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Abstract: Genetic association studies have shown their usefulness in assessing the role of ion channels
in human thermal pain perception. We used machine learning to construct a complex phenotype
from pain thresholds to thermal stimuli and associate it with the genetic information derived from the
next-generation sequencing (NGS) of 15 ion channel genes which are involved in thermal perception,
including ASIC1, ASIC2, ASIC3, ASIC4, TRPA1, TRPC1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM8,
TRPV1, TRPV2, TRPV3, and TRPV4. Phenotypic information was complete in 82 subjects and NGS
genotypes were available in 67 subjects. A network of artificial neurons, implemented as emergent
self-organizing maps, discovered two clusters characterized by high or low pain thresholds for heat
and cold pain. A total of 1071 variants were discovered in the 15 ion channel genes. After feature
selection, 80 genetic variants were retained for an association analysis based on machine learning.
The measured performance of machine learning-mediated phenotype assignment based on this
genetic information resulted in an area under the receiver operating characteristic curve of 77.2%,
justifying a phenotype classification based on the genetic information. A further item categorization
finally resulted in 38 genetic variants that contributed most to the phenotype assignment. Most of
them (10) belonged to the TRPV3 gene, followed by TRPM3 (6). Therefore, the analysis successfully
identified the particular importance of TRPV3 and TRPM3 for an average pain phenotype defined by
the sensitivity to moderate thermal stimuli.

Keywords: next-generation sequencing; human genomics; pain; experimental pain models; data
science; machine learning

1. Introduction

Thermal pain induced by heat or cold stimuli has been involved in various different clinical
types of pain, such as inflammatory conditions [1,2]; peripheral nerve injury [3], including
chemotherapy-induced neuropathic pain [4]; or painful bladder syndrome [5]. The importance
of thermal pain is emphasized by the observation that human experimental pain models that use
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thermal nociceptive stimuli provide a comparatively good prediction of clinical analgesic drug
effects [6,7]. For drugs targeting thermosensitive ion channels, heat or cold-triggered nociception is
relevant in both the experimental and clinical setting [8].

The family of transient receptor potential (TRP) channels gated by thermal stimuli comprise
different TRP ion channels (e.g., ankyrin (A), canonical (C), melastatin (M), vanilloid (V)) that have
specific activation thresholds, ranging from noxious heat (TRPV2 ≥ 52 ◦C; TRPV1 ≥ 43 ◦C) via warmth
(TRPM2 ≥ 37 ◦C; 30 ◦C ≤ TRPM3 ≤ 35 ◦C; 26 ◦C ≤ TRPV3, TRPV4 ≤ 34 ◦C) and cold (25 ◦C ≤ TRPC5 ≤
37 ◦C; TRPM8 ≤ 25 ◦C) up to noxious cold (TRPA1 ≤ 17 ◦C) [9]. Further known cold sensors include
different acid sensing ion channels (ASIC) (ASIC1 [10]; ASIC2; ASIC3 [11]; and, with a regulatory
role for other ASICs, ASIC4 [12]). The ASIC ion channels are modulated by a cold temperature of
≤25 ◦C [11] and variants in their coding genes are primary candidate modulators of thermal nociception
and therefore relevant for the variability of thermal pain and/or the effects of various novel analgesic
drugs under clinical development [13] (Table 1).

The human perception of pain induced by thermal stimuli has been repeatedly addressed by
genetic association studies, which, by identifying modulatory variants, decoded the relevant genes
for the pain phenotype [14,15]. A recent assessment of human heat pain and its enhancement by
topical capsaicin application showed by an association analysis of human genetic variants that TRPA1
plays a more important role in this pain-related phenotype than TRPV1 [15]. However, in addition to
capsaicin, this study also included local ultraviolet (UV-B) irradiation as a second hypersensitizing
procedure that not only seems to have influenced sensitivity to heat pain, which can be explained by
the excitation of TRPV4 and TRPV1 [16,17], but also sensitivity to cold pain [18]. Therefore, in the
present analysis, the role of several different thermosensitive ion channels in the modulation of thermal
pain induced by either hot or cold stimuli was determined by the relative importance of variants in
their coding genes, using next-generation sequencing (NGS) and the training of artificial intelligence to
assign an individual to the correct thermal pain phenotype [15].

Table 1. Novel analgesic drugs developed with the purpose of targeting proteins/genes associated
with human hereditary insensitivity to pain—i.e., to mimic the pain insensitivity phenotype observed
in carriers of loss of function mutations in these genes—that are currently in a clinical phase of
development. The information was queried on January 2020 from the Therapeutic Target Database at
http://db.idrblab.net [19].

Gene Symbol Drug Action Company

ASIC1 PPC-5650 Modulator Antalium
ASIC2 THA-904 Antagonist Theralpha
TRPA1 HX-100 Inhibitor Hydra Biosciences

TRPV1

CNTX-4975 Agonist Centrexion Therapeutics
DWP-05195 Antagonist Daewoong Pharmaceutical
GRC-15300 Antagonist Glenmark Pharmaceuticals

RESINIFERATOXIN Activator Sorrento Therapeutics
ABT-102 Blocker Abbott
CA-011 Agonist Concentric Analgesics Los Altos

JNJ-39439335 Antagonist Johnson & Johnson
MR-1817 Antagonist Mochida Pharmaceutical

PF-3864086 Antagonist Pfizer
PHE-377 Antagonist Pharmeste

SAR-115740 Antagonist Sanofi Aventis
TRPV3 SAR-292833 Modulator Sanofi Aventis

2. Results and Discussion

2.1. Participants and Descriptive Data

Of the total 100 participants in the study (age: range 19–42 years, mean ± standard deviation,
SD: 25 ± 3.5 years, sex: 54 women), phenotyping was complete in a cohort of n = 82 subjects (age:
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range 19–33 years, mean ± standard deviation, SD: 24.7 ± 2.7 years, sex: 45 women). In the remaining
subjects, the pain phenotypes were only partially recorded or not recorded at all, and since the key
data were not imputed, these subjects had to be excluded from the analysis. Genetic information was
available from n = 67 subjects due to failed quality checks in the remaining samples despite repeated
NGS runs. The genetic information initially comprised 1070 variants with at least one deviation from
the reference hg19 sequence, of which 78.7% were single nucleotide variants (SNV), 10.85% were
deletions (Del), 8.6% were insertions (Ins), and 1.79% were mixed variants (MIX).

2.2. Phenotypes of Thermal Pain

An examination of the pain thresholds determined on the control side or after UV-B irradiation
showed that a transformation of the data was not necessary. The phenotypic analyses were therefore
performed in the data obtained after the processing of the sensory thresholds according to the standard
procedure recommended by the German Research Network for Neuropathic Pain [20–22]. A plot of
the distribution of pain thresholds to thermal stimuli showed that for heat stimuli, UV-B caused a clear
shift towards higher sensitivity, whereas for cold stimuli the effect was less pronounced (Figure 1).
The shape of data distribution was changed, but only a moderate tendency towards a shift to the right
was observed.

Figure 1. Distribution of the z-values of the quantitative sensory testing parameters heat pain threshold
(HPT) and cold pain threshold (CPT), acquired at baseline (black) and following hypersensitization
using the topical application of UV-B (violet). The density distribution is presented as probability
density function (PDF), estimated by means of the Pareto Density Estimation (PDE [23]), as implemented
in the R package “DataVisualizations” (https://cran.r-project.org/package=DataVisualizations [24]).
Higher z-scores indicate a higher sensitivity to the respective stimuli. The figure has created using
the R software package (v. 3.6.2 for Linux; http://CRAN.R-project.org/ [25]) and the libraries “ggplot2”
(https://cran.r-project.org/package=ggplot2 [26]).

The correlation matrix among the features related to thermal pain and the UV-B effects (Figure 2)
indicated a strong correlation between the two pain thresholds to cold stimuli, zCPTbaseline and zCPTUVB
(Pearson’s r = 0.812, p < 2.2 × 10−16). The PCA of these two parameters resulted in two principal
components with eigenvalues of 1.81 and 0.188, explaining 90.58 and 9.42 of the total variances,
respectively. For the first component, PC1cold, zCPTbaseline and zCPTUVB contributed equally. PC1cold
was used in the cluster analyses instead of the two cold pain thresholds.

After a distance-preserving projection of the data from high-dimensional space onto a grid of
50 × 80 artificial neurons and the addition of the distances in the high-dimensional space as a color
code, a clear two-cluster structure was found in the dataset (Figure 3A). Specifically, the U-matrix
visualization resulted in two different clusters of n1 = 51 and n2 = 31 subjects, which were visually
separated from each other on the topographic map analogy by a “snow-covered mountain ridge”.
The cluster solution had silhouette indices of 0.37.

https://cran.r-project.org/package=DataVisualizations
http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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Figure 2. Correlation scatter plot matrix of the pain thresholds to heat and cold stimuli acquired under
control conditions or after UV-B irradiation, and of the UV-B effects calculated as the differences between
the corresponding thresholds with and without UV-B-induced hypersensitization. In the lower left part,
single observations are shown as black dots. The lines indicate a linear fit (and confidence intervals)
for visual guidance. Please note, however, that the statistics have been done using non-parametric
correlations shown in the upper right part of the matrix as values of Pearson’s r. The correlation
strength is also color coded from red, indicating a high positive correlation, via grey/white, indicating no
correlation, to blue, indicating a strong negative correlation. The diagonal shows the data distribution
as histograms. The figure has created using the R software package (v. 3.6.2 for Linux; http:
//CRAN.R-project.org/ [25]) and the libraries “ggplot2” (https://cran.r-project.org/package=ggplot2 [26])
and “GGally” (https://cran.r-project.org/package=GGally [27]).

Repeated incremental clipping for error reduction (RIPPER) was able to assign the subjects
perfectly with 100% accuracy to the correct cluster. These rules consisted initially of three rules that
could be combined into a single rule reading “IF zCPTbaseline ≤ 0.19 OR zHPTbaseline ≤ −1.06 THEN the
subject belongs to cluster #2 ELSE the subject belongs to cluster #1”. Nevertheless, the clusters differed
in further pain-related parameters (Figure 3C), as indicated by significant effects in the rm-ANOVA
(main effect “test”: df = 5400, F =, 54.48, p = 4.3 × 10−43; effect “cluster”: df = 1,80, F = 112.922, p = 5.9 ×
10−6 interaction t-tests (zHPTbaseline: t = 5.9434, df = 72.274, p = 9.041 × 10−8, zHPTUVB: t = 5, df = 63.665,
p = 4.77 × 10−17; interaction “test” by “cluster”: df = 5400, F = 45.212, p = 5.8 × 10−37. Post-hoc t-tests
for the cluster differences resulted in zCPTbaseline: t = 15.741, df = 49.529, p < 2.2 × 10−16, zCPTUVB:
t = 9.1418, df = 58.381, p = 7.298 × 10−13, UVBEffHeat: t = −1.657, df = 69.417, p = 0.102, UVBEffcold:

http://CRAN.R-project.org/
http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=GGally


Int. J. Mol. Sci. 2020, 21, 4367 5 of 23

t = −2.6313, df = 59.316, p = 0.01082), of which the raw thresholds differences were all significant, while
for the UV-B effects calculated as the differences between the baseline and post-irradiation thresholds,
those on heat were not significant and those on cold were significant only at the uncorrected α level
while exceeding the corrected α level of 0.00833. The sexes were equally represented in both clusters
(χ2 = 0, df = 1, p = 1).

Figure 3. Neural network (emergent self-organizing maps (ESOM)/U-matrix)-based clustering [28]
of the pain thresholds to thermal stimuli and the effects of UV-B irradiation, exploring the 82 ×
5-sized matrix composed of the values of zHPTbaseline, zHPTUVB, UVBEffHeat, and UVBEffcold acquired
or calculated in 82 subjects, and in addition to PC1cold being the first component of a PCA of the highly
correlated parameters zCPTbaseline and zCPTUVB. (A) U-matrix visualization of distance-based data
structures, using a projection of the data points onto a toroid grid of 4000 neurons where opposite edges
are connected. The dots represent the so-called “best matching units” (BMU)—i.e., neurons on the grid
that after ESOM learning carried the vector that was most similar to a subjects’ data vector. The U-matrix
visualization was colored as a top view of a topographic map with brown (up to snow-covered) “heights”
and green “valleys” with blue “lakes”. Watersheds indicate borderlines between different clusters.
Two clusters emerged in this way, separated by the white “mountain ridge” in the center of the U-matrix.
BMUs belonging to clusters #1 or #2 are colored in blue or green, respectively. Some heterogeneity
within the cluster can be observed, however without providing a clear separation of a further cluster.
The box plot panel to the left of the U-matrix displays the variables submitted to the ESOM-based data
projection. (B) Silhouette plot [29] indicating how near each subject was to its own cluster relative to the
neighboring clusters. Positive values indicate that the sample is away from the neighboring clusters,
while negative values indicate that those samples might have been assigned to the wrong cluster because
they are closer to the neighboring cluster than to their own cluster. (C) Pattern of pain thresholds
among the two pain-related phenotypes resulting from the cluster analysis (***: p < 0.001 (uncorrected).
(*): p < 0.05 (uncorrected)). The boxes have been constructed using the minimum, quartiles, median
(solid line within the box), and maximum. The whiskers add 1.5 times the inter-quartile range (IQR) to
the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. The dots indicate single data
points, jittered to enhance visibility. Alpha-corrected significant group differences according to paired
t-tests are indicated at the bottom of the box pairs. The figure has been created using the R software
package (v. 3.6.2 for Linux; http://CRAN.R-project.org/ [25]), and the R libraries “Umatrix” (https:
//cran.r-project.org/package=Umatrix [30]), “cluster” (https://cran.r-project.org/package=cluster [31])
and “ggplot2” (https://cran.r-project.org/package=ggplot2 [26]).

The present pain-related phenotypes were defined by the sensitivity to painful heat and cold
stimuli at baseline. While UV-B had a pronounced effect on heat pain, it mainly provided a right-shift to

http://CRAN.R-project.org/
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=ggplot2
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higher sensitivity, which was probably captured in the clusters by the correlation with the baseline pain
thresholds. However, other than previously observed with capsaicin-induced hypersensitization [15],
the magnitude of the response to UV-B did not further divide the subjects into subgroups. Moreover,
compared with heat pain, the UV-B-induced change in sensitivity was much less pronounced in cold
pain and consisted mainly in a change in the shape and modality of the distribution rather than in
a pronounced right shift. The change in the shape of the distribution explains why, in a slightly
differently designed analysis that—in addition to thermal stimuli—included also several different
mechanical nociceptive stimuli, a UV-B effect on cold pain was observed [18], triggering the present
analytical design to include both heat and cold stimuli. This had the consequence of an average pain
phenotype defined by the sensitivity to moderate thermal stimuli, in contrast to more extreme pain
phenotypes that are often sought when using hypersensitization to heat or cold pain. Translated to the
clinical setting, this may model patients who suffer from pain under average conditions without the
need for an extreme hot or cold environment to trigger the pain. Which clinical setting is modelled is a
decision to be made in experimental pain research.

Corresponding to the definition of the present pain phenotype by moderate cold and heat pain
criteria, the genes carrying most variants identified as informative for phenotype association codes for
thermal sensors with activation temperatures of 30 ◦C ≤ TRPM3 ≤ 35 ◦C and 26 ◦C ≤ TRPV3 [32,33].
This is compared with the other ion channels genotyped in this study nearest to the starting point of
the thermal stimulation at 32 ◦C. The TRPV3 gene variants were also among the most highly evaluated
in terms of their importance for the subjects’ assignment to the pain phenotype. (Table 2). TRPV3 has
also been found among the novel analgesic targets, in addition to other analgesics in development
targeting TRPV1, with most hits for ASIC1, ASIC2, and TRPA1. However, this list lacked TRPM3,
which appears not to have been considered in drug development to date, but is supported in the
present analysis as a new target for analgesics.

2.3. Ion Channel Gene Variants Relevant to Phenotypes of Thermal Pain

After the elimination of variants with distributions of homozygous and heterozygous carriers
of the respective alleles that did not meet the expectations from the Hardy–Weinberg equilibrium,
d = 894 variants were in the dataset for genetic association analyses, of which 861 were in the candidate
genes while the rest was in adjacent DNA positions. Most of them were very rare and, following
the elimination of uninformative variants based on Shannon information content, d = 250 variants
remained. Their allelic frequency was on average 20% (standard deviation 15%), with a range between
3% and 54%. Following the selection of variants based on the χ2 effect size for group differences between
the pain phenotype clusters, d = 80 genetic variants were retained for the machine learning-based
association analysis.

Thus, the data space for random forest-based classification was D = {(xi, yi)|xi,d ∈ X, yi ∈ Y,
i = 1 . . . n}, with d = 80 genetic features acquired from n = 67 subjects belonging to y = 2 classes of pain
phenotypes (pain cluster #1: n = 42, cluster #2: n = 25). Class assignment was achieved at a moderate
performance, with a balanced accuracy of 58.5% (95% confidence interval, CI: 51.7–77.1%) and an area
under the receiver operator characteristic curve (AUC-ROC) of 77.2% (95% CI: 66.3–86%). However,
this certainly exceeded the accuracy obtained when training the random forests with permuted
genetic information, where the genotype–phenotype relationship was deliberately destroyed and
the classification was not better than by guessing—i.e., with a balanced accuracy of 50% (95% CI:
50–54.8%) and an AUC-ROC of 56.7% (95% CI: 45.7–75.3%). Furthermore, none of the d = 51 genetic
variants in the negative control genes CYP2J2, CYP2C9, and CYP2C19 had been selected among the
most important variants in a separate analysis. It was concluded that NGS-based genotypes provided
relevant information to assign a person to the correct pain-related phenotype.
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Table 2. Genetic variants that, following feature selection, were included in the genotype–phenotype association, and their potential biological consequences as queried
from several publicly available databases (NCBI gene index database at http://www.ncbi.nlm.nih.gov/gene, GeneCards at http://www.genecards.org, Short Genetic
Variations database (dbSNP) at https://www.ncbi.nlm.nih.gov/snp, and the “1000 Genomes Browser” at https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes; all
accessed in January 2020). The putative functional consequences according to [34] are amino acid or protein changes for missense and deletion/insertion variants
(indicated in DNA Change by *) and reduced transcriptional efficiency for untranslated region (UTR) and synonymous exonic variants. At the right of the table,
the Eigen scores [35] of each variant queried from are shown, followed by the allelic frequencies at which each variant was present in the member of the two
phenotypic clusters.

Gene Rank Variant DNA Change# Molecular Consequence DBSNP ID Allelic Frequency
Cluster #1 [%]

Allelic Frequency
Cluster #2 [%]

ASIC1 27 X12.50467644.SNV G > T INTRONIC rs706792 32 42
ASIC2 3 X17.31618732.SNV A > G REGULATORY rs9893935 39 66
ASIC2 6 X17.31619500.SNV T>C REGULATORY rs9906918 48 42
ASIC2 17 X17.31619744.Ins * > C INSERTION rs981465862 21 38
ASIC2 26 X17.31340390.SNV T > C 3PRIME_UTR rs28936 39 56
ASIC4 37 X2.220402680.SNV T > C REGULATORY rs11695248 45 40
TRPA1 21 X8.72966124.SNV A > G DOWNSTREAM INTRONIC rs3735944 50 28
TRPA1 32 X8.72966002.SNV G > A SYNONYMOUS rs3735943 30 50
TRPC1 38 X3.142526594.SNV T > C DOWNSTREAM rs4627 20 30
TRPM3 11 X9.73150873.SNV T > G NON-SYNONYMOUS rs17535963 24 34
TRPM3 28 X9.73461337.SNV T > A SYNONYMOUS rs7862440 35 16
TRPM3 29 X9.73461558.SNV G > C INTRONIC rs10868907 48 62
TRPM3 33 X9.73457832.SNV G > A INTRONIC rs1337031 39 56
TRPM3 34 X9.73150918.SNV C > T NON-SYNONYMOUS rs41287373 43 60
TRPM3 35 X9.73457861.SNV A > G INTRONIC rs1337030 24 36
TRPM5 8 X11.2435956.SNV C > T NON-SYNONYMOUS rs4929982 30 48
TRPM5 16 X11.2435931.SNV C > T INTRONIC rs4929980 20 4
TRPM5 22 X11.2435809.SNV T > C INTRONIC rs4930102 37 44
TRPM5 25 X11.2435946.SNV A > C SPLICE_SITE rs4929981 45 54
TRPV1 2 X17.3469853.SNV A > C 3PRIME UTR rs4790522 15 36
TRPV1 9 X17.3480447.SNV T > C NON-SYNONYMOUS rs8065080 46 62
TRPV2 15 X17.16318932.SNV T > C REGULATORY rs3813769 30 42
TRPV2 24 X17.16325968.SNV A > G SYNONYMOUS rs8121 31 50
TRPV2 30 X17. 16323609.Del TAGT > * DELETION rs5819569 43 30
TRPV2 36 X17.16323589.SNV C > A REGULATORY’ rs4273076 49 32
TRPV3 1 X17.3433672.SNV C > A REGULATORY’ rs376793 32 40
TRPV3 5 X17.3427442.SNV A > G INTRONIC rs62069862 36 36
TRPV3 7 X17.3416555.SNV C > A INTRONIC rs7208811 48 58
TRPV3 10 X17.3448331.SNV A > T INTRONIC rs12945853 49 58
TRPV3 12 X17.3447914.SNV C > T SYNONYMOUS rs1039519 46 34

http://www.ncbi.nlm.nih.gov/gene
http://www.genecards.org
https://www.ncbi.nlm.nih.gov/snp
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
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Table 2. Cont.

Gene Rank Variant DNA Change# Molecular Consequence DBSNP ID Allelic Frequency
Cluster #1 [%]

Allelic Frequency
Cluster #2 [%]

TRPV3 18 X17.3436080.SNV C > T SYNONYMOUS rs395357 43 30
TRPV3 19 X17.3430271.SNV A > C INTRONIC rs11657715 46 62
TRPV3 20 X17.3415646.SNV A > G DOWNSTREAM INTRONIC rs9303177 49 58
TRPV3 23 X17.3416309.SNV A > G DOWNSTREAM INTRONIC rs9303177 32 16
TRPV3 31 X17.3414160.SNV T > C DOWNSTREAM INTRONIC rs2271158 49 58
TRPV4 4 X12.110246383.SNV T > C INTRONIC rs3742031 48 36
TRPV4 13 X12.110246369.SNV A > G INTRONIC rs3742032 - -
TRPV4 14 X12.110240838.SNV T > A NON-SYNONYMOUS rs3825394 15 30

#: * = “none”.
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The computed ABC analysis identified d = 38 genetic variants that contributed most to the class
assignment—i.e., belonged to the ABC set “A” (Figure 4).

Figure 4. Identification of the most informative gene loci for pain phenotype class assignment
using the computed ABC analysis. The mean decrease in classification accuracy associated with
each genetic variant in the random forest analysis was submitted to ABC analysis, which is an item
selection procedure aiming at the identification of the most profitable items from a larger list of
items. The ABC plot (blue line) shows the cumulative distribution function of the mean decreases
in accuracy (for further details about the computed ABC analysis, see [36]). The figure has been
created using the R software package (v. 3.6.2 for Linux; http://CRAN.R-project.org/ [25]) and
the R libraries “ABCanalysis” (http://cran.r-project.org/package=ABCanalysis [36]) and “ggplot2”
(https://cran.r-project.org/package=ggplot2 [26]).

Most of them (d = 10) belonged to the TRPV3 gene, followed by TRPM3 (d = 6), TRPV2, TRPM5,
ASIC2 (d = 4), TRPV4 (d = 3), TRPV1, TRPA1 (d = 2) TRPC1, ASIC1, and ASIC4, in decreasing order of
the number of relevant variants carried (Figure 5). None of the variants belonging to the final set of the
most relevant modulators of the phenotype were in TRPM8, TRPM4, TRPM2, or ASIC3. The number of
variants in the final set comprised on average 4.4% of the number of variants in the original set, with a
broad range of 0–13.5%. The number of variants per gene in the ABC set “A” was not statistically
significantly correlated with the initial number of variants found by NGS in the respective genes
(r = 0.38, p = 0.16; Figure 5).

The biological consequences of the genetic variations found in the main analysis to be informative
for pain-phenotype association were queried from several publicly available databases including the
NCBI gene index database (http://www.ncbi.nlm.nih.gov/gene), GeneCards (https://www.genecards.
org), the Short Genetic Variations database (dbSNP) (https://www.ncbi.nlm.nih.gov/snp), Ensembl
(http://www.ensembl.org), UniProt (https://www.uniprot.org), and ClinVar (https://www.ncbi.nlm.
nih.gov/clinvar; all accessed in January 2020). Of the 38 most informative variants, 20 were found in
intronic areas, up- or downstream or in untranslated regions; 7 variants were located in prime sites or
regulatory parts; and 11 were coding mutations, including 5 synonymous, 1 deletion and 1 insertion
(Table 2).

In order to obtain earlier evidence of a functional role of the selected genetic variants—i.e., those in
ABC set “A” in the main analysis—a PubMed database search (https://www.ncbi.nlm.nih.gov/pubmed/)
was conducted in January 2020 using the string “(asic1 OR asic2 OR asic4 OR trpa1 OR trpc1 OR trpm3
OR trpm5 OR trpv1 OR trpv2 OR trpv3 OR trpv4) AND (pain* OR analgesi*) AND (polymorphis* OR

http://CRAN.R-project.org/
http://cran.r-project.org/package=ABCanalysis
https://cran.r-project.org/package=ggplot2
http://www.ncbi.nlm.nih.gov/gene
https://www.genecards.org
https://www.genecards.org
https://www.ncbi.nlm.nih.gov/snp
http://www.ensembl.org
https://www.uniprot.org
https://www.ncbi.nlm.nih.gov/clinvar
https://www.ncbi.nlm.nih.gov/clinvar
https://www.ncbi.nlm.nih.gov/pubmed/
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varian* OR mutation*) NOT (mice OR mouse OR rodent OR drosophila) NOT review”. This yielded
96 hits. After excluding 29 publications that reported results in laboratory animals, 65 studies remained.
According to this, the variants in the relevant genes had been involved in eight different clinical
situations related to pain (Table 3). A considerable number of the presently identified variants are
supported by previous evidence that they are informative for the assignment of subjects to a pain-related
phenotype in eight different clinical situations related to pain (Table 3). In brief, one of the most
frequently evaluated variants was the loss of function mutation rs8065080 (I585V), which is associated
with an enhanced pain threshold and decreased sensitivity to noxious and innocuous stimuli [37].

Figure 5. Display of the number of variants in the genes selected as candidates for the present association
analysis. (A) Bar plot of the number of variants per gene included in the analysis. The full set (“d_full”,
green bars) refers to the original set of genetic variants observed by means of the next-generation
sequencing of the selected genes. The final set (“d_final”, blue bars) comprises the most informative
variants that remained after several steps of feature selection and machine-learned association of the
NGS-based genetic information with the machine learning-derived thermal pain-related phenotype.
The number of variants per gene is also displayed numerically above the respective bar. The figure has
been created using the R software package (v. 3.6.2 for Linux; http://CRAN.R-project.org/ [25]) and the
R package “ggplot2” (https://cran.r-project.org/package=ggplot2 [26]).

Table 3. PubMed search results about previous evidence of a functional role of selected genetic variants.

Gene Symbol Gene Name PubMed Hits Clinical Setting

TRPA1 Transient receptor
potential channel A1 14

Erythromelalgia, miscellaneous pain,
neuropathic pain, post-surgery pain,

thermal pain sensitivity.

TRPV1 Transient receptor
potential channel V1 45 Erythromelalgia, migraine, miscellaneous

pain, neuropathic pain, osteoarthritis.

TRPV2 Transient receptor
potential channel V2 1 Fibromyalgia.

TRPV3 Transient receptor
potential channel V3 5 Fibromyalgia, migraine, miscellaneous,

thermal pain sensitivity.

TRPV4 Transient receptor
potential channel V4 2 Miscellaneous, thermal pain sensitivity.

Despite that, rs8065080 was associated with neuropathic pain [38,39], painful osteoarthritis [40],
and heat pain sensitivity in humans [41]. Furthermore, another highly ranked TRPV1 variant, rs4790522
in TRPV1, was associated with thermal pain sensitivity [41] and asthma [42,43]. A genome-wide
association study (GWAS) analysis in rheumatoid arthritis patients revealed that the TRPV1 variant
rs1039519 was the most strongly associated single nucleotide polymorphism (SNP) with the highest
p-value (7.11 × 10−5) on chromosome 17 [44]. The TRPA1 polymorphism rs3735943 was reportedly
associated with pain crisis in sickle cell disease [45] and with sensitivity to heat stimuli and topically
applied capsaicin [15], the latter in the same cohort as that presently analyzed. Other hits were variants
rs8121 and rs395357 in the TRPV2 and TRPV3 genes, respectively, associated with the genetic risk of
fibromyalgia, a disease characterized by widespread musculoskeletal pain, in a Korean cohort [46].

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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Apart from the pain context, the variants included in the current selection of the d = 38 most
informative gene loci are additionally supported by previous evidence of a functional role in other
clinical situations. For example, an association of the TRPM5 polymorphism rs4929982 with primary
open angle glaucoma has been reported [47], and carriers of the ASIC2 polymorphism rs28936 had a
higher risk of developing panic disorder [48] or multiple sclerosis [49,50], while the ASIC4 mutation
rs11695248 was associated with paroxysmal dystonia [51].

Further information on the possible biological significance of the most relevant genetic variants
assigned to the ABC set “A” was obtained by assessing the variants’ so-called Eigen score [35].
The Eigen score is defined as a functional variant-importance score that includes the information of
several different functional genetic annotations. It uses a spectral unsupervised approach that assigns
weights to each functional annotation based on its predictive accuracy. The functional score is then
calculated from the optimized weighted linear combination of the annotations. Since the relevance
of the annotations varies between coding and non-coding variants, their Eigen scores are calculated
separately. Due to its unsupervised nature, it is not based on a priority assumption.

For a comparative interpretation of the biological significance of the variants in the ABC set
“A”, a positive control set was created from 128 variants in five different genes causally involved in
familial syndromes with pain insensitivity—i.e., SPTCL, WNK1, TTR, SCN9A, and SCN11A. All the
variants were declared “pathogenic” or “probably pathogenic” by the online tool Variation Viewer
(https://www.ncbi.nlm.nih.gov/variation/view/; assessed in January 2020), and the Eigen scores for all
possible mutations comprised a total of 384 variants. In addition, a set of 1232 variants randomly drawn
from the Eigen database (v. 1.1, http://www.columbia.edu/~{}ii2135/eigen.html) throughout the hg19
served as a negative control set of variants. The Eigen score distributions of the three sets of variants
were compared against each other using Wilcoxon–Mann–Whitney U-tests [52,53] implemented in the
R-”stats” base library.

The distribution of the Eigen score values obtained for the variants in the ABC set “A” (mean ±
standard deviation, SD: 0.123 ± 0.751, d = 36, as two variants were missing from the Eigen database; red
line in Figure 6) was shifted to the right—i.e., to higher Eigen scores—from the negative control dataset
obtained from a completely random selection of variants throughout hg19 (Eigen score = −0.068 ±
0.433, d = 1232; green line in Figure 6). The difference was statistically significant (Wilcoxon W = 17190,
p = 0.021). However, the right shift was modest compared to the distribution of the Eigen scores of the
variants causally associated with hereditary syndromes with pain insensitivity (Eigen score = 0.557 ±
0.552, d = 384; blue curve in Figure 6). Their Eigen scores differed statistically significantly from those
of the random sample of variants (W = 80302, p = 2.861 × 10−85) but also from those of the variants in
the ABC set “A” (W = 9571, p = 0.135 × 10−4). The variants in the ABC set “B” (Eigen score = −0.031 ±
0.501, d = 19; data not shown) did not significantly alter from the negative control data (W = 9532,
p = 0.163), but were significantly left-shifted compared to the positive control data (W = 5898, p = 5.66
× 10−6). The variants in the ABC set “C” (Eigen score = 0.091 ± 0.793, d = 23; data not shown) did
not significantly alter from the negative control data (W = 12727, p = 0.403), but were significantly
left-shifted compared to the positive control data (W = 6317, p = 5.24 × 10−4).

2.4. Strengths and Limitations

The data analysis followed the idea that an artificial intelligence trained with genetic information
that outperforms the pain-phenotype assignment of unknown subjects by random indicates that
the genotypes comprise relevant information on the phenotype. This was observed in the present
data analysis. When the genotype–phenotype association in the training dataset was destroyed by
the permutation of the individual genotypes, the phenotype assignment was deteriorated to the
level of randomness. Successful AI training with the true genetic information and unsuccessful
training with the false genetic information was observed repeatedly on randomly drawn subsamples of
subjects, indicating that the observation of a genotype–phenotype association was robust. The genetic
information of genes that, according to current mechanistic knowledge, had no association with the

https://www.ncbi.nlm.nih.gov/variation/view/
http://www.columbia.edu/~{}ii2135/eigen.html
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pain phenotypes, was correctly discarded during a data analysis with additional NGS data, while
the finally selected reduced set of variants was located in genes with a biologically highly plausible
association with the pain phenotypes.

Figure 6. Eigen score distribution of functional genetic variants. Density plot of the distribution
of Eigen scores for three different datasets of single nucleotide variations (SNV). Red line: variants
assigned to the ABC set “A” in the feature selection (d = 36; two variants not in the Eigen database).
Blue line: variants causally involved in hereditary syndromes with insensitivity to pain. Green line:
random sample drawn from a generic dataset comprising Eigen scores of variants across the human
genome queried Eigen score database (http://www.columbia.edu/~{}ii2135/eigen.html). The figure
has been created using the R software package (http://CRAN.R-project.org/ (R Development Core
Team, 2008)) and the library “ggplot2” (https://cran.r-project.org/package=ggplot2 (Wickham, 2009)).
The density distribution was smoothed using a gaussian kernel.

Thus, the data analysis used intentionally supervised machine learning for knowledge discovery
rather than for the creation of a working AI-based diagnostic tool. Its results successfully supported
the association of the genetic information with the recognized pain phenotypes. Here, however,
machine learning was stopped at that point because the genetic background of pain comprises many
more genes—currently about 540 [54,55]—so it is unlikely that the present genes could provide
a perfect assignment of subjects to the pain phenotype. The modest accuracy and receiver operator
characteristic curve (ROC) area achieved for the assignment of phenotypes is probably not due to the
poor selection or implementation of the AI, but rather reflects the truth about the small phenotypic
effects of the ion channel genotypes. This corresponds to earlier observations, where the genetic
variants found in average healthy individuals had much smaller effects on the pain thresholds than,
e.g., hypersensitization by topical capsaicin application [56]. A comparison with variants found in rare

http://www.columbia.edu/~{}ii2135/eigen.html
http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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cases of familial insensitivity to pain supports this hypothesis. These variants had much higher Eigen
scores quantifying the biological effects of a DNA sequence change than the set of genetic variants
resulting from the present analysis (Figure 6).

Finally, it has to be acknowledged that the genotype versus phenotype association did not include
an independent validation cohort. Partly accounting for this lack are (i) the a cross-validation approach
and (ii) the fact that the gene set had been selected based on evidence for a role in temperature sensation
and pain, indicating that this analysis was not an attempt to find a novel genetic association but
rather a ranking of genes and genetic variants with respect to the phenotypic importance. Moreover,
(iii) several of the variants identified as important in the present phenotypic setting are supported for
a phenotypic role by independent previous publications cited above.

3. Methods

3.1. Subjects and Study Design

In the present study, n = 100 healthy volunteers (46 men) of Caucasian ethnicity by self-assignment
were enrolled at the age of 19–42 years (mean value ± standard deviation 25 ± 3.5 years), as described
previously [18]. The study followed the Declaration of Helsinki and was approved by the Ethics
Committee of the Medical Faculty of the Goethe-University Frankfurt am Main, Germany (protocol
number 28/11, approved on 3 March 2011). All the subjects gave their informed written consent to the
study procedures, including genotyping. Phenotypic assessments and a genetic association approach
in the dataset generated in this study were published previously [15,18] in a non-redundant manner to
the present analyses.

The inclusion criteria were age between 18 and 50 years, actual health according to anamnesis, and
the physical examination of vital parameters. The exclusion criteria were medications taken during the
previous week, except for oral contraceptives, vitamins, or hormone substitutes. The further exclusion
criteria were a current clinical condition with pain and current illnesses according to the survey or the
medical examination. Alcohol consumption was prohibited for 24 h prior to the trials. Before the actual
experiments, all the subjects underwent training to familiarize them with the pain model. During this
session, pain tests were conducted in areas other than those used in the experiments.

3.2. Assessment of Thermal Pain Thresholds

The recording of sensory thresholds for different stimuli has already been described in detail [18].
It was performed in strict compliance with a standard procedure developed by the German Research
Network for Neuropathic Pain [20,21]. Room temperature was maintained at 20–25 ◦C during the tests.
For the present genetic assessments, pain thresholds to heat and cold stimuli were selected based on
the previous finding that both thresholds were affected by UV-B irradiation [18]. The thermal pain
thresholds were determined using a 3 × 3 cm thermode (TSA 2001-II, Ramat Yishai, Israel) on a 9 cm2

skin area on the inside of the forearm without superficial veins or moles. The heat pain thresholds
(HPT) were measured by increasing the temperature of the thermode by 1 ◦C/s, starting at 32 ◦C,
until the test subject indicated pain, which triggered the reversal of the temperature ramp back to
the baseline. According to the published guidance for the quantitative sensory testing (QST) test
battery [20,21,57], the HPT was defined as the mean value of three repeated measurements. The cold
pain thresholds (CPT) were recorded analogously, with the exception that the temperature of the
thermode was lowered by 1 ◦C/s from 32 ◦C to a cut-off temperature of 0 ◦C.

The UV-B pain model uses ultraviolet light to induce a small area of inflammation, which allows
an assessment of mechanical and thermal thresholds [58–60]. To determine the minimum erythema
dose, six areas of 1 cm2 were first irradiated with a cumulative UV-B dose between 200 mW/cm2

and 600 mW/cm2 (UV-B lamp UV 109 from Waldmann Medizintechnik, Villingen-Schwenningen).
The lamp was placed 2.5 cm from the skin. The UV-B dose was increased by extending the irradiation
time. The minimum erythema dose was determined to be the smallest dose that led to a visual
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reddening of the irradiated skin area after 24 h. Subsequently, a previously unirradiated skin area
on the inner forearm was selected for the actual experiments according to the same criteria as for the
determination of the minimum erythema dose. This area was irradiated with twice the determined
amount, and the actual experiments were performed 24 h after UV-B irradiation.

According to the standard protocol of the German Research Network for Neuropathic Pain [20,21],
the quantitative sensory data were z-transformed into a reference group of 180 healthy subjects,
from which a dataset of 1080 values was determined [22]. According to the standard protocol,
the z-transformation was performed separately for the test field, sex, and age of the subjects—i.e.,
the procedure implies a correction for these factors. In addition, the thresholds for warmth stimuli—i.e.,
the temperatures at which the subjects indicated pain—were multiplied by a value of −1 to obtain
a uniform direction of all values, with larger values indicating high pain sensitivity. Furthermore,
the effect of UV-B on the thresholds was quantified as the difference between the measurement after
UV-B application and the measurement without the presence of UV-B—i.e., UVBE f fHeat = zHPTUVB −

zHPTbaseline for heat pain and UVBE f fCold = zCPTUVB − zCPTbaseline for cold pain.

3.3. Genotyping Using Next-Generation Sequencing

The NGS of the coding regions of 15 ion channel genes including 12 ion channels with specific
activation thresholds are placed within a moderate temperature interval (T = [25 ◦C; 37 ◦C], ASIC1,
ASIC2, ASIC3, ASIC4, TRPC1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM8, TRPV3 and TRPV4) and 3 ion
channels with activation thresholds located in noxious regions (17 ◦C ≤ T or T ≥ 43 ◦C, TRPV1, TRPV2,
TRPA1); this assay was performed using a custom AmpliSeq™ library and a validated assay on an Ion
TorrentTM personal genome machine (Thermo Fisher Scientific, Waltham, MA, USA), as described in
detail previously [61]. In brief, genomic DNA was extracted from 200 µL venous blood on a BioRobot
EZ1 workstation (Qiagen, Hilden, Germany) applying the blood and body fluid spin protocol provided
in the EZ1 DNA Blood 200 µL Kit (Qiagen, Hilden, Germany). A multiplex amplification primer set for
the exonic sequences of the ion channel genes was designed online using a web tool (Ion AmpliseqTM

Designer; Thermo Fisher Scientific, Waltham, MA, USA) provided by the manufacturer of the NGS
device at http://www.ampliseq.com.

The present amplification design obtained a coverage of 97% of the target sequence. Following
sequencing, signal processing was performed using the Torrent Suite software (v. 5.2.2; Thermo Fisher
Scientific, Waltham, MA, USA), base calling and the generation of unmapped and mapped BAM-files
(hg19 reference genomic sequence) were performed. Variant calling across the hg19 reference genomic
sequence was performed with the Torrent Variant Caller Plugin (minimum quality = 10, minimum
coverage = 20, and minimum coverage on either strand = 3), and variant annotation was performed
using the Ion Reporter Software (v. 5.2.2; Thermo Fisher Scientific, Waltham, MA, USA). Variant call
format (VCF) files containing the nucleotide reads were processed toward the individual genotypes
using the GenomeBrowse® software (v. 2.0.4, Golden Helix, Bozeman, MT, USA) and SNP and
Variation Suite software (v. 8.7.1; Golden Helix, Bozeman, MT, USA).

3.4. Data Analysis

The data was analyzed using the R software package (v. 3.6.2 for Linux; http://CRAN.R-project.
org/ [25]) on an Intel Core i9® computer running Ubuntu Linux 18.04.3 LTS 64-bit (Canonical,
London, UK)).

3.4.1. Quantitative Variables

The pain data comprised the z-transformed pain thresholds to heat or cold stimuli recorded under
control conditions after UV-B irradiation, and the UV-B effects were calculated as the difference between
the z-transformed thresholds. This provided an n × 6 input data space D =

{
(xi)|xi ∈ X, i = 1, . . . , n

}
,

which included vectors xi = <xi,1, . . . ,xi,d> with d = 6 different parameters representing the six
different pain thresholds or UV-B effect-related variables (zHPTbaseline, zHPTUVB, zCPTbaseline, zCPTUVB,

http://www.ampliseq.com
http://CRAN.R-project.org/
http://CRAN.R-project.org/
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UVBEffHeat, and UVBEffcold) acquired from n subjects. The genetic data contained variables for all
chromosomal locations where in at least one subject an allele had been found that that differed
from the allele found at this location in the hg19 reference sequence. The variables were coded as
[0,1,2], which indicates the number of alleles different from the hg19 reference allele at the respective
chromosomal location.

3.4.2. Data Analysis Strategy

The analysis aimed at mapping genotypic information onto phenotypic information. However,
since the subjects participating in this study were healthy volunteers, the pain-related phenotypes had
to be created first from the data obtained regarding pain threshold, thermal stimuli, and the effect of
UV-B irradiation. The data analysis therefore used unsupervised methods to find structures in the
pain-related data that support subgroups or clusters of subjects sharing similar sensitivity to thermal
noxious stimuli. Subsequently, supervised machine learning was used to map the ion channel-related
genetic information to these phenotypic results. An overview of the analyses is given in Figure 7.

Figure 7. Flow chart of the data analysis. The figure gives an overview of the applied data science
approach in two main steps (shown in blue: preparation of the output space, mapping of the
input space with feature selection and verification of the genetic results). After the identification of
a pain-related phenotype group structure (“output space”) based on thresholds for thermal pain and
UV-B effects, genetic variants in the pre-selected candidate genes coding for different thermosensitive
ion channels were selected to provide the most important information to train a machine-learned
algorithm implemented as a random forest with the aim to assign a subject to the correct pain phenotype
group. To verify the results, the correct group assignment was tested using randomly resampled
data from the original dataset, on permuted data and including negative control genes present as
cytochrome P450 (CYP) gene sequences.
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3.4.3. Establishment of Phenotypes of Thermal Pain

The phenotypes of thermal pain were evaluated in the data structures resulting from the
z-transformed pain thresholds and the UV-B effects. This provided an 82 × 6 input data space
including the d = 6 different parameters representing the six pain thresholds or UV-B effect-related
variables (zHPTbaseline, zHPTUVB, zCPTbaseline, zCPTUVB, UVBEffHeat, and UVBEffcold) acquired from
n = 82 subjects in who these data had been complete. In this input data space, the group structures were
searched after checking the correlation structure of the data by of calculating Pearson’s r [62]. Strongly
correlated features defined at a value of r > 0.8 were decorrelated using a principal component analysis
(PCA) [63,64]). The relevant PCs, chosen as those with eigenvalues > 1 [65,66], were included in a
clustering analysis for which a neural network in the form of emergent self-organizing maps (ESOM) [28]
was used. This was preferred to classical clustering methods, based on previous demonstrations [28]
that ESOM outperforms classical clustering methods in the detection of true cluster structures, as it
does not impose a predefined shape on the clusters, which may with standard methods cause the
occasional detection of spurious clusters in structureless data.

ESOM provide a distance-preserving method for projecting data from a high-dimensional space
onto a low-dimensional grid, allowing the detection of structures in the data such as clusters or
subgroups [67]. The maps were assembled from 50 × 80 = 4000 artificial neurons in the recommended
standard size, which was implemented in our R-library “Umatrix” (https://cran.r-project.org/package=

Umatrix [30]). Of note, this use of many artificial neurons differs from classical implementations of
self-organizing aps where the neurons represent clusters and typically a small number of neurons is
used. It can be shown that this type of self-organizing map (SOM) usage is identical to a k-means type
of clustering algorithm [68]. In the present implementation, by contrast, SOMs are created where the
map space is regarded as a tool for the characterization of the otherwise inaccessible high-dimensional
data space. A characteristic of this SOM usage is the large number of neurons, and emergence in this
regard is a precisely defined phenomenon of multi-agent systems [69].

A Gaussian-shaped neighborhood function and 20 epochs were used to train the ESOM. As a
matter of fact, all the projections of high-dimensional space RD to lower dimensions Rd with d << D
must make mistakes, because the high-dimensional space simply does not fit into the low-dimensional
space. The (generalized) U-matrix can be used to represent these errors [70] by showing the distances
between the data points as hills on the initial plane. On the trained ESOM, therefore, the distance
structure in the high-dimensional feature space was visualized with a U-matrix [28,71]. Colored with a
topographic map analogy, large “heights” represent large distances in the feature space, low “valleys”
represent similar data subgroups, and “mountain ranges” with “snow-covered” heights visually
separate the clusters in the data [72]. As in hierarchical clustering, the silhouette index was calculated
to assess the clustering quality. The better clustering solution between the two approaches was retained
for the subsequent genotype association analyses. The quality of the clustering solutions obtained was
evaluated using the silhouette index [29], which was calculated using the R-libraries “cluster” (https:
//cran.r-project.org/package=cluster [31]). Finally, the clusters were interpreted based on the original
variables zHPTbaseline, zHPTUVB, zCPTbaseline, zCPTUVB, UVBEffHeat, and UVBEffcold. This was addressed
by creating a set of rules implemented as repeated incremental clipping for error reduction (RIPPER [73]),
as this type of hierarchical rule does not impose a restriction of binary splits. These calculations were
performed with the R library “RWeka” (https://cran.r-project.org/package=RWeka [74]). The pain
thresholds and UV-B effects were compared between clusters using an analysis of variance for repeated
measures (rm-ANOVA), with “test” as the “within-subject factor” with five degrees of freedom,
“cluster” as the “between-subjects factor”, and two-sample t-tests [75], with an α level set at 0.05 and
corrected for multiple testing according to Bonferroni [76]. In addition, the unequal sex distribution
among the pain phenotypes was assessed by means of a χ2 test [64].

https://cran.r-project.org/package=Umatrix
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https://cran.r-project.org/package=cluster
https://cran.r-project.org/package=RWeka


Int. J. Mol. Sci. 2020, 21, 4367 17 of 23

3.4.4. Mapping of Ion Channel-Related Genetic Information onto Thermal Pain Phenotypes

After establishing phenotypes, supervised machine learning was used to map the genetic
information to the identified subgroup or cluster structures. The preprocessing of the genetic data
included the elimination of variants where the distribution of homozygous and heterozygous carriers
deviated from the expectation according to the Hardy–Weinberg equilibrium. This was assessed
using Fisher’s exact tests with the R-package “HardyWeinberg” (https://cran.r-project.org/package=

HardyWeinberg [77]).
Since NGS produced many candidate genetic variables and possibly irrelevant features in the input

data space, dimension reduction was performed as the usual approach to narrow the focus on the most
relevant variables for machine learning [78,79]. Thus, to avoid the inclusion of non-informative variants
such as those carried by only very few subjects into the classifier, informative gene loci were detected
based on the Shannon information [80] computed as In f o = −p0,i· ln(p0,i) − p1,i· ln(p1,i) , where p0,i
and p1,i are the observed probabilities of the non-observation (0) or observation (1), respectively, of a
variant allele in the ith gene locus.

The exact limit of Shannon information up to which a gene locus can be considered sufficiently
informative was calculated by means of a computed ABC analysis [36]. This is a categorization
technique for selecting the most important subset from a larger set of positive items. It was chosen
because it met the basic requirements of feature selection using filtering techniques [78]. That is,
it easily scales to very high-dimensional datasets and is computationally simple, fast, and independent
of the classification algorithm. The ABC analysis aims to divide a dataset into three unrelated subsets
named “A”, “B”, and “C” [81]. The algorithm calculates the limits between these sets on the basis
of the mathematical properties of the distribution of the analyzed items. Subset “A” contains the
most profitable features [82,83]. The items of the set “A” were retained in further analyses. These
calculations were performed using our R package “ABCanalysis” (http://cran.r-project.org/package=

ABCanalysis [36]). Furthermore, as already implemented previously [84], further variants, which
probably do not provide a suitable basis for the assignment of phenotype classes, were excluded due
to the small effect sizes of the allele distribution between the phenotype classes. This was quantified
using the classical χ2-statistics [64]. The χ2 values obtained for each gene locus were subjected to a
computational ABC analysis as described above.

Following these feature-selection steps, the reduced data space D = {(xi, yi)|xi,d ∈ X, yi ∈ Y,
i = 1 . . . n} including the input space X comprising vectors xi = <xi,1, . . . xi,d> with d > 0 different
parameters including the genetic information obtained from n = 82 cases of the output classes yi,
comprising the pain-phenotype clusters identified in the first part of the data analysis, were submitted
to supervised machine learning with the task of finding an assignment of the genetic information to
the pain phenotypes. In random forests sets of different, uncorrelated and often very simple decision
trees are created [85], with conditions on features such as vertices and classes such as leaves. Feature
distributions are random, and the classifier refers to the majority vote for class membership provided
by many decision trees. In this analysis, 1500 decision trees have been created with the number of
features at 0.2·sqrt(d). The number of trees and complexity were based on the smallest out-of-bag error
rate obtained among various tested hyperparameter settings. Random forests were chosen as the
classifier for the present analysis because previously they functioned similarly well on comparable
genetic data as several different alternative machine learning algorithms, including adaptive boosting,
k-nearest neighbors, naïve Bayes, support vector machines, and multivariate logistic regression [15,86].

Random forests learning was performed on 2/3 of the data randomly chosen by Monte–Carlo [87]
resampling from the original data—i.e., the dataset was spilt into disjoint training and test data
subsets using the R-library “sampling” (https://cran.r-project.org/package=sampling [88]). The trained
classifier was then used to assign the subjects in the test dataset to their respective thermal pain-related
phenotype. Using as many iterations as genetic variants, the mean decrease in classification accuracy
when the respective variant was excluded from random forest learning was obtained for each genetic
locus. The magnitude of this decrease indicated the importance of each genetic variant and was retained
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as the main result of this analysis. The most relevant genetic variants were identified by subjecting
these values to a computed ABC analysis. The χ2 and random forests analyses were performed ten
times on different data randomly resampled datasets to obtain robust results. In addition, to control
for overfitting by the machine-learned algorithm, training was repeated with randomly permuted
genetic data at each run. The classifier trained on this data should not be better than a guess, otherwise
over-fitting was likely. Furthermore, two additional genes were included as negative controls in a
separate analysis. Specifically, NGS-based genetic information about CYP2J2, CYP2C9, and CYP2C19
was available for each subject from a different research context [89]. As no direct involvement in the
modulation of nociception is known for these genes, the expectation for this analysis was that the
chain of feature selection procedures would not select these variants to be members of the final set of
informative variants for the thermal-pain-related phenotype.

The trained classifier was then used to assign the subjects in the test data subset to their respective
thermal pain-related phenotype. The mean decrease in classification accuracy was maintained for
each genetic locus when excluding the respective variant from random forest learning. The extent
of this decrease indicated the importance of the respective genetic variant and was retained as the
main result of this analysis. The most important genetic variants were identified by submitting
these values to a computed ABC analysis. The χ2 and random forests analyses were performed
10 times on different datasets randomly resampled from the original data to obtain robust results.
The classification performance was evaluated using the balanced accuracy and in addition the area under
the receiver operator characteristic curve (AUC-ROC), calculated using the R libraries “pROC” (https:
//cran.r-project.org/package=pROC [90]) and “caret” (https://cran.r-project.org/package=caret [91]).
These values were retained in each run and then averaged across the repetitions. In addition, to control
for overfitting of the machine-learned algorithm, during each run the training was additionally
performed with randomly permuted genetic data. The classifier trained on these data should not
be better than guessing—i.e., provide balanced accuracy and AUC-ROC equal or close to 0.5—else
overfitting of the random forests was likely.

4. Conclusions

The data presented here support a phenotype structure defined by the pain sensitivity to heat and
cold at the baseline. Two phenotypes were found in which the assigned subjects had either a higher
or lower sensitivity to heat and cold pain. This subgroup structure has a genetic basis, which lies in
variants in thermosensitive ion channels involved in heat or cold sensation, among which those that
perceive non-extreme temperatures appear to be particularly important. The clinical translation of
the findings may be pain in the average environment rather than pain in situations of more extreme
environmental exposure. This may have implications for drug development strategies that shift from
targets involved in pain triggered by exceptional stimuli to targets triggered by multiple and moderate
stimuli. In the present analysis, this has led to the highlighting of TRPM3 as a target for analgesics.

Author Contributions: Conceived and designed the experiments: J.L., D.K., B.G.O., G.G. Participated in phenotype
acquisition: B.G.O. Performed the genotyping and processed the raw NGS results: E.R., D.K. Analyzed the data:
J.L., S.M. Wrote the paper: J.L., S.M., D.K. Reviewed and edited the manuscript: D.K., S.M., G.G., E.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This work has been funded by the Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer
Exzellenz (LOEWE), LOEWE-Zentrum für Translationale Medizin und Pharmakologie (J.L., G.G.), in particular
through the project “Reproducible cleaning of biomedical laboratory data using methods of visualization, error
correction and transformation implemented as interactive R-notebooks “ (J.L.), and in part by the Fraunhofer
Cluster of Excellence for immune mediated diseases (CIMD, G.G.).

Conflicts of Interest: The authors have declared that no conflicts of interest exist.

https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=pROC
https://cran.r-project.org/package=caret


Int. J. Mol. Sci. 2020, 21, 4367 19 of 23

References

1. Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.;
Clapham, C.; Atkinson, K.; et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia.
Nature 2000, 405, 183–187. [CrossRef] [PubMed]

2. Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.;
Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor.
Science 2000, 288, 306–313. [CrossRef] [PubMed]

3. Hudson, L.J.; Bevan, S.; Wotherspoon, G.; Gentry, C.; Fox, A.; Winter, J. VR1 protein expression increases
in undamaged DRG neurons after partial nerve injury. Eur. J. Neurosci. 2001, 13, 2105–2114. [CrossRef]
[PubMed]

4. Gauchan, P.; Andoh, T.; Kato, A.; Kuraishi, Y. Involvement of increased expression of transient receptor
potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci. Lett. 2009, 458, 93–95.
[CrossRef] [PubMed]

5. Mukerji, G.; Yiangou, Y.; Corcoran, S.L.; Selmer, I.S.; Smith, G.D.; Benham, C.D.; Bountra, C.; Agarwal, S.K.;
Anand, P. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations.
BMC Urol. 2006, 6, 6. [CrossRef] [PubMed]

6. Lötsch, J.; Oertel, B.G.; Ultsch, A. Human models of pain for the prediction of clinical analgesia. Pain 2014,
155, 2014–2021. [CrossRef] [PubMed]

7. Oertel, B.G.; Lötsch, J. Clinical pharmacology of analgesics assessed with human experimental pain models:
Bridging basic and clinical research. Br. J. Pharmacol. 2013, 168, 534–553. [CrossRef]

8. Weyer-Menkhoff, I.; Lotsch, J. Human pharmacological approaches to TRP-ion-channel-based analgesic drug
development. Drug Discov. Today 2018, 23, 2003–2012. [CrossRef]

9. Story, G.M.; Peier, A.M.; Reeve, A.J.; Eid, S.R.; Mosbacher, J.; Hricik, T.R.; Earley, T.J.; Hergarden, A.C.;
Andersson, D.A.; Hwang, S.W.; et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons,
is activated by cold temperatures. Cell 2003, 112, 819–829. [CrossRef]

10. Staniland, A.A.; McMahon, S.B. Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show
increased pain behaviour in the formalin test. Eur. J. Pain 2009, 13, 554–563. [CrossRef]

11. Askwith, C.C.; Benson, C.J.; Welsh, M.J.; Snyder, P.M. DEG/ENaC ion channels involved in sensory
transduction are modulated by cold temperature. Proc. Natl. Acad. Sci. USA 2001, 98, 6459–6463. [CrossRef]
[PubMed]

12. Donier, E.; Rugiero, F.; Jacob, C.; Wood, J.N. Regulation of ASIC activity by ASIC4–new insights into ASIC
channel function revealed by a yeast two-hybrid assay. Eur. J. Neurosci. 2008, 28, 74–86. [CrossRef] [PubMed]

13. Lötsch, J.; Geisslinger, G. Pharmacogenetics of new analgesics. Br. J. Pharmacol. 2011, 163, 447–460. [CrossRef]
14. Kim, H.; Neubert, J.K.; Rowan, J.S.; Brahim, J.S.; Iadarola, M.J.; Dionne, R.A. Comparison of experimental and

acute clinical pain responses in humans as pain phenotypes. J. Pain 2004, 5, 377–384. [CrossRef] [PubMed]
15. Kringel, D.; Geisslinger, G.; Resch, E.; Oertel, B.G.; Thrun, M.C.; Heinemann, S.; Lötsch, J. Machine-learned

analysis of the association of next-generation sequencing based human TRPV1 and TRPA1 genotypes with the
sensitivity to heat stimuli and topically applied capsaicin. Pain 2018, 159, 1366–1381. [CrossRef] [PubMed]

16. Moore, C.; Cevikbas, F.; Pasolli, H.A.; Chen, Y.; Kong, W.; Kempkes, C.; Parekh, P.; Lee, S.H.; Kontchou, N.A.;
Yeh, I.; et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4
ion channels and triggering endothelin-1 signaling. Proc. Natl. Acad. Sci. USA 2013, 110, E3225–E3234.
[CrossRef] [PubMed]

17. Sisignano, M.; Angioni, C.; Ferreiros, N.; Schuh, C.D.; Suo, J.; Schreiber, Y.; Dawes, J.M.; Antunes-Martins, A.;
Bennett, D.L.; McMahon, S.B.; et al. Synthesis of lipid mediators during UVB-induced inflammatory
hyperalgesia in rats and mice. PLoS ONE 2013, 8, e81228. [CrossRef]

18. Lötsch, J.; Geisslinger, G.; Heinemann, S.; Lerch, F.; Oertel, B.G.; Ultsch, A. Quantitative sensory testing
response patterns to capsaicin- and UV-B-induced local skin hypersensitization in healthy subjects:
A machine-learned analysis. Pain 2017, 159, 11–24. [CrossRef]

19. Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; et al.
Therapeutic target database 2020: Enriched resource for facilitating research and early development of
targeted therapeutics. Nucleic Acids Res. 2020, 48, D1031–D1041. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/35012076
http://www.ncbi.nlm.nih.gov/pubmed/10821274
http://dx.doi.org/10.1126/science.288.5464.306
http://www.ncbi.nlm.nih.gov/pubmed/10764638
http://dx.doi.org/10.1046/j.0953-816x.2001.01591.x
http://www.ncbi.nlm.nih.gov/pubmed/11422451
http://dx.doi.org/10.1016/j.neulet.2009.04.029
http://www.ncbi.nlm.nih.gov/pubmed/19375484
http://dx.doi.org/10.1186/1471-2490-6-6
http://www.ncbi.nlm.nih.gov/pubmed/16519806
http://dx.doi.org/10.1016/j.pain.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25020003
http://dx.doi.org/10.1111/bph.12023
http://dx.doi.org/10.1016/j.drudis.2018.06.020
http://dx.doi.org/10.1016/S0092-8674(03)00158-2
http://dx.doi.org/10.1016/j.ejpain.2008.07.001
http://dx.doi.org/10.1073/pnas.111155398
http://www.ncbi.nlm.nih.gov/pubmed/11353858
http://dx.doi.org/10.1111/j.1460-9568.2008.06282.x
http://www.ncbi.nlm.nih.gov/pubmed/18662336
http://dx.doi.org/10.1111/j.1476-5381.2010.01074.x
http://dx.doi.org/10.1016/j.jpain.2004.06.003
http://www.ncbi.nlm.nih.gov/pubmed/15501195
http://dx.doi.org/10.1097/j.pain.0000000000001222
http://www.ncbi.nlm.nih.gov/pubmed/29596157
http://dx.doi.org/10.1073/pnas.1312933110
http://www.ncbi.nlm.nih.gov/pubmed/23929777
http://dx.doi.org/10.1371/journal.pone.0081228
http://dx.doi.org/10.1097/j.pain.0000000000001008
http://dx.doi.org/10.1093/nar/gkz981
http://www.ncbi.nlm.nih.gov/pubmed/31691823


Int. J. Mol. Sci. 2020, 21, 4367 20 of 23

20. Rolke, R.; Baron, R.; Maier, C.; Tolle, T.R.; Treede, R.D.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.;
Botefur, I.C.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain
(DFNS): Standardized protocol and reference values. Pain 2006, 123, 231–243. [CrossRef]

21. Rolke, R.; Magerl, W.; Campbell, K.A.; Schalber, C.; Caspari, S.; Birklein, F.; Treede, R.D. Quantitative sensory
testing: A comprehensive protocol for clinical trials. Eur. J. Pain 2006, 10, 77–88. [CrossRef] [PubMed]

22. Maier, C.; Baron, R.; Tölle, T.R.; Binder, A.; Birbaumer, N.; Birklein, F.; Gierthmühlen, J.; Flor, H.; Geber, C.;
Huge, V.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS):
Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 2010, 150,
439–450. [CrossRef] [PubMed]

23. Ultsch, A. Pareto Density Estimation: A Density Estimation for Knowledge Discovery. In Innovations
in Classification, Data Science, and Information Systems, Proceedings 27th Annual Conference of the German
Classification Society (GfKL), Technical University of Cottbus, Cottbus Germany, 12–14 March 2003; Baier, D.,
Werrnecke, K.D., Eds.; Springer: Berlin, Germany, 2003.

24. Thrun, M.C.; Ultsch, A. Effects of the payout system of income taxes to municipalities in Germany.
In Socio-Economic Modelling and Forecasting; Foundation of the Cracow University of Economics: Kraków,
Poland, 2018; Volume 1, pp. 533–542.

25. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for
Statistical Computing: Vienna, Austria, 2008.

26. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag New York: New York, NY, USA,
2009.

27. Schloerke, B.; Crowley, J.; Cook, D.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg, A.; Larmarange, J. GGally:
Extension to ‘ggplot2’; 2018. Available online: https://cran.r-project.org/web/packages/GGally/index.html
(accessed on 18 June 2020).

28. Ultsch, A.; Lötsch, J. Machine-learned cluster identification in high-dimensional data. J. Biomed. Inform. 2017,
66, 95–104. [CrossRef] [PubMed]

29. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis.
Comp. Appl. Math. 1987, 20, 53–65. [CrossRef]

30. Lötsch, J.; Lerch, F.; Djaldetti, R.; Tegeder, I.; Ultsch, A. Identification of disease-distinct complex biomarker
patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix). BMC Big
Data Anal. 2018, 3. [CrossRef]

31. Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and
Extensions. 2017. Available online: https://cran.r-project.org/web/packages/cluster/index.html (accessed on
18 June 2020).

32. Smith, G.D.; Gunthorpe, M.J.; Kelsell, R.E.; Hayes, P.D.; Reilly, P.; Facer, P.; Wright, J.E.; Jerman, J.C.;
Walhin, J.P.; Ooi, L.; et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 2002, 418,
186–190. [CrossRef]

33. Xu, H.; Ramsey, I.S.; Kotecha, S.A.; Moran, M.M.; Chong, J.A.; Lawson, D.; Ge, P.; Lilly, J.; Silos-Santiago, I.;
Xie, Y.; et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 2002, 418, 181–186.
[CrossRef]

34. Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease.
Nat. Rev. Genet. 2011, 12, 683–691. [CrossRef]

35. Ionita-Laza, I.; McCallum, K.; Xu, B.; Buxbaum, J.D. A spectral approach integrating functional genomic
annotations for coding and noncoding variants. Nat. Genet. 2016, 48, 214–220. [CrossRef]

36. Ultsch, A.; Lötsch, J. Computed ABC Analysis for Rational Selection of Most Informative Variables in
Multivariate Data. PLoS ONE 2015, 10, e0129767. [CrossRef]

37. Wang, S.; Joseph, J.; Diatchenko, L.; Ro, J.Y.; Chung, M.K. Agonist-dependence of functional properties
for common nonsynonymous variants of human transient receptor potential vanilloid 1. Pain 2016, 157,
1515–1524. [CrossRef] [PubMed]

38. Binder, A.; May, D.; Baron, R.; Maier, C.; Tolle, T.R.; Treede, R.D.; Berthele, A.; Faltraco, F.; Flor, H.;
Gierthmuhlen, J.; et al. Transient receptor potential channel polymorphisms are associated with the
somatosensory function in neuropathic pain patients. PLoS ONE 2011, 6, e17387. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.pain.2006.01.041
http://dx.doi.org/10.1016/j.ejpain.2005.02.003
http://www.ncbi.nlm.nih.gov/pubmed/16291301
http://dx.doi.org/10.1016/j.pain.2010.05.002
http://www.ncbi.nlm.nih.gov/pubmed/20627413
https://cran.r-project.org/web/packages/GGally/index.html
http://dx.doi.org/10.1016/j.jbi.2016.12.011
http://www.ncbi.nlm.nih.gov/pubmed/28040499
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1186/s41044-018-0032-1
https://cran.r-project.org/web/packages/cluster/index.html
http://dx.doi.org/10.1038/nature00894
http://dx.doi.org/10.1038/nature00882
http://dx.doi.org/10.1038/nrg3051
http://dx.doi.org/10.1038/ng.3477
http://dx.doi.org/10.1371/journal.pone.0129767
http://dx.doi.org/10.1097/j.pain.0000000000000556
http://www.ncbi.nlm.nih.gov/pubmed/26967694
http://dx.doi.org/10.1371/journal.pone.0017387
http://www.ncbi.nlm.nih.gov/pubmed/21468319


Int. J. Mol. Sci. 2020, 21, 4367 21 of 23

39. Li, Q.S.; Cheng, P.; Favis, R.; Wickenden, A.; Romano, G.; Wang, H. SCN9A Variants May be Implicated in
Neuropathic Pain Associated With Diabetic Peripheral Neuropathy and Pain Severity. Clin. J. Pain 2015, 31,
976–982. [CrossRef] [PubMed]

40. Valdes, A.M.; De Wilde, G.; Doherty, S.A.; Lories, R.J.; Vaughn, F.L.; Laslett, L.L.; Maciewicz, R.A.; Soni, A.;
Hart, D.J.; Zhang, W.; et al. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis.
Ann. Rheum. Dis. 2011, 70, 1556–1561. [CrossRef]

41. Kim, H.; Mittal, D.P.; Iadarola, M.J.; Dionne, R.A. Genetic predictors for acute experimental cold and heat
pain sensitivity in humans. J. Med. Genet. 2006, 43, e40. [CrossRef] [PubMed]

42. Chen, C.L.; Li, H.; Xing, X.H.; Guan, H.S.; Zhang, J.H.; Zhao, J.W. Effect of TRPV1 gene mutation on bronchial
asthma in children before and after treatment. Allergy Asthma Proc. 2015, 36, e29–e36. [CrossRef] [PubMed]

43. Ren, Y.F.; Li, H.; Xing, X.H.; Guan, H.S.; Zhang, B.A.; Chen, C.L.; Zhang, J.H. Preliminary study on
pathogenesis of bronchial asthma in children. Pediatr. Res. 2015, 77, 506–510. [CrossRef]

44. Arya, R.; Hare, E.; Del Rincon, I.; Jenkinson, C.P.; Duggirala, R.; Almasy, L.; Escalante, A. Effects of covariates
and interactions on a genome-wide association analysis of rheumatoid arthritis. BMC Proc. 2009, 3 (Suppl. 7),
S84. [CrossRef]

45. Jhun, E.H.; Hu, X.; Sadhu, N.; Yao, Y.; He, Y.; Wilkie, D.J.; Molokie, R.E.; Wang, Z.J. Transient receptor
potential polymorphism and haplotype associate with crisis pain in sickle cell disease. Pharmacogenomics
2018, 19, 401–411. [CrossRef] [PubMed]

46. Park, D.J.; Kim, S.H.; Nah, S.S.; Lee, J.H.; Kim, S.K.; Lee, Y.A.; Hong, S.J.; Kim, H.S.; Lee, H.S.; Kim, H.A.;
et al. Polymorphisms of the TRPV2 and TRPV3 genes associated with fibromyalgia in a Korean population.
Rheumatology 2016, 55, 1518–1527. [CrossRef]

47. Okumus, S.; Demiryurek, S.; Gurler, B.; Coskun, E.; Bozgeyik, I.; Oztuzcu, S.; Kaydu, E.; Celik, O.; Erbagci, I.;
Demiryurek, A.T. Association transient receptor potential melastatin channel gene polymorphism with
primary open angle glaucoma. Mol. Vis. 2013, 19, 1852–1858. [PubMed]

48. Gregersen, N.; Dahl, H.A.; Buttenschon, H.N.; Nyegaard, M.; Hedemand, A.; Als, T.D.; Wang, A.G.; Joensen, S.;
Woldbye, D.P.; Koefoed, P.; et al. A genome-wide study of panic disorder suggests the amiloride-sensitive
cation channel 1 as a candidate gene. Eur. J. Hum. Genet. 2012, 20, 84–90. [CrossRef] [PubMed]

49. Fazia, T.; Pastorino, R.; Notartomaso, S.; Busceti, C.; Imbriglio, T.; Cannella, M.; Gentilini, D.; Morani, G.;
Ticca, A.; Bitti, P.; et al. Acid sensing ion channel 2: A new potential player in the pathophysiology of
multiple sclerosis. Eur. J. Neurosci. 2019, 49, 1233–1243. [CrossRef] [PubMed]

50. Bernardinelli, L.; Murgia, S.B.; Bitti, P.P.; Foco, L.; Ferrai, R.; Musu, L.; Prokopenko, I.; Pastorino, R.; Saddi, V.;
Ticca, A.; et al. Association between the ACCN1 gene and multiple sclerosis in Central East Sardinia.
PLoS ONE 2007, 2, e480. [CrossRef]

51. Grunder, S.; Geisler, H.S.; Rainier, S.; Fink, J.K. Acid-sensing ion channel (ASIC) 4 gene: Physical mapping,
genomic organisation, and evaluation as a candidate for paroxysmal dystonia. Eur. J. Hum. Genet. 2001, 9,
672–676. [CrossRef] [PubMed]

52. Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1945, 1, 80–83. [CrossRef]
53. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the

other. Ann. Math. Stat. 1947, 18, 50–60. [CrossRef]
54. Lippmann, C.; Kringel, D.; Ultsch, A.; Lotsch, J. Computational functional genomics-based approaches in

analgesic drug discovery and repurposing. Pharmacogenomics 2018, 19, 783–797. [CrossRef]
55. Lippmann, C.; Ultsch, A.; Lotsch, J. Computational functional genomics-based reduction of disease-related

gene sets to their key components. Bioinformatics 2018, 35, 2362–2370. [CrossRef]
56. Doehring, A.; Küsener, N.; Flühr, K.; Neddermeyer, T.J.; Schneider, G.; Lötsch, J. Effect sizes in experimental

pain produced by gender, genetic variants and sensitization procedures. PLoS ONE 2011, 6, e17724. [CrossRef]
57. Pfau, D.; Klein, T.; Blunk, J.A.; Geber, C.; Krumova, E.; Limbeck, C.; Magerl, W.; Maier, C.;

Westermann, A.; Schuh-Hofer, S.; et al. QST Quantitative sensorische Testung, Handanweisung für den
Untersucher, Eine standardisierte Testbatterie für die Quantitative Sensorische Testung nach den Regeln des Deutschen
Forschungsverbundes Neuropathischer Schmerz (DFNS); Rolke, R., Andrews, A., Magerl, W., Treede, R.D., Eds.;
Lehrstuhl für Neurophysiologie, Universitätsmedizin Mannheim: Mannheim, Germany, 2010.

58. Gustorff, B.; Anzenhofer, S.; Sycha, T.; Lehr, S.; Kress, H.G. The sunburn pain model: The stability of primary
and secondary hyperalgesia over 10 hours in a crossover setting. Anesth. Analg. 2004, 98, 173–177. [CrossRef]
[PubMed]

http://dx.doi.org/10.1097/AJP.0000000000000205
http://www.ncbi.nlm.nih.gov/pubmed/25585270
http://dx.doi.org/10.1136/ard.2010.148122
http://dx.doi.org/10.1136/jmg.2005.036079
http://www.ncbi.nlm.nih.gov/pubmed/16882734
http://dx.doi.org/10.2500/aap.2015.36.3828
http://www.ncbi.nlm.nih.gov/pubmed/25715236
http://dx.doi.org/10.1038/pr.2015.11
http://dx.doi.org/10.1186/1753-6561-3-S7-S84
http://dx.doi.org/10.2217/pgs-2017-0198
http://www.ncbi.nlm.nih.gov/pubmed/29620434
http://dx.doi.org/10.1093/rheumatology/kew180
http://www.ncbi.nlm.nih.gov/pubmed/24019741
http://dx.doi.org/10.1038/ejhg.2011.148
http://www.ncbi.nlm.nih.gov/pubmed/21811305
http://dx.doi.org/10.1111/ejn.14302
http://www.ncbi.nlm.nih.gov/pubmed/30549327
http://dx.doi.org/10.1371/journal.pone.0000480
http://dx.doi.org/10.1038/sj.ejhg.5200699
http://www.ncbi.nlm.nih.gov/pubmed/11571555
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.2217/pgs-2018-0036
http://dx.doi.org/10.1093/bioinformatics/bty986
http://dx.doi.org/10.1371/journal.pone.0017724
http://dx.doi.org/10.1213/01.ANE.0000093224.77281.A5
http://www.ncbi.nlm.nih.gov/pubmed/14693614


Int. J. Mol. Sci. 2020, 21, 4367 22 of 23

59. Harrison, G.I.; Young, A.R.; McMahon, S.B. Ultraviolet radiation-induced inflammation as a model for
cutaneous hyperalgesia. J. Invest. Dermatol. 2004, 122, 183–189. [CrossRef] [PubMed]

60. Hoffmann, R.T.; Schmelz, M. Time course of UVA- and UVB-induced inflammation and hyperalgesia in
human skin. Eur. J. Pain 1999, 3, 131–139. [CrossRef] [PubMed]

61. Kringel, D.; Sisignano, M.; Zinn, S.; Lötsch, J. Next-generation sequencing of the human TRPV1 gene and the
regulating co-players LTB4R and LTB4R2 based on a custom AmpliSeq panel. PLoS ONE 2017, 12, e0180116.
[CrossRef] [PubMed]

62. Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated
system of variables is such that it can be reasonably supposed to have arisen from random sampling.
Philos. Mag. Ser. 5 1900, 50, 157–175. [CrossRef]

63. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933,
24, 498–520. [CrossRef]

64. Pearson, K.L., III. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos.
Mag. J. Sci. 1901, 2, 559–572. [CrossRef]

65. Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200.
[CrossRef]

66. Guttman, L. Some necessary conditions for common factor analysis. Psychometrika 1954, 19, 149–161.
[CrossRef]

67. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybernet. 1982, 43, 59–69.
[CrossRef]

68. Murtagh, F.; Hernández-Pajares, M. The Kohonen self-organizing map method: An assessment. J. Classif.
1995, 12, 165–190. [CrossRef]

69. Ultsch, A. Emergence in Self-Organizing Feature Maps. In Proceedings of the International Workshop on
Self-Organizing Maps (WSOM ′07), Bielefeld, Germany, 2007, 3–6 September 2007; Neuroinformatics Group:
Bielefeld, Germany, 2007.

70. Ultsch, A.; Thrun, M. Credible visualizations for planar projections. In Proceedings of the Workshop on
Self-Organizing Maps (WSOM), Nancy, France, 28–30 June 2017; pp. 256–260.

71. Ultsch, A. The U-Matrix as Visualization for Projections of high-dimensional data. In Proceedings of the 11th
IFCS Biennial Conference, Cracow, Poland, 16–19 July 2002.

72. Ultsch, A.; Weingart, M.; Lötsch, J. 3-D printing as a tool for knowledge discovery in high dimensional data
spaces. In Statistical Computing; Fürstberger, A., Lausser, L., Kraus, J.M., Schmid, M., Kestler, H.A., Eds.;
Universität Ulm, Fakultät für Ingenieurwissenschaften und Informatik Schloss: Reisensburg (Günzburg),
Germany, 2015; Volume 2015-04, pp. 12–13.

73. Cohen, W.W. Fast Effective Rule Induction. In Proceedings of the Twelfth International Conference on
International Conference on Machine Learning, ICML–95, Tahoe City, CA, USA, 9–12 July 1995; pp. 115–123.

74. Hornik, K.; Buchta, C.; Zeileis, A. Open-source machine learning: R meets Weka. Comput. Stat. 2009, 24,
225–232. [CrossRef]

75. Student. The Probable Error of a Mean. Biometrika 1908, 6, 1–25. [CrossRef]
76. Bonferroni, C.E. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni R Istituto Superiore

Scienze Economiche Commerciali Firenze 1936, 8, 3–62.
77. Graffelman, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. J. Stat. Softw. 2015, 64,

1–23. [CrossRef]
78. Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics

2007, 23, 2507–2517. [CrossRef]
79. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3,

1157–1182.
80. Shannon, C.E. A mathematical theory of communication. Bell Syst. Technol. J. 1951, 30, 50–64. [CrossRef]
81. Wild, A. Best Practice in Inventory Management; Wiley: New York, NY, USA, 1997.
82. Pareto, V. Manuale di Economia Politica; Revised and Translated into French as Manuel D’économie Politique;

Società Editrice Libraria: Milan, Italy, 1909.
83. Juran, J.M. The non-Pareto principle; Mea culpa. Qual. Prog. 1975, 8, 8–9.

http://dx.doi.org/10.1046/j.0022-202X.2003.22119.x
http://www.ncbi.nlm.nih.gov/pubmed/14962107
http://dx.doi.org/10.1053/eujp.1998.0106
http://www.ncbi.nlm.nih.gov/pubmed/10700342
http://dx.doi.org/10.1371/journal.pone.0180116
http://www.ncbi.nlm.nih.gov/pubmed/28658281
http://dx.doi.org/10.1080/14786440009463897
http://dx.doi.org/10.1037/h0070888
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1007/BF02289233
http://dx.doi.org/10.1007/BF02289162
http://dx.doi.org/10.1007/BF00337288
http://dx.doi.org/10.1007/BF03040854
http://dx.doi.org/10.1007/s00180-008-0119-7
http://dx.doi.org/10.2307/2331554
http://dx.doi.org/10.18637/jss.v064.i03
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.1002/j.1538-7305.1951.tb01366.x


Int. J. Mol. Sci. 2020, 21, 4367 23 of 23

84. Kringel, D.; Ultsch, A.; Zimmermann, M.; Jansen, J.P.; Ilias, W.; Freynhagen, R.; Griessinger, N.; Kopf, A.;
Stein, C.; Doehring, A.; et al. Emergent biomarker derived from next-generation sequencing to identify pain
patients requiring uncommonly high opioid doses. Pharm. J. 2017, 17, 419–426. [CrossRef]

85. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
86. Kringel, D.; Kaunisto, M.A.; Kalso, E.; Lotsch, J. Machine-learned analysis of the association of next-generation

sequencing-based genotypes with persistent pain after breast cancer surgery. Pain 2019, 160, 2263–2277.
[CrossRef] [PubMed]

87. Good, P.I. Resampling Methods: A Practical Guide to Data Analysis; Birkhäuser: Boston, MA, USA, 2006.
88. Tillé, Y.; Matei, A. sampling: Survey Sampling. 2016. Available online: https://cran.r-project.org/web/

packages/sampling/index.html (accessed on 18 June 2020).
89. Sisignano, M.; Angioni, C.; Park, C.K.; Meyer Dos Santos, S.; Jordan, H.; Kuzikov, M.; Liu, D.; Zinn, S.;

Hohman, S.W.; Schreiber, Y.; et al. Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain.
Proc. Natl. Acad. Sci. USA 2016, 113, 12544–12549. [CrossRef] [PubMed]

90. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source
package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef] [PubMed]

91. Kuhn, M. Caret: Classification and Regression Training. 2018. Available online: https://cran.r-project.org/

web/packages/caret/index.html (accessed on 18 June 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/tpj.2016.28
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1097/j.pain.0000000000001616
http://www.ncbi.nlm.nih.gov/pubmed/31107411
https://cran.r-project.org/web/packages/sampling/index.html
https://cran.r-project.org/web/packages/sampling/index.html
http://dx.doi.org/10.1073/pnas.1613246113
http://www.ncbi.nlm.nih.gov/pubmed/27791151
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Participants and Descriptive Data 
	Phenotypes of Thermal Pain 
	Ion Channel Gene Variants Relevant to Phenotypes of Thermal Pain 
	Strengths and Limitations 

	Methods 
	Subjects and Study Design 
	Assessment of Thermal Pain Thresholds 
	Genotyping Using Next-Generation Sequencing 
	Data Analysis 
	Quantitative Variables 
	Data Analysis Strategy 
	Establishment of Phenotypes of Thermal Pain 
	Mapping of Ion Channel-Related Genetic Information onto Thermal Pain Phenotypes 


	Conclusions 
	References

