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Abstract

Structural macroeconometric analysis and new HANK-type models with extremely high
dimensionality require fast and robust methods to efficiently deal with occasionally bind-
ing constraints (OBCs), especially since major developed economies have again hit the
zero lower bound on nominal interest rates. This paper shows that a linear dynamic
rational expectations system with OBCs, depending on the expected duration of the
constraint, can be represented in closed form. Combined with a set of simple equilibrium
conditions, this can be exploited to avoid matrix inversions and simulations at runtime
for significant gains in computational speed. An efficient implementation is provided in
Python programming language. Benchmarking results show that for medium-scale mod-
els with an OBC, more than 150,000 state vectors can be evaluated per second. This is
an improvement of more than three orders of magnitude over existing alternatives. Even
state evaluations of large HANK-type models with almost 1000 endogenous variables
require only 0.1 ms.

Keywords: Occasionally Binding Constraints, Effective Lower Bound, Computational
Methods

1 Introduction

Occasionally binding constraints have become an important part of economic mod-
elling, especially since western central banks see themselves (again) constraint by the
so-called zero lower bound (ZLB) of the nominal interest rate. A binding ZLB constraint
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poses a major problem for a quantitative-structural analysis: Linear solution methods
do no work in the presence of a nonlinearity such as the ZLB and existing alternatives
tend to be computationally demanding. The urge to study macroeconomic questions re-
lated to the Great Recession and the current Covid-19 crisis in a quantitative-structural
framework requires algorithms that are not only accurate, but that are also robust, fast,
and computationally efficient.

A particularly important application where efficient and fast methods for occasionally
binding constraints (OBCs) are needed is the Bayesian estimation of macroeconomic
models. In the US, for example, the ZLB episodes from 2008 to 2015 and again from
2020 onwards will be part of the time series used in structural econometrics for the
next decades to come. This calls for methods that are fast enough to explicitly account
for the endogenously binding ZLB during the estimation procedure. Further, an active
literature develops large-scale New Keynesian models that feature heterogeneous agents
and a larger number of idiosyncratic states (HANK models, see e.g. Reiter, 2009; Kaplan
et al., 2018; Bayer et al., 2020). It is straightforward that researchers wish consider OBCs
such as the ZLB in this framework. However, the fact that these models tend to have up
to 1000 dimensions (and more) simply overburdens the currently available methods.

This paper aims to fill this gap, and significantly expands the set of possible appli-
cations of models with OBCs. Given any dynamic general equilibrium model with one
or several OBCs, I develop a closed-form state-space representation for the complete ex-
pected trajectory of the endogenous variables as a function of the expected duration at
the ZLB (the “ZLB spell duration”). Furthermore, I provide the necessary conditions
of a rational expectations equilibrium for a set of ZLB spell durations given the state
of the economy. Given these two ingredients, the expected ZLB spell durations can be
found via a simple iterative scheme. Using the closed-form solution together with the
equilibrium conditions allows to check for a model equilibrium instantaneously instead of
simulating a complete anticipated equilibrium path for a given ZLB spell. This increases
the computational speed of the algorithm substantially.

There exist several solution concepts for DSGE models with OBCs.1 The currently
most frequently used algorithm is OccBin, which was introduced in Guerrieri and Ia-
coviello (2015). The authors propose a recursive representation of the solution given the
state of the economy and a set of spell durations. They propose a Newton-like method to
iteratively find the set of spell durations. The relatively high computational costs of their
approach stems from the fact that for each guess of the spell durations, the Newton-like
method requires the complete simulation of the anticipated trajectory. This requires
repeated matrix inversions at runtime, which are computationally expensive. While my
method shares some features with their algorithm (and, given uniqueness, will return an
identical solution), it has a considerable advantage in terms of computation speed and,
hence, is also well suited for parameter inference as well as for very high dimensional
models.

The method presented in Holden (2016, 2017) is robust and accurate, especially with
regard to proper equilibrium selection. It is however not optimized with regard to compu-
tational speed as each guess of the spell durations requires at least one matrix inversion.
As the outcomes of the method presented in this paper is, given uniqueness, identical

1Early work with nonlinear models includes e.g. Coenen and Wieland (2003, 2004); Coenen et al.
(2004).
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to those of the work cited above, I refer to the papers cited above for comparisons with
other nonlinear methods such as policy function iteration.

I provide speed benchmarks of the suggested method for two applications that both
incorporate an endogenously binding ZLB: I first benchmark against a standard medium-
scale New-Keynesian model in the style of Smets and Wouters (2007) and then against the
HANK model of Bayer et al. (2020). For the medium scale model, my method performs
one evaluation of a state vector in less than seven microseconds ( 7

1000 ms) or more than
150,000 evaluations per second. For the HANK-type model with almost 1000 endogenous
variables these are still about 0.1 ms per evaluation or 8219 evaluations per second. In
comparison, OccBin takes in average 0.01 seconds per evaluation, corresponding to 95.7
evaluations per second. This implies a speed advantage of the method presented in this
work by a factor of 1500.

A reference implementation of the proposed solution method, together with a parser
and related econometric tools, is implemented in the pydsge package.2 Computational
advantage also depends on efficient implementation. The implementation is written in the
freely available language Python.3 The rest of this paper is structured as follows. Section
2 develops the solution method and discusses details regarding the implementation. In
Section 3 I provide speed benchmarks. Section 4 concludes.

2 Method

Assume a linear rational expectations model that is subject to nc OBCs.4 Inspired
by Uhlig et al. (1995); Binder and Pesaran (1995); Villemot et al. (2011), the linearized
first order conditions of this system can be represented by

Et

Azt+1 + Bzt + Czt−1 + Dεt +

nc∑
j

hj max {ajzt+1 + bjzt + cjzt−1 + djεt, r̄j}

 = 0,

(1)
where yt is the n-dimensional vector of all model variables and εt the nε-dimensional
vector of iid. exogenous shocks. A, B and C are generic n× n system matrices whereas,
D is a n× nε matrix. Equation (1) can elegantly be reduced to

Et

Ayt+1 +Byt + Cyt−1 +

nc∑
j

hj max {ajyt+1 + bjyt + cjyt−1, r̄j}

 = 0, (2)

with yt = (zt, εt+1), A =

∣∣∣∣A 0
0 0

∣∣∣∣, B =

∣∣∣∣B 0
0 I

∣∣∣∣, C =

∣∣∣∣C D
0 0

∣∣∣∣ and aj = (aj , 0), bj = (bj , 0),

cj = (cj , dj), hj = (hj , 0) for each constraint j. Each variable rj,t ∀j ∈ 1, 2, · · · , nc is

2The package is available at https://github.com/gboehl/pydsge.
3Python, combined with the just-in-time compiler Numba, can provide speed benchmarks that are

en-par with compiled languages such as C or Fortran while comprising the advantages of a high-level
programming language.

4See e.g. Schmitt-Grohé and Uribe (2004) for pertubation methods to obtain a linear representation
from the nonlinear model.
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subject to an occasionally binding constraint represented by a set of vectors {aj , bj , cj}
and a minimum value of rj,t denoted r̄j . hj ∈ Rn contains the coefficients of rj,t in each
equation of the linear system.

Also define the system in which all constraints are slack (the unconstrained system)
as

Âyt+1 + B̂yt + Ĉyt−1 = 0, (3)

with

Â = A+

nc∑
j

hj ⊗ aj (4)

B̂ = B +

nc∑
j

hj ⊗ bj , (5)

Ĉ = C +

nc∑
j

hj ⊗ cj . (6)

Let me borrow the Assumptions 1 and 2 from Holden (2016) (or, alternatively, from
Rendahl (2017)) and restate them here:

Assumption 1. For any given y0 ∈ Rn, Equation (3) has a unique solution, which
takes the form yt = Fyt−1 for t ∈ N+, where F = −(B̂ + ÂF )−1Ĉ, and where all the
eigenvalues of F are weakly inside the unit circle.

Assume further, to imply that all the eigenvalues of F are strictly inside the unit
circle, that:

Assumption 2.

det
(
Â+ B̂ + Ĉ

)
6= 0, (7)

Equation (2) can be cast in the form (see e.g. Klein (2000) or Villemot et al. (2011)):

PEtxt+1 = Mxt +

nc∑
j

hj max {pjEtxt+1 +mjxt, r̄j} , (8)

with xt =

∣∣∣∣st−1ct
∣∣∣∣, where ct are the forward looking variables (controls) and st−1 are the

states updated by the time-t shocks as above.
Denote the system in which all constraints are slack (the unconstrained system) as

P̂Etxt+1 = M̂xt, (9)

with

P̂ =

P +

nc∑
j

hj ⊗ pj

 and M̂ =

M +

nc∑
j

hj ⊗mj

 . (10)

For the larger part of this section I will assume that P and P̂ are invertible as this
simplifies display. I will first outline the solution method for only one constraint, taking
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the durations for which the constraint holds as given. Then I present a simple iteration
scheme to find the expected durations. The generalization to many occasionally binding
constraints is then straightforward and left to the reader.

2.1 A representation in closed form

To fix ideas, let us focus on the case with only one constraint, which is given by
(h0, p0,m0). Under the assumption that P and P̂ are invertible System (9) can be
rewritten as

Etxt+1 =


N̂xt ∀ p0Etxt+1 +m0xt − r̄ ≥ 0

Nxt+q0r̄ ∀ p0Etxt+1 +m0xt − r̄ < 0,

(11)

with N̂ = P̂−1M̂ , N = P−1N and q0 = P−1h0.
We first assume that if the constraint binds, it always binds already in the current

period t (hence there is no transition to the constraint). Let kt be the expected duration
of the spell to the constraint in period t. Denote a rational expectations solution to (9)
given kt and the state variables st−1 as the function f such that

ct = f(kt, st−1). (12)

In slight abuse of notation, I will occasionally use k and f(k) as shorthand where the
states st−1 and the time-t subscripts are understood. Also, denote as xt|k the variables
vector conditional on expecting the constraint to hold for k periods, which is trivial to
find once f is known.

For the unconstrained system N̂ , ct can be found using familiar methods like the
QZ-decomposition as suggested by Klein (2000). Denote this (linear) solution for ct by
the matrix Ω:

ct = Ωst−1 ∀ p0Etxt+1 +m0xt > r̄ (13)

For Ψ =
∣∣−Ω I

∣∣ , Equation (13) implies that

Et

{
Ψ

∣∣∣∣ st+kct+k+1

∣∣∣∣} = 0 ∀ p0Etxt+k+1 +m0xt+k ≥ r̄, (14)

i.e. for every future period t+ k in which the system is expected to be unconstrained.
Now assume that the constraint binds at time t and will continue to do so until period

t+ k. Iterating System (11) forward yields

Et

{∣∣∣∣st+k−1ct+k

∣∣∣∣} = Nkxt + (I −N)−1(I −Nk)q0r̄, (15)

where (I − N)−1(I − Nk) =
∑k−1
i=0 N

i is the transformation for a geometric series of
matrices. Finally, we can combine Equations (14) and (15) to find f , i.e. a solution of
the controls ct in terms of the state variables st−1 given k:

f(k, st−1) =

(
ct : ΨNk

∣∣∣∣st−1ct
∣∣∣∣ = −Ψ(I −N)−1(I −Nk)q0r̄

)
. (16)
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Since q0 is a vector of constants, the whole RHS of Equation (16) is known and solving
for ct is simple.

Let us now relax the assumption that a shock triggers the constraint to hold immedi-
ately in time t. This case is in particular relevant for models with persistent endogenous
state variables. Take Equation (16) as the starting point and allow for a number of
periods l in the unconstrained system N̂ until the system is at the constraint:

f(k, l, st−1) =

(
ct : ΨNkN̂ l

∣∣∣∣st−1ct
∣∣∣∣ = −Ψ(I −N)−1(I −Nk)q0r̄

)
. (17)

Using Equation (17) and Equation (15) augmented by N̂ l, we can express the expecta-
tions on the variable vector conditional on (lt, kt) of the economy in period j, Etxj |(lt, kt),
as a function F with

Etxj |(lt, kt) = Fj(lt, kt, st−1) =Nmax{s−l,0}N̂min{l,s}
∣∣∣∣f(lt, kt, st−1)

st−1

∣∣∣∣
+ (I −N)−1(I −Nmax{j−l,0})q0r̄.

(18)

Note that F1(0, 0, jt−1) is the generic solution to the unconstrained system.

2.2 Solving for the spell durations (l, k)

Again, let us first consider the simpler case in which we assume that any shock that
causes the constraint to bind, it will cause it to bind immediately in time t (the non-
transitory case). The following proposition summarizes the conditions for (xt, st−1, k) to
be a rational expectations equilibrium:

Proposition 1 (non-transitory equilibrium). Assuming non-transition, a number of ex-
pected periods k∗ at the constraint is part of a rational expectations equilibrium iff

p0Et[xt+k+1|k∗] +m0xt+k|k∗ ≥ r̄ > p0Et[xt+k+1|k] +m0xt+k|k (19)

for all k∗ > k ≥ 0, hence if in expectations the system is constrained for exactly k∗

periods.

Let us proceed to the practically relevant case where agents may expect the un-
constrained system to prevail for some transition time before the constraint binds for
k periods. Using Equation (18), Proposition 2 summarizes the respective equilibrium
conditions.

Proposition 2 (transitory equilibrium). A pair (l∗, k∗) is part of a rational expectations
equilibrium iff

p0Et[xt+j+1|(l∗, k∗)] +m0xt+j |(l∗, k∗) ≥ r̄ ∀j < l∗ ∧ j ≥ k∗ + l∗ (20)

and
p0Et[xt+j+1|(l∗, k∗)] +m0xt+j |(l∗, k∗) < r̄ ∀l∗ ≤ j < k∗ + l∗. (21)

In other words, (l, k) are part of an equilibrium, if in expectations, the constraint
starts binding exactly in period t+ l and ends to bind exactly in period t+ l + k.
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Unfortunately there is no closed form solution for (l∗, k∗) given st−1. A set of (l∗, k∗)
that satisfies Proposition 2 must be found using an iterative scheme. As this problem
requires an iterative scheme on an integer domain, a theoretical assessment is at least
difficult because most theoretical work on similar algorithms deals with real valued func-
tions. Given those limits, some insights regarding the existence and uniqueness of such
solutions are provided by Holden (2017). An integer based Newton-like method as em-
ployed by Guerrieri and Iacoviello (2015) is not efficient because it requires the evaluation
of the complete anticipated trajectory of xt and furthermore can not draw on the nice
convergence properties of the standard real-valued Newton method. This makes their
method diffucult to use if OBC problems are not well behaved. Given st−1, an equilib-
rium satisfying conditions (20) and (21) will generally be the same as in Holden (2017).
The crucial advantage of the formulation provided here is the closed form expression of
Et[xt+j |(l, k)].

An optimal iterative scheme can be hand-tailored to the problem. For the purpose
of the estimation of large-scale DSGE models, in which the constraint is the zero lower
bound on nominal interest rates, Boehl and Strobel (2020), Boehl et al. (2020) and Boehl
and Lieberknecht (2021) use the following iterative scheme:

l, k = 0, 0

for l in range(l_max):

if b F(l, 0, l, v) - r_bar < 0:

# constraint binds: interrupt loop

break

if l is l_max - 1:

# return that l=k=0 is an equilibrium

return 0, 0

...

Hence, if the constraint is not reached within l_max periods ahead in the future, exit.
Otherwise assume k > 0 and iterate over l and k until the equilibrium conditions in (19),
(20) and (21) are satisfied:

...

for l in range(l_max):

for k in range(1, k_max):

if l:

if b F(l, k, 0, v) - r_bar < 0:

# skip inner loop to next k

continue

if b F(l, k, l-1, v) - r_bar < 0:

# skip inner loop ...

continue

if b F(l, k, k+l, v) - r_bar < 0:

continue

if b F(l, k, l, v) - r_bar > 0:

continue

if b F(l, k, k+l-1, v) - r_bar > 0:

continue

# if we made it here, this must be an equilibrium

7
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return l, k

# if the loop went though without finding an equilibrium, throw a warning or set

error flag

flag = True

warn(’No equilibrium exists!11’)

This scheme is very efficient for the specific problem because for more than 50% of
the data points used the ZLB is not binding and the method will already exit in the first
loop.5 If it does not exit, then for post-2008 data points it is predominantly the case
that the ZLB already is binding. In this case l∗ = 0 and only k∗ is to be determined. As,
according to the Primary Dealer Survey, most market participants expected the ZLB to
be binding for about eight quarters, the procedure will on average need 8 guesses until
an equilibrium is found. If at all, l∗ will only be positive in 2008Q3 when the economy is
not yet at the ZLB, but the shocks originating from the Subprime Mortgage Crisis have
triggered the ZLB to be expected to bind in the very near future.

While the above procedure is tailored to work most efficiently in the context of esti-
mating DSGE models with the ZLB, it is generic and applicable to any sort of constraint.
The resulting transition function is linear for the region where the constraint does not
bind and (increasingly) nonlinear when it binds. Note that this algorithm includes an
active assumption on equilibrium selection: if for a st−1 several sets of (l∗, k∗) exist that
satisfy Proposition 2, the set with the lowest l∗ is chosen.

2.3 Preprocessing and the case of singular P or P̂

Let us now turn to the practically more relevant case where we relax the assumption
that P and P̂ are invertible. Use the QL decomposition onM = QL and on M̂ = Q̂L̂. Let
nc be the number of control variables. Premultiplication of (9) by Q (Q̂, respectively),
and premultiplication of the nc lower rows by the inverse of the lower-right nc × nc
submatrix of L (L̂) leads to:6∣∣∣∣P̂11 P̂12

P̂21 P̂22

∣∣∣∣ ∣∣∣∣ st
Etct+1

∣∣∣∣ =

∣∣∣∣M̂11 0

M̂21 I

∣∣∣∣ ∣∣∣∣st−1ct
∣∣∣∣ ∀ p0Etxt+1 +m0xt − r̄ ≥ 0, (22)∣∣∣∣P11 P12

P21 P22

∣∣∣∣ ∣∣∣∣ st
Etct+1

∣∣∣∣ =

∣∣∣∣M11 0
M21 I

∣∣∣∣ ∣∣∣∣st−1ct
∣∣∣∣+

∣∣∣∣h0,sh0,c

∣∣∣∣ r̄ ∀ p0Etxt+1 +m0xt − r̄ < 0. (23)

Additionally to the function f introduced in Equation (12), define g as

st = g(l, k, st−1), (24)

and note that

F0(l, k, st−1) =

∣∣∣∣g(l, k, st−1)
f(l, k, st−1)

∣∣∣∣ . (25)

5For example, Boehl and Strobel (2020) use US data from 1998 to 2020, which contains the ZLB
period from 2008Q4 to 2015Q4.

6The fact that the lower-right submatrices of L and L̂ are nonsingular follows simply from the fact
that controls are defined on their future values.
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Again, both functions are linear in st−1 given (l, k) and take the form

f(l, k, st−1) = f̃(l, k)st−1 + f̄(l, k)r̄, (26)

g(l, k, st−1) = g̃(l, k)st−1 + ḡ(l, k)r̄, (27)

where f̃(0, 0) and g̃(0, 0) are found using any solution routine for linear systems, and

f̄(0, 0) = ḡ(0, 0) =
−→
0 .

For k > 0 we can then express these functions recursively as

g(l, k, st−1) =


(
P11 + P12f̃(l − 1, k)

)−1 (
N11st−1 − P12f̄(l − 1, k)

)
if l > 0,(

P̂11 + P̂12f̃(0, k − 1)
)−1 (

N̂11st−1 + h0,s − P̂12f̄(0, k − 1)
)

if l = 0,

(28)

f(l, k, st−1) =


(
P21 + P22f̃(l − 1, k)

)
g(l, k, st−1)−M21st−1 + P22f̄(l − 1, k) if l > 0,(

P̂21 + P̂22f̃(0, k − 1)
)
g(l, k, st−1)− M̂21st−1 + P̂22f̄(0, k − 1)− h0,c if l = 0.

(29)

As these expressions involve an inversion of a matrix of the same dimensionality
of the state space, it is efficient to preprocess all functions within a reasonable range
l_max and k_max and store the result for later use. In the same run, p0Et[xj+1|(l, k)] +
m0xj |(l, k) = p0Fj+1(l, k, st−1) +m0Fj+1(l, k, st−1) can be pre-processed and stored for
efficient checking of the conditions in Proposition 2. This is a (1 × n) vector and a
scalar for each combination of (l, k, s) under consideration. Checking each condition in
Proposition 2 then only requires a dot-vector multiplication and a scalar addition.

3 Benchmarking Compuation Speed

Processing and calculation speed are key aspects of the design of the algorithm in-
troduced in the previous section. This section presents benchmarks. For this purpose I
consider two models with the ZLB on the nominal interest rate as an occasionally bind-
ing constraint. The first model is the medium-scale model of Smets and Wouters (2007),
calibrated to the posterior mode from Boehl and Strobel (2020), where the model is es-
timated to US data from 1998 to 2020. The binding ZLB from 2008 to 2015 is explicitly
modeled as an OBC and a nonlinear filter is used for likelihood inference. The inclu-
sion of the ZLB in the estimation procedure, apart from its obvious appeal for economic
analysis, has the further advantage that regions of the parameter space in which ZLB
solutions are irregular are not included in the posterior distribution as they necessarily
exhibit a lower likelihood. The second model is the Heterogeneous Agent New Keyne-
sian (HANK) model of Bayer et al. (2020) which is estimated from 1954 to 2019, but
without explicitly accounting for and endogenously binding ZLB during the estimation.7

While the first example is chosen because it is the workhouse model of modern mone-
tary economics, the second model is chosen because of its high dimensionality with 929
endogenous variables.

7The system matrices were kindly provided by the authors.
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Additionally, I provide benchmarks for OccBin (c.f. Guerrieri and Iacoviello, 2015)
which is used frequently in applied work and implemented in Dynare (see Adjemian et al.,
2011). For the benchmarks provided below I use the implementation from Cuba-Borda
et al. (2019) which goes beyond the standard implementation. In particular, it avoids
solving the model and preprocessing the system matrices for every new state. These
steps together are accountable for about 98% of OccBins computation time.8 I do not
benchmark the HANK model as the Dynare preprocessor seems to have problems with
handling matrices of this size.

For each exercise I draw 1,000,000 state vectors from a multivariate normal distribu-
tion with zero mean and covariance Σ = 10In, where n is the number of states. Each
sample is passed trough the nonlinear transition function and grouped according to its
calculated expected ZLB duration. I set l_max=3 and k_max=30 to cover most cases. If
within this range no ZLB equilibrium is found, the sample counts as “No ZLB solution”.
Note that there are many other reasons why an equilibrium can not be found and a sam-
ple may count in this category, e.g. the reversals documented by Carlstrom et al. (2015).
For OccBin, nperiods is also set to 30. Although this causes a small number of samples
to not converge, it decreases computation time in favor of Occbin. For the method from
Section 2, the overall computation times are 155675 draws per second (6.426 seconds in
total) for the model of Smets and Wouters (2007) and 8219 draws per second (121.67
seconds in total) for the HANK model. OccBin performed 95.7 draws per second for the
medium-scale model, whereas total computation took 174.13 minutes.

mean std % of samples

k∗ = 0 5.435e-06 1.262e-05 48.66%
k∗ ∈ (1, 5) 6.850e-06 4.675e-06 5.79%
k∗ ∈ (6, 10) 9.354e-06 6.214e-06 4.34%
k∗ ∈ (11, 15) 8.323e-06 4.058e-06 8.33%
k∗ ∈ (16, 20) 6.975e-06 1.386e-06 19.99%
k∗ > 20 6.894e-06 6.471e-07 12.89%
l∗ > 0|k∗ > 0 1.410e-05 5.777e-06 5.69%
No ZLB solution 3.784e-05 2.307e-06 0.00%

Total 6.424e-06 9.137e-06 100.00%

Table 1: Speed benchmark of the method from Section 2 for the medium-scale model of (Boehl and
Strobel, 2020) with 57 variables.
Note: The table shows the execution times per state vector in seconds. “No ZLB solution” collects
draws for which no solution was found within a maximum of l_max and k_max periods ahead (two draws
in total).

Tables 1 and 2 present the results of the benchmarking exercise for the method from
Section 2. For the medium scale model, in about 50% of the samples the ZLB is not
binding. For these cases the calculation takes the least time because the algorithm only
has to confirm that the ZLB is not binding within the first l_max periods. Calculation

8When benchmarking against the original implementation of Guerrieri and Iacoviello (2015), the
method presented in Section 2 performs more than 10,000 times faster. For the benchmarks of OccBinn,
Matlab version R2019a is used with Dynare 4.6.1.
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k_max
nperiods
l_max
k_max
l_max


time increases with expected ZLB durations, which is an anticipated result given that
more guesses are needed. The incremental increase in computation time for higher k∗ is,
however, rather marginal. Samples for which no solution could be found take almost four
times longer than samples in which the ZLB does not bind, which is due to the fact that
for these samples all possible combinations of (l∗, k∗) have to be ruled out. While for
the medium-scale model these are only two samples in total, the HANK model exhibits
a more complicated structure which reflects in a higher rate of samples with no solution
of about 11%.

mean std % of samples

k∗ = 0 8.878e-05 9.486e-06 42.95%
k∗ ∈ (1, 5) 1.470e-04 1.991e-05 10.04%
k∗ ∈ (6, 10) 1.493e-04 1.770e-05 11.42%
k∗ ∈ (11, 15) 1.508e-04 1.550e-05 8.52%
k∗ ∈ (16, 20) 1.544e-04 3.577e-05 4.95%
k∗ > 20 1.549e-04 1.429e-05 10.49%
l∗ > 0|k∗ > 0 1.765e-04 2.104e-05 1.78%
No ZLB solution 1.290e-04 2.874e-05 11.61%

Total 1.217e-04 3.433e-05 100.00%

Table 2: Speed benchmark of the method from Section 2 for the HANK model of (Bayer et al., 2020)
with 929 variables.
Note: The table shows the execution times per state vector in seconds. “No ZLB solution” collects
draws for which no solution was found for a maximum of l_max and k_max periods ahead.

The comparison of the two tables also documents that the increase in the number of
variables reflects less than one-to-one in calculation times. Recall that the first phase of
the algorithm – finding (l∗, k∗) – only requires dot multiplications. In vectorized code
such calculations generally scale disproportionate relative to the size of the vectors due
to the relative reduction of computational fixed costs. The actual execution of f(l∗, k∗)
and g(l∗, k∗), ignoring the additive component, has a maximal complexity of O(n3) and
is likely to be faster.

Finally, 3 shows speed benchmarks for OccBin. The exercise reveals that the method
from Section 2 performs more than 1500 times faster than OccBin. Overall, the percent-
ages of draws in each bin are very similar to the percentages in Table 1. This confirms
that indeed both methods find the same solution, if it is unique. Further, while for the
method presented here a draw with an higher k∗ does not seem to bear higher computa-
tional costs, computation times for OccBin increase with k∗. However, the Newton-like
method of Occbin seems to require relatively less time to find solutions for draws with
l > 0, while such draws are relatively more expensive for the method presented here.
Lastly, for Occbin 0.12% of all draws no solution is found. While this number is already
very low, it can be squeezed down to (almost) zero by setting nperiods to 100.
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mean std % of samples

k∗ = 0 0.004080 0.000398 50.39%
k∗ ∈ (1, 5) 0.008001 0.002042 4.59%
k∗ ∈ (6, 10) 0.012571 0.002395 4.33%
k∗ ∈ (11, 15) 0.015785 0.002302 8.56%
k∗ ∈ (16, 20) 0.018874 0.002732 20.77%
k∗ > 20 0.019556 0.003229 11.25%
l∗ > 0|k∗ > 0 0.014800 0.003345 5.96%
No ZLB solution 0.009100 0.005291 0.12%

Total 0.010449 0.007152 100.00%

Table 3: Speed benchmark of OccBin19 (Guerrieri and Iacoviello, 2015; Cuba-Borda et al., 2019) for the
medium-scale model of (Boehl and Strobel, 2020).
Note: The table shows the execution times per state vector in seconds. “No ZLB solution” collects all
draws for which the iterative method either did not converge, or where a higher number of l + k than
nperiods was called during the iterative procedure.

4 Conclusion

This paper presents a fast and robust solution method for macroeconomic models
with occasionally binding constraints. I transform the linearized equilibrium conditions
into an extended reduced-form system that depends only on the initial states and the
expected number of periods at the constraint. This allows for a very efficient computation
of the solution. Speed benchmarks confirm very fast computation times even for large-
scale models with heterogeneous agents and almost 1000 variables. The method performs
more than 1500 times faster than OccBin (Guerrieri and Iacoviello, 2015). The work in
Boehl et al. (2020); Boehl and Strobel (2020) confirms that the proposed method, when
combined with a nonlinear filter for likelihood inference, enables the estimation of large-
scale dynamic models while fully accounting for an endogenously binding zero lower
bound on nominal interest rates during the estimation procedure.
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