of cholesterol car-
ried in all apolipoprotein-B�containing particles
other than lipoprotein(a), corrected non�HDL-C was
calculated using the relationship:

non�HDL-Ccorr ¼ ðtotal cholesterol�HDL-CÞ�0:3
� lipoproteinðaÞ mass

STATISTICAL ANALYSIS. Lipoprotein(a), LDL-C, and
non�HDL-C distributions were assessed for the
overall population and by treatment group at base-
line and at months 4 and 12 (�4 weeks) after
randomization. If a patient had multiple values
within each of these periods, the last value was
analyzed. Missing values were imputed by pre-
specified methods.
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Baseline characteristics were assessed by lip-
oprotein(a) quartile and compared across quartiles by
chi-square tests for categorical variables and Kruskal-
Wallis tests for continuous variables. Relationships
between baseline lipoprotein(a) and endpoint events
in the placebo group were determined by Cox pro-
portional hazards models using the baseline lip-
oprotein(a) quartile as the predictor variable. We
constructed unadjusted models and models that
adjusted for demographic and clinical variables (age,
sex, race, geographic region, body mass index,
smoking history, diabetes, time from index ACS to
randomization) and baseline LDL-Ccorr. p Values were
computed for linear trends across baseline lip-
oprotein(a) quartiles. A spline analysis of degree 3
(piecewise cubic curve) of the relationship between
continuous baseline lipoprotein(a) and MACE in the
placebo group was performed, setting the hazard ra-
tio (HR) to 1.00 at the overall baseline median
(21.2 mg/dl) concentration of lipoprotein(a) with
natural cubic basis and 3 knots, located at the overall
25th percentile (6.7 mg/dl), median (21.2 mg/dl), and
75th percentile (59.6 mg/dl). The p value for the
spline effect was based on the score test.

Heterogeneity in the relative and absolute effects
of alirocumab treatment on MACE were assessed
according to baseline lipoprotein(a) quartile. To
assess the former, we constructed a Cox propor-
tional hazards model with baseline lipoprotein(a)
quartile, treatment, and their interaction as pre-
dictors, as well as a baseline hazard stratification
by geographic region. To assess the latter, absolute
risk reductions with alirocumab treatment, quanti-
fied as differences in observed incidences between
treatment groups, were compared across baseline
lipoprotein(a) quartiles using a Gail-Simon test (22).

To determine the association between modification
of lipoprotein(a) levels by alirocumab treatment and
MACE, the relationships between the change in lip-
oprotein(a) from baseline to month 4 and the risk of
MACE after month 4 were described using Cox pro-
portional hazards models in the alirocumab group.
The following models were developed: a model
without covariates (model 1); a model adjusted for
baseline lipoprotein(a) (model 2); a model addition-
ally adjusted for either baseline LDL-Ccorr and change
from baseline to month 4 in LDL-Ccorr (model 3A) or
baseline non�HDL-Ccorr and change from baseline to
month 4 in non�HDL-Ccorr (model 3B); and a model
adjusted for all variables in model 3, as well as the
previously mentioned demographic and clinical var-
iables with either LDL-Ccorr (model 4A) or non�HDL-
Ccorr (model 4B). A comparison of models 2 and 3A
indicated whether the relationship between the
change in lipoprotein(a) and MACE was modified by
adjustment for the simultaneous change in LDL-Ccorr.
Similarly, a comparison of models 2 and 3B indicated
whether the relationship between the change in lip-
oprotein(a) and MACE was modified by adjustment
for the simultaneous change in all other apolipopro-
tein-B�containing lipoproteins. Effects are summa-
rized by HRs per 1-mg/dl reduction and the observed
median reduction in lipoprotein(a) (all models)
and in LDL-Ccorr or non�HDL-Ccorr (models 3A, 3B,
4A, and 4B) at month 4. The predicted absolute
reduction in the risk of MACE with alirocumab
attributable to lowering of lipoprotein(a) and to
simultaneous lowering of LDL-Ccorr (model 3A) or
non�HDL-Ccorr (model 3B) 4 years after randomiza-
tion was calculated at the 25th (6.7 mg/dl), 50th
(21.2 mg/dl), and 75th (59.6 mg/dl) percentiles of
baseline lipoprotein(a), using the relationships be-
tween the variables and baseline lipoprotein(a)
described in the Online Appendix. Attribution for
each parameter was based on its contribution to
the predicted absolute risk reduction relative to
no change in lipoprotein(a) and LDL-Ccorr or
non�HDL-Ccorr.

All analyses were conducted by an independent
academic statistical team at the State University of
New York Downstate School of Public Health using
SAS version 9.4 (SAS Institute, Cary, North Carolina).

RESULTS

BASELINE CHARACTERISTICS. The distribution of
baseline lipoprotein(a) was highly skewed, with a
median of 21.2 mg/dl (interquartile range [IQR]: 6.7 to
59.6 mg/dl) (Online Figure 1); 16% of patients had the
minimum value for the assay of 2.0 mg/dl. Baseline
characteristics of the patients by lipoprotein(a) quar-
tile are shown in Online Table 1. Participants in the
upper lipoprotein(a) quartiles were more likely to be
women, black, and from North America but less likely
to smoke or have diabetes. LDL-C and non�HDL-C
concentrations and the percentage of patients treated
with high-intensity statin were highest in the highest
quartile of lipoprotein(a). Conversely, LDL-Ccorr and
non�HDL-Ccorr decreased across increasing quartiles
of lipoprotein(a). Participants in the higher lip-
oprotein(a) quartiles were more likely to have
had blinded up titration of alirocumab and less likely
to have had blinded substitution of placebo
for alirocumab.

BASELINE LIPOPROTEIN(A), CARDIOVASCULAR

EVENTS, AND MORTALITY IN THE PLACEBO GROUP.

Median follow-up was 2.8 years (IQR: 2.3 to 3.4 years).
The relationship between baseline lipoprotein(a)
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FIGURE 1 Baseline Lipoprotein(a) Quartile as a Predictor of Events in the Placebo Group
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quartile and incidence of events in the placebo group
is shown in Figure 1, and modeling of this relationship
is shown in Online Table 2. The occurrence of MACE
and coronary heart disease death and/or nonfatal
myocardial infarction increased significantly from the
lowest to the highest lipoprotein(a) baseline quartile.
In unadjusted Cox proportional hazards models,
participants in the highest, compared with the lowest,
baseline quartile of lipoprotein(a) were 46% and 54%
more likely to experience MACE and nonfatal
myocardial infarction and/or coronary heart disease
death, respectively. These relationships were
numerically stronger after adjustment for baseline
LDL-Ccorr. There were no significant relationships
between baseline lipoprotein(a) quartile and ischemic
stroke, cardiovascular death, or all-cause death.
Spline analysis of continuous baseline lipoprotein(a)
and the HR for MACE (Figure 2) indicated a relatively
linear relationship between baseline lipoprotein(a)
and the risk of MACE.
Effect of a l i rocumab on MACE strat ified by
base l ine l ipoprote in(a ) quart i le . Relative and
absolute treatment effects on MACE stratified by
baseline lipoprotein(a) quartile are shown in Figure 3.
Overall, the HR for MACE (alirocumab and/or
placebo) was 0.85 (95% confidence interval [CI]: 0.78
to 0.93; p < 0.001) with an absolute risk reduction of
1.6%. There was no statistically significant interaction
between treatment and baseline lipoprotein(a) quar-
tile on the relative risk of MACE (pinteraction ¼ 0.55)
(Figure 3, left). In contrast, absolute risk reduction in
MACE with alirocumab was several-fold higher in the
upper quartiles (2.3% and 2.1%) than in the lower
quartiles of baseline lipoprotein(a) (0.4% and 1.4%,
respectively), but there was evidence that all were
positive (pinteraction ¼ 0.0011) (Figure 3, right). The
numbers of patients needed to treat with alirocumab
for a median of 2.8 years to prevent 1 event were 238,
69, 43, and 49 in quartiles 1, 2, 3, and 4 of baseline
lipoprotein(a), respectively.
Effect of alirocumab on lipoprotein(a) levels. Online
Figure 2 shows the medians and IQRs of lip-
oprotein(a) concentrations by baseline quartile of
lipoprotein(a) and treatment group. Baseline distri-
butions of lipoprotein(a) were similar in both
treatment groups. At month 4, lipoprotein(a) con-
centrations were significantly lower in the alirocumab
group than in the placebo group, with levels
remaining stable at month 12. Figure 4 shows the
absolute change from baseline to month 4 in lip-
oprotein(a), LDL-C, and LDL-Ccorr in the alirocumab
(Figure 4A) and placebo groups (Figure 4B). Overall,
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FIGURE 2 Spline Analysis of Continuous Baseline Lipoprotein(a) and the Primary Endpoint Hazard Ratio (MACE) in the Placebo Group
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the median relative and absolute changes in lip-
oprotein(a) from baseline to month 4 in the alir-
ocumab group were �23% (IQR: �47% to 0%)
and �5.0 mg/dl (IQR �13.5 to 0 mg/dl), respectively.
Although the relative change in lipoprotein(a) with
alirocumab treatment was similar across baseline
FIGURE 3 Relative and Absolute Treatment Effect on MACE by Base
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FIGURE 4 Absolute Change From Baseline to Month 4 in LDL-C, LDL-Ccorr, and Lipoprotein(a) Levels
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1
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3B
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in LDL-C were similar in all lipoprotein(a) quartiles;
however, accounting for the cholesterol content in
lipoprotein(a), the change in LDL-Ccorr diminished
slightly in the upper lipoprotein(a) quartiles, with an
overall median change of �51.1 mg/dl (IQR: �67.2
to �33.7 mg/dl) (Figure 4A). Baseline lipoprotein(a)
Relationship of Changes in Lipoprotein(a) and LDL-C From Baseline to M

Model Adjustments
Change

Parameter

None Lp(a) 0

Baseline Lp(a) Lp(a) 0

Baseline Lp(a), baseline LDL-Ccorr, change
from baseline to month 4 in LDL-Ccorr

Lp(a) 0

LDL-Ccorr 0

Baseline Lp(a), baseline non�HDL-Ccorr,
change from baseline to month 4 in
non�HDL-Ccorr

Lp(a) 0

Non�HDL-Ccorr 0

Baseline Lp(a), baseline LDL-Ccorr, change
from baseline to month 4 in LDL-Ccorr,
demographic and clinical characteristics

Lp(a) 0

LDL-Ccorr 0

Baseline Lp(a), baseline non�HDL-Ccorr,
change from baseline to month 4 in
non�HDL-Ccorr, demographic and clinical
characteristics

Lp(a) 0

Non�HDL-Ccorr 0

edian decreases for lipoprotein(a) [Lp(a)], low-density lipoprotein cholesterol corrected fo
r lipoprotein(a) cholesterol (non-HDL-Ccorr) were 5.0 mg/dl, 5.1 mg/dl, and 57.1 mg/dl, res

dence interval; HR ¼ hazard ratio.
was strongly correlated with the change from baseline
to month 4 in lipoprotein(a) and was weakly corre-
lated with the change in LDL-Ccorr and non�HDL-Ccorr

(Online Figure 3). There were no systematic changes
in lipoprotein(a) levels over time in the placebo group
(Figure 4B).
onth 4 to MACE After Month 4 in the Alirocumab Group

HR (95% CI) per
1-mg/dl Decrease

HR (95% CI) for
Observed Median Decrease p Value

.998 (0.993�1.002) 0.988 (0.967�1.009) 0.2730

.993 (0.989�0.998) 0.968 (0.948�0.989) 0.0027

.994 (0.990�0.999) 0.972 (0.951�0.992) 0.0081

.996 (0.994�0.998) 0.807 (0.720�0.904) 0.0002

.994 (0.990�0.998) 0.972 (0.951�0.992) 0.0078

.997 (0.995�0.998) 0.819 (0.734�0.914) 0.0004

.994 (0.990�0.998) 0.973 (0.953�0.992) 0.0071

.995 (0.993�0.997) 0.780 (0.696�0.874) <0.0001

.994 (0.990�0.998) 0.973 (0.953�0.992) 0.0064

.996 (0.994�0.998) 0.802 (0.717�0.897) 0.0001

r lipoprotein(a) cholesterol (LDL-Ccorr), and non-high density lipoprotein cholesterol
pectively.
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Effect of alirocumab-induced changes in lipoprotein(a) and
LDL-Ccorr on outcomes. Table 1 shows the results of the
sequential Cox proportional hazards models related
to the change in lipoprotein(a) on alirocumab treat-
ment to the risk of MACE, with concurrent adjust-
ment for LDL-Ccorr or non�HDL-Ccorr. The analysis
included 9,245 patients, 710 of whom had a MACE
event. Online Table 3 shows the modeling for coro-
nary heart disease death and/or nonfatal myocardial
infarction, ischemic stroke, cardiovascular death, or
all-cause death. In unadjusted models, no significant
relationship was found between the change in lip-
oprotein(a) and the risk of MACE (model 1). After
adjustment for baseline lipoprotein(a), a significant
relationship of reduction in lipoprotein(a) with a
lower risk of MACE was apparent (model 2). This was
because higher baseline lipoprotein(a) was associated
with both greater cardiovascular risk and greater
reduction in lipoprotein(a) on alirocumab treatment.
Therefore, accounting for the former exposed the
relationship of the latter to the risk of MACE. Impor-
tantly, further adjustment for baseline concentration
and change in concentration (baseline to month 4) of
either LDL-Ccorr or non�HDL-Ccorr did not attenuate
the relationship of change in lipoprotein(a) to risk of
MACE (comparison of model 2 with models 3A and 3B,
respectively). In models adjusted for LDL-Ccorr or
non�HDL-Ccorr (models 3A and 3B), a 1-mg/dl
decrease in lipoprotein(a) was associated with HRs for
MACE of 0.994 (95% CI: 0.990 to 0.999) and 0.994
(95% CI: 0.990 to 0.998), respectively. In these
models, a 1-mg/dl decrease in LDL-Ccorr or non�HDL-
Ccorr was associated with HRs for MACE of 0.996
(95% CI: 0.994 to 0.998) and 0.997 (95% CI: 0.995 to
0.998), respectively. This indicated that reductions in
lipoprotein(a) and LDL-Ccorr (or non�HDL-Ccorr) with
alirocumab treatment independently contributed to
the reduced risk of MACE. Further adjustment for
demographic and clinical variables had minimal ef-
fects on the relationships (models 4A and 4B).

The magnitude of lipoprotein(a) change with alir-
ocumab treatment increased with baseline lip-
oprotein(a) concentrations. For example, patients at
the 25th, 50th, and 75th percentiles of the baseline
lipoprotein(a) distribution had expected changes
in lipoprotein(a) with alirocumab treatment
of �1.6, �4.8, and �13.4 mg/dl, respectively. In turn,
greater lipoprotein(a) reduction with alirocumab
treatment was associated with greater contribution
to the reduction in risk of MACE. The Central
Illustration shows the contributions to the predicted
MACE absolute risk reduction with alirocumab
attributable to changes in lipoprotein(a) and to
changes in LDL-Ccorr (Central Illustration A) or
non�HDL-Ccorr (Central Illustration B) for patients in
the 25th, 50th, and 75th percentiles of baseline lip-
oprotein(a). Consistent with Figure 3 (right), the pre-
dicted 4-year absolute risk reduction was greater for
higher percentiles of baseline lipoprotein(a). At the
25th percentile, lipoprotein(a) reduction accounted
for a small fraction of the predicted 2.29% absolute
reduction in MACE with alirocumab, whereas at the
75th percentile of baseline lipoprotein(a), lip-
oprotein(a) reduction accounted for 25% of the pre-
dicted 3.27% absolute reduction in risk of MACE with
alirocumab (Central Illustration A). Findings were
similar when changes in non�HDL-Ccorr were
considered (Central Illustration B). Thus, among pa-
tients with low baseline lipoprotein(a), reduction of
lipoprotein(a) with alirocumab contributed minimally
to the reduction in MACE. In contrast, among patients
with high baseline lipoprotein(a), reduction of lip-
oprotein(a) with alirocumab contributed substantially
to the reduction of MACE, although the effect of
reducing LDL-Ccorr (or non�HDL-Ccorr) remained pri-
mary. The randomized treatment predicted 4-year
absolute risk reduction after month 4, based on
18,487 patients and 1,576 events, was 2.34%, and the
treatment HR was 0.81 (95% CI: 0.73 to 0.89).

DISCUSSION

Among patients with recent ACS who received
intensive or maximum-tolerated statin treatment,
baseline lipoprotein(a) levels were predictive of
MACE, nonfatal myocardial infarction or coronary
heart disease death, and cardiovascular death, inde-
pendent of baseline LDL-Ccorr. Baseline lipoprotein(a)
level did not predict ischemic stroke or all-cause
death. For patients in the upper 2 quartiles of base-
line lipoprotein(a), alirocumab was a particularly
efficient intervention that required treatment of 43 to
49 patients for a median of 2.8 years to prevent 1
MACE.

Alirocumab produced a median 23% reduction in
lipoprotein(a). The absolute reduction in lip-
oprotein(a) was directly related to the baseline con-
centration. A novel observation from this analysis
was that the reductions of lipoprotein(a) and
LDL-Ccorr (or non�HDL-Ccorr) by alirocumab were
independently associated with the absolute reduction
in risk of MACE. The relative contribution of lip-
oprotein(a) reduction to reduced risk of MACE was
negligible when baseline lipoprotein(a) concentration
was low but became substantial when baseline lip-
oprotein(a) concentration was high. Nonetheless,
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CENTRAL ILLUSTRATION Relative Contributions of Changes in Concentrations of Corrected Low-Density
Lipoprotein Cholesterol, Corrected Non-High-Density Lipoprotein Cholesterol, and Lipoprotein(a) to the Absolute
Reduction in Major Adverse Cardiovascular Events in the Alirocumab Group
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Based on models with adjustments for baseline levels shown in Table 1 (Models 3A and 3B), A shows the absolute contributions of reductions in lipoprotein(a) [Lp(a)]

and low-density lipoprotein cholesterol corrected for the cholesterol in Lp(a) (LDL-Ccorr) to the predicted 4-year absolute reduction in major adverse cardiovascular

events (MACE) at the 25th, 50th, and 75th percentile of baseline Lp(a) concentration (Model 3A), while B shows the corresponding data for reductions in non-high-

density lipoprotein cholesterol corrected for the cholesterol in Lp(a) (non-HDL-Ccorr) (Model 3B). The absolute contribution of Lp(a) reduction to reduced risk of MACE

was minimal when baseline Lp(a) concentration was low but was substantial when baseline Lp(a) concentration was high. The expected baseline levels at the 25th,

50th, and 75th percentiles of baseline Lp(a) are 87.3 mg/dl, 84.3 mg/dl, and 76.4 mg/dl, respectively for LDL-Ccorr and 118.2 mg/dl, 114.7 mg/dl, and 105.4 mg/dl,

respectively, for non-HDL-Ccorr. The expected reductions at the 25th, 50th, and 75th percentiles of baseline Lp(a) are 1.6 mg/dl, 4.8 mg/dl, and 13.4 mg/dl,

respectively, for Lp(a), 51.1 mg/dl, 50.5 mg/dl, and 48.9 mg/dl, respectively, for LDL-Ccorr, and 57.1 mg/dl, 56.2 mg/dl, and 53.9 mg/dl, respectively,

for non-HDL-Ccorr.
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reduction of MACE remained predominantly attrib-
utable to reduction of LDL-Ccorr (or non�HDL-Ccorr)
across the range of baseline lipoprotein(a)
concentrations.

These novel observations added to evidence from
epidemiological (1,2) and genetic (5,23,24) studies
that lipoprotein(a) is an independent and causal
contributor to the risk of coronary heart disease and
supported the hypothesis that interventions specif-
ically aimed at reducing lipoprotein(a) have the po-
tential to reduce cardiovascular risk through that
mechanism.

Our data indicate a greater benefit of lipoprotein(a)
reduction than that estimated in a Mendelian
randomization analysis relating genetically deter-
mined lipoprotein(a) levels in healthy individuals to
the risk of incident coronary heart disease (5,24). This
might be the case if lipoprotein(a) was a more
important risk factor in patients with advanced
atherosclerosis (as in ACS) than in healthy pop-
ulations. Lipoprotein(a) was purported to have a role
in thrombosis and atherosclerosis (25). Both processes
are involved in the pathogenesis of ACS. Because of
the propensity of lipoprotein(a) to bind to fibrin in the
injured vascular wall (2), outcomes after ACS may be
particularly sensitive to its concentration.

Our finding that lipoprotein(a) was a prognostic
marker in a statin-treated coronary heart disease
population was consistent with a recent meta-
analysis of 7 statin trials (26). In contrast, 2 trials
among patients with ACS found no association be-
tween baseline lipoprotein(a) and MACE, but enrolled
patients with lower baseline lipoprotein(a) levels
than those measured in the present study (3,4).

Niacin and cholesteryl ester transfer protein in-
hibitors reduced lipoprotein(a) by 20% to 25%; how-
ever, trials with these agents did not show reduction
in MACE (10,11,27). A potential benefit of
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lipoprotein(a) reduction with niacin or cholesteryl
ester transfer protein inhibitors was perhaps miti-
gated by other, undesirable effects of the drugs
(27,28). The FOURIER (Further Cardiovascular Out-
comes Research with PCSK9 Inhibition in Subjects
with Elevated Risk) trial (29) compared the PCSK9
inhibitor evolocumab with placebo in patients with
stable atherosclerotic cardiovascular disease and
demonstrated reduction of lipoprotein(a) and reduc-
tion in MACE similar in magnitude to the present
analysis. A regression analysis of treatment group
differences in lipoprotein(a) at week 48 by baseline
decile found a correlation between greater differ-
ences in lipoprotein(a) and risk of coronary events
after adjustment for LDL-C. Our findings extend those
of the FOURIER trial by demonstrating, for the first
time, that patient-level pharmacological lowering of
lipoprotein(a) relatively early after the initiation of
therapy was associated with reduced risk of subse-
quent MACE, independent of concurrent reductions
of LDL-Ccorr or non�HDL-Ccorr.

The predicted MACE 4-year absolute risk re-
ductions corresponding to joint changes in lip-
oprotein(a) and LDL-Ccorr (or non�HDL-Ccorr) with
alirocumab shown in the Central Illustration varied
around the randomized treatment risk reduction of
2.34%. Although this is >2.0%, the previously re-
ported risk reduction in the ODYSSEY OUTCOMES
trial (16), numerical correspondence of these risk re-
ductions were not necessarily expected, because the
analysis in Table 1 and the Central Illustration
considered MACE beginning after the month 4
assessment for each patient, whereas the overall
analysis of the trial considered MACE beginning at
randomization. Alirocumab had no apparent effect on
MACE through month 4; therefore, effects after
month 4 were greater than the overall effects during
the trial.

STUDY LIMITATIONS. The cholesterol content in lip-
oprotein(a) particles is variable. Correction of LDL-C
or non�HDL-C by 30% of lipoprotein(a) mass is thus
an approximation of the contribution from choles-
terol in lipoprotein(a). Lipoprotein(a) mass, as
measured in this study, correlates imperfectly with
molar concentration of lipoprotein(a) because mass is
influenced by apolipoprotein(a) isoform size. At high
lipoprotein(a) mass, molar concentration is under-
estimated, and vice versa (30). However, to the extent
such effects were present, they would have biased
our study toward the null. Furthermore, the magni-
tude of lipoprotein(a) lowering by alirocumab is not
affected by apolipoprotein(a) size (28,31). Changes in
lipoprotein(a) might reflect adherence to study
treatment, and possibly, general adherence (i.e., to
other evidence-based cardiovascular therapies and
lifestyle modifications), which, in turn, might affect
prognosis. However, changes in LDL-C or non�HDL-C
would be similarly reflective of adherence, and
adjustment for those variables should account for any
effect of adherence in the present analysis. Finally,
results in patients with ACS who received intensive
statin therapy might not be generalizable to
other populations.

CONCLUSIONS

There is strong evidence that elevated lipoprotein(a)
contributes to the incidence of coronary heart dis-
ease, but no treatment has yet been proven to reduce
coronary risk through a reduction in lipoprotein(a).
The ODYSSEY OUTCOMES trial was not designed
specifically to enroll and treat patients with high
lipoprotein(a). However, our observations suggest
that reduction of lipoprotein(a) contributed to the
reduction of cardiovascular risk with alirocumab
therapy, independent of the concurrent reduction of
other atherogenic lipoproteins. Therefore, lip-
oprotein(a) is both a prognostic factor and a poten-
tially important independent treatment target among
patients with recent ACS.
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