
Wahed Hemati
3007 80 822 147
Computer science
Text Technology Lab
hemati@em.uni-frankfurt.de

Dissertation

TextImager-VSD
Large Scale Verb Sense Disambiguation and Named Entity

Recognition in the Context of TextImager

Abdul Wahed Hemati

Frankfurt, 12.2019

Goethe University Frankfurt am Main
Prof. Alexander Mehler

Prof. Visvanathan Ramesh

1. Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während
der Anfertigung dieser Dissertation unterstützt und motiviert haben. Die Arbeit
wäre ohne Unterstützung einer Vielzahl von Leuten nicht möglich gewesen.

Ganz besonders gilt dieser Dank Herrn Prof. Dr. Alexander Mehler, der meine
Arbeit und somit auch mich betreut hat. Durch stetig kritisches Hinterfragen und
konstruktive Kritik gab er mir wertvolle Hinweise mit auf den Weg. Er stand nicht
nur mit wissenschaftlichem Rat und fachlichen Diskussionen zur Seite, sondern
auch mit moralischer Unterstützung und Motivation. Die zahlreichen Gespräche
auf intellektueller und persönlicher Ebene werden mir immer als bereichernder
und konstruktiver Austausch in Erinnerung bleiben. Ich bin dankbar dafür, dass
er mich stets sehr gut betreut und dazu gebracht hat, über meine Grenzen hinaus
zu denken. Vielen Dank für die Geduld und Mühen.

Ich danke Herrn Prof. Dr. Visvanathan Ramesh für die hilfsbereite und wis-
senschaftliche Betreuung als Zweitgutachter.

Ich bedanke mich für die Möglichkeit, diese Arbeit im Text-Technology-Lab der
Goethe-Universität Frankfurt anfertigen zu können. Ich hatte die Möglichkeit,
von fachlich kompetenten Kollegen und Kolleginnen beraten und betreut zu
werden. Dadurch bin ich fachlich und zwischenmenschlich mit ihnen gewach-
sen.

Nicht zuletzt gebührt meinen Eltern der höchste Dank, die während des Lebens
und vor allem während des Studiums immer an meiner Seite standen. Sie haben
mich in jeglicher Hinsicht unterstützt und motiviert. Danken möchte ich außer-
dem meiner Familie und meinen Freunden, die mich während der Zeit begleitet
haben.

3

Acknowledgement

I would like to take this opportunity to thank all those who supported and moti-
vated me during the writing of this dissertation. The work would not have been
possible without the support and advice of many people.

I would especially like to thank Prof. Dr. Alexander Mehler, who supervised
my work and thus also me. By constantly critical questioning and constructive
criticism he gave me valuable hints on the way. He was not only there with
scientific advice and technical discussions, but also with moral encouragement
and motivation. The numerous discussions on an intellectual and personal level
will always remain in my memory as an enriching and constructive exchange. I
am grateful that he has always supported me and pushed me to go beyond my
borders. Thank you very much for your patience and efforts.

I would like to thank Prof. Dr. Visvanathan Ramesh for his helpful and scientific
support as second supervisor.

I am grateful for the opportunity of having done this work at the Text Technology
Lab at the Goethe University in Frankfurt. I had the opportunity to be advised
and supervised by competent colleagues. This has enabled me to grow both
professionally and interpersonally with them.

Last but not least, I would like to thank my parents, who have always been by
my side throughout my life and especially during my studies. They supported
and motivated me in every respect. I would also like to thank my family and
friends who accompanied me during this time.

4

2. Abstract

Durch das World Wide Web steigt die Zahl der frei zugänglichen Textdaten,
was zu einem zunehmenden Interesse an der Forschung im Bereich der Comput-
erlinguistik (CL) geführt hat. Dieser Bereich beschäftigt sich mit theoretisch
orientierter Forschung zur Beantwortung der Frage, auf welche Art Sprache und
Wissen repräsentiert werden muss, um Sprache verstehen und produzieren zu
können. Dafür werden mathematische Modelle entwickelt, um die Phänomene
in den verschiedenen Ebenen in menschlichen Sprachen zu erfassen. Ein weit-
eres Forschungsgebiet erfährt einen Interessenzuwachs, das eng mit CL zusam-
menhängt, nämlich das Natural Language Processing (NLP), bei dem es primär
darum geht, effektive und effiziente Datenstrukturen und Algorithmen zu en-
twickeln, welche die mathematischen Modelle der CL implementieren.

Mit zunehmendem Interesse an diesen Bereichen werden in kürzeren Veröffentli-
chungszyklen NLP-Werkzeuge entwickelt und durch den Open Source Trend frei
zur Verfügung gestellt, die verschiedene CL-Modelle implementieren, mit denen
unterschiedliche Ebenen der Sprache verarbeitet werden können. Aufgrund des
noch nicht definierten I/O-Standards für NLP führt das schnelle Wachstum je-
doch zu einer heterogenen NLP-Landschaft, in der die Spezialisierungen der Tools
wegen der Schnittstelleninkompatibilität nicht voneinander profitieren können.
Daneben erfordert die ständig wachsende Menge an frei zugänglichen Textdaten
eine performante Verarbeitungslösung. Diese Performanz kann durch horizontale
und vertikale Skalierung von Hard- und Software Komponenten erreicht wer-
den.

Aus diesen Gründen beschäftigt sich die vorliegende Arbeit im ersten Teil mit
der Homogenisierung der NLP-Toollandschaft, welche durch ein standardisiertes
Framework erzielt wird, das - TextImager - benannt wurde. Es stellt ein Cloud

5

Computing basiertes Multi-Service, -Server, -Pipeline, -Database, -User, -Re-
präsentations und -Visualisierungs Framework dar, das bereits eine Vielzahl an
Werkzeugen für verschiedene Sprachen zur Verfügung stellt, mit denen verschie-
dene Ebenen der Sprache verarbeitet werden können. Damit ist es möglich,
Forschungsfragen zu beantworten, die es erfordern, eine große Anzahl an Daten
auf mehreren linguistischen Ebenen zu verarbeiten.

Durch die integrierten Werkzeuge und die homogenisierten I/O-Datenströme des
TextImagers ist es nun möglich, die eingebauten Werkzeuge auf zwei Dimensionen
zu kombinieren: (1) die horizontale Dimension, um eine NLP aufgabenspezifis-
che Verbesserung zu erreichen (2) die orthogonale Dimension, um CL Modelle
implementieren zu können, die auf mehrere Ebenen der Sprache aufbauen und
somit auf eine Kombination aus unterschiedlichen NLP Werkzeugen angewiesen
sind.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Erstellung von Modellen für
die horizontale Kombination von Werkzeugen, um damit am Beispiel der NLP-
Aufgabe der Named Entity Recognition (NER) die Verbesserungsmöglichkeiten
zu zeigen. Der TextImager bietet für jede NLP-Aufgabe mehrere Werkzeuge
an, die auf der selben Datengrundlage trainiert worden sind, allerdings unter-
schiedliche Ergebnisse liefern können. Das heißt, dass jedes der Werkzeuge eine
Teilmenge der Daten richtig verarbeitet und gleichzeitig bei einer anderen Teil-
menge Fehler macht. Um eine möglichst große Teilmenge der Daten richtig zu ve-
rarbeiten, bedarf es daher einer horizontalen Kombination der Werkzeuge. Dafür
wurden Machine-Learning-basierte Voting-Mechanismen, namens LSTMVoter und
CRFVoter, entwickelt, die eine Kombination der Ausgaben einzelner NLP-Werk-
zeuge ermöglichen, so dass bessere Datenteilergebnisse erzielt werden können. In
dieser Arbeit wird der Mehrwert der Voter am Beispiel der NER Aufgabe gezeigt,
deren Ergebnisse wieder in die TextImager Toollandschaft einfließen.

Der dritte und letzte Teil dieser Arbeit beschäftigt sich mit der orthogonalen
Kombination von TextImager Werkzeugen, um die Verb Sense Disambiguation
(VSD) zu bewerkstelligen. Verben verbinden Handlungsträger und sind somit der
organisatorische Kern der Aussagen in Texten. In dieser Arbeit wird der CL Frage

6

nachgegangen, wie Verbsinne zu modellieren sind, um diese computational dis-
ambiguieren zu können. Verbsinne haben einen syntagmatisch-paradigmatischen
Zusammenhang mit umgebenden Wörtern. Daher bedarf es einer Vorverar-
beitung auf mehreren linguistischen Ebenen und somit einer orthogonalen Kom-
bination von NLP Werkzeugen, um eine Disambiguierung der Verben auf com-
putationaler Ebene bewerkstelligen zu können. Durch die abgebildete NLP-
Landschaft von TextImager ist es nun möglich, diese Vorverarbeitungsschritte
durchzuführen, um die Informationen zu induzieren, die für das VSD benötigt
werden. Das neu entwickelte NLPWerkzeug für das VSD wurde in die TextImager-
Toollandschaft integriert, was die Analyse einer weiteren linguistischen Ebene
ermöglicht.

In der vorliegenden Arbeit wird ein Framework vorgestellt, das die NLP-Toolland-
schaft homogenisiert und dabei cluster-basiert arbeitet. Es werden Methoden zur
Kombination der integrierten Werkzeuge implementiert, um die Analyse einer
speziellen Sprachebene zu verbessern oder Werkzeuge zu entwickeln, die neue
Sprachebenen erschließen.

7

Abstract

The World Wide Web is increasing the number of freely accessible textual data,
which has led to an increasing interest in research in the field of computational
linguistics (CL). This area of research addresses theoretical research to answer
the question of how language and knowledge must be represented in order to
understand and produce language. For this purpose, mathematical models are
being developed to capture the phenomena at various levels in human languages.
Another field of research experiencing an increase in interest that is closely related
to CL is Natural Language Processing (NLP), which is primarily concerned with
developing effective and efficient data structures and algorithms that implement
the mathematical models of CL.

With increasing interest in these areas, NLP tools are rapidly and frequently
being developed incorporating different CL models to handle different levels of
language. The open source trend has benefited all those in the scientific com-
munity who develop and use these tools. Due to yet undefined I/O standards
for NLP, however, the rapid growth leads to a heterogeneous NLP landscape in
which the specializations of the tools cannot benefit from each other because of
interface incompatibility. In addition, the constantly growing amount of freely
accessible text data requires a high-performance processing solution. This per-
formance can be achieved by horizontal and vertical scaling of hardware and
software. For these reasons the first part of this thesis deals with the homogeniza-
tion of the NLP tool landscape, which is achieved by a standardized framework
called TextImager. It is a cloud computing based multi-service, multi-server,
multi-pipeline, multi-database, multi-user, multi-representation and multi-visual
framework that already provides a variety of tools for various languages to process
various levels of linguistic complexity. This makes it possible to answer research
questions that require the processing of a large amount of data at several linguistic

8

levels.

The integrated tools and the homogenized I/O data streams of the TextImager
make it possible to combine the built-in tools in two dimensions: (1) the hori-
zontal dimension to achieve NLP task-specific improvement (2) the orthogonal
dimension to implement CL models that are based on multiple linguistic levels
and thus rely on a combination of different NLP tools.

The second part of this thesis therefore deals with the creation of models for the
horizontal combination of tools in order to show the possibilities for improvement
using the example of the NLP task of Named Entity Recognition (NER). The
TextImager offers several tools for each NLP task, most of which have been
trained on the same training basis, but can produce different results. This means
that each of the tools processes a subset of the data correctly and at the same
time makes errors in another subset. In order to process as large a subset of the
data as possible correctly, a horizontal combination of tools is therefore required.
Machine learning-based voting mechanisms called LSTMVoter and CRFVoter were
developed for this purpose, which allow a combination of the outputs of individual
NLP tools so that better partial data results can be achieved. In this thesis the
benefit of Voter is shown using the example of the NER task, whose results flow
back into the TextImager tool landscape.

The third part of this thesis deals with the orthogonal combination of TextIm-
ager tools to accomplish the verb sense disambiguation (VSD). The CL question
is investigated, how verb senses should be modelled in order to disambiguate
them computatively. Verbsenses have a syntagmatic-paradigmatic relationship
with surrounding words. Therefore, preprocessing on several linguistic levels and
consequently an orthogonal combination of NLP tools is required to disambiguate
verbs on a computational level. With TextImager’s integrated NLP landscape,
it is now possible to perform these preprocessing steps to induce the information
needed for the VSD. The newly developed NLP tool for the VSD has been in-
tegrated into the TextImager tool landscape, enabling the analysis of a further
linguistic level.

This thesis presents a framework that homogenizes the NLP tool landscape in a

9

cluster-based way. Methods for combining the integrated tools are implemented
to improve the analysis of a specific linguistic level or to develop tools that open
up new linguistic levels.

10

Contents

1. Danksagung 3

2. Abstract 5

3. Introduction 13
3.1. Motivation . 13
3.2. Contributions . 19

4. Publications 33
4.1. TextImager: a Distributed UIMA-based System for NLP 33

4.1.1. abstract . 33
4.1.2. Introduction . 33
4.1.3. Related Work . 34
4.1.4. System Architecture of TextImager 35
4.1.5. Future Work . 38
4.1.6. Scope of the Software Demonstration 40

4.2. Evaluating and Integrating Databases in the Area of NLP 41
4.2.1. abstract . 41
4.2.2. Introduction . 41
4.2.3. Related Work . 43
4.2.4. Database Management Systems 44
4.2.5. Experiments . 47
4.2.6. System Demonstration of MDBMS 51
4.2.7. Conclusion and Future Work 52

4.3. Der TextImager als Front- und Backend für das verteilte NLP von
Big Digital Humanities Data . 55
4.3.1. abstract . 55

11

4.4. TextImager as an interface to BeCalm 59
4.4.1. abstract . 59
4.4.2. Introduction . 59
4.4.3. Systems description and methods 60
4.4.4. Discussion . 63

4.5. LSTMVoter: chemical named entity recognition using a conglom-
erate of sequence labeling tools 65
4.5.1. abstract . 65
4.5.2. Introduction . 66
4.5.3. Materials and Methods . 67
4.5.4. Results . 75
4.5.5. Conclusions . 76

4.6. CRFVoter: Gene and Protein Related Object Recognition Using
a Conglomerate of CRF-Based Tools 77
4.6.1. abstract . 77
4.6.2. Introduction . 78
4.6.3. Methods . 80
4.6.4. System description . 82
4.6.5. Results . 94
4.6.6. Conclusion . 97

4.7. German Verb Sense Disambiguation 99
4.7.1. Introduction . 99
4.7.2. Materials and Methods . 100
4.7.3. Verb Sense Disambiguation 117
4.7.4. Conclusion and Future Work 121

5. Concluding Remarks 123

A. Appendix 160
A.1. Zusammenfassung . 160
A.2. Verbs . 164

A.2.1. Skinners Law Evaluation 164
A.2.2. GermaNet Sense Mappings to Super Senses 168

12

3. Introduction

3.1. Motivation

In recent years, Big Data has evolved into a new paradigm that provides data
and opportunities to improve and enable research applications in business, science
and technology. At the same time, Big Data presents the challenges of storing,
transporting, processing, mining and delivering data. Due to the interconnection
of the world, in particular through the Internet, enormous amounts of data are
produced every day. According to Desjardins (2019), per day

• 500 million tweets are sent.

• 294 billion emails are sent.

• 4 petabytes of data are created on Facebook.

• 65 billion messages are sent on WhatsApp.

• 1,5 million Wikipedia page edits containing 1,4 gigabytes data are made.

The majority of this data is unstructured, which means that no predefined data
model is available for this information. Examples of unstructured data include
audio, video, image files and, as initially mentioned, unstructured text from
email messages, Web pages, Facebook and WhatsApp messages, or online ar-
ticles. Some of them contain valuable information that can be lost in the flood
of data. In order to counteract this loss, the data must be prepared in such a
way that they become machine-readable. Data mining (Hand 2006; X. Wu et
al. 2014), Natural Language Processing (NLP) (Aggarwal and ChengXiang Zhai
2012; Biemann and Mehler 2014), and text analysis techniques (Mehler and Köh-
ler 2007) offer a number of methods for finding patterns, extracting meaning and

13

creating structured data about the information. Algorithms can derive inherent
structures from text data, for example by analyzing word morphology, sentence
syntax, and other small and large structures. Unstructured information can then
be enriched with these derived data in a structured form, for example to enable
a semantic search for relevant information. It is therefore necessary to develop
specific computational workflows to structure the unstructured data in text doc-
uments in order to process the millions of documents that would not be possible
with manual approaches.

In the following, Wikipedia as an unstructured data source is used to illustrate
the immense time and computing effort involved in structuring data. It requires a
variety of operations when structuring the unstructured text of Wikipedia. These
text data are processed on different linguistic levels using NLP techniques. For
this purpose a part of the German Wikipedia, namely the articles of the biology
category1, is processed on ten linguistic levels listed in Table 3.2. Table 3.1 shows
statistics on the processed corpus.

Table 3.1.: Number of annotations per annotation layer.

Layer Count
Articles 126 467
Tokens 72 173 624
Lemma 1 901 373
Wordforms 2 207 708
Syntactic Words 3 708 560
Named Entity 3 650 992
Time 1 199 562

According to Perry (2017) the introduced corpus cannot be considered as Big
Data. However, even with such a relatively small amount of data, we will show
the large computing power required.

Many downstream NLP tasks, such as Question Answering and Semantic Search,
require that the underlying unstructured documents are processed through a va-
riety of pre-processing steps and enriched with additional information. Table 3.2

1https://de.wikipedia.org/wiki/Kategorie:Biologie

14

lists the most common pre-processing steps in NLP. During tokenization, texts
are broken down into their document structure, where paragraphs, sentences and
words are identified. These information are fundamental for all further process-
ing steps, because, apart from individual characters, they form atomic units.
Through lemmatization, words are then transformed into their basic form. For
a semantic search, the recognition of word classes (part of speech) is evident,
since this is the first step of disambiguating words. Furthermore, it is necessary
to divide actors into classes. This is done with named entity recognition (NER)
and time recognition, where multi-word expressions are grouped into predefined
categories such as person, location, organization or time units. In order to be able
to connect the individual actors, dependency parsing and semantic role labeling
are required. Coreference resolution is necessary in order to be able to analyse
the once introduced actors coherently over the entire text span. Wikification is
used to clearly disambiguate the actors, whereby actors are mapped to an ex-
ternal knowledge resource, in this case Wikipedia, in order to induce additional
external knowledge into the processed texts.

In a pilot project, state-of-the-art tools for preprocessing documents implemented
by DKPro (Eckart de Castilho and Gurevych 2014) were used to analyze the
corpus introduced above. Table 3.2 shows the results achieved in terms of time
and storage complexity. It becomes clear that the processing of the documents
takes too long even for a relatively small corpus.

In total, the sequential processing of Wikipedia articles from the biology cate-
gory would take 71,75 days. In this time Wikipedia has already grown again by
5%2.

For this reason it is necessary that data can be processed faster. In order to be
able to achieve this, a system must be developed that can operate decentralized.
It must be scalable, both horizontally and vertically. It must run on dynam-
ically many servers with dynamically many instances per tool. Tools that are
not dependent on each other must be able to run in parallel to prevent bottle-

2https://stats.wikimedia.org/v2/#/de.wikipedia.org/content/pages-to-date/
normal|line|2019-03-01~2019-11-01|~total|monthly

15

Table 3.2.: Statistics about the time and space complexity of the processed cor-
pus. For each of the 10 NLP tasks the required time and storage is
listed.

Step Days GB
1 Tokenize 0,41 82,48
2 Lemmatization 1,07 97,70
3 POS Tagging 0,98 94,42
4 Named Entity Recognition 0,87 9,06
5 Dependency Parsing 22,38 225,46
6 Time Recognition 3,65 11,95
7 Sentiment Analysis 1,00 7,13
8 Semantic Role Labeling 1,21 8,09
9 Wikification 15,99 26,40
10 Coreference 24,19 6,74

∑
71,75 569,43

necks.

Cloud Computing provides basic support in addressing the challenges posed by
shared computing resources such as computing, storage, networking and analytic
software; the application of these resources has led to impressive advances in Big
Data processing. For this reason, a Cloud Computing framework was developed
in the course of this work, which is based on the following principles:
(1) Multi-Service-System, (2) Multi-Server-System, (3) Self-Orchestration-System,
(4) Multi-Database-System, (5) Authority-Management-System, (6) Multi-Repre-
sentation-System. Section 3.2 describes the importance and how these principles
have been implemented.

One core task of NLP is missing in the pipeline presented, namely the inter-
pretation of the relationship between the individual actors or participants in a
text span. In order to answer this question, the organizational core of a statement
must be identified and semantically interpreted. Verbs name events or states with
participants and thus make them the organizational core of the sentence, so their
meaning is the key to sentence meaning. Therefore, disambiguation of verbs
plays a key role in automatic text comprehension, and is therefore a core task of

16

0

50

100

150

200

Days

0

100

200

300

400

500

GB

Step

Coreference

DP

Lemmatization

NER

POS Tagging

SRL

Sentiment A.

Time Rec.

Tokenize

Wikification

Figure 3.1.: The time and space analysis of the Wikipedia articles in the Biology
category after processing by the ten NLP steps can be seen. The
processing takes more than 71 days and takes more than 500 GB. In
this time Wikipedia has already grown by 30%.

NLP.

The task of verb sense disambiguation (VSD) is to automatically assign a prede-
fined sense to a polisemic verb based on its context. The goal of an automatic
VSD system is to tag unseen examples with a sense derived from a sense inventory
or dictionary.

Understanding the semantics of words in natural language text is an important
task for automatic knowledge acquisition. For many semantic downstream tasks,
such as machine translation (Vickrey et al. 2005; Sudarikov et al. 2016; Neale et
al. 2016), semantic parsing (Shi and Rada Mihalcea 2005; Giuglea and Moschitti
2006), information retrieval (Zhong and H. T. Ng 2012; Chifu et al. 2015; H. T.
Ng 2011) and question answering (Hung et al. 2005), it is therefore indispensable
to carry out such a disambiguation.

Due to the relevance of this topic, several shared tasks (Edmonds and Cotton
2001; Snyder and M. Palmer 2004; Pradhan et al. 2007; Navigli, Jurgens, and
Vannella 2013) have already been organized. However, the focus was mainly on
the English language. Henrich (2015) carried out the most extensive work on
VSD for German to date. Various manually annotated and semi-automatically

17

annotated corpora were developed, on the basis of which machine learning meth-
ods were trained. For this, a sense inventory was developed, which connects en-
tries hierarchically at sense level with semantic relations. Two machine learning
strategies were used, supervised and unsupervised. The best-performing super-
vised method of Henrich (2015) achieved an F-Score of 80%, but only on 79
verbs. The unsupervised variant works on the whole sense inventory, but with an
F-score of 55% which is on average almost a random distribution with 2,3 senses
per lemma.

Therefore, a part of this dissertation is to make a substantial contribution to VSD
for German. The task of the VSD was divided into two parts. On the one hand,
a corpus was developed that covers a large number of verbs, whereby supervised
methods can be sufficiently well trained. For this, semi-automatic methods were
developed to achieve a faster and cheaper annotation of the data, namely by
adapting the Skinner’s Law, by translation and utilizing language models. On
the other hand, methods have been developed that use the pre-processing steps of
the TextImager to automatically make sense distinctions of verbs at a syntactic
level. These developments led to a state-of-the-art VSD system for German,
covering 80% of verb tokens. The materials, methodologies and results of this
VSD system are presented in Section 4.7.

18

3.2. Contributions

The computational performance requirements have increased dramatically in re-
cent years. This also applies to many language processing tasks, as the ever-
growing amount of textual information has to be processed within a reasonable
time frame. This scenario has led to a paradigm shift in computer architectures
and large-scale data processing strategies in Natural Language Processing. An-
other challenge for all existing infrastructures is making new methods available
for more and more NLP tasks. As of today there are several thousand freely
available NLP projects3. This number is growing steadily. Consequently, there
is a need to develop flexible architectures that can cope with this growth. The
question is along which dimensions this flexibility is to be guaranteed.

To answer this question, TextImager is introduced as an example of systems
of algorithmic (automatic) analysis and (human) interpretation of the analysis
results (Mehler, Hemati, Gleim, et al. 2018). The TextImager, which describes
the above requirements in six criteria, is presented below:

Multi-Service-System

Developments in text technology and the digital humanities are in a state of rapid
change and are reflected in the variety of applications, platforms and frameworks
being developed. In recent years there has been a strong shift towards web services
and web applications (Sanders, Jr., and MacDonald 2008; Maurizio et al. 2008;
Conlon et al. 2008; Mehler, Gleim, Waltinger, et al. 2009; M. Hinrichs, Zastrow,
and E. W. Hinrichs 2010; Mehler, Schwandt, et al. 2011; Gleim, Mehler, and
Ernst 2012; Sahami, Eckart, and Heyer 2019). Some of the main advantages are
the simple or omitted software installation as well as the platform independence.
But the real benefits are the opportunities to share and use resources and services
online (Richardson and Ruby 2007; Gleim, Mehler, and Ernst 2012; Erl 2016).
The concept of Service Oriented Architectures (SOAs) has been proposed as
a means of integrating isolated services to provide more complex functionality.

3https://github.com/topics/nlp

19

SOAs are not standardized, but must be designed according to the requirements
of the respective application area.

It is also conceivable to merge existing systems and development environments
to exchange work packages with each other in order to exploit specialisation
advantages. In order for the specializations of the different systems to benefit
from each other, they have to be adapted to allow data streams to be exchanged
between the systems. For this purpose, a standardized input/output format must
be created which allows systems from different provinces to became compatible
in SOAs.

For this purpose, TextImager introduces and implements a type system4, which
forms the interface between all the integrated components. A type system de-
fines the different types of objects that can be discovered in documents by the
TextImager, such as tokens, lemmas, POS and other linguistic objects on other
linguistic levels.

TextImager’s integrated components exchange their data via the UIMA Common
Analysis System (CAS), which provides access to the type system by forming an
object schema (see Figure 3.2) (Ferrucci and Lally 2004). The CAS object is also
the container that manages Subjects of Analysis (Sofas), which represents an un-
structured artifact, i.e. a document, that is processed in the TextImager pipeline.
Each tool in the system must define its input and output types. This defini-
tion is then used as the basis for orchestrating the tools in concurrent pipelines,
in line with the general idea of an SOA that describes how services should be
orchestrated, rather than describing the services themselves.

The process for registering a new tool in TextImager has been optimized so that
only one interface, namely the AnalysisComponent, needs to be implemented and
the input and output types for this tool need to be specified. Analysis components
are the primitive building blocks. This is the common interface for all components
that take a CAS as input and may produce CASes as output.

4https://github.com/texttechnologylab/textimager-uima/tree/master/
textimager-uima-types

20

Type System

sofa
1

sofa1

1..*

*

CAS View

name

uima.cas.TOP

uima.cas.AnnotationBase

uima.tcas.Annotation

begin
end

uima.cas.Sofa

sofaNum
sofaId
mimeType
sofaString
sofaURI

Figure 3.2.: Architecture of Common Analysis System (CAS) accessing the type
system. A type system defines the different types of objects that can
be discovered in documents and stored in CASes.

The goal of TextImager is to integrate the latest state-of-the-art tools per lan-
guage into the NLP landscape. Table 3.3 shows the current tool list for the two
dimensions language and NLP Task.

TextImager offers all of its tools as web services, which can be used independently
of platforms and programming languages. The standardized REST interface5 or
the Java implementation6 can be used for this.

5https://textimager.hucompute.org/rest/doku/
6https://github.com/texttechnologylab/textimager-client

21

Table 3.3.: Number of NLP service per language available at TextImager.

en de es fr la nl pt zh it da ar Other
∑

Tokenize 6 4 4 4 3 2 2 1 2 3 3 10 44
Lemmatization 10 4 4 2 5 1 4 0 2 0 0 11 43
POS Tagging 19 11 5 4 5 4 4 4 2 2 2 13 75
NER 15 7 4 4 0 4 1 0 1 1 0 14 51
Parsing 7 3 3 4 0 0 0 5 2 2 3 9 38
Time Rec. 1 1 1 1 0 1 1 0 1 1 1 1 10
Sentiment 3 1 0 0 0 0 0 0 0 0 0 3 7
SRL 3 2 0 0 0 0 0 0 0 0 0 2 7
Wikification 3 3 1 0 0 0 0 0 0 0 0 2 9
Coreference 4 3 0 0 0 0 0 0 0 0 0 2 9
∑

71 39 22 19 13 12 12 10 10 9 9 67 293

Multi-Server-System

More and more computing capacity is needed to coordinate the work of NLP
tools on ever larger amounts of data. TextImager meets this challenge by dis-
tributing its services across a basically unlimited number of servers in such a way
that an n:m relation of services and servers with shared computing resources is
created. The Java Messaging Service (JMS) (Hapner et al. 2002) implemented by
Apache UIMA-AS is used for this purpose, that enables communication between
different components of a distributed application that can be located on different
servers. JMS implements a point-to-point communication system. This commu-
nication type is based on the concept of message queues, senders and receivers.
Each service in the distributed server system is assigned an input queue and an
output queue. To create multiple instances of a component the instances con-
nect to the same service input queue. The instances receive work units from this
queue, CASes to be more precise. After processing, the result is returned to an
output queue (Hemati, Mehler, Uslu, and Abrami 2019). This approach makes
it possible to switch new servers and services on and off at run-time to prevent
overhead.

The point-to-point architecture enables decentralization of services. Infrastruc-
tures of this kind can therefore be expanded as interfaces to multi-server systems,

22

which are constantly growing due to decentralized initiatives and further devel-
opments. This makes it possible for users to host their own TextImager-Servers7

and have their own services, communicate with services in order to manage the
distributed execution of their annotation tasks using this infrastructure8. Host-
ing your own TextImager-Server has additionally the advantage that resources
(corpora, tools, etc.) do not have to be publicly released, but still benefit from
other existing resources..

Self-Orchestration

As a result of the variety of methods, more and more algorithms (e.g. condi-
tional random fields, long short-term memory, transformer networks) and tools
(e.g. MarMoT) are available for the same task (e.g. tagging), which in turn span
parameter spaces. In addition, in the course of the development of computational
linguistics, a rudimentary process model has established itself as a scientific disci-
pline, which defines practiced sequence regularities of such tasks (Mehler, Hemati,
Gleim, et al. 2018). Semantic Role Labeling, for example, is often based on pars-
ing, which in turn results of lemmatization and POS tagging.

The homogenized TextImager type system enables a high degree of abstraction
in the construction of such a process pipeline, since the input and output types of
the respective tools define the pre-processing requirements. This makes it possible
that the individual tools for processing of respective tasks can be exchanged with
each other in a modular principle, whereby only the input requirements of the
respective tools in the process chain have to be created beforehand. Tasks that
are independent of each other can run concurrently. The process or workflow
model for such a pipeline structure must be capable of (1) representing tasks
that generate output types; (2) representing tools that request input types and
generate output types; (3) orchestrating tools into a flow so that parallel subtasks
can be executed concurrently.

Petri nets (Reisig 1985) can be used to implement a workflow model that covers
7https://github.com/texttechnologylab/textimager-server
8https://github.com/texttechnologylab/textimager-client

23

all three requirements. More precisely, a Place/Transition Petri net (Desel and
Reisig 1996) is implemented, which is defined as follows:
PN = (P, T, F,W,M0)

where:

• P = p1, p2, ..., pm is a finite set of places, in our case types from the type
system;

• T = t1, t2, ..., tm is a finite set of transitions, in our case NLP tools;

• F ⊆ (P × T) ∪ (T × P) is a set of arcs (pre- and post-conditions);

• W : F− > 1, 2, 3, ... is a weight function

• M0 : P− > 0, 1, 2, 3, ... is the initial marking

Graphically, Petri nets are represented as bipartite graphs, with two disjoint
types of nodes: places (P) by circles and transitions (T) by rectangles linked
by arcs. In the case of the TextImager process model, places define types in
the type system (Token, Lemma, POS, etc) and transitions represent NLP tools
(MarMotLemmatizer, MarMotPos, etc). The tools have different types as pre-
condition and post-condition, which means that they request input types and
produce output types. The task of the process model is now to execute the
selected tools in such a way that as little overhead as possible is produced by
processing as many tools as possible concurrently. The elementary building blocks
of Petri Nets from Figure 3.3, namely (a) sequence, (b) fork, (c) synchronization,
(d) choice, and (e) merging, are used to realize the complex pipeline structure of
TextImager.

Figure 3.4 shows the entire NLP landscape of TextImager represented by a Petri
net. Figure 3.5 shows the subgraph for creating a pipeline, that results in lan-
guage, paragraph, sentence, token, pos, entity, lemma and dependency types for
a given German document. Tools (represented by transitions (rectangles)) that
are at the same depth of the tree can run concurrently as they have no dependent
types.

24

P1

T1

P2

T2

P3

(a)

T1

P1

P2 P3

(b)

T1

P1 P2

P3

(c)

P1

T1 T2

P2 P3

(d)

P1

T1

P3

T2

P2

(e)

Figure 3.3.: Elementery Petri-Net Structures

Multi-Database-System

With the growth of tools, the diversity of representation possibilities of the pro-
cessed data increases, whether in the form of document-oriented (XML-based)
tree structures, data-oriented graph structures or numerical distributions. This
diversified data can be stored on distributed files in the appropriate format (XML,
TEI, TSV, JSON, etc.). However, this has the disadvantage that the data cannot
be searched efficiently. Databases offer a way out, since the stored data can be
indexed efficiently and made searchable. However, there is no database solution
that enables all of the forms of data representation mentioned above. To over-
come this gap, a multi-DB system is required that can manage multiple database
management systems (DBMS) that are optimized for the characteristics of each of
these representations. Hemati, Mehler, Uslu, Baumartz, et al. (2018) shows, that
for example, graph databases such as Neo4j are suitable for the representation
of simple directed graphs, while MongoDB is better equipped for the manage-
ment of document-oriented structures. Blazegraph, on the other hand, is suitable
for the management of RDF-based data. TextImager also addresses this aspect
of dynamization. The model for this is the openness that already characterizes
multi-server, multi-service systems: The aim is to continuously integrate new
databases into the system in order to be able to represent new representation
possibilities.

25

Figure 3.4.: Illustration of the entire Textimager tool landscape and the interde-
pendence of the tools.

Authority Management

Distributed server systems that perform reproducible data-oriented work require
the ability to offer different rights to the analysis and annotation of the underlying
data. For this, TextImager uses the rights management system of the eHumanities
desktop (Gleim, Mehler, and Ernst 2012). This enables different users to have
different access rights to resources, services and servers.

Multi-Representation-System

By integrating the different frameworks, many formats have to be read in and
produced. Diverse input and output file formats ranging from simple text, over
various corpus formats (PDF, HTML, CoNLL, TIGER-XML, BNC-XML, TCF,
etc.), to tool specific formats and database formats (Neo4j, Cassandra, SQL,
MongoDB, etc.). In addition, entire Wikiditions (Mehler, B. Wagner, and Gleim
2016; Mehler, Gleim, Brück, et al. 2016; Hunziker et al. 2019) can be created,
whereby a processed corpus is exported into the MediaWiki format and enriched

26

Start

HucomputeLanguageDetection

language

ParagraphSplitter

paragraph

BreakiteratorSegmenter

sentence token

StanfordPosTagger
StanfordNER

MarMotLemma

pos entity lemma

StanfordParser

dependency

Figure 3.5.: Section of tool landscape represented by the Petri net which creates
language, paragraph, sentence, token, pos, entity, lemma and depen-
dency types. Tools (represented by transitions (rectangles)) that are
at the same depth of the tree can run concurrently as they have no
dependent types.

with information on different linguistic levels. Various methods for data visual-
ization have been developed (Hemati, Uslu, and Mehler 2016; Uslu and Mehler
2018; Uslu, Mehler, and Meyer 2018). The various visualizations have been in-
tegrated into a user-friendly graphical interface, which now makes it possible to
use the TextImager NLP tools without programming knowledge. This makes it
possible to use NLP interdisciplinary, e.g. in the humanities scholar. This type
of processing opens the way to new research questions in the humanities and in
particular to various methods of answering them.

27

Remarks

TextImager provides NLP pipelines for the automatic analysis of textual units.
Comparable to Voyant Tools (Sinclair and Rockwell 2012), it deals with the in-
teractive visualization of textual structures in such a way that interactions with
texts lead to adaptations of the visualizations entangled with them. TextImager
therefore allows interaction with visualizations in order to control browsing in
the input texts, as well as vice versa browsing in texts in order to achieve consis-
tent visualizations to create textsensitive visualizations. Comparable to SpaCy
(Honnibal and Montani 2017), AllenNLP (Gardner et al. 2018) and CoreNLP
(Manning et al. 2014), it is a pipeline oriented framework for NLP. Similar to
DKPro (Eckart de Castilho and Gurevych 2014), TextImager uses Apache UIMA
to orchestrate NLP tools into pipelines. UIMA provides interfaces for the de-
velopment of modular NLP components. Comparable to GATE (Cunningham
et al. 2011), RapidMiner (Hofmann and Klinkenberg 2013) and WebLicht (M.
Hinrichs, Zastrow, and E. W. Hinrichs 2010), the goal is to make text mining
tools available on as broad a basis as possible. In principle, any freely available
tool for any natural language that can be standardized in accordance with UIMA
should be includable into TextImager. At the current state, TextImager has al-
ready subsumed a number of the above mentioned frameworks, including DKPro,
SpaCy, AllenNLP and CoreNLP as preprocessing modules, making it possible to
exchange work packages with each other in order to exploit specialisation advan-
tages.

Table 3.4.: Comparison of TextImager to other frameworks over the 6 dimensions
presented.

Voyant DKPro SpaCy AllenNLP CoreNLP TextImager

Multi-Service x
Multi-Server x
Self-Orchestration x x x
Multi-Database x
Authority Management x x
Multi-Representation x x x x x
Open-Source x x x x x

28

Table 3.4 shows the frameworks presented above according to the 6 dimensions
presented so far. Each of the tools implements a subset of the dimensions, with
TextImager implementing all.

Due to the various integrated tools and the homogenized I/O data streams in
the form of a standardized type system it is possible to combine the built-in
modules on two different dimensions (see Figure 3.6); (1) the horizontal dimen-
sion in order to achieve a task specific improvement (2) the orthogonal dimension,
in order to create high level NLP tools:

Figure 3.6.: Illustration of TextImager’s module combination in horizontal
(LSTMVoter) and orthogonal (VSD) dimension. The rectangles rep-
resent the integrated modules, where the size reflects the number
of supported languages. Modules are color coded into task specific
groups (POS, NER, parsing, etc.). The green block represents NERs
combined using LSTMVoter. POS (red), NER (green), Dependency
(blue), Topic labeling (turquoise) features are used and combined for
the VSD system.

29

(1) The horizontal combination merges the outputs of modules trained and spe-
cialized for the same task. As an example, the combinatorial improvement
of the NER task is carried out in this dissertation. TextImager provides
many tools (StanfordPosTagger, MarMotTagger, etc.) for solving the same
task (PoS-Tagging, NER, ...). The output of the respective tools can be dif-
ferent, whereby each tool correctly classifies a different subset of the data.
A combination of these tools to a conglomerate can therefore lead to an
improvement of the result. For this purpose CRFVoter (see Section 4.6.1)
and LSTMVoter (see Section 4.5.1) were developed, whereby the output of
the respective tools is weighted in the context of the task. As an example
for the functionality, different sequence classifiers for the recognition of bio-
chemical terms were trained and combined with the help of the two voters
(Hemati and Mehler 2019a; Hemati and Mehler 2019b).

In the first step, each sequence classifier cm,m = 1..l, is optimized indepen-
dently on a subset of the training set, where the ith sequence ti of length n

of the set of training examples is of the form

ti = ⟨(x⃗1, y1), ..., (x⃗n, yn)⟩ (3.1)

x⃗j, j = 1..n, is a feature vector corresponding to an element in the input
sequence at position j. yj is the corresponding discrete label of the element
at position j. The goal of a sequence classifier c is to approximate the
function f(j) = yj where yj is the true label to be assigned to the input
stream at position j.

In the second step, the Voters combines each sequence classifier cm into
an ensemble classifier c = Voter({c1, c2, ..., cl}). The sequence of training
examples is of the form

ti = ⟨(fc1(x⃗1), fc2(x⃗1), ..., fcl(x⃗1)), y1), ..., ((fc1(x⃗n), fc2(x⃗n), ..., fcl(xn)), yn⟩
(3.2)

where fcm(x⃗j),m = 1..l, j = 1..n, is the output label of classifier cm com-
puted for the input vector x⃗j at the jth position of the input sequence.

30

In this way, we train CRFVoter and LSTMVoter based on a sequence of
the latter feature sets computed by pre-trained sequence labeling systems.
We have shown that CRFVoter (Hemati and Mehler 2019a) and LSTMVoter
(Hemati and Mehler 2019b) have by far outperformed the independent best
performers on the task of biomedical named entity recognition.

(2) The orthogonal combination of the modules combines the outputs of mod-
ules solving NLP subtasks that provide orthogonal outputs at different lin-
guistic levels in order to build downstream NLP modules. One of these
downstream modules is verb sense disambiguation (VSD). A verb sense
depends on various features, including morphology, syntax, and thematic
classification of the verb to be disambiguated and the surrounding words.
All these features were produced by the TextImager to finally build a VSD
system on the combination of the outputs.

A result of this work is a state-of-the-art verb sense disambiguation system
for German, alongside with the largest sense annotated corpus for German
verbs (see Section 4.7). Since annotation is very time-consuming and ex-
pensive, automatic and semi-automatic methods for corpus expansion have
been developed and integrated into TextImager. These include expansion
through Skinner’s Law (Mehler 2005), translation and language models.
Many classification tasks suffer from insufficient training data. For these
classification tasks, especially for semantic classification tasks, it may be
useful to use our proposed expansion methods. It has been shown that
such a resource is needed to disambiguate a sufficiently large number of
verbs using supervised machine learning (ML). The subset of verb lemmas
that covers 80% of verb tokens was annotated. The reliability and validity
the data is evaluated using Randolph’s Kappa. In the process, it turned
out that some verbs have low inter-annotator agreement (IAA). The reason
for this is that the distinction of senses in GermaNet, the used sense inven-
tory, is too fine-grained for these verbs. In order to solve this problem, a
method was developed to locate and merge these fine-grained senses into
supersenses.

31

Various neural network-based taggers were trained and evaluated using fea-
tures produced by TextImager in combination with the hand annotated
training corpus. Compared to the previous state-of-the-art, the best per-
former of this work achieved a performance increase of 6% F-Score (80% to
86%) and is therefore state-of-the-art.

32

4. Publications

4.1. TextImager: a Distributed UIMA-based System for NLP

Hemati, Wahed, Tolga Uslu, and Alexander Mehler (2016). “TextImager: a Dis-
tributed UIMA-based System for NLP”. In: COLING 2016, 26th International
Conference on Computational Linguistics, Proceedings of the Conference Sys-
tem Demonstrations, December 11-16, 2016, Osaka, Japan, pp. 59–63. url:
https://www.aclweb.org/anthology/C16-2013/.

4.1.1. abstract

More and more disciplines require NLP tools for performing automatic text anal-
yses on various levels of linguistic resolution. However, the usage of established
NLP frameworks is often hampered for several reasons: in most cases, they re-
quire basic to sophisticated programming skills, interfere with interoperability
due to using non-standard I/O-formats and often lack tools for visualizing com-
putational results. This makes it difficult especially for humanities scholars to
use such frameworks. In order to cope with these challenges, we present Tex-
tImager, a UIMA-based framework that offers a range of NLP and visualization
tools by means of a user-friendly GUI. Using TextImager requires no program-
ming skills.

4.1.2. Introduction

Computational humanities and related disciplines require a wide range of NLP
tools to perform automatic text analyses on various levels of textual resolution.

33

This includes, for example, humanities scholars dealing with repositories of his-
torical documents, forensic linguists analyzing unstructured texts of online social
media to create digital fingerprints of suspects or even doctors using clinical NLP
to support differential diagnosis based on physician-patient talks. However, es-
tablished NLP frameworks still require basic to sophisticated programming skills
for performing such analyses. This hampers their usage for users who are not
sufficiently trained neither in computational linguistics nor in computer science.
Further, these frameworks often lack interoperability due to using non-standard
I/O-formats. We present TextImager to cope with these challenges. The longer-
term goal of TextImager is to provide a platform into which any open source/ac-
cess NLP tool can be integrated. To this end, TextImager provides a web-based
GUI whose usage does not require any programming skills while making acces-
sible a range of tools for visualizing results of text analyses. In order to ensure
standardization and interoperability, TextImager is based on the Unstructured
Information Management Applications (UIMA) framework. Currently, the scope
of TextImager ranges from tokenizing, lemmatizing, POS-tagging, text similarity
measurements to sentiment analysis, text classification, topic modeling and many
more.

4.1.3. Related Work

Frameworks of computational texts analysis have already been introduced and
are now common in industrial use. This includes, for example, UIMA (Ferrucci
and Lally 2004), DKPro (Eckart de Castilho and Gurevych 2014), OpenNLP
(OpenNLP 2010) and Gate (Cunningham et al. 2011). Note that these frame-
works do not provide visualization interfaces and require versatile programming
skills for set up. Thus, they cannot be recommended for being used by computa-
tionally less trained users. We provide the TextImager to cope with this problem
while integrating most of the components of these frameworks. On the other
hand, Voyant Tools (Bird, Klein, and Loper 2009; Ruecker, Radzikowska, and
Sinclair 2011), WebNLP (Burghardt et al. 2014) and conTEXT (Khalili, Auer,
and Ngomo 2014) are web-based NLP tools including visualization components.

34

In order to combine the best of both worlds, TextImager additionally subsumes
the functionalities of these tools. It also shares functionalities with WebLicht
(E. W. Hinrichs, M. Hinrichs, and Zastrow 2010). However, unlike WebLicht,
TextImager is based on open UIMA and, thus, complies to an industrial stan-
dard of modeling text processing chains.

4.1.4. System Architecture of TextImager

TextImager consists of two parts, front-end and back-end. The front-end is a
web application that makes all functionalities and NLP processes available in a
user-friendly way. It allows users for analyzing and visualizing unstructured texts
and text corpora. The back-end is a highly modular, expandable, scalable and
flexible architecture with parallel processing capabilities.

Back-end

Figure 4.1 shows the architecture of TextImager. Every NLP component of Tex-
tImager implements a UIMA interface.

Figure 4.1.: TextImager’s back-end.

Every UIMA compatible NLP-component
can easily be integrated into TextIm-
ager. Even modules not compatible
with UIMA can be integrated with just
a slight effort. Amongst others, we
have integrated DKPro (see Section
4.1.3), which offers a variety of UIMA-
components. We also integrated the
UIMA Asynchronous Scaleout (UIMA-
AS)1 add-on. TextImager allows users
for dynamically choosing NLP compo-
nents in a pipeline. To this end, we ex-
tended UIMA-AS by initiating compo-

1https://uima.apache.org/doc-uimaas-what.html

35

nents without XML descriptors by means of uimaFIT2. We extended this frame-
work by allowing for dynamic instantiations of pipelines. These extensions make
our framework highly flexible, adaptive and extensible during runtime.

All TextImager components are configured as UIMA-AS services, which may run
standalone or in a pipeline. All services are located on servers to allow for com-
munication among them. Note that we are not limited to run these components
on a single server; rather, they can be distributed among different servers (see
Figure 4.1). We developed a mechanism that automatically selects and acquires
components and their resources: it arranges components into pipelines and grants
the ability to parallelize them. Thus, components that do not depend on each
other can run in parallel. For this we developed an advanced UIMA flow con-
troller. Take the examples displayed in Fig.4.2: suppose that vertices in these
examples denote NLP components; suppose further that the corresponding arcs
denote interdependencies between these components. In Fig. 4.2a, the compo-
nents C1, C2 and C3 do not depend on each other. Thus, they can run in parallel.
In Fig. 4.2b, components C1 and D1 do not depend on each other, but on C and
D, respectively. Thus, C and D can run in parallel as can do the components
C1 and D1. In Fig. 4.2c, C depends on C1, C2 and C3. Thus, running C has to
wait on the termination of C1, C2 and C3. Within TextImager, dependency hier-
archies of components as exemplified by these three examples are generated from
information provided by each of the components supposed that their input and
output types have been defined appropriately (cf. the class specifications of type
org.apache.uima.fit.descriptor.TypeCapability). In this way, TextImager
allows for realizing a wide range of processing chains.

One advantage of our framework is that it does not rely on a central repository.
Rather, TextImager can be distributed across multiple servers. This allows de-
velopers for setting up their own TextImager server and to distribute their own
NLP tools within the TextImager ecosystem.

TextImager can be used within a web application that offers a graphical user inter-
face. Alternatively, TextImager can be used via a WSDL webservice client.

2https://uima.apache.org/uimafit.html

36

C

C1 C2 C3

(a)

C D

C1 D1

(b)

C1 C2 C3

C

(c)

Figure 4.2.: Component dependency types.

Front-end

The front-end gives access to all NLP tools integrated into TextImager without
requiring any programming skills. This is done by means of a GUI that even pro-
vides three-dimensional text visualizations (see Figure 4.4b). All visualizations
are interactive in the sense of allowing for focusing and contextualizing results of
text analysis (e.g., the macro reference distribution of sentence similarity across
multiple documents exemplified in Figure 4.4d). The GUI contains a text and
a visualization panel. One of TextImager’s guiding principles is to enable bidi-
rectional interactivity. That is, any interaction with the visualization panel is
synchronized by automatically adjusting the content of the text panel and vice
versa. The front-end is based on Ext JS, a JavaScript framework for building in-
teractive cross platform web applications. The visualizations are done by means
of D3.js3 and vis.js4 to enable browser-based visualizations while handling large
amounts of data.

Figure 4.4 exemplifies TextImager. With a focus on close reading, TextImager
supports the interpretation of single texts by determining, for example, their
central topics or by depicting their unfolding from constituent to constituent
(see Figure 4.4g, 4.4a, 4.4h). Regarding distant reading (Jänicke et al. 2015),
TextImager provides more abstract overviews of the content of text corpora. Here,
visualizations provide summary information as exemplified in Figure 4.4b, 4.4c,
4.4d, 4.4f.

3https://www.d3js.org
4http://visjs.org

37

(a) Stylometric R-Module (b) LDA R-Module

Last but not least, TextImager provides a generic interface to R5. The aim is
to give access to any NLP-related package in R once more without requiring
programming skills. This is especially needed for scholars in digital humanities
who are not trained in using script languages for modeling statistical procedures,
but expect a versatile tool encapsulating this computational complexity. Thus,
TextImager users can process input texts using R packages like LDA (see Figure
4.3b), network analysis or stylometrics (see Figure 4.3a) without the need to
manipulate or to invoke any R script directly. All these R packages are given a
single entrance point in the form of TextImager. See Mehler, Uslu, and Hemati
(2016) for a recent research study based on TextImager.

4.1.5. Future Work

In already ongoing work, we extend the functionality of TextImager. This in-
cludes covering all features of tools like conTEXT. In contrast to many current
frameworks, we will make TextImager’s source code open-source as soon as the
framework reaches a stable and documented version. We are going to specify a
comprehensive model for component specification. The model will contain spec-
ifications of general components and their dependency hierarchy. This model
will help defining where new NLP components are settled within the NLP land-
scape.

5https://www.r-project.org

38

(a) Constituent parse tree (b) Text2Voronoi

(c) Innertextual similarity (d) Intertextual similarity

(e) Dendrogramcluster similarity (f) Relation graph

(g) Bipartite similarity (h) Semantic relation graph

Figure 4.4.: Visualization Examples
39

4.1.6. Scope of the Software Demonstration

A beta version of TextImager’s web application can be found at http://textimager.
hucompute.org. A preprocessed demonstration can be found at http://textimager.
hucompute.org/index.html?viewport=demo. A tutorial on how to set up Tex-
tImager’s backend services on codebase and a list of available components and
options can be found at http://service.hucompute.org.

Acknowledgment

We gratefully acknowledge financial support of this project via the BMBF Project
CEDIFOR (https://www.cedifor.de/en/).

40

4.2. Evaluating and Integrating Databases in the Area of NLP

Hemati, Wahed, Alexander Mehler, Tolga Uslu, Daniel Baumartz, and Giuseppe
Abrami (2018). “Evaluating and Integrating Databases in the Area of NLP”. In:
International Quantitative Linguistics Conference (QUALICO 2018). Wroclaw,
Poland.

4.2.1. abstract

Since computational power is rapidly increasing, analyzing big data is getting
more popular. This is exemplified by word embeddings producing huge index
files of interrelated items. Another example is given by digital editions of corpora
representing data on nested levels of text structuring. A third example relates to
annotations of multimodal communication comprising nested and networked data
of various (e.g., gestural or linguistic) modes. While the first example relates to
graph-based models, the second one requires document models in the tradition of
TEI whereas the third one combines both models. A central question is how to
store and process such big and diverse data to support NLP and related routines in
an efficient manner. In this paper, we evaluate six Database Management Systems
as candidates for answering this question. This is done by regarding database
operations in the context of six NLP routines. We show that none of the DBMS
consistently works best. Rather, a family of them manifesting different database
paradigms is required to cope with the need of processing big and divergent data.
To this end, the paper introduces a web-based multi-database management system
(MDBMS) as an interface to varieties of such databases.

4.2.2. Introduction

Digital humanities and related disciplines deal with a variety of data ranging
from large index files (as in the case of word embeddings (Mikolov, Chen, et al.
2013)) to inclusion hierarchies as mapped by document models in the tradition
of TEI (Burnard and Bauman 2007) and models of nested and networked data

41

as exemplified by multimodal communication (Carletta et al. 2003). With the
availability of web-based resources we observe both an increase concerning the
size of such data – that is, in terms of big data – and the need to cope with
this diversity simultaneously within the same project: lexica (represented as net-
works) are interrelated, for example, with large corpora of natural language texts
(represented as tree-like structures) to observe language change (Kim et al. 2014;
Michel et al. 2010; Eger and Mehler 2016). Another example is given by digi-
tal editions (Kuczera 2016) in which annotations of textual data are interrelated
with annotations of pictorial representations of the underlying sources (Leydier
et al. 2014; Lavrentiev, Stutzmann, and Leydier 2015). We may also think of
text mining in the area of learning analytics based on big learning data, in which
textual manifestations of task descriptions are interrelated with student assess-
ments and qualitative data (Robinson et al. 2016; Crossley et al. 2015). To cope
with such diversities, databases are required that allow for efficiently storing, re-
trieving and manipulating data ranging from distributions to tree-like structures
and graphs of symbolic and numerical data. As a matter of fact, such an om-
nipotent database is still out of reach. Thus, the question is raised which existing
database technology based on which paradigm performs best in serving these tasks.
Alternatively, the question is raised which combination of these technologies best
fits these tasks.

In this paper, we evaluate six Database Management Systems (DBMS) as can-
didates for answering these two questions. This is done by regarding elemen-
tary database operations that underlay typical scenarios in NLP or natural lan-
guage annotation. We show that none of the DBMS under consideration consis-
tently works best. Rather, families of such DBMS manifesting different database
paradigms cope better with the rising needs of processing big as well as diver-
gent data. To demonstrate this, the paper introduces a web-based multi-database
management system (MDBMS) that allows for integrating families of databases.
This is done to provide a single interface for querying different databases. To
this end, the MDBMS encapsulates the specifics of the query languages of all
databases involved. By using it, modelers are no longer forced to choose a single
database, but can benefit from different databases that capture a variety of data

42

modeling paradigms. This enables projects to simultaneously manage and query
a variety of data by means of a multitude of databases – in a way that also al-
lows for processing big data. Such a versatile MDBMS is especially interesting
for NLP frameworks (Eckart de Castilho and Gurevych 2014; Hemati, Uslu, and
Mehler 2016; E. W. Hinrichs, M. Hinrichs, and Zastrow 2010; OpenNLP 2010;
Popel and Zabokrtský 2010) that still do not store annotations of documents
in a query-able format. In cases where such annotations are stored according
to the UIMA Common Analysis Structure (UIMA-CAS), serialization is based
on XML-files. This makes operations such as collecting statistical information
from documents very time-consuming, since one first has to deserialize each file
involved. The same problem occurs when trying to add annotation layers. For
additionally annotating, for example, named entities, one has two options: either
one runs the underlying UIMA pipeline together with the named-entity recogni-
tion (NER) from scratch or the serialized output of the pipeline is deserialized
and then made input to NER. Obviously, both variants are very time-consuming.
A better option would be to let NER work only on those annotations that are
needed for annotating named entities. However, this presupposes that all anno-
tations are stored in a query-able format. By example of UIMA-CAS the present
paper proposes a MDBMS that allows exactly this: to query annotations of docu-
ments according to varying data models even in cases where the amount of stored
data ranges in terms of big data.

4.2.3. Related Work

For testing our framework, we include databases6 that address different core
tasks.

Until now, there has not been much research on the comparative evaluation of
DBMS in the context of NLP. What is missing is a comparison of databases
according to competing (relational, graph- or document-oriented) paradigms.
Rather, databases are assessed in isolation. As an example for document-oriented
databases, Richardet, Chappelier, and Telefont (2013) use MongoDB to provide

6http://db-engines.com/en/ranking

43

an interface for UIMA-based applications. Fette, Toepfer, and Puppe (2013)
present a relational framework for storing CAS objects in a MySQL database.
Another example is given by Hahn et al. (2008) who serialize UIMA-CAS objects
by means of PostgreSQL. Since graph databases have become popular in digital
humanities (Kuczera 2016), there are many examples according to this paradigm.
Lyon (2016) use Neo4j to mine word associations. Ganesan, C. Zhai, and Han
(2010) introduce a graph-based summarization framework. R. Mihalcea and Ta-
rau (2004) exemplify a graph-based ranking model for text processing. Usbeck
et al. (2014) use graph-based representations of texts and linked data for disam-
biguating named entities. Rousseau, Kiagias, and Vazirgiannis (2015) describe
an approach to graph-based text classification in which texts are represented as
graphs of words, while Tixier, Malliaros, and Vazirgiannis (2016) introduce a
graph-based approach to keyword extraction. Finally, B. Müller and Hagelstein
(2016) present an approach to analyzing and visualizing textual content that com-
bines a graph database (Neo4j) with MongoDB. As enumerated in Section 4.2.4,
we evaluate all of these and related databases by means of storing and retrieving
annotations generated by six NLP operations.

4.2.4. Database Management Systems

This section describes the DBMS included to our evaluation. We use the UIMA
type system of Eckart de Castilho and Gurevych (2014) as a reference to refer to
annotation layers to be managed by the databases. Further, the evaluation utilizes
TextImager (Hemati, Uslu, and Mehler 2016) to get access to a large variety of
NLP routines as test cases. The valuation scenario refers to the annotation of
text corpora along six annotation layers that are output by six selected routines.
Any annotation information is stored by means of CAS objects to map between
the UIMA type system on the one hand and the different DBMS on the other. In
this section our question is then how the selected DBMS store input corpora and
annotations. Section 4.2.5 will then evaluate how these annotations are managed
by the DBMS.

44

Baseline Scenario: File System

To get a baseline scenario, we generate compressed files out of serialized UIMA-
CAS objects output by NLP and store them in the file system. Serialization uses
XMI7, a standard for representing objects in XML (Grose, Doney, and Brod-
sky 2002). Note that for each operation at document level, any compressed file
has to be de-compressed and -serialized. Obviously, this results in a memory
overhead.

MongoDB

As an example of a scalable document-orientated NoSQL database we evaluate
MongoDB.8 To this end, we serialize UIMA-CAS objects into binary-encoded JSON
Objects. Due to its document-oriented character, these objects can be added
directly to MongoDB next to the type system. This makes it extremely flexible
especially in the case of frequently changed type systems.

Because of being schema-free, MongoDB supports two ways for representing re-
lations among objects: in terms of embedded documents or document references.
Embedded documents store objects relations in a single Binary JSON document.
To this end, input documents are denormalized and stored contiguously on disk.
This results in better reading performance when querying entire documents, since
only one query is required (Copeland 2013). However, document size can grow
rapidly as each annotation layer is represented as a separate array of objects in the
respective document. Since MongoDB has a size limit of 16 MB per document,
storage of large documents is considerably limited in this scenario. Alternatively,
relations can be stored by means of document references. In this case, one speaks
of normalized data (Dayley 2014). In our evaluation of MongoDB, every anno-
tation of a CAS object is stored as a separate JSON document. This allows
for representing and storing larger CAS objects than in the case of embedded
documents. Database size is further reduced by avoiding redundancy. A disad-

7http://omg.org/spec/XMI/
8https://mongodb.com/

45

vantage of normalized data is that multiple lookups are required when resolving
dependencies and references (Dayley 2014).

Cassandra

Apache Cassandra9 is a column oriented NoSQL database that is horizontally
scalable. To this end, Cassandra replicates data to multiple nodes of a cluster to
ensure fault tolerance (Hewitt 2011). For every annotation layer of the under-
lying type system we generate a separate table whose attributes correspond to
those of the focal layer. Note that Cassandra does not allow for joining tables.
From the point of view of the relational paradigm, this is problematic. Thus, de-
pendency parses, semantic roles, anaphora and related relational data can hardly
be modeled using Cassandra. However, an alternative is to distribute such data
and synthesize it at runtime using query families.

MySQL

For evaluating MySQL10, we use the NLP-related database schema of Fette, Toepfer,
and Puppe (2013). It consists of six tables for storing annotations next to the
type system.

BaseX

BaseX11 is a light-weight XML document-oriented database using an XPath/X-
Query 3.1 processor. In our setup, UIMA-CAS objects are serialized into XMI
documents and added to this XML database. XPath/XQuery provides function-
ality for querying XMI representations of CASes in accordance with the type
system.

9https://cassandra.apache.org/
10https://mysql.com/
11http://basex.org/

46

Neo4j

Neo4j12 is a highly performant NoSQL graph database addressing networked data
(J. J. Miller 2013). In our experiment, we represent a text corpus as an adjacency
graph in Neo4j. That is, each input text is represented by a node linking to all
its token nodes whose syntagmatic order is mapped by token links. Further,
any annotation is represented by nodes in Neo4j so that no pair of different
nodes instantiates the same attribute-value pair. That is, the attribute-value
pair (POS, verb), for example, is bijectively mapped to a node in Neo4j. This
approach reduces the number of nodes, while raising the number of edges.

4.2.5. Experiments

We now evaluate the DBMS of Section 4.2.4 regarding the dual task of pro-
cessing diverse as well as big data. To this end, we created a corpus of 70 000
German Wikipedia articles, each containing annotations of (1) tokenization, (2)
lemmatization, (3) POS tagging, (4) dependency parsing, (5) NER and (6) time
recognition. Table 4.1 lists the number of annotations generated for each of these
layers. In the following sections, we evaluate the DBMS with respect to writing
and reading the respective annotations. This evaluation is further differentiated
by evaluating the performance of the DBMS with regard to querying attribute
values and relational data.

Storage Performance

For each database of Section 4.2.4 we implemented a separate UIMA Writer to
transform CAS objects output by the selected NLP routines to the CAS adap-
tations of the respective databases. Figure 4.5 shows the performance of each
database in terms of single threaded write operations. Table 4.2 shows the time
taken by the DBMS to store all documents. The time is measured in terms
of serializing and storing CAS objects based on the respective database format.
12https://neo4j.com/

47

Table 4.1.: Number of annotations per annotation layer.

Layer Count
Document 70 000
Paragraph 598 041
Sentence 1 520 441
Token 31 647 060
Character 169 131 822
POS 31 647 060
Lemma 31 647 060
Dependency 31 647 492
Named Entity 2 078 212
Time 1 039 106

Obviously, while file system-based storage is fastest, MySQL is worst. Table 4.2
shows usage of disk space induced by all inserts. While the file system is still
best, the worst case is now BaseX.

Table 4.2.: Performance statistic for storing documents.

XMI Mongo Neo4j BaseX MySQL Cas.

Runtime (s) 1 190 4 953 4 227 17 101 27 283 5 858
Disk (GB) 4,8 15,8 22,6 33,0 28,4 10,8

Reading Performance

For each database we implemented a UIMA CollectionReader for mapping be-
tween CAS adaptations of DBMS and NLP routines. This mode concerns situ-
ation in which subsequent NLP routines operate on pre-annotated data. Figure
4.6 as well as Table 4.3 show the performance of the DBMS when performing sin-
gle threaded read operations. Now, Neo4j outperforms all its competitors, while
BaseX is still worst.

48

0 1 2 3 4 5 6 7

·104

0

1

2

3
·104

Documents

T
im
e
(s
)

XMI MongoDB
Neo4j BaseX
MySQL Cassandra

Figure 4.5.: Time of writing using the corresponding DBMS.

0 1 2 3 4 5 6 7

·104

0

1

2

3

4

·103

Documents

T
im
e
(s
)

XMI MongoDB
Neo4j BaseX
MySQL Cassandra

Figure 4.6.: Time need to read documents.

49

Table 4.3.: Time (in seconds) taken to read documents.

XMI Mongo Neo4j BaseX MySQL Cas.

906 s 1 563 s 123 s 20 217 s 1 009 s 770 s

Query Performance

Databases typically provide expressive query languages. The more expressive this
language, the more informative the data that can be queried, for example, for text
mining, distant reading or text visualization. Such a query mode is particularly
interesting for NLP frameworks (see Section 4.2.2) that still do not rely on query
languages. In our experiment, we distinguish between querying attributes and re-
lations. This is done by example of the task of generating frequency distributions
for annotation layers.

Table 4.4.: Performance statistics of querying in seconds.

XMI Mongo Neo4j BaseX MySQL Cass.

POS 1 290,2 24,9 13,8 127,6 16,3 ∅
Lemma 1 287,0 27,5 57,0 185,9 14,6 ∅
Morph 1 299,1 26,3 48,0 132,3 18,6 ∅
Dep 1 490,2 371,4 59,4 2 349,7 87,7 ∅

Querying Attribute Values We query the databases for counting attributes like
POS or lemma and use this data to calculate type-token ratios etc. Table 4.4
lists the time required by the DBMS to determine the corresponding frequency
distributions. Note that Cassandra does not support count operations. The best
performer is once more Neo4j, while the file system performs worst. Obviously,
querying requires a DBMS.

Querying Relational Data For running a performance test regarding relations
(e.g., dependency relations), we reconstructed the experiment of Fette, Toepfer,

50

and Puppe (2013). That is, all dependency relations of all words are queried
governing the verb “gehen”/“to walk”. Tokens of this lemma are retrieved together
with all dominating or dependent tokens. Table 4.4 row Dep shows the test
results: the best performer Neo4j, while BaseX is worst. Since Cassandra does
not support join operations, we did not model dependency relations using this
DBMS.

Combining databases

In this section we briefly describe how we combined databases to generate an
MDBMS. The underlying optimization process focuses on two dimensions: run-
time and memory consumption. Since the tasks described in Section 4.2.5 are
independent of each other, the MDBMS is generated in such a way that it consists
of databases that require a minimum runtime for the respective task. Thus, the
best performing combination of databases is Neo4j (read,dependency), MySQL
(pos,lemma,morph).

4.2.6. System Demonstration of MDBMS

In this section, we demonstrate the MDBMS as a framework for combining mul-
tiple DBMS. Each database to be integrated into the MDBMS has to be im-
plemented as a Java interface. This interface provides functions for reading,
writing and querying the respective database. To this end, we have written
interfaces for all databases described in Section 4.2.4. In order to allow for
using the MDBMS in a user-friendly manner, we utilize the web interface of
TextImager (Hemati, Uslu, and Mehler 2016) (see Figure 4.7). TextImager is
a UIMA-based framework that includes a wide range of NLP tools and visu-
alization techniques for numerous languages. TextImager can upload and pro-
cess multiple documents, compressed corpora and downloadable URLs accord-
ing to its language-specific pipelines. All data preprocessed or output by Tex-
tImager is then stored in the MDBMS. Our system demonstration shows how
TextImager uses the MDBMS to perform the tasks described in Section 4.2.5

51

Server 1
Server 2
Server 3...
Server x

UIMA
DUCC

UIMA
Rest
Client

TextImager
Frontend

MDBMS

MongoDB
Cassandra
MySQL
BaseX
Neo4j

Figure 4.7.: The MDBMS as being interfaced by TextImager.

and to visualize the corresponding results. The demonstration can be found at
http://textimager.hucompute.org/lab/database/index.html.

4.2.7. Conclusion and Future Work

We evaluated six DBMS in the context of six database operations underlying
typical working scenarios in NLP. We showed that none of the DBMS under
evaluation consistently works best, but rather a combination of databases ad-
dressing different paradigms of data modeling. That is, facing the rising needs of
processing big as well as divergent data, families of such divergent DBMS are the
better choice. We addressed this need by means of a so-called Multi-DataBase
Management system (MDBMS) as an interface to families of such databases.
Note that our evaluation of the DBMS in question considered independent tasks.
In the case of non-circularly dependent ones, the optimization can be performed
by means of a multistage graph G whose nodes denote combinations of tasks and
databases. In this scenario, a node x is assigned to stage Y of smallest order, so
that all tasks that are required to be completed before x belong to stages pre-
ceding Y . Edges connecting nodes of different stages represent dependencies of
task completion whose weight equals the runtime required by completing the task
denoted by the source node by means of the respective database. This allows for
solving the underlying optimization problem by means of dynamic programming
for minimizing cost of possible paths within G (Sniedovich 2010). This will be

52

our task in future work.

53

4.3. Der TextImager als Front- und Backend für das verteilte
NLP von Big Digital Humanities Data

Hemati, Wahed, Alexander Mehler, Tolga Uslu, and Giuseppe Abrami (2019).
“Der TextImager als Front- und Backend für das verteilte NLP von Big Digital
Humanities Data”. In: Proceedings of the 6th Digital Humanities Conference in
the German-speaking Countries, DHd 2019. DHd 2019. Frankfurt, Germany.

4.3.1. abstract

Immer mehr Disziplinen benötigenNatural Language Processing (NLP)Werkzeuge,
um automatische Textanalysen auf verschiedenen Ebenen der Sprache durchzuführen.
Die Anzahl der NLP-Werkzeuge wächst rasant13. Auch die Anzahl der frei oder
anderweitig zugänglichen Ressourcen wächst. Angesichts dieser wachsenden Zahl
an Werkzeugen und Ressourcen ist es schwierig, den Überblick zu behalten; gle-
ichzeitig ist ein Computational-Linguistic-Framework, das große Datenmengen
aus verschiedenen Quellen verarbeiten kann, noch nicht etabliert. Ein solches
Framework sollte in der Lage sein, Daten verteilt zu verarbeiten und gleichzeitig
eine standardisierte Programmier- und Modellschnittstelle bereitzustellen. Darüber
hinaus sollte es modular und leicht erweiterbar sein, um die ständig wachsende
Palette neuer Ressourcen und Tools zu integrieren. Das Framework muss of-
fen genug für Erweiterungen Dritter sein, wobei jede Erweiterung für die gesamte
Community zugänglich bleibt. Das Framework sollte es zudem Dritten ermöglichen,
den Zugang zu ihren Erweiterungen zu beschränken, wenn dies beispielsweise
durch Urheberrecht, geistiges Eigentum oder Datenschutz erforderlich ist. Um
diesen Anforderungen gerecht zu werden, haben wir den TextImager (Hemati,
Uslu, and Mehler 2016) um ein verteiltes Serversystem mit Cluster-Computing-
Funktionen auf der Basis von UIMA (Ferrucci and Lally 2004) weiterentwick-
elt.

UIMA ist ein Framework zur Verwaltung von Datenflüssen zwischen Kompo-
nenten. Es bietet standardisierte Interfaces zur Erstellung von Komponenten
13https://github.com/topics/nlp

55

an. Dabei können die Komponenten einzeln oder im Verbund in einer Pipeline-
Struktur ausgeführt werden. UIMA bietet weitgehende Möglichkeiten der se-
quenziellen Ordnung von NLP-Werkzeugen und verspricht, auch in Zukunft von
der Community weiterentwickelt zu werden: Prozess-Management auf der Basis
von UIMA erscheint nach derzeitigem Stand daher als erste Wahl im Bereich von
NLP und DH.

TextImager bietet eine Vielzahl von UIMA-basierten NLP-Komponenten an,
darunter unter anderen einen Tokenizierer, einen Lemmatisierer, einen Part-Of-
Speech-Tagger, einen Named-Entity-Parser und einen Dependency Parser, und
zwar für eine Vielzahl von Sprachen, darunter Deutsch, Englisch, Französisch und
Spanisch. Dieses Spektrum an Werkzeugen besteht allerdings nicht ausschließlich
aus Eigenentwicklungen, sondern wird maßgeblich um Entwicklungen Dritter er-
weitert, wozu unter anderem die Tool-Palette von Stanford CoreNLP (Manning
et al. 2014), OpenNLP (OpenNLP 2010) und DKpro (Eckart de Castilho and
Gurevych 2014) zählen.

In Zeiten von Big Data wird es immer relevanter, Daten schnell zu verarbeiten.
Aus diesem Grund ist TextImager als Multi-Server- und zugleich als Multi-
Instanz-Cluster aufgebaut, um das verteilte Verarbeiten von Daten zu ermöglichen.
Dafür setzt TextImager auf UIMAs Cluster-Management-Dienste UIMA-AS14

und UIMA-DUCC15 auf.

Abbildung 4.8 zeigt eine schematische Darstellung von TextImager. Jede NLP-
Komponente läuft als UIMA-AS Webservice auf dem Computing-Cluster des
TextImager. Dabei können mehrere Instanzen einer Komponente instanziiert
(s. Abbildung 4.8, Service Instances) werden und dennoch über eine Webservice-
Schnittstelle (s. Abbildung 4.8, UIMA AS Services) angesprochen werden. Dazu
wird das Java Messaging Service (JMS) verwendet, das die Kommunikation zwis-
chen verschiedenen Komponenten einer verteilten Anwendung ermöglicht. JMS
implementiert ein Point-to-Point-Kommunikationssystem. Dieser Kommunika-
tionstyp basiert auf dem Konzept der message queues (Warteschlangen), senders

14https://uima.apache.org/doc-uimaas-what.html
15https://uima.apache.org/doc-uimaducc-whatitam.html

56

DUCC

Client

TTLab

Ontologies

Anno A

Anno B

Anno C

Anno X

Anno Y

UIMA AS
Services

Anno A2

Anno C1
141…

Anno A1

Anno B1
Huaxal

Service
Instances

Anno X

Anno Y
XYZ

Anno Z no x.x.x

Ducc Job

 ResourceManager







…

 Pipeline Orchestrator

 User Client


TextImager
Service Repo

RESTfull
Java
CLI

API

XMI
TEI

 UIMA DI O
ut

pu
t

TextImager

 
TextAnnotator

…



CLARIN



TXT



TEI



DBMS



Resources

Input

Figure 4.8.: TextImager: system components and their relations.

(Sender) und receivers (Empfänger). Jedem Dienst ist eine Eingabewarteschlange
und eine Ausgabewarteschlange zugeordnet. Ummehrere Instanzen einer Kompo-
nente zu verteilen, verbinden sich die Instanzen mit der gleichen Service-Eingangs-
warteschlange. Die Instanzen erhalten aus dieser Warteschlange Arbeitseinheiten.
Nach der Verarbeitung wird das Ergebnis an eine Ausgabewarteschlange zurück-
gegeben. Die Ausgabewarteschlange eines Dienstes kann an eine Eingabewarte-
schlange eines anderen Dienstes angeschlossen werden, um eine Pipeline zu er-
stellen. Aufgrund dieser Ein- und Ausgabewarteschlangen-Systematik kann jeder
Service Arbeitseinheiten asynchron bearbeiten. Durch diese Architektur istText-
Imager eine Multi-Server-, Multi-Service- und Multi-Service-Instanz-Architektur.

Darüber hinaus bietet TextImager ein Toolkit, das es jedem Entwickler er-
möglicht, einen eigenenTextImager-Cluster aufzusetzen und Services imText-
Imager-System hinzuzufügen. Entwickler können den Zugriff auf die Dienste
einschränken, wenn dies wie oben beschrieben erforderlich ist, was mittels die
Integration des ResourceManagers (Gleim, Mehler, and Ernst 2012) und des Au-
thorityManagers (Gleim, Mehler, and Ernst 2012) realisiert wird.

57

Durch Freigabe des Quellcodes des TextImager und die Bereitstellung von
Leitlinien für dessen Erweiterung wollen wir es Dritten ermöglichen, ihre NLP-
Software über die Webservices von TextImager zu vertreiben, so dass die
gesamte wissenschaftliche Gemeinschaft davon profitiert. Installationsanweisun-
gen und Beispiele für die Einrichtung eines TextImager-Servers finden Nutzer
in folgendem GitHub-Repository: https://github.com/texttechnologylab/
textimager-server.

Der Beitrag erörtert die Möglichkeiten und Grenzen des NLP von Big Data,
stellt den TextImager als Werkzeug für diesen Bereich zur Diskussion und zeigt
anhand von drei Nutzungsszenarien Einsatzmöglichkeiten in den DH auf.

58

4.4. TextImager as an interface to BeCalm

Hemati, Wahed, Tolga Uslu, and Alexander Mehler (2017). “TextImager as an
interface to BeCalm”. In: BioCreative V.5. Proceedings.

4.4.1. abstract

TIPS (Technical interoperability and performance of annotation servers) is a novel
BioCreative task. It focuses on the technical aspects of making NER taggers avail-
able as webservices. In this paper, we present the functionality and architecture
of BeCalm metaserver integrated into TextImager. We present the integration of
in-house developed NER tagger and also the integration and adaption of available
NER tagger.

4.4.2. Introduction

The novel BioCreative task TIPS focuses on making NER taggers available as
web servers. We introduced TextImager in Hemati, Uslu, and Mehler (2016)
where we focused on the architecture and the functions of its backend. In this
paper, we present TextImager as an annotation server on the BeCalm platform.
TextImager is a UIMA(Ferrucci and Lally 2004)-Based framework that offers a
range of NLP. It is modular and expendable, due to the underlying UIMA archi-
tecture. We made TextImager available online. It can be accessed by BeCalm
metaserver requests and is able to answer such requests in the BeCalm TSV
format. Currently we trained and implemented 6 NER systems for the BeCalm
GPRO and CEMP tasks, namely StanfordNER, MarMot, CRF++, MITIE, Glample and
CRFVoter. Each of these tagger can be used in a pipeline together with other
NLP-tools that are already integrated in TextImager.

59

4.4.3. Systems description and methods

In this section we will describe the technical implementation of BeCalm metaserver
integration into TextImager. We implemented a REST API that provides ac-
cess and responds to the BeCalm metaserver requests described in http://www.
becalm.eu/api

In order to obtain annotation documents the BeCalm metaserver sends a getAn-
notations() request for a set of documents. The getAnnotations() message is in
JSON format, which is exemplified in Listing 4.1. The request contains specifica-
tion about the documents that need to be processed, authentication information
and the costum_parameter annotator.

Listing 4.1: Example BeCalm metaserver JSON request
1 {
2 ”method” : ” getAnnotat ions ” ,
3 ”becalm_key” : ”141xxx” ,
4 ”name” : ”becalm” ,
5 ” custom_parameters ” : {
6 ” annotator ” : ”BioGproS”
7 } ,
8 ” parameters ” : {
9 ” exp i red ” : ”2017−05−02T15 : 10 : 00+02 : 00” ,
10 ”documents ” : [
11 {
12 ” source ” : ”ABSTRACT SERVER” ,
13 ”document_id” : ”12140745”
14 } ,
15

16 {
17 ” source ” : ”PATENT SERVER” ,
18 ”document_id” : ”EP0959896B1”
19 } ,
20 . . .
21] ,
22 ” communication_id” : ”4672794”
23 }
24 }

60

After receiving the getAnnotations() request, our server responds to BeCalm with
an acknowledge message.

After the acknowledgement, our server executes the internal workflow, which
starts by processing the BeCalm JSON request. The retrieved documents are
downloaded by the TextImager Rest API from their specific sources, namely Ab-
stract Server, Patent Server and PubMed Server. The documents are then passed
to the TextImager backend. TextImagers backend is a UIMA-based framework
that offers a range of NLP tools. Every TextImager component is configured
as a UIMA-AS service, which may run standalone or in a pipeline (see Fig-
ure 4.9, Stanford NER service Interface, MarMot Service Interface, etc). All
service instances are located on servers. Note that these instances can be dis-
tributed among different servers (see Figure 4.9, Server 1, Server 2, Server X).
We trained and integrated 6 NER systems for the BeCalm GPRO and CEMP tasks
into TextImager, namely StanfordNER(Finkel, Grenager, and Manning 2005),
MarMot(T. Müller, Schmid, and Schütze 2013), CRF++(Kudo 2005), MITIE(Geyer
et al. 2016), Glample(Lample et al. 2016) and CRFVoter.

The TextImager Rest API sends the request and the documents to the TextIm-
ager Orchestrator. The custom_parameter: annotator (see Listing 4.1) is used
by the orchestrator to determine which NER service to run. The TextImager
Orchestrator selects and acquires components and their resources: it arranges
components into pipelines and grants the ability to parallelize them. Each of the
6 integrated NER systems require tokenization, lemmatization and morph tag-
ging as preprocessing steps. Finally after the orchestration step, the documents
are processed by means of the selected service pipeline. After processing is done,
the output is passed to the TextImager Rest API, which saves the output to the
BeCalm server, by calling the method saveAnnotations16.

16http://www.becalm.eu/api

61

Document Servers

TextImager Backend

Server 1 Server 2

Server X

BeCalm Server

Abstract Server

Patent Server

PubMed Server

TextImager Rest API

TextImager Orchestrator

Stanford
NER Service

Interface

Stanford
NER In-
stances

MarMoT
Service

Interface

MarMoT
In-

stances

MarMoT
In-

stances

... Service
Interface

Instances

Becalm TSV
JSON

HTTP

Figure 4.9.: Architecture of BeCalm metaserver integrated into TextImager

62

4.4.4. Discussion

In this work, we presented TextImager as a Becalm annotation server. Our anno-
tation server is a distributed and modular framework. We currently integrated 6
NER systems for CEMP and GPRO. In future work, we will focus on integrating
more NER systems into TextImager and make it available as annotation server.
We will also provide more output formats.

Acknowledgments.

We gratefully acknowledge support by the Deutsche Forschungsgemeinschaft via
the Specialised Information Services Biodiversity Research.

63

4.5. LSTMVoter: chemical named entity recognition using a
conglomerate of sequence labeling tools

Hemati, Wahed and Alexander Mehler (2019b). “LSTMVoter: chemical named
entity recognition using a conglomerate of sequence labeling tools”. In: J. Chem-
informatics 11.1, 3:1–3:7. doi: 10.1186/s13321-018-0327-2. url: https:
//doi.org/10.1186/s13321-018-0327-2.

4.5.1. abstract

Background Chemical and biomedical Named Entity Recognition (NER) is an
essential preprocessing task in Natural Language Processing (NLP). The identifi-
cation and extraction of named entities from scientific articles is also attracting
increasing interest in many scientific disciplines. Locating chemical named en-
tities in the literature is an essential step in chemical text mining pipelines for
identifying chemical mentions, their properties, and relations as discussed in the
literature. In this work, we describe an approach to the BioCreative V.5 chal-
lenge regarding the recognition and classification of chemical named entities. For
this purpose, we transform the task of NER into a sequence labeling problem.
We present a series of sequence labeling systems that we used, adapted and op-
timized in our experiments for solving this task. To this end, we experiment
with hyperparameter optimization. Finally, we present LSTMVoter, a two-stage
application of Recurrent Neural Networks (RNN) that integrates the optimized
sequence labelers from our study into a single ensemble classifier.

Results We introduce LSTMVoter, a bidirectional Long Short-Term Memory
(LSTM) tagger that uses a conditional random field layer in conjunction with
attention-based feature modeling. Our approach explores information about fea-
tures that is modeled by an attention mechanism. LSTMVoter outperforms each
extractor integrated by it in a series of experiments. On the BioCreative IV chem-
ical compound and drug name recognition (CHEMDNER) corpus, LSTMVoter
achieves an F1-score of 90,04%; on the BioCreative V.5 chemical entity mention

65

in patents (CEMP) corpus, it achieves an F1-score of 89,01%.

Availability and implementation Data and code are available at https://
github.com/texttechnologylab/LSTMVoter

4.5.2. Introduction

In order to advance the fields of biological, chemical and biomedical research, it is
important to stay on the cutting edge of research. However, given the rapid devel-
opment of the disciplines involved, this is difficult, as numerous new publications
appear daily in biomedical journals. In order to avoid repetition and to contribute
at least at the level of current research, researchers rely on published information
to inform themselves about the latest research developments. There is therefore
a growing interest in improved access to information on biological, chemical and
biomedical data described in scientific articles, patents or health agency reports.
In this context, improved access to chemical and drug name mentions in docu-
ment repositories is of particular interest: it is these entity types that are most
often searched for in the PubMed (PubMed - NCBI n.d.) database. To achieve
this goal, a fundamental preprocessing step is to automatically identify biological
and chemical mentions in the underlying documents. Based on this identification,
downstream NLP tasks such as the recognition of interactions between drugs and
proteins, of side effects of chemical compounds and their associations with toxi-
cological endpoints or the investigation of information on metabolic reactions can
be carried out.

For these reasons, NLP initiatives have been launched in recent years to ad-
dress the challenges of identifying biological, chemical and biomedical entities.
One of these initiatives is the BioCreative series, which focuses on biomedical
text mining. BioCreative is a “Challenge Evaluation”, in which the participants
are given defined text mining or information extraction tasks in the biomedical
and chemical field. These tasks include Gene Mention detection (GM) (Smith
et al. 2008; Hirschman et al. 2005), Gene Normalization (GN) (Hirschman et al.
2005; Morgan et al. 2008; Z. Lu et al. 2011), Protein-Protein Interaction (PPI)

66

(Krallinger, Vazquez, et al. 2011), Chemical Compound and Drug Name Recog-
nition (CHEMDNER) (Krallinger, Leitner, et al. 2015; Krallinger, Rabal, et al.
2015) and Chemical Disease Relation Extraction (Li et al. 2016; Wei et al. 2016)
tasks.

The current BioCreative V.5 task consists of two off-line tasks, namely Chemical
Entity Mention in Patents (CEMP) and Gene and Protein Related Object Recog-
nition (GPRO). CEMP requires the detection of chemical named entity mentions.
The task requires detecting the start and end indices corresponding to chemical
entities. The GPRO task requires identifying mentions of gene and protein re-
lated objects in patent titles and abstracts (Krallinger, Martin Pérez-Pérez, et al.
2017). In this work, we focus on the CEMP task. The CEMP task is an ab-
straction of the common Named Entity Recognition (NER) tasks, which can be
reduced to a sequence labeling problem, where the sentences are represented as
sequences of tokens. The task is then to tag chemical entity mentions in these
sequences. The settings of the CEMP task are similar to the Chemical Entity
Mention Recognition (CEM) subtask of CHEMDNER challenge in BioCreative
IV (Krallinger, Leitner, et al. 2015). Therefore, we addressed both tasks and their
underlying corpora in our experiments. Note that the current article describes
an extension of previous work (Hemati, Mehler, and Uslu 2017).

The article is organized as follows: First we describe our methodical apparatus
and resources. This includes the data and corpora used in our experiments. Then,
we introduce state-of-the-art tools for NER and explain how we adapted them
to perform the CEMP task. Next, we present a novel tool for combining NER
tools, that is, the so-called LSTMVoter. Finally, we present our results, conclude
and discuss further work.

4.5.3. Materials and Methods

In this section, we first describe the datasets used in our experiments. Then, the
two-stage application of LSTMVoter is introduced.

67

Datasets

In our experiments, two corpora of the BioCreative Challenge were used: the
CHEMDNER Corpus (Krallinger, Leitner, et al. 2015) and the CEMP Corpus
(M Pérez-Pérez et al. 2017).

The CHEMDNER corpus consists of 10 000 abstracts of chemistry-related jour-
nals published in 2013. Each abstract was human annotated for chemical men-
tions. The mentions were assigned to one of seven different subtypes (ABBRE-
VIATION, FAMILY, FORMULA, IDENTIFIER, MULTIPLE, SYSTEMATIC,
and TRIVIAL). The BioCreative organizer divided the corpus into training (3 500
abstracts), development (3 500 abstracts) and test (3 000 abstracts) sets.

For CEMP task, the organizers of BioCreative V.5 provided a corpus of 30 000
patent abstracts from patents published between 2005 and 2014. These abstracts
are divided into training (21 000 abstracts) and test (9 000 abstracts) sets. The
corpus is manually annotated with chemical mentions. For the construction of the
CEMP corpus the annotation guidelines of CHEMDNER were used. Therefore,
CEMP contains the same seven chemical mention subtypes as CHEMDNER. Ta-
ble 4.5 shows the number of instances for both corpora for each of these subtypes.

Table 4.5.: Number of instances for each subtype of CEMP and CHEMDNER
corpus.

Annotation CEMP CHEMDNER
ABBREVIATION 1 373 9 059
FAMILY 36 238 8 313
FORMULA 6818 8 585
IDENTIFIER 278 1 311
MULTIPLE 418 390
SYSTEMATIC 28 580 13 472
TRIVIAL 25 927 17 802
NO CLASS 0 72

Total count 99 632 59 004

68

Both corpora were enriched with additional linguistic features. For this, mul-
tiple preprocessing steps were applied on each set including sentence splitting,
tokenization, lemmatization and fine-grained morphological tagging by means of
Stanford CoreNLP (Manning et al. 2014). In addition, tokens were split on non-
alphanumeric characters, as this variant brought a performance increase. Since
the chemical mention detection task can be reduced to a sequence labeling prob-
lem, the corpora were converted into a sequence structure. To this end, a sequence
of documents with sequences of sentences each containing a sequence of tokens
was constructed and transformed according to a TSV format. Each word and
its associated features are in one line separated by tabs. Sentences are separated
by an empty line. For the labeling of the mentions, the IOB tagging scheme
(Ramshaw and Marcus 1995a) was used (I = inside of an entity, O = outside
of an entity, B = beginning of an entity). IOB allows the annotation of enti-
ties that span multiple tokens, where the beginning and the end of the entity is
marked. This enables models to learn transition probability. LSTMVoter needs
four datasets for the training process. Two pairs of training and development sets
are required. Each pair is needed in one of the two stages of LSTMVoter (see Sec-
tion System Description). Therefore, we divided the training set of CEMP into
two series of training, development and test sets (each half of the original training
set was split according to the pattern 60%/20%/20%), where the first series is
used for stage one, and the second for stage two. For the CHEMDNER corpus the
available training and development sets were joined and split into training and
development sets according to the schema 80%/20% – as before, we distinguish
two such series. For evaluating our classifiers with respect to CHEMDNER, the
test set provided by the organizers of the challenge was used. For the following
experiments we used the corpora described as so far.

System Description

In this section we describe our system. Our approach implements a two-stage
application of Long short-term memory (LSTM) using a conglomerate of sequence
labelers for the detection of chemical mentions.

69

In the first stage, we trained and optimized five tools for NER for tackling this
task, namely Stanford Named Entity Recognizer (Finkel, Grenager, and Manning
2005), MarMoT (T. Müller, Schmid, and Schütze 2013), CRF++ (Kudo 2005),
MITIE (Geyer et al. 2016) and Glample (Lample et al. 2016). For each of them,
we optimized the corresponding hyperparameter settings. Generally speaking, hy-
perparameter tuning is a challenging task in machine learning. The optimal set of
hyperparameters depends on the model, the dataset and the domain (Claesen and
Moor 2015). Our experiments focused on optimizing the hyperparameters of each
NER system independently, which led to a noticeable increase in F-score com-
pared to the default settings. For each NER, we performed the Tree-structured
Parzen Estimator (TPE) (Bergstra, Bardenet, et al. 2011) with 200 iterations.
The results of the best performing model for each of these NER is listed in Table
4.6.

Table 4.6.: Comparison of annotators trained and tested on CEMP and CHEMD-
NER corpora measured by precision (P), recall (R), f1-score (F1)

.
System CEMP CHEMDNER

P R F P R F
Stanford NER 0,85 0,80 0,82 0,82 0,83 0,82
MarMoT 0,87 0,86 0,86 0,85 0,85 0,85
CRF++ 0,77 0,73 0,73 0,74 0,71 0,73
MITIE 0,65 0,65 0,65 0,62 0,61 0,62
Glample 0,76 0,79 0,77 0,82 0,84 0,83

Majority Vote 0,78 0,79 0,78 0,70 0,76 0,73
LSTMVoter 0,90 0,88 0,89 0,91 0,90 0,90

The NER tools are more or less independent of each other in the sense that
one can find a subset of test cases that are correctly processed by one of them,
but not by another. Therefore, combining these NERs is a promising candidate
for increasing performance. We started with computing combinations of these
NERs by means of a simple majority vote (Dietterich 2000), where the target
label is selected, that is assigned by the majority of classifiers. Our experiments
show that a simple majority vote brings no gain in performance compared to the
best performing reference systems being examined in our study (see Table 4.6).

70

Thus, we developed a two-stage model, the so-called LSTMVoter, which trains a
Recurrent Neural Network (RNN) with attention mechanism to learn the best
combination of the underlying sequence labeling tools from stage one.

In the second stage, we combine the sequence labelers of stage one with two bidi-
rectional Long Short-Term Memory (LSTM) networks with attention mechanism
and a Conditional Random Field (CRF) network to form LSTMVoter. The ar-
chitecture of LSTMVoter is illustrated in Figure 4.10. The core of LSTMVoter is

Treatment

Char-Bi-LSTM

Char-Attention
Word-

Embeddings

St
an

fo
rd

M
ar
M
ot

C
R
F+

+
M
IT

IE
G
la
m
pl
e

Stage-One-
Features

Feature-
Attention

Bi-LSTM

CRF

Ooutput

with

St
an

fo
rd

M
ar
M
ot

C
R
F+

+
M
IT

IE
G
la
m
pl
e

O

haloperidol

St
an

fo
rd

M
ar
M
ot

C
R
F+

+
M
IT

IE
G
la
m
pl
e

B-
Trivial

or

St
an

fo
rd

M
ar
M
ot

C
R
F+

+
M
IT

IE
G
la
m
pl
e

O

resperine

St
an

fo
rd

M
ar
M
ot

C
R
F+

+
M
IT

IE
G
la
m
pl
e

B-
Trivial

Figure 4.10.: Architecture of LSTMVoter.

based on Lample et al. (2016).

LSTM networks are a type of RNN (Elman 1990). RNN allow the computation
of fixed-size vector representations for sequences of arbitrary length. An RNN
is, so to speak, a function that reads an input sequence x1, ..., xn of length n

and produces an output vector hn, which depends on the entire input sequence.
Though, in theory, an RNN is capable of capturing long-distance dependencies
in the input sequence, in practice, they may fail due to the problem of vanish-
ing gradients (Hochreiter 1998; Pascanu, Mikolov, and Bengio 2012). On the

71

other hand, LSTMs include a memory cell, which can maintain information in
memory for long periods of time (Hochreiter and Schmidhuber 1997; Hammerton
2003). This enables finding and exploiting long range dependencies in the input
sequences to cope with the problem of vanishing gradients. Figure 4.11 illustrates

xt xt

it ot

xt ∫ ⊗ Ct ∫ ⊗ ht

x

ft

xt

input gate output gate

Figure 4.11.: A Long Short-Term Memory Cell.

an LSTM memory cell, which is implemented as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct)

where xt is the input vector (e.g. word embedding) at time t. ht is the hidden
state vector, also called output vector, that contains information at time t and
all time steps before t. σ is the logistic sigmoid function (Weisstein 2002). Input
gate i, forget gate f , output gate o and cell vector c are of the same size as the
hidden state vector h. Whi, Whf , Whc and Who are the weight matrices for the
hidden state ht. Wxi, Wxf , Wxc and Wxo denote the weight matrices of different
gates for input xt.

72

For LSTMVoter, we apply an LSTM to sequence tagging. Additionally, as pro-
posed by Graves, Mohamed, and Hinton (2013), we utilize bidirectional LSTM
networks. Figure 4.12 illustrates a bidirectional Long short-term memory (Bi-

O O B-TRL O B-TRL

Treatment with haloperidol or reserpine

backward

forward

Figure 4.12.: A bidirectional LSTM network.

LSTM) network, where the input sequence (Treatment with haloperidol or reser-
pine ...) and the output sequence (O, O, B-Trivial, O, B-Trivial, ...) are fed
as a training instance to a Bi-LSTM. In Bi-LSTMs, the input sequence is pre-
sented forward and backward to two separate hidden states to capture past and
future information. To efficiently make use of past features (via forward states)
and future features (via backward states) for a specific time frame, the two hid-
den states are concatenated to form the final output. In the final output of a
Bi-LSTM, all information of the complete sequence is compressed into a fixed-
length hidden state vector, which may result in information loss. To overcome
this information loss, an attention mechanism is introduced, which partially fixes
the problem.

The method of attention mechanism has recently gained popularity in image
caption generation (K. Xu et al. 2015), visual question answering (Zichao Yang
et al. 2015) and language modeling tasks (Golub and X. He 2016; Rei, Crichton,
and Pyysalo 2016; Luong, Pham, and Manning 2015; Bahdanau, Cho, and Bengio
2015). The attention mechanism plugs a context vector on top of a layer, which
enables to take all cells’ outputs as input to compute a probability distribution.
This enables to capture global information rather then to infer based on one
output vector.

For LSTMVoter, we utilized Bi-LSTMwith attention mechanism to model character-
level features (see Figure 4.10, Char-Bi-LSTM). Character-level features in chem-

73

ical named entities contain rich structure information, such as prefix, suffix and
n-grams. Unlike previous methods (Y. Lu et al. 2015; Khabsa and Giles 2015;
S. Xu et al. 2015), character-level features do not have to be defined manually,
rather they can be learned during training. Unlike Lample et al. (2016), who
encodes the entire character sequence into a fixed-size vector for each word, we
utilize the character-level attention mechanism introduced by Rei, Crichton, and
Pyysalo (2016). This has the advantage, that by using the attention mechanism,
the model is able to dynamically decide how much information and which part
of a token to use.

In addition to the character-level features, we implemented word embeddings
into our model to capture dependencies between words (see Figure 4.10, Word-
Embeddings). For this, we evaluated various methods, namely GloVe (Penning-
ton, Socher, and Manning 2014), Dependency-Based embeddings (Levy and Gold-
berg 2014; Komninos and Manandhar 2016) trained on the English Wikipedia,
and word2vec (Mikolov, Sutskever, et al. 2013) trained on the English Wikipedia
and a biomedical scientific literature corpus containing PubMed abstracts and full
texts. In our experiments, the word2vec model trained on biomedical scientific
literature gave the best results.

To utilize the results of the NERs from stage one, we encode the respective results
of the NERs into one-hot vectors concatenated to a feature vector (see Figure
4.10, Stage-One-Features). An attention mechanism is placed on the feature
vector. By creating a probability distribution through the attention mechanism,
LSTMVoter learns how to weight each result of the NERs from stage one. With
the attention vector it is even possible to determine for each element of a sequence
how important the individual partial results from stage one were. This has the
advantage that the model is no longer a black box, but can be interpreted as to
how important the individual results from stage one were.

All previous elements of LSTMVoter encode word-based information. Another Bi-
LSTM is used to learn relationships between these word-based information (see
Figure 4.10, Bi-LSTM).

To deal with the independent label output problem, we utilize the output vector

74

as elements. For this we combine the Bi-LSTM layer with a linear-chain CRF
(see Figure 4.10, CRF). Linear-chain CRFs define the conditional probability of
a state sequence to be:

P (y|x) = 1

Zx

exp

(
n∑

j=1

l∑

m=1

λmfm(yj−1, yj, x, j)

)

where Zx is the normalization factor that makes the probability of all state se-
quences sum to one; fm(yj−1, yj, x, j) is a feature function, and λm is a learned
weight associated with feature fm. Feature functions measure the aspect of a
state transition, yj−1, yj → yt, and the entire observation sequence, x, centered
at the current time step, j. Large positive values for λm indicate a preference for
such an event, whereas large negative values make the event unlikely.

Finally, to optimize the hyperparameters, the Tree Structure Parzen estimator
was used.

4.5.4. Results

This section presents the results of our experiments for the chemical named entity
recognition on CEMP and CHEMDNER corpus. For evaluation the BioCreative
Team has specified standard evaluation statistics, namely precision (P), recall (R)
and F1-score (F) (M Pérez-Pérez et al. 2017). For each sequence labeling tool, the
hyperparameters were optimized using Tree Structure Parzen Estimators, which
led to a noticeable increase of performance. For example, in the optimization
process of CRF++, the difference between the worst to the best performer is
65%. The results show the need for machine learning algorithms to perform
hyperparameter optimization.

Table 4.6 shows the comparison of annotators trained on CEMP and CHEMD-
NER corpus. The results listed are those obtained after the hyperparameter op-
timization described in the Methods Section, which were trained, optimized and
tested on the corpora described in this Section. Each sequence labeling system
classifies a different subset correctly. The combination of sequence labelling sys-

75

tems in a majority vote did not improve performance and is even below the best
sequence labelling systems. In contrast, LSTMVoter increases the performance
and performs best in our experiments.

4.5.5. Conclusions

In this work, we compared a set of sequence labeling systems. We trained and
optimized every sequence labeling system to detect chemical entity mention by
means the TPE. We showed that optimizing hyperparameter can be crucial. One
sequence labeling system in our experiments gained an improvement of more than
65%. We showed that a naive majority vote does not bring any improvement.
For this reason, we introduced and evaluated LSTMVoter, a two-stage tool for
combining underlying sequence modeling tools (as given by the NER of our com-
parative study). LSTMVoter achieved an improvement of up to 5% compared to
the best reference systems examined in our study. This two-level classifier ap-
pears to be capable of being further developed and improved by feeding it with
the output of additional sequence labelling systems. In any event, our results
and those of the other participants of BioCreative V.5 Task show that the task of
NER of chemical entities has not been sufficiently solved yet. For a better recog-
nition, a larger corpus should be generated so that today’s popular deep learning
algorithms can work on this data. A kind of human-in-the-loop architecture for
automatic annotation and intellectual rework would also be helpful at this point
in order to successively increase and improve the amount of data.

76

4.6. CRFVoter: Gene and Protein Related Object Recognition
Using a Conglomerate of CRF-Based Tools

Hemati, Wahed and Alexander Mehler (2019a). “CRFVoter: gene and protein
related object recognition using a conglomerate of CRF-based tools”. In: J.
Cheminformatics 11.1, 21:1–21:11. doi: 10.1186/s13321-019-0343-x. url:
https://doi.org/10.1186/s13321-019-0343-x.

4.6.1. abstract

Background Gene and protein related objects are an important class of entities
in biomedical research, whose identification and extraction from scientific articles
is attracting increasing interest. In this work, we describe an approach to the
BioCreative V.5 challenge regarding the recognition and classification of gene
and protein related objects. For this purpose, we transform the task as posed
by BioCreative V.5 into a sequence labeling problem. We present a series of
sequence labeling systems that we used and adapted in our experiments for solving
this task. Our experiments show how to optimize the hyperparameters of the
classifiers involved. To this end, we use various algorithms for hyperparameter
optimization. Finally, we present CRFVoter, a two-stage application of CRF
that integrates the optimized sequence labelers from our study into one ensemble
classifier.

Results We analyze the impact of hyperparameter optimization of named entity
recognition in biomedical research and show that this optimization results in a
performance increase of up to 60%. In our evaluation, our ensemble classifier
based on multiple sequence labelers, called CRFVoter, outperforms each individual
extractor’s performance. For the blinded test set provided by the BioCreative
organizers, CRFVoter achieves an F-score of 75%, a recall of 71% and a precision
of 80%. For the GPRO type 1 evaluation, CRFVoter achieves an F-Score of
73%, a recall of 70% and achieved the best precision (77%) among all task
participants.

77

Conclusion CRFVoter is effective when multiple sequence labeling systems are
used and performs better than the individual systems collected by it.

4.6.2. Introduction

The research fields of biology, chemistry and biomedicine have attracted increas-
ing interest due to their social and scientific importance and also because of the
challenges arising from the intrinsic complexity of these domains. Like many
other research areas, they are currently changing due to the rapid development
of machine learning (ML) and artificial intelligence (AI). ML is used in many of
these research areas. For instance, in the biomedical area it is used for biomedical
signal processing (BSP) (Turner et al. 2017; Zhao and L. He 2014), biomedical
imaging (BI) (Plis et al. 2014; Suk and Shen 2013; Qayyum et al. 2017) and
disease prediction through patient profiling (Shickel et al. 2017). The former ap-
proaches work with structured data such as EEG data in the case of BSP. The
last two approaches work with unstructured data such as MRI for BI and doctor-
patient conversations in the case of disease classification and differential diagnosis
(Mehler, Uslu, and Hemati 2016; Uslu, Miebach, et al. 2018; Reuber, Monzoni,
et al. 2009; Reuber, Blackburn, et al. 2018). The growth in the amount of pub-
licly available data has led to enormous efforts to develop, analyze and apply new
learning methods in the field of chemistry and biology. This concerns, for exam-
ple, virtual screening (Unterthiner et al. 2014) for drug design and drug discovery
(Gawehn, Hiss, and Schneider 2016; Zhang et al. 2017). In order to advance ar-
eas of biological, chemical and biomedical research, it is important to perform
state-of-the-art algorithms of data analysis. In carrying out scientific work, most
researchers rely on published information to keep abreast of the latest develop-
ments in these fields, to avoid repetition and determine the direction of current
studies. Numerous new publications appear daily in biomedical journals, in the
form of scientific articles, patent applications, reports from health authorities and
other text collections on the Internet, making it difficult to keep pace with the
development of this discipline. Thus, there is an increasing interest in improving
access to information on biological, chemical and biomedical data described in

78

such texts and text repositories. To achieve this goal, a fundamental step is to au-
tomatically identify biological and chemical entities in these repositories. Based
on this identification, interactions between drugs and proteins, for example, can
be detected, side effects of chemical compounds and their associations to toxico-
logical endpoints can be identified or information about metabolic reactions can
be extracted (Emmert-Streib, Dehmer, and Haibe-Kains 2014).

For these reasons, initiatives and call for participation in corresponding compe-
titions have been launched in recent years by professional communities that de-
scribe challenges in the identification of biochemical units. One of these initiatives
is the BioCreative series which focuses on biomedical text mining. BioCreative is
a “Challenge Evaluation”, where the participants are given defined text mining
or information extraction tasks in the field of biology. These tasks include GM
(Hirschman et al. 2005; Smith et al. 2008), GN (Hirschman et al. 2005; Morgan
et al. 2008; Z. Lu et al. 2011), PPI (Krallinger, Vazquez, et al. 2011), CHEMD-
NER (Krallinger, Rabal, et al. 2015) and Chemical Disease Relation Extraction
(CDRE) (Li et al. 2016; Wei et al. 2016) tasks.

The current BioCreative V.5 task consists of two off-line tasks, namely CEMP
and GPRO. CEMP requires the detection of chemical named entity mentions.
The task requires detecting the start and end indices corresponding to chemical
entities. The GPRO task requires identifying mentions of gene and protein related
objects mentioned in patent titles and abstracts (Krallinger, Martin Pérez-Pérez,
et al. 2017). In this work, we focus on the second task, that is, the GPRO task.
The GPRO task is an abstraction of the well-known NER tasks, which can be
reduced to a sequence labeling problem, where input sentences are represented as
sequences of tokens. The task is then to tag genes and protein-related mentions
in these sequences of sentences. The present paper addresses this task and is an
extension of previous work (Hemati, Mehler, and Uslu 2017).

The paper is organized as follows: In Section 4.6.3 we describe our methodical
apparatus and resources. First, we describe the data used for this work. We then
present state-of-the-art tools for NER and how we adapted them for applying
them in the biological domain. We examine the impact of hyperparameter op-

79

timization and show that it brings a considerable boost in performance. Next,
we present a novel tool, called CRFVoter, for combining sequence labeling tools
as used in our hyperparameter optimization. In Section 4.6.5, we present and
discuss our results and in Section 4.6.6 we conclude and shed light on further
work.

4.6.3. Methods

Dataset

The organizers of BioCreative V.5 provided a corpus of 30 000 patent abstracts
(titles and abstracts in English) from patents published between 2005 and 2014,
where 21 000 of them are used as a training set and the remaining 9 000 as a
test set. The corpus is manually annotated for the GPRO tasks. Gene and
protein related object annotations were divided into type 1 and type 2. Type
1 are those GPRO mentions that can be normalized to database entries, like
UniProt17, NCBI18, OMIM19, GeneCards20, FlyBase21, etc.. Type 2 are those
mentions that cannot be normalized. Table 4.7 shows the number of instances
of type 1 and type 2 annotations in the GPRO Task. 5 795 documents from the

Table 4.7.: Number of instances of type 1 and type 2 in GPRO task.

Type 1 Number Type 2 Number
ABBREVIATION 7 516 ABBREVIATION 27
FAMILY 1 FAMILY 5 029
FULL NAME 4815 FULL NAME 27
IDENTIFIER 1 MULTIPLE 178
NESTED 89 NO CLASS 45

SEQUENCE 23

Total count: 12 422 Total count: 5 329

17http://www.uniprot.org/
18https://www.ncbi.nlm.nih.gov/
19https://www.omim.org/
20https://www.genecards.org/
21http://flybase.org/

80

21 000 documents of the training set contained GPRO mentions. To reduce noise
during training, only the annotated subset of 5 795 documents were considered;
from now on, the collection of the documents will be called filtered corpus. Then,
by means of random sampling, the filtered corpus was divided into three sets: 60%
of the document were sampled into the training set, 20% into the development set
and 20% into the test set. The filtered corpus had been enriched with additional
linguistic features. To this end, multiple preprocessing steps were applied on
each of the three sets including sentence splitting, tokenization, lemmatization,
part-of-speech tagging and fine-grained morphological tagging by means of the
Stanford CoreNLP (Manning et al. 2014) and TextImager (Hemati, Uslu, and
Mehler 2016). In addition, tokens were split on non-alphanumeric characters, as
this variant brought a performance increase.

Table 4.8.: The number of documents, sentences and tokens of the filtered corpus.

Documents 5 795
Sentences 19 673
Tokens 633 928

Table 4.8 lists the number of documents, sentences and tokens of the filtered
corpus. Since the GPRO task can be reduced to a sequence labeling problem, the
filtered corpus was converted into a sequence structure. To this end, a sequence
of documents each containing a sequence of sentences each containing a sequence
of tokens was constructed. This results in a file in TSV format, where each
word and its associated features are in one line separated by tabs. Sentences are
separated by an empty line. For the labeling of the GPRO mentions, the IOB
tagging scheme (Ramshaw and Marcus 1995b) was used (I = inside of a entity,
O = outside of a entity, B = beginning of a entity). This approach allows for
the annotation of entities that span multiple tokens. Note that the beginning
and end of each entity mention is marked. This allows models to not only learn
tags themselves, but also the corresponding transition probability. Between all
beginning and end tags, the inside parts, for example, should also be part of
the manifestation of the entity. It is worth noticing that using the IOB scheme

81

has also disadvantages. The smallest unit that can be annotated is a token.
Consider, for example, the token ”B-RafV600E”. Only ”B-Raf” is annotated
in the gold standard. This cannot be represented using the IOB format. To
solve this problem, a tokenizer has to be developed that covers exactly these
special cases. The filtered corpus contains 0,85% of these special cases. Since
their recognition cannot be trained, they have been removed from the training
set. However, during evaluation, these cases were considered as errors. In all
experiments described in the following sections, we used the corpus as described
so far.

4.6.4. System description

In this section we describe CRFVoter. Our approach implements a two-stage ap-
plication of Conditional Random Fields (CRF) (Lafferty, McCallum, and Pereira
2001) using a conglomerate of sequence labelers for the detection of mentions of
gene and protein related objects in biomedical patent abstracts. We trained and
optimized five NER for tackling the GPRO task. We also optimized the hyperpa-
rameter settings of each of these NERs. Hyperparameter tuning is a challenging
task in ML in the sense that the optimal set of hyperparameters depends on the
model, the dataset and the domain (Claesen and Moor 2015) forming a huge
interactive parameter space. In this context, our experiments focused on opti-
mizing the hyperparameters of each NER system independently. This led to a
noticeable increase of F-score compared to the default settings. For each NER,
we performed a hyperparameter optimization by means of the TPE (Bergstra,
Bardenet, et al. 2011). The NERs are more or less independent of each other in
the sense that one can always find a subset of test cases being processed correctly
by one NER but not by any other one. Therefore, combining these NERs is a
promising candidate for increasing precision and recall. We started with comput-
ing combinations of these NERs by means of a simple majority vote (Dietterich
2000). Majority voting means to select the target label that is assigned by the
majority of classifiers. Our experiments show that a simple majority vote brings
no gain in precision and recall compared to the best performing reference systems

82

being examined in our study. Thus, we alternatively experimented with a two-
stage model, called CRFVoter, which trains a CRF to learn the best combination
of the underlying sequence labeling tools (i.e. our case these are the NERs). We
show, that CRFVoter outperforms every reference systems being examined in our
study. In the rest of this section, we present a survey of hyperparameter opti-
mization algorithms and discuss why TPE is the best optimization algorithm for
our studies. We present a survey of NERs trained for the GPRO tasks and the
parameter settings optimized by means of the TPE hyperparameter optimization
algorithm. This includes the NER systems described in the following subsections.
Finally we describe the ensemble classifiers based on majority voting and on our
CRFVoter.

Hyperparameter Optimization

In this section, we describe the concepts of hyperparameter tuning. A ML model
consists of various parameters that must be learned using the underlying training
data. The main task of ML is to adapt a model to the given data. This process
of fitting the model parameters to existing data is called model training. Hyper-
parameters are a class of parameters that cannot be learned directly from the
training process. The hyperparameters are the variables that govern the train-
ing process itself. These parameters must be predefined; they define higher-level
concepts about the model, such as complexity, convergence rate, penalty, and
so on (Bergstra, Bardenet, et al. 2011). Hyperparameters are configuration vari-
ables of the training process that are normally kept constant. Hyperparameter
optimization, also called hyperparameter tuning, is used to find optimal hyper-
parameter configurations for a ML algorithm on a given dataset. The goal is, to
find optimized values for hyperparameters, which maximize the prediction accu-
racy of a model. Hyperparameter tuning works by performing several trials of
the same training job. Each trial is a complete execution of the training process
with values for pre-selected hyperparameters that are within predefined limits.
Hyperparameter tuning optimizes one or more target variable where this variable
is also called performance metric or hyperparameter metric (Hutter, Hoos, and

83

Leyton-Brown 2014). In our case we have considered a single target variable, that
is, the F-score, because this is usually or at least predominantly done in NER. The
hyperparameters are adjusted by running the entire training job, so that overall
hyperparameter metric is improved. Since parameter spaces tend to include more
and more dimensions, it is usually not possible to search the entire space to find
the optimal configuration. Therefore, approximation algorithms must be used to
maximize the hyperparameter metric (locally or globally). In the next sections
we introduce a general notation and describe some hyperparameter optimization
algorithms.

General notation Following the notation of Hutter, Hoos, and Leyton-Brown
(2014) and Wistuba, Schilling, and Schmidt-Thieme (2015), a ML algorithm A
is a mapping A : D → M where D is the dataset and M is the space of all
models. A has n hyperparameters, denoted as θ1, . . . , θn and a configuration space
Θ = Θ1 × . . . × Θn with θi ∈ Θi, i = 1, . . . , n. The learning algorithm estimates
a model M(θ) ∈ M that minimizes a loss function L, given a hyperparameter
configuration θ = ⟨θ1, ..., θn⟩ on the training data D(train):

Aθ(D(train)) := argmin
M(θ)∈M

L(M(θ),D(train)) (4.1)

The goal of hyperparameter optimization is then to find the optimal configuration
θ∗ using a validation set:

θ∗ := argmin
θ∈Θ

L(Aθ(D(train)),D(valid)) (4.2)

Grid Search Grid Search is a widely used hyperparameter optimization algo-
rithm. It searches through a manually specified subset ΘU ⊂ Θ of the hyperpa-
rameter space. In a grid search, the set of trials is formed by assembling every
possible configuration θ of values in ΘU , so the number of trials in a Grid Search
is |ΘU | elements (Bergstra and Bengio 2012). For each hyperparameter config-
uration θ ∈ ΘU a model M(θ) is estimated and tested against the validation
set D(valid). This makes Grid Search suffering from the curse of dimensionality

84

(Bellman 2015) because the number of joint values in ΘU grows exponentially
with the number of hyperparameters. Since Grid Search works on a grid, con-
tinuous parameters must be discretized. In our experiments we used Grid Search
in cases in which |Θ| < 200 and where the parameter space did not contain con-
tinuous parameters – under these conditions, Grid Search will find the optimal
configuration in foreseeable time.

Random Search Random Search is an optimization algorithm that searches
a hyperparameter space Θ by selecting random hyperparameter configurations.
Unlike Grid Search, no subset ΘU ⊂ Θ of the hyperparameter space must be
defined. Instead, the parameters of a setting θ ∈ Θ are randomly selected. The
advantage of this approach is that not only discrete parameters can be selected,
but also continuous and mixed parameter spaces. Bergstra and Bengio (2012)
found, that randomly chosen trials are more efficient for hyperparameter opti-
mization then trials on a grid. They show empirically and theoretically that
random searches are more effective for parameter optimization than grid searches
when considering the same number of trials.

Bayesian Optimization Bayesian Optimization is a model-based optimization
process for black box functions. The Bayesian optimization searches for the maxi-
mum of an unknown target function. It employs the Bayesian technique of setting
a prior over the objective function and combining it with evidence to get a poste-
rior function. Bayesian Optimization uses a Gaussian process (Rasmussen 2003)
to model the surrogate. It optimizes the expected probability that new trials will
improve compared to the best current observation. The Gaussian process is a
distribution over functions, which involves adapting this distribution to the given
data, so that functions are generated that come close to the observed data. This
distribution is further optimized by iteratively selecting the next point, which
must take into account both exploration (sampling from areas of high uncer-
tainty) and exploitation (sampling areas likely to offer improvement over the
current best observation) (Brochu, Cora, and Freitas 2010). Applied to hyper-
parameter optimization, Bayesian optimization builds a probabilistic model that

85

assigns the hyperparameter values to the hyperparameter metric evaluated on
the validation set. It has been shown that Bayesian optimization achieves better
results in fewer trials than Grid Search and Random Search (Snoek, Larochelle,
and Adams 2012).

Tree-structured Parzen Estimator The Tree-structured Parzen Estimator (Bergstra,
Bardenet, et al. 2011) is a sequential model-based optimization (SMBO) (Hutter,
Hoos, and Leyton-Brown 2011) approach. SMBO methods sequentially construct
models to approximate the performance of hyperparameters based on “histor-
ical” (that is, preceding) measurements. For each iteration, TPE collects new
observation, where at the end the algorithm decides which set of parameters it
should try next. The main idea is similar to Bayesian Optimization (see Section
4.6.4). However, it fixes disadvantages of the Gaussian Process used by Bayesian
Optimization. The TPE approach models P (x|y) and P (y) where x represents
hyperparameters and y the associated hyperparameter metric. P (x|y) is mod-
eled by transforming the generative process of hyperparameters, replacing the
distributions of the configuration prior with non-parametric densities. For the
first few iterations TPE performs a Random Search. The next step is to divide
the collected observations into two groups. The first group contains observations
that yielded the best results after the evaluation and the second group contains
the remaining observations. The goal is to find a set of parameters that are more
likely to be in the first group and less likely to be in the second group. In con-
trast to Bayesian Optimization, TPE no longer relies on the best observation.
Instead, a distribution over the best observations is used. The next step of the
TPE is to model the likelihood probabilities for each of the two groups. This is
the next big difference to the Gaussian Process. Gaussian Process models poste-
rior probability instead of likelihood probability. Candidates are sampled using
the likelihood probability from the group containing best observations. From the
sampled candidates TPE tries to find a candidate that is more likely in the first
group l(x) and less likely in the second group g(x); this is done by means of the
Expected Improvement (EI):

EI(x) =
l(x)

g(x)
(4.3)

86

From the sampled candidates, the parameter setting that has the highest Ex-
pected Improvement is selected for the next iteration. The optimization process
ends after a predefined number of iterations.

Sequence labeling systems

In this section we describe the sequence labeling systems used in our experiments.
These are state-of-the-art systems based on different architectures, namely CRF
and Neural Networks. We show that hyperoptimization brings a considerable
increase in performance. Finally, we present two variants for ensemble classifiers,
namely Majority Voter and the CRFVoter.

Stanford Named Entity Recognizer Stanford Named Entity Recognizer22 (Stan-
fordNER) is a Java implementation of CRF based Named Entity Recognizer
(Finkel, Grenager, and Manning 2005). Finkel, Dingare, et al. (2005) has par-
ticipated in BioCreative to explore StanfordNER’s limitations in the biologi-
cal domain. They participated in BioCreative I Task 1A(Yeh et al. 2005) and
achieved the best performance in the open task and the second best performance
in the closed task. For StanfordNER our experiments are based on their results.
The StanfordNER has since been further developed. New parameters have been
added, which we have taken into account in our experiments.

22http://nlp.stanford.edu/software/CRF-NER.shtml

87

Table 4.9.: Parameter Space of Stanford Named Entity Recognizer used in our
experiments. The column Possible Values describe the range of the
parameters. The parameter setting with the best value is highlighted
in bold.

Parameter Possible Values

useClassFeature [true,false]
useWord [true,false]
useNGrams [true,false]
noMidNGrams [true,false]
normalizeTerms [true,false]
usePosition [true,false]
useNeighborNGrams [true,false]
useMoreNeighborNGrams [true,false]
usePrev [true,false]
useNext [true,false]
useTags [true,false]
useWordPairs [true,false]
useDisjunctive [true,false]
useSequences [true,false]
usePrevSequences [true,false]
useNextSequences [true,false]
useLongSequences [true,false]
useTaggySequences [true,false]
useSymWordPairs [true,false]
useSymTags [true,false]
useTypeSeqs [true,false]
useTypeSeqs2 [true,false]
useTypeySequences [true,false]
wordShape chris2useLC
maxLeft [1,2,3,4,5,6]
maxRight [1,2,3,4,5,6]
maxNGramLeng [1,2,3,4,5,6]
sloppyGazette [true,false]
useGazFeatures [true,false]
useWordTag [true,false]
useWideDisjunctive [true,false]
useLemmas [true,false]
usePrevNextLemmas [true,false]

88

Table 4.9 shows the corresponding hyperparameter space used in our experiments.
Since the parameter space is so large that one cannot search it with a grid search,
a hyperparameter optimization algorithm must be used. For our experiments we
optimized the hyperparameters by means of TPE (see Section 4.6.4). During
the optimization process we ran 200 trials to approximate the optimal parameter
setting. The results of the trials are plotted in Figure 4.13 in the scatter plot.
The scatter plot shows that the F-score converges towards 73%.

0 50 100 150 200
0.5

0.6

0.7

Trial

F-
Sc

or
e

1
0.5

0.6

0.7

Stanford

F-
Sc

or
e

Figure 4.13.: The figure shows the results of optimizing StanfordNER by means
of TPE. The scatter plot on the left side shows the results of each
trial. The boxplot shows in which area the results are located and
how they are distributed over this area. The difference between the
best and the worst performing setting is 23%.

On the right side of Table 4.13 one sees the graphical representation of the F-
Score distribution using a boxplot. The significance of a parameter study becomes
immediately clear in this example. Depending on the parameter setting, the
results vary by 23%. The best performing set of features for GPRO, marked
with bold font, leads to an F-score of 0,73. The worst setting results in an F-
score of 0,50.

MarMoT MarMoT23 is a generic CRF framework (T. Müller, Schmid, and
Schütze 2013). It implements a higher order CRF with approximations such that
23http://cistern.cis.lmu.de/marmot/

89

it can deal with large output spaces. Additionally it can be trained to fire on the
predictions of lexical resources (so-called gazette files) and on word embeddings
(T. Müller, Schmid, and Schütze 2013; Mikolov, Sutskever, et al. 2013; Levy and
Goldberg 2014; Ling et al. 2015; Komninos and Manandhar 2016). Table 4.10

Table 4.10.: Parameter Space of MarMoT Tagger used in our experiments. The
column Possible Values describe the range of the parameters. The
parameter setting with the best value is highlighted in bold.

Parameter Possible Values
Num iterations [10,20]
Penalty [0,1,2]
Beam size [1,2,5]
Quadratic penalty [0,1,2]
Order [1,2,3,4]
Prob threshold [0.01,0.001]
Effective order [1,2,3]
Num chunks [2,5,10]

shows the hyperparameter space used in our experiments for MarMoT. We ran
200 trials.

0 50 100 150 200
0.6

0.65

0.7

Iteration

F-
Sc

or
e

1
0.6

0.65

0.7

MarMot

F-
Sc

or
e

Figure 4.14.: The scatter plot on the left side of the figure shows the results of
the optimization process of MarMoT. The boxplot shows in which
area the results are located and how they are distributed over this
area. Between the best and the worst setting are 11%.

90

The results of the iterations are shown in Figure 4.14 using a scatterplot. One can
see that the F-score converges towards 0,72. The right side of Figure 4.14 shows
the boxplot of the corresponding F-Score distribution. The best performing set of
features for GPRO produces an F-score of 0,72. The worst set results in an F-score
of 0,59. Once more, this difference hints at the importance of hyperparameter
optimization.

CRF++ CRF++24 is a customizable open source implementation of CRF (Kudo
2005). In our experiments with CRF++ we used unigram and bigram features
including the current, the previous and the next word.

Table 4.11.: Parameter Space of CRF++ used in our experiments. The column
Possible Values describe the range of the parameters. The parameter
setting with the best value is highlighted in bold.

Parameter Possible Values

c [0.6, 1, 1.6, 3, 5, 7, 15, 50, 100, 1000]
a [CRF-L1, CRF-L2]

Table 4.11 shows the hyperparameter space used in our experiments for CRF++.
The combination of parameters results in 20 model files, which is small enough
to search the entire parameter space with Grid Search. The best performing set
of parameters for GPRO generates an F-score of 0,69. The worst one results in
an F-score of 0,04.

MITIE MITIE is an open source information extraction tool. MITIE can be
trained using techniques like distributional word embeddings (Mikolov, Sutskever,
et al. 2013; Levy and Goldberg 2014; Ling et al. 2015; Komninos and Manandhar
2016) and Structural Support Vector Machines (Geyer et al. 2016). Due to the
lack of documentation, we did not optimize MITIE. The default configuration for
named entity recognition produces an F-score of 0,65 for GPRO.
24http://taku910.github.io/crfpp/

91

Glample NER Tagger Glample NER Tagger is a neural-network-based named
entity recognizer. It is based on Bidirectional LSTMs and CRFs (Lample et al.
2016). Due to the long-lasting training time, only the default parameter settings
were considered. This resulted in an F-score of 0,74 for GPRO.

Majority Vote By means of majority voting, we combined the best performing
outputs of each of the NER systems considered so far. We selected the label
that was most frequently output by the different NER systems. Majority voting
reaches an F-score of 0,68 for GPRO, which is below the best performing sys-
tem considered so far. Facing these results we can state that a simple majority
vote brings no gain in precision and recall. Therefore, we need an alternative
considered next.

CRFVoter CRFVoter is a two-stage application of CRF using a conglomerate
of sequence labelers. In the first step, each NER cm,m = 1..l, is optimized
independently on the training set, where the ith sequence ti of length n of the set
of training examples is of the form

ti = ⟨(x⃗1, y1), . . . , (x⃗n, yn)⟩ (4.4)

x⃗j, j = 1..n, is a feature vector corresponding to an element in the input sequence
at position j – in our case this corresponds to a token. yj is the corresponding
discrete label of the element at position j – in our case this is the IOB2 formatted
GPRO annotation label. The goal of a sequence labeling classifier c is to approx-
imate the function f(j) = yj where yj is the true label to be assigned to the
input stream at position j. Approximations of f are computed by hyperoptimiz-
ing each classifier c as described above. After the training phase, a development
set, which is independent of the training and the test set, is tagged by means of
each NER cm. The output label assigned by cm is then taken by CRFVoter as
an individual feature input. In the second step, CRFVoter combines each NER
cm into an ensemble classifier c = CRFVoter({c1, c2, . . . , cl}). The sequence of

92

training examples used to train CRFVoter is of the form

ti = ⟨(fc1(x⃗1), fc2(x⃗1), . . . , fcl(x⃗1)), y1), . . . , ((fc1(x⃗n), fc2(x⃗n), . . . , fcl(xn)), yn⟩
(4.5)

where fcm(x⃗j),m = 1..l, j = 1..n, is the output label of classifier cm computed for
the input vector x⃗j at the jth position of the input sequence. That is, in stage
one of CRFVoter, we calculate for each NER cm and each token at position j of
the input stream a corresponding output label fcm(x⃗j). In the second stage, these
output labels are taken as features to feed our CRF operating on the same position
j. In this way, we train CRFVoter based on a sequence of the latter feature sets,
which is exemplified in Figure 4.15. Let x be the sequence of observed words in
ti and y be the sequence of states that correspond to the labels assigned in ti.
Linear-chain CRFs define the conditional probability of a state sequence to be
(Lafferty, McCallum, and Pereira 2001):

P (y|x) = 1

Zx

exp

(
n∑

j=1

l∑

m=1

λmfm(yj−1, yj, x, j)

)
(4.6)

Zx is the normalization factor that makes the probability of all state sequences
sum to one; fm(yj−1, yj, x, j) is a feature function, and λm is a learned weight
associated with feature fm. Feature functions measure the aspect of a state
transition, yj−1, yj → yt, and the entire observation sequence, x, centered at the
current time step, j. Consider, for example, Figure 4.15. One feature function
might have value 1 in cases where yj−1 denotes the state B-FULLNAME, yj
the state I-FULLNAME, and X4 being the feature vector at position j. Large
positive values for λm indicate a preference for such an event, whereas large
negative values make the event unlikely. During tagging, CRFVoter takes again
the output of each NER as input features and labels the sequence by means of
the 2nd level CRF.

Our experiments show that CRFVoter brings 2% gain in F1-measure compared
to the best performing reference systems being examined in our study. When
operating on the blinded test set for GPRO provided by the BioCreative team,
CRFVoter reaches an F-score of 0,75 for the evaluation of type 1 and of type

93

Inhibitors of D - amino acid oxidase ...

O O B I I I I

O O B I I I O

O O O O B I I

O O B I I O O

O O B I I I O

X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4 Y5 Y6 Y7

O O B-FN I-FN I-FN I-FN I-FN ...

Figure 4.15.: Architecture of CRFVoter exemplified by means of a single sentence.

2.

4.6.5. Results

This section presents the results of our experiments for the GPRO task. For
the evaluation of the GPRO Task the BioCreative Team has specified standard
evaluation statistics, namely P, R and F (M Pérez-Pérez et al. 2017). Three main
result types were examined. False Negatives (FN), that is, results corresponding
to incorrect negative predictions. FN are cases that were part of the gold standard
but overlooked by our systems. False Positives (FP) are results of false positive
predictions, that is, cases predicted by our system but not so marked in the gold
standard. The third type of result is True Positives (TP), i.e. results consisting
of annotations predicted by our system and belonging to the gold standard as
such. Recall is the fraction of correctly labeled positive results and all positive
cases:

R =
TP

TP + FN
(4.7)

94

Precision is the fraction of all correctly labeled positive results and all labeled
results:

P =
TP

TP + FP
(4.8)

F1-score is the harmonic mean of precision and recall:

F1 = 2 ∗ P ∗R
P +R

(4.9)

In Section 4.6.4, the results of the hyperparameter optimization are visualized.
For each sequence labeling tool, the hyperparameters were optimized using TPE
or, if possible, using Grid Search. The results of the trials are plotted in scatter-
plots and the distribution of the results are visualized in the respective boxplots.
The boxplots show the big spread of the outcomes of the trials during the respec-
tive optimization processes. For example, in the optimization process of CRF++,
the difference between the worst to the best performer is 60%. The results show
the need for ML algorithms to perform hyperparameter optimization.

Table 4.12.: Comparison of annotators trained an tested on the filtered corpus
described in Section 4.6.3

.

System P R F

Stanford NER 0,77 0,69 0,73
MarMoT 0,76 0,69 0,72
CRF++ 0,75 0,64 0,69
MITIE 0,74 0,58 0,65
Glample 0,78 0,72 0,74

Majority Vote 0,64 0,72 0,68
CRFVoter 0,75 0,77 0,76

Table 4.12 shows the comparison of annotators trained for the GPRO task. The
results listed are those obtained after the hyperparameter optimization described
in Section 4.6.4, which were trained, optimized and tested on the corpus described
in Section 4.6.3. Each sequence labeling system classifies a different subset cor-
rectly. Table 4.13 shows the pairwise differences between the sequence labeling

95

systems.

Table 4.13.: Differences of labeled output between each pair of NER system.

Stanford MarMoT CRF++ MITIE Glample

Stanford 0 2,29% 2,12% 2,44% 2,50%

MarMoT 0 2,56% 2,61% 2,43%

CRF++ 0 2,91% 2,47%

MITIE 0 2,51%

Glample 0

The combination of the sequence labeling systems to a Majority Voter did not
bring any performance increase and is even 5% below the best performer among
the sequence labeling systems. In contrast, the CRFVoter increases the perfor-
mance and is the best performer in our experiments. The performance values
for the official BioCreative test set were created by training each model on the
entire filtered corpus (see Section 4.6.3) and then evaluated on the official test
set provided by BioCreative. For the blinded test set provided by the BioCre-
ative organizers for GPRO, CRFVoter achieves an F-score of 75%, Recall of 71%
and Precision of 80%. For the GPRO type 1 evaluation, CRFVoter achieves an
F-Score of 73%, Recall of 70% and obtained the best precision (77%) achieved
among all task participants.

Table 4.12 indicates that Glample and CRFVoter might be statistically tied. To
investigate the significance of the improvements we used McNemars chi-square
test (McNemar 1947) for labeling disagreements between Glample and CRFVoter
with α = 0.05. For both methods, we treated the predicted IOB-Tags for the test
set that agreed with the gold annotations as positive, otherwise negative. For the
McNemar test we only count the spans corresponding to biomedical named enti-
ties. We found that the comparison between Glample and CRFVoter is significant
(ρ < 0.05) in terms of the test of (McNemar 1947).

96

4.6.6. Conclusion

In this work, we compared a set of sequence labeling systems. We trained and
optimized every sequence labeling system for the GPRO task by means of sev-
eral hyperparameter optimization algorithms and especially using the TPE. We
showed that optimizing hyperparameter can be crucial. One sequence label-
ing system in our experiments gained an improvement of more then 60%. We
showed that a naive majority vote does not bring any improvement. For this rea-
son, we introduced and evaluated the so-called CRFVoter, a two-stage CRF tool
for combining underlying sequence modeling tools (as given by the NER of our
comparative study). CRFVoter gained 2% improvement compared to the best
performing reference systems being examined in our study. Thus, CRFVoter may
be further-developed by feeding it with the output of additional sequence labeling
systems. A central theoretical outlook at this stage is to think about recursively
organizing voters of the sort of CRFVoter beyond the first level by allowing dif-
ferent classifiers to contribute at different of these levels. In the past, such a
procedure of recursive learning had been implemented by example of so-called
semantic spaces (Rieger 1995) – see Gritzmann (2007) for such an approach. The
theoretical background is to let the system systematically abstract the results of
elementary learners: As with convolutional neuronal networks, this can help to
find more and more abstract, but also increasingly characteristic representations
of the input data. In any event, our results and those of the other participants
of BioCreative V.5 Task show that the task of recognition of genes and protein-
related objects has not yet been sufficiently solved. For better recognition, a
larger corpus should be generated so that the nowadays popular Deep Learning
algorithms can work on this data. A kind of human-in-the-loop architecture for
automatic annotation and intellectual rework would also be helpful at this point
in order to successively increase and improve the amount of data.

97

4.7. German Verb Sense Disambiguation

4.7.1. Introduction

Many words in a language are ambiguous and can therefore be interpreted dif-
ferently. These interpretations are essentially dependent on the context in which
they occur. Consider the following sentences:

• Das Gerät läuft einwandfrei. (The device is operating correctly.)

• Der Schaffner läuft zum Bahnhof. (The conductor walks to the station.)

The word läuft in the two sentences denotes different meanings: ”it works” and
”to walk”, respectively. While humans usually do not even think about the am-
biguities of language, machines have to process unstructured text information
and transform it into structured data to determine the underlying meaning. This
computational identification of the meaning of a word is called Word Sense Dis-
ambiguation (WSD).

WSD is essential for many Natural Language Processing (NLP) applications.
Without disambiguation, a word can only be considered as a sequence of letters
irrespective of the meaning behind it. It has been shown that WSD can be helpful,
if not essential, in various NLP tasks that require abstract semantic information.
These include, for example, machine translation (Vickrey et al. 2005; Sudarikov
et al. 2016; Neale et al. 2016), information retrieval (Zhong and H. T. Ng 2012;
Chifu et al. 2015; H. T. Ng 2011) and question answering (Hung et al. 2005).

In addition, the disambiguation of verbs plays a special role. This is because verbs
name events or states with participants and thus make them the organizational
core of the sentence, so their meaning is the key to sentence meaning (Levin
1993).

Much research has been done on WSD, but mainly in English, including lexi-
cal resources (G. A. Miller 1995; Schuler 2006; Baker, Fillmore, and Lowe 1998)
and sense annotated corpora (Edmonds and Cotton 2001; Snyder and M. Palmer
2004; Pradhan et al. 2007; Navigli, Jurgens, and Vannella 2013). Although the

99

importance of WSD is indisputable, there is little research for German, espe-
cially for verbs. Henrich (2015) is the most comprehensive on the subject of Verb
Sense Disambiguation (VSD). Various corpora were evaluated in the work, in-
cluding manually annotated and automatically created ones. However, the focus
was on all-word disambiguation. As a result, no high coverage for verbs was
achieved.

The present work aims to fill this gap. We introduce a corpus which has a
high coverage of annotated German verbs in terms of frequent verbs. Since the
annotation of data is extremely time-consuming and therefore costly, various
methods have been developed to semi-automatically generate quality data using
translations, language models and Skinner’s Law. The corpus contains hand
annotated data for 985 ambiguous verb lemmas, which covers 80% of German verb
tokens measured by verb occurrences in COW (Schäfer and Bildhauer 2012). We
present neural network based tools for WSD and how they were adapted for VSD.
In order to achieve comparable results, we reproduce Henrich (2015) experiments
and compare our tools with theirs. In direct comparison to Henrich (2015), our
best performing tool offers a performance increase of 6% and is therefore state-
of-the-art.

The article is organized as follows: Section 4.7.2 describes our resources, materials
and methodical apparatus. This includes the data and corpora used and created
in our experiments. Section 4.7.3 presents state-of-the-art supervised tools for
WSD and explain how they were adapted for the VSD task. Finally, we present
our results, conclude and discuss future work in Section 4.7.4.

4.7.2. Materials and Methods

This section describes the manual sense annotation of selected corpora. The term
annotation has different meanings within the digital humanities (Eggert, Lippert,
and Etling 2019). In our project, the term is used for the process of marking
segments of a text, verbs to be precise, as belonging to a category resulting in
training data that can be used for machine learning. We also assume that such

100

categories are pre-defined, adapted exploratively during the annotation process.
Their recognition is based on the content of the text and on structure. This
also means that the recognition of these categories is not trivial and requires
text comprehension and some text interpretation. For the VSD Task this means
that a list of possible meanings must be provided for each verb lemma to be
disambiguated with as much information as possible about the meanings. Usually,
these sense meanings are enumerated in so-called sense inventories. Several such
sense inventories exist for German. Creating our own from scratch was out of
the scope of this work, making the choice of the sense inventories used especially
important.

Hence, the first step is to determine which sensory inventory is most appropriate
for VSD in German. For this purpose, several German sense inventories were
compared. The next step is to find out which corpus is most suitable. Different
corpora were also compared. Since the annotation by human annotators is very
resource intensive, different methods are introduced to minimize the annotation
effort and to keep the quality of the data high at the same time.

Sense inventory

A sense of a word is a generally accepted meaning of a word (Kilgarriff 1997). A
sense inventory divides these meanings of a word into its senses. However, word
senses cannot simply be discretized, i.e. they are reduced to a finite discrete set
of entries each encoding a distinct meaning. The main reason for this difficulty is
that the language is affected by changes and interpretations. It is arguable where
one sense ends and the other begins. Because of such uncertainties, different
dictionaries give different detailed definitions of meaning. Therefore, the required
granularity of the dictionary depends on the application. (Navigli 2009).

All traditional paper-based and machine-readable dictionaries are enumerated in
a sense inventory. A description of all dictionaries and sense inventories used for
German is out of the scope of this work. Here we give a brief overview of the
most frequently used resources. Among them are the thesauri Duden (Duden,

101

Berger, and Scholze 1980) and Wiktionary (Wiktionary n.d.) and the ontology
GermaNet (Hamp and Feldweg 1997).

Duden is a spelling dictionary of the German language first published in 1 880.
It is a classic paper-based dictionary. Lemmata are subdivided into senses. Du-
den senses are enumerated and further differentiated by an enumeration of finer
grained word senses. The senses are combined with examples from German text
corpora or with manually created examples. Verb entries also often contain lists
of synonyms, with each list roughly corresponding to one sense of the verb. Un-
fortunately, the dictionary does not contain any relations on sense level, but only
on the lemma level.

Wiktionary is a collaborative web-based dictionary under maintenance of wiki-
mediafoundation. Word senses are enumerated and distinguished by descriptions
and examples. For each sense, Wiktionary gives relationships such as synonyms,
antonoms, hypernyms and hyponyms. Similar to Duden, the relations are not
linked at sense level, but only at lemma level.

GermaNet is an ontology similar to the prominent English WordNet (G. A.
Miller 1995). Word senses are grouped together into synsets which are connected
by semantic relations. The subnet containing only verbs has a tree-like structure
with hyponyms/hypernyms representing the child/parent relations.

The choice of an existing sense inventory is indispensable, both to keep the scope
of the task manageable and to allow the annotated corpus to be used with ex-
isting tools or as an extension to existing corpora. The WordNet-like structure
of GermaNet offers many advantages for machine processing, since relationships
such as hyponymy, hyperonymy, antonymy and synonymy are represented. The
thesauri also offer some of these relations, such as synonymy, but generally not
hyperonymy or hyponymy. However, GermaNet is the only one that encodes
these relations at the sense level. GermaNet is actively maintained, whereby sev-
eral corpora with GermaNet annotations have already been annotated and are

102

Table 4.14.: The table shows statistics about the number of verb lemmas, synsets,
senses and the COW coverage of Duden, Wiktionary and GermaNet.
Note that Duden and Wiktionary do not code sensory-level relation-
ships. Therefore, the senses are not combined into synsets, leaving
the columns empty for the # Verb Synsets for Duden and Wik-
tionary.

GermaNet Duden Wiktionary

Verb lemmas 10 764 19 615 14 649
Verb Synsets 14 178 ∅ ∅
Senses 18 336 41 441 29 894
COW Coverage 99,1% 99,4% 98,5%

already used in various tools (Henrich and E. W. Hinrichs 2013; Henrich, E. W.
Hinrichs, and Vodolazova 2012; Henrich, E. W. Hinrichs, and Vodolazova 2011).
New data with the same schema can be integrated into these existing tools.

Table 4.14 shows the number of lemmas and senses for the introduced sense
inventories. It can be seen that the thesauri contain more lemmas. However,
these verbs are only rarely used. This becomes apparent, since the 9500 verbs
contained in the Duden, but not in GermaNet, only have a COW coverage of 0,32%.
The 6165 verbs contained in Wiktionary but not in GermaNet only have a COW
coverage of 0,23%.

The machine-readable form of GermaNet offers many advantages and has a suf-
ficiently high COW coverage. Consequently GermaNet is used as sense inven-
tory.

TTVCorp

One aim of this work is to create a reference corpus, from now on called TextTech-
nologyLab Verb Corpus (TTVCorp), in which a large number of verb occurrences
are annotated. The aim is to annotate a relevant number of verb lemmas. At
the same time, a sufficient number of example sentences per lemma should be
annotated so that machine learning tools can work with them.

103

Since Henrich (2015) is similarly motivated, we base our work on it. As described
in Section 4.7.2, GermaNet is used as sense inventory. The TüBa-D/Z Treebank is
used as the underlying text resource for TTVCorp. TüBa-D/Z is a German news-
paper corpus, which is processed semi-automatically with high-quality annota-
tions on different linguistic levels (Telljohann et al. 2012). In addition, sentences
from the SALSA 2.0 Corpus (Burchardt et al. 2006) are added to TTVCorp, which
are also provided with semantic annotations in Berkeley FrameNet format. The
inclusion of SALSA has the advantage that predicate specific frames are provided.
This makes it possible for future work to determine a correlation between used
frames and verb senses.

The sense annotation in TTVCorp geared towards a high verb token coverage,
rather then towards a high verb lemma coverage. This means that verbs were
processed according to their rank-frequency distribution. The rank-frequency
distribution was determined on the basis of the largest freely available German
corpus, namely COW (Schäfer and Bildhauer 2012; Schäfer 2015). COW is an
automatically processed web crawl corpus containing 807 782 354 sentences. Due
to automatic processing, the COW corpus contains some lemmatization and pos-
tagging errors. This explains the unusually high number of verb lemmas. To fix
these errors, we applied the following heuristics:

• The verb lemma must be infinitive present tense, which means it has to end
with ”-n”.

• The verb lemma must have at least 2 character

• The verb lemma must be lowercase

With these heuristics, 88% of the verb lemmata were removed, while only 6% of
the verb tokens were removed (see Table 4.15).

On these purged data the ranking frequency distribution of the remaining verbs
was determined. Figure 4.16 shows a cumulative rank-frequency distribution of
verbs in COW. Zipf’s law (Newman 2005) applies here, which means that a relative
small amount of verb lemmas covers a large amount of verb tokens. The 945 most
common verb lemmas (modal and auxiliary verbs were excluded) cover 80% of

104

10
0

10
1

10
2

10
3

10
4

10
5

50
80100

Rank position of verbs

C
um
ul
at
iv
e
fre
qu
en
cy

Figure 4.16.: The cumulative distribution of the token frequencies of the verbs in
the COW corpus. The distribution reflects Zipf’s law. The 945 most
common verb lemmas cover 80% of the verb tokens in COW.

the verb tokens. Due to restrictions on how much text can be annotated manually,
we apply the Pareto principle (Newman 2005). Therefore we create an annotated
corpus consisting of verb lemmas covering 80% of the verb tokens in COW, that is
945 verb lemmas.

Table 4.15.: COW Statistics

Plain Filtered

Verb lemmas 368 677 41 316
Verb tokens 939 732 595 880 670 918
% of Hapaxe 50% 35%

Verbs have been selected in descending order of frequency according to the fol-
lowing criteria:

1. The selected lemmas have at least two senses in GermaNet.

2. The lemma is not already annotated in TüBa-D/Z.

105

3. The verb is not a modal verb and not an auxiliary verb.

Table 4.16.: Corpus statistics

TüBa-D/Z WebCAGe deWaC TTVCorp

verb lemmas 79 959 15 945
verb tokens 9 107 3 186 608 43 030
ave. frequency 115 3 41 46
ave. polysemy 2,8 3,7 7,9 3,54
COW coverage 6,2% 66,4% 6,4% 76,4%

Table 4.16 shows statistics on corpora that are already annotated with GermaNet
senses, namely TüBa-D/Z (Telljohann et al. 2012), WebCAGe (Henrich, E. W.
Hinrichs, and Vodolazova 2012) and deWaC (Raileanu et al. 2002). The table
shows that none of the corpora offers a sufficiently high COW coverage, while at the
same time a sufficient number of example sentences per verb lemma. To close this
gap, TextTechnologyLab Verb Corpus (TTVCorp) was developed. TTVCorp of-
fers a high COW coverage and has a sufficient number of sentences per verb lemma.
In the following the annotation process of TTVCorp is presented and the quality
of the corpus is evaluated. Since only a limited amount of annotated data can
be generated, semi-automatic corpus expansion methods have been developed,
which are presented below.

Annotation Process The annotation was performed with custom software (see
Figure 4.19). Similar to (Kilgarriff 1998; C. Fellbaum et al. 2001; Saito et al.
2003; Passonneau et al. 2012; Henrich 2015), sentences were presented lemma-by-
lemma. The sentences were preprocessed by TextImager to automatically capture
additional information such as lemma, POS and dependency structures so that
verbs with their corresponding senses from Germanet can be presented to the
annotator. For each sense the hyponyms, hyperonyms, paraphrases and example
sentences were listed, which was necessary to distinguish senses better from each
other. Then sentences with the target verb from TTVCorp were presented to the
annotator. For each target verb, one sense should be assigned where possible, or
multiple senses can be assigned. Target verbs for which there is no appropriate

106

sense in the sense inventory can be flagged accordingly. If multiple senses or no
suitable sense are selected for a verb occurrence, this is an indication that the
sense definition for this verb is problematic. In order to be able to evaluate the
quality of the annotations, sentences were independently annotated by several
annotators. A total of 19 annotators, including students, student assistants,
doctoral students and postdocs from the field of text technology contributed to
the construction of the annotated corpus.

One of the biggest challenges in natural language processing (NLP) is the shortage
of training data. Since the annotation of data is extremely time-consuming and
therefore costly, various methods have been developed to semi-automatically gen-
erate quality data using translations, language models and Skinner’s Law.

Translation TTVCorp was enriched with machine-translated data. For this
purpose, various semantically annotated English corpora (G. A. Miller 1995;
Schuler 2006; Baker, Fillmore, and Lowe 1998) were translated into German. The
English corpora use WordNet (Leacock and Chodorow 1998) as sense inventory.
EuroWordNet (Vossen 1998) was used to map the WordNet Ids to GermaNet.
EuroWordNet is a multilingual lexical database designed to connect WordNets
of different languages, which made it possible to map English WordNet tags to
GermaNet tags.

For translating the corpora from english to german fairseq (Ott et al. 2019) was
used. Table 4.17 shows an example translation and the corresponding mapping
of the target verb. Note that the translation is not forced to use the lemma of

Table 4.17.: Caption

English German

The air conditioner was no longer running. Die Klimaanlage lief nicht mehr.

WordNet: run%2:35:04:: GermaNet: 73 506

the converted GermaNet label. But the translated lemma should have a sense

107

Table 4.18.: On the left are the initial sentences, where M is the masked word.
On the right are expanded sentences, where the word in italics is
BERT’s prediction for the masked word in the original sentence.

Original Expanded

Der Schaffner läuft zum [Bahnhof]M . Der Schaffner läuft zum Bahnsteig.

Der Schaffner läuft zum [Bahnhof]M . 2. Der Schaffner läuft zum Flughafen.

Der Schaffner]M läuft zum Bahnhof. 3. Er läuft zum Bahnhof.

Das Gerät läuft [einwandfrei]M . 1. Das Gerät läuft automatisch.

Das Gerät läuft [einwandfrei]M 2. Das Gerät läuft noch.

closely synonymous to the converted label, if the translation is correct. This pro-
cedure added 31 585 sentences containing 64 178 labeled verbs to the TTVCorp.
The conversion from WordNet to GermaNet labels is not one-to-one. Instances
where multiple GermaNet labels were mapped to the same WordNet label are
tagged with all possible GermaNet labels. On average, each instance has 2,36
labels.

Language Model State-of-the-art language representation models are using
enormous amount of unannotated text from web-crawls for training general pur-
pose models. These pre-trained models can then be used for downstream tasks
such as question answering, sentiment analysis and text generation. For this work,
text generation is relevant. With the help of the state-of-the-art language model,
namely BERT (Devlin, M.-W. Chang, et al. 2018), the manually annotated data
was expanded. For this, the straightforward technique of masking out some of the
words in the annotated sentences was used and then condition each word bidi-
rectionally to predict the masked words. BERT’s bi-directional contextual model
creates a representation of each masked word based on the other words in the
sentence. Thus the masked words are replaced with semantically relevant words.
Table 4.18 shows an example of the expansion process.

108

Skinner’s law states that similar objects behave similarly. This behaviour
has also been observed in human language (Mehler 2005). Neighbouring repeated
words are used in the same way, ergo also have the same meaning. We have used
this law to semi-automatically accelerate the annotation process. Algorithm 1

for each target verb = V do
for each Wikipediaartikel = W containing V do
#annotatedVerbsV inW = 0;
trashhold = 3;
senseIds = {};
while #annotatedVerbsvinW < trashhold do
SvinW = Sent. of W containing V;
senseIds.add(annotate(SvinW));

end
if len(senseIds) = 1 then

for ∀ V in W do
annotate V with senseIds[0];

end
end

end
end
Algorithm 1: Algorithm for semi-automatic expansion of sense annotations us-
ing Skinner’s Law applied to a Wikipedia corpus.

shows the process. For this the German Wikipedia was processed on different
linguistic levels using the TextImager (Hemati, Uslu, and Mehler 2016). For each
of the selected target verbs, Wikipedia articles W containing this target verb V

were then determined. For each of the identified Wikipedia articlesW , three sen-
tences containing the target verb V were manually annotated. If all three target
verbs were annotated with the same sense, it is assumed that all occurrences of
the target verb in this article have the same sense. This sense is then automati-
cally projected onto all other occurrences of the target verb. In order to evaluate
the quality of the procedure, the senses of 10 verbs on 56 Wikipedia articles were
manually assigned. The pair-wise agreement of the verb senses per article results
in a score of 92%. In Section A.2 the verb sense distribution per article can be
found.

109

Results In this section the quality of the manually annotated data is evaluated.
Very often it is not possible in linguistics to provide a definition with necessary
and sufficient conditions for an annotation task. Even seemingly unambiguous
annotation tasks such as POS tagging are not always unambiguous. As an anno-
tator you make a decision for the annotation, but you can’t say how certain you
are about the annotation of this item. This is where the Inter-Annotator Agree-
ment (IAA) comes in. With the IAA two things can be determined, namely
reliability and validity of hand-coded data. The data is reliable if there is suf-
ficient evidence that the annotators can agree on the categories assigned to the
annotation units, insofar as this is determined by the purposes of the study (Krip-
pendorff 2018). If different annotators consistently produce similar results, then
it can be concluded that they have internalized a similar understanding of the
annotation guidelines and that they work consistently under this understanding.
(Krippendorff 2018; Artstein and Poesio 2008). Reliability is therefore a prereq-
uisite for proving the validity of the annotation scheme, i.e. to show that the
annotation scheme captures the ”truth” of the phenomenon under investigation.
That is, if the annotators are not consistent, some of them are either wrong or
the annotation scheme is not appropriate for the data.

In the following we evaluate TTVCorp and GermaNet for reliability and validity.
In the first step, we determine the IAA between each annotator and the TüBa-D/Z
gold standard corpus.

To determine the reliability in TTVCorp, 30% of the annotated data is anno-
tated by at least two annotators. A proportional stratification is used to obtain
a representative sample of data that needs to be annotated twice. This means
that per verb lemma 30% of the data is annotated by at least two annotators.
The senses of the verbs are not clearly defined, annotators must construct criteria
to distinguish the senses from the possible answers. This always requires a sub-
jective ingredient that can be asserted as individually random. In the best case
if the differentiation criterion proves itself it can then be applied consistently.
An individually specific distribution of the possible answers is recognizable if the
annotators either annotate a sufficient number of identical items or a representa-
tive sample from the same set of items. Such individual distributions should take

110

-1.0 -0.5 0.0 0.5 1.0

0

50

100

IAA

#
Ve
rb
s

(a) IAA per Verb

IAA

-1

-0.5

0

0.5

1

(b) Boxplot of IAA per verb. The median is at
59%

Figure 4.17.: Visualization of the IAA per verb before sense reduction.

into account Randolph’s Kappa (Randolph 2005). As Artstein and Poesio (2008)
mentions, WSD is one of the most difficult annotation tasks. Objective annota-
tion tasks, such as POS tagging, syntax annotation and dialog act tagging, are
called easy tasks. These tasks have a fixed number of classes that can be classified
using decision rules and linguistic tests. These can be summarized in detail in an
annotation guideline and provided with a sufficient number of examples per class
(Brants 2000; Artstein and Poesio 2008). On the other hand, subjective tasks
such as WSD and VSD are called hard tasks. The annotation decision is based
on the intuition of the annotator. In the case of word sense tagging, different
categories must be used for each word, making it impossible to write a single
annotation manual with examples for all categories. The only possibility is to
rely on a dictionary or sense inventory, which usually offers little information
per sense. This lack of information makes it difficult for untrained annotators to
make the fine-grained distinction between the senses, leading to uncertainty in
annotation and a low IAA (Veronis 2001; Artstein and Poesio 2008). As Artstein
and Poesio (2008) discusses, an IAA value of over 90% is good for objective tasks
and a value of over 70% is significant for subjective tasks.

111

Figure 4.17 shows the distribution of the IAA per verb. The table shows that
we have similar results to (M. Palmer, C. Fellbaum, et al. 2001) in terms of
percentage and IAA score, namely 50%. According to the scale of Artstein and
Poesio (2008), this value is not sufficient. Kilgarriff (1999) recommends that only
trained lexicographers should annotate in order to improve the IAA score. Since
we do not have access to trained lexicographers, we cannot use Kilgarriff (1999)’s
suggestion to improve the score. Instead, the proposal of M. Palmer, Dang, and C.
Fellbaum (2007) was used. The approach is to address the problem of the inability
of naive annotators to make fine-grained distinctions by introducing more coarse-
grained sense definitions. Hard to distinguish verb senses were merged for this
purpose to so-called super senses.

pre-process

Manual Annotation

Sense Inventory

Automatic
Examination
(Formula 4.1)

Formula 4.2?

Manual Examination

TTVCorp

No

Yes

Find Errors?
Update Sense

Inventory

Yes

No

Corpus

TextImager

Annotated Data

Figure 4.18.: Illustration of the annotation process for TTVCorp. The input cor-
pus is preprocessed by TextImager and induced with POS, Lemma,
Dependency information. Annotators are guided by a GUI in the
annotation process. The annotations are automatically evaluated
according to Formula 4.10 and Formula 4.10 in order to filter the
merge candidates, which are then checked manually and, if neces-
sary, the Sense Inventory is adjusted.

In order to identify which verb senses can be merged, we developed the procedure
in Figure 4.18. The input corpus is processed by TextImager to enrich the data
with additional information for the annotation process. The data is then manually
annotated with the specified Sense Inventory. Verbs with IAA lower then 50%
were analyzed, as this is a strong indicator that the respective verb senses are

112

difficult to distinguish. For this, coincidence matrices O were created according
to the definition of Krippendorff (2018) for all annotated verbs.

For a lemma l with N multiply annotated sentences and possible senses Vl, O
is a v-by-v, v = |Vl| matrix that notes all pairs of annotation values, where each
entry oij with i, j ∈ Vl in such a matrix is given by:

oij =
N∑

u=1

∑m
k ̸=k′ I(vku = i) · I(vk′u = j)

mu − 1
, (4.10)

where mu is the total number of annotators that provided an answer for sentence
u, vku is the answer provided by annotator k for sentence u and I(◦) = 1 if ◦ is
true, 0 otherwise. Senses were merged if they were respectively confused by the
annotators. The identification of senses that are candidates for merging can be
formally expressed as follows: For a given lemma l we compute the coincidence
matrix O as above. Two senses i and j are candidates for merging if

oij ≥
∑

j Oij

|Vl|+ 1
(4.11)

Note, that 1 is added to the number of senses to lower the threshold sufficiently to
capture cases with only two senses. Otherwise, the senses of lemmata with only
two senses would only be considered candidates for merging if the annotators
agreed to exactly half of the respective cases. Note that this condition is not
symmetric in i and j. Row i in O might indicate that i and j are candidates,
but row j might not. In this case i and j are still candidates. In practice this
often indicated hierarchical senses, such as laufen in the sense of movement on
foot in general, ”to move” vs. laufen in the sense of a fast, running movement,
”to run”.

Following M. Palmer, Dang, and C. Fellbaum (2007)’s approach, the calculated
candidates were reviewed by hand to merge the senses into super-senses. The
following error classes and their resolution were identified during the manual
merge process:

113

• Senses not distinguishable -> Merge Senses
• Duplicate/Circular Senses -> Merge Senses
• Senses/distinctions are missing -> Add missing sense
• Obsolete or dialectical meanings -> Mark as obsolete and remove sense
• Methaphor -> Mark as methaphor and remove from sense Inventory

The merge process is exemplified below using the example of schmecken (to taste).
The initial senses, which are derived from GermaNet, are shown in Figure 4.19.
The example sentence for the first sense is ”Die Torte schmeckt dem Gast. (The
cake tastes good to the guest)”. The first sentence of the second sense is ”Die
Schokoladentorte schmeckte ihm hervorragend. (The chocolate cake tasted great
to him).” The example sentence for the final sense is ”Man schmeckt das Curry in
der Soße. (One could taste the curry in the sauce).”. The distinction between the
first two senses is very subtle and not apparent at all from the example sentences.
Additionally, the top sense is a direct hyponym of the second sense. Tables 4.20

Figure 4.19.: Initial senses of ”schmecken” (to taste).

and 4.21 show the merging process. In this example, eight sentences were an-
notated by at least 2 annotators. The corresponding coincidence Matrix can be
seen on the left side of Table 4.20. Note that multiple annotation is also pos-
sible ({85814∩129775}). Multiple annotations have been replaced by phantom
annotators as shown in Table 4.19. The effect is that affected multiple anno-

114

tations are explicitly weighted twice, because annotators have explicitly stated
their indecision about these two senses.

Table 4.19.: Handling multiple annotations. Cases with three or more annota-
tions are handled analogously. This causes the non-discrimination
of these senses to be doubly weighted in the resulting Coincidence
Matrix.

Annotator A

85814, 129775
−→

Annotator A1 Annotator A2

85814 129775

The resulting coincidence matrix is shown on the right in Table 4.20. If the
diagonal contains relatively low values, this is an indication that senses were
annotated differently by annotators, thus not distinguishable, thus candidates
for merging the sensens.

Table 4.20.: Coincidence matrices O for lemma l = schmecken. On the left side,
multiple annotations for a sentence u are allowed. On the right side
these multiple annotations have been replaced by phantom annota-
tors. This causes that affected multiple annotations are explicitly
weighted twice.

85814 82490 129775 {85814
129775}

∑

85814 0 2 2 4 8

82490 2 4 0 4 10

129775 2 0 0 2 4

{85814
129775} 4 4 2 0 10

∑
8 10 4 10 32

−→

85814 82490 129775
∑

85814 4,667 4 9,333 18

82490 4 4 2 10

129775 9,333 2 2,667 14
∑

18 10 14 42

Table 4.20 shows that the sense ids 85 814 and 129 775 were often confused, since
o85814,129775 and o129775,85814 are relatively high in the coincidence matrix. This is
an indication that senses are difficult to distinguish from each other. Expressed
in Formula 4.11, it means the following: o85814,129775 = 9.333 ≥

∑
j O85814,j

3+1
= 4.5.

115

Table 4.21.: Final coincidence matrix after senses 85814 and 129775 were merged

S85814,129775 82490
∑

S85814,129775 26 6 32

82490 6 4 10
∑

32 10 42

-1.0 -0.5 0.0 0.5 1.0

0

100

200

IAA

#
Ve
rb
s

(a) IAA per Verb

IAA

-1

-0.5

0

0.5

1

(b) Boxplot of IAA per verb. The median is at
72%

Figure 4.20.: Visualization of the IAA per verb after sense reduction.

That makes 85 814 and 129 775 candidates for merging. When reviewing the
definitions of these senses, it also becomes apparent that precisely these senses
have circular dependencies and are therefore difficult to distinguish. Table 4.21
shows the final result after the merging. This procedure was performed on all
annotated verb lemmas to merge verb senses to coarse-grained super senses. The
complete list of merged senses to supersenses can be found in Section A.2.

GermaNet is very mature and offers many advantages over other sense inventories.
However, we have shown that some of the senses are too finely differentiated.
With our presented method we can identify exactly these too fine-grained sense
distinctions. After merging the senses into super senses, the IAA value is now
72% (see Figure 4.20), which according to Artstein and Poesio (2008) is sufficient

116

for semantic annotation tasks and can therefore be used for machine learning
tools. In the following section state-of-the-art WSD tools are presented and how
they have been adapted for VSD. In order to provide comparable results, the
performance will be evaluated against Henrich (2015). Finally, the best performer
will be trained and evaluated on TTVCorp. The outcome is a state-of-the-art
supervised VSD with the largest coverage for German verbs.

4.7.3. Verb Sense Disambiguation

Verb Sense Disambiguation (VSD) is a sub-task of Word Sense Disambiguation
(WSD). There are a variety of methods to solve the task of WSD. Following
the notations of Henrich (2015), Navigli (2009), and Pal and Saha (2015) the
methods can be grouped into knowledge-based approaches and machine-learning
approaches.

Knowledge-based approaches make use of properties of lexical resources, including
graph-based approaches (Agirre, Oier López de Lacalle, and Soroa 2018; Agirre,
Oier Lopez de Lacalle, and Soroa 2014; Moro, Raganato, and Navigli 2014; Lea-
cock and Chodorow 1998; Z. Wu and M. S. Palmer 1994; C. Fellbaum and G.
Miller 1998) and information-content-based approaches (Lesk 1986; Resnik 1995;
Jiang and Conrath 1997; Banerjee and Pedersen 2003; Chaplot and Salakhutdi-
nov 2018).

Supervised approaches make use of sense-annotated training data, to learn how
to predict the corresponding word senses for unseen data. The task is to build
a machine-learned system using the human-labeled training data that can assign
a dictionary sense from a predefined lexical resource (Henrich 2015; Papandrea,
Raganato, and Bovi 2017; Luo et al. 2018; Peters et al. 2018a; Melamud, Gold-
berger, and Dagan 2016; Uslu, Mehler, Baumartz, et al. 2018).

Much research has been done on WSD, but mainly in English, including lexical
resources (G. A. Miller 1995; Schuler 2006; Baker, Fillmore, and Lowe 1998) and
sense annotated corpora (Edmonds and Cotton 2001; Snyder and M. Palmer 2004;
Pradhan et al. 2007; Navigli, Jurgens, and Vannella 2013). WSD research for

117

other languages, like German, is hampered by the lack of sufficient resources, in
particular in the form of sense annotated corpus data. Henrich (2015) is one of the
first that has concentrated extensively with WSD for German. It concentrates on
WSD for German, uses GermaNet as a sense inventory and trains different super-
vised and knowledge-based systems on 3 different corpora. Knowledge-based sys-
tems have a greater coverage than supervised machine learning systems, whereas
supervised learning systems outperform knowledge-based approaches to WSD by
a big margin. The reason for greater coverage of knowledge-based systems is
that they do not require annotated training data. In contrast, the supervised
machine learning systems have achieved lower coverage because they have relied
on annotated training data and are therefore only applicable to a limited set of
lemmas.

This shortfall is closed by our work. Since the supervised WSD tools performed
much better, we will concentrate on them in the following. State-of-the-art super-
vised WSD tools based on neural networks will be evaluated. The best performer
from our study is then trained and evaluated on TTVCorp.

Supervised VSD

In this section, we compare different state-of-the-art supervised WSD systems
that have been adapted to VSD. In order to produce comparable results, Henrich
(2015)’s evaluation method was reproduced for the TüBa-D/Z Gold Standard
for Supervised WSD Corpus. In contrast to Henrich (2015), our studies focus
exclusively on verbs. Table 4.22 shows statistics of the corpus used.

Unlike Henrich (2015), we performed a 3-fold cross validation for our evaluation
to minimize the chance that the results are an artifact of the split. It was ensured
that training and test sets are representative samples of the data for each fold.
This is achieved by proportionally stratifying all available annotations. That is,
training and test portions for each fold are proportionally stratified, which means
that the overall proportionality of class occurrences in the dataset is preserved
(Henrich 2015; Botev and Ridder 2017; Witten, Frank, and Hall 2011).

118

Table 4.22.: TüBa-D/Z sense annotation subset for supervised WSD (Henrich
2015)

Verbs

Total # of annotated word lemmas 68
Total # of tagged word tokens 8 540
Frequency range (occurrences/lemma) 24–799
Average frequency (occurrences/lemma) 126
Polysemy range in GermaNet (senses in GermaNet/lemma) 2–14
Average polysemy in GermaNet (senses in GermaNet/lemma) 2,9
Polysemy range of occurring words (occurring senses/lemma) 2–9
Average polysemy of occurring words (occurring senses/lemma) 2,6

Henrich (2015) has used traditional supervised classifiers, such as decision trees,
probabilistic methods and SVMs. However, the current state-of-the-art for WSD
is based on neural networks like FastSense (Uslu, Mehler, Baumartz, et al. 2018),
Flair (Akbik, Blythe, and Vollgraf 2018) and Context2Vec (Melamud, Goldberger,
and Dagan 2016). We adapted these models for the VSD task and evaluated them
on the above mentioned corpus so that the results could be compared with those
of (Henrich 2015). Table 4.23 shows the results of the evaluation. Note, that we
outperformed Henrich (2015) and were able to set new state-of-the-art.

Table 4.23.: VSD results on TüBa-D/Z sense annotation subset for supervised
WSD.

Classifier F-Score

Context2Vec 76,04%
Best of (Henrich 2015) 80,74%
Flair 83,13%
FastSense 86,49%

The best performer is used for the further experiments.

119

Supervised VSD on TTVCorp

This section explains how the best performer from the previous section, namely
FastSense, was optimized for TTVCorp. A 3-fold cross-validation on TTVCorp
was performed for the evaluation. Each fold was divided into training and test in
such a way that the proportional stratification applies. In addition, the influence
of the corpus expansion methods from Section 4.7.2 is evaluated.

FastSense consists of various parameters that must be learned using the under-
lying training data. The goal is to adapt a model to the given data from Section
4.7.2. This process of fitting the model parameters to existing data is called model
training. Another class of parameters, the so called hyperparameters cannot be
learned directly from the training process. The hyperparameters are the variables
that govern the training process itself, which must be predefined and are config-
uration variables of the training process that are normally kept constant. They
define higher-level concepts about the model, such as complexity, convergence
rate, penalty, and so on (Bergstra and Bengio 2012). We perform hyperparame-
ter optimization to find optimal hyperparameter configurations for FastSense on
the TTVCorp, to find optimized values for hyperparameters, which maximize the
prediction accuracy of our model. Finally, to optimize the hyperparameters, the
TPE (Bergstra and Bengio 2012) implemented by hyperopt (Bergstra, Yamins,
and Cox 2013) was used.

Table 4.24 shows the parameter space of the hyperparameter optimization.

Figure 4.21 show the results of each trial during the optimization process. The
difference between the best and worst performer is 25%. This shows, that opti-
mizing hyperparameter can be crucial.

After the optimization process, the influence of the corpus expansion was deter-
mined. For this purpose, the training data of the 3-folds cross-validation were
enriched with the respective expansion methods of Section 4.7.2. Through our
expansion methods, we have enriched the training corpus with semantically rele-
vant information. This led to a significant increase in performance. It can be seen
that the expansion has yielded an F-score increase of 3%. For future semantic

120

Table 4.24.: Parameter Space of FastSense used in our experiments. The column
Possible Values describe the range of the parameters. The parameter
setting with the best value is highlighted in bold.

Parameter Possible Values
epoch [5,10,...,40,...,250]
wordNgram [1,2,...,10]
minCount [1,2,3]
learning rate [0.1,...,0.2,...,1)]
loss [softmax,hs,ns]
pretrainedVectors [true,false]

Table 4.25.: Effect of corpus expansion on the performance of tagger.

Corpus F-Score

TTVCorp 75%
TTVCorp + Skinner + Translation + LM 78%

NLP tasks it is therefore indispensable to use these expansion methods.

4.7.4. Conclusion and Future Work

In this work, we present the largest sense annotated corpus for German verbs.
The selection of the annotated data was determined using Zipf’s law and the
Paredo principle. The subset of verb lemmas that covers 80% of verb tokens was
annotated. At the current state, these are 985 ambiguous verbs, with a total
of 42 944 annotated sentences. The reliability and validity the data is evaluated
using Randolph’s Kappa. In the process, it turned out that some verbs have low
IAA score. The reason for this is that the distinction of senses in GermaNet is too
fine-grained for these verbs. In order to solve this problem, we have developed a
method to locate and merge these senses, which are difficult to distinguish from
each other. This resulted in an IAA increase from 59% to 72%, which according
to (Artstein and Poesio 2008) is sufficient for semantic annotation tasks.

121

0 20 40 60 80 100
0.5

0.6

0.7

Trial

F-
Sc

or
e

1
0.5

0.6

0.7

FastSense

F-
Sc

or
e

Figure 4.21.: The figure shows the results of optimizing FastSense on TTVCorp
by means of TPE. The scatter plot on the left side shows the results
of each trial. The boxplot shows in which area the results are located
and how they are distributed over this area. The difference between
the best and the worst performing setting is 23%.

Various neural network based taggers were trained and evaluated. Compared
to (Henrich 2015), our Best Performer has achieved a performance increase of
6% F-Score (80% to 86%) and is therefore state-of-the-art. The evaluation on
TTVCorp gives an F-Score of 73%.

Since annotation is very time-consuming and expensive, automatic and semi-
automatic methods for corpus expansion have been developed. These include
expansion through Skinners Law, Translation and Language Models. The addi-
tion of the expanded data to the train set resulted in a performance increase from
73% to 76%. Many classification tasks suffer from insufficient training data. For
these classification tasks, especially for semantic classification tasks, it may be
useful to use our proposed expansion methods.

In future work we will increase the quantity and quality of TTVCorp.

To reproduce the experiments, we put the Tagger, the models, the corpora and all
the evaluations online on GitHub. An online demo of the tagger can be accessed
at the following address:

https://textimager.hucompute.org/VerbsAnnotator/input.html

122

5. Concluding Remarks

The overall aim of this thesis was to develop a framework for the NLP landscape
enabling different specialised NLP tools to become interoperable, namely Tex-
tImager. In order to be able to process the ever-increasing amounts of data,
the framework is able to run cluster-based on several machines whilst being
scalable both horizontally and vertically. Thereby specialized tools for the in-
dividual tasks in the process sequence are developed by different organizations.
TextImager merges existing systems and development environments in a mod-
ular fashion to exchange the work packages with each other in order to exploit
specialisation advantages. With TextImager it is now possible to solve the big
and diverse unstructured data problem. This is solved using the 6 paradigms
Multi-Service, Multi-Server, Self-Orchestration, Multi-Database, Authority Man-
agement, Multi-Representation. Table A.1 shows the processing time with the
TextImager for the corpus presented in Section 3.1. It should be noted that the
TextImager’s architecture has made processing 7-fold faster. This factor can be
further increased as the infrastructure now allows to dynamically boot additional
instances.

TextImager is already used by many works as a pre-processing pipeline, as a
feature generator and as a programming interface (Mehler, Abrami, et al. 2018;
Baumartz, Uslu, and Mehler 2018; Hemati and Mehler 2019a; Hemati and Mehler
2019b; Kett et al. 2018; Abrami, Mehler, Lücking, et al. 2019; Abrami, Mehler,
and Spiekermann 2019; Rutherford, Hemati, and Mehler 2018; Hunziker et al.
2019; Uslu, Mehler, and Baumartz 2019; Uslu and Mehler 2018; Uslu, Mehler,
and Meyer 2018; Mehler, Hemati, Uslu, et al. 2018; Uslu, Hemati, et al. 2017;
Hemati, Uslu, and Mehler 2017). The project is freely accessible on GitHub and
is being further developed by many contributors already. One of the future works

123

Table 5.1.: Statistics about the time and space complexity of the processed corpus
introduced in Section 3.1 processed by TextImager. Compared to the
non-distributed version, Textimager has become more than 7 times
faster.

Step Days GB
1 Tokenize 0.32 82.48
2 Lemmatization 0.84 97.70
3 POS Tagging 0.37 94.42
4 Named Entity Recognition 0.47 9.06
5 Dependency Parsing 1.85 225.46
6 Time Recognition 0.99 11.95
7 Sentiment Analysis 0.76 7.13
8 Semantic Role Labeling 0.9 8.09
9 Wikification 1.24 26.40
10 Coreference 2.58 6.74

∑
10.32 569.43

will be to develop a process for automating the integration of new tools1 so that
TextImager is always at the cutting edge of research.

In the course of the development of computational linguistics, a rudimentary
process model has established itself as a scientific discipline that defines practiced
sequence regularities of NLP tools. The advantage of such a NLP pipeline is that
more complex downstream tasks can be subdivided into smaller tasks, for which
specialized tools can be developed. However, it also has its disadvantages. Errors
in the processing sequence accumulate. To avoid this, the entire processing would
have to be formulated as a single optimization/learning problem (Mehler, Hemati,
Gleim, et al. 2018). Individual steps can thus influence each other better. For
example, semantic analysis shows that a certain part of speech is implausible
for a term. There are already approaches that carry out this type of single
optimization, namely multi-task learning (MLT). Inline with (Sener and Koltun
2018) a MLT problem can be spanned over an input space X and a collection
of task spaces {Y t}t∈|T |, such that a data set of independent and identically
distributed points {xi, y

1
i , ..., y

T
i }i∈|N | is given where T is the number of tasks, N

1https://paperswithcode.com/area/natural-language-processing

124

is the number of data points and yTi is the label of the tth task for the ith data
point. Further consider a mapping function per task as f t(x; θsh, θt) : X− > Y t,
such that shared parameters between tasks (θsh) and task-specific parameters (θt)
exists. The task specific loss function is defined as Lt(., .) : Y t × Y t → R+ The
loss-function of the MLT can be defined as:

min
θsh,θ1,...,θT

T∑

t=1

ctL̂T (θsh, θt) (5.1)

where ct are the computed weights per task, and L̂T (θsh, θt) the empirical loss of
task t. The problem with MLT is, that it is not possible to define a global optimal
setting. Consider two sets θ and θ̄, where solution θ is better for task t1 and θ̄

is better for task t2. Typically there is no pairwise importance of tasks available,
which makes it impossible to compare two solutions. To counteract this, a MLT
can be formulated as multi-objective optimization, where the goal is achieving
Pareto optimality:

(a) solution θ is no worse then θ̄ in all tasks

(b) solution θ is better then θ̄ in at least one task

Interest in multi-task learning in NLP is growing, as reflected by the publication of
more and more shared tasks and test suites for MLT. Among them are DecaNLP
(McCann et al. 2018) and GLUE (Wang et al. 2018). Transformer models such as
BERT (Devlin, M. Chang, et al. 2019), XLNet (Zhilin Yang et al. 2019) and ELMo
(Peters et al. 2018b) are the current best performers in the above mentioned
tasks. Due to their architecture coupled with the huge amounts of data, their
representation possibilities become very powerful. However, this is also one of
the big disadvantages. The information is implicitly stored in the heads of the
individual layers, which cannot be interpreted explicitly.

As future work the two worlds must be combined with each other. The explicit
pipeline and task oriented sequential NLP processing, as currently implemented
by TextImager, must be combined with transformer models in a dynamic multi-
task learning process described in Formula 5.1. A possible solution would be a

125

Hierarchical Model for Multi-task learning (Sanh, Wolf, and Ruder 2019). The
model is hierarchically trained to introduce an inductive bias by monitoring a
series of low-level tasks (i.e. lemmatization and POS-tagging) in the lower layers
of the model and more complex tasks (i.e. semantic role labeling, entity mention
recognition, etc.) in the upper layers of the model. The goal of such a model
would be to minimize the lossfunction introduced in Formula 5.1. In contrast to
the black box transformer models, the parameter setting θt could be determined
for each task T explicitly, thus can be better interpreted.

A big step into the semantic analysis of verbs for German was done in this work.
A state-of-the-art verb sense disambiguation framework for German has been de-
veloped. To accomplish this, the largest sense-annotated German verb corpus
was built, which is needed to train supervised neural network VSDs. The corpus
covers 80% of the German verb tokens found in COW. However, some remaining
verbs from GermaNet are not yet covered. In addition, there are verbs that are
not listed in GermaNet. Therefore, it is not sufficient to operate on the basis
of manually annotated data in order to be able to cover verbs senses in their
entirety, as the creation is too costly. In order to get this under control, more
work must be done with distributional and declarative semantics in the context
of VSD. Distributional semantics is a field of research that develops and investi-
gates theories and methods for quantifying and categorizing semantic similarities
between linguistic elements, based on their distribution properties in large cor-
pora. It can be summarized in the distribution hypothesis: linguistic elements
with similar distributions have similar meanings (Harris 1954; Dahl 2016). Dis-
tributional models represent a word through the contexts in which they occur,
whereby modern approaches implement vector space models or word embeddings
(Mikolov, Chen, et al. 2013; Blei, A. Y. Ng, and Jordan 2003; Deerwester et al.
1990). In these models words are represented as points in a high-dimensional
space, in which similar words tend to be closer. The downside is, that one vector
is created per syntactic word, which means that the sense level is not captured.
Current models, such as BERT (Devlin, M. Chang, et al. 2019), XLNet (Zhilin Yang

126

et al. 2019) and ELMo, induce context-sensitive word embeddings. The idea is to
create sense embeddings implicitly, which are represented by different vectors for
the same syntactic word in different contexts. In future work we will use this kind
of implicit semantics to obtain sense distinctions for verbs for which no training
data is available and therefore no supervised ML can be trained.

Another way to accomplish a higher coverage of verb semantics is to use declara-
tive semantics. In the case of German verbs, particle verbs are particularly useful
because they are highly productive (Springorum, Utt, and Schulte im Walde
2013). The greatest challenge of these verbs is that of compositionality: can the
meaning of such a verb be predicted on the basis of general principles from that of
the particle or prefix and the rest? Hence, it remains an open question, whether
an algebraic model can be developed to approximate the meaning, based on the
combination of the meaning of the base verb and the particle (Bott and Schulte
im Walde 2018; Köper et al. 2016). However, there has been no research on
compositionality and context-sensitive subwordembeddings, that will be subject
of focus in future work.

Subcategorization and verb senses are known to be linked. Levin (1993) widely
used verb classification is based on the hypothesis that the syntactic behavior of a
verb and its meaning are strongly linked. Similar to Levin (1993) classes, German
verbs can be subdivided into semantic verb classes in order to assign unknown
verbs and non-literal verbs semantically (Schulte im Walde 2006; Scheible et al.
2013). In future work we will combine the novel contextualized embeddings in
combination with subcategorization frames and predicate-argument-structure of
verbs (W. Wagner, Schmid, and S Schulte Im Walde 2009; Schulte im Walde
et al. 2010) to extract selectional restrictions (Weller, Sabine Schulte Im Walde,
and Fraser 2014; Mu, Hartshorne, and O’Donnell 2017) for cluster-based sense
disambiguation and induction.

127

Bibliography

Abrami, Giuseppe, Alexander Mehler, Andy Lücking, Elias Rieb, and Philipp Hel-
frich (2019). “TextAnnotator: A flexible framework for semantic annotations”.
In: Proceedings of the Fifteenth Joint ACL - ISO Workshop on Interoperable
Semantic Annotation, (ISA-15). ISA-15. Gothenburg, Sweden.

Abrami, Giuseppe, Alexander Mehler, and Christian Spiekermann (2019). “Graph-
Based Format for Modeling Multimodal Annotations in Virtual Reality by
Means of VAnnotatoR”. In: HCI International 2019 - Late Breaking Posters -
21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31,
2019, Proceedings, pp. 351–358. doi: 10.1007/978-3-030-30712-7_44. url:
https://doi.org/10.1007/978-3-030-30712-7%5C_44.

Aggarwal, Charu C. and ChengXiang Zhai, eds. (2012).Mining Text Data. Springer.
isbn: 978-1-4419-8462-3.

Agirre, Eneko, Oier Lopez de Lacalle, and Aitor Soroa (2014). “RandomWalks for
Knowledge-Based Word Sense Disambiguation”. In: Computational Linguistics
40.1, pp. 57–84. doi: 10.1162/COLI_a_00164. url: https://doi.org/10.
1162/COLI%5C_a%5C_00164.

Agirre, Eneko, Oier López de Lacalle, and Aitor Soroa (2018). “The risk of sub-
optimal use of Open Source NLP Software: UKB is inadvertently state-of-the-
art in knowledge-based WSD”. In: CoRR abs/1805.04277. arXiv: 1805.04277.
url: http://arxiv.org/abs/1805.04277.

Akbik, Alan, Duncan Blythe, and Roland Vollgraf (2018). “Contextual String
Embeddings for Sequence Labeling”. In: COLING 2018, 27th International
Conference on Computational Linguistics, pp. 1638–1649.

Artstein, Ron and Massimo Poesio (2008). “Inter-Coder Agreement for Com-
putational Linguistics”. In: Computational Linguistics 34.4, pp. 555–596. doi:

129

10.1162/coli.07-034-R2. url: https://doi.org/10.1162/coli.07-034-
R2.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. url: http://arxiv.org/
abs/1409.0473.

Baker, Collin F., Charles J. Fillmore, and John B. Lowe (1998). “The Berke-
ley FrameNet Project”. In: 36th Annual Meeting of the Association for Com-
putational Linguistics and 17th International Conference on Computational
Linguistics, COLING-ACL ’98, August 10-14, 1998, Université de Montréal,
Montréal, Quebec, Canada. Proceedings of the Conference. Pp. 86–90. url:
http://aclweb.org/anthology/P/P98/P98-1013.pdf.

Banerjee, Satanjeev and Ted Pedersen (2003). “Extended Gloss Overlaps as a
Measure of Semantic Relatedness”. In: IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico,
August 9-15, 2003, pp. 805–810. url: http://ijcai.org/Proceedings/03/
Papers/116.pdf.

Baumartz, Daniel, Tolga Uslu, and Alexander Mehler (2018). “LTV: Labeled
Topic Vector”. In: COLING 2018, The 27th International Conference on Com-
putational Linguistics: System Demonstrations, Santa Fe, New Mexico, August
20-26, 2018, pp. 142–145. url: https://www.aclweb.org/anthology/C18-
2031/.

Bellman, Richard (2015). Adaptive Control Processes - A Guided Tour (Reprint
from 1961). Vol. 2045. Princeton Legacy Library. Princeton University Press.
isbn: 978-1-4008-7466-8. doi: 10.1515/9781400874668. url: https://doi.
org/10.1515/9781400874668.

Bergstra, James, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl (2011). “Algo-
rithms for Hyper-Parameter Optimization”. In: Advances in Neural Information
Processing Systems 24: 25th Annual Conference on Neural Information Pro-
cessing Systems 2011. Proceedings of a meeting held 12-14 December 2011,
Granada, Spain. Pp. 2546–2554. url: http://papers.nips.cc/paper/4443-
algorithms-for-hyper-parameter-optimization.

130

Bergstra, James and Yoshua Bengio (2012). “Random Search for Hyper-Parameter
Optimization”. In: J. Mach. Learn. Res. 13, pp. 281–305. url: http://dl.
acm.org/citation.cfm?id=2188395.

Bergstra, James, Daniel Yamins, and David D. Cox (2013). “Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures”. In: Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 115–
123. url: http://proceedings.mlr.press/v28/bergstra13.html.

Biemann, Chris and Alexander Mehler, eds. (2014). Text Mining - From Ontology
Learning to Automated Text Processing Applications. Theory and Applications
of Natural Language Processing. Springer. isbn: 978-3-319-12654-8. doi: 10.
1007/978-3-319-12655-5. url: https://doi.org/10.1007/978-3-319-
12655-5.

Bird, Steven, Ewan Klein, and Edward Loper (2009). Natural Language Process-
ing with Python: Analyzing Text with the Natural Language Toolkit. Beijing:
O’Reilly. isbn: 978-0-596-51649-9. doi: http://my.safaribooksonline.com/
9780596516499. url: http://www.nltk.org/book.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan (2003). “Latent Dirichlet
Allocation”. In: J. Mach. Learn. Res. 3, pp. 993–1022. url: http://jmlr.
org/papers/v3/blei03a.html.

Botev, Zdravko and Ad Ridder (2017). “Variance Reduction”. In: Wiley Stat-
sRef: Statistics Reference Online. American Cancer Society, pp. 1–6. isbn:
9781118445112. doi: 10.1002/9781118445112.stat07975. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat07975.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.
stat07975.

Bott, Stefan and Sabine Schulte im Walde (2018). “German particle verbs: Com-
positionality at the syntax-semantics interface”. In: J. Language Modelling 6.1,
pp. 41–86. doi: 10.15398/jlm.v6i1.138. url: https://doi.org/10.15398/
jlm.v6i1.138.

Brants, Thorsten (2000). “Inter-annotator Agreement for a German Newspaper
Corpus”. In: Proceedings of the Second International Conference on Language

131

Resources and Evaluation, LREC 2000, 31 May - June 2, 2000, Athens, Greece.
url: http://www.lrec-conf.org/proceedings/lrec2000/pdf/333.pdf.

Brochu, Eric, Vlad M. Cora, and Nando de Freitas (2010). “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning”. In: CoRR abs/1012.2599.
arXiv: 1012.2599. url: http://arxiv.org/abs/1012.2599.

Burchardt, Aljoscha et al. (2006). “The SALSA Corpus: a German Corpus Re-
source for Lexical Semantics”. In: Proceedings of the Fifth International Con-
ference on Language Resources and Evaluation (LREC’06). Genoa, Italy: Eu-
ropean Language Resources Association (ELRA). url: http://www.lrec-
conf.org/proceedings/lrec2006/pdf/339_pdf.pdf.

Burghardt, Manuel, Julian Pörsch, Bianca Tirlea, and Christian Wolff (2014).
“WebNLP - An Integrated Web-Interface for Python NLTK and Voyant”. In:
Proceedings of the 12th Edition of the Konvens Conference, Hildesheim, Ger-
many, October 8-10, 2014, pp. 235–240.

“TEI P5: Guidelines for Electronic Text Encoding and Interchange” (2007). In:
ed. by Lou Burnard and Syd Bauman. Text Encoding Initiative Consortium.
Chap. A Gentle Introduction to XML. url: http://www.tei-c.org/release/
doc/tei-p5-doc/en/html/SG.html.

Carletta, Jean, Jonathan Kilgour, Tim O’Donnell, and Tim O’donnell (2003).
“The NITE Object Model Library for Handling Structured Linguistic Annota-
tion on Multimodal Data Sets”. In: In Proceedings of the EACL Workshop on
Language Technology and the Semantic Web (3rd Workshop on NLP and XML,
NLPXML-2003, p. 2003.

Chaplot, Devendra Singh and Ruslan Salakhutdinov (2018). “Knowledge-based
Word Sense Disambiguation using Topic Models”. In: Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th in-
novative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pp. 5062–5069. url: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17415.

Chifu, Adrian-Gabriel, Florentina Hristea, Josiane Mothe, and Marius Popescu
(2015). “Word sense discrimination in information retrieval: A spectral clustering-

132

based approach”. In: Inf. Process. Manage. 51.2, pp. 16–31. doi: 10.1016/j.
ipm.2014.10.007. url: https://doi.org/10.1016/j.ipm.2014.10.007.

Claesen, Marc and Bart De Moor (2015). “Hyperparameter Search in Machine
Learning”. In: CoRR abs/1502.02127. arXiv: 1502.02127. url: http://arxiv.
org/abs/1502.02127.

Conlon, Sumali J., Jason G. Hale, Susan Lukose, and Jody Strong (2008). “In-
formation Extraction Agents for Service-Oriented Architecture Using Web Ser-
vice Systems: A Framework”. In: JCIS 48.3, pp. 74–83. url: https://www.
tandfonline.com/doi/abs/10.1080/08874417.2008.11646023.

Copeland, R. (2013). MongoDB Applied Design Patterns: Practical Use Cases
with the Leading NoSQL Database. O’Reilly Media.

Crossley, Scott A. et al. (2015). “Language to Completion: Success in an Edu-
cational Data Mining Massive Open Online Class”. In: Proceedings of the 8th
International Conference on Educational Data Mining, EDM 2015, Madrid,
Spain, June 26-29, 2015, pp. 388–391. url: http://www.educationaldatamining.
org/EDM2015/proceedings/short388-391.pdf.

Cunningham, Hamish et al. (2011). Text Processing with GATE (Version 6). isbn:
978-0956599315. url: http://tinyurl.com/gatebook.

Dahl, Östen (2016). “Thoughts on language-specific and crosslinguistic entities”.
In: Linguistic Typology 20, pp. 427–437.

Dayley, Brad (2014). NoSQL with MongoDB in 24 Hours, Sams Teach Yourself.
1st. Sams publishing.

Deerwester, Scott C., Susan T. Dumais, Thomas K. Landauer, George W. Furnas,
and Richard A. Harshman (1990). “Indexing by Latent Semantic Analysis”. In:
JASIS 41.6, pp. 391–407. doi: 10 . 1002 / (SICI) 1097 - 4571(199009) 41 :
6\<391::AID-ASI1\>3.0.CO;2-9. url: https://doi.org/10.1002/(SICI)
1097-4571(199009)41:6%5C%3C391::AID-ASI1%5C%3E3.0.CO;2-9.

Desel, Jörg and Wolfgang Reisig (1996). “Place/transition Petri nets”. In: Ad-
vanced Course on Petri Nets. Springer, pp. 122–173.

Desjardins, Jeff (2019). How much data is generated each day? | World Economic
Forum. https://www.weforum.org/agenda/2019/04/how-much-data-is-
generated-each-day-cf4bddf29f/. (Accessed on 11/04/2019).

133

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
“BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing”. In: arXiv preprint arXiv:1810.04805.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019).
“BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing”. In: Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers), pp. 4171–4186. url: https://www.aclweb.org/
anthology/N19-1423/.

Dietterich, Thomas G. (2000). “Ensemble Methods in Machine Learning”. In:
Multiple Classifier Systems, First International Workshop, MCS 2000, Cagliari,
Italy, June 21-23, 2000, Proceedings, pp. 1–15. doi: 10.1007/3-540-45014-
9_1. url: https://doi.org/10.1007/3-540-45014-9%5C_1.

Duden, Konrad, Dieter Berger, and Werner Scholze (1980). Duden. Vol. 2. Bibli-
ographisches Institut.

Eckart de Castilho, Richard and Iryna Gurevych (2014). “A broad-coverage col-
lection of portable NLP components for building shareable analysis pipelines”.
In: Proceedings of the Workshop on Open Infrastructures and Analysis Frame-
works for HLT, OIAF4HLT@COLING 2014, Dublin, Ireland, August 23, 2014,
pp. 1–11. doi: 10.3115/v1/W14-5201. url: https://doi.org/10.3115/v1/
W14-5201.

Edmonds, Philip and Scott Cotton (2001). “SENSEVAL-2: Overview”. In: Pro-
ceedings of Second International Workshop on Evaluating Word Sense Disam-
biguation Systems, SENSEVAL@ACL 2001, Toulouse, France, July 5-6, 2001,
pp. 1–5. url: https://aclanthology.info/papers/S01-1001/s01-1001.

Eger, Steffen and Alexander Mehler (2016). “On the Linearity of Semantic Change:
Investigating Meaning Variation via Dynamic Graph Models”. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 2: Short Papers. url:
https://www.aclweb.org/anthology/P16-2009/.

134

Eggert, Lisa, Maximilian Lippert, and Fabian Etling (2019). “Tagungsbericht Än-
notationen in Edition und Forschung. Funktionsbestimmung, Differenzierung
und Systematisierung̈”. In:

Elman, Jeffrey L. (1990). “Finding Structure in Time”. In: Cognitive Science 14.2,
pp. 179–211. doi: 10.1207/s15516709cog1402_1. url: https://doi.org/
10.1207/s15516709cog1402%5C_1.

Emmert-Streib, Frank, Matthias Dehmer, and Benjamin Haibe-Kains (2014).
“Gene regulatory networks and their applications: understanding biological and
medical problems in terms of networks”. In: Frontiers in cell and developmental
biology 2, p. 38.

Erl, Thomas (2016). SOA Principles of Service Design (Paperback). 1st. Upper
Saddle River, NJ, USA: Prentice Hall Press.

Fellbaum, C. and G. Miller (1998). “Lexical Chains as Representations of Context
for the Detection and Correction of Malapropisms”. In:WordNet: An Electronic
Lexical Database. MITP, pp. 305–332. isbn: 9780262272551. url: https://
ieeexplore.ieee.org/document/6287673.

Fellbaum, Christiane, Martha Palmer, Hoa Trang Dang, Lauren Delfs, and Steven
A. Wolf (2001). “Manual and automatic semantic annotation with WordNet”.
In:

Ferrucci, David A. and Adam Lally (2004). “UIMA: an architectural approach to
unstructured information processing in the corporate research environment”. In:
Natural Language Engineering 10.3-4, pp. 327–348. doi: 10.1017/S1351324904003523.
url: https://doi.org/10.1017/S1351324904003523.

Fette, Georg, Martin Toepfer, and Frank Puppe (2013). “Storing UIMA CASes
in a relational database”. In: Proceedings of the 3rd Workshop on Unstructured
Information Management Architecture, Darmstadt, Germany, September 23,
2013, pp. 10–13. url: http://ceur-ws.org/Vol-1038/paper%5C_1.pdf.

Finkel, Jenny Rose, Shipra Dingare, et al. (2005). “Exploring the boundaries: gene
and protein identification in biomedical text”. In: BMC Bioinformatics 6.S-1.
doi: 10.1186/1471-2105-6-S1-S5. url: https://doi.org/10.1186/1471-
2105-6-S1-S5.

Finkel, Jenny Rose, Trond Grenager, and Christopher D. Manning (2005). “Incor-
porating Non-local Information into Information Extraction Systems by Gibbs

135

Sampling”. In: ACL 2005, 43rd Annual Meeting of the Association for Computa-
tional Linguistics, Proceedings of the Conference, 25-30 June 2005, University
of Michigan, USA, pp. 363–370. url: https://www.aclweb.org/anthology/
P05-1045/.

Ganesan, K., C. Zhai, and J. Han (2010). “Opinosis: A Graph-based Approach
to Abstractive Summarization of Highly Redundant Opinions”. In: Proc. of
COLING ’10, pp. 340–348.

Gardner, Matt et al. (2018). “AllenNLP: A Deep Semantic Natural Language
Processing Platform”. In: CoRR abs/1803.07640. arXiv: 1803 . 07640. url:
http://arxiv.org/abs/1803.07640.

Gawehn, Erik, Jan A. Hiss, and Gisbert Schneider (2016). “Deep Learning in
Drug Discovery”. In: Molecular Informatics 35.1, pp. 3–14.

Geyer, Kelly, Kara Greenfield, Alyssa Mensch, and Olga Simek (2016). “Named
Entity Recognition in 140 Characters or Less”. In: Proceedings of the 6th Work-
shop on ’Making Sense of Microposts’ co-located with the 25th International
World Wide Web Conference (WWW 2016), Montréal, Canada, April 11, 2016.
Pp. 78–79. url: http://ceur-ws.org/Vol-1691/paper%5C_16.pdf.

Giuglea, Ana-Maria and Alessandro Moschitti (2006). “Shallow Semantic Parsing
Based on FrameNet, VerbNet and PropBank”. In: ECAI 2006, 17th European
Conference on Artificial Intelligence, August 29 - September 1, 2006, Riva del
Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS
2006), Proceedings, pp. 563–567.

Gleim, Rüdiger, Alexander Mehler, and Alexandra Ernst (2012). “SOA imple-
mentation of the eHumanities Desktop”. In: Proceedings of the Workshop on
Service-oriented Architectures (SOAs) for the Humanities: Solutions and Im-
pacts, Digital Humanities 2012, Hamburg, Germany.

Golub, David and Xiaodong He (2016). “Character-Level Question Answering
with Attention”. In: CoRR abs/1604.00727. arXiv: 1604.00727. url: http:
//arxiv.org/abs/1604.00727.

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey E. Hinton (2013). “Speech
Recognition with Deep Recurrent Neural Networks”. In: CoRR abs/1303.5778.
arXiv: 1303.5778. url: http://arxiv.org/abs/1303.5778.

136

Gritzmann, Peter (2007). “On the Mathematics of Semantic Spaces”. In: Aspects
of Automatic Text Analysis, pp. 95–115. doi: 10.1007/978-3-540-37522-
7_5. url: https://doi.org/10.1007/978-3-540-37522-7%5C_5.

Grose, T., G. Doney, and S. Brodsky (2002). Mastering XMI: Java Programming
with XMI, XML and UML. Vol. 21. John Wiley & Sons.

Hahn, Udo et al. (2008). “An overview of JCoRe, the JULIE lab UIMA component
repository”. In: Proc. of the LREC. Vol. 8, pp. 1–7.

Hammerton, James (2003). “Named Entity Recognition with Long Short-Term
Memory”. In: Proceedings of the Seventh Conference on Natural Language
Learning, CoNLL 2003, Held in cooperation with HLT-NAACL 2003, Edmon-
ton, Canada, May 31 - June 1, 2003, pp. 172–175. url: https://www.aclweb.
org/anthology/W03-0426/.

Hamp, Birgit and Helmut Feldweg (1997). “GermaNet - a Lexical-Semantic Net
for German”. In: In Proceedings of ACL workshop Automatic Information Ex-
traction and Building of Lexical Semantic Resources for NLP Applications,
pp. 9–15.

Hand, David J (2006). “Data Mining”. In: Encyclopedia of Environmetrics 2.
Hapner, Mark, Rich Burridge, Rahul Sharma, Joseph Fialli, and Kate Stout
(2002). “Java message service”. In: Sun Microsystems Inc., Santa Clara, CA 9.

Harris, Zellig S (1954). “Distributional structure”. In: Word 10.2-3, pp. 146–162.
Hemati, Wahed and Alexander Mehler (2019a). “CRFVoter: gene and protein
related object recognition using a conglomerate of CRF-based tools”. In: J.
Cheminformatics 11.1, 21:1–21:11. doi: 10.1186/s13321-019-0343-x. url:
https://doi.org/10.1186/s13321-019-0343-x.

– (2019b). “LSTMVoter: chemical named entity recognition using a conglomerate
of sequence labeling tools”. In: J. Cheminformatics 11.1, 3:1–3:7. doi: 10.1186/
s13321-018-0327-2. url: https://doi.org/10.1186/s13321-018-0327-2.

Hemati, Wahed, Alexander Mehler, and Tolga Uslu (2017). “CRFVoter: Chem-
ical Entity Mention, Gene and Protein Related Object recognition using a
conglomerate of CRF based tools”. In: BioCreative V.5. Proceedings.

Hemati, Wahed, Alexander Mehler, Tolga Uslu, and Giuseppe Abrami (2019).
“Der TextImager als Front- und Backend für das verteilte NLP von Big Digital

137

Humanities Data”. In: Proceedings of the 6th Digital Humanities Conference in
the German-speaking Countries, DHd 2019. DHd 2019. Frankfurt, Germany.

Hemati, Wahed, Alexander Mehler, Tolga Uslu, Daniel Baumartz, and Giuseppe
Abrami (2018). “Evaluating and Integrating Databases in the Area of NLP”. In:
International Quantitative Linguistics Conference (QUALICO 2018). Wroclaw,
Poland.

Hemati, Wahed, Tolga Uslu, and Alexander Mehler (2016). “TextImager: a Dis-
tributed UIMA-based System for NLP”. In: COLING 2016, 26th International
Conference on Computational Linguistics, Proceedings of the Conference Sys-
tem Demonstrations, December 11-16, 2016, Osaka, Japan, pp. 59–63. url:
https://www.aclweb.org/anthology/C16-2013/.

– (2017). “TextImager as an interface to BeCalm”. In: BioCreative V.5. Proceed-
ings.

Henrich, Verena (2015). “Word Sense Disambiguation with GermaNet”. en. PhD
thesis. doi: 10.15496/publikation-4706. url: https://publikationen.
uni-tuebingen.de/xmlui/handle/10900/63284.

Henrich, Verena and Erhard W. Hinrichs (2013). “Extending the TüBa-D/Z Tree-
bank with GermaNet Sense Annotation”. In: Language Processing and Knowl-
edge in the Web - 25th International Conference, GSCL 2013, Darmstadt,
Germany, September 25-27, 2013. Proceedings, pp. 89–96. doi: 10.1007/978-
3-642-40722-2_9. url: https://doi.org/10.1007/978-3-642-40722-
2%5C_9.

Henrich, Verena, Erhard W. Hinrichs, and Tatiana Vodolazova (2011). “Aligning
GermaNet Senses with Wiktionary Sense Definitions”. In: Human Language
Technology Challenges for Computer Science and Linguistics - 5th Language
and Technology Conference, LTC 2011, Poznań, Poland, November 25-27,
2011, Revised Selected Papers, pp. 329–342. doi: 10.1007/978-3-319-08958-
4_27. url: https://doi.org/10.1007/978-3-319-08958-4%5C_27.

– (2012). “WebCAGe - A Web-Harvested Corpus Annotated with GermaNet
Senses”. In: EACL 2012, 13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, Avignon, France, April 23-27, 2012,
pp. 387–396. url: http://aclweb.org/anthology/E/E12/E12-1039.pdf.

138

Hewitt, Eben (2011). Cassandra - The Definitive Guide: Distributed Data at Web
Scale. Springer. isbn: 978-1-449-39041-9. url: http://www.oreilly.de/
catalog/9781449390419/index.html.

Hinrichs, Erhard W., Marie Hinrichs, and Thomas Zastrow (2010). “WebLicht:
Web-Based LRT Services for German”. In: ACL 2010, Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, July 11-
16, 2010, Uppsala, Sweden, System Demonstrations, pp. 25–29. url: https:
//www.aclweb.org/anthology/P10-4005/.

Hinrichs, Marie, Thomas Zastrow, and Erhard W. Hinrichs (2010). “WebLicht:
Web-based LRT Services in a Distributed eScience Infrastructure”. In: Pro-
ceedings of the International Conference on Language Resources and Evalua-
tion, LREC 2010, 17-23 May 2010, Valletta, Malta. url: http://www.lrec-
conf.org/proceedings/lrec2010/summaries/270.html.

Hirschman, Lynette, Alexander S. Yeh, Christian Blaschke, and Alfonso Valencia
(2005). “Overview of BioCreAtIvE: critical assessment of information extrac-
tion for biology”. In: BMC Bioinformatics 6.S-1. doi: 10.1186/1471-2105-6-
S1-S1. url: https://doi.org/10.1186/1471-2105-6-S1-S1.

Hochreiter, Sepp (1998). “The Vanishing Gradient Problem During Learning Re-
current Neural Nets and Problem Solutions”. In: International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems 6.2, pp. 107–116. doi: 10.
1142/S0218488598000094. url: https://doi.org/10.1142/S0218488598000094.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”.
In: Neural Computation 9.8, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.
1735. url: https://doi.org/10.1162/neco.1997.9.8.1735.

Hofmann, Markus and Ralf Klinkenberg (2013). RapidMiner: Data mining use
cases and business analytics applications. CRC Press.

Honnibal, Matthew and Ines Montani (2017). “spacy 2: Natural language un-
derstanding with bloom embeddings, convolutional neural networks and incre-
mental parsing”. In: To appear 7.

Hung, Jason C., Ching-Sheng Wang, Che-Yu Yang, Mao-Shuen Chiu, and George
Yee (2005). “Applying Word Sense Disambiguation to Question Answering Sys-
tem for e-Learning”. In: 19th International Conference on Advanced Informa-
tion Networking and Applications (AINA 2005), 28-30 March 2005, Taipei,

139

Taiwan, pp. 157–162. doi: 10.1109/AINA.2005.121. url: https://doi.org/
10.1109/AINA.2005.121.

Hunziker, Alex, Hasanagha Mammadov, Wahed Hemati, and Alexander Mehler
(2019). “Corpus2Wiki: A MediaWiki-based Tool for Automatically Generat-
ing Wikiditions in Digital Humanities”. In: INFORMATIK 2019: 50 Jahre
Gesellschaft für Informatik–Informatik für Gesellschaft (Workshop-Beiträge).
Gesellschaft für Informatik eV.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown (2011). “Sequential
Model-Based Optimization for General Algorithm Configuration”. In: Learning
and Intelligent Optimization - 5th International Conference, LION 5, Rome,
Italy, January 17-21, 2011. Selected Papers, pp. 507–523. doi: 10.1007/978-
3-642-25566-3_40. url: https://doi.org/10.1007/978-3-642-25566-
3%5C_40.

– (2014). “An Efficient Approach for Assessing Hyperparameter Importance”.
In: Proceedings of the 31th International Conference on Machine Learning,
ICML 2014, Beijing, China, 21-26 June 2014, pp. 754–762. url: http://
proceedings.mlr.press/v32/hutter14.html.

Jänicke, Stefan, Greta Franzini, Muhammad Faisal Cheema, and Gerik Scheuer-
mann (2015). “On Close and Distant Reading in Digital Humanities: A Survey
and Future Challenges”. In: Eurographics Conference on Visualization, Euro-
Vis 2015 - State of the Art Reports, STARs, Cagliari, Italy, May 25-29, 2015,
pp. 83–103. doi: 10.2312/eurovisstar.20151113. url: https://doi.org/
10.2312/eurovisstar.20151113.

Jiang, Jay J. and David W. Conrath (1997). “Semantic Similarity Based on Cor-
pus Statistics and Lexical Taxonomy”. In: Proceedings of the 10th Research on
Computational Linguistics International Conference, ROCLING 1997, Taipei,
Taiwan, August 1997, pp. 19–33. url: https://aclanthology.info/papers/
O97-1002/o97-1002.

Kett, Attila, Giuseppe Abrami, Alexander Mehler, and Christian Spiekermann
(2018). “resources2city Explorer: A System for Generating Interactive Walkable
Virtual Cities out of File Systems”. In: The 31st Annual ACM Symposium
on User Interface Software and Technology Adjunct Proceedings, UIST 2018,

140

Berlin, Germany, October 14-17, 2018, pp. 123–125. doi: 10.1145/3266037.
3266122. url: https://doi.org/10.1145/3266037.3266122.

Khabsa, Madian and C. Lee Giles (2015). “Chemical entity extraction using CRF
and an ensemble of extractors”. In: J. Cheminformatics 7.S-1, S12. doi: 10.
1186/1758-2946-7-S1-S12. url: https://doi.org/10.1186/1758-2946-
7-S1-S12.

Khalili, Ali, Sören Auer, and Axel-Cyrille Ngonga Ngomo (2014). “conTEXT -
Lightweight Text Analytics Using Linked Data”. In: The Semantic Web: Trends
and Challenges - 11th International Conference, ESWC 2014, Anissaras, Crete,
Greece, May 25-29, 2014. Proceedings, pp. 628–643. doi: 10.1007/978-3-319-
07443-6_42. url: https://doi.org/10.1007/978-3-319-07443-6%5C_42.

Kilgarriff, Adam (1997). “”I Don’t Believe in Word Senses””. In: Computers and
the Humanities 31.2, pp. 91–113. doi: 10 . 1023 / A : 1000583911091. url:
https://doi.org/10.1023/A:1000583911091.

– (1998). “Gold standard datasets for evaluating word sense disambiguation pro-
grams”. In: Computer Speech & Language 12.4, pp. 453–472. doi: 10.1006/
csla.1998.0108. url: https://doi.org/10.1006/csla.1998.0108.

– (1999). “95% Replicability for Manual Word Sense Tagging”. In: EACL 1999,
9th Conference of the European Chapter of the Association for Computational
Linguistics, June 8-12, 1999, University of Bergen, Bergen, Norway, pp. 277–
278. url: http://aclweb.org/anthology/E/E99/E99-1046.pdf.

Kim, Yoon, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde, and Slav Petrov (2014).
“Temporal Analysis of Language through Neural Language Models”. In: CoRR
abs/1405.3515. arXiv: 1405.3515. url: http://arxiv.org/abs/1405.3515.

Komninos, Alexandros and Suresh Manandhar (2016). “Dependency Based Em-
beddings for Sentence Classification Tasks”. In: NAACL HLT 2016, The 2016
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, San Diego California, USA,
June 12-17, 2016, pp. 1490–1500. url: https://www.aclweb.org/anthology/
N16-1175/.

Köper, Maximilian, Sabine Schulte im Walde, Max Kisselew, and Sebastian Padó
(2016). “Improving Zero-Shot-Learning for German Particle Verbs by using
Training-Space Restrictions and Local Scaling”. In: Proceedings of the Fifth

141

Joint Conference on Lexical and Computational Semantics, *SEM@ACL 2016,
Berlin, Germany, 11-12 August 2016. url: https : / / www . aclweb . org /
anthology/S16-2010/.

Krallinger, Martin, Florian Leitner, et al. (2015). “CHEMDNER: The drugs and
chemical names extraction challenge”. In: J. Cheminformatics 7.S-1, S1. doi:
10.1186/1758-2946-7-S1-S1. url: https://doi.org/10.1186/1758-
2946-7-S1-S1.

Krallinger, Martin, Martin Pérez-Pérez, et al. (2017). “The BioCreative V.5 eval-
uation workshop: tasks, organization, sessions and topics”. In: Proceedings of
the BioCreative V.5 Challenge Evaluation Workshop, pp. 8–10.

Krallinger, Martin, Obdulia Rabal, et al. (2015). “Overview of the CHEMD-
NER patents task”. In: Proceedings of the 5th BioCreative Challenge Evaluation
Workshop.

Krallinger, Martin, Miguel Vazquez, et al. (2011). “The Protein-Protein Inter-
action tasks of BioCreative III: classification/ranking of articles and linking
bio-ontology concepts to full text”. In: BMC Bioinformatics 12.S-8, S3. doi:
10.1186/1471-2105-12-S8-S3. url: https://doi.org/10.1186/1471-
2105-12-S8-S3.

Krippendorff, Klaus (2018). Content analysis: An introduction to its methodology.
Sage publications.

Kuczera, Andreas (2016). “Digital Editions beyond XML - Graph-based Digital
Editions”. In: Proceedings of the 3rd HistoInformatics Workshop on Compu-
tational History (HistoInformatics 2016) co-located with Digital Humanities
2016 conference (DH 2016), Krakow, Poland, July 11, 2016. Pp. 37–46. url:
http://ceur-ws.org/Vol-1632/paper%5C_5.pdf.

Kudo, Taku (2005). “CRF++: Yet another CRF toolkit”. In: Software available
at https://taku910.github.io/crfpp/.

Lafferty, John D., Andrew McCallum, and Fernando C. N. Pereira (2001). “Con-
ditional Random Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data”. In: Proceedings of the Eighteenth International Conference on
Machine Learning (ICML 2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pp. 282–289.

142

Lample, Guillaume, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer (2016). “Neural Architectures for Named Entity Recognition”.
In: CoRR abs/1603.01360. arXiv: 1603.01360. url: http://arxiv.org/abs/
1603.01360.

Lavrentiev, Alexei, Dominique Stutzmann, and Yann Leydier (2015). “Specifying
a TEI-XML Based Format for Aligning Text to Image at Character Level”. In:
Symposium on Cultural Heritage Markup. Vol. 16, BalisageVol16–Lavrentiev01.

Leacock, Claudia and Martin Chodorow (1998). “Combining local context and
WordNet similarity for word sense identification”. In: WordNet: An electronic
lexical database 49.2, pp. 265–283.

Lesk, Michael (1986). “Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone”. In: Proceedings of
the 5th Annual International Conference on Systems Documentation, SIGDOC
1986, Toronto, Ontario, Canada, 1986, pp. 24–26. doi: 10.1145/318723.
318728. url: https://doi.org/10.1145/318723.318728.

Levin, Beth (1993). English verb classes and alternations:a preliminary investi-
gation. University of Chicago Press.

Levy, Omer and Yoav Goldberg (2014). “Dependency-Based Word Embeddings”.
In: Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume
2: Short Papers, pp. 302–308. url: https://www.aclweb.org/anthology/
P14-2050/.

Leydier, Yann, Véronique Eglin, Stéphane Bres, and Dominique Stutzmann (2014).
“Learning-Free Text-Image Alignment for Medieval Manuscripts”. In: 14th In-
ternational Conference on Frontiers in Handwriting Recognition, ICFHR 2014,
Crete, Greece, September 1-4, 2014, pp. 363–368. doi: 10.1109/ICFHR.2014.
67. url: https://doi.org/10.1109/ICFHR.2014.67.

Li, Jiao et al. (2016). “BioCreative V CDR task corpus: a resource for chemi-
cal disease relation extraction”. In: Database 2016. doi: 10.1093/database/
baw068. url: https://doi.org/10.1093/database/baw068.

Ling, Wang, Chris Dyer, Alan W. Black, and Isabel Trancoso (2015). “Two/Too
Simple Adaptations of Word2Vec for Syntax Problems”. In: NAACL HLT 2015,
The 2015 Conference of the North American Chapter of the Association for

143

Computational Linguistics: Human Language Technologies, Denver, Colorado,
USA, May 31 - June 5, 2015, pp. 1299–1304. url: https://www.aclweb.org/
anthology/N15-1142/.

Lu, Yanan, Donghong Ji, Xiaoyuan Yao, Xiaomei Wei, and Xiaohui Liang (2015).
“CHEMDNER system with mixed conditional random fields and multi-scale
word clustering”. In: J. Cheminformatics 7.S-1, S4. doi: 10.1186/1758-2946-
7-S1-S4. url: https://doi.org/10.1186/1758-2946-7-S1-S4.

Lu, Zhiyong et al. (2011). “The gene normalization task in BioCreative III”. In:
BMC Bioinformatics 12.S-8, S2. doi: 10.1186/1471-2105-12-S8-S2. url:
https://doi.org/10.1186/1471-2105-12-S8-S2.

Luo, Fuli, Tianyu Liu, Qiaolin Xia, Baobao Chang, and Zhifang Sui (2018). “In-
corporating Glosses into Neural Word Sense Disambiguation”. In: Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers,
pp. 2473–2482. url: https://aclanthology.info/papers/P18-1230/p18-
1230.

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015). “Effec-
tive Approaches to Attention-based Neural Machine Translation”. In: CoRR
abs/1508.04025. arXiv: 1508.04025. url: http://arxiv.org/abs/1508.
04025.

Lyon, W. (2016). Natural Language Processing with Graph Databases and Neo4j.
Manning, Christopher D. et al. (2014). “The Stanford CoreNLP Natural Lan-
guage Processing Toolkit”. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Bal-
timore, MD, USA, System Demonstrations, pp. 55–60. url: https://www.
aclweb.org/anthology/P14-5010/.

Maurizio, Amelia A., James Sager, Peter Jones, Gail Corbitt, and Louis Girolami
(2008). “Service Oriented Architecture: Challenges for Business and Academia”.
In: 41st Hawaii International International Conference on Systems Science
(HICSS-41 2008), Proceedings, 7-10 January 2008, Waikoloa, Big Island, HI,
USA, p. 315. doi: 10.1109/HICSS.2008.387. url: https://doi.org/10.
1109/HICSS.2008.387.

144

McCann, Bryan, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher
(2018). “The Natural Language Decathlon: Multitask Learning as Question
Answering”. In: CoRR abs/1806.08730. arXiv: 1806.08730. url: http://
arxiv.org/abs/1806.08730.

McNemar, Quinn (1947). “Note on the sampling error of the difference between
correlated proportions or percentages”. In: Psychometrika 12.2, pp. 153–157.

Mehler, Alexander (2005). “Eigenschaften der textuellen Einheiten und Systeme
(Properties of textual units and systems)”. In: Quantitative Linguistik / Quanti-
tative Linguistics - Ein internationales Handbuch / An International Handbook,
pp. 325–347.

Mehler, Alexander, Giuseppe Abrami, Christian Spiekermann, and Matthias Jo-
stock (2018). “VAnnotatoR: A Framework for Generating Multimodal Hyper-
texts”. In: Proceedings of the 29th on Hypertext and Social Media, HT 2018,
Baltimore, MD, USA, July 09-12, 2018, pp. 150–154. doi: 10.1145/3209542.
3209572. url: https://doi.org/10.1145/3209542.3209572.

Mehler, Alexander, Rüdiger Gleim, Tim vor der Brück, et al. (2016). “Wikidition:
Automatic lexiconization and linkification of text corpora”. In: it - Information
Technology 58.2, pp. 70–79. url: http://www.degruyter.com/view/j/itit.
2016.58.issue-2/itit-2015-0035/itit-2015-0035.xml.

Mehler, Alexander, Rüdiger Gleim, Ulli Waltinger, et al. (2009). “eHumanities
Desktop – eine webbasierte Arbeitsumgebung für die geisteswissenschaftliche
Fachinformatik”. In: Proceedings of the Symposium ”Sprachtechnologie und
eHumanities”, 26.–27. Februar, Duisburg-Essen University.

Mehler, Alexander, Wahed Hemati, Rüdiger Gleim, and Daniel Baumartz (2018).
“VienNA: Auf dem Weg zu einer Infrastruktur für die verteilte interaktive
evolutionäre Verarbeitung natürlicher Sprache”. In: Forschungsinfrastrukturen
und digitale Informationssysteme in der germanistischen Sprachwissenschaft.
Ed. by Henning Lobin, Roman Schneider, and Andreas Witt. Vol. 6. Berlin:
De Gruyter.

Mehler, Alexander, Wahed Hemati, Tolga Uslu, and Andy Lücking (2018). “A
Multidimensional Model of Syntactic Dependency Trees for Authorship Attri-
bution”. In: Quantitative analysis of dependency structures. Ed. by Jingyang
Jiang and Haitao Liu. Berlin/New York: De Gruyter.

145

Mehler, Alexander and Reinhard Köhler, eds. (2007). Aspects of Automatic Text
Analysis. Vol. 209. Studies in Fuzziness and Soft Computing. isbn: 978-3-540-
37520-3. doi: 10.1007/978-3-540-37522-7. url: https://doi.org/10.
1007/978-3-540-37522-7.

Mehler, Alexander, Silke Schwandt, Rüdiger Gleim, and Bernhard Jussen (2011).
“Der eHumanities Desktop als Werkzeug in der historischen Semantik: Funk-
tionsspektrum und Einsatzszenarien”. In: JLCL 26.1, pp. 97–117. url: http:
//media.dwds.de/jlcl/2011%5C_Heft1/8.pdf.

Mehler, Alexander, Tolga Uslu, and Wahed Hemati (2016). “Text2voronoi: An
Image-driven Approach to Differential Diagnosis”. In: Proceedings of the 5th
Workshop on Vision and Language, hosted by the 54th Annual Meeting of the
Association for Computational Linguistics, VL@ACL 2016, August 12, Berlin,
Germany. url: https://www.aclweb.org/anthology/W16-3212/.

Mehler, Alexander, Benno Wagner, and Rüdiger Gleim (2016). “Wikidition: To-
wards A Multi-layer Network Model of Intertextuality”. In: Digital Humanities
2016, DH 2016, Conference Abstracts, Jagiellonian University & Pedagogi-
cal University, Krakow, Poland, July 11-16, 2016, pp. 276–279. url: http:
//dh2016.adho.org/abstracts/250.

Melamud, Oren, Jacob Goldberger, and Ido Dagan (2016). “context2vec: Learn-
ing Generic Context Embedding with Bidirectional LSTM”. In: Proceedings of
the 20th SIGNLL Conference on Computational Natural Language Learning,
CoNLL 2016, Berlin, Germany, August 11-12, 2016, pp. 51–61. url: http:
//aclweb.org/anthology/K/K16/K16-1006.pdf.

Michel, Jean-Baptiste et al. (2010). “Quantitative Analysis of Culture Using Mil-
lions of Digitized Books”. In: Science. url: http://www.sciencemag.org/
content/331/6014/176.full.

Mihalcea, R. and P. Tarau (2004). “TextRank: Bringing Order into Texts”. In:
Proc. of EMNLP-04.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Efficient Es-
timation of Word Representations in Vector Space”. In: 1st International Con-
ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings. url: http://arxiv.org/abs/
1301.3781.

146

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean
(2013). “Distributed Representations of Words and Phrases and their Compo-
sitionality”. In: CoRR abs/1310.4546. arXiv: 1310.4546. url: http://arxiv.
org/abs/1310.4546.

Miller, George A. (1995). “WordNet: A Lexical Database for English”. In: Com-
mun. ACM 38.11, pp. 39–41. doi: 10.1145/219717.219748. url: http:
//doi.acm.org/10.1145/219717.219748.

Miller, J. J. (2013). “Graph database applications and concepts with Neo4j”. In:
Proc. SAIS 2013, p. 36.

Morgan, Alexander A. et al. (2008). “Overview of BioCreative II gene normaliza-
tion”. In: Genome Biology 9.2, S3. issn: 1474-760X. doi: 10.1186/gb-2008-
9-s2-s3.

Moro, Andrea, Alessandro Raganato, and Roberto Navigli (2014). “Entity Link-
ing meets Word Sense Disambiguation: a Unified Approach”. In: TACL 2,
pp. 231–244. url: https://tacl2013.cs.columbia.edu/ojs/index.php/
tacl/article/view/291.

Mu, Jesse, Joshua K. Hartshorne, and Timothy O’Donnell (2017). “Evaluating
Hierarchies of Verb Argument Structure with Hierarchical Clustering”. In: Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pp. 986–
991. url: https://www.aclweb.org/anthology/D17-1104/.

Müller, Bernd and Alexandra Hagelstein (2016). “Beyond Metadata: Enriching
life science publications in Livivo with semantic entities from the linked data
cloud”. In: Joint Proceedings of the Posters and Demos Track of the 12th
International Conference on Semantic Systems - SEMANTiCS2016 and the
1st International Workshop on Semantic Change & Evolving Semantics (SuC-
CESS’16) co-located with the 12th International Conference on Semantic Sys-
tems (SEMANTiCS 2016), Leipzig, Germany, September 12-15, 2016. url:
http://ceur-ws.org/Vol-1695/paper1.pdf.

Müller, Thomas, Helmut Schmid, and Hinrich Schütze (2013). “Efficient Higher-
Order CRFs for Morphological Tagging”. In: Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2013, 18-21
October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of

147

SIGDAT, a Special Interest Group of the ACL, pp. 322–332. url: https:
//www.aclweb.org/anthology/D13-1032/.

Navigli, Roberto (2009). “Word sense disambiguation: A survey”. In: ACM Com-
put. Surv. 41.2, 10:1–10:69. doi: 10.1145/1459352.1459355. url: https:
//doi.org/10.1145/1459352.1459355.

Navigli, Roberto, David Jurgens, and Daniele Vannella (2013). “SemEval-2013
Task 12: Multilingual Word Sense Disambiguation”. In: Proceedings of the
7th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT
2013, Atlanta, Georgia, USA, June 14-15, 2013, pp. 222–231. url: http :
//aclweb.org/anthology/S/S13/S13-2040.pdf.

Neale, Steven, Luı́s Gomes, Eneko Agirre, Oier Lopez de Lacalle, and António
Branco (2016). “Word Sense-Aware Machine Translation: Including Senses as
Contextual Features for Improved Translation Models”. In: Proceedings of the
Tenth International Conference on Language Resources and Evaluation LREC
2016, Portorož, Slovenia, May 23-28, 2016. url: http://www.lrec-conf.
org/proceedings/lrec2016/summaries/1078.html.

Newman, Mark EJ (2005). “Power laws, Pareto distributions and Zipf’s law”. In:
Contemporary physics 46.5, pp. 323–351.

Ng, Hwee Tou (2011). “Does word sense disambiguation improve information
retrieval?” In: Proceedings of the fourth workshop on Exploiting Semantic An-
notations in Information Retrieval, ESAIR 2011, Glasgow, United Kingdom,
October 28, 2011, pp. 17–18. doi: 10.1145/2064713.2064724. url: https:
//doi.org/10.1145/2064713.2064724.

OpenNLP (2010). Apache OpenNLP, http://opennlp.apache.org. url: http:
//opennlp.apache.org.

Ott, Myle et al. (2019). “fairseq: A Fast, Extensible Toolkit for Sequence Model-
ing”. In: Proceedings of NAACL-HLT 2019: Demonstrations.

Pal, Alok Ranjan and Diganta Saha (2015). “Word sense disambiguation: a sur-
vey”. In: CoRR abs/1508.01346. arXiv: 1508.01346. url: http://arxiv.org/
abs/1508.01346.

Palmer, Martha, Hoa Trang Dang, and Christiane Fellbaum (2007). “Making
fine-grained and coarse-grained sense distinctions, both manually and auto-

148

matically”. In: Natural Language Engineering 13.2, pp. 137–163. doi: 10.1017/
S135132490500402X. url: https://doi.org/10.1017/S135132490500402X.

Palmer, Martha, Christiane Fellbaum, Scott Cotton, Lauren Delfs, and Hoa Trang
Dang (2001). “English Tasks: All-Words and Verb Lexical Sample”. In: Pro-
ceedings of SENSEVAL-2 Second International Workshop on Evaluating Word
Sense Disambiguation Systems. Toulouse, France: Association for Computa-
tional Linguistics, pp. 21–24. url: https://www.aclweb.org/anthology/
S01-1005.

Papandrea, Simone, Alessandro Raganato, and Claudio Delli Bovi (2017). “Sup-
WSD: A Flexible Toolkit for Supervised Word Sense Disambiguation”. In: Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017 -
System Demonstrations, pp. 103–108. url: https://aclanthology.info/
papers/D17-2018/d17-2018.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2012). “Understanding
the exploding gradient problem”. In: CoRR abs/1211.5063. arXiv: 1211.5063.
url: http://arxiv.org/abs/1211.5063.

Passonneau, Rebecca J., Collin F. Baker, Christiane Fellbaum, and Nancy Ide
(2012). “The MASC Word Sense Corpus”. In: Proceedings of the Eighth In-
ternational Conference on Language Resources and Evaluation, LREC 2012,
Istanbul, Turkey, May 23-25, 2012, pp. 3025–3030. url: http://www.lrec-
conf.org/proceedings/lrec2012/summaries/589.html.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “Glove:
Global Vectors for Word Representation”. In: Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pp. 1532–1543. url: https : // www . aclweb . org /
anthology/D14-1162/.

Pérez-Pérez, M et al. (2017). “Evaluation of chemical and gene/protein entity
recognition systems at BioCreative V.5: the CEMP and GPRO patents tracks”.
In: Proceedings of the BioCreative V.5 Challenge Evaluation Workshop, pp. 11–
18.

149

Perry, Steven (2017).What is big data? More than volume, velocity and variety... -
The developerWorks Blog. https://developer.ibm.com/dwblog/2017/what-
is-big-data-insight/. (Accessed on 11/04/2019).

Peters, Matthew E. et al. (2018a). “Deep Contextualized Word Representations”.
In: Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pp. 2227–2237. url: https://aclanthology.info/papers/
N18-1202/n18-1202.

– (2018b). “Deep Contextualized Word Representations”. In: Proceedings of the
2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 2227–
2237. url: https://www.aclweb.org/anthology/N18-1202/.

Plis, Sergey M., R. Devon Hjelm, Ruslan Salakhutdinov, and Vince D. Calhoun
(2014). “Deep learning for neuroimaging: a validation study”. In: 2nd Inter-
national Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Workshop Track Proceedings. url: http://arxiv.
org/abs/1312.5847.

Popel, Martin and Zdenek Zabokrtský (2010). “TectoMT: Modular NLP Frame-
work”. In: Advances in Natural Language Processing, 7th International Confer-
ence on NLP, IceTAL 2010, Reykjavik, Iceland, August 16-18, 2010, pp. 293–
304. doi: 10.1007/978-3-642-14770-8_33. url: https://doi.org/10.
1007/978-3-642-14770-8%5C_33.

Pradhan, Sameer, Edward Loper, Dmitriy Dligach, and Martha Palmer (2007).
“SemEval-2007 Task-17: English Lexical Sample, SRL and All Words”. In:
Proceedings of the 4th International Workshop on Semantic Evaluations, Se-
mEval@ACL 2007, Prague, Czech Republic, June 23-24, 2007, pp. 87–92. url:
http://aclweb.org/anthology/S/S07/S07-1016.pdf.

PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/. Accessed 19 July
2018.

Qayyum, Adnan, Syed Muhammad Anwar, MuhammadMajid, Muhammad Awais,
and Majdi R. Alnowami (2017). “Medical Image Analysis using Convolutional

150

Neural Networks: A Review”. In: CoRR abs/1709.02250. arXiv: 1709.02250.
url: http://arxiv.org/abs/1709.02250.

Raileanu, Diana, Paul Buitelaar, Spela Vintar, and Jörg Bay (2002). “Evaluation
Corpora for Sense Disambiguation in the Medical Domain”. In: Proceedings
of the Third International Conference on Language Resources and Evaluation,
LREC 2002, May 29-31, 2002, Las Palmas, Canary Islands, Spain. url: http:
//www.lrec-conf.org/proceedings/lrec2002/sumarios/166.htm.

Ramshaw, Lance A. and Mitchell P. Marcus (1995a). “Text Chunking using
Transformation-Based Learning”. In: CoRR cmp-lg/9505040. url: http://
arxiv.org/abs/cmp-lg/9505040.

– (1995b). “Text Chunking using Transformation-Based Learning”. In: CoRR
cmp-lg/9505040. url: http://arxiv.org/abs/cmp-lg/9505040.

Randolph, Justus J (2005). “Free-Marginal Multirater Kappa (multirater K [free]):
An Alternative to Fleiss’ Fixed-Marginal Multirater Kappa.” In: Online sub-
mission.

Rasmussen, Carl Edward (2003). “Gaussian Processes in Machine Learning”. In:
Advanced Lectures on Machine Learning, ML Summer Schools 2003, Canberra,
Australia, February 2-14, 2003, Tübingen, Germany, August 4-16, 2003, Re-
vised Lectures, pp. 63–71. doi: 10.1007/978- 3- 540- 28650- 9_4. url:
https://doi.org/10.1007/978-3-540-28650-9%5C_4.

Rei, Marek, Gamal K. O. Crichton, and Sampo Pyysalo (2016). “Attending to
Characters in Neural Sequence Labeling Models”. In: CoRR abs/1611.04361.
arXiv: 1611.04361. url: http://arxiv.org/abs/1611.04361.

Reisig, Wolfgang (1985). Petri Nets: An Introduction. Vol. 4. EATCS Mono-
graphs on Theoretical Computer Science. Springer. isbn: 3-540-13723-8. doi:
10.1007/978-3-642-69968-9. url: https://doi.org/10.1007/978-3-
642-69968-9.

Resnik, Philip (1995). “Using Information Content to Evaluate Semantic Similar-
ity in a Taxonomy”. In: Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August
20-25 1995, 2 Volumes, pp. 448–453. url: http://ijcai.org/Proceedings/
95-1/Papers/059.pdf.

151

Reuber, Markus, Daniel J Blackburn, et al. (2018). “An interactional profile to
assist the differential diagnosis of neurodegenerative and functional memory
disorders”. In: Alzheimer Disease & Associated Disorders 32.3, pp. 197–206.

Reuber, Markus, Chiara Monzoni, Basil Sharrack, and Leendert Plug (2009).
“Using interactional and linguistic analysis to distinguish between epileptic and
psychogenic nonepileptic seizures: a prospective, blinded multirater study”. In:
Epilepsy & Behavior 16.1, pp. 139–144.

Richardet, Renaud, Jean-Cédric Chappelier, and Martin Telefont (2013). “Bluima:
a UIMA-based NLP Toolkit for Neuroscience”. In: Proceedings of the 3rd Work-
shop on Unstructured Information Management Architecture, Darmstadt, Ger-
many, September 23, 2013, pp. 34–41. url: http://ceur- ws.org/Vol-
1038/paper%5C_7.pdf.

Richardson, Leonard and Sam Ruby (2007). RESTful web services - web ser-
vices for the real world. O’Reilly. isbn: 978-0-596-52926-0. url: http://www.
oreilly.com/catalog/9780596529260/index.html.

Rieger, Burghard (1995). “Situation Semantics and Computational Linguistics:
towards Informational Ecology”. In: Information. New Questions to a Multi-
disciplinary Concept. Ed. by K. Kornwachs and K. Jacoby. Berlin: Akademie-
Verlag, pp. 285–315.

Robinson, Carly, Michael Yeomans, Justin Reich, Chris Hulleman, and Hunter
Gehlbach (2016). “Forecasting student achievement in MOOCs with natural
language processing”. In: Proceedings of the Sixth International Conference on
Learning Analytics & Knowledge, LAK 2016, Edinburgh, United Kingdom, April
25-29, 2016, pp. 383–387. doi: 10.1145/2883851.2883932. url: https:
//doi.org/10.1145/2883851.2883932.

Rousseau, François, Emmanouil Kiagias, and Michalis Vazirgiannis (2015). “Text
Categorization as a Graph Classification Problem”. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pp. 1702–1712. url: https ://www.
aclweb.org/anthology/P15-1164/.

152

Ruecker, Stan, Milena Radzikowska, and Stéfan Sinclair (2011). Visual interface
design for digital cultural heritage: A guide to rich-prospect browsing. Ashgate
Publishing, Ltd.

Rutherford, Eleanor, Wahed Hemati, and Alexander Mehler (2018). “Corpus2Wiki:
A MediaWiki based Annotation & Visualisation Tool for the Digital Humani-
ties”. In:GI-Workshop: Im Spannungsfeld zwischen Tool-Building und Forschung
auf Augenhöhe - Informatik und die Digital Humanities, INF-DH 2018, 25.9.2018,
Berlin, Germany. doi: 10.18420/infdh2018-08. url: https://doi.org/10.
18420/infdh2018-08.

Sahami, Soheila, Thomas Eckart, and Gerhard Heyer (2019). “Using Apache
Spark on Hadoop Clusters as Backend for WebLicht Processing Pipelines”. In:
Selected papers from the CLARIN Annual Conference 2018, Pisa, 8-10 October
2018. 159. Linköping University Electronic Press, pp. 183–190.

Saito, Jahn-Takeshi et al. (2003). “Evaluation of GermanNet : Problems Using
GermaNet for Automatic Word Sense Disambiguation”. In:

Sanders, Derek T., John A. Hamilton Jr., and Richard A. MacDonald (2008).
“Supporting a service-oriented architecture”. In: Proceedings of the 2008 Spring
Simulation Multiconference, SpringSim 2008, Ottawa, Canada, April 14-17,
2008, pp. 325–334. url: http://dl.acm.org/citation.cfm?id=1400549.
1400595.

Sanh, Victor, Thomas Wolf, and Sebastian Ruder (2019). “A Hierarchical Multi-
Task Approach for Learning Embeddings from Semantic Tasks”. In: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 6949–
6956. doi: 10.1609/aaai.v33i01.33016949. url: https://doi.org/10.
1609/aaai.v33i01.33016949.

Schäfer, Roland (2015). “Processing and querying large web corpora with the
COW14 architecture”. In: Proceedings of Challenges in the Management of
Large Corpora 3 (CMLC-3). UCREL. Lancaster: IDS. url: http://rolandschaefer.
net/?p=749.

153

Schäfer, Roland and Felix Bildhauer (2012). “Building Large Corpora from the
Web Using a New Efficient Tool Chain”. In: Proceedings of the Eight Interna-
tional Conference on Language Resources and Evaluation (LREC’12). Istanbul,
Turkey: European Language Resources Association (ELRA), pp. 486–493. isbn:
978-2-9517408-7-7. url: http://rolandschaefer.net/?p=70.

Scheible, Silke, Sabine Schulte im Walde, Marion Weller, and Max Kisselew
(2013). “A compact but linguistically detailed database for German verb sub-
categorisation relying on dependency parses fromWeb corpora: Tool, guidelines
and resource”. In: Web as Corpus Workshop.

Schuler, Karin Kipper (2006). “VerbNet: A Broad-Coverage, Comprehensive Verb
Lexicon”. PhD thesis. University of Pennsylvania. url: http://verbs.colorado.
edu/~kipper/Papers/dissertation.pdf.

Schulte im Walde, Sabine (2006). “Experiments on the Automatic Induction of
German Semantic Verb Classes”. In: Computational Linguistics 32.2, pp. 159–
194. doi: 10.1162/coli.2006.32.2.159. url: https://doi.org/10.1162/
coli.2006.32.2.159.

Schulte im Walde, Sabine, Helmut Schmid, Wiebke Wagner, Christian Hying, and
Christian Scheible (2010). “A clustering approach to automatic verb classifi-
cation incorporating selectional preferences: model, implementation, and user
manual”. In:

Sener, Ozan and Vladlen Koltun (2018). “Multi-Task Learning as Multi-Objective
Optimization”. In: Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada, pp. 525–536. url: http : / /
papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-
optimization.

Shi, Lei and Rada Mihalcea (2005). “Putting Pieces Together: Combining FrameNet,
VerbNet and WordNet for Robust Semantic Parsing”. In: Computational Lin-
guistics and Intelligent Text Processing, 6th International Conference, CICLing
2005, Mexico City, Mexico, February 13-19, 2005, Proceedings, pp. 100–111.
doi: 10.1007/978-3-540-30586-6_9. url: https://doi.org/10.1007/
978-3-540-30586-6%5C_9.

154

Shickel, Benjamin, Patrick Tighe, Azra Bihorac, and Parisa Rashidi (2017). “Deep
EHR: A Survey of Recent Advances on Deep Learning Techniques for Elec-
tronic Health Record (EHR) Analysis”. In: CoRR abs/1706.03446. arXiv: 1706.
03446. url: http://arxiv.org/abs/1706.03446.

Sinclair, Stéfan and Geoffrey Rockwell (2012). “Introduction to Distant Reading
Techniques with Voyant Tools, Multilingual Edition”. In: Digital Humanities
2012, DH 2012, Conference Abstracts, University of Hamburg, Hamburg, Ger-
many, July 16-22, 2012, p. 26. url: http://www.dh2012.uni-hamburg.de/
conference/programme/abstracts/introduction-to-distant-reading-
techniques-with-voyant-tools-multilingual-edition.1.html.

Smith, Larry et al. (2008). “Overview of BioCreative II gene mention recognition”.
In: Genome Biology 9.2, S2. issn: 1474-760X. doi: 10.1186/gb-2008-9-s2-
s2.

Sniedovich, Moshe (2010). Dynamic programming: foundations and principles.
CRC press.

Snoek, Jasper, Hugo Larochelle, and Ryan Prescott Adams (2012). “Practical
Bayesian Optimization of Machine Learning Algorithms”. In: CoRR abs/1206.2944.
arXiv: 1206.2944. url: http://arxiv.org/abs/1206.2944.

Snyder, Benjamin and Martha Palmer (2004). “The English all-words task”. In:
Proceedings of the Third International Workshop on the Evaluation of Systems
for the Semantic Analysis of Text, SENSEVAL@ACL 2004, Barcelona, Spain,
July 25-26, 2004. url: https://aclanthology.info/papers/W04-0811/w04-
0811.

Springorum, Sylvia, Jason Utt, and Sabine Schulte im Walde (2013). “Regular
Meaning Shifts in German Particle Verbs: A Case Study”. In: Proceedings of
the 10th International Conference on Computational Semantics, IWCS 2013,
March 19-22, 2013, University of Potsdam, Potsdam, Germany, pp. 228–239.
url: https://www.aclweb.org/anthology/W13-0120/.

Sudarikov, Roman, Ondrej Dusek, Martin Holub, Ondrej Bojar, and Vincent Krı́z
(2016). “Verb sense disambiguation in Machine Translation”. In: Proceedings of
the Sixth Workshop on Hybrid Approaches to Translation, HyTra@COLING,
Osaka, Japan, December 11, 2016, pp. 42–50. url: https://aclanthology.
info/papers/W16-4506/w16-4506.

155

Suk, Heung-Il and Dinggang Shen (2013). “Deep Learning-Based Feature Rep-
resentation for AD/MCI Classification”. In: Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2013 - 16th International Confer-
ence, Nagoya, Japan, September 22-26, 2013, Proceedings, Part II, pp. 583–
590. doi: 10.1007/978-3-642-40763-5_72. url: https://doi.org/10.
1007/978-3-642-40763-5%5C_72.

Telljohann, Heike, Erhard W. Hinrichs, Sandra Kübler, Heike Zinsmeister, and
Kathrin Beck (2012). Stylebook for the Tübingen Treebank of Written German
(TüBa-D/Z). Seminar für Sprachwissenschaft. Wilhelmstr. 19, D-72074 Tübin-
gen. url: http://www.sfs.uni-tuebingen.de/fileadmin/static/ascl/
resources/tuebadz-stylebook-1201.pdf.

Tixier, Antoine J.-P., Fragkiskos D. Malliaros, and Michalis Vazirgiannis (2016).
“A Graph Degeneracy-based Approach to Keyword Extraction”. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 1860–1870. url:
https://www.aclweb.org/anthology/D16-1191/.

Turner, J. T., Adam Page, Tinoosh Mohsenin, and Tim Oates (2017). “Deep
Belief Networks used on High Resolution Multichannel Electroencephalography
Data for Seizure Detection”. In: CoRR abs/1708.08430. arXiv: 1708.08430.
url: http://arxiv.org/abs/1708.08430.

Unterthiner, Thomas et al. (2014). “Deep learning as an opportunity in virtual
screening”. In: Proceedings of the deep learning workshop at NIPS. Vol. 27,
pp. 1–9.

Usbeck, Ricardo et al. (2014). “AGDISTIS - Graph-Based Disambiguation of
Named Entities Using Linked Data”. In: The Semantic Web - ISWC 2014 -
13th International Semantic Web Conference, Riva del Garda, Italy, October
19-23, 2014. Proceedings, Part I, pp. 457–471. doi: 10.1007/978-3-319-
11964-9_29. url: https://doi.org/10.1007/978-3-319-11964-9%5C_29.

Uslu, Tolga, Wahed Hemati, Alexander Mehler, and Daniel Baumartz (2017).
“TextImager as a Generic Interface to R”. In: Proceedings of the 15th Confer-
ence of the European Chapter of the Association for Computational Linguis-
tics, EACL 2017, Valencia, Spain, April 3-7, 2017, Software Demonstrations,
pp. 17–20. url: https://www.aclweb.org/anthology/E17-3005/.

156

Uslu, Tolga and Alexander Mehler (2018). “PolyViz: a visualization system for a
special kind of multipartite graphs”. In: Proceedings of the IEEE VIS 2018.

Uslu, Tolga, Alexander Mehler, and Daniel Baumartz (2019). “Computing Classifier-
based Embeddings with the Help of text2ddc”. In: Proceedings of the 20th
International Conference on Computational Linguistics and Intelligent Text
Processing, (CICLing 2019). CICLing 2019. La Rochelle, France.

Uslu, Tolga, Alexander Mehler, Daniel Baumartz, Alexander Henlein, and Wahed
Hemati (2018). “fastSense: An Efficient Word Sense Disambiguation Classifier”.
In: Proceedings of the 11th edition of the Language Resources and Evaluation
Conference, May 7 - 12. LREC 2018. Miyazaki, Japan.

Uslu, Tolga, Alexander Mehler, and Dirk Meyer (2018). “LitViz: Visualizing Lit-
erary Data by Means of text2voronoi”. In: Digital Humanities 2018, DH 2018,
Book of Abstracts, El Colegio de México, UNAM, and RedHD, Mexico City,
Mexico, June 26-29, 2018, pp. 308–311. url: https://dh2018.adho.org/en/
litviz-visualizing-literary-data-by-means-of-text2voronoi/.

Uslu, Tolga, Lisa Miebach, et al. (2018). “Automatic Classification in Memory
Clinic Patients and in Depressive Patients”. In: Proceedings of Resources and
ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people
with various forms of cognitive/psychiatric impairments. RaPID. Miyazaki,
Japan.

Veronis, Jean (2001). “Sense tagging: does It make sense?” In: Corpus Linguis-
tics’2001 Conference.

Vickrey, David, Luke Biewald, Marc Teyssier, and Daphne Koller (2005). “Word-
Sense Disambiguation for Machine Translation”. In: HLT/EMNLP 2005, Hu-
man Language Technology Conference and Conference on Empirical Meth-
ods in Natural Language Processing, Proceedings of the Conference, 6-8 Oc-
tober 2005, Vancouver, British Columbia, Canada, pp. 771–778. url: http:
//aclweb.org/anthology/H/H05/H05-1097.pdf.

Vossen, Piek (1998). “Introduction to EuroWordNet”. In: Computers and the
Humanities 32.2-3, pp. 73–89. doi: 10.1023/A:1001175424222. url: https:
//doi.org/10.1023/A:1001175424222.

Wagner, Wiebke, Helmut Schmid, and S Schulte Im Walde (2009). “Verb sense
disambiguation using a predicate-argument-clustering model”. In: Proceedings

157

of the CogSci Workshop on Distributional Semantics beyond Concrete Concepts.
Citeseer, pp. 23–28.

Wang, Alex et al. (2018). “GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding”. In: Proceedings of the Workshop:
Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP
2018, Brussels, Belgium, November 1, 2018, pp. 353–355. url: https://www.
aclweb.org/anthology/W18-5446/.

Wei, Chih-Hsuan et al. (2016). “Assessing the state of the art in biomedical
relation extraction: overview of the BioCreative V chemical-disease relation
(CDR) task”. In: Database 2016. doi: 10.1093/database/baw032. url: https:
//doi.org/10.1093/database/baw032.

Weisstein, Eric W (2002). “Sigmoid function”. In:
Weller, Marion, Sabine Schulte Im Walde, and Alexander Fraser (2014). “Using
noun class information to model selectional preferences for translating prepo-
sitions in smt”. In: Proceedings of the 11th Conference of the Association for
Machine Translation in the Americas, pp. 275–287.

Wiktionary. https://www.wiktionary.org/. Accessed: 2019-09-23.
Wistuba, Martin, Nicolas Schilling, and Lars Schmidt-Thieme (2015). “Learn-
ing hyperparameter optimization initializations”. In: 2015 IEEE International
Conference on Data Science and Advanced Analytics, DSAA 2015, Campus des
Cordeliers, Paris, France, October 19-21, 2015, pp. 1–10. doi: 10.1109/DSAA.
2015.7344817. url: https://doi.org/10.1109/DSAA.2015.7344817.

Witten, Ian H., Eibe Frank, and Mark A. Hall (2011). Data mining: practical ma-
chine learning tools and techniques, 3rd Edition. Morgan Kaufmann, Elsevier.
isbn: 9780123748560. url: http://www.worldcat.org/oclc/262433473.

Wu, Xindong, Xingquan Zhu, Gong-QingWu, andWei Ding (2014). “Data Mining
with Big Data”. In: IEEE Trans. Knowl. Data Eng. 26.1, pp. 97–107. doi:
10.1109/TKDE.2013.109. url: https://doi.org/10.1109/TKDE.2013.109.

Wu, Zhibiao and Martha Stone Palmer (1994). “Verb Semantics and Lexical Se-
lection”. In: 32nd Annual Meeting of the Association for Computational Linguis-
tics, 27-30 June 1994, New Mexico State University, Las Cruces, New Mexico,
USA, Proceedings. Pp. 133–138. url: http://aclweb.org/anthology/P/
P94/P94-1019.pdf.

158

Xu, Kelvin et al. (2015). “Show, Attend and Tell: Neural Image Caption Gener-
ation with Visual Attention”. In: CoRR abs/1502.03044. arXiv: 1502.03044.
url: http://arxiv.org/abs/1502.03044.

Xu, Shuo, Xin An, Lijun Zhu, Yunliang Zhang, and Haodong Zhang (2015).
“A CRF-based system for recognizing chemical entity mentions (CEMs) in
biomedical literature”. In: J. Cheminformatics 7.S-1, S11. doi: 10.1186/1758-
2946-7-S1-S11. url: https://doi.org/10.1186/1758-2946-7-S1-S11.

Yang, Zhilin et al. (2019). “XLNet: Generalized Autoregressive Pretraining for
Language Understanding”. In: CoRR abs/1906.08237. arXiv: 1906.08237. url:
http://arxiv.org/abs/1906.08237.

Yang, Zichao, Xiaodong He, Jianfeng Gao, Li Deng, and Alexander J. Smola
(2015). “Stacked Attention Networks for Image Question Answering”. In: CoRR
abs/1511.02274. arXiv: 1511.02274. url: http://arxiv.org/abs/1511.
02274.

Yeh, Alexander S., Alexander A. Morgan, Marc E. Colosimo, and Lynette Hirschman
(2005). “BioCreAtIvE Task 1A: gene mention finding evaluation”. In: BMC
Bioinformatics 6.S-1. doi: 10 . 1186 / 1471 - 2105 - 6 - S1 - S2. url: https :
//doi.org/10.1186/1471-2105-6-S1-S2.

Zhang, Lu, Jianjun Tan, Dan Han, and Hao Zhu (2017). “From machine learning
to deep learning: progress in machine intelligence for rational drug discovery”.
In: Drug Discovery Today 22.11, pp. 1680–1685. issn: 1359-6446.

Zhao, Yilu and Lianghua He (2014). “Deep Learning in the EEG Diagnosis of
Alzheimer’s Disease”. In: Computer Vision - ACCV 2014 Workshops - Singa-
pore, Singapore, November 1-2, 2014, Revised Selected Papers, Part I, pp. 340–
353. doi: 10.1007/978-3-319-16628-5_25. url: https://doi.org/10.
1007/978-3-319-16628-5%5C_25.

Zhong, Zhi and Hwee Tou Ng (2012). “Word Sense Disambiguation Improves
Information Retrieval”. In: The 50th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Conference, July 8-14, 2012,
Jeju Island, Korea - Volume 1: Long Papers, pp. 273–282. url: http://www.
aclweb.org/anthology/P12-1029.

159

A. Appendix

A.1. Zusammenfassung

Ein Ziel dieser Arbeit war die Entwicklung eines Frameworks für die Homogenisier-
ung der NLP-Landschaft, das es verschiedenen spezialisierten NLP-Werkzeugen
ermöglicht, interoperabel zu werden, nämlich TextImager. Dabei führt TextIm-
ager bestehende Systeme und Entwicklungsumgebungen modular zusammen, um
die integrierten Module untereinander austauschbar zu machen und Spezialisie-
rungsvorteile unter den Modulen nutzbar zu machen. Um die immer größer wer-
denden Datenmengen verarbeiten zu können, ist das Framework in der Lage,
cluster-basiert zu laufen und dabei sowohl horizontal als auch vertikal skalierbar
zu sein.

Die Tabelle A.1 zeigt die Verarbeitungszeit mit dem TextImager für den Korpus,
der im Abschnitt 3.1 vorgestellt wurde. Zu erwähnen ist, dass die Architektur
des TextImagers die Verarbeitung um das 7-fache beschleunigt hat. Dieser Faktor
kann weiter erhöht werden, da die Infrastruktur es nun ermöglicht, zusätzliche
Instanzen dynamisch zu starten.

TextImager wird bereits von vielen Arbeiten als Vorverarbeitungspipeline, als
Feature-Generator und als Programmierschnittstelle eingesetzt (Mehler, Abrami,
et al. 2018; Baumartz, Uslu, and Mehler 2018; Hemati and Mehler 2019a; Hemati
and Mehler 2019b; Kett et al. 2018; Abrami, Mehler, Lücking, et al. 2019; Abrami,
Mehler, and Spiekermann 2019; Rutherford, Hemati, and Mehler 2018; Hunziker
et al. 2019; Uslu, Mehler, and Baumartz 2019; Uslu and Mehler 2018; Uslu,
Mehler, and Meyer 2018; Mehler, Hemati, Uslu, et al. 2018; Uslu, Hemati, et al.
2017; Hemati, Uslu, and Mehler 2017). Das Projekt ist auf GitHub frei zugänglich
und wird von vielen Beitragenden bereits weiterentwickelt. Eine der zukünftigen

160

Table A.1.: Statistiken über die zeitliche und räumliche Komplexität des verar-
beiteten Korpus, die in Abschnitt 3.1 vorgestellt wurde. Im Vergleich
zur nicht verteilten Version ist Textimager mehr als 7 mal schneller
geworden.

Step Days GB
1 Tokenize 0.32 82.48
2 Lemmatization 0.84 97.70
3 POS Tagging 0.37 94.42
4 Named Entity Recognition 0.47 9.06
5 Dependency Parsing 1.85 225.46
6 Time Recognition 0.99 11.95
7 Sentiment Analysis 0.76 7.13
8 Semantic Role Labeling 0.9 8.09
9 Wikification 1.24 26.40
10 Coreference 2.58 6.74

∑
10.32 569.43

Arbeiten wird darin bestehen, einen Prozess zur Automatisierung der Integration
neuer Tools1 zu entwickeln, so dass TextImager immer auf dem neuesten Stand
der Forschung ist.

Im Zuge der Entwicklung der Computerlinguistik hat sich ein rudimentäres Prozess-
modell als wissenschaftliche Disziplin etabliert, das praktizierte Sequenzregular-
itäten von NLP-Werkzeugen in eine Pipeline Reihenfolge definiert. Der Vorteil
einer solchen NLP-Pipeline besteht darin, dass komplexere Aufgaben in kleinere
Aufgaben unterteilt werden können, für die spezialisierte Werkzeuge entwickelt
werden können. TextImager implementiert eine solche Pipeline-Struktur. Durch
die integrierten Werkzeuge und die homogenisierten I/O-Datenströme des Tex-
tImagers ist es zudem möglich, die eingebauten Werkzeuge auf zwei Dimensionen
zu kombinieren: (1) die horizontale Dimension, um eine NLP aufgabenspezifis-
che Verbesserung zu erreichen (2) die orthogonale Dimension, um CL Modelle
implementieren zu können, die auf mehrere Ebenen der Sprache aufbauen und
somit auf eine Kombination aus unterschiedlichen NLP Werkzeugen angewiesen
sind.

1https://paperswithcode.com/area/natural-language-processing

161

Dies bringt allerdings auch Nachteile mitsich. Fehler in der Verarbeitungskette
werden an nachfolgende Werkzeuge weitergegeben. Um dies zu vermeiden, müsste
die gesamte Verarbeitung als ein einziges Optimierungs-/Lernproblem formuliert
werden (Mehler, Hemati, Gleim, et al. 2018) . Einzelne Schritte können sich so
besser gegenseitig beeinflussen. Es gibt bereits Ansätze, die diese Art der Single-
Optimierung durchführen, nämlich Multi-Task-Learning (MLT). Als zukünftige
Arbeit muss die explizite Pipeline- und aufgabenorientierte sequentielle NLP-
Verarbeitung, wie sie derzeit vom TextImager implementiert wird, mit einem
dynamischen MLT prozess kombiniert werden. Eine mögliche Lösung wäre ein
hierarchisches Modell für MLT (Sanh, Wolf, and Ruder 2019). Das Modell wird
hierarchisch trainiert, um einen induktiven Bias einzuführen, indem es eine Reihe
von Low-Level-Aufgaben (z.B. Lemmatisierung und POS-Tagging) in den un-
teren Schichten des Modells und komplexere Aufgaben (z.B. SRL, NER, etc.) in
den oberen Schichten des Modells trainiert. Diese Ansätze werden in zukünftigen
Arbeiten angegangen.

In dieser Arbeit wurde des weiteren ein großer Schritt in die semantische Analyse
von Verben für das Deutsche gemacht. Es wurde ein state-of-the-art Verb-Sense-
Disambiguierungssystem für Deutsch entwickelt. Um dies zu erreichen, wurde
das größte verbsinnannotierte deutsche Korpus erstellt, das für die Erstellung
von überwachten Machine Learning Verfahren benötigt wird. Das Korpus um-
fasst 80% der deutschen Verb-Token, gemessen an COW. Dabei decken 20% der
GermaNet Verb-Lemmata 80% der Verb-Token. Einige verbleibende Verben aus
GermaNet sind jedoch noch nicht abgedeckt. Darüber hinaus gibt es Verben, die
nicht im GermaNet aufgeführt sind. Eine fortlaufende manuelle Annotation für
die Erstellung von Trainingsdaten für die noch nicht abgedeckten Verben wird auf
dauer zu aufwending. Um dies entgegenzuwirken, müssen Methoden der distribu-
tiven und deklarativen Semantik im Zusammenhang mit VSD erforscht werden.
Die distibutive Semantik ist ein Forschungsgebiet, das Theorien und Methoden
zur Quantifizierung und Kategorisierung semantischer Ähnlichkeiten zwischen
linguistischen Elementen erforscht.Es kann in der Distributionshypothese zusam-
mengefasst werden: Linguistische Elemente mit ähnlichen Verteilungen haben
ähnliche Bedeutungen (Harris 1954; Dahl 2016). Verteilungsmodelle repräsen-

162

tieren ein Wort durch den Kontext, in denen es vorkommt, wobei moderne An-
sätze Vektorraummodelle oder Wordembeddings implementieren (Mikolov, Chen,
et al. 2013; Blei, A. Y. Ng, and Jordan 2003; Deerwester et al. 1990). In
diesen Modellen werden Wörter als Punkte in einem hochdimensionalen Raum
dargestellt, in dem ähnliche Wörter tendenziell näher beieinander liegen. Der
Nachteil ist, dass pro syntaktischem Wort ein Vektor erzeugt wird, was bedeutet,
dass die Sinnebene nicht erfasst wird. Aktuelle Modelle, wie z.B. BERT (Devlin,
M. Chang, et al. 2019), XLNet. (Zhilin Yang et al. 2019) und ELMo, induzieren
kontextsensitive Wordembeddings. Die Idee ist es, implizit Sinnembeddings zu
erzeugen, die durch verschiedene Vektoren für das gleiche syntaktische Wort in
verschiedenen Kontexten repräsentiert werden. In zukünftigen Arbeiten wird
diese Art der impliziten Semantik verwendet, um Sinneunterschiede für Verben
zu erhalten, für die keine Trainingsdaten verfügbar sind und daher kein supervised
ML trainiert werden kann.

Eine weitere Möglichkeit, eine höhere Abdeckung der Verb-Semantik zu erreichen,
ist die Verwendung der deklarativer Semantik. Im Falle der deutschen Verben
sind Partikelverben besonders nützlich, da sie hochproduktiv sind (Springorum,
Utt, and Schulte im Walde 2013). Die größte Herausforderung dieser Verben
ist die der Kompositionalität: Kann die Bedeutung eines solchen Verbs durch
das Partikel oder Präfix und dem Rest vorhergesagt werden? Die Frage bleibt
offen, ob ein algebraisches Modell entwickelt werden kann, um die Bedeutung zu
approximieren, basierend auf der Kombination der Bedeutung des Basisverbes
und des Partikels (Bott and Schulte im Walde 2018; Köper et al. 2016). Die
Beantwortung dieser Frage wird in einer zukünftigen Arbeit thematisiert.

Es gibt bekanntlich einen Zusammenhang zwischen Subkategorisierungsrahmen
und Verb-Sinnen. Levin (1993) Klassifizierung basiert auf der Hypothese, dass
das syntaktische Verhalten eines Verbs und seine Bedeutung stark miteinander
verknüpft sind. Ähnlich wie die Levin (1993) Klassen können deutsche Verben in
semantische Verbenklassen unterteilt werden, um unbekannte Verben semantisch
zuzuordnen (Schulte im Walde 2006; Scheible et al. 2013). In Zukunft werden
wir die neuartigen kontextsensitiven Embeddings in Kombination mit Subkate-
gorisierungsrahmen und Prädikat-Argument-Struktur von Verben (W. Wagner,

163

Schmid, and S Schulte Im Walde 2009; Schulte im Walde et al. 2010) kombinieren,
um selektive Restriktionen (Weller, Sabine Schulte Im Walde, and Fraser 2014;
Mu, Hartshorne, and O’Donnell 2017) für cluster-basierte Sinn-Disambiguierung
und Sinn-Induktion zu extrahieren.

164

A.2. Verbs

A.2.1. Skinners Law Evaluation

Wikipedia Title S1 S2

Großer_Sprung_nach_vorn 1 4
Gutmensch 4 0
Narzissmus 4 2
Schlacht_auf_den_Katalaunischen_Feldern 0 2
Instant-Runoff-Voting 2 0
Kniefall_von_Warschau 2 0
Herakleios 0 2

Table A.2.: Sense distribution for übertreiben

Wikipedia Title S1 S2 S3 S4

Tunesien 1 19 0 0
Holzminden 1 34 0 0
1910er 0 31 0 0
Welfen 0 3 1 0
Friedensbewegung 0 14 0 0

Table A.3.: Sense distribution for gründen

Wikipedia Title S1 S2

Fanservice 3 0
Steirische_Harmonika 0 21
FC_Arsenal 3 1
Freie_Software 3 0
Tandy_TRS-80_Model_1 0 2

Table A.4.: Sense distribution for einbauen

165

Wikipedia Title S1 S2

Eiger-Nordwand 3 0
Steve_Winwood 0 2
Amerikanischer_Schwarzbär 4 0
Peter_und_der_Wolf 2 0
The_Beach_Boys 0 4
Totenkopfschwärmer 3 0
Grünspecht 2 0
Eiffelturm 1 1
World_Trade_Center 2 0
Titanic_(1997) 2 0

Table A.5.: Sense distribution for klettern

Wikipedia Title S1 S2 S3 S4 S5

Else_Lasker-Schüler 0 0 0 11 0
Heinrich_VII._(HRR) 0 0 0 11 0
HTML-Editor 0 2 0 0 0
Zerspanbarkeit 0 6 0 0 0
Interactive_System_Productivity_Facility 0 4 0 0 0

Table A.6.: Sense distribution for bearbeiten

Wikipedia Title S1 S2

Victoria_von_Großbritannien_und_Irland_(1840?1901) 1 2
Mayhem 0 3
Karate 2 0
Go_(Spiel) 2 0
Unabhängige_Sozialdemokratische_Partei_Deutschlands 0 3
Kneipe_(Studentenverbindung) 3 0

Table A.7.: Sense distribution for begrüßen

166

Wikipedia Title S1 S2 S3 S4

Gefangenendilemma 28 0 0 0
1984_(Roman) 7 0 0 0
Figuren_in_Tolkiens_Welt 5 1 0 0
Marcus_Antonius 1 3 0 0
Johannes_Bückler 2 2 0 0
Anne_Frank 3 1 0 0
Doppelstern 0 0 1 2

Table A.8.: Sense distribution for verraten

Wikipedia Title S1 S2 S3 S4

Figuren_in_Tolkiens_Welt 0 12 0 1
Adolf_Hitler 0 9 0 0
Verschwörungstheorie 0 1 1 1
Buffy_–_Im_Bann_der_Dämonen 0 7 1 1

Table A.9.: Sense distribution for erfahren

Wikipedia Title S1 S2 S3 S4

Meteorit 1 0 9 0
Tower_of_London 2 13 0 0
Warschau 1 14 0 2
Zirkon 0 0 8 6

Table A.10.: Sense distribution for stammen

Wikipedia Title S1 S2 S3

Steirische_Harmonika 0 25 0
Die_Siedler_von_Catan 0 16 0
Arche_Noah 0 12 0

Table A.11.: Sense distribution for bauen

167

A.2.2. GermaNet Sense Mappings to Super Senses

The table shows the merged senses and
the respective decision criteria:

■ Senses not distinguishable
■ Circular Senses
■ Senses/distinctions are missing
■ Obsolete or dialectical meanings
■ Methaphor

LexIds Map To Lemma C.

78225 76100 ablehnen ■
79173 78279 ablehnen ■
78263 78279 ablehnen ■
83482 83480 abschließen ■
144567 144566 abspielen ■
75468 75463 abstimmen ■
77711 74980 agieren ■
75668 74980 agieren ■
79573 74040 anbieten ■
75755 74040 anbieten ■
76330 83407 anfangen ■
83272 78924 anführen ■
79800 79740 angehen ■
79517 78181 anlocken ■
76490 74114 annehmen ■
75163 74114 annehmen ■
77336 77249 annehmen ■
79535 78077 anordnen ■
83780 75422 anpassen ■
82446 82402 ansehen ■
82445 82402 ansehen ■
75659 144803 ansiedeln ■
80564 76263 anwenden ■
77735 76263 anwenden ■
144832 75543 anzeigen ■

LexIds Map To Lemma C.

77955 77709 arbeiten ■
79738 79207 attackieren ■
75850 83145 aufbauen ■
78434 85400 aufdecken ■
79554 76194 auferlegen ■
83470 79874 aufgeben ■
83497 85392 aufheben ■
83504 73727 aufhören ■
77580 77882 aufklären ■
78832 77882 aufklären ■
82438 77430 aufpassen ■
74690 74898 aufregen ■
144916 74898 aufregen ■
82315 77888 aufspüren ■
80824 80818 aufstellen ■
83259 78652 aufstellen ■
82739 81866 auftauchen ■
77554 81866 auftauchen ■
85538 75835 aufteilen ■
75671 75667 auftreten ■
83814 82740 auftreten ■
82725 74394 aufweisen ■
84888 84886 ausbauen ■
84887 84886 ausbauen ■
83156 78555 ausdenken ■
77474 74521 aushalten ■
77462 74521 aushalten ■
83426 83190 auslösen ■
145113 76111 ausschalten ■
78829 78613 aussprechen ■
145187 84768 austauschen ■
145195 83519 ausweichen ■
73494 73491 auszeichnen ■

168

LexIds Map To Lemma C.

82930 82896 bauen ■
77382 79034 beanspruchen ■
74672 74678 bedauern ■
82700 80406 bedecken ■
74853 73640 beeindrucken ■
84840 78080 beeinflussen ■
84870 79663 beeinträchtigen ■
145236 80003 befestigen ■
76443 76256 befriedigen ■
82286 77712 begegnen ■
82320 75176 begegnen ■
83406 145239 beginnen ■
81169 75945 begleiten ■
109526 79013 begründen ■
79021 78337 beharren ■
79766 77478 behaupten ■
109404 79094 bekräftigen ■
145263 79803 bekämpfen ■
76219 73964 belohnen ■
77420 75553 bemühen ■
78041 75368 benennen ■
85957 76270 benutzen ■
77750 78343 berücksichtigen ■
74239 75567 beschaffen ■
76509 77950 beschäftigen ■
109437 79935 besetzen ■
109435 79935 besetzen ■
75566 75031 besorgen ■
145311 78029 bestimmen ■
109454 75372 bestimmen ■
78328 78324 bestätigen ■
79082 78324 bestätigen ■
77483 75262 besuchen ■
141358 76528 betreffen ■
75802 75324 betreiben ■
80757 80753 bewegen ■

LexIds Map To Lemma C.

78441 82734 beweisen ■
78598 82734 beweisen ■
109317 73988 bezahlen ■
109316 73988 bezahlen ■
77734 79049 beziehen ■
76533 79049 beziehen ■
74039 75746 bieten ■
83873 75746 bieten ■
75779 75746 bieten ■
79585 77993 billigen ■
79164 75057 binden ■
82299 82303 blicken ■
85323 76113 blockieren ■
85315 76113 blockieren ■
77378 85724 brauchen ■
85727 85724 brauchen ■
84250 83725 brechen ■
76300 83725 brechen ■
81248 73921 bringen ■
78032 73765 charakterisieren ■
78975 78552 darlegen ■
73766 73304 darstellen ■
78976 78551 darstellen ■
78954 78551 darstellen ■
109332 78593 demonstrieren ■
77708 77789 denken ■
83258 78596 dokumentieren ■
82808 82055 drehen ■
81914 82055 drehen ■
83349 79622 drucken ■
81188 80691 drängen ■
75872 75023 durchführen ■
75866 75023 durchführen ■
79887 76367 durchsetzen ■
76240 73457 eignen ■
78345 73551 einbeziehen ■

169

LexIds Map To Lemma C.

77752 73551 einbeziehen ■
77963 75164 eingehen ■
77373 77361 einrichten ■
85175 74094 einräumen ■
76493 76492 einsetzen ■
77362 75462 einstellen ■
144378 74209 empfangen ■
82487 74485 empfinden ■
83548 83535 enden ■
82306 77588 entdecken ■
83174 78984 entfalten ■
78044 76437 entscheiden ■
76222 73963 entschädigen ■
76442 73437 entsprechen ■
83158 78543 entwerfen ■
83036 78535 entwickeln ■
84008 83834 entwickeln ■
83882 83834 entwickeln ■
109986 74318 erarbeiten ■
74571 74547 erfreuen ■
73413 76454 erfüllen ■
78581 73745 ergeben ■
74434 73745 ergeben ■
84937 77818 ergänzen ■
83883 78308 erheben ■
74724 77109 erholen ■
84039 84038 erhöhen ■
82264 82262 erkennen ■
78970 78895 erklären ■
89997 74211 erlangen ■
76088 78311 erlauben ■
77545 75260 erleben ■
77541 75260 erleben ■
79714 74515 erleiden ■
74657 74515 erleiden ■
77886 82321 ermitteln ■

LexIds Map To Lemma C.

82764 76087 ermöglichen ■
79193 79923 erobern ■
110251 78567 erschließen ■
100797 74609 erschrecken ■
77454 74518 ertragen ■
77331 77396 erwarten ■
74237 74322 erwerben ■
78960 78959 erzählen ■
83450 75849 eröffnen ■
144397 83148 etablieren ■
81239 81559 fahren ■
81634 81559 fahren ■
87060 73571 fehlen ■
87224 84801 festigen ■
78740 75095 festlegen ■
82261 77584 feststellen ■
77892 77584 feststellen ■
82307 77891 finden ■
81546 81620 fliegen ■
141265 81350 fliegen ■
79030 77376 fordern ■
112657 78321 freigeben ■
74620 74602 fürchten ■
75118 73801 geben ■
81724 81356 gehen ■
130725 73519 gehen ■
73387 73375 geschehen ■
78313 76090 gestatten ■
78313 76090 gestatten ■
77245 77229 glauben ■
82690 82239 glänzen ■
78194 73600 halten ■
77745 73600 halten ■
77593 73600 halten ■
77652 76286 halten ■
74370 73671 halten ■

170

LexIds Map To Lemma C.

73856 73815 handeln ■
83800 77800 heben ■
83793 84749 heilen ■
82323 77583 herausfinden ■
78781 78775 hervorheben ■
79668 76127 hindern ■
75265 75216 hingehen ■
77991 74519 hinnehmen ■
82728 78787 hinweisen ■
82450 82447 hören ■
77481 82447 hören ■
74870 78174 inspirieren ■
77244 77241 kennen ■
77242 77241 kennen ■
74728 82603 klagen ■
80318 80310 klopfen ■
78529 78522 klären ■
84083 73789 kommen ■
77713 79643 konfrontieren ■
78129 75814 kontrollieren ■
83243 85706 kopieren ■
82863 85706 kopieren ■
141069 79789 kämpfen ■
81843 81834 landen ■
81449 81357 laufen ■
83806 73401 laufen ■
109367 76423 lauten ■
73265 76674 leben ■
83944 74723 legen ■
86971 75707 lehren ■
79287 77523 lesen ■
82677 82207 leuchten ■
79516 74501 locken ■
78179 74501 locken ■
140156 77196 locken ■
78509 76298 lösen ■

LexIds Map To Lemma C.

78426 76298 lösen ■
77579 76298 lösen ■
83092 83110 malen ■
86797 86794 melden ■
86796 86794 melden ■
110714 80694 mischen ■
77600 82281 mitbekommen ■
75241 75250 mitmachen ■
74249 81171 mitnehmen ■
140604 80058 montieren ■
74626 73584 mögen ■
77590 78574 nehmen ■
85914 74109 nehmen ■
80339 74109 nehmen ■
73793 73792 neigen ■
79449 76412 nennen ■
74900 74688 nerven ■
78357 75851 organisieren ■
75569 74255 organisieren ■
141981 80361 packen ■
112508 112507 probieren ■
82766 78517 produzieren ■
142056 75742 promovieren ■
142072 75735 qualifizieren ■
86970 85872 rauchen ■
110711 75589 regeln ■
141611 82907 rekonstruieren ■
85174 75822 räumen ■
82749 78518 schaffen ■
82781 78518 schaffen ■
129735 79300 schimpfen ■
85814 129775 schmecken ■
87037 74801 schreien ■
141668 84827 schwächen ■
79748 76018 schützen ■
74386 74371 sparen ■

171

LexIds Map To Lemma C.

83017 74363 speichern ■
79286 78950 sprechen ■
81463 80765 springen ■
82488 74489 spüren ■
80952 80958 stammen ■
80957 80958 stammen ■
83441 75871 starten ■
130045 74497 staunen ■
79999 80440 stecken ■
80446 80440 stecken ■
89378 89380 stecken ■
84903 77806 steigern ■
80844 80813 stellen ■
82666 76837 stinken ■
81861 83502 stoppen ■
81201 81093 stoßen ■
82679 82208 strahlen ■
145181 83179 strahlen ■
141822 79772 streiten ■
83764 84804 stärken ■
89400 79649 stören ■
73751 75953 stützen ■
81986 75683 tanzen ■
75197 77276 trauen ■
75273 75175 treffen ■
89423 89422 treten ■
130357 82360 umsehen ■
83973 75159 unterbringen ■
130381 75863 unternehmen ■
86282 79915 unterwerfen ■
78656 76196 urteilen ■
78729 75108 verabschieden ■
130400 85386 verbergen ■
84688 83789 verbessern ■
82970 85720 verbrauchen ■
110875 74215 verbuchen ■

LexIds Map To Lemma C.

81361 77414 verfolgen ■
79560 74337 verfügen ■
78031 74337 verfügen ■
74405 74337 verfügen ■
130457 75012 vergewaltigen ■
73296 73645 verhalten ■
130471 78674 verhandeln ■
78804 75070 verheiraten ■
84852 84067 verkürzen ■
75925 77318 verlangen ■
83938 74423 verlieren ■
84003 84923 verlängern ■
112505 75571 vermitteln ■
111004 76022 vernachlässigen ■
84659 79919 vernichten ■
84262 79919 vernichten ■
131539 78078 verordnen ■
112413 75223 verpassen ■
112409 75223 verpassen ■
79171 75099 verpflichten ■
78744 78812 verraten ■
81224 81074 verschieben ■
75762 79159 versprechen ■
89447 78850 verständigen ■
79792 79744 verteidigen ■
76011 79011 verteidigen ■
78361 85576 verteilen ■
132277 75434 vertragen ■
82963 76271 verwenden ■
77400 79042 vorbehalten ■
132404 79808 vordringen ■
112510 82326 vorfinden ■
78653 75694 vorgeben ■
77366 77365 vorsehen ■
78570 77596 vorstellen ■
76414 76413 vorstellen ■

172

LexIds Map To Lemma C.

132715 78967 vortragen ■
82721 73940 vorweisen ■
109707 109708 wachen ■
84007 76735 wachsen ■
83859 84024 wachsen ■
80590 84998 wachsen ■
77275 75194 wagen ■
83556 73391 wandeln ■
78918 78913 warnen ■
89494 73656 warten ■
76055 73656 warten ■
73824 73823 wechseln ■
89501 84143 wechseln ■
85060 74157 wegnehmen ■
132876 82251 wehen ■
112234 79746 wehren ■
133237 79595 weiterleiten ■
133293 133286 wenden ■
109333 79199 werben ■
84147 77510 wiederholen ■
113289 82738 wiederspiegeln ■
73643 73637 wirken ■
83180 73637 wirken ■
73329 73312 wohnen ■
74008 73967 zahlen ■
89629 83077 zeichnen ■
83101 83077 zeichnen ■
73628 78592 zeigen ■
113100 78428 zerlegen ■
81203 81075 ziehen ■
79069 78227 zugeben ■
78315 76091 zulassen ■
139606 78532 zurückführen ■
74848 73307 zusammenhängen ■
75845 74281 zusammenstellen ■
78533 78004 zuschreiben ■

LexIds Map To Lemma C.

139871 77996 zustimmen ■
84160 78231 ändern ■
78608 78742 äußern ■
83970 85366 öffnen ■
83965 85376 öffnen ■
73739 73831 überlassen ■
74111 74110 übernehmen ■
130392 73677 übersehen ■
82436 76079 überwachen ■
139979 76299 überwinden ■

173

