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In this paper we deal with an implementation as well as numerical experiments for the

coupling of interior and exterior problems of the elastodynamic wave equation with

transparent boundary conditions in 3D as described in a previous paper by this author.

In more detail, the FEM-BEM-coupling as well as the time discretization by using

leapfrog and convolution quadrature is considered. Our aim is to provide an insight

into the necessary steps of the implementation. Based on this, we present numerical

experiments for a non-convex domain and analyze the errors.
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1 INTRODUCTION AND OUTLINE

In recent times, the FEM-BEM coupling for partial differential equations gained more and more importance. It first appeared

in a paper by Zienkiewicz et al.[20] and was later build upon by Li et al.[15] Its application is manifold, such as, e.g., crack

problems in fracture mechanics (Aour et al.[3]), ground-structure interaction (Jean[11]), and for the dynamics of flexible bodies

(Kerdjouj and Amirouche[12]). Major topics of research include the acoustic (cf. Banjai et al.,[4] Sayas,[18] Clouteau et al.,[6] and

Ziegelwanger et al.[19]) and elastic wave equation. Specifically for the elastic wave equation, relevant publications for this paper

are Carstensen et al.,[5] dealing with a 2d elastic transmission problem, Domínguez et al.,[7] describing the general 2d elastic

Calderón operator and presenting a 2d scattering problem, as well as Kielhorn and Schanz[14] analysing 3d static and dynamic

elastic problems with prescribed boundary conditions.

In continuation of the article by Eberle,[8] this work is intended to add to the ongoing research by presenting the implementa-

tion and numerical realization of the FEM-BEM coupling of the elastodynamic wave equation in 3D for transparent boundary

conditions. As such this paper is the first to complete the union of theory and numerics for this problem. We start our con-

sideration by summarizing the theoretical results of the stable numerical coupling of interior and exterior problems for the

elastodynamic wave equation given in Eberle,[8] which provides the basis for the implementation. We present the results of the

discretization itself and also take a look at the results concerning the stability and convergence of the numerical methods. After

that, we go over to the implementation, where we want to remark that there already exist implementations for the elastodynamic

wave equation, which deal with parts of our problem, e.g., the FEM part by either Alberty et al.[1] in Matlab, or C++-libraries

from FEniCs (cf. Alnaes et al.[2]), as well as the C++-libraries HyENA by Schanz (see, e.g. Kielhorn and Schanz[14]) for the

BEM part. To our knowledge there is no implementation for the elastodynamic wave equation with tranparent boundary condi-

tions which couples the corresponding time discretization for finite and boundary elements. But we want to mention the work by
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Rammerstorfer and Schanz[16] and Rüberg and Schanz[17] concerning the FEM-BEM coupling for other elasticity problems as

well as for fluid problems by Estorff and Antes.[9] Thus, this paper plays an essential role in the numerical/theoretical treatment

of the transient elasticity problem with transparent boundary conditions. Concerning the implementation, we first take a look

at the generation of the meshes with respect to the finite and boundary elements. After that, we go over to the construction of

the matrix, where we split our consideration into the parts which belong to the boundary, interior and coupling terms, and also

highlight their special treatment, e.g. for the boundary the regularization of the strong and hypersingular kernel which appear

in the BEM formulation. In the last section, we present numerical experiments for a non-convex domain and the corresponding

error plots. We close our paper with a summary and conclusion.

2 THE ELASTODYNAMIC WAVE EQUATION

In order to introduce the problem of interest, we recapitulate the background from Eberle.[8] Thus, we take a look at the three-

dimensional elastodynamic wave equation given by

𝜌𝜕2
𝑡
𝑢 = 𝜇Δ𝑢 + (𝜆 + 𝜇)∇(∇ ⋅ 𝑢) + 𝜌𝜕𝑡𝑓 in ℝ3 × [0, 𝑇 ], (2.1)

where 𝑢 ist the displacement vector, 𝜌 the density, 𝜆 and 𝜇 the Lamé parameter and 𝜌𝜕𝑡𝑓 the force. In addition, we prescribe the

initial conditions

𝑢(⋅, 0) = 𝑢0 in ℝ3,

𝜕𝑡𝑢(⋅, 0) = 𝑣0 in ℝ3,

where 𝑓 , 𝑢0 and 𝑣0 are compactly supported. This problem statement implies the following radiation condition due to the finite

speed of wave propagation: 𝑢(⋅, 𝑡) is compactly supported for all 𝑡.

Our aim is to construct a stable numerical method, which couples the interior and exterior problem for a non-convex domain

Ω. Therefore, we split the problem in the following way.

Problem in interior space:

𝜌𝜕2
𝑡
𝑢− = 𝜇Δ𝑢− + (𝜆 + 𝜇)∇(∇ ⋅ 𝑢−) + 𝜌𝜕𝑡𝑓 in Ω × [0, 𝑇 ],

𝑢−(⋅, 0) = 𝑢0 in Ω,

𝜕𝑡𝑢
−(⋅, 0) = 𝑣0 in Ω.

Problem in exterior space:

𝜌𝜕2
𝑡
𝑢+ = 𝜇Δ𝑢+ + (𝜆 + 𝜇)∇(∇ ⋅ 𝑢+), in Ω+ × [0, 𝑇 ],

𝑢+(⋅, 0) = 0 in Ω+,

𝜕𝑡𝑢
+(⋅, 0) = 0 in Ω+,

with Ω+ = ℝ3 ⧵Ω.

Transmission conditions:

𝛾−𝑢− = 𝛾+𝑢+,

 −𝑢− =  +𝑢+.

Here, 𝛾− and 𝛾+ represent the interior and exterior traces on the boundary 𝜕Ω = Γ and  − and  + denote the stress operator

for the interior and exterior case, which is given by

 𝑢 = 𝜎(𝑢)𝑛 = (2𝜇𝜀(𝑢) + 𝜆(∇ ⋅ 𝑢)𝐼)𝑛,

where 𝜀(𝑢) = 1
2 (∇𝑢 + (∇𝑢)𝑇 ).
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2.1 The Calderón operator
Next, we go over to the construction of the Calderón operator and proceed in the same way as in Eberle.[8] First, we take a look

at the Laplace transformed wave equation

𝜌𝑠2𝑢 = 𝜇Δ𝑢 + (𝜆 + 𝜇)∇(∇ ⋅ 𝑢) + 𝜌𝑠𝑓 + 𝜌𝑠𝑢0 + 𝜌𝑣0

with the parameter 𝑠 ∈ ℂ.
We introduce the fundamental solution given by (see, e.g., Kielhorn[13])

𝐺̂(𝑥 − 𝑦, 𝑠) = 1
𝜇

[
Δ𝑥𝜒(|𝑥 − 𝑦|, 𝑠)𝐼 − 𝜆 + 𝜇

𝜆 + 2𝜇
∇𝑥∇𝑥𝜒(|𝑥 − 𝑦|, 𝑠)] − 1

𝜇
𝑘1(𝑠)2𝜒(|𝑥 − 𝑦|, 𝑠)𝐼, (2.2)

with

𝜒(|𝑥 − 𝑦|, 𝑠) ∶= 1
4𝜋

1
𝑘1(𝑠)2 − 𝑘2(𝑠)2

exp(−𝑘1(𝑠)|𝑥 − 𝑦|) − exp(−𝑘2(𝑠)|𝑥 − 𝑦|)|𝑥 − 𝑦| , (2.3)

𝑘1(𝑠) = 𝑠
√

𝜌

𝜆 + 2𝜇
and 𝑘2(𝑠) = 𝑠

√
𝜌

𝜇
. (2.4)

In order to construct the Calderón operator, we define the boundary densities

𝜓 = −[𝛾𝑢] on Γ,

𝜙 = 1
𝑠
[ 𝑢] on Γ,

where [𝛾𝑢] = 𝛾−𝑢 − 𝛾+𝑢 and [ 𝑢] =  −𝑢 −  +𝑢 are the jumps in the boundary traces.
After that, we apply the operators 𝛾 and  to the ansatz

𝑢 = 𝑠𝑆(𝑠)𝜙 +𝐷(𝑠)𝜓,

where 𝑆(𝑠) is the single layer potential and 𝐷(𝑠) the double layer potential given by

𝑆(𝑠)𝜙(𝑥) = ∫
Γ

𝐺̂(𝑥 − 𝑦, 𝑠)𝜙(𝑦) 𝑑Γ𝑦,

𝐷(𝑠)𝜙(𝑥) = ∫
Γ

𝑦𝐺̂(𝑥 − 𝑦, 𝑠)𝜙(𝑦) 𝑑Γ𝑦 for 𝑥 ∈ ℝ3 ⧵ Γ.

This leads to (
[𝛾⋅]
1
𝑠
[ ⋅]

)(
𝑠𝑆(𝑠)𝜙 𝐷(𝑠)𝜓

)
=

(
0 −𝜓
𝑠𝜙 0

)
due to the limit and jump relations of the operators [𝛾⋅] and

1
𝑠
[ ⋅] (see Eberle[8]).

Observing the boundary integral operators in the Laplace domain given by

𝐽 (𝑠)𝜙(𝑥) = ∫
Γ

𝐺̂(𝑥 − 𝑦, 𝑠)𝜙(𝑦)𝑑Γ𝑦,

𝐾𝑇 (𝑠)𝜙(𝑥) = ∫
Γ

(𝑦𝐺̂(𝑥 − 𝑦, 𝑠))𝜙(𝑦)𝑑Γ𝑦,
𝐾(𝑠)𝜙(𝑥) = 𝑥 ∫

Γ

𝐺̂(𝑥 − 𝑦, 𝑠)𝜙(𝑦)𝑑Γ𝑦,

𝑊 (𝑠)𝜙(𝑥) = −𝑥 ∫
Γ

(𝑦𝐺̂(𝑥 − 𝑦, 𝑠))𝜙(𝑦)𝑑Γ𝑦 for 𝑥 ∈ Γ,
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the averages {{⋅}} are defined by

𝐽 (𝑠)𝜙 = {{𝛾𝑆(𝑠)𝜙}} = 𝛾±𝑆(𝑠)𝜙,

𝐾(𝑠)𝜙 = {{ 𝑆(𝑠)𝜙}},
𝐾𝑇 (𝑠)𝜓 = {{𝛾𝐷(𝑠)𝜓}},

𝑊 (𝑠)𝜓 = −{{ 𝐷(𝑠)𝜓}} = − ±𝐷(𝑠)𝜓,

which results in (
{{𝛾⋅}}

−1
𝑠
{{ ⋅}}

)(
𝑠𝑆(𝑠)𝜙 𝐷(𝑠)𝜓

)
=

(
𝑠𝐽 (𝑠)𝜙 𝐾𝑇 (𝑠)𝜓
−𝐾(𝑠)𝜙 1

𝑠
𝑊 (𝑠)𝜓

)
,

so that we define the Calderón operator 𝐵(𝑠) as

𝐵(𝑠) =

(
𝑠𝐽 (𝑠) 𝐾𝑇 (𝑠)
−𝐾(𝑠) 1

𝑠
𝑊 (𝑠)

)
. (2.5)

Next, we present the coercivity results for the Calderón operator, which play an important role for the stability analysis.

We start with the Laplace domain followed by the time domain and the reader should note that the proofs can be found in

Eberle.[8]

Lemma 1 (Eberle [8], Lemma 1). There exists 𝛽 > 0 such that the Calderón operator 𝐵(𝑠) satisfies

Re
⟨(

𝜙

𝜓

)
, 𝐵(𝑠)

(
𝜙

𝜓

)⟩
Γ
≥ Re 𝑠 𝛽 1|𝑠|2 min

(
1, |𝑠|2)(‖𝜙‖2

𝐻
− 1
2 (Γ)3

+ ‖𝜓‖2
𝐻

1
2 (Γ)3

)

for Re 𝑠 > 0 and for all 𝜙 ∈ 𝐻−1
2 (Γ)3 and 𝜓 ∈ 𝐻

1
2 (Γ)3.

This lemma is the basis for the stability analysis of the numerical methods and applied in the framework of the energy con-

siderations.

Given the discrete convolution

𝐵(𝜕𝑡)
(
𝜙

𝜓

)
= 1

2

(
𝛾−𝑢−

−𝜕−1
𝑡
 −𝑢−

)
with 𝜕−1

𝑡
as the antiderivative presented in Eberle,[8] we directly get the next lemma by the inverse Laplace transformation

applied to Lemma 1.

Lemma 2 (Eberle [8], Lemma 5). With the constant 𝛽 from Lemma 1, we have

𝑇

∫
0

𝑒
−2𝑡
𝑇

⟨(
𝜙(⋅, 𝑡)
𝜓(⋅, 𝑡)

)
, 𝐵(𝜕𝑡)

(
𝜙

𝜓

)
(⋅, 𝑡)

⟩
Γ
𝑑𝑡 ≥ 𝛽𝑐𝑇

𝑇

∫
0

𝑒
−2𝑡
𝑇

(‖𝜕−1
𝑡
𝜙(⋅, 𝑡)‖2

𝐻
− 1
2 (Γ)3

+ ‖𝜕−1
𝑡
𝜓(⋅, 𝑡)‖2

𝐻
1
2 (Γ)3

)
,

for any 𝑇 > 0 and for all 𝜙 ∈ 𝐶4([0, 𝑇 ],𝐻−1
2 (Γ)3) and all 𝜓 ∈ 𝐶3([0, 𝑇 ],𝐻

1
2 (Γ)3) with 𝜙(⋅, 0) = 𝜕𝑡𝜙(⋅, 0) = ⋯ = 𝜕3

𝑡
𝜙(⋅, 0) =

0, 𝜓(⋅, 0) = 𝜕𝑡𝜙(⋅, 0) = 𝜕2𝑡 𝜙(⋅, 0) = 0. Here, 𝑐𝑇 = min(𝑇 −1, 𝑇 −3).

In order to close this part, we finally take a look at the behavior of the energy over time.

Lemma 3 (Eberle [8], Lemma 6). Let 𝐸 ∶ [0,∞) → [0,∞), 𝑆 ∶ ℝ → ℝ, 𝜙 ∈ 𝐶4([0, 𝑇 ],𝐻−1
2 (Γ)3), 𝜓 ∈ 𝐶3([0, 𝑇 ],𝐻

1
2 (Γ)3)

with 𝜙(⋅, 0) = 𝜕𝑡𝜙(⋅, 0) = 𝜕2𝑡 𝜙(⋅, 0) = 𝜕
3
𝑡
𝜙(⋅, 0) = 0, 𝜓(⋅, 0) = 𝜕𝑡𝜓(⋅, 0) = 𝜕2𝑡 𝜓(⋅, 0) = 0. If

𝐸̇ +
⟨(

𝜙

𝜓

)
, 𝐵(𝜕𝑡)

(
𝜙

𝜓

)⟩
Γ
= 𝑆 in [0, 𝑇 ],
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then

𝐸(𝑇 )+𝛽𝑐𝑇

𝑇

∫
0

(‖𝜕−1
𝑡
𝜙(⋅, 𝑡)‖2

𝐻
− 1
2 (Γ)3

+ ‖𝜕−1
𝑡
𝜓(⋅, 𝑡)‖2

𝐻
1
2 (Γ)3

)
𝑑𝑡 ≤ 𝑒2𝐸(0) +

𝑇

∫
0

𝑒
2(1− 𝑡

𝑇
)
𝑆(𝑡) 𝑑𝑡,

where 𝑐𝑇 = min(𝑇 −1, 𝑇 −3).

Later on, 𝐸(𝑡) will be the field energy introduced in the next section.

3 DISCRETIZATION

Now, we go over to the space and time discretization, where a detailed description again can be found in Eberle.[8] We want to

remark that due to the coupling, we only have to solve the problem in Ω. Thus, we will consider FEM and leapfrog in the interior

and BEM with convolution quadrature on the boundary.

3.1 Background of the space discretization
In order to formulate the weak formulation, which we need for the finite element method in the interior, we transform the elastic

wave equation (2.1) into the first order system

𝜌𝜕𝑡𝑢 = 𝜇∇ ⋅ 𝑉 + 𝜆∇𝜔 + 𝜌𝑓 ,

𝜕𝑡𝑉 = 2𝜀(𝑢),

𝜕𝑡𝜔 = ∇ ⋅ 𝑢,

𝐵(𝜕𝑡)
(
𝜙

𝜓

)
= 1

2

(
𝛾𝑢

−𝛾(𝜇𝑉 + 𝜆𝜔𝐼)𝑛

)
.

For the sake of readability, we write (⋅, ⋅) instead of the inner products (⋅, ⋅)𝐿2(ℝ3⧵Γ), (⋅, ⋅)𝐿2(ℝ3⧵Γ)3 and (⋅, ⋅)𝐿2(ℝ3⧵Γ)3×3 from now

on, since the type of the scalar product will be clear from context. Partial integration leads to the weak formulation

𝜌(𝜕𝑡𝑢, 𝑧) = − 1
2
𝜇(𝑉 ,∇𝑧) + 1

2
𝜇(∇ ⋅ 𝑉 , 𝑧) + 1

2
𝜇
⟨
𝛾𝑉 𝑛, 𝛾𝑧

⟩
Γ

− 1
2
𝜆(𝜔,∇ ⋅ 𝑧) + 1

2
𝜆(∇𝜔, 𝑧) + 1

2
𝜆
⟨
𝛾(𝜔𝐼)𝑛, 𝛾𝑧

⟩
Γ + 𝜌(𝑓, 𝑧),

(𝜕𝑡𝑉 , 𝑌 ) = (𝜀(𝑢), 𝑌 ) − (𝑢, 𝜀∗(𝑌 )) + 1
2
⟨
𝛾𝑢, 𝛾(𝑌 + 𝑌 𝑇 )𝑛

⟩
Γ,

(𝜕𝑡𝜔, 𝑥) = − 1
2
(𝑢,∇𝑥) + 1

2
(∇ ⋅ 𝑢, 𝑥) + 1

2
⟨
𝛾𝑢, 𝛾(𝑥𝐼)𝑛

⟩
Γ,⟨(

𝜉

𝜂

)
, 𝐵(𝜕𝑡)

(
𝜙

𝜓

)⟩
Γ
=1
2
⟨
𝜉, 𝛾𝑢

⟩
Γ −

1
2
⟨
𝜂, 𝛾(𝜇𝑉 )𝑛

⟩
Γ −

1
2
⟨
𝜂, 𝛾(𝜆𝜔𝐼)𝑛

⟩
Γ,

where 𝜀∗(𝑌 ) ∶ ℝ3×3 → ℝ3, 𝜀∗(𝑌 ) ∶= 1
2∇ ⋅ (𝑌 + 𝑌 𝑇 ), 𝑧 ∶ ℝ3 → ℝ3, 𝑌 ∶ ℝ3 → ℝ3×3, 𝑥 ∶ ℝ3 → ℝ, and 𝜉, 𝜂 ∶ ℝ3 → ℝ3.

Testing with 𝑧 = 𝑢, 𝑌 = 𝜇

2𝑉 , 𝑥 = 𝜆𝜔, 𝜉 = 𝜙, 𝜂 = 𝜓 and adding the four equations, we finally arrive at

𝑑

𝑑𝑡

(1
2
𝜌‖𝑢‖2

𝐿2(Ω)3
+ 1

4
𝜇‖𝑉 ‖2

𝐿2(Ω)3×3
+ 1

2
𝜆‖𝜔‖2

𝐿2(Ω)

)
+
⟨(

𝜙

𝜓

)
, 𝐵(𝜕𝑡)

(
𝜙

𝜓

)⟩
Γ
= 𝜌(𝑓, 𝑢)𝐿2(Ω)3 .

For 𝜌, 𝜇, 𝜆 > 0, which is valid for most common materials, and the positivity result of the Calderón operator 𝐵(𝜕𝑡) from

Lemma 2, this provides that the field energy

𝐸 = 1
2
𝜌‖𝑢‖2

𝐿2(Ω)3
+ 1

4
𝜇‖𝑉 ‖2

𝐿2(Ω)3×3
+ 1

2
𝜆‖𝜔‖2

𝐿2(Ω)
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satisfies

𝐸(𝑡) + 𝛽𝑐𝑇

𝑇

∫
0

(‖𝜕−1
𝑡
𝜙(⋅, 𝑡)‖2

𝐻
− 1
2 (Γ)3

+ ‖𝜕−1
𝑡
𝜓(⋅, 𝑡)‖2

𝐻
1
2 (Γ)3

)
𝑑𝑡 ≤ 𝑒2𝐸(0) (3.1)

for 𝑡 > 0 and 𝑓 = 0. Equation (3.1) shows that the energy decreases over time and is smaller than the initial energy𝐸(0). It should

be noted that the field energy in the sense of this paper is not an energy in the physical sense. However, its time derivative provides

the kinetic and potential energy of the wave.

This builds the basis for the convergence examination, where we adopt this result to the discrete energy consideration.

We couple the spacial discretization of the interior with the one performed on the boundary, which leads to the FEM-BEM

coupling. With 𝜕𝑡𝑢 = 𝑢̇, 𝜕𝑡𝑉 = 𝑉̇ , 𝜕𝑡𝜔 = 𝜔̇, the system is valid for the nodal values of the variables.

𝜌𝐌𝟎𝐮̇ = −𝜇𝐃𝐓𝐕 + 𝜆𝐃𝜔 − 𝐂𝟎𝝓 + 𝜌𝐌𝟎𝐟 , (3.2)

𝐌𝟏𝐕̇ = 𝐃𝐮 − 𝐂𝟏𝝍 , (3.3)

𝐌𝟐𝝎̇ = −𝐃
𝐓
𝐮 − 𝐂𝟏𝝍 , (3.4)

𝐁(𝜕𝑡)
(
𝝓

𝝍

)
=

(
𝐂𝐓
𝟎 𝐮

𝜇𝐂𝐓
𝟏𝐕 + 𝜆𝐂

𝐓
𝟏𝜔

)
. (3.5)

Now, letℎ,ℎ,ℎ,Ψℎ, andΦℎ be finite dimensional subspaces of the Sobolev spaces:ℎ ⊂ 𝐻
1(Ω),ℎ = 3

ℎ
⊂ 𝐻1(Ω)3,

ℎ = 3×3
ℎ

⊂ 𝐻1(Ω)3×3, Ψℎ ⊂ 𝐻
1
2 (Γ)3, and Φℎ ⊂ 𝐻

−1
2 (Γ)3. Here, ℎ is a finite element space of piecewise linear function,

Ψℎ the boundary element space of piecewise linear functions, and Φℎ the boundary element space of piecewise constant func-

tions. In addition, 𝑏
𝑗

, 𝑏
𝑗

, 𝑏
𝑗

and 𝑏Ψ
𝑗

are piecewise linear and 𝑏Φ
𝑗

piecewise constant basis functions of the respective spaces

for the tetrahedra and triangles.

Thus, we have

𝐃|𝑖𝑗 = 1
2
(𝑏
𝑖
,∇𝑏

𝑗
) − 1

2
(∇ ⋅ 𝑏

𝑖
, 𝑏
𝑗
), 𝐃|𝑖𝑗 = 1

2
(𝑏
𝑖
,∇𝑏

𝑗
) − 1

2
(∇ ⋅ 𝑏

𝑖
, 𝑏
𝑗
),

𝐌𝟎|𝑖𝑗 = (𝑏
𝑖
, 𝑏
𝑗
), 𝐌𝟏|𝑖𝑗 = 1

2
(𝑏
𝑖
, 𝑏
𝑗
), 𝐌𝟐|𝑖𝑗 = (𝑏

𝑖
, 𝑏
𝑗
),

𝐂𝟎|𝑖𝑗 = −1
2
⟨
𝑏Φ
𝑗
, 𝛾𝑏

𝑖

⟩
Γ, 𝐂𝟏|𝑖𝑗 = 1

2
⟨
𝑏Ψ
𝑗
, 𝛾𝑏

𝑖
𝑛
⟩
Γ, 𝐂𝟏|𝑖𝑗 = 1

2
⟨
𝑏Ψ
𝑗
, 𝛾𝑏

𝑖
𝑛
⟩
Γ,

𝐉(𝑠)|𝑖𝑗 = ⟨
𝑏Φ
𝑖
, 𝐽 (𝑠)𝑏Φ

𝑗

⟩
Γ, 𝐊(𝑠)|𝑖𝑗 = ⟨

𝑏Φ
𝑖
, 𝐾(𝑠)𝑏Ψ

𝑗

⟩
Γ, 𝐖(𝑠)|𝑖𝑗 = ⟨

𝑏Ψ
𝑖
,𝑊 (𝑠)𝑏Ψ

𝑗

⟩
Γ.

In order to close the consideration of the full discretization, we take a look at the time discretization. We apply a leapfrog

scheme in the interior of the domain and a convolution quadrature method on the boundary (see Eberle[8]) so that we have

𝐌𝟏𝐕
𝑛+1

2 = 𝐌𝟏𝐕𝑛 +
1
2
▵𝑡𝐃𝐮𝑛 − 1

2
▵𝑡𝐂𝟏𝝍

𝑛, (3.6)

𝐌𝟐𝝎
𝑛+1

2 = 𝐌𝟐𝝎
𝑛 − 1

2
▵𝑡𝐃

𝐓
𝐮𝑛 − 1

2
▵𝑡𝐂𝟏𝝍

𝑛, (3.7)

𝜌𝐌𝟎𝐮𝑛+1 = 𝜌𝐌𝟎𝐮𝑛 − 𝜇▵𝑡𝐃𝐓𝐕𝑛+
1
2 + 𝜆▵𝑡𝐃𝝎𝑛+

1
2 + 𝜌▵𝑡𝐌𝟎𝐟

𝑛+1
2 − ▵𝑡𝐂𝟎𝝓

𝑛+1
2 , (3.8)

𝐌𝟏𝐕𝑛+1 = 𝐌𝟏𝐕
𝑛+1

2 + 1
2
▵𝑡𝐃𝐮𝑛+1 − 1

2
▵𝑡𝐂𝟏𝝍

𝑛+1, (3.9)

𝐌𝟐𝝎
𝑛+1 = 𝐌𝟐𝝎

𝑛+1
2 − 1

2
▵𝑡𝐃

𝐓
𝐮𝑛+1 − 1

2
▵𝑡𝐂𝟏𝝍

𝑛+1, (3.10)

[
𝐁(𝜕▵𝑡

𝑡
)
(
𝝓

𝝍

)]𝑛+1
2
=

⎛⎜⎜⎝
𝐂𝐓
𝟎 𝐮

𝐧+ 𝟏
𝟐

𝜇𝐂𝐓
𝟏

(
𝐕𝑛+

1
2 − 𝛼▵𝑡2𝐌−𝟏

𝟏 𝐂𝟏𝝍̇
𝑛+1

2
)
+ 𝜆𝐂

𝐓
𝟏

(
𝝎
𝑛+1

2 − 𝛼▵𝑡2𝐌−𝟏
𝟐 𝐂𝟏𝝍̇

𝑛+1
2
)⎞⎟⎟⎠ , (3.11)
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where 𝐮𝑛+
1
2 = 1

2 (𝐮
𝑛+1 + 𝐮𝑛), 𝝍𝑛+

1
2 = 1

2 (𝝍
𝑛+1 + 𝝍𝑛) and 𝛼 > 0 is a stabilization parameter, so that for 𝐮𝑛+

1
2 and 𝝍

𝑛+1
2 , we have

𝐮𝑛+
1
2 = 1

2

(
2𝐮𝑛 − 𝜇▵𝑡

𝜌
𝐌−𝟏

𝟎 𝐃𝐓𝐕𝑛+
1
2 + 𝜆▵𝑡

𝜌
𝐌−𝟏

𝟎 𝐃𝜔𝑛+
1
2 − ▵𝑡

𝜌
𝐌−𝟏

𝟎 𝐂𝟎𝝓
𝑛+1

2 + ▵𝑡𝐟𝑛+
1
2

)
, (3.12)

▵𝑡𝝍̇𝑛+
1
2 = 2𝝍𝑛+

1
2 − 2𝝍𝑛. (3.13)

In addition, we have to take the CFL-condition into account. Hence, we convert the system into

𝐌̃𝟎𝐮̇ = −𝐃̃𝐓𝐙 − 𝐂𝟎𝝓 + 𝐌̃𝟎𝐟 ,

𝐌̃𝐙̇ = 𝐃̃𝐮 − 𝐂̃𝟏𝝍 ,

𝐁(𝜕𝑡)
(
𝝓

𝝍

)
=

(
𝐂𝐓
𝟎 𝐮

𝐂̃𝐓
𝟏 𝐙

)

with

𝐌̃𝟎 = 𝜌𝐌𝟎, 𝐌̃ =
(
𝜇𝐌𝟏 𝟎
𝟎 𝜆𝐌𝟐

)
, 𝐙 =

(
𝐕
𝝎

)
, 𝐃̃ =

(
𝜇𝐃

−𝜆𝐃
𝐓

)
, 𝐂̃𝟏 =

(
𝜇𝐂𝟏
𝜆𝐂𝟏

)
.

This allows us to borrow the CFL condition from Banjai et al.[4] and their calculation of the CFL condition from the acoustic

wave equation, so that by observing the transformation, we directly obtain from the acoustic case

▵𝑡‖𝐌̃− 𝟏
𝟐 𝐃̃𝐌̃

− 𝟏
𝟐

𝟎 ‖2 ≤ 1.

In addition, the lower bound on the stabilization parameter is given by

𝛼 ≥ 1.

Finally, we summarize the error bound for the fully discretized problem as well as its convergence, which is stated in the next

theorem (see Eberle[8]). This theorem is very important because it shows the optimal-order error bounds of the full discretization

with (ℎ) in space and (▵𝑡2) in time.

Theorem 4 (Eberle [8], Theorem 3). Assume that the initial values and the inhomogeneity of the wave equation have their
support in Ω. Let the initial values for the semi-discretization be chosen as 𝑢ℎ(0) = 𝑃ℎ𝑢(0), 𝑉ℎ(0) = 𝑃ℎ𝑉 (0), 𝜔ℎ(0) = 𝑃ℎ𝜔(0),
where 𝑃ℎ denotes the 𝐿2-orthogonal projection onto the respective finite element spaces. If the solution of the wave equation is
sufficiently smooth, then the error of the FEM and BEM with leapfrog and convolution quadrature full discretization under the
CFL condition and the stability parameter 𝛼 is bounded at 𝑡 = 𝑛▵𝑡 by

𝜌‖𝑢𝑛
ℎ
− 𝑢(𝑡)‖𝐿2(Ω)3 +

1
2
𝜇‖𝑉 𝑛

ℎ
− 𝑉 (𝑡)‖𝐿2(Ω)3×3 + 𝜆‖𝜔𝑛ℎ − 𝜔(𝑡)‖𝐿2(Ω)

+

(
▵𝑡

𝑛−1∑
𝑗=0

‖𝜙𝑗+1
2

ℎ
− 𝜙(𝑡

𝑗+1
2
)‖2
𝐻

− 1
2 (Γ)3

+ ‖𝜓𝑗+1
2

ℎ
− 𝜓(𝑡

𝑗+1
2
)‖2
𝐻

1
2 (Γ)3

) 1
2

≤ 𝐶(𝑡)(ℎ + ▵𝑡2),

where the constant 𝐶(𝑡) grows at most polynomially with 𝑡.

Remark 1. For Theorem 4, we assume a sufficiently smooth boundary (i.e., a Lipschitz boundary), which we do not have in

reality when we apply our implementation. However it turns out, that our numerical scheme computes a stable solution for our

example if the time step size and the grid width is sufficiently small.
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4 IMPLEMENTATION

We start with a general overview of the different steps which have to be performed for the implementation. Thus, we provide

a brief introduction of tetrahedral coordinates, followed by the construction of the matrices for the FEM-BEM coupling. After

that, we take a closer look at the convolution quadrature.

For the implementation of the FEM-BEM approach, we use linear basis functions and tetrahedral elements. Hence, we apply

the approach of the coordinate transformation given by Felippa[10] and transform the Cartesian coordinates into tetrahedral

coordinates via

⎛⎜⎜⎜⎜⎝
1
𝑥

𝑦

𝑧

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 1 1 1
𝑥1 𝑥2 𝑥3 𝑥4
𝑦1 𝑦2 𝑦3 𝑦4
𝑧1 𝑧2 𝑧3 𝑧4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝜁1
𝜁2
𝜁3
𝜁4

⎞⎟⎟⎟⎟⎠
. (4.1)

Here, (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇 , 𝑖 = 1,… , 4, are the four nodal coordinates of the tetrahedron and 𝜁𝑖 ∈ [0, 1], 𝑖 = 1,… , 4, are the tetrahe-

dral coordinates.

In order to calculate the required tetrahedral coordinates, we have to invert the system (4.1) so that

⎛⎜⎜⎜⎜⎝
𝜁1
𝜁2
𝜁3
𝜁4

⎞⎟⎟⎟⎟⎠
= 1

6𝑉

⎛⎜⎜⎜⎜⎝
6𝑉01 𝑦42𝑧32 − 𝑦32𝑧42 𝑥32𝑧42 − 𝑥42𝑧32 𝑥42𝑦32 − 𝑥32𝑦42
6𝑉02 𝑦31𝑧43 − 𝑦34𝑧13 𝑥43𝑧31 − 𝑥13𝑧34 𝑥31𝑦43 − 𝑥34𝑦13
6𝑉03 𝑦24𝑧14 − 𝑦14𝑧24 𝑥14𝑧24 − 𝑥24𝑧14 𝑥24𝑦14 − 𝑥14𝑦24
6𝑉04 𝑦13𝑧21 − 𝑦12𝑧31 𝑥21𝑧13 − 𝑥31𝑧12 𝑥13𝑦21 − 𝑥12𝑦31

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1
𝑥

𝑦

𝑧

⎞⎟⎟⎟⎟⎠
(4.2)

= 1
6𝑉

⎛⎜⎜⎜⎜⎝
6𝑉01 𝑎1 𝑏1 𝑐1
6𝑉02 𝑎2 𝑏2 𝑐2
6𝑉03 𝑎3 𝑏3 𝑐3
6𝑉04 𝑎4 𝑏4 𝑐4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1
𝑥

𝑦

𝑧

⎞⎟⎟⎟⎟⎠
, (4.3)

where

6𝑉01 = 𝑥2(𝑦3𝑧4 − 𝑦4𝑧3) + 𝑥3(𝑦4𝑧2 − 𝑦2𝑧4) + 𝑥4(𝑦2𝑧3 − 𝑦3𝑧2),

6𝑉02 = 𝑥1(𝑦4𝑧3 − 𝑦3𝑧4) + 𝑥3(𝑦1𝑧4 − 𝑦4𝑧1) + 𝑥4(𝑦3𝑧1 − 𝑦1𝑧3),

6𝑉03 = 𝑥1(𝑦2𝑧4 − 𝑦4𝑧2) + 𝑥2(𝑦4𝑧1 − 𝑦1𝑧4) + 𝑥4(𝑦1𝑧2 − 𝑦2𝑧1),

6𝑉04 = 𝑥1(𝑦3𝑧2 − 𝑦2𝑧3) + 𝑥2(𝑦1𝑧3 − 𝑦3𝑧1) + 𝑥3(𝑦2𝑧1 − 𝑦1𝑧2),

and

𝑉 = 𝑉01 + 𝑉02 + 𝑉03 + 𝑉04. (4.4)

Based on this, we continue with the spacial discretization and take a closer look at the system of the FEM-BEM coupling

(3.2)-(3.5). We start with the boundary matrices, i.e., 𝐉, 𝐊 and 𝐖, for the BEM part. For a given face of a terahedron Γ𝑒, these

entries are calculated with the corresponding basis functions 𝑏𝜙 (piecewise constant) and 𝑏𝜓 (piecewise linear) via

𝐉(𝑠)|𝑖𝑗 = ⟨
𝑏
𝜙

𝑖
, 𝐽 (𝑠)𝑏𝜙

𝑗

⟩
Γ, (4.5)

𝐊(𝑠)|𝑖𝑗 = ⟨
𝑏
𝜙

𝑖
, 𝐾(𝑠)𝑏𝜓

𝑗

⟩
Γ, (4.6)

𝐖(𝑠)|𝑖𝑗 = ⟨
𝑏
𝜓

𝑖
,𝑊 (𝑠)𝑏𝜓

𝑗

⟩
Γ. (4.7)
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Here, we use

𝑏
𝜙

𝑖
= 𝑒𝑖, 𝑖 = 1, 2, 3,

𝑏
𝜓

𝑖
= 𝜁

𝑖−4⌊ 𝑖−14 ⌋𝑒⌈ 𝑖4 ⌉, 𝑖 = 1,… , 12,

where 𝑒𝑖 is the 𝑖-th Euclidean unit vector.

In addition, the calculation of these boundary matrices involves the consideration of singular integrals. Thus, before we apply

a suitable quadrature rule to calculate the boundary intergals, the singularities in 𝐊 and 𝐖 have to be regularized.

For the fundamental solution the reader is referred to Equation (2.2)–(2.4). We utilize the regularization for the strong and

the hypersingular kernel from Kielhorn.[13] For Γ = 𝜕Ω, we have for the operator 𝐾

(𝐾𝑢)(𝑥) =2𝜇 ∫
Γ

𝐺̂(𝑥 − 𝑦, 𝑠) ⋅ ((𝜕𝑦, 𝑛(𝑦))𝑢) 𝑑Γ𝑦 − ∫
Γ

Δ𝜒(𝜕𝑦, 𝑛(𝑦))𝑢) 𝑑Γ𝑦 + ∫
Γ

𝜕Δ𝜒
𝜕𝑛(𝑦)

𝑢 𝑑Γ𝑦 (4.8)

− ∫
Γ

𝑑𝜒

𝑑𝑟

[
(𝑘22 − 2𝑘21)∇𝑦𝑟 ⊗ 𝑛(𝑦) + 𝑘21𝑛(𝑦)⊗ ∇𝑦𝑟 + 𝑘21

𝜕𝑟

𝜕𝑛(𝑦)
𝐼

)
⋅ 𝑢 𝑑Γ𝑦,

where (𝜕𝑦, 𝑛(𝑦)) denotes the Günther derivatives given by

(𝜕𝑛, 𝑛(𝑦)) = ∇𝑦 ⊗ 𝑛(𝑦) − 𝑛(𝑦)⊗ ∇𝑦,

with⊗ as the Kronecker product. As observed by Kielhorn and Schanz,[14] it should be noted that the last term of (4.8) is regular
since

𝑑𝜒

𝑑𝑟
= 1

8𝜋
𝑘21 + 𝑘1𝑘2 + 𝑘

2
2

12(𝑘1 + 𝑘2)𝜋
+ (𝑟2).

Following Kielhorn,[13] the regularization of the hypersingular kernel 𝑊 is obtained by taking a look at

(𝑊 𝑢)(𝑥̃) = −
⎛⎜⎜⎝ (𝜕𝑥̃, 𝑛(𝑥))(𝐾𝑢)(𝑥̃) −

𝑘21
𝜇
 (𝜕𝑥̃, 𝑛(𝑥))∫

Γ

[ (𝜕𝑦, 𝑛(𝑦))𝜒𝐼
]𝑇

⋅ 𝑢 𝑑Γ𝑦
⎞⎟⎟⎠, (4.9)

where 𝑥̃ ∈ Ω, 𝑥 ∈ Γ.
Given the surface curl

𝜕

𝜕𝑆(𝜕𝑦, 𝑛(𝑦))
= 𝑛(𝑦) × ∇𝑦,

where
𝜕

𝜕𝑆𝑘(𝜕𝑦,𝑛(𝑦))
denotes its 𝑘-th component, we consider the limit process 𝑥̃ ∈ Ω, 𝑥̃ → 𝑥 ∈ Γ in (4.9), so that by observing

Stokes theorem, we get the weak singular kernel

⟨
𝑊 𝑢, 𝑣

⟩
Γ = 2𝜇 ∫

Γ
∫
Γ

Δ𝑦𝜒
3∑

𝑘,𝑖=1

𝜕𝑢𝑖(𝑦)
𝜕𝑆𝑘(𝜕𝑦, 𝑛(𝑦))

𝜕𝑣𝑖(𝑦)
𝜕𝑆𝑘(𝜕𝑦, 𝑛(𝑦))

𝑑Γ𝑦𝑑Γ𝑥

− 𝜇 ∫
Γ

∫
Γ

Δ𝑦𝜒
𝜕

𝜕𝑆(𝜕𝑦, 𝑛(𝑦))
⋅ 𝑢(𝑦) 𝜕

𝜕𝑆(𝜕𝑥, 𝑛(𝑦))
⋅ 𝑣(𝑦)𝑑Γ𝑦𝑑Γ𝑥

− 𝜇 ∫
Γ

∫
Γ

(𝑥 ⋅ 𝑣(𝑥)) ⋅
(
4𝜇𝐺̂ − 2Δ𝑦𝜒𝐼

)
⋅ (𝑦 ⋅ 𝑢(𝑦))𝑑Γ𝑦𝑑Γ𝑥

+ 𝜇 ∫
Γ

∫
Γ

𝑣(𝑥) ⋅
[
(𝑘22 − 2𝑘21)(Δ𝑦𝜒 − 𝑘22𝜒)𝑛(𝑥)⊗ 𝑛(𝑦)

]
⋅ 𝑢(𝑦)𝑑Γ𝑦𝑑Γ𝑥

+ 𝜇 ∫
Γ

∫
Γ

𝑣(𝑥) ⋅
[
𝑘22(Δ𝑦𝜒 − 𝑘21𝜒)𝑛(𝑦)⊗ 𝑛(𝑥)

]
⋅ 𝑢(𝑦)𝑑Γ𝑦𝑑Γ𝑥
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+ 𝜇 ∫
Γ

∫
Γ

𝑣(𝑥) ⋅
[
(2(𝑘22 − 𝑘

2
1)∇𝑦∇𝑦𝜒 + Δ2

𝑦
𝜒𝐼)𝑛(𝑦) ⋅ 𝑛(𝑥)

]
⋅ 𝑢(𝑦)𝑑Γ𝑦𝑑Γ𝑥

+ 𝜇 ∫
Γ

∫
Γ

𝑣(𝑥) ⋅
[
2𝑘22𝑥 ⋅ (𝑦𝜒) + 𝑘21𝑦 ⋅ (𝑥𝜒)

]
⋅ 𝑢(𝑦)𝑑Γ𝑦𝑑Γ𝑥

+ 𝜇 ∫
Γ

∫
Γ

𝑘21
𝜕2𝜒

𝜕𝑛(𝑦)𝜕𝑛(𝑥)
𝑣(𝑥) ⋅ 𝑢(𝑦)𝑑Γ𝑦𝑑Γ𝑥.

Using the regularized kernels, we are able to approximate the integrals via Gaussian quadrature.

Remark 2. We want to remark that there are also other regularization approaches since a regularization is not unique.

Next, we take a look at the entries for the interior, i.e., 𝐌𝟎, 𝐌𝟏, 𝐌𝟐, 𝐃, and 𝐃 for each terahedron Ω𝑒.
For the FEM part of the problem, we use the piecewise linear ansatz functions

𝑏
𝑖

= 𝜁
𝑖−4⌊ 𝑖−14 ⌋𝑒⌈ 𝑖4 ⌉, 𝑖 = 1,… , 12,

𝑏
𝑖
= 𝜁

𝑖−4⌊ 𝑖−14 ⌋𝑒⌈ 𝑖4 ⌉−3⌊ 𝑖−112 ⌋𝑒𝑇⌈ 𝑖

12 ⌉, 𝑖 = 1,… , 36,

𝑏
𝑖

= 𝜁𝑖, 𝑖 = 1,… , 4,

in order to calculate

𝐌𝟎|𝑖𝑗 = (𝑏
𝑖
, 𝑏
𝑗
), (4.10)

𝐌𝟏|𝑖𝑗 = 1
2
(𝑏
𝑖
, 𝑏
𝑗
), (4.11)

𝐌𝟐|𝑖𝑗 = (𝑏
𝑖
, 𝑏
𝑗
). (4.12)

Exemplary for 𝐌𝟐 we have

(𝑏
𝑖
, 𝑏
𝑗
) = ∫

Ω𝑒

𝜁𝑖𝜁𝑗 𝑑Ω𝑒 =
⎧⎪⎨⎪⎩

1
10𝑉 , if 𝑖 = 𝑗

1
20𝑉 , if 𝑖 ≠ 𝑗

,

where Ω𝑒 is the tetrahedron in question and 𝑉 given in (4.4).

For computing the matrices 𝐃 and 𝐃 given by

𝐃|𝑖𝑗 = 1
2
(𝑏
𝑖
,∇𝑏

𝑗
) − 1

2
(∇ ⋅ 𝑏

𝑖
, 𝑏
𝑗
), (4.13)

𝐃|𝑖𝑗 = 1
2
(𝑏
𝑖
,∇𝑏

𝑗
) − 1

2
(∇ ⋅ 𝑏

𝑖
, 𝑏
𝑗
), (4.14)

we need the representation of partial derivatives given by

6𝑉
𝜕𝜁𝑖

𝜕𝑥
= 𝑎𝑖, 6𝑉

𝜕𝜁𝑖

𝜕𝑦
= 𝑏𝑖, 6𝑉

𝜕𝜁𝑖

𝜕𝑧
= 𝑐𝑖,

with 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 from Equation (4.3) in addition to the basis functions. Since the gradient of 𝑏
𝑖

, 𝑏
𝑖

, 𝑏
𝑖

is constant, it should

be noted that

∫
Ω𝑒

𝜁𝑖 𝑑Ω𝑒 =
1
4
𝑉 .
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The coupling matrices 𝐂𝟏 and 𝐂𝟏 are given by

𝐂𝟏|𝑖𝑗 = 1
2
⟨
𝑏Ψ
𝑗
, 𝛾𝑏

𝑖
𝑛
⟩
Γ𝑒 , (4.15)

𝐂𝟏|𝑖𝑗 = 1
2
⟨
𝑏Ψ
𝑗
, 𝛾𝑏

𝑖
𝑛
⟩
Γ𝑒 , (4.16)

𝐂𝟎|𝑖𝑗 = −1
2
⟨
𝑏Φ
𝑗
, 𝛾𝑏

𝑖

⟩
Γ𝑒 (4.17)

and can be calculated explicitly by use of tetrahedral coordinates. For the entries involving 𝑏
𝜓

𝑖
we have

∫
Γ𝑒

𝜁𝑖𝜁𝑗 𝑑Γ𝑒 =
⎧⎪⎨⎪⎩

1
12𝑆, if 𝑖 = 𝑗

1
24𝑆, if 𝑖 ≠ 𝑗

,

where 𝑆 is the surface area of the face Γ𝑒 of the tetrahedron. For the entries concerning 𝑏
𝜙

𝑖
, we need the integral

∫
Γ𝑒

𝜁𝑖 𝑑Γ𝑒 =
1
6
𝑆,

in order to calculate the matrix entries, since 𝑏
𝜙

𝑖
is piecewise constant. Then for each element, we calculate the entries of the

local matrix according to (4.5)-(4.7) as well as (4.10)-(4.17) and sort those at the correct positions of the global matrices used

in the time and space discretization later on.

Next, we come to the time discretization.

4.1 Performance of the time discretization
For the time discretization, we split our considerations into the interior and the boundary, where we provide a detailed description

for the convolution quadrature on the boundary, since the application of the leapfrog scheme is straight forward.

We recapitulate the leapfrog scheme given in (3.6)-(3.10), where

𝐟𝑛+
1
2 = 1

2
(
𝐟𝑛+1 + 𝐟𝑛

)
and the discrete values of 𝝍 and 𝝓 are obtained via convolution quadrature on the boundary.

For the convolution quadrature, we use the backward differentiation formula of order two (BDF2). The corresponding weights

can be approximated by the trapezoidal rule. In more detail, we take a look at the system (3.11) and the discretization (3.12)

and (3.13).

We have to consider the initial system at time 𝑡 = 0 involving 𝐁𝟎 = 𝐁
(
𝛿(0)
▵𝑡

)
. The theoretical background can be found in

Eberle[8] and Kielhorn[13] and is based on a vector-valued version of the Herglotz Theorem. Thus, for the convolution quadrature,

we have

𝐁𝟎

(
𝝓𝐦
𝝍𝐦

)
=

(
𝐛𝝓𝐦
𝐛𝝍𝐦

)
,

where (
𝐛𝝓𝐦
𝐛𝝍𝐦

)
=

(
𝐛
𝝓

𝐦

𝐛
𝝍

𝐦

)
−
𝑚−1∑
𝑘=0

𝐁𝐦−𝐤

(
𝝓𝐤
𝝍𝐤

)
(4.18)

and

𝐁𝐦 = 𝐁
(
𝛿(𝜁𝑚)
▵𝑡

)
.
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In addition, 𝛿(𝜁𝑚) = (1 − 𝜁𝑚) +
1
2 (1 − 𝜁𝑚)

2 is the generating function of the second-order backward differentiation formula

(BDF2). We adopt the choice of 𝜁𝑚 from Kielhorn and Schanz[14] given by 𝜁𝑚 = 𝑅 exp
(
2𝜋𝑖𝑚
𝑛max

)
with 𝑅 = 10−

5
2𝑛max and 𝑛max

the maximal number of time steps.

Here, the second term of (4.18) contains all the information of the boundary densities up to the previous time step 𝑚 − 1
and the first term represents the prescribed boundary densities, if they exist (for more information, see Kielhorn[13]). Since

𝝍
𝑛+1

2 = 1
2 (𝝍

𝑛+1 + 𝝍𝑛) and 𝝓
𝑛+1

2 = 1
2 (𝝓

𝑛+1 + 𝝓𝑛), we find

𝐁𝟎

⎛⎜⎜⎝
𝝓
𝑛+1

2

𝝍
𝑛+1

2

⎞⎟⎟⎠ = 1
2

((
𝐛𝝓𝐧+𝟏
𝐛𝝍𝐧+𝟏

)
+

(
𝐛𝝓𝐧
𝐛𝝍𝐧

))
=∶

⎛⎜⎜⎝
𝐛𝝓
𝐧+ 𝟏

𝟐
𝐛𝝍
𝐧+ 𝟏

𝟐

⎞⎟⎟⎠ .
All in all, we have to solve the system

(𝐁𝟎 + ▵𝑡𝐆)

(
𝝓
𝑛+1

2

𝝍
𝑛+1

2

)
= 𝝌𝑛

with

𝐆 =

( 1
2
1
𝜌
𝐂𝐓
𝟎𝐌

−𝟏
𝟎 𝐂𝟎 0

0 2𝜇𝛼𝐂𝐓
𝟏𝐌

−𝟏
𝟏 𝐂𝟏 + 2𝜆𝛼𝐂

𝐓
𝟏𝐌

−𝟏
𝟐 𝐂𝟏

)

and

𝝌𝑛 =
⎛⎜⎜⎝
𝐛φ
𝐧+ 𝟏

𝟐
𝐛ψ
𝐧+ 𝟏

𝟐

⎞⎟⎟⎠ +
⎛⎜⎜⎝

𝐂𝐓
𝟎 𝐮

𝑛+1
2

𝜇𝐂𝐓
𝟏

(
𝐕𝑛+

1
2 − 𝛼▵𝑡2𝐌−𝟏

𝟏 𝐂𝟏𝝍̇
𝑛+1

2
)
+ 𝜆𝐂

𝐓
𝟏

(
𝝎
𝑛+1

2 − 𝛼▵𝑡2𝐌−𝟏
𝟐 𝐂𝟏𝝍̇

𝑛+1
2
)⎞⎟⎟⎠

in order to calculate 𝝓
𝑛+1

2 and 𝝍
𝑛+1

2 .

At last the convolution quadrature allows us to calculate a feasible initial solution 𝐮̈𝟎, 𝝓̇
𝟎
, 𝝍̇𝟎 for the initial values 𝐮𝟎, 𝐮̇𝟎, 𝐟̇

and, in extension, the initial values 𝝓 and 𝝍 due to their definition. Hence, we take a look at the second order formulation

𝜌𝐌𝟎𝐮̈ = −𝜇𝐃𝐓𝐌−𝟏
𝟏 (𝐃𝐮 − 𝐂𝟏𝝍) − 𝜆𝐃𝐌−𝟏

𝟐 (𝐃
𝐓
𝐮 + 𝐂𝟏𝝍) − 𝐂𝟎𝝓̇ + 𝜌𝐌𝟎𝐟̇ , (4.19)

𝐁(𝜕𝑡)
(
𝝓̇

𝝍̇

)
=

(
𝐂𝐓
𝟎 𝐮̇

𝜇𝐂𝐓
𝟏𝐌

−𝟏
𝟏 (𝐃𝐮 − 𝐂𝟏𝝍) − 𝜆𝐂

𝐓
𝟏𝐌

−𝟏
𝟐 (𝐃

𝐓
𝐮 + 𝐂𝟏𝝍)

)
(4.20)

obtained by inserting 𝐕̇ and ω̇ in (3.2)-(3.5). This leads to the linear system of equations

⎛⎜⎜⎜⎜⎜⎜⎝

−𝜌𝐌𝟎 −𝐂𝟎 𝟎

𝟎 𝛿(𝜁0)
▵𝑡

𝐉
(
𝛿(𝜁0)
▵𝑡

)
𝐊𝐓

(
𝛿(𝜁0)
▵𝑡

)
𝟎 −𝐊

(
𝛿(𝜁0)
▵𝑡

)
▵𝑡
𝛿(𝜁0)

𝐖
(
𝛿(𝜁0)
▵𝑡

)
⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝
𝐮̈
𝝓̇

𝝍̇

⎞⎟⎟⎠ (4.21)

=
⎛⎜⎜⎜⎝
−𝜌𝐌𝟎𝐟̇ + 𝜇𝐃𝐓𝐌−𝟏

𝟏 (𝐃𝐮 − 𝐂𝟏𝝍) + 𝜆𝐃𝐌−𝟏
𝟐 (𝐃

𝐓
𝐮 + 𝐂𝟏𝝍)

𝐂𝐓
𝟎 𝐮̇

𝜇𝐂𝐓
𝟏𝐌

−𝟏
𝟏 (𝐃𝐮 − 𝐂𝟏𝝍) − 𝜆𝐂

𝐓
𝟏𝐌

−𝟏
𝟐 (𝐃

𝐓
𝐮 + 𝐂𝟏𝝍)

⎞⎟⎟⎟⎠ .
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F I G U R E 1 L-shaped domain for the numerical experiments

In order to calculate the entries of this matrix, the generating matrices 𝐌𝟎, 𝐌𝟏, 𝐌𝟐, 𝐃, 𝐃 as well as 𝐂𝟎, 𝐂𝟏, 𝐂𝟏 and 𝐉, 𝐊, 𝐖
as introduced in the previous part are required. Given the initial values 𝐮, 𝐮̇, 𝐟̇ , we are able to determine the initial values 𝐮̈, 𝝓̇,

𝝍̇ by the inversion of (4.21).

Remark 3. Summarizing the steps of the implementation, we end up with the following algorithm

1. Initialize the input data.

2. Generate the meshes for the triangles and tetrahedra.

3. Calculate the entries of the generating matrix (4.21).

4. Solve the system for the initial solution.

5. Perform the convolution quadrature to get 𝝓
𝑛+1

2 , 𝝍
𝑛+1

2 .

6. Use the results for the leapfrog scheme.

7. Return to 5. until a predefined time step is reached.

5 NUMERICAL EXAMPLE

As stated in the introduction, our numerical method can be applied for non-convex domains. Thus, we consider a simple example

to get a better insight and choose an L-shaped domain. For the corresponding numerical experiments, we use a medium with

the parameters 𝜆 = 5.7692 ⋅ 104 Pa, 𝜇 = 3.8462 ⋅ 104 Pa, 𝜌 = 7860 kg
m3 , 𝛼 = 1.

First, the grid width of the L-shaped domain Ω is chosen to be ℎ = 0.25m and the time steps are given by ▵𝑡 = 10−1 ⋅ 2−𝑖 s,
𝑖 = 0,… , 4. Figure 1 shows the domain under consideration. The inhomogeneity 𝑓 is chosen as

𝑓 (𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩

(
0,
(
1 − |𝑥−𝑐|

𝜏

)2
⋅
(
2|𝑥−𝑐|
𝜏

+ 1
)
, 0
)𝑇

⋅ (𝑡0−𝑡)5

𝑡50
, 𝑡 ≤ 𝑡0, |𝑥 − 𝑐| ≤ 𝜏

(0, 0, 0)𝑇 , else

in Ω,

where 𝑐 = (1, 1, 1)𝑇 , 𝜏 = 1 and 𝑡0 = 0.5 s. For the visualization, we take a look at the second component 𝑢2(𝑥, 𝑡) of the solution

vector 𝑢(𝑥, 𝑡) in 𝑡 ∈ [0, 𝑇 ] at the fixed points

• (1,1,1), i.e., an interior point,

• (0,1,1), i.e., a point at the boundary,

• (1,2,1), i.e., a point on an edge.
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F I G U R E 2 Solution 𝑢2((1, 1, 1)𝑇 , 𝑡) (top) and the errors (bottom) for different ▵𝑡 in seconds (left hand side the absolute error and right hand

side the relative error)

In addition, we compare the solutions 𝑢▵𝑡2 (𝑥, 𝑡) for ▵𝑡 = 10−1 s, ▵𝑡 = 0.5 ⋅ 10−1 s, ▵𝑡 = 0.25 ⋅ 10−1 s and ▵𝑡 = 0.125 ⋅ 10−1 s
with the solution 𝑢̃2(𝑥, 𝑡) for ▵𝑡 = 0.0625 ⋅ 10−1 s. In absence of an analytical solution, we examine the different realizations by

presenting the relative error

𝑟𝑒𝑙(𝑥, 𝑡) = |𝑢̃(𝑥, 𝑡) − 𝑢▵𝑡(𝑥, 𝑡)||𝑢̃(𝑥, 𝑡)|
and the absolute error

𝑎𝑏𝑠(𝑥, 𝑡) = |𝑢̃(𝑥, 𝑡) − 𝑢▵𝑡(𝑥, 𝑡)|.
Figures 2–4 show the solution and the corresponding absolute and relative error plots for different time step sizes (▵𝑡 = 10−1 s,

▵𝑡 = 0.5 ⋅ 10−1 s, ▵𝑡 = 0.25 ⋅ 10−1 s, ▵𝑡 = 0.125 ⋅ 10−1 s and ▵𝑡 = 0.0625 ⋅ 10−1 s) and a fixed grid width ℎ = 0.25m.

The figures are organized as follows: on the top, the solution at a fixed point for different ▵𝑡 is shown, while the point of

consideration is stated in the caption. At the bottom, the absolute error (left hand side) and relative error (right hand side)

are given.

We chose ℎ = 0.25m, since the experiments with different ℎ as depicted in Figures 5–7 show that for this choice, we obtain a

solution close enough to 𝑢̃(𝑥, 𝑡) for a reasonable numerical effort. We set 𝑓 in such a way that it decreases until 𝑡0 = 0.5 to zero.

In more detail, we conclude that the time discretization methods (leapfrog in the interior and convolution quadrature with BDF2

on the boundary) is stable for sufficiently small time steps. We observe for the solution in the interior (Figure 2) as well as for

the solution on the boundary (Figures 3 and 4), that both absolute and relative error decreases with a smaller time step size. We

want to remark, that the large relative errors occur only for small amplitudes, where the values are close to zero. Conversely, the

absolute error is small. All in all, this illustrates the convergence of the approximated solution, since the error decreases with

lower step sizes.

After examinating the solution for different time step sizes, we go over to the examination of different grid sizes ℎ = 1
𝑛
m and a

fixed ▵𝑡 = 0.25 ⋅ 10−1 s, since this choice provides a sufficiently good approximation of the solution for a reasonable numerical

effort. For the analysis of the behavior for different ℎ, we take a look at 𝑛 = 2, 𝑛 = 4, 𝑛 = 6 and 𝑛 = 8 by showing that both

absolute and relative error decrease while choosing a larger 𝑛. For 𝑛 = 2 the errors are relative large and thus only presents an
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F I G U R E 3 Solution 𝑢2((0, 1, 1)𝑇 , 𝑡) (top) and the errors (bottom) for different ▵𝑡 in seconds (left hand side the absolute error and right hand

side the relative error)

F I G U R E 4 Solution 𝑢2((1, 2, 1)𝑇 , 𝑡) (top) and the errors (bottom) for different ▵𝑡 in seconds (left hand side the absolute error and right hand

side the relative error)

upper bound on ℎ. Similar as in Figure 2–Figure 4 we observe that for a finer triangulation, the solutions are close to each other.

The error plots reflect this behavior.

Again, the figures are organized as follows: on the top the solution for a fixed ▵𝑡 = 0.25 ⋅ 10−1 s and different 𝑛 is presented.

At the bottom, the absolute error (left hand side) and relative error (right hand side) are given with a semi logarithmic scale. In

addition the different parameters 𝑛 are included in the plots themselves.
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F I G U R E 5 Solution 𝑢2((1, 1, 1)𝑇 , 𝑡) (top) and the errors (bottom) for different ℎ = 1
𝑛
m (left hand side the absolute error and right hand side

the relative error)

F I G U R E 6 Solution 𝑢2((0, 1, 1)𝑇 , 𝑡) (top) and the errors (bottom) for different ℎ = 1
𝑛
m (left hand side the absolute error and right hand side

the relative error)

Finally, we combine the discretization refinement in space and time. In the following numerical experiment, the reference

solution is calculated for ℎ = 1
8 m and Δ𝑡 = 1

8 ⋅ 10
−1 s. The results for different grid widths ℎ = 1

𝑛
m and the corresponding time

steps Δ𝑡 = 1
𝑛
⋅ 10−1 s are shown in Figure 8 (top). In addition, we plot the absolute and relative error w.r.t. the reference solution

at the bottom of Figure 8.
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F I G U R E 7 Solution 𝑢2((1, 2, 1)𝑇 , 𝑡) (top) and the errors (bottom) for different ℎ = 1
𝑛
m (left hand side the absolute error and right hand side

the relative error)

F I G U R E 8 Solution 𝑢2((1, 1, 1)𝑇 , 𝑡) (top) and the errors (bottom) for different ℎ = 1
𝑛
m and Δ𝑡 = 1

𝑛
⋅ 10−1 s (left hand side the absolute error

and right hand side the relative error)

Summarizing the results of our numerical experiments, Figure 8 illustrates the numerical convergence of our FEM-BEM-

coupling and the corresponding time-discretization with leapfrog and convolution quadrature.

In fact, Figure 9 shows that the convergence rate (Δ𝑡2 + ℎ) is obtained. In more detail, we take a look at a loglog represen-

tation of the maximal absolute errors for the simultaneous refinement in space and time and compare this with the reference line



18 of 19 EBERLE

F I G U R E 9 Convergence rate for the solution 𝑢2((1, 1, 1)𝑇 , 𝑡)

F I G U R E 1 0 Solution 𝑢2((1, 1, 1)𝑇 , 𝑡) for ▵𝑡 = 0.25 ⋅ 10−1 s and

ℎ = 0.25m

for Δ𝑡2 + ℎ. We observe that indeed the error plot is approximately parallel to the reference line, which shows the numerical

convergence of our method as presented in the theoretical result (Theorem 4).

At last, in order to show the longtime behavior of the solution, we exemplary take a look at the solution for ▵ 𝑡 = 0.25 ⋅ 10−1 s
and ℎ = 0.25m in the time intervall [0, 12] s (cf. Figure 10). As expected, we observe the decay of the solution to zero.

6 CONCLUSION AND OUTLOOK

We started with a summary of the theoretical background of the interior-exterior coupling for the elastodynamic wave equation

in 3D and introduced the numerical methods. We used boundary elements and convolution quadrature on the boundary and finite

elements and leapfrog in the interior. In addition, we took a look at the convergence of these methods. Based on this, we stated

the details of the implementation, where we focused on the construction of the corresponding matrices and the performance of

the time discretization. In the last section, we presented the numerical examples for an L-shaped domain. We divided our con-

siderations into the examination of different time step sizes with a fixed grid width and the examination of different grid widths

for a fixed time step size. All in all, the figures and corresponding plots showed us the numerical convergence of the methods.
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