
future internet

Article

Generic Tasks for Algorithms

Gregor Milicic * , Sina Wetzel and Matthias Ludwig

Institute of Mathematics and Computer Science Education, Goethe University Frankfurt,
60325 Frankfurt, Germany; wetzel@math.uni-frankfurt.de (S.W.); ludwig@math.uni-frankfurt.de (M.L.)
* Correspondence: milicic@math.uni-frankfurt.de

Received: 31 July 2020; Accepted: 1 September 2020; Published: 3 September 2020
����������
�������

Abstract: Due to its links to computer science (CS), teaching computational thinking (CT) often
involves the handling of algorithms in activities, such as their implementation or analysis. Although
there already exists a wide variety of different tasks for various learning environments in the area of
computer science, there is less material available for CT. In this article, we propose so-called Generic
Tasks for algorithms inspired by common programming tasks from CS education. Generic Tasks can
be seen as a family of tasks with a common underlying structure, format, and aim, and can serve as
best-practice examples. They thus bring many advantages, such as facilitating the process of creating
new content and supporting asynchronous teaching formats. The Generic Tasks that we propose were
evaluated by 14 experts in the field of Science, Technology, Engineering, and Mathematics (STEM)
education. Apart from a general estimation in regard to the meaningfulness of the proposed tasks, the
experts also rated which and how strongly six core CT skills are addressed by the tasks. We conclude
that, even though the experts consider the tasks to be meaningful, not all CT-related skills can be
specifically addressed. It is thus important to define additional tasks for CT that are detached from
algorithms and programming.

Keywords: computational thinking; generic tasks; algorithms; K–12; problem solving

1. Introduction

In our globalized and digitalized world of today, it is essential to be skilled in computational
thinking (CT) [1,2]. Wing defines CT as “the thought processes involved in formulating a problem and
expressing its solution(s) in such a way that a computer—human or machine—can effectively carry
out” [3]. In spite of an ongoing discussion regarding the definition of CT, most researchers usually
refer to Wing, as she was the one who originally coined the term [4]. The amount of scientific research
targeting CT has increased dramatically over the last years [2]. Even though most researchers agree
that young people should acquire CT-related skills [5], there is less consent on the appropriate age for
learning CT and on how this goal can be reached [6]. The latter can partly be attributed to the unclear
role of CT in relation to other skills and subjects: Should CT be taught as a separate subject, should it be
part of computer science (CS) as some kind of pre-skill (e.g., [7]), or should it be part of other Science,
Technology, Engineering, and Mathematics (STEM) subjects due to its parallels to the more general
skills of problem solving and logical thinking? Of course, this question cannot solely be answered on a
topical level, but also needs to be addressed in the context of existing school curricula [2]. Integrating
new content into K–12 education always poses challenges for administrators and teachers alike, as the
already tight schedules often do not allow for additional topics or subjects. Before there will be a clear
shift allowing for CT to be a key part of K–12 education, there is a need for conveying this integral skill
with little effort for teachers and within the scope of existing subjects.

To understand CT in more detail and thus be able to teach it, the concept must become much
more tangible for educators, rather than just providing them with an abstract definition. For this

Future Internet 2020, 12, 152; doi:10.3390/fi12090152 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0003-3495-0787
https://orcid.org/0000-0003-1296-8898
http://dx.doi.org/10.3390/fi12090152
http://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/12/9/152?type=check_update&version=2


Future Internet 2020, 12, 152 2 of 16

purpose, it can be helpful to divide the broad term into more narrowly defined subskills that can be
understood more easily. Within a report for the European Commission on how CT could be integrated
into compulsory education [8], different distinctions and notions for these subskills as used by other
researchers are described and compared. Analyzing their similarities and differences, the authors
Bocconi et al. arrive at a set of six core CT skills: abstraction, decomposition, algorithmic thinking,
debugging, automation, and generalization. As there is currently no empirically validated division into
CT subskills to our knowledge, we will rely on the distinction and definitions as given by Bocconi et al.
The first core skill, abstraction, refers to the ability to reduce the unnecessary detail from a real-world
problem—or, more generally, a question—while adhering to the essential information that cannot be
neglected. Oftentimes, this also involves finding an appropriate mode of representation for a piece
of information. Decomposition encompasses dividing a problem into a set of smaller sub-problems
that can be solved more easily. After solving each of these problems independently, the solution
to the more general problem can be derived by combining and further developing the solutions to
the sub-problems. As such, decomposition is closely related to generalization, which allows one
to draw conclusions and solve problems based on priorly solved ones and experiences that were
made beforehand. This skill also refers to the recognition of patterns and to their rediscovery in other
problems. Algorithmic thinking encapsulates another facet of CT, namely the process of finding and
describing steps in a clear manner such that it is possible to arrive from an initial state at a desired
target state. This description of steps usually means formulating an algorithm, whether in pseudo-code,
a block- or text-based programming language, or even in the form of a diagram. Debugging, as an
element of CT, is more than just being able to find a bug in a program, even though this can undeniably
be one part of it. However, in its core, debugging also describes the ability to critically scrutinize the
outcome of a situation, whether this might be an algorithm, a method, or the process of verifying
a hypothesis. The last skill, automation, refers to the act of transferring instructions to a computer
in a way that the machine knows how to process. This also includes exploiting all the advantages a
machine offers, for example, with regard to the execution of repetitive tasks.

In the last years, more and more materials aimed at testing or fostering CT were developed.
For example, Zapata-Cáceres et al. [9] developed a test for CT skills for students in primary schools,
and Román-González [10] developed one for students in K7 and K8. In a study aimed at measuring
international Information Literacy, Fraillon et al. [1] also developed a test for CT. What many of these
task sets and tests have in common is the lack of a distinction between different core CT skills.

In prior works, we have already expressed the desideratum to know more about how different
core CT skills can be addressed and fostered; e.g., in a case study [11], we met students with highly
evolved skills in the area of algorithmic thinking but very few abilities regarding the skill of abstraction.
This mismatch led us to scrutinize how single skills can be purposefully targeted. This paper revolves
around two central aspects. First, we will introduce the general concept of so-called Generic Tasks
(GTs) that can be used in educational contexts and that can facilitate the creation of new content to
teach a particular concept. Apart from the concept in general, we propose GTs that can be derived
from almost any algorithm. The second part of the paper revolves around the evaluation of these GTs
based on a survey with n = 14 experts in the field of STEM education. One main purpose of this study
is to analyze in detail which core CT skills are addressed by the defined GTs. We conclude that it is not
a trivial endeavor to purposefully target core CT skills apart from algorithmic thinking and debugging
when working with algorithms. It is thus important to define tasks for CT that are detached from
algorithms and programming, specifically targeting other CT skills as well.

2. Materials and Methods

2.1. The Concept of Generic Tasks

A generic task (GT) can be seen as a blueprint or representative of a whole family of tasks with
a common underlying structure, format, and aim. As such, it cannot be given to the students per se,



Future Internet 2020, 12, 152 3 of 16

but requires a certain input from the teacher. A GT can be modified without much effort, and thus,
it is possible to derive further tasks from it that cater to a specific purpose. A set of GTs may, on the
one hand, serve as guidance and best-practice examples for teachers, and, on the other hand, function
as blueprint tasks that can help teachers to design further related tasks. An example of GTs in the
field of mathematics education for linear functions can be found in [12]. In the context of outdoor
mathematics, a ramp, which can be found in many places outside, can serve as a central object for
many GTs. Taking the measurements ∆y and ∆x of a ramp, it is possible to formulate different tasks
related to its slope. A task could be posed asking for the corresponding linear function y = mx + c,
the angle of the slope tan α = ∆y

∆x , or the slope in percent m = ∆y
∆x · 100. During the Erasmus+ project

MoMaTrE (Mobile Math Trails in Europe, http://momatre.eu/downloads/), a whole catalog with
GTs for different mathematical topics was created. In [13] a potential use of Generic Tasks is presented.
By defining GTs and linking them to specific topics inside the curriculum, it is possible for teachers
to easily create a learning path for their students by focusing on a specific topic while still providing
them with a variety of different tasks. As such, instead of defining and analyzing only one single task
for a specific topic, the impact of conducting educational research on and with GTs on a more abstract
level can be much higher, as a whole family of tasks with a common underlying structure, format,
and aim is examined.

Further potential can be identified when the concept of GTs is used in conjunction with modern
technology. For each GT, a corresponding sample solution can be defined, as well as additional
hints. Both can be made available to the students as asynchronous feedback that does not require the
interaction of the teacher. Upon modification and, thus, derivation of a task from a GT, the hints and
many aspects of the sample solutions could remain intact from the previously defined ones for the
GT. This process could also be done automatically by a program or inside a learning environment.
At the university level, such a platform called MATeX already exists for many topics in the field
of mathematics for engineers [14]. Using MATeX, it is possible to automatically and randomly
generate tasks with corresponding solutions for many typical exercises, such as solving linear systems,
optimization problems, and linear regressions.

Apart from the obvious time-saving aspects for the educators, the definition of GTs would also be
beneficial from a didactical point of view. Not only could hints and sample solutions be automatically
generated and provided, but, depending on the answering format, the input could also be immediately
validated. A large number of studies describe the outstanding importance of effective feedback:
In their meta-analysis, Hattie and Timperley [15] emphasize the value of feedback in students’ learning
progress. GTs could also play a crucial role to create a personalized learning process and learning
environments of the future by addressing specific competencies on different levels. For instance,
GTs can support educators in using internal differentiation by providing tasks in different formats
and levels of difficulty. In this context, it would also be desirable to define GTs specifically fostering a
certain skill. A whole family of tasks derived from GTs could be used to address a student’s individual
requirements and cultivate his or her corresponding strengths. As described, many steps of this process
could be outsourced to a machine and executed automatically.

Definition of the Generic Tasks for Algorithms

Especially in the field of teaching programming, many attempts have already been made to use
technology to simplify and improve the teaching and evaluation process. One attempt is to support
the students with asynchronous feedback and evaluate the students’ solutions automatically. In a
literature review [16], 69 of such tools were analyzed and compared. Most of the tools offer only
limited feedback or cannot be customized by educators, making usage of those tools very situational.
Similar tools also exist for block-based programming languages, such as Snap [17] or Scratch [18].
iSnap [19], for example, provides data-driven hints without the need for an expert to define the
hints beforehand. As a consequence, though, the hints only tell the students what they have to do,
but not why, i.e., instead of strategic hints [15] supporting the solution process, explicit hints are given,

http://momatre.eu/downloads/


Future Internet 2020, 12, 152 4 of 16

providing content rather than strategies. Another tool that can support teachers is Dr. Scratch [20],
which provides students with feedback regarding the implementation of their Scratch code. However,
the evaluation of CT-related skills simply based on the students’ input is rather difficult, as the
underlying concept seems very narrow. For example, adding a block for a self-defined function
without any functionality or adding other additional blocks at all will raise the score in the category of
abstraction by two points.

We want to present a different approach of supporting educators who are willing to teach CT.
As a first step, we define GTs for algorithms and examine which core CT skills can be addressed by
them. Working with algorithms is an important and integral part of CT, as it describes the process to
“... develop algorithmic solutions to those problems so that the solutions could be operationalized with
a computer” [1]. As described, a requirement for a GT is its independence from the corresponding
content, i.e., a GT is not a concrete task that can be assigned to a student, but rather a blueprint
requiring input to actually derive a specific task. As such, a GT for algorithms should be usable
for a whole class of algorithms. Consequently, the GT could be used for a wide range of different
approaches and frameworks, like unplugged activities and visual programming in combination with
programmable hardware or other representations, like pseudocode and flow diagrams. Providing an
additional, e.g., Python, script can transfer the input for such a GT, an algorithm, into a specific task
without any other intervention of the educator. The GTs targeting specific CT skills will thus also be
usable in and transferable to other tools and learning environments, making it easier for teachers to
integrate them into their lessons and different school subjects [5]. At the same time, using a similar
structure of tasks like the proposed GTs would also make empirical results easier to compare with each
other across different settings.

The following GTs are based on common types of tasks for programming used in CS
education [21–24]. However, by defining GTs on an abstract level, we want to emphasize the possibility
of utilizing the tasks in different settings with the aim to teach the students CT as a special way of
problem solving, focusing on core skills that are also usable in other situations and contexts with
algorithms as the basis. In CS education, on the other hand, the primary focus when similar tasks are
used often purely lies on writing code [25], although CT-related skills could be fostered as well [26].

As input for all of the following GTs, the <description> and the <code> are required to derive
corresponding tasks. If the algorithm produces a graphical output, an <image> of the expected result
can also be given and used, either instead of the textual description or as an additional cue.

Simply giving the students the <description> and, if available, the <image>, as well as asking
them to write a corresponding algorithm, results in the implementation task. Asking the students
what a program does when being executed based on solely the <code> will be called the analysis task.
In computer science education, this type of task is also known as “Explain in Your Own Words” [23] or,
simply, “Explaining” [21]. A similar type of task called “Tracing” [21] focuses on the execution of a
program line by line [23], and would require the educator to select the parts of the algorithm to be
analyzed, making the task definition not independent from the algorithm it is based on and, thus,
not transferable into a GT that can be generated automatically. Changing the provided <code>
slightly and intentionally inserting errors will result in an <erroneous code>, which, on a semantic
level, behaves differently from that which is expected. This type of task is also called “Fixing” [24].
Taking the blocks (or lines, for that matter) of the given <code> apart and putting them in a random
order will result in a <code puzzle>. In accordance with CS education, we will call that type of task
a Parsons problem [27]. Randomly adding additional blocks to the <code puzzle> will result in a
<code puzzle redundant>, called Parsons Problem (Distractor) and, as such, a variant of the original
Parsons problem. Studies suggest that the Parsons problem (and its variant) can be an efficient and
useful way to teach programming [24,28]. An overview in the form of a graphical representation of the
necessary input and the different types of output tasks can be found in Figure 1.



Future Internet 2020, 12, 152 5 of 16

Figure 1. The basic idea for the Generic Tasks (GTs) for algorithms.

Using the components <description>, <code>, and <image> as an input, the four different types
of GTs (implementation, analysis, find the error, and Parsons problem) can be defined as follows:

GT 1 Implementation: Create a program for the following description:

<description>

Optional : The result should look like this:

<image>

GT 2 Analysis: What happens when the following program is executed? Describe!

<code>

GT 3 Find the Error: Given is the following program:

<erroneous code>

Originally, the program is supposed to work like this:

<description>

Find and correct the errors so that the program does what it is supposed to do.
GT 4a Parsons Problem: Create a program for the following description:

<description>

Use the following blocks/lines:

<code puzzle>

GT 4b Parsons Problem (Distractor): Create a program for the following description:

<description>

Use some of the following blocks/lines:

<code puzzle redundant>

A main pre-requisite for the algorithms to be suitable as input for the GT is that it must be possible
to give a clear and precise description of what they do or of the output that they are supposed to
generate. Depending on the age and skill level of the target group, the algorithms should also not be
too long. Of course, the older and more advanced the target group, the more complex the algorithms
can be. One example for a rather short algorithm using a block-based programming language that can



Future Internet 2020, 12, 152 6 of 16

serve as input and that also produces a visual output can be seen in Figure 2. As mentioned before,
the <image> is only optional as input; however, in some cases, it can make the given <description>
much clearer, and can thus prevent the students from misconducting the task. The more automatized
the evaluation of a student’s answer should be, the more details need to be given in the <description>.
For example, if one wants to automatically evaluate a student’s answer to the Implementation task for
an algorithm like the one in Figure 2, the <description> should also contain measurement information
regarding the size of the plus shape. An exemplary set of the corresponding GTs that can be arrived
from the algorithm “Plus” from Figure 2 is attached in the Appendix B.

Figure 2. One example for possible input.

The approach of defining and using a class of problems and automating the generation and/or
evaluation itself is not new. For Parsons problems, a tool called “epplets” already exists [29] for several
programming languages (C++, Java, C#), which provides the students with the possibility to solve
several Parsons problems. However, the teacher has no influence or control over the given algorithm
itself and has to rely on the predefined tasks. In another approach, a JavaScript library is available to
include Parsons problems with automated feedback [30], even adapting the difficulty of the problems
based on the students’ performance [31]. On Runestone [32], an open-source platform for ebooks,
educators can define their own Parsons problems and embed them in their ebooks. Using a different
approach and conceptual setting like the block model [33], it would also be possible to define other
and additional tasks [23]. However, some of those tasks would need more interaction of the educators.
In contrast to that, using the proposed GTs facilitates deriving corresponding tasks based on a given
algorithm without any further input and for all types of approaches and representations of algorithms.

The defined GTs are not meant to be solved by the students one after another, but rather represent
different types of tasks and variations based on an algorithm. There is some evidence pointing towards
a hierarchy of programming tasks [22], with Parsons problems (GT 4a and GT 4b) being easier to solve
for students than analysis tasks (GT 2). Implementation tasks (GT 1) are considered the most difficult
types of problems [21]. The different GTs could thus also be used by educators to address different



Future Internet 2020, 12, 152 7 of 16

skill levels of their learners. After generating a corresponding set of tasks based on an algorithm using
the defined GTs, more difficult tasks could be assigned to stronger students, whereas weaker students
could receive easier tasks. As such, the GTs could also be used as a means to address the heterogeneity
of learners. The proposed set of GTs is thus not only to be used for students at a specific age or in a
specific grade, as their level of difficulty can be adapted and also depends on the complexity of the
input algorithm.

For Snap and Scratch, as two of the most popular block-based programming languages used for
programming novices, it would be possible to implement a tool using the input shown in Figure 2
and the defined GTs to automatically generate the tasks presented in Appendix B. A Snap program
is stored as an xml file, and a Scratch .sb3 file is just a zip file that has been renamed. The blocks of
the program are stored in a JSON data file. It is thus fairly easy to access and manipulate the blocks
(GT 3—find the error) or rearrange them (GT 4a and 4b—Parsons problem) for both Snap and Scratch.

Based on the definition of the GTs that we gave above, we raise two main research questions:

RQ1: Which core skills of CT (according to [8]) can be fostered using one of the defined Generic Tasks
for algorithms?

RQ2: To which degree are the corresponding skills addressed by the Generic Tasks for algorithms?

RQ1 originates from the desire to create tasks targeting a specific core CT skill. RQ2 builds on RQ1
and aims at answering how effectively the corresponding skills can be targeted and fostered when
students work on these tasks.

2.2. Methodology

To validate the proposed GTs, all items were evaluated in an expert’s judgment procedure,
as proposed, for example, in [9,10]. As the tasks are meant to be used in school and in particular in
STEM classes, we invited both in-service STEM teachers and university researchers in the fields of
mathematics or CS education who are also certified STEM teachers to serve as experts. As the tasks
revolve around algorithms, all invited experts had to have a strong background in programming.
A total of n = 14 experts from Germany and Austria participated in an online survey in June 2020.
Instructions for the experts were given in the survey as well as individually as part of the invitation.
In addition to the survey, the experts received an accompanying document containing the definitions
of the six core CT skills—abstraction, algorithmic thinking, decomposition, generalization, debugging,
and automation, as proposed in [8]. Additionally, the document contained the specific tasks derived
from three different algorithms (see Appendix A) using the five proposed GTs. Therefore, the experts
had to rate a total of 15 different tasks. All the algorithms were given in the block-based language
Scratch. The experts were asked for a general estimation of if they considered the tasks to be meaningful,
i.e., whether the students could learn a lot when completing them, on a five-point Likert scale from
1 (“Completely disagree”) to 5 (“Completely agree”). They were also asked to rate if and how strongly
each task addresses each of the six core CT skills. For the latter, we decided to use a six-point Likert
scale from 0 (“Not addressed at all”) to 5 (“Very strongly addressed”) instead of a five-point Likert
scale to avoid providing a middle option so that the experts must at least give a tendency for every
skill, whether it is addressed or not.

3. Results and Discussion

The aggregated rating of the experts regarding the meaningfulness of the proposed GTs over all
three input algorithms (m = 3 · 14 = 42) is shown in Figure 3. Overall, the tasks were received rather
positively. For GT 1, GT 2, and GT 3, the vast majority of the experts (73.81%) rather or completely
agreed with the hypothesis that the corresponding tasks offer learning opportunities for the students.
Noticeably, for the implementation task, almost half of the answers (47.62%) were “Completely agree”.
GT 1, the implementation task, is thus the most meaningful task to pose, according to the experts.
The experts’ opinions on the two Parsons problems, GT 4a and GT 4b, are rather similar. In comparison



Future Internet 2020, 12, 152 8 of 16

to the other GTs, they consider the Parsons problems less meaningful, as they received more neutral
evaluations. This result is rather surprising, as empirical results, e.g., [24,28], suggest that working
on Parsons problems can be just as effective for students as when working on tasks similar to GT 1
and GT 3, i.e., writing code fulfilling a specified purpose or finding an error in a given algorithm.
A possible explanation could be that, although the concept of a Parsons problem may be known to the
experts, the corresponding results regarding its effectiveness may be not.

Figure 3. Agreement with the statement “Students can learn a lot when completing this task” for
n = 14 raters aggregated for the three different algorithms, resulting in m = 42 answers per GT.

Performing a calculation of the pair-wise correlations between the three different input algorithms
for the raters, estimations regarding the six core CT skills showed that the results all correlate with each
other (r12 = 0.69, r13 = 0.65, r23 = 0.63). Thus, we decided to analyze the experts’ evaluation of the six
core CT skills regarding the proposed GTs independently from the input algorithms. We performed
a statistical analysis over all m = 3 · 14 = 42 answers that were given for each skill and each of the
specific tasks belonging to one GT, the results of which can be seen in Figure 4. Several observations
can be made. The experts’ judgment that GT 1, implementation, is the most meaningful one of the GTs
fits together with their assessment that it addresses four of the six core CT skills, namely abstraction
(with an arithmetic mean of M = 3.02), algorithmic thinking (M = 4.21), automation (M = 3.24),
and generalization (M = 2.19), most strongly compared to the other four GTs. This supports the
claim that writing code is the most challenging task for students compared to other programming
activities, as stated in [21]. Additionally, for four out of the six CT skills, the results of the experts’
ratings for GT 1 are the highest over all five GTs. Not surprisingly, as all tasks revolve around the
working and learning processes with algorithms, the experts consider the skill of algorithmic thinking
to be addressed most strongly by all GTs. Another result that was to be expected is that GT 3, find the
error, addresses the skill of debugging the most, with an arithmetic mean of M = 3.55. Remarkably,
we can report the highest variation of the experts’ judgment for the skill of debugging for all five
GTs. A possible explanation for this could be that the concept of debugging is mainly known as the
activity of finding an error inside a program, rather than it being a CT skill for making assumptions
about possible outcomes of algorithms and methods or testing one’s own ideas for robustness [8].
As such, the concept of debugging in the context of CT is more general than tracing [23] in CS, which is
described as the execution of a program line by line, and could rather be associated with the notion of
debugging by some.



Future Internet 2020, 12, 152 9 of 16

Figure 4. Summary of the experts’ evaluations of the GTs regarding the six core computational thinking
(CT) skills [8] on a six-point Likert scale from 0 (not addressed at all) to 5 (very strongly addressed).
The symbol × marks the arithmetic mean.

We can also observe that the variation of the ratings for most of the skills is relatively high.
There are several possible explanations for this. As mentioned in many other works [1,8,25], the notion
of CT as a competence and its division into different subskills is still not clearly defined and lacks
empirical validation. The raters, although having a strong background in programming, could have
not been familiar enough with the core CT skills, apart from algorithmic thinking, to make a proper
assessment. The provided definitions of the skills could thus have been not sufficient to support the
raters in their judgment. If that were the case, though, it would probably be difficult for them to
address these skills in class at all. This, therefore, also hints at the necessity to educate the educators
about CT and related skills.

Furthermore, apart from the two skills of algorithmic thinking and debugging, all skills are,
on average, rated as being only moderately addressed (mean value of 3) or even less, which implies
that the defined GTs are only partially suited to fostering these specific core CT skills. Especially for the
skill of generalization, the experts’ ratings were quite low, with mean values below 2 for the GTs 2–5.
This emphasizes the need for additional tasks and best-practice examples specifically addressing these
core CT skills. More advanced programming concepts like functions and objects could help to target
skills like decomposition [34] and generalization, but require in return more pre-knowledge from
the students [26]. As the defined GTs are based on learning processes with codes and algorithms,
which are also the predominant tasks in programming education, we can thus also support the claim
that CT is more than just coding [35], requiring more tasks and activities fostering CT skills apart from
algorithmic thinking and debugging. In a case study in 2020, we also observed students with a strong
interest in CS and highly evolved algorithmic thinking skills only demonstrating basic abstraction
skills [11]. This could be a consequence of a strong focus on programming in K–12 computer science
education, in which the other CT skills are mostly only moderately addressed, if at all.

As expected by design, GT 4a and GT 4b, which are both variants of Parsons problems without
and with distractor blocks, address all six skills on nearly the same level, according to the raters.
Both GTs were also deemed similarly meaningful (see Figure 3), with the two bars indicating the
distribution of the given answers being very similar. The same holds true for the bars of GT 2 and GT 3,
analysis and find the error. Apart from the skill of debugging, all other skills are addressed on a similar
level by GT 2 and GT 3, according to the raters. A possible explanation is that with Scratch, we used a
block-based language for the declaration of the tasks given to the raters. Without the need to adhere
to syntactical standards apart from snapping fitting blocks together, the solution processes for GT 2,
analysis, and GT 3, find the error, are very similar. In order to find a potential error (GT 3), the algorithm
has to be thoroughly understood, which is also a prerequisite for GT 2 to explain its functionality.
As such, GT 3, find the error, can be regarded as the more complex task of the two, as it requires more



Future Internet 2020, 12, 152 10 of 16

steps than the analysis task. Our survey would thus support a potential hierarchy of tasks like that
proposed in [22], putting GT 2, analysis, and GT 3, find the error, on an intermediate level.

The raters were, as mentioned, not necessarily experts in the area of CT, but were required to
be certified STEM teachers with a strong programming background. Their ratings could, therefore,
be less accurate, contributing to the variation among the responses. However, this also reflects the
status quo in the educational system. If the corresponding educators are uncertain about the skills and
how specific tasks are addressing the skills, they can most likely not foster the skills intentionally.

Limitations of the Study

When interpreting the results of this study, one must keep in mind that we asked n = 14 experts,
which is a rather small sample size. The main reason for not asking more experts was the time that
it took to answer all questions thoroughly. Some of the experts reported having needed more than
one hour to carefully read the information on the tasks and skills and then complete the questionnaire.
Rather than obtaining data from a representative sample, we intended to get a first assessment by the
experts regarding the targeted skills and the meaningfulness of the tasks. As these are only estimations
based on the definitions we provided the experts with, it will be important, as a next step, to validate
the tasks with real students in class. When giving the material to students, we will also assess their
pre-knowledge in related areas, such as programming. This will enable us to describe the results in
relation to their pre-knowledge, as this will most likely influence how meaningful the tasks are and
which skills are addressed.

4. Conclusions

In this article, we defined GTs for algorithms based on common tasks in CS education.
Generic Tasks, in general, can be a powerful tool supporting educators in the creation, assignment,
and evaluation of tasks for their students. The advantages of GTs are most apparent when they are
integrated into an automated learning environment. With the proposed GTs, a teacher can derive
five different tasks based on one algorithm. The GTs can thus help to create differentiated tasks and
materials within the classroom. For example, as one possible use of the five GTs that we proposed,
students could get the assignment to complete some algorithm tasks over the course of one week.
To give students the opportunity to choose their own materials and learning paths, points could be
assigned to each of the GTs depending on their level of difficulty. The only prerequisite for the students
could then be to accumulate a certain amount of points until the end of the week by doing the GTs of
their choice for a set of input algorithms given by their teacher.

4.1. Responses to Research Questions

The tasks proposed by us were considered meaningful by the experts in our survey. Interestingly,
already in the evaluation of this question, a three-way distinction of the tasks is recognizable.
Even though it was to be expected that the GTs 4a and 4b were rated similarly, as they are both
variants of Parsons problems, it was more surprising that the analysis task, GT 2, and the find the error
task, GT 3, were considered to equally meaningfully target similar skills.

Based on the pair-wise correlations between the raters’ estimations, we conclude that the results
received regarding the proposed set of GTs do not depend on the algorithms from which they were
derived. However, regarding our two research questions, it is difficult to arrive at definite conclusions.
As the experts’ judgments varied regarding the question of which skills were targeted by the GTs,
there are only a few clear conclusions that can be drawn.

One skill that can definitely be fostered by the GTs is algorithmic thinking. GT 1, implementation,
seems to be most suitable to foster four out of the six core CT skills, while GT 3, find the error, is best
suited to foster debugging. Regarding all other skills, it is unfortunately barely possible to make any
clear statements. One reason for this can inherently be attributed to the definition and distinction of
the skills. First, the skills might not be disjoint, as an empirical validation is still pending. Second,



Future Internet 2020, 12, 152 11 of 16

some of the skills might not be as well known by many educators, as teaching CT is still a rather new
idea that has been getting more and more attention and importance only recently [36]. Of course,
another reason might be the proposed task design.

4.2. Implications and Suggestions for Future Studies

Based on the high deviation amongst the experts’ ratings, two main implications can be elucidated.
Firstly, the concepts of CT and its subskills need to be empirically validated in order to distinguish
between their different aspects in further research. A clear definition and distinction would also help
educators to teach and foster the different aspects of CT. As of now, CT as a concept and its subskills
seem to be too vague for educators to successfully target them. This calls, secondly, for more support
and dissemination among educators.

Despite the high deviation, our study clearly shows that using algorithms and teaching coding
are not enough to convey CT in all its facets. It is thus also important to create tasks for CT that are
detached from algorithms and programming. This does not mean, though, that the proposed tasks
cannot be used to foster CT. It is just important to keep in mind which skills might be targetable by
them and which might be not. Our study thus supports the claim in [35] that CT and programming
are not the same thing.

Our future endeavors related to the GTs are threefold. First, we want to create more ideas for GTs
targeting other CT skills than algorithmic thinking and debugging. For this purpose, we will need to
re-evaluate which the subskills are that CT consists of. Secondly, we need a learning environment in
which the GTs are integrated to support educators in teaching CT. A third goal will be to empirically
validate the GTs with students.

Author Contributions: Conceptualization, G.M.; Methodology, G.M., S.W., and M.L.; Formal Analysis, G.M. and
S.W.; Investigation, G.M. and S.W.; Resources, G.M.; Data Curation, G.M. and S.W.; Writing—Original Draft
Preparation, G.M., S.W.; Writing—Review and Editing, G.M., S.W., and M.L.; Visualization, G.M. and S.W.;
Supervision, G.M.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding; the APC was funded by Goethe University Frankfurt.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CT Computational Thinking
CS Computer Science
GT Generic Task
STEM Science, Technology, Engineering, and Mathematics



Future Internet 2020, 12, 152 12 of 16

Appendix A. Given Original Examples

Figure A1. The three original algorithms that the Generic Tasks were derived from (left). Plus: The
sprite draws a plus sign (middle). Odd–Even: The sprite goes through the numbers from 1 until 20 and
thinks about whether the number is odd or even (right). Guess a number: The user can guess a number.

Appendix A.1. Plus

<description> The sprite draws a shape that looks like a plus and in which five squares of the same
size would fit.

<code> Figure A1 left
URL https://scratch.mit.edu/projects/411733124
<image> Figure A2

Figure A2. Possible result for the task “Plus”.

Appendix A.2. Odd–Even

<description> The sprite goes through the numbers from 1 to 20 and thinks about whether the number
is odd or even for each number.

<code> Figure A1 middle
URL https://scratch.mit.edu/projects/411733660.

Appendix A.3. Guess A Number

<description> A random number between 1 and 100 is generated. The user should guess the number.
After each input, the program tells the user whether his guess was too high or too low until the
random number is guessed correctly.

<code> Figure A1 right
URL https://scratch.mit.edu/projects/411734022.

https://scratch.mit.edu/projects/411733124
https://scratch.mit.edu/projects/411733660
https://scratch.mit.edu/projects/411734022


Future Internet 2020, 12, 152 13 of 16

Appendix B. Generic Tasks Based on the Task “Plus”

Using the scheme for the Generic Tasks presented in Section 2.1, for the task “Plus”, as given in
Appendix A, it is possible to derive the following tasks.

GT 1 Implementation: Create a program for the following description:

The sprite draws a shape that looks like a plus and that consists of five squares of the
same size.

The result of should look like this:

GT 2 Analysis: What happens when the following program is executed? Describe!

GT 3 Find the Error: Given is the following program:

Originally, the program is supposed to work like this:

The sprite draws a shape that looks like a plus and that consists of five squares of the
same size.

Find and correct the errors so that the program does what it is supposed to do.
GT 4a Parsons problem: Create a program for the following description:

The sprite draws a shape that looks like a plus and that consists of five squares of the
same size.



Future Internet 2020, 12, 152 14 of 16

Use the following blocks/lines:

GT 4b Parsons problem (Distractor): Create a program for the following description:

The sprite draws a shape that looks like a plus and that consists of five squares of the
same size.

Use some of the following blocks/lines:

References

1. Fraillon, J.; Ainley, J.; Schulz, W.; Friedman, T.; Duckworth, D. Preparing for Life in a Digital World: IEA
International Computer and Information Literacy Study 2018; IEA: Amsterdam, The Netherlands, 2019.

2. Pollak, M.; Ebner, M. The Missing Link to Computational Thinking. Future Internet 2019, 11, 263. [CrossRef]
3. Wing, J. Computational thinking’s influence on research and education for all. Ital. J. Educ. Technol. 2017,

25, 7–14.
4. Wing, J. Computational thinking. Commun. ACM 2006, 49, 33–35. [CrossRef]
5. Voogt, J.; Fisser, P.; Good, J.; Mishra, P.; Yadav, A. Computational thinking in compulsory education: Towards

an agenda for research and practice. Educ. Inf. Technol. 2011, 20, 715–728. [CrossRef]
6. Hu, C. Computational thinking: What it might mean and what we might do about it. In Proceedings of the

16th Annual Joint Conference on Innovation and Technology in Computer Science Education, Darmstadt,
Germany, 27–29 June 2011; pp. 223–227.

7. Lu, J.; Fletcher, G. H. Thinking about computational thinking. In Proceedings of the 40th ACM Technical
Symposium on Computer Science Education, Chattanooga, TN, USA, 4–7 March 2009; pp. 260--264.

8. Bocconi, S.; Chioccariello, A.; Dettori, G.; Ferrari, A.; Engelhardt, K. Developing Computational Thinking in
Compulsory Education; JRC Science Hub: Seville, Spain, 2016.

9. Zapata-Cáceres, M.; Martín-Barroso, E.; Román-González, M. Computational Thinking Test for Beginners:
Design and Content Validation. In Proceedings of the IEEE Global Engineering Education Conference
(EDUCON), Porto, Portugal, 27–30 April 2020; pp. 1905–1914. [CrossRef]

10. Román-González, M. Computational Thinking Test: Design Guidelines and Content Validation.
In Proceedings of the EDULEARN15, Barcelona, Spain, 6–8 July 2015; pp. 2436–2444. [CrossRef]

11. Wetzel, S.; Milicic, G.; Ludwig, M. Gifted Students’ Use of Computational Thinking Skills Approaching A
Graph Problem: A Case Study. In Proceedings of the EduLearn20, Palma de Mallorca, Spain, 6–7 July 2020;
pp. 6936–6944.

12. Ludwig, M.; Jablonski, S. MathCityMap-Mit mobilen Mathtrails Mathe draußen entdecken
[MathCityMap-Discovering Mathematics Outside with Mobile Mathtrails]. Mnu J. 2020, 1, 29–36.

http://dx.doi.org/10.3390/fi11120263
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1007/s10639-015-9412-6
http://dx.doi.org/10.1109/EDUCON45650.2020.9125368
http://dx.doi.org/10.13140/RG.2.1.4203.4329


Future Internet 2020, 12, 152 15 of 16

13. Barlovits, S.; Baumann-Wehner, M.; Ludwig, M. Curricular Learning with MathCityMap: Creating
Theme-Based Math Trails. In Proceedings of the Mathematics Education in the Digital Age, Linz, Austria,
16–18 September 2020.

14. Helfrich-Schkarbanenko, A.; Rapedius, K.; Rutka, V.; Sommer, A. Mathematische Aufgaben und Lösungen
Automatisch Generieren: Effizientes Lehren und Lernen mit MATLAB [Generate Mathematical Tasks and Solutions
Automatically: Efficient Teaching and Learning with MATLAB]; Springer: Berlin, Germany, 2018.

15. Hattie, J.; Timperley, H. The Power of Feedback. Rev. Educ. Res. 2007, 77, 81–112. [CrossRef]
16. Keuning, H.; Jeuring, J.; Heeren, B. Towards a Systematic Review of Automated Feedback Generation for

Programming Exercises. In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’16), Arequipa, Peru, 9–13 July 2016; pp. 41–46. [CrossRef]

17. Romagosa i Carrasquer, B. The Snap! Programming System. In Encyclopedia of Education and Information
Technologies; Tatnall, A., Ed.; Springer: Cham, Switzerland, 2019.

18. Resnick, M.; Maloney, J.; Monroy-Hernández, A.; Rusk, N.; Eastmond, E.; Brennan, K.; Millner, A.;
Rosenbaum, E.; Silver, J.; Silverman, B.; et al. Scratch: Programming for all. Commun. ACM 2009, 52, 60–67.
[CrossRef]

19. Price, T.W.; Dong, Y.; Lipovac, D. ISnap: Towards Intelligent Tutoring in Novice Programming Environments.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’17),
Seattle, WA, USA, 8–11 March 2017; pp. 483–488. [CrossRef]

20. Moreno-León, J.; Robles, G. Dr. Scratch: A Web Tool to Automatically Evaluate Scratch Projects.
In Proceedings of the Workshop in Primary and Secondary Computing Education (WiPSCE ’15), London,
UK, 9–11 November 2015; pp. 132–133. [CrossRef]

21. Venables, A.; Tan, G.; Lister, R. A Closer Look at Tracing, Explaining and Code Writing Skills in the
Novice Programmer. In Proceedings of the Fifth International Workshop on Computing Education Research
Workshop, Berkeley CA, USA, 10–11 August 2009; pp. 117–128.

22. Lopez, M.; Whalley, J.; Robbins, P.; Lister, R. Relationships Between Reading, Tracing and Writing Skills in
Introductory Programming. In Proceedings of the Fourth International Workshop on Computing Education
Research, Sydney, Australia, 6–7 September 2008; pp. 101–111.

23. Izu, C.; Schulte, C.; Aggarwal, A.; Cutts, Q.; Duran, R.; Gutica, M.; Heinemann, B.; Kraemer, E.; Lonati, V.;
Mirolo, C.; et al. Fostering Program Comprehension in Novice Programmers-Learning Activities and
Learning Trajectories. In Proceedings of the Working Group Reports on Innovation and Technology in
Computer Science Education (ITiCSE-WGR ’19), Aberdeen, UK, 15–17 July 2019; pp. 27–52. [CrossRef]

24. Ericson, B.J.; Margulieux, L.E.; Rick, J. Solving parsons problems versus fixing and writing code.
In Proceedings of the 17th Koli Calling International Conference on Computing Education Research
(Koli Calling ’17), Koli, Finland, 16–19 November 2017; pp. 20–29. [CrossRef]

25. Moreno-León, J.; Robles, G.; Román-González, M.; Rodríguez, J. Not the same: A text network analysis on
computational thinking definitions to study its relationship with computer programming. Rev. Interuniv.
Investig. Technol. Educ. 2019, 7, 26–35. [CrossRef]

26. Hromkovic, J.; Kohn, T.; Komm, D.; Serafini, G. Examples of Algorithmic Thinking in Programming
Education. Olymp. Inform. 2016, 10, 111–124. [CrossRef]

27. Parsons, D. Haden, P. Parsons programming puzzles: A fun and effective learning tool for first programming
courses. In Proceedings of the 8th Australasian Conference on Computing Education-Volume 52 (ACE ’06),
Hobart, Australia, 16–19 January 2006; pp. 157–163.

28. Zhi, R.; Chi, M.; Barnes, T.; Price, T.W. Evaluating the Effectiveness of Parsons Problems for Block-based
Programming. In Proceedings of the 2019 ACM Conference on International Computing Education Research
(ICER ’19), Toronto, ON, Canada, 12–14 August 2019; pp. 51–59. [CrossRef]

29. Kumar, A.N. Epplets: A Tool for Solving Parsons Puzzles. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (SIGCSE ’18), Baltimore, MD, USA, 21–24 February 2018;
pp. 527–532. [CrossRef]

30. Ihantola, P.; Helminen, J.; Karavirta, V. How to study programming on mobile touch devices: Interactive
Python code exercises. In Proceedings of the 13th Koli Calling International Conference on Computing
Education Research (Koli Calling ’13), Koli, Finland, 14–17 November 2013; pp. 51–58. [CrossRef]

http://dx.doi.org/10.3102/003465430298487
http://dx.doi.org/10.1145/2899415.2899422
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/3017680.3017762
http://dx.doi.org/10.1145/2818314.2818338
http://dx.doi.org/10.1145/3344429.3372501
http://dx.doi.org/10.1145/3141880.3141895
http://dx.doi.org/10.6018/riite.397151
http://dx.doi.org/10.15388/ioi.2016.08
http://dx.doi.org/10.1145/3291279.3339419
http://dx.doi.org/10.1145/3159450.3159576
http://dx.doi.org/10.1145/2526968.2526974


Future Internet 2020, 12, 152 16 of 16

31. Ericson, B.J.; Foley, J.D.; Rick, J. Evaluating the Efficiency and Effectiveness of Adaptive Parsons Problems.
In Proceedings of the 2018 ACM Conference on International Computing Education Research (ICER ’18),
Espoo, Finland, 13–15 August 2018; pp. 60–68. [CrossRef]

32. Ericson, B.J.; Miller, B.N. Runestone: A Platform for Free, On-line, and Interactive Ebooks. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education (SIGCSE ’20), Portland, OR, USA,
11–14 March 2020; pp. 1012–1018. [CrossRef]

33. Schulte, C. Block Model: An educational model of program comprehension as a tool for a scholarly approach
to teaching. In Proceedings of the Fourth international Workshop on Computing Education Research
(ICER ’08), Sydney, Australia, 6–7 September 2008; pp. 149–160. [CrossRef]

34. Rich, K.M.; Binkowski, T.A.; Strickland, C.; Franklin, D. Decomposition: A K-8 Computational Thinking
Learning Trajectory. In Proceedings of the 2018 ACM Conference on International Computing Education
Research (ICER ’18), Espoo, Finland, 13–15 August 2018; pp. 124–132. [CrossRef]

35. National Research Council. Report of a Workshop on the Scope and Nature of Computational Thinking; The National
Academies Press: Washington, DC, USA, 2010. [CrossRef]

36. Kafai, Y.; Proctor, C.; Lui, D. From Theory Bias to Theory Dialogue: Embracing Cognitive, Situated,
and Critical Framings of Computational Thinking in K-12 CS Education. In Proceedings of the 2019
ACM Conference on International Computing Education Research (ICER ’19), Toronto, ON, Canada,
12–14 August 2019; pp. 101–109. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3230977.3231000
http://dx.doi.org/10.1145/3328778.3366950
http://dx.doi.org/10.1145/1404520.1404535
http://dx.doi.org/10.1145/3230977.3230979
http://dx.doi.org/10.17226/12840
http://dx.doi.org/10.1145/3291279.3339400
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	The Concept of Generic Tasks
	Methodology

	Results and Discussion
	Conclusions
	Responses to Research Questions
	Implications and Suggestions for Future Studies

	Given Original Examples
	Plus
	Odd–Even
	Guess A Number

	Generic Tasks Based on the Task ``Plus''
	References

