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Mátyás Farkas�

European Central Bank

Balint Tatar�

IMFS and Goethe-University Frankfurt

First version: August 31, 2020
This version: October 22, 2020

Abstract

In this paper we adapt the Hamiltonian Monte Carlo (HMC) estimator to

DSGE models, a method presently used in various fields due to its superior

sampling and diagnostic properties. We implement it into a state-of-the-

art, freely available high-performance software package, STAN. We estimate

a small scale textbook New-Keynesian model and the Smets-Wouters model

using US data. Our results and sampling diagnostics confirm the parameter

estimates available in existing literature. In addition, we find bimodality in

the Smets-Wouters model even if we estimate the model using the original

tight priors. Finally, we combine the HMC framework with the Sequential

Monte Carlo (SMC) algorithm to create a powerful tool which permits the

estimation of DSGE models with ill-behaved posterior densities.
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models have been shaping mod-

ern macroeconomic theory since the seminal contribution of Kydland and Prescott

(1982) and have since become the workhorse framework for the analysis of eco-

nomic fluctuations and forecasting. In the past two decades DSGE models were

extended along a number of lines to achieve a sufficiently proper fit of the empirical

data. As a consequence, likelihood-based estimation increasingly gained attraction.1

The pioneering work on Bayesian DSGE model estimation in the form as it is con-

ducted today dates back to Schorfheide (2000) and Otrok (2001) and serves as the

core of other Markov Chain Monte Carlo (MCMC) based estimation algorithms.

Herbst and Schorfheide (2015) provide an outstanding summary of MCMC-based

algorithms. To face the challenge of increasing modeling complexity, also further,

sequential sampling based estimation methods were developed, e.g. particle filters,

see Fernandez-Villaverde and Rubio-Ramirez (2007) and Herbst and Schorfheide

(2019) or the Sequential Monte Carlo Method (SMC). The latter algorithm was

first applied by Creal (2007), then formalized by Herbst and Schorfheide (2014) and

builds also the core of Cai et al. (2020).

The aim of this paper is to contribute to the literature on DSGE estimation by

implementing the Hamiltonian Monte Carlo (HMC) algorithm for DSGE models.

HMC is widely used in a number of different fields of science due to its superior

features compared to other MCMC methods. As an extension, we will combine

HMC with SMC, in order to estimate ill-behaved, in our case bimodal, posterior

densities in established DSGE models.

Although the baseline MCMC-type estimation framework, also readily available

in standard software, e.g. Dynare, is widely used in the DSGE literature, it suffers

from several weaknesses which mostly remained poorly or not addressed at all. First,

the simulated sample draws often suffer from considerably high autocorrelation,

hence the effective sample size will be very small. A common approach to tackle

this shortcoming is to run longer and multiple chains and to consider only each

1Initially, simple DSGE models were calibrated to match only selected moments of the data due
to their restrictive nature. A complete review of the methodology and the transition from small
scale calibrated models to the state-of-the-art estimation of medium to large scale DSGE models
would be beyond the scope of this paper therefore we refer to the excellent summary provided for
example in Fernandez-Villaverde et al. (2016).
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n-th draw to obtain uncorrelated samples. Thinning the Markov Chain can render

an efficient sampling impractical, as it easily becomes time consuming, particularly

when the dimension of the parameter space and of the model itself is high.

Second, in higher dimensional spaces the standard random walk MCMC algo-

rithm will explore the typical set only slowly. Large transitions from one point to

the other in the typical set will not be possible, as the number of directions to move

the chain increases exponentially with the dimension. Therefore, as suggested by

Betancourt (2018), ”we need a better way of exploring the typical set” and ”to

better exploit the geometry of the typical set itself”.

Third, although in theory the MCMC algorithm converges under certain regular-

ity conditions asymptotically to the target density, in practice the convergence might

occur at a very slow pace. Relatedly, a key question whether the Markov chain has

already converged to the target distribution, lacks of a clear answer. Unfortunately,

there is no single way to address the latter issue, as pointed out by Brooks and

Gelman (1998), instead ”the idea is to use a wide variety of diagnostics so that if all

appear to suggest that convergence has been achieved, then the user can have some

confidence in that conclusion”. However, even if standard diagnostics suggests that

convergence has not been reached yet, it will be challenging to explore the reason

for non-convergence, as available diagnostics does not provide any information on

irregular regions of the posterior distribution.

Fourth, yet not completely unaddressed, it is common practice to conduct a

mode search to specify the starting point for the MCMC-type samplers. This prac-

tice is closely followed in the DSGE literature and several algorithms for posterior

mode search are readily available in standard software for DSGE estimation. How-

ever, mode search algorithms often fail to provide a suitable starting point or their

execution might be tedious and time consuming. Furthermore, Betancourt (2018)

argues that in general the mode might not be representative for the typical set, as

the latter can lie increasingly distant from the mode in higher dimensions.

A straightforward algorithm leveraging the information in the geometry of the

typical set and thereby addressing the above issues is the HMC method. Similarly to

the Kalman filter and MCMC, it has its roots in physics and dates back to Duane et
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al. (1987).2 It is considered the new standard in high dimensional numerical simula-

tion where the gradient of the target density can be evaluated. Due to the accessibil-

ity of an advanced software package for Bayesian estimations, STAN, implementing

the HMC algorithm, the methodology is presently applied by many researchers in

various fields. HMC has been shown to have significantly better sampling proper-

ties than the baseline algorithm, the Random Walk Metropolis Hastings (RWMH),

commonly used for the estimation of DSGE models, a fact well documented in the

literature, see e.g. Neal (2011). Herbst and Schorfheide (2015) also acknowledges the

advantages of HMC and encourages researchers to make progress in this direction.

The current work is the first paper available to apply the HMC algorithm to

DSGE models and to present results.3 As an extension, we also address a main

shortcoming of the HMC algorithm combining it with the SMC framework to esti-

mate a DSGE model with an ill-shaped posterior density. We implement HMC in

STAN due to its use of C++, a low-level high-performance programming language4

and automated differentiation enabling the calculation of complicated differentials.

It is a suitable tool to deal with complex models and symbolic differentiation, which

make the accurate implementation feasible, therefore there is no need to rely on

approximations of the gradient of the posterior likelihood function. It also comes

along with a set of powerful diagnostics and visualization toolkit readily available

and unique to HMC enabling to provide further evidence whether the typical set

has been explored appropriately.5

In contrast to the RWMH sampler HMC is more efficient, as in the optimum

its draws are uncorrelated. This implies, that it is more likely that HMC explores

the typical set properly even in higher dimensional problems. A further, practical

advantage of HMC is that the time-consuming and potentially erroneous mode-

estimation can be abandoned completely as the gradient-based sampling serves as

guidance to find and then to explore the typical set appropriately, see Betancourt

2In the original work of Duane et al. (1987) it was called ’Hybrid Monte Carlo’ and designed
for the numerical simulation of lattice field theory simulations of quantum chromodynamics

3In contemporaneous work Fernandez-Villaverde and Guerrón-Quintana (2020) propose the
application of HMC for DSGE estimation, furthermore a working paper by Goodrich and Montes-
Galdon (retrieved on 25 August, 2020) exists, although without results.

4C++ can be considered as a superset of the C language with features added as e.g. object-
oriented programming, exception handling, a rich C++ library and improved memory management.

5For a recent review of the work-flow with STAN please see Gabry et al. (2019).
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(2018). Lastly, the sampling diagnostics is capable of shedding light on inefficient

or improper sampling due to fat tails or high curvature and may also serve as an

indication for difficult to sample parameters possibly due to weak identification.6

To demonstrate the features of this powerful algorithm we estimate the text-

book small scale New-Keynesian model from Herbst and Schorfheide (2015) and the

Smets and Wouters (2007) model. We find very similar results to those in existing

literature. Yet, for the Smets-Wouters model we find a set of difficult to sample

parameters and a second mode, even if tight priors and the entire sample is used

for the estimation. In addition, the estimation results showcase two practical ad-

vantages of HMC in higher dimensional problems: First, we confirm results of Chib

and Ramamurthy (2010) that the steady state of inflation in the original paper of

Smets and Wouters (2007) has been over-, while the mean of hours underestimated,

possibly due to initializing the Metropolis-Hastings algorithm from a wrong mode.

Hence, we highlight that abandoning the mode and using a gradient-based guided

sampling is superior to random walk sampling around the mode. Second, based on

the HMC diagnostics we highlight that some parameters are difficult to sample from

and find that these parameters feature bimodal posterior distributions.

Although the implementation of the HMC algorithm for DSGE models paves the

way for a more sophisticated exploration of the typical set and provides access to

powerful diagnostics, it has a significant drawback: it fails to deal with multimodal

target densities. In case the modes are separated by large energy-barriers from

each other, in particular, the posterior likelihood function has no support between

modes, the algorithm will get stuck in one mode and the chain will not be able to

escape in reasonable time. To address this shortcoming we merge the HMC sampling

algorithm into the SMC framework propsed by Herbst and Schorfheide (2014) and

explore bimodal densities in the Smets-Wouters model, when less informative priors

are used.

The remaining part of this paper is organized as follows. In Section 2 we pro-

vide a brief review of the workhorse Bayesian estimation framework. In Section

6In particular, if the autocorrelations of the sampled draws from the HMC algorithm does not
decay to zero after the first lag, it indicates that a specific parameter is hard to sample, this implies
that the posterior is either oddly shaped, or the parameters suffers from weak identification. In
contrast the high autocorrelation of the Metropolis-Hastings algorithm is an inherent feature, and
thus cannot be used to identify problematic parameters.

4



3 we present the HMC algorithm and summarize the underlying theoretical con-

siderations. Section 4 describes our approach to implement the DSGE estimation

framework and discusses some computational issues. Section 5 presents the estima-

tion results of a textbook small scale New-Keynesian DSGE model and the Smets

and Wouters (2007) model. Section 6 extends the paper by combining HMC and

SMC to estimate ill-behaved posterior densities. Section 7 concludes the paper.

2 Bayesian Estimation of DSGE Models:

A Brief Review

In this chapter we briefly review the main estimation framework used for MCMC-

type Bayesian DSGE model estimation. A more extensive treatment can be found

in the excellent work of Herbst and Schorfheide (2015).

In order to estimate a Bayesian model, the first step is to specify the joint

distribution of the data and the model parameters. The aim is to obtain the posterior

density, that is, the distribution of the model parameters given the data, denoted

by p(θ|Y ) which can be expressed by the means of Bayes’ rule as follows:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

(1)

p(Y |θ) is referred to as the likelihood function and p(θ) is the prior distribution.

Typically in a Bayesian estimation, the a priori beliefs about the parameter vector θ

are updated using the likelihood function. The posterior distribution then comprises

the state of knowledge about θ consisting of the a priori beliefs and the information

available in the data.

To specify a likelihood function conditioned on the parameters and turn a DSGE

model into a Bayesian model, a formal representation of the DSGE model is needed.

Hence we need to solve for the law of motion of the state variables. There exists

a variety of DSGE solution methods, e.g. Blanchard and Kahn (1980), Binder

and Pesaran (1997), King and Watson (1998), Uhlig (1999), Klein (2000), Kim

(2000), Christiano (2002), Anderson (2010). A popular solution technique for a

linearized DSGE model was proposed by Sims (2002) which starts with the following
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representation of the DSGE model:

Γ0st = Γ1st−1 + Ψεt + Πηt (2)

where st is the set of state variables, εt is the vector of structural shocks and ηt the

one step ahead rational expectation forecast errors, xt−Et−1xt. Γ0,Γ1,Ψ,Π are real

matrices of appropriate dimensions. The solution is based on the QZ-decomposition,

also referred to as the Schur decomposition. If the above system has a unique stable

solution then it can be represented in the following VAR-form:

st = G0(θ)st−1 +G1(θ)εt (3)

Applying the solution method proposed by Sims (2002), or any other solution algo-

rithm, a state space representation can be obtained to specify the likelihood function.

In this setup the VAR-form from above represents the transition equation which is

linked to the data by means of the measurement equation:

yt = H0(θ) +H1(θ)t+H2(θ)st + ut (4)

The state space representation allows us to express the joint density function for the

the observed data and the DSGE-model variables where the latter are unobserved:

p(Y1:T , S1:T |θ) =
T∏
t=1

p(yt, st|Y1:t−1, S1:t−1, θ) =
T∏
t=1

p(yt|st, θ)p(st|st−1, θ) (5)

where p(yt|st, θ) and p(st|st−1, θ) are the conditioned probabilities given the observa-

tion and the state equation. To obtain the desired likelihood function the unobserved

states, st, have to be integrated out. For log-linearized DSGE models with Gaussian

disturbance one can use the Kalman filter to obtain the conditional expectations and

variances of the observables and finally the log-likelihood function. Once the prior

distribution of the parameters is specified one can set up the RWMH algorithm to

sample from the posterior density. The algorithm is summarized below:7

7This code summarizes the main steps extensively described in Herbst and Schorfheide (2015).
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Algorithm 1 Random Walk Metropolis Hastings

1. Maximize ln p(Y |θ) + ln p(θ) by a numerical algorithm to obtain the posterior
mode, denoted by θ̃. (This step involves the application of the solution algorithm
of the DSGE model, setting up the state space representation and the calculation
of the likelihood by means of the Kalman filter)
2. Compute Σ̃, the inverse of the Hessian at θ̃
3. Initialize a starting value or draw θ(0) from the proposal density q(θ(0)|θ̃) (in
this case N(θ̃, c2

0Σ̃))
4. For n = 1, ..., N

(a) Draw θ′ from the proposal distribution N (θ(n−1), c2
0Σ̃).

(b) Solve the DSGE model for θ′ and build the new state space representation.

(c) Calculate p(Y |θ′) and p(θ′) (by means of the Kalman filter)

(d) Accept θ′, that is, (θ(n) = θ′), with probability min
{

1, f(θ(n−1), θ′|Y )
}

and

reject (θ(n) = θ(n−1)) otherwise where

f(θ(n−1), θ′|Y ) =
p(Y |θ′)p(θ′)q(θ′|θ(n−1))

p(Y |θ(n−1))p(θ(n−1))q(θ(n−1)|θ′)

5. Estimate the posterior expected value of the function h(θ) by 1
N

∑N
i=1 h(θ(i))

In the above, the proposal density q(·|·) is chosen to be the normal distribution

with expected value θ(n−1) which implies that the proposals follow a random walk.

In addition, as the density function of the normal distribution is symmetric, the

proposal densities cancel. Also the scaling parameter, c0, should be chosen in a

way that the acceptance ratio equals to 23.4%, which was proven to be the optimal

acceptance ratio, see Roberts et al. (1997). In practice however this parameter is

chosen in a way that the acceptance ratio lies between 0.2 and 0.4.

There are several other modified versions of the MH algorithm. For example,

the Block-MH algorithm breaks the parameter vector into blocks and as its name

suggests it updates at most only one block of the parameters at once, applied e.g.

by Cúrdia and Reis (2010) with fixed blocks. This scheme can be further extended

by randomizing the break-up of the parameter vector into blocks in each step, as

proposed by Chib and Ramamurthy (2010). A further possibility to improve the

algorithm is to apply a more sophisticated proposal density. In particular, the

Metropolis-Adjusted Langevin (MALA) algorithm, originally proposed by Besag

(1994) and later assessed for its convergence properties by Roberts and Tweedie

(1996), suggests to choose again a normal distribution, however the expected value
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should be adjusted by one step into the direction of the gradient of the negative log-

posterior. Updating the current draw along the gradient, this algorithm accounts

for the shape of the posterior density and therefore moves the chain, thus the new

proposal for θ, into regions with higher probability density. It is common to choose

a scaled version of the identity matrix as the variance. Both the step size into the

direction of the gradient and the scaling of the variance are subject to fine-tuning.

As pointed out in Roberts and Tweedie (1996) using the Langevin-diffusion as an

update should be a good choice as it is constructed in a way that under suitable

regularity conditions in continuous time it converges to its stationary distribution.

Therefore, even before the MH-step the candidate chain itself will approximate the

target distribution to be sampled from. Herbst and Schorfheide (2015) uses instead

of the normal distribution a t distribution for the proposal. Furthermore, the al-

gorithm benefits from scaling the step size along the gradient by the Hessian at

the posterior mode, also pointed out in Herbst and Schorfheide (2015), based on

Roberts and Stramer (2002). The MH-Newton algorithm mainly differs from the

latter MALA-algorithm in that instead of the Hessian at the posterior mode the

Hessian at θ(n−1) is taken and the step size is randomly chosen. For further details

we refer to Qi and Minka (2002).8

Although first-order linear approximations around the non-stochastic steady

state are popular, in a number of cases more elaborate estimation methods are

required. For example, when higher order approximations are necessary to capture

the impact of shocks on endogenous variables, then the state space will be non linear.

To evaluate the likelihood in this more complex case particle filters were proposed in

literature, e.g. Fernandez-Villaverde and Rubio-Ramirez (2007). At the same time,

particle filters are also applied if the posterior likelihood is ill shaped, e.g. Sequen-

tial Monte Carlo Methods (SMC) in Herbst and Schorfheide (2014), which may even

occur when standard models are estimated using first order linear approximations.

Our extension of the HMC with SMC falls into the latter application.

8For further discussion and a comparison of the different estimation methods we refer to the
work of Herbst and Schorfheide (2015).
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3 The Hamiltonian Monte Carlo Method

This section of the paper provides an introduction to the HMC framework. It is

aimed to offer intuition to the reader and to reveal a few main theoretical aspects

of the methodology.9 Similarly to advanced MCMC methods from above, the HMC

algorithm builds on the information provided by the gradient of the log-posterior

density function. In particular, it uses the information in the geometry of the tar-

get distribution, that is, its shape and the equations characterizing it. Its main

advantage is that by means of the Hamiltonian equations, a concept borrowed from

physics, the algorithm enables to propose a new parameter draw θ′ which is distant

from the current θ while maintaining a sufficiently high acceptance rate.

Before providing a formal descriptive introduction to HMC, let us first illustrate

its main concept by applying it to a simple example.10 In physics researchers usu-

ally model the evolution of a mechanical system over time given a particle’s position

and momentum by functions measuring its potential and kinetic energy. Classical

examples of a mechanical system are a bouncing ball, a pendulum or an oscillating

spring. Let us assume that one intends to sample from a one dimensional standard

normal distribution with density function f(q) = 1/(2π)1/2exp{q2/2}. Intuitively,

the aim is to generate more samples for q in those regions of the domain of q, that

is the real line, where the density function f(q) peaks than in regions of its tails.11

In particular, one would like to generate samples from each location of the domain

of q in proportion to the value of the density function, f(q), at that location. This

case is illustrated in Figure 1, where the target density is a normal distribution in

black, while the blue circles on the real line represent desired the samples.

9More extensive treatment is provided e.g. in Neal (2011) or Betancourt (2018).
10Our explanation draws on the example in the excellent book of Lambert (2018).
11This intuition, that the typical set is close to the mode does not apply in higher dimensional

problems, see Betancourt (2018) for additional details.
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Figure 1: Samples from a normal distribution

To demonstrate the idea of HMC, let us first consider instead of f(q) the negative

logarithm of the density function g(q) := −logf(q). That is, we flip over f(q)

and obtain a valley-shaped function g(q), being the new target density. Next, we

imagine a person using a sleigh and trying to explore the valley covered in snow,

i.e. the new target density defined by g(q). We assume that our explorer starts out

at some point in the valley, sitting on a sleigh, i.e. starting out somewhere on the

surface generated by the function g(q) and is initially pushed randomly with some

impulse, either uphill or downhill, see Figure 2. In contrast, think of the RWMH

algorithm as a person exploring the valley on foot and proceeding in equally distant

steps in random directions. Assuming that our explorer on the sleigh started its

journey downhill, after passing the trough of the valley it will continue sliding uphill.

After getting gradually slower it will stop at some point and will start sliding again

downhill into the opposite direction. Assuming also that the snow-covered surface of

the valley is frictionless, this motion will continue forever. The motion of the sleigh

on a frictionless surface can be perfectly described by the Hamiltonian equation in

analogue to the mechanical systems from above. The total energy of the sleigh can

be described by its potential energy function U(q) := g(q) and its kinetic energy

K(p), depending on its velocity p. By moving up or down the valley the explorer

on a sleigh exchanges potential energy U(q) for kinetic energy K(p). As the sleigh

slides down (up) the hill, its potential energy will decrease (increase) and its kinetic

energy increase (decrease). After some time t = T we record the position q of our

sleighing explorer. Given the shape of the terrain the person with the sleigh will

be more often in lower regions of the valley than in higher regions. In contrast, a

RWMH explorer would find it easy to walk downhill to the trough of the valley,

but would struggle to make steps upwards. In other words, under RWMH sampling
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a proposal is always accepted if the probability of the new proposal q′ is higher

compared to the probability of the current draw q, steps downhill, and only accepted

randomly depending on the proportion of the probabilities of q′ and q, steps uphill.

Using RWMH sampling the explorer would walk down to the valley, and explore the

region in the bottom, i.e. the target density around the mode, but always struggle

to make steps uphill and proceed only very slowly.

Figure 2: Hamoltionan Monte Carlo vs. Random Walk Metropolis Hastings

Figure 3: Visualization of Hamoltionan Monte Carlo

A fair question to ask is what is the reason for the explorer on the sleigh sliding

and arriving always safely at the other side of the valley without struggling. The

core of the concept is that by tracking the velocity p and the kinetic energy K(p)

the parameter space is extended by the same dimension to measure total energy.

This extended space is called the phase space and is fundamental for Hamiltonian

dynamics. Defining the kinetic energy by K(p) := |p|2/(2m), where m corresponds
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to the mass of the sleigh with the person, we can describe the system entirely with

the Hamiltonian equation H(q, p), also referred to as the total energy function.

Visually, extending the parameter space and tracking both position and velocity at

the same time allows the sleigh moving from one side to the other side of the valley

by sliding around on the same (energy) level, hence moving only horizontally in this

simple case, see Figure 3. In this extended space, stopping and then pushing the

sleigh with a different impulse is equivalent to ’moving’ it onto a different height,

hence energy level, sliding again along the Hamiltonian, i.e. the contour lines of

the extended space. When stopping the sleigh, the explorer ’brakes’, throwing away

kinetic energy K(p), e.g. by wasting it while braking, and records only its position

q.

Considering a higher dimensional parameter space with a more irregular density

function to sample from, extending the parameter space and applying the Hamilto-

nian serves as a sort of secure trail of movement for our explorer. It allows for being

able to describe an exact path to move along on a (possibly) complicated extended

surface such that one remains always at the same energy level. Hence, the new

proposal for the parameter will always be accepted.

Turning now to a more formal description, in classical mechanics the Hamiltonian

equation is obtained from Lagrange’s equation, a reformulation of the Newtonian

mechanics, by a Legendre transformation, where H : R2d → R with R2d being the

phase space and d the degrees of freedom. This Hamiltonian framework can be easily

translated to MCMC applications outside physics, by regarding the position of the

sleigh, q, as the variables of interest of which posterior distribution a sample should

be drawn. The main idea is to extend Bayes’ Theorem p(θ|Y ) ∝ p(θ)p(Y |θ) by

an auxiliary vector α of momentum variables to obtain the joint posterior density

p(θ, α|Y ) ∝ p(θ, α)p(Y |θ, α) of θ and α. To each parameter θi one momentum

variable αi is assigned. The auxiliary variables are a priori independent of θ and Y

implying that p(θ, α|Y ) ∝ p(θ)p(α)p(Y |θ).

The change in the current position q and momentum p, being both of dimension d

respectively, over time is characterized by the partial derivatives of the Hamiltonian

12



equation:

dqi
dt

=
∂H(q, p)

∂pi
∀i = 1, ..., d (6)

dpi
dt

= −∂H(q, p)

∂qi
∀i = 1, ..., d (7)

where 2d equals the full dimension of the system. The equations of motion can be

presented in a more compact way by defining z := (q, p) such that

dz

dt
= J∇H(z) (8)

with ∇H(z) being the gradient of the Hamiltonian system and J a matrix of di-

mension 2d× 2d:

J =

 0d×d Id×d

−Id×d 0d×d


The solution to this system of differential equations can be regarded as a mapping

Fs : Rd × Rd → Rd × Rd with (q, p)(t) → (q, p)(t + s) such that the Hamiltonian

equations describe the law of motion of the system from t to t+ s.

The Hamiltonian measures total energy in the system, that is potential energy

and kinetic energy, consequently for the HMC algorithm it takes the additive form

H(p, q) = U(q) +K(p). (9)

The kinetic energy K(p) is usually defined as

K(p) = pTM−1p/2 (10)

where M is referred to as the ”mass matrix” which is typically diagonal, and is often

a scalar multiple of the identity matrix as it often stands for the mass of some bodies

or particles.12

The Hamiltonian system has four key properties which allow for using it for the

construction of an MCMC algorithm. Firstly, the Hamiltonian does not change over

12In the estimation procedure this assumption can be released.
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time, that is, dH/dt = 0, which is crucial to ensure that the acceptance probability

equals always one.

Second, the Hamiltonian system preserves the volume in the phase space. With-

out venturing too deeply into details of volume measures of a phase space it suffices

to state that this property is necessary to avoid accounting for a change in the

volume when computing the acceptance probability.

Thirdly, the Hamiltonian system is symplectic. Formally this corresponds to the

property that the Jacobian Bs := DTs of the mapping Ts, satisfies the following

equation:

BT
s ABs = A (11)

where A is in general a fixed 2d×2d, non-singular, skew symmetric matrix. Usually,

the matrix J from above is chosen for A. The determinant of the matrix J is unity

and it holds that J−1 = JT = −J . The symplecticness condition implies that the

mapping is volume preserving as from the equation above it immediately follows that

|det(Bs)| = 1. Yet, the above property is stronger than just volume preservation

if d > 1. This property is important, as in practice Hamiltonian equations can

be solved only by numerical integration. Although a large number of numerical

integrators exist, most of them are prone to accumulate approximation errors such

that the accuracy of the solution will be significantly impaired. However, to solve

for the Hamiltonian, symplectic integrators can be applied having the advantage

that the approximated trajectory does not drift away from the true one.

Finally, the mapping Ts defined above, is reversible, that is Ts has an inverse T−s

which is exactly the negation of the time derivatives in the Hamiltonian equations.

Considering again the example with the sleigh one can imagine this as stopping the

explorer at q(t+s) and push it into the opposite direction with the same impulse. In

case K(p) = pTM−1p/2 one can negate K(p), apply Ts and then negate again K(p)

to obtain the original (q, p)(t) where the explorer departed from. The reversibility

property is crucial when proving the detailed balanced condition in the probabilistic

framework which ensures together with ergodicity that the HMC converges to the

invariant distribution.

To apply this framework to a probabilistic setting borrowing one further concept
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from statistical mechanics is necessary referred to as the ”cannonical” distribution

at a given temperature. This concept describes possible states of a mechanical

system which is at thermal equilibrium at temperature T . For the latter purpose

the following distribution is used:

P (x) =
1

Z
e−E(x)/T (12)

where we assume that the energy E(x) and its gradient can be evaluated. Any

particular density P (x) can be adopted to the above scheme by setting E(x) =

−log P (x) − logZ and T = 1. The HMC algorithm translates this framework into

an MCMC-sampling algorithm by applying the Hamiltonian equation as the total

energy function for the joint state (q, p) which results in the following cannonical

distribution:

P (q, p) =
1

Z
e−H(q,p)/T (13)

with H(q, p) = U(q) +K(p) we obtain

P (q, p) =
1

Z
e−U(q)/T e−K(p)/T (14)

Setting for U(q) the negative logarithm of the target density −log(p(Y |θ)p(θ)) and

for K(p) the kinetic energy function allows to define an algorithm which samples

from the distribution of interest. The iteration is carried out in three steps:

Algorithm 2 Hamiltonian Monte Carlo

1. Draw a momentum vector p′ from its multivariate normal distribution which
can be carried out by Gibbs-sampling.
2. Draw the position vector θ′ by applying the Hamiltonian equations determin-
istically.
3. Metropolis-Hastings step: accept the new proposal and set θ(n+1) = θ′ with
probability min[1, exp(−(U(q′)− U(q) +K(p′)−K(p)))]

As the total energy in the system remains constant, in theory the proposal obtained

by applying the Hamiltonian equations is always accepted. To obtain a sample from

the target distribution one simply omits the sampled momenta. It is well known

that to show that the resulting Markov chain converges to the target distribution it
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has to be ergodic and has to fulfill the detailed balance condition:

P (q, p)PK((q, p)→ (q′, p′)) = P (q′, p′)PK((q′, p′)→ (q, p)) (15)

where PK is the HMC kernel. The key property that allows to proof that the detailed

balance condition holds is reversibility of the Hamiltonian system. In addition, the

symplecticness of the numerical integrator to be used ensures that detailed balance

holds even if the solution is approximated numerically. A formal proof is available

in Duane et al. (1987). As regards ergodicity, the latter paper does not provide any

insights, instead it assesses using an example in compact quantum electrodynamics

”Whether or not this idea works in practice...”. Proving ergodicity for the HMC

algorithm involves deep knowledge in probability theory and would go beyond the

scope of this paper. Very loosely spoken, ergodicity implies that the Markov chain

will not be trapped in a subset of the parameter space, instead it will reach all

possible states again and again, hence it will asymptotically converge to the invariant

distribution. Neal (2011) points out that in theory it is possible that ergodicity fails

once as a fixed number of integration steps is used for the numerical approximation

of the solution and illustrates this based on a short example. Mackenzie (1989)

proposes that by randomizing the length of the Hamiltonian trajectory this issue

can be eliminated while recently more general conditions for ergodicity, and hence

for convergence of the HMC algorithm could be proved, see e.g. Livingstone et al.

(2018) and Durmus et al. (2019).

4 Implementation into STAN

STAN is a state-of-the-art probabilistic programming language for Bayesian infer-

ence written in C++ language. It allows users to set up hierarchical Bayesian models

in a convenient statistical language and provides thereby an easy to apply interface

to the HMC algorithm for complex models. C++ is a machine-oriented program-

ming language and is often applied to perform computationally highly intensive

calculations due to its performance, necessary to estimate a DSGE model. Yet, this

comes at the cost of complexity in terms of the programming language which the

STAN interface remedies and makes this powerful and complex concept available to
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researchers, working out-of-the-box.

4.1 Features and Calibration

The Hamiltonian equations typically describe the dynamics of a system in continuous

time. However, in practice it will be necessary to apply a discrete-time approxima-

tion in order to calculate the new position, the momentum and the total energy

level, the sum of potential energy and kinetic energy. One of the key challenges

lies in the accurate solution of the Hamiltonian equations. As discussed before, the

Hamiltonian system is symplectic. Thus a dedicated class of symplectic integrators

can be applied enabling the calculation of an accurate discrete time solution for the

Hamiltonian trajectory in the phase space. The main advantage of the latter class

of integrators is that the approximated trajectory does not drift away from the true

one, even if integration is carried out over a long distance, hence a long period of

time. STAN uses a simple implementation referred to as “leapfrogging” to solve for

the discrete-time approximation of the Hamiltonian equations which is summarized

by the following algorithm:

Algorithm 3 Leapfrogging

1. pi(t+ ε/2) = pi(t)− (ε/2)
∂U

∂qi
(q(t))

2. qi(t+ ε) = qi(t) + ε
pi(t+ ε/2)

mi

3. pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U

∂qi
(q(t+ ε))

Although at first glance the above algorithm is easy to implement, it generates

a further challenge, especially when applied in the context of DSGE estimation.

In general it requires the evaluation of the gradient of the log-posterior which cal-

culation might be extremely difficult and time intensive. Gradients obtained by

numerical approximations can be inaccurate or computationally demanding when

the parameter space is large. One of the main advantages of STAN is that it applies a

reverse-mode automatic differentiation and C++ template metaprogramming. Au-

tomatic differentiation requires only a limited number of differentiation rules and
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the gradient is constructed via the chain rule by creating an expression tree back-

wards starting with the last expression in the likelihood function. For example,

STAN is capable of differentiating any iterative algorithm which is particularly use-

ful when implementing the estimation of DSGE models. Therefore, there is no need

for the user to specify any derivatives manually, yet in theory it is possible to write

wrappers if a closed form solution of the partial derivatives is available. Although

the derivation of the log-likelihood function which depends on the solution of the

DSGE model is computationally involved for a mid-scale DSGE model, the latter

is performed by STAN automatically and efficiently due to availability of symbolic

differentiation.

The performance of the algorithm is sensitive to the selection of two parameters:

the step size, ε and the number of steps in time, L. The selection of the discrete

time approximation to calculate the integral, ε, is of crucial importance. If the

approximation is overly fine, then the proposal to update θ will be accepted with

very high probability, yet the distance ||θ′ − θ|| will be small and the chain will

explore the parameter space very slowly. If ε is too high, the approximation of

the true solution to the Hamiltonian equation will become imprecise, or may even

diverge, and θ′ will be unlikely to be accepted. Furthermore, it can also happen

that the Markov chain will fail completely to explore certain regions of the posterior.

Usually, the posterior likelihood function exhibits regions with both lower and larger

curvature especially if the model is more complex, therefore one has to strike the

right balance when setting ε. A further strength of STAN lies in the feature that

ε is calibrated automatically during the warm-up period and fixed afterwards, yet

the user retains the option to set the parameter manually. STAN aims to calibrate

ε in a way that the acceptance rate lies at 80%, significantly higher than 23.4% in

the RWMH algorithm. In case the divergence rate remains still high, the automated

calibration mechanism in STAN can be still instructed to target higher acceptance

ratios.

It is crucial to select a suitable number of steps, L, to be conducted by the

leapfrogging algorithm in order to explore the state space systematically as pointed

out by Neal (2011). An inappropriately low L will cause θ′ to be too close to θ,

hence the algorithm will exhibit random walk behavior and the Markov chain will
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explore the parameter space again inefficiently slowly, as also highlighted by Hoffman

and Gelman (2014). If L is too large, computational resources are wasted as the

acceptance rate does not depend systematically on the number of steps. A further

built-in feature of STAN is that it automatically optimizes the number of steps by

means of the No U-Turn Sampling (NUTS) algorithm, see Hoffman and Gelman

(2014). The intuition of NUTS is to use the leapfrog integrator to iterate on θ both

in positive and negative directions, doubling the number of steps each time. That is,

first running forwards or backwards 1 step, then forwards or backwards 2 steps, then

forwards or backwards 4 steps and so on. The doubling process implicitly builds

a balanced binary tree and continues until some proposal moves backwards to its

original point of departure, making a U-turn and moving again towards the point

of departure, θ. STAN applies then a slice sampling algorithm to select randomly a

point along the Hamiltonian trajectory which adds complexity, yet it is necessary to

preserve the reversibility condition of the generated Markov chain. Finally, it accepts

the new proposal with the probability given in the Metropolis-Hastings step.

The mass matrix M , being typically a diagonal matrix is tuned automatically

during the warm-up. Here, the user is allowed to tune M manually, however the au-

tomated tuning process of STAN operates sufficiently well. Furthermore, if desired,

a dense matrix with non-zero off-diagonal elements can be can be also applied for

the estimation, which could result in improved efficiency.

A further useful feature which is implemented into STAN is that it is able to

remedy the weakness that the HMC algorithm works only if the support of the

posterior density spans the entire parameter space. If a proposal is accepted in a

region where the mass of the parameter space is zero, the gradient will become zero

or undefined and the chain will get stuck. A straightforward approach to avoid this

issue is to restrict the parameter space and let the Markov Chain bounce back from

the boundary by negating the momentum. However, STAN instead reparametrizes

θ as a function of unbounded parameters. This occurs typically when standard

deviations are estimated. The latter approach obviously involves the calculation of

the Jacobian, however this is carried out again automatically by STAN.

As already pointed out, the main advantage of the HMC algorithm is that it uses

gradient information to explore suitable paths on which the level of energy remains
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constant and finds new proposals θ′ which are distant from the most recent draw θ.

However, it comes along with the difficulty that the gradient of the log-likelihood

function needs to be evaluated. Recall that the popular solution algorithm to DSGE

models proposed by Sims (2002) uses a QZ-decomposition where the entries of the

matrices can become complex. A main shortcoming of STAN is that it is not ca-

pable of executing calculations with complex numbers, hence a QZ decomposition

cannot be implemented. Furthermore, it might be challenging to build the deriva-

tives when complex numbers are involved. To overcome this difficulty we need to

rely on a DSGE model solution algorithm which makes it feasible to the automated

differentiation implemented in STAN to calculate the gradient. The reverse-mode

automatic differentiation relies on the chain rule when building the symbolic deriva-

tive, hence it is capable to handle any matrix iteration algorithm where no complex

numbers are involved. A straightforward and easy to understand DSGE solution to

remedy these shortcomings is the Binder and Pesaran (1997) solution algorithm.

4.2 Binder-Pesaran Algorithm

The main idea of the Binder and Pesaran (1997) algorithm is to rewrite st such

that the reshuffled form will not contain the st−1 term and the system can be solved

forward in case it has a unique stable solution. A short recap of the main steps of

the algorithm looks as follows. Without loss of generality let the system be given in

a slightly different form than the Sims (2002) canonical formula:

M00st = M10st−1 + M01Etst+1 + Msεt (16)

In the following it is assumed that M00 is invertible which implies that

st = Ast−1 + BEtst+1 + Wεt (17)

with A = M−1
00 M10, B = M−1

00 M01 and W = M−1
00 Ms. The assumption that M00

has to be invertible might be slightly restrictive at first sight. However, the matrix

can become only non-invertible when a linear combination of future expectations

in t + 1 depend only on linear combinations of past values of endogenous variables

and shocks which does not seem to be an issue in practice. Anderson (2008) also
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compared and benchmarked a handful DSGE solution algorithms on several models

and did not report any issues related to the non-invertibility of M00.13 Now let

St := st − Cst−1 with St and C to be determined. st can be expressed from the

definition and substituted above to obtain

St + Cst−1 = Ast−1 + B(EtSt+1 + Cst) + Wεt (18)

Collecting and rearranging terms yields

(I− BC)St = (BC2 − C + A)st−1 + B(EtSt+1) + Wεt (19)

The backward looking component will drop out of the equation if BC2−C + A = 0.

The solution of this quadratic matrix equation can be easily obtained by iterating

on

Ck+1 = (I− BCk)
−1A (20)

Anderson (2008) reported though that solving this quadratic equation system is very

costly and in some cases the iteration failed to converge to the correct solution. A

potential reason could be for example that inverses of badly conditioned matrices

are inaccurate. As a solution one can re-parametrize the model, pre-condition the

equation, or use a different iterative method.14 We choose the latter and present

our approach in detail in the next section. Given a solution for C the system of

equations can be written as follows:

St = (I− BC)−1B︸ ︷︷ ︸
=:F

(EtSt+1) + (I− BC)−1Wεt︸ ︷︷ ︸
=:ζt

(21)

If all eigenvalues of the matrix F are stable the equation can be easily solved forward

to obtain

St =
∞∑
i=0

F iEtζt+i (22)

To arrive to the unique stable solution of the original model it suffices to plug back

13Even if this feature of the algorithm presented an issue a number slightly larger than machine
precision could be added to the matrix which would not influence the results.

14The quadratic matrix equation could be also solved by other techniques from linear algebra,
however this would again involve the calculation of generalized eigenvalues.
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the definition of St:

st = Cst−1 +
∞∑
i=0

F i(I− BC)−1WEtεt+i (23)

If structural shocks are uncorrelated then the above formula boils down to:

st = Cst−1 + (I− BC)−1Wεt (24)

For the vast majority of the DSGE models one can thus apply the following short

algorithm to obtain the solution:

Algorithm 4 Binder-Pesaran DSGE Solution

1. Rewrite the DSGE model into the following form:
M00st = M10st−1 + M01Etst+1 + Msεt
2. Compute the matrices A = M−1

00 M10, B = M−1
00 M01 and W = M−1

00 Ms

3. Iterate the equation Ck+1 = (I − BCk)
−1A with an educated guess or simply

setting C0 = A, until the matrix C converges.
4. Calculate D := (I− BC)−1W to obtain the solution form:
st = Cst−1 + Dεt

Hence, by applying this algorithm one obtains the solution to a large class of DSGE

models by simple matrix iterations and multiplications which can be differentiated

such that the solution method can be implemented into the STAN software package.

4.3 Further Computational Issues

To find a solution to a DSGE model Binder and Pesaran (1997) propose to iterate the

solution to the C matrix using the following rule: Ck+1 = (I− BCk)
−1A. Although

STAN is able to cope with the latter iteration types, the calculation of inverses

is computationally one of the most expensive operations, therefore it should be

generally avoided. Instead one can directly plug in any initial guess into the equation

Ck+1 = BC2
k + A until it converges.15

Although the Binder and Pesaran (1997) algorithm is transparent and easy to

implement it has a main drawback. While the solution method proposed by Sims

15Although there is no guarantee for convergence we were not confronted with the latter issue
when executed the algorithm.
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(2002) provides conditions which are necessary and also sufficient to guarantee that

the model has a unique stable solution, for the Binder-Pesaran algorithm only a

set of sufficient conditions under which the a unique stable solution exists can be

derived. In particular, the matrix iteration will also converge if the model has

multiple equilibria however these solutions are commonly excluded when DSGE

models are estimated. Therefore, to assess whether the model has a unique stable

solution, we rely on the Sims (2002) algorithm. Although STAN is not capable of

dealing with complex numbers, external functions can be included into the algorithm

and also partial derivatives of external functions could be manually specified. Yet,

this is not necessary as the Sims (2002) algorithm is used only to reject the sample

draw in case the Hamiltonian sampler enters a point in the parameter space where

the model has no unique stable solution. For the latter purpose no calculation of

the derivative is needed. To implement several matrix decompositions to execute

the Sims (2002) algorithm we rely on the Intel Math Kernel Library (Intel MKL), a

collection of BLAS and LAPACK algorithms which also Matlab uses, which we link

into our STAN C++ code.

A further computational issue arises when the covariance matrix Σ is initialized

for the Kalman filter. Hamilton (1994) proposes to use Kronecker products to solve

for Σ which STAN is able to handle, however it is computationally very costly since

the dimension of the problem grows quadratically with the number of equations the

model consists of. Since the solution of the DSGE model has to be non-explosive

we can obtain Σ again by an iterative procedure. However, as Σ has an impact on

the log-likelihood the calculation of this part of the gradient is costly once a large

number of iterations is necessary to achieve convergence. The initial variance is

generally obtained by solving the discrete Lyapunov equation which belongs to the

class of Stein matrix equations. Several iterative procedures are proposed in Zhoua

et al. (2009) which accelerate the iteration exponentially and enable to calculate

parts of the derivative in one step.

Altering the iteration procedure in the Binder-Pesaran algorithm and the adop-

tion of a more efficient calculation to initialize the Kalman filter speeded up the

algorithm by a factor of 3-4 for a mid-scale NK-model. In general we can state that

calculation of the gradient is costly therefore streamlining the model setup is nec-

23



essary as far as possible to avoid additional computational burden which increases

exponentially with the dimension of the model.

5 Estimation Results

In this section we present the results obtained by applying the HMC algorithm to

the textbook small scale New-Keynesian model proposed in Herbst and Schorfheide

(2015) and subsequently to the Smets and Wouters (2007) model, a medium scale

model serving as the core for a wide range of applied policy models.

5.1 A Small Scale New Keynesian Model

The most basic DSGE model estimated in Herbst and Schorfheide (2015), similar

to the one estimated in An and Schorfheide (2007), is a slightly altered version

of the standard three equation textbook New Keynesian model (see e.g. in Clar-

ida et al. (1999) and the references therein). Yet, Herbst and Schorfheide (2015)

uses quadratic price adjustment à la Rotemberg (1983) instead of the Calvo (1983)

scheme and also adds a government sector to the model. Hence, it consists of the

dynamic IS curve, the New Keynesian Phillips curve and a Taylor-type monetary

policy rule. Both the technology shock and the government spending shock is AR(1).

The model can be summarized by the following equations:16

ŷt = Et[ŷt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
+ ĝt − Et[ĝt+1] (25)

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt) (26)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2(ŷt − ĝt) + εR,t (27)

ĝt = ρgĝt−1 + εg,t (28)

ẑt = ρgẑt−1 + εz,t (29)

To estimate the model, three observables are used: GDP growth, inflation and the

16For further details we direct the reader to (Herbst and Schorfheide, 2015, pp.15-28.).
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nominal interest rate. These are linked to the state equations as follows:

Y GRt =γ(Q) + 100(ŷt − ŷt−1 + ẑt) (30)

INFLt =π(A) + 400π̂t (31)

INTt =π(A) + 4γ(Q) + 400R̂t (32)

In this setup, we do not allow for any measurement error. The small scale model

thus has 13 structural parameters to be estimated:

θ = [τ, κ, ψ1, ψ2, ρr, ρg, ρz, σr, σg, σz, r
A, πA, γQ] (33)

The priors we assume are similar to those used in Herbst and Schorfheide (2015)

and are summarized in the table below.

Table 1: Prior Distributions

Name Domain Distribution Parameter 1 Parameter 2

τ [0,∞) Gamma 2.00 0.50
κ [0,1) Uniform 0.00 1.00
ψ1 [0,∞) Gamma 1.50 0.25
ψ2 [0,∞) Gamma 0.50 0.25
r(A) [0,∞) Gamma 0.50 0.50
π(A) [0,∞) Gamma 7.00 2.00
γ(Q) (-∞,∞) Normal 0.40 0.20
ρr [0,1) Uniform 0.00 1.00
ρg [0,1) Uniform 0.00 1.00
ρz [0,1) Uniform 0.00 1.00
100σr [0,∞) Inv. Gamma 0.40 4.00
100σg [0,∞) Inv. Gamma 1.00 4.00
100σz [0,∞) Inv. Gamma 0.50 4.00

Notes: For the Beta, Gamma and Normal distribution Parameter 1 and Parameter 2 stands for
the mean and the standard deviation. For the Uniform distribution the parameters define the
bounds of the interval. For the Inverse Gamma distribution they correspond to parameters s and
ν, where pIG(σ) ∝ σ−ν−1e−νs

2/2σ2

. See also Herbst and Schorfheide (2015).

For the estimation, we used 10 parallel chains with each 1,000 draws. Due to

the efficiency of the HMC a burn-in of 500 draws is sufficient to ensure that the

sampler finds regions of high probability which is also confirmed by the diagnostics.

To visualize the diagnostics of the HMC method we used ShinyStan Version 3.0

(Gabry and Veen, 2020).
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Table 2 shows the statistics describing the sampling efficiency of the HMC for

each of the structural parameters and the log-posterior as well. Studying the numer-

ical diagnostics of the sampling efficiency two of the main advantages of the HMC

algorithm becomes visible: the high effective sample size, and the high accuracy of

the simulation of the target density.

Recall, the first is due to the greatly reduced autocorrelation of the draws, in-

troduced by the random variation in the total energy, i.e. by the random variation

of the momentum. The latter is warranted by the smart application of the gradient

to set the trajectory in the phase space along the Hamiltonian, i.e. the Hamilto-

nian equations ensure that all draws, after initial convergence, are from the target

distribution.

This improvement in efficiency is why we consider HMC being a significant im-

provement for DSGE estimation. Herbst and Schorfheide (2015) report the ineffi-

ciency factor for the relative risk aversion parameter (τ) for the different RWMH

algorithms. The inefficiency factor is the inverse of Neff/N, and note that the

RWMH suffers from high inefficiency due to its high autocorrelation. To grasp the

leap in efficiency, we highlight that the naive identity matrix based Metropolis pro-

posal has an inefficiency that translates the ”100,000 draws [...] is about as accurate

as an approximation obtained from 5.5 iid draws” (Herbst and Schorfheide, 2015,

p.119.), while the standard, benchmark RWMH algorithm described in Chapter 2

has an inefficiency that increases the effective sample size to 1,137,17 The 3-Block

RWMH algorithm results in an equivalent of 2,440 iid draws. In comparison the

effective sample size (Neff ) for the 100,000 draws with HMC is 89,737 for the risk

aversion parameter (τ). In other words the HMC estimation represents 78.60 fold

efficiency improvement over the standard, 1-Block, RWMH algorithm and a 36.63

fold over the 3-Block RWMH algorithm. However, the efficiency gain comes at a

cost in terms of computational time, as the gradient has to be evaluated.

Another advantage of weakly autocorrelated draws is the potential to run fully

independent shorter chains in parallel, in other words, STAN based HMC is highly

parallelizable. The evaluation of the gradient and its computation for each transi-

17Herbst and Schorfheide (2015) report the inefficiency factor of 88 for the 1-Block RWMH
algorithm for the parameter τ . In terms of inefficiency factor the HMC has a 1.12 inefficiency
factor.

26



tion is an increasingly difficult task in the number of structural parameters. The

C++ level integration of the automated differentiation and the computational im-

provements discussed before renders HMC also for larger models feasible.18

Lastly, and probably most importantly, we need to highlight the fact that due to

the higher convergence of the draws to the typical set, we can abandon the practice

of a mode-estimation before sampling. This potentially also improves the reliability

of our estimation method in higher dimensional models considerably, as discussed

by Betancourt (2018). We are confident that future research will highlight the

advantages of HMC in large DSGE models with irregularly shaped posteriors.

Table 2: Sampling Efficiency of the Hamiltonian Monte Carlo

Parameter Neff/N MCSE/SD Parameter Neff/N MCSE/SD
τ 89.37 % 1.05% ρr 65.70 % 1.23%
κ 91.06 % 1.05% ρg 94.94 % 1.03%
ψ1 74.18% 1.16% ρz 56.72% 1.33 %
ψ2 67.16% 1.22% 100σr 74.72 % 1.16%
r(A) 58.19% 1.31% 100σg 94.07 % 1.03%
π(A) 50.44 % 1.47 % 100σz 89.45 % 1.06 %
γ(Q) 55.57 % 1.34 % Log-Posterior 36.24 % 1.66 %

Notes: The table summarizes the efficiency of the HMC sampling. The first column (Neff/N)
displays the effective sample size divided by the total number of draws for the structural
parameters of the Small Scale DSGE model and its posterior in percentages (%). A higher
number indicates more efficient sampling for the respective parameter. The second column
(MCSE/SD) contains the ratio of the Monte Carlo standard error of the mean (MCSE) to the
posterior standard deviation (SD), again in percentages (%). Here a lower number indicates a
more efficient sampling.

The second column of Table 2 reports the ratio of the Monte Carlo standard

error of the mean (MCSE) to the posterior standard deviation (SD). The former

is related to the accuracy of the simulation, the smaller the standard error, the

loser the estimated parameter value is to the true value. The latter gives the total

uncertainty around the structural parameter. The ratio is considered to be small if it

is below 5%, thus the values around 1% are indicative of a highly efficient sampling.

Turning to the diagnostics of the sampling, we start with the number and proper-

ties of the divergent transitions. Divergent transitions occur when the approximated

path calculated by the leapfrog integrator drifts completely away from the original

18With the advances of GPU computing in STAN and propagation of higher CPU core counts
we anticipate another jump in the computational speed the coming years further advancing the
applicability of our solution to estimate DSGE models.
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path. Possible reasons for divergent trajectories could be a way too high curvature

for the calibrated step size or other irregularities in the posterior likelihood as cliffs

or funnels. A prominent example for the latter is presented in Neal (2003), referred

to as Neal’s funnel. In general the existence of divergent transitions is a warning

sign that results might be invalid, however rejected transitions might be also false

positive. In other words, if they do not display a common pattern, and are a low

proportion, then they can be neglected. From 10,000 draws we observed approxi-

mately 18 divergent iterations, that is 0.2%. The existence of divergent transitions

can indicate invalidity of the results, however the fact that their number is very low

in relative terms, and they show no systematic pattern, we argue that the results

are to be trusted. Figure 4 plots the frequency of divergent transitions against the

log-posterior (lp ) in the top panel, and the acceptance of statistic (accept stat )

in the bottom panel.

Figure 4: Small Scale DSGE Diagnostics: Divergence Information

Notes: Plots of the divergent transitions (x-axis) against the log-posterior (y-axis top panel) and

against the acceptance statistic (y-axis bottom panel) of the Hamiltonian Monte Carlo sampling

algorithm.
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From the top panel we can see directly the log-posterior distribution. It is worth

noting that the divergent transitions are mostly in the medium probability regions,

and not in the high, indicating that any divergence could be a false positive, i.e.

divergent due to the numerical instability given the complexity of the entire frame-

work. The location of the divergent transitions can provide information which parts

of the target distribution is difficult to sample from, albeit comparing the two charts,

we can conclude that the sampler did explore the difficult regions of the posterior.

Turning to the bottom panel one might be cautious due to the high acceptance

rate19. In general the intuition applies for the HMC as well that if the acceptance

rate is very high it might be indicative of inefficient sampling20. To reject this

possibility we plot the marginal posterior distributions and the scatter plot of the

acceptance rate and the log-posterior in Figure 5.

19The acceptance rate refers to the intermediate Metropolis step in the HMC Algorithm imple-
mented in STAN.

20It should be noted that STAN allows to set the target Metropolis acceptance rate with a
specific control option that adapts the jump size based on the sampling during the burn in phase.
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Figure 5: Small Scale DSGE Diagnostics: Acceptance Information

Notes: The figure plots the marginal posterior distribution of acceptance statistic (top left

panel), marginal posterior distribution of the log-posterior (top right panel), and the scatter plot

of acceptance statistic (x-axis bottom panel) against the log-posterior (y-axis bottom panel). The

vertical lines indicate the mean (solid line) and median (dashed line). A bad plot would show a

relationship between the acceptance statistic and the log-posterior.

The figure shows no relationship of the acceptance rate and the log-posterior, in

fact it indicates that the posterior has been adequately explored. This leads us to

the discussion of the energy distribution in order to assess robustness of the HMC

algorithm, shown in Figure 6. It is desirable that the histograms are ”well-matched:

[...] The closer π∆E is to πE the faster the random walk explores the energies and the

smaller the autocorrelations will be in the chain” (Gabry and Veen, 2020). Figure

6 shows the reason for the low autocorrelation, and thus the high efficiency of the

HMC algorithm, the energy levels, and with it the posterior-probability levels of the

target distribution, are well explored.
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Figure 6: Small Scale DSGE Diagnostics: Energy Distribution

Notes: These are plots of the overlaid histograms of the marginal energy distribution (πE) and

the energy transition distribution (π∆E). See Betancourt (2018) and Carpenter et al. (2017) for

more details.

Lastly discussing the trace plot of the log-posterior we can visually inspect the

sampling behavior. Figure 7 shows that the chain explored the different parts of

the parameter space. This applies to the other chains and structural parameters as

well, all indicating a proper sampling, that is the chains are mixing sufficiently well.
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Figure 7: Small Scale DSGE Diagnostics: Trace plot

Notes: The log-posterior of the draws from the Hamiltonian Monte Carlo are shown in blue.

Divergent transitions are marked on the x-axis with red lines.

Turning to the structural parameter estimates, one can verify that the posterior

estimates from HMC are the same as the ones obtained with the RWMH algorithm.

This verifies the proper functioning of the algorithm, and tells that in small

DSGE models with simple target densities, RWMH sampling works sufficiently well.

To explore the properties of HMC in a larger model the next section presents the

estimation of the Smets-Wouters model.
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Table 3: Posterior Estimates of the Small Scale DSGE Model

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

τ 2.43 [1.62, 3.35] 2.37 [1.58, 3.82]

κ 0.85 [0.62, 0.99] 0.85 [0.62, 0.98]

ψ1 1.95 [1.59, 2.34] 1.92 [1.55, 2.20]

ψ2 0.61 [0.21, 1.15] 0.60 [0.20, 1.21]

r(A) 0.42 [0.05, 0.90] 0.44 [0.05, 0.95]

π(A) 3.41 [2.79, 4.03] 3.38 [2.76, 3.80]

γ(Q) 0.60 [0.37, 0.83] 0.60 [0.37, 0.74]

ρr 0.81 [0.76, 0.85] 0.77 [0.71, 0.82]

ρg 0.98 [0.95, 1.00] 0.98 [0.95, 1.00]

ρz 0.93 [0.90, 0.97] 0.92 [0.88, 0.92]

100σr 0.19 [0.16, 0.20] 0.22 [0.18, 0.26]

100σg 0.67 [0.59, 0.78] 0.65 [0.57, 0.84]

100σz 0.19 [0.16, 0.23] 0.20 [0.16, 0.36]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the

HMC and the RWMH estimation, respectively. The results for HMC are based collectively on N

= 10,000 draws from the posterior, obtained with 10 parallel chains, with a burn in of 500 draws

and 1,000 sample draws for each.

The results for the RWMH algorithm are based on the authors’ replication of the table reported

in Herbst and Schorfheide (2015) using the original code available with 100,000 draws. Please

note the slight difference in the posterior estimates and the different notation for the scaling of

the shock variances compared to Herbst and Schorfheide (2015). We attribute the former to the

inherent random nature of the sampling.

5.2 Smets-Wouters Model

The Smets and Wouters (2007) model is a medium-scale closed economy DSGE

model. It has become the standard workhorse model for economic policy analysis

and served as a basis for newer generations of DSGE models that have followed.

It was estimated for the US with the RWMH algorithm for the sample of 1960:1–

2004:4 using seven key macroeconomic variables: real GDP, real consumption, real
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investment, the GDP deflator, real wages, employment and the nominal short-term

interest rate.21 The model features a deterministic growth rate driven by labour-

augmenting technology progress. The model is subject to nominal and real frictions.

The former affecting the labour and goods markets as Calvo-type nominal rigidities

similar to Christiano et al. (2005). Both wages and intermediate product markets

are subject to partial indexation to lagged inflation. The real frictions manifest

themselves as investment adjustment and capital utilization costs. Monetary policy

follows a Taylor type rule, with interest rate smoothing and the reaction to inflation

and output gap, the former defined as the deviation from the estimated steady state

inflation, the latter as the distance to the flexible price economy.

Exogenous variation of the model is driven by seven exogenous shock processes:

the standard total factor productivity, monetary policy, investment specific technol-

ogy, exogenous spending, the model features a risk premium shock and wage and

price markup shocks with a MA structure. The latter property introduces antici-

pated, news shocks for both the regular and the wage Phillips curve. All exogenous

shocks are iid-normal with zero mean and estimated variance. The model is log-

linearized around the steady state and net of deterministic growth rate. Variables

are expressed in terms of percentage deviations from steady state. In order to intro-

duce anticipated news shocks we augment the model with auxiliary state variables,

similar to Dynare, so the Binder-Pesaran algorithm can be easily applied.

We estimate the Smets-Wouters model with HMC and present the sampling

diagnostics in the Appendix. Once again, the efficiency of the HMC algorithm is

apparent. Even though we estimate the model with 1000 draws only, it results in an

effective sample size of 418.92 for the log-posterior. We failed to find any divergent

transitions and a well behaved sampling behaviour that explored the target density

well. Comparing the posterior results presented in Table 4 and 5 we can conclude

that both estimations deliver similar results. The only exception refers to the steady

state of inflation, that is estimated to be slightly lower with HMC. This is a result

already documented in the literature, see e.g. Chib and Ramamurthy (2010), and

might be also a reason for the poor performance of the Smets-Wouters model for

21Both real consumption and investments are deflated using the GDP deflator. The hours
variable is defined as average weekly hours of all persons in the non-farm business sector times
total civilian employment.
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inflation forecast, as pointed out in Del Negro et al. (2015).

Table 4: Posterior Estimates of the Smets-Wouters Structural Parameters

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

ϕ 5.93 [4.38, 7.68] 5.93 [4.26, 7.64]
σc 1.41 [1.20, 1.66] 1.42 [1.19, 1.65]
h 0.73 [0.65, 0.80] 0.73 [0.66, 0.80]
ξw 0.75 [0.67, 0.84] 0.75 [0.66, 0.84]
σl 2.10 [1.21, 3.02] 2.06 [1.11, 2.93]
ξp 0.65 [0.56, 0.73] 0.64 [0.56, 0.73]
ιw 0.56 [0.35, 0.77] 0.57 [0.37, 0.78]
ιp 0.24 [0.11, 0.38] 0.23 [0.09, 0.37]
ψ 0.46 [0.30, 0.65] 0.47 [0.30, 0.64]
Φ 1.65 [1.53, 1.79] 1.63 [1.50, 1.76]
rπ 2.04 [1.77, 2.33] 2.05 [1.78, 2.32]
ρ 0.82 [0.77, 0.85] 0.82 [0.78, 0.86]
ry 0.10 [0.07, 0.14] 0.10 [0.06, 0.14]
rdy 0.21 [0.17, 0.25] 0.21 [0.17, 0.25]
π̄ 0.67 [0.50, 0.86] 0.77 [0.59, 0.94]
100(β−1 − 1) 0.13 [0.07, 0.22] 0.15 [0.06, 0.23]
l̄ 0.88 [-0.68, 2.45] 0.74 [-1.00, 2.45]
γ̄ 0.47 [0.43, 0.49] 0.47 [0.44, 0.49]
α 0.21 [0.18, 0.23] 0.20 [0.17, 0.23]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the
HMC and the RWMH estimation, respectively. The results for HMC are based on N = 1000
draws from the posterior and a burn in of 500.
The results for the RWMH algorithm are based on the authors’ replication of the model using
Johannes Pfeiffer’s replication files written in Dynare with an acceptance rate of 30.42%, two
chains of 500,000 draws and a burn in of 100,000. Thus the resulting number of draws is 800,000.

The results obtained and the HMC diagnostics together seem to indicate that the

target density of the Smets-Wouters model is well behaved. Thus the application

of the RWMH algorithm should be warranted as long as tight priors are assumed.

However, a brief glance at the autocorrelation function of certain parameters sug-

gests that the sample suffers from slight autocorrelation. As HMC is able to travel

large distances in the parameter space, in the optimum one should obtain an uncor-

related sample for each parameter. Slight autocorrelation per se does not invalidate

sampling, yet it is an indication for inefficient sampling for which feature the reason

is not apparent at first sight.

An evident idea to identify the reason for inefficient sampling is to start the au-
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Table 5: Posterior Estimates of the Smets-Wouters Model’s Shock Processes

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

σa 0.48 [0.43, 0.52] 0.47 [0.42, 0.51]
σb 0.24 [0.19, 0.28] 0.23 [0.19, 0.28]
σg 0.52 [0.47, 0.57] 0.51 [0.46, 0.56]
σI 0.46 [0.38, 0.54] 0.45 [0.37, 0.53]
σr 0.23 [0.21, 0.25] 0.23 [0.21, 0.26]
σp 0.13 [0.10, 0.16] 0.13 [0.11, 0.16]
σw 0.25 [0.21, 0.28] 0.24 [0.21, 0.28]
ρa 0.98 [0.97, 0.99] 0.98 [0.97, 0.99]
ρb 0.27 [0.12, 0.48] 0.28 [0.10, 0.46]
ρg 0.97 [0.96, 0.99] 0.97 [0.96, 0.99]
ρI 0.69 [0.59, 0.78] 0.69 [0.60, 0.79]
ρr 0.17 [0.07, 0.28] 0.17 [0.06, 0.28]
ρp 0.96 [0.92, 0.99] 0.96 [0.92, 0.99]
ρw 0.97 [0.94, 0.99] 0.97 [0.95, 0.99]
µp 0.80 [0.66, 0.90] 0.80 [0.69, 0.91]
µw 0.89 [0.82, 0.94] 0.89 [0.82, 0.95]
ρga 0.57 [0.44, 0.70] 0.54 [0.41, 0.68]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the
HMC and the RWMH estimation, respectively. The results for HMC are based on N = 1000
draws from the posterior and a burn in of 500.
The results for the RMWH algorithm are based on the authors’ replication of the model using
Johannes Pfeiffer’s replication files written in Dynare with an acceptance rate of 30.42%, two
chains of 500,000 draws and a burn in of 100,000. Thus the resulting number of draws is 800,000.

tomatic tuning procedure from a different starting point then before. The gradient

based approach is designed to navigate the chain to find the typical set. After start-

ing the chain from a different spot the HMC algorithm indeed found a further mode

in spite of setting tight priors and using the data sample 1960Q1-2004Q4. Cai et al.

(2020) have already documented that even if setting priors identical to the original

paper, yet using a shortened sample, in particular data from 1960Q1 to 1991Q3, will

lead to identification problems as the data does not contain sufficient information

to pin down properly a handful parameters. While Cai et al. (2020) document that

the parameters h (habit persistence in consumption), ιp (degree of price indexation),

ρp (persistence of price markup shock) and ρga (loading of government spending on

technology shock innovations) exhibit a multimodal pattern, our results suggest that

also several other parameters differ from those documented in the baseline estima-

tion. In particular, we obtain that in addition to further parameters related to price
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and wage setting, e.g. ξp, ξw, σp, µp, there seems to be also a significant difference

in the parameter estimates for ϕ (investment adjustment costs), ψ capacity utiliza-

tion costs and ρb (persistence of risk premium shock), at least if compared with the

differences in the estimates for the rest of the parameters.22 We also double checked

our results obtained using HMC by estimating the model with RWMH in Dynare

and starting the estimation from the mean of the parameter estimates from the

alternative mode obtained with HMC. The results obtained are fairly similar. The

pattern that RWMH estimates steady state inflation by approximately 0.1 higher

than HMC remains though. Finally, we also observed that using RWMH and run-

ning two parallel chains one of the chains swaps the mode and remains there for the

rest of the time. However, estimates obtained by averaging over the entire sample

from both chains are likely to be biased and therefore more sophisticated methods

are required. In general, it is noteworthy though that improved HMC diagnostics

could contribute to uncover irregularities in the posterior likelihood.

22The results also hold up if the we estimate the model on the original sample 1966Q1-2004Q4
used in Smets and Wouters (2007).
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Table 6: Posterior Estimates of the Smets-Wouters Structural Parameters -
Alternative Mode

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

ϕ 5.43 [3.76, 7.17] 5.49 [3.67, 7.34]
σc 1.41 [1.18, 1.64] 1.42 [1.18, 1.66]
h 0.69 [0.58, 0.77] 0.69 [0.59, 0.79]
ξw 0.80 [0.73, 0.87] 0.80 [0.72, 0.87]
σl 2.13 [1.19, 3.12] 2.09 [1.14, 3.01]
ξp 0.80 [0.75, 0.85] 0.78 [0.73, 0.83]
ιw 0.52 [0.33, 0.72] 0.51 [0.31, 0.71]
ιp 0.31 [0.17, 0.48] 0.34 [0.17, 0.50]
ψ 0.40 [0.24, 0.56] 0.41 [0.24, 0.57]
Φ 1.63 [1.50, 1.77] 1.62 [1.48, 1.54]
rπ 1.97 [1.68, 2.26] 1.98 [1.70, 2.25]
ρ 0.85 [0.82, 0.88] 0.85 [0.81, 0.88]
ry 0.13 [0.08, 0.17] 0.12 [0.08, 0.16]
rdy 0.22 [0.18, 0.27] 0.23 [0.18, 0.27]
π̄ 0.67 [0.51, 0.83] 0.77 [0.60, 0.94]
100(β−1 − 1) 0.14 [0.07, 0.24] 0.15 [0.06, 0.24]
l̄ 0.61 [-0.92, 2.05] 0.46 [-1.11, 2.06]
γ̄ 0.46 [0.43, 0.49] 0.47 [0.44, 0.49]
α 0.21 [0.18, 0.24] 0.20 [0.17, 0.23]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the
HMC and the RWMH estimation, respectively. The results for HMC are based on N = 1,000
draws from the posterior and a burn in of 500.
The results for the RWMH algorithm are based on the authors’ replication of the model using
Johannes Pfeiffer’s replication files using Dynare with an acceptance rate of 31.04%, one chain of
1,000,000 draws and a burn in of 200,000. Thus the resulting number of draws is 800,000.
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Table 7: Posterior Estimates of the Smets-Wouters Model’s Shock Processes -
Alternative Mode

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

σa 0.48 [0.44, 0.53] 0.48 [0.42, 0.51]
σb 0.21 [0.15, 0.26] 0.21 [0.14, 0.26]
σg 0.52 [0.47, 0.56] 0.51 [0.46, 0.55]
σI 0.45 [0.37, 0.53] 0.44 [0.36, 0.52]
σr 0.23 [0.21, 0.25] 0.23 [0.21, 0.25]
σp 0.21 [0.19, 0.24] 0.21 [0.18, 0.24]
σw 0.23 [0.20, 0.27] 0.23 [0.20, 0.26]
ρa 0.97 [0.96, 0.98] 0.98 [0.96, 0.99]
ρb 0.41 [0.19, 0.68] 0.40 [0.16, 0.67]
ρg 0.97 [0.96, 0.99] 0.98 [0.96, 0.99]
ρI 0.71 [0.61, 0.80] 0.71 [0.61, 0.81]
ρr 0.13 [0.05, 0.22] 0.14 [0.04, 0.23]
ρp 0.93 [0.89, 0.96] 0.92 [0.89, 0.96]
ρw 0.97 [0.93, 0.99] 0.96 [0.94, 0.99]
µp 0.98 [0.97, 0.99] 0.98 [0.97, 1.00]
µw 0.91 [0.85, 0.95] 0.90 [0.84, 0.96]
ρga 0.57 [0.45, 0.70] 0.55 [0.42, 0.68]

Notes: The table shows the posterior mean and the 5 and 95 percentile of the posterior from the
HMC and the RWMH estimation, respectively. The results for HMC are based on N = 1,000
draws from the posterior and a burn in of 500.
The results for the RWMH algorithm are based on the authors’ replication of the model using
Johannes Pfeiffer’s replication files using Dynare with an acceptance rate of 31.04%, one chain of
1,000,000 draws and a burn in of 200,000. Thus the resulting number of draws is 800,000.
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6 Extension: Sequential Hamiltonian Monte Carlo

One of the main disadvantages of the HMC algorithm is that it fails to explore multi-

modal posterior distributions, as documented in existing literature, see e.g. Shiwei et

al. (2014). An interesting experiment, which also addresses criticism by researchers

with respect to the estimation setup of the original Smets-Wouters model, was car-

ried out in Herbst and Schorfheide (2014). In particular, in the latter work the

authors unrestrict the Bayesian model by using uninformative priors for a number

of parameters instead of setting tight priors as in Smets and Wouters (2007). Hence,

they allow for the information to obtain a larger weight when estimating the model.

Herbst and Schorfheide (2014) reports a bimodal shape of the marginal posterior

density for a handful parameters once uninformative priors are applied in which case

widely used MCMC based samplers as the RWMH algorithm do not mix properly.

Instead, commonly used samplers get stuck in one of the modes, depending on the

starting point of the chain. To remedy the issue of multimodality several algorithms

have already been proposed in the literature, e.g. Neal (2001), Liu and Chen (1998),

Gilks and Berzuini (2002) and Del Moral et al. (2006) where the latter works mainly

combine three different algorithms: importance sampling and resampling, rejection

sampling, and Markov chain iterations. Chopin (2004) derives a central limit the-

orem for a large class of SMC sampling methods. Herbst and Schorfheide (2014)

carried out pioneering work by introducing the SMC algorithm to DSGE models

to remedy issues with multimodality. The proposed SMC framework in Herbst and

Schorfheide (2014) fits into the scheme described by Chopin (2004) and is in princi-

ple a sequential importance sampler. In each step the posterior density p(Y |θ)βnp(θ)

at stage n, where the likelihood is weighted by 0 ≤ βn ≤ 1 ∀n, serves as a proposal

density for the density to be sampled from at the next stage p(Y |θ)βn+1p(θ) with

βn+1 > βn. This framework is commonly referred to as likelihood tempering in exist-

ing literature, e.g. Herbst and Schorfheide (2014). Alternatively, one can also carry

out data tempering by increasing the number of observations included to calculate

the likelihood function at each stage. At each stage the importance weights for all

draws {θ(n)
j }Jj=1 at stage n, that is the fraction of the posterior densities at stage n+1

and n equaling to p(Y |θ(n))βn+1−βn , is calculated and serve as the weights for the

importance sampling. The swarm of parameter draws and weights {θ(n)
j , w

(n)
j }Jj=1

40



together at each stage are commonly referred to as particles. Once the variance

of the weights becomes large the draws are resampled using the actual weights and

the weights are reset to unity. Finally at each stage the draws are mutated or

moved applying a Metropolis-Hastings step, which is alternatively referred to as the

’rejuvenation’ step.

A main drawback of using the RWMH sampler to rejuvenate the parameter draws

at each stage is again that the MH-proposal θ′ is either too often rejected or the

distance ||θ− θ′|| between the proposal and the current parameter draw is relatively

small. In case one targets an acceptance rate of 25 percent each particle will be

updated only at each fourth stage on average. The intuition behind likelihood tem-

pering is also that decreasing βn, the weight of the likelihood function in the posterior

density, reduces the energy barrier between distant separated modes which enables

to commonly applied MCMC samplers to move between modes. However, this fea-

ture can be only exploited when the step size is large enough. For the reason that

the HMC algorithm is capable of proposing updates θ′ to the current draws θ which

are distant and in theory always accepted, it can exploit this potential when βn is

relatively small. A key question in this context is how large is the probability that

the true parameter vector θ lies in the region of the posterior density surrounding a

particular mode. This probability is measured by the volumes under the posterior

density around a particular mode 1
Z

∫
θ∈Θi

p(Y |θ)p(θ)dθ. A potential issue if using

the RWMH algorithm in the rejuvenation step is that particles will tend to get stuck

in the same region around the typical set where they started from at stage zero and

could potentially bias the estimation. With the number of particles going to infinity

this bias will have to disappear even if particles were not rejuvenated at all, when

using e.g. annealed importance sampling by Neal (2001), as convergence of these

algorithms is warranted. However, with increasing amount of parameters the num-

ber of particles necessary will increase exponentially such that a guided approach

to rejuvenate the actual parameter draw might be of an advantage. The Sequen-

tial Hamiltonian Monte Carlo algorithm has already been applied by Daviet (2018)

to logit discrete choice models and reports better convergence properties than the

simple SMC method if a leave-one-out approximation of the observed distribution

of the particles is used in the correction step. In our work we will use the SMC
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framework proposed by Herbst and Schorfheide (2014) with both multinomial and

stratified resampling. The next algorithm summarizes the main steps:

Algorithm 5 Sequential Hamiltonian Monte Carlo

1. Search for the different modes by starting the HMC algorithm from different
parameter settings.
2. Specify a sequence {βn}Nn=0 such that 1 = βN > ... > βn+1 > βn > ... > β0 ≥ 0
3. Tune the HMC sampler for each target density p(Y |θ(n))βnp(θ(n)) separately,

depending on the current position a given particle θ
(n)
j to be rejuvenated, if nec-

essary.
4. Run the SMC algorithm by applying the HMC algorithm to execute the reju-
venation step and always use the pretuned sampler at each stage for the target
distribution p(Y |θ(n))βnp(θ(n)) depending on the current position of the actual

draw θ
(n)
j .

This algorithm fits into the scheme proposed by Chopin (2004), as already pointed

out by Daviet (2018). Therefore, under common regularity conditions and assuming

that the multinomial resampling is used, almost sure convergence will hold:

1

J

J∑
j=1

h(θ
(n)
j )

a.s.→ Eπ̃n(h) (34)

∑J
j=1w

(n)
j h(θ

(n)
j )∑J

j=1w
(n)
j

a.s.→ Eπt(h) (35)

1

J

J∑
j=1

h(θ̂
(n)
j )

a.s.→ Eπn(h) (36)

where π̃n(· ) :=
∫
πn−1(θ(n−1))k(n)(θ̂(n−1), · )dθ(n−1) with k(n) being the stochastic

kernel density function implied by the HMC algorithm. Furthermore πn(θ(n)) =
1

Zn
p(Y |θ(n))βnp(θ(n)), w

(n)
j ∝ ν

(n)
j = πn(θ

(n−1)
j )/π̃n(θ

(n−1)
j ) and θ̂

(n)
j the particle posi-

tions after resampling. As HMC leaves πn−1 invariant, it follows that π̃(n) = πn−1,

hence w
(n)
j = p(Y |θ(n−1)

j )βn−βn−1 .

Furthermore, the limit distribution is:

J1/2

{
1

J

J∑
j=1

h(θ̂
(n)
j )− Eπn(h)

}
D→ N (0, V̂n(h)) ∀n = 1, ..., N (37)
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with V̂n(h) obtained recursively:

Ṽ0(h) = Varπ̃(0)(h) (38)

Ṽn(h) = V̂n−1(h) {Ekn(h)}+ Eπn−1(h)Varkn(h) ∀n = 1, ..., N (39)

Vn(h) = Ṽn {νn · (h− Eπn(h))} ∀n = 1, ..., N (40)

V̂n(h) = Vn(h) + Varπn(h) ∀n = 1, ..., N (41)

To apply the algorithm we estimate again the Smets and Wouters (2007) model

and loosen the priors in line with Herbst and Schorfheide (2014). We use the same

data set as for the estimation of the restricted model. Before executing the esti-

mation code the sampler has to be tuned. In particular, we use N = 37 stages

and J = 256 particles in order not to waste computational resources, which amount

is rather low if compared SMC frameworks using RWMH for rejuvenation. The

tempering schedule {βn}Nn=1 was calibrated in a way that p(Y |θ)βnp(θ) serves always

sufficiently well as proposal density for p(Y |θ)βn+1p(θ), hence the bridge densities are

never too different. Even with such a relatively small amount of stages and particles

modes are not absorbed highlighting the power of the SHMC estimator in the sense

that the rejuvenation step is guided. The following graph displays the shape of the

tempering schedule:

Figure 8: Tempering Schedule

Notes: The solid line shows the tempering schedule used for the estimation. The dashed line
shows the tempering schedule if βn = ((n− 1)/(N − 1))λ with λ = 2.1 and the dotted line if
λ = 2.75.

The solid line shows the tempering schedule, as a dashed line we plotted the original
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schedule of Herbst and Schorfheide (2014). At the low end the tempering schedules

correspond while after approximately one quarter the schedule used by Herbst and

Schorfheide (2014) starts to increase more rapidly. As a comparison we plotted the

schedule from Herbst and Schorfheide (2014) with λ = 2.75 which provides a better

approximation of the schedule used for our estimation framework. Using the HMC

sampler there is no need to increase the tempering schedule as rapidly due to the

better sampling properties at higher βn values which allows the particle positions to

remain at lower βn-levels and to mix between the modes for a longer time. However,

one should notice that already at relatively low βn levels mixing is far away from

optimal, that is, not jumping often enough between modes. As βn increases less

information can be extracted from the density as regards the ratio of the volumes

under the modes by moving the particles in the parameter space, yet one can obtain

more information with respect to the exact shape of the modes. Another difference if

compared with the tempering schedule used by Herbst and Schorfheide (2014) is that

while the latter starts with a draw from the prior distribution our initial sampling

stems from a slightly informed distribution with βn = 0.005, where the HMC sampler

is able to mix between the modes. In our initial sample approximately 30 percent

of the particles are from the region around the mode which seem be dominated and

to encompass less volume. The latter setup is in line with our prior beliefs based on

existing literature, see Lanne and Luoto (2018), which augments the SMC algorithm

with a non-sequential importance sampling. We also applied the criterion used in

Herbst and Schorfheide (2014) to decide whether to resample at a given stage n,

yet we resample when the effective sample size (ESS) drops below 0.7 instead of

0.5. In practice, the algorithm resamples in most of the cases at each second stage.

Alternatively, we could have resampled deterministically at each second stage.

We performed the estimation both using multinomial and stratified resampling.

Our estimation results suggest that the posterior density for a handful parameters

is ill-behaved. In particular, we find in line with Herbst and Schorfheide (2014) and

Lanne and Luoto (2018) that the joint kernel density estimates of the parameters ρp

and µp, the ARMA(1,1) terms in the exogenous shock process of the Phillips-curve,

is bimodal as illustrated below. In our estimations we obtain that approximately

between 10 and 30 percent of the particles are concentrated in the area around the
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Figure 9: Joint Posterior Density Estimates

Notes: The plot show the joint posterior densities of the following parameters: [ρp,µp] (upper
left), [ξw,ρw] (upper right), [ξw,µw] (lower left) and [ρw,µw] (lower right). Sample size equals 512,
where two sample draws of the size J = 256, respectively, were merged, the first obtained by
applying multinomial resampling, the second one by stratified resampling. Divergence rate at the
last stage βn = 1 was approximately 2.3 percent and 1.5 percent, respectively, while the overall
divergence rate throughout all N = 37 stages amounted to approximately 5.1 percent for both
samples.

dominated mode which is higher than the probability of around 5 percent reported

in Herbst and Schorfheide (2014). The parameters determining the wage Phillips

curve, ξw and ρw, that is the wage rigidity and the AR(1) term of the mark-up

shock process exhibit also a bimodal pattern, yet both modes are rather stretched

out in length. The joint kernel density of ξw and the MA(1) coefficient of the

wage mark-up shock, µw, is shaped similarly as the joint density of [ξw, ρw]. The

reason for this feature is that ρw and µw are highly correlated. The joint kernel

density exhibits a long ridge along the 45° line which suggests that the mark-up

shock process is overparametrized as also suggested by Lanne and Luoto (2018) and
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restricting the model could result in an improved fit. In general we can conclude

that by combining the HMC estimator with SMC we obtain a powerful tool which

allows for the estimation of complex and ill-behaved posterior densities and delivers

results in line with existing literature.

7 Conclusion and Outlook

In this paper we review the benchmark DSGE estimation framework, the RWMH

algorithm, and present an advanced alternative, the HMC sampler. Subsequently

we implement the HMC algorithm for DSGE models in STAN, a state-of-the-art,

high-performance software package which has become a workhorse development en-

vironment for Bayesian estimation. We estimate a small scale three equation NK

textbook model and the Smets-Wouters model using HMC. Our estimation results

largely correspond to those from existing literature which underlines the accuracy

of the estimation method and the implemented algorithm. In addition, we present

in detail the sampling diagnostics which enables to conclude that the target den-

sity of the three equation textbook model exhibits a regular shape. We confirm

that in this case the RWMH algorithm operates also adequately. However, for the

Smets-Wouters model, after the advanced diagnostics unique to HMC exhibited

signs of inefficient sampling, we found a second mode, even though the estimation

was carried out using the original priors and data. Consequently, we highlight that

advanced sampling diagnostics for HMC helps identify irregularities in the posterior

and parameters difficult to sample. Furthermore, we would like to stress that HMC

does not require any posterior mode search which is a major advantage if compared

with the commonly used RMWH algorithm.

Finally, we combine the HMC algorithm with the SMC sampler to address a

main shortcoming of HMC that it fails to explore ill-behaved posterior densities

properly. We apply this extended framework to estimate the Smets-Wouters model

using less informative priors and obtain bimodal posterior densities which results

are in line with those in existing literature. Yet, we acknowledge that further effort

is needed to increase the speed of the algorithm.

In light of our results, we believe that superior sampling properties and unique

46



diagnostics to HMC will open new avenues to revisit existing DSGE model estima-

tion exercises. We are also hopeful that additional, already existing, sophisticated

gradient-based estimation methods can be implemented for DSGE estimation as

computational power available today should render these algorithms feasible. We

leave these topics for future research.
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Appendix

Smets-Wouters Model:
Hamiltonian Monte Carlo Estima-
tion Diagnostics

Warnings

[1] "None of the 1000 iterations ended with a divergent transition."

Numerical diagnostics

n_eff Rhat mean se_mean sd

log-posterior 418.92 1.00 -1191.70 0.22 4.59

crpi 1163.52 1.00 2.04 0.00 0.17

crdy 1765.21 1.00 0.21 0.00 0.03

cry 941.05 1.00 0.10 0.00 0.02

crr 995.36 1.01 0.82 0.00 0.02

constelab 1377.36 1.00 0.88 0.03 0.95

constepinf 1071.22 1.00 0.67 0.00 0.10

ctrend 497.64 1.00 0.47 0.00 0.02

constebeta 1084.42 1.00 0.13 0.00 0.05

cgy 1285.63 1.00 0.57 0.00 0.08

cmaw 1015.16 1.00 0.89 0.00 0.04

cmap 532.57 1.01 0.80 0.00 0.08

calfa 1438.32 1.00 0.21 0.00 0.02

czcap 950.76 1.00 0.46 0.00 0.10

csadjcost 892.60 1.00 5.93 0.03 1.01

csigma 730.47 1.00 1.42 0.01 0.14

chabb 1010.00 1.00 0.73 0.00 0.04

cfc 846.70 1.00 1.65 0.00 0.08

cindw 1275.43 1.00 0.57 0.00 0.13
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cprobw 632.40 1.00 0.75 0.00 0.05

cindp 867.03 1.00 0.23 0.00 0.09

cprobp 433.91 1.00 0.65 0.00 0.05

csigl 1523.58 1.00 2.10 0.01 0.55

crhoa 754.90 1.00 0.98 0.00 0.01

crhob 498.21 1.00 0.27 0.00 0.11

crhog 1115.33 1.00 0.97 0.00 0.01

crhoqs 775.30 1.00 0.69 0.00 0.06

crhoms 1309.81 1.00 0.17 0.00 0.06

crhopinf 370.24 1.00 0.96 0.00 0.02

crhow 415.38 1.00 0.97 0.00 0.01

sigmaea 952.76 1.00 0.48 0.00 0.03

sigmaeb 665.30 1.00 0.24 0.00 0.03

sigmaeg 1332.55 1.00 0.52 0.00 0.03

sigmaeqs 988.35 1.00 0.46 0.00 0.05

sigmaem 1140.80 1.00 0.23 0.00 0.01

sigmaepinf 865.82 1.00 0.13 0.00 0.02

sigmaew 1255.44 1.00 0.25 0.00 0.02

curvp NaN NaN 10.00 NaN 0.00

curvw NaN NaN 10.00 NaN 0.00

clandaw NaN NaN 1.50 NaN 0.00

LL 727.83 1.00 -961.48 0.20 5.50

cpie 1071.00 1.00 1.01 0.00 0.00

cgamma 496.67 1.00 1.00 0.00 0.00

cbeta 1083.87 1.00 1.00 0.00 0.00

clandap 846.70 1.00 1.65 0.00 0.08

cbetabar 714.02 1.00 0.99 0.00 0.00

cr 956.49 1.00 1.01 0.00 0.00

crk 714.22 1.00 0.03 0.00 0.00

cw 858.44 1.00 0.69 0.00 0.04

cikbar 497.39 1.00 0.03 0.00 0.00

cik 497.64 1.00 0.03 0.00 0.00
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clk 1264.45 1.00 0.19 0.00 0.03

cky 1463.32 1.00 6.26 0.01 0.54

ciy 1404.19 1.00 0.19 0.00 0.02

ccy 1404.19 1.00 0.63 0.00 0.02

crkky 1438.32 1.00 0.21 0.00 0.02

cwhlc 879.78 1.00 0.83 0.00 0.01

cwly 1438.32 1.00 0.79 0.00 0.02

conster 956.99 1.00 1.47 0.00 0.13
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Visual diagnostics

Divergence Information

These are plots of the divergent transition status (x-axis) against the log-posterior

(y-axis top panel) and against the acceptance statistic (y-axis bottom panel) of the

sampling algorithm for all chains. Divergent transitions can indicate problems for the

validity of the results. A good plot would show no divergent transitions. If the diver-

gent transitions show the same pattern as the non-divergent transitions, this could

indicate that the divergent transitions are false positives. A bad plot would show

systematic differences between the divergent transitions and non-divergent tran-

sitions. For more information see https://mc-stan.org/misc/warnings.html#

divergent-transitions-after-warmup.
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Energy

These are plots of the overlaid histograms of the marginal energy distribution (πE)

and the energy transition distribution (π∆E) for all chains. A good plot shows

histograms that look well-matched indicating that the Hamiltonian Monte Carlo

should perform robustly. The closer π∆E is to πE the faster the random walk explores

the energies and the smaller the autocorrelations will be in the chain. If π∆E is

narrower than πE the random walk is less effective and autocorrelations will be

larger. Additionally the chain may not be able to completely explore the tails of

the target distribution. See Betancourt ‘A conceptual introduction to Hamiltonian

Monte Carlo’ and Betancourt ‘Diagnosing suboptimal cotangent disintegrations in

Hamiltonian Monte Carlo’ for the general theory behind the energy plots.
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Treedepth Information

These are plots of the treedepth (x-axis) against the log-posterior (y-axis top left

panel) and against the acceptance statistic (y-axis top right panel) of the sam-

pling algorithm for all chains. In these plots information is given concerning the

efficiency of the sampling algorithm. Zero treedepth can indicate extreme cur-

vature and poorly-chosen step size. Treedepth equal to the maximum treedepth

might be a sign of poor adaptation or of a difficult posterior from which to sample.

The former can be resolved by increasing the warmup time, the latter might be

mitigated by reparametrization. For more information see https://mc-stan.org/

misc/warnings.html#maximum-treedepth-exceeded or https://mc-stan.org/docs/

reference-manual/hmc-algorithm-parameters.html.
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Step Size Information

These are plots of the integrator step size per chain (x-axis) against the log-posterior

(y-axis top panel) and against the acceptance statistic (y-axis bottom panel) of the

sampling algorithm. If the step size is too large, the integrator will be inaccurate

and too many proposals will be rejected. If the step size is too small, the many

small steps lead to long simulation times per interval. Thus the goal is to balance

the acceptance rate between these extremes. Good plots will show full exploration

of the log-posterior and moderate to high acceptance rates for all chains and step

sizes. Bad plots might show incomplete exploration of the log-posterior and lower

acceptance rates for larger step sizes.
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Acceptance Information

These are plots of the acceptance statistic (top left panel), the log-posterior (top

right panel), and, the acceptance statistic (x-axis bottom panel) against the log-

posterior (y-axis bottom panel) for all chains. The vertical lines indicate the mean

(solid line) and median (dashed line). A bad plot would show a relationship between

the acceptance statistic and the log-posterior. This might be indicative of poor ex-

ploration of parts of the posterior which might be mitigated by reparametrization

or adaptation of the step size. If many proposals are rejected the integrator step

size might be too large and the posterior might not be fully explored. If the ac-

ceptance rate is very high this might be indicative of inefficient sampling. The

target Metropolis acceptance rate can be set with the adapt delta control op-

tion. For more information see https://mc-stan.org/docs/reference-manual/

hmc-algorithm-parameters.html.

accept_stat__ lp__

0.00 0.25 0.50 0.75 1.00 −1210 −1200 −1190 −1180

−1210

−1200

−1190

−1180

0.00 0.25 0.50 0.75 1.00
accept_stat__

lp
__

59

https://mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html
https://mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html


Scatter plots

These are scatter plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend, conste-

beta, cgy, cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw, cprobw,

cindp, cprobp, csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow, sig-

maea, sigmaeb, sigmaeg, sigmaeqs, sigmaem, sigmaepinf, sigmaew, plotted against

log-posterior. The red dots, if present, indicate divergent transitions. Diver-

gent transitions can indicate problems for the validity of the results. A good plot

would show no divergent transitions. A bad plot would show divergent transitions

in a systematic pattern. For more information see https://mc-stan.org/misc/

warnings.html#divergent-transitions-after-warmup.
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Autocorrelation

These are autocorrelation plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend,

constebeta, cgy, cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw,

cprobw, cindp, cprobp, csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow,

sigmaea, sigmaeb, sigmaeg, sigmaeqs, sigmaem, sigmaepinf, sigmaew. The autocor-

relation expresses the dependence between the samples of a Monte Carlo simulation.

With higher dependence between the draws, more samples are needed to obtain the

same effective sample size. High autocorrelation can sometimes be remedied by

reparametrization of the model.
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Trace Plots

These are trace plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend, conste-

beta, cgy, cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw, cprobw,

cindp, cprobp, csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow, sigmaea,

sigmaeb, sigmaeg, sigmaeqs, sigmaem, sigmaepinf, sigmaew. Trace plots provide

a visual way to inspect sampling behavior and assess mixing across chains. The

iteration number (x-axis) is plotted against the parameter value at that iteration

(y-axis). Divergent transitions are marked on the x-axis. A good plot shows chains

that move swiftly through the parameter space and all chains that explore the same

parameter space without any divergent transitions. A bad plot shows chains explor-

ing different parts of the parameter space, this is a sign of non-convergence. If there

are divergent transitions, looking at the parameter value related to these iterations

might provide information about the part of the parameter space that is difficult to

sample from. Slowly moving chains are indicative of high autocorrelation or small

integrator step size, both of which relate to ineffective sampling and lower effective

sample sizes for the parameter.
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Smets-Wouters Model:
Hamiltonian Monte Carlo Estima-
tion Diagnostics for Alternative Mode
Estimation

Warnings

[1] "None of the 1000 iterations ended with a divergent transition."

Numerical diagnostics

n_eff Rhat mean se_mean sd

log-posterior 365.59 1.00 -1199.89 0.23 4.31

crpi 892.49 1.00 1.97 0.01 0.17

crdy 942.12 1.00 0.22 0.00 0.03

cry 1194.44 1.00 0.13 0.00 0.03

crr 868.04 1.00 0.85 0.00 0.02

constelab 846.38 1.00 0.61 0.03 0.91

constepinf 922.57 1.00 0.67 0.00 0.10

ctrend 710.82 1.00 0.46 0.00 0.02

constebeta 962.80 1.00 0.14 0.00 0.05

cgy 1213.01 1.00 0.57 0.00 0.08

cmaw 642.98 1.00 0.91 0.00 0.03

cmap 805.75 1.01 0.98 0.00 0.01

calfa 1054.77 1.00 0.21 0.00 0.02

czcap 898.15 1.00 0.40 0.00 0.10

csadjcost 704.09 1.00 5.43 0.04 1.04

csigma 562.87 1.00 1.41 0.01 0.14

chabb 482.26 1.00 0.69 0.00 0.06

cfc 889.32 1.00 1.63 0.00 0.08

cindw 1312.51 1.00 0.52 0.00 0.12

cprobw 470.28 1.00 0.80 0.00 0.04

cindp 1131.00 1.00 0.31 0.00 0.09
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cprobp 788.72 1.01 0.80 0.00 0.03

csigl 1284.08 1.00 2.13 0.02 0.60

crhoa 728.30 1.00 0.97 0.00 0.01

crhob 385.27 1.00 0.41 0.01 0.15

crhog 609.54 1.00 0.97 0.00 0.01

crhoqs 651.13 1.00 0.71 0.00 0.06

crhoms 902.99 1.00 0.13 0.00 0.06

crhopinf 1005.06 1.00 0.93 0.00 0.02

crhow 359.52 1.00 0.97 0.00 0.02

sigmaea 1259.12 1.00 0.48 0.00 0.03

sigmaeb 456.17 1.00 0.21 0.00 0.04

sigmaeg 1121.21 1.00 0.52 0.00 0.03

sigmaeqs 806.33 1.00 0.45 0.00 0.05

sigmaem 1155.58 1.00 0.23 0.00 0.01

sigmaepinf 1240.97 1.00 0.21 0.00 0.02

sigmaew 930.52 1.00 0.23 0.00 0.02

LL 845.43 1.00 -960.54 0.19 5.50

cpie 921.25 1.00 1.01 0.00 0.00

cgamma 712.31 1.00 1.00 0.00 0.00

cbeta 963.16 1.00 1.00 0.00 0.00

clandap 889.32 1.00 1.63 0.00 0.08

cbetabar 845.19 1.00 0.99 0.00 0.00

cr 731.82 1.00 1.01 0.00 0.00

crk 845.41 1.00 0.03 0.00 0.00

cikbar 710.70 1.00 0.03 0.00 0.00

cik 710.81 1.00 0.03 0.00 0.00

clk 1159.86 1.00 0.18 0.00 0.02

cky 1088.85 1.00 6.31 0.02 0.55

ciy 1041.18 1.00 0.19 0.00 0.02

ccy 1041.18 1.00 0.63 0.00 0.02

crkky 1054.77 1.00 0.21 0.00 0.02

cwhlc 860.41 1.00 0.83 0.00 0.01
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cwly 1054.77 1.00 0.79 0.00 0.02

curvp NaN NaN 10.00 NaN 0.00

curvw NaN NaN 10.00 NaN 0.00

clandaw NaN NaN 1.50 NaN 0.00

conster 732.03 1.00 1.47 0.00 0.13
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