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ON THE ACCURACY OF LINEAR DSGE SOLUTION METHODS AND
THE CONSEQUENCES FOR LOG-NORMAL ASSET PRICING

ALEXANDER MEYER-GOHDE

ABSTRACT. This paper demonstrates a failure of standard, generalized Schur (or

QZ) decomposition based solutions methods for linear dynamic stochastic general

equilibrium (DSGE) models when there is insufficient eigenvalue separation about

the unit circle. The significance of this is demonstrated in a simple production-based

asset pricing model with external habit formation. While the exact solution afforded

by the simplicity of the model matches post-war US consumption growth and the

equity premium, QZ-based numerical solutions miss the later by many annualized

percentage points.

JEL classification codes: C61, C63, E17

Keywords: Numerical accuracy; Production-based asset pricing; DSGE; Solution

methods

1. INTRODUCTION

The asset pricing literature abounds with puzzles and perhaps the most prominent

is the equity premium puzzle (Mehra and Prescott, 1985; Mehra, 2003) that seeks to

understand how risky assets can command such a high excess return in the face of
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2 ACCURACY OF LINEAR DSGE SOLUTION METHODS

moderate underlying volatility. While many convincing consumption based explana-

tions that modify assumptions on, say, the stochastic properties of the pricing kernel

have been offered, production based asset pricing facing the additional challenge

of needing to provide a structural cause of these stochastic properties. Providing

a structural explanation invariably requires solving a structural model, the most

common being dynamic stochastic general equilibrium (DSGE) models, which gen-

erally need to be solved numerically. Cochrane (2008, p. 300) expressed concern

regarding the accuracy of solution approximations in general equilibrium and this

paper points out a surprising degradation of the accuracy of solution approximations

in the simplest approximation, linear approximations, and their consequences for the

equity premium reported by these methods.

Providing a solution to a DSGE model involves solving a functional equation to

determine an unknown function that maps the sequences of variables in the infor-

mation set into the endogenous variables of the model, resolving expectations of

these same endogenous variables (Judd, 1998; Fernández-Villaverde, Rubio-Ramírez,

and Schorfheide, 2016). Linear DSGE models, whose solutions are linear functions

of these sequences of variables have long been studied, e.g., Blanchard (1979) and

Blanchard and Kahn (1980), and modern numerical packages such as Dynare (Ad-

jemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011), Gensys

(Sims, 2001), (Perturbation) AIM (Anderson and Moore, 1985; Anderson, Levin, and

Swanson, 2006), Uhlig’s Toolkit (Uhlig, 1999) and Solab (Klein, 2000) not only provide

tools for solving a wide range of linear models, but also provide a first step in the

solution procedure for many nonlinear methods as well.

The substantial hurdle in these linear methods is finding a solution to a (matrix)

quadratic equation, frequently required to be the unique stable solution. For multi-

variate models with potentially singular coefficient matrices, the standard method

is to double the dimension of the problem and employ a generalized Schur or QZ
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decomposition of Moler and Stewart (1973). While this algorithm is backward stable

for the generalized eigenvalue decompositions for which it was designed, it is not

always backward stable for quadratic eigenvalue problems (Tisseur, 2000) and may

yield ill-conditioned eigenvalues for quadratic matrix polynomials (Higham, Mackey,

and Tisseur, 2006; Higham, Mackey, Tisseur, and Garvey, 2008).

I demonstrate this danger in a simple, two equation canonical real business cycle

model with habit formation, chosen as its small dimension enables its symbolic

solution. Exploring calibrations that match two calibration targets, post-war US

consumption growth volatility and the average equity premium, I find that QZ based

solution methods deliver an equity premium often off by several annual percentage

points when the calibration pushes the stable and unstable eigenvalues close to

the unit circle. While only illustrative and chosen to enable simple analysis, it is

remarkable that none of the algorithms from the literature I explore produced any

warning that their solutions might suffer from such an economically significant loss

of accuracy. More general production based explanations, such as Jermann (1998),

Tallarini (2000), and Croce (2014) combine more involved specifications of preferences

and mappings from exogenous variables to underlying macroeconomic variables,

and must also invariably solve their models numerically. Inasmuch as the solutions

thereto are potentially subject to this inaccuracy in the solution of the underlying

DSGE models, so too are their asset pricing predictions.

The remainder of the paper is structured as follows. Section 2 introduces the real

business cycle model and the log-linear asset pricing approach. In section 3 I turn

to the solution of linear DSGE models and the links to the numerical mathematics

literature on solving matrix quadratic and generalized eigenvalue problems. Section

4 presents the results from various methods in the DSGE linear solution literature

for several calibrations. Finally, I conclude in section 5.
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2. A SIMPLE LOG NORMAL DSGE ASSET PRICING MODEL

Here I layout a simple production-based asset pricing model, based on a standard

real business cycle model (Kydland and Prescott, 1982; King and Rebelo, 1999)

with external habit formation and a power utility kernel.(Constantinides, 1990;

Campbell and Cochrane, 1999; Campbell, 2003) The representative household seeks

to maximize

E0

∞∑
t=0

βtu (ct, X t) , 0<β< 1 (1)

where ct is consumption and X t the habit stock, subject to

ct +kt = ezt kαt−1 + (1−δ)kt−1, 0<α,δ< 1 (2)

where kt is the capital stock accumulated at time t and zt is total factor productivity

that follows the AR(1) process

zt = ρzt−1 +ωεt, εt
i.i.d.∼ N(0,1), |ρ| < 1, 0<ω (3)

The first order condition of the maximization problem is

1= E t

[
β

uc (ct+1, X t+1)
uc (ct, X t)︸ ︷︷ ︸

mt+1

(
αezt+1 kαt +1−δ)︸ ︷︷ ︸

Rt+1

]
(4)

where mt+1 is the stochastic discount factor or pricing kernel and R+1 is the (risky)

return on capital. Assuming an external habit (X t = ct−1 in equilibrium with h the

degree of habit formation) and power or CRRA utility (risk coefficient σ), marginal

utility is uc (ct, X t)= (ct −hct−1)−σ.

Equations (2)-(4) characterize a equilibrium for the stochastic sequences

{ct,kt, zt}∞t=0 given a sequence of shocks {εt}∞t=0 and initial conditions c−1,k−1, z−1.

Defining the steady state, values c,k, z that solve (2)-(4) with εt = 0∀t, equations (2)
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and (4) can be log-linearized around these values to yield

0= AE t [yt+1]+Byt +Cyt−1 +Dzt, yt =
[
ĉt k̂t

]′
(5)

zt = ρzt−1 +ωεt, εt
i.i.d.∼ N(0,1) (6)

a a 2 by 2 system of equations linear in the log-deviations of the endogenous variables,

ct and kt, from their steady states, ŵt ≡ logwt − logw, for w ∈ c,k.

Following Hansen and Singleton (1983); Campbell and Shiller (1988); Campbell

(2003), risky (say, Rt from above) and risk-free (via no arbitrage, 1 = E t [mt+1]R f
t )

assets can be priced under the implied joint log-normality of the approximation above

via

1= E t

[
e �mt+1+�Rt+1

]
, and1= R f eR f

t E t

[
e �mt+1

]
(7)

which gives the risk premium as −covt( �mt+1, �Rt+1), following, e.g., Lettau (2003),

and can be expressed in terms of the variance of zt (ω2) as σ
1−hαQcz

(
1+β(1−δ)

)
ω2.

Importantly, the coefficient Qcz, the impact of technology on (log) consumption must

be solved for numerically even in this (log) linear case. To this solution I turn to in

the following section.

3. SOLUTION

Standard numerical solution packages available to economists and policy makers—

e.g., Dynare (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot,

2011), Gensys (Sims, 2001), (Perturbation) AIM (Anderson and Moore, 1985; An-

derson, Levin, and Swanson, 2006), Uhlig’s Toolkit (Uhlig, 1999) and Solab (Klein,

2000)—all analyze models that in some way or another can be expressed in the form

of the nonlinear functional equation

0= E t[ f (yt+1, yt, yt−1,εt)] (8)
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The model equations (optimality conditions, resource constraints, market clearing

conditions, etc.) are represented by the ny-dimensional vector-valued function f :

Rny ×Rny ×Rny ×Rne → Rny ; yt ∈ Rny is the vector of ny endogenous variables; and

εt ∈Rne the vector of ne exogenous shocks with a known distribution, where ny and

ne are positive integers (ny,ne ∈N).

The solution to (8) is sought, abstracting from stochastic dependencies that vanish

at first order anyway, as the unknown function

yt = y(yt−1,εt), y :Rny+ne →Rny (9)

a function in the time domain that maps states, yt−1 and εt, into endogenous variables,

yt. An analytic form for (9) is rarely available and researchers and practitioners are

compelled to find approximative solutions. However, a steady state, y ∈Rny be a vector

such y = y(y,0) and 0 = f (y, y, y,0) can frequently be recovered, either analytically

or numerically, providing a point of expansion around which local solutions may be

recovered.

A first-order, or linear approximation, of (8) delivers, analogously to the log lin-

earized model of section 2,

0= AE t [yt+1]+Byt +Cyt−1 +Dεt (10)

where A, B, C, and D are the derivatives of f in (8) with respect to its arguments

and, recycling notation, the y’s in (10) refer to (log) deviations of the endogenous

variables from their steady states, y.

In analogy to (9), the standard approach to finding a solution to the linearized

model (10) is to find a linear solution in the form

yt = P yt−1 +Q εt (11)
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a recursive solution in the time domain–solutions that posit yt as a function of its

own past, yt−1, and exogenous innovations, εt.

Inserting (11) into (10) and taking expectations (E t [εt+1]= 0), yields the restrictions

0= AP2 +BP +C, 0= (AP +B)Q+D (12)

Generally, a unique P with eigenvalues inside the closed unit circle is sought (I will

address this formally below). Lan and Meyer-Gohde (2014) prove the latter can be

uniquely solved if such a P can be found. Hence, the hurdle is the former, matrix

quadratic equation.

To assist in the analysis, I will formalize the matrix quadratic equation in (12). For

A, B, and C ∈Rny×ny , a matrix quadratic M(P) :Cny×ny →Cny×ny is defined as

M(P)≡ A P2 +B P +C (13)

with its solutions, called solvents,1 given by P ∈Cny×ny if and only if M(P)= 0. The

eigenvalues of the solvent, called latent roots of the associated lambda matrix2

M(λ) :C→Cn×n (here of degree two), are given via

M(λ)≡ Aλ2 +Bλ+C (14)

The latent roots are (i) values of λ ∈C such that det M(λ)= 0 and (ii) ny−rank(A) in-

finite roots. An explicit link between the quadratic matrix problem and the quadratic

eigenvalue problem is given via

λ ∈C :
(
Aλ2 +Bλ+C

)
x = 0 for some x 6= 0 (15)

1The analysis proceeds in the complex plane, but the results carry over when solutions are restricted

to be real valued due to the eigenvalue separation about the unit circle assumed below, see also Klein

(2000).
2See, e.g., Dennis, Jr., Traub, and Weber (1976, p. 835) or Gantmacher (1959, vol. I, p. 228).
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which has been reviewed extensively by Tisseur and Meerbergen (2001) and for which

Hammarling, Munro, and Tisseur (2013) provide a comprehensive method to improve

the accuracy of its solutions, is given in Higham and Kim (2000). If a unique stable

solution is sought or required, this can be formulated via an adaptation of Blanchard

and Kahn’s (1980) rank and order conditions to the matrix quadratic formulation

above. First assume there exist 2ny latent roots of (14) of which ny lie inside and ny

outside the unit circle. Second, there exists an P ∈ Rny×ny such that M(P) = 0 and

|eig(P)| < 1.

Most methods use a generalized Schur or QZ decomposition (Moler and Stewart,

1973; Golub and van Loan, 2013) of the companion linearization of (10)3 in some form

or another. For the formulation above, the matrix quadratic (12) can be brought into

the QZ form as

F

Iny

P

P =G

Iny

P

 , F ≡
 Iny 0ny×ny

0ny×ny A

 , G ≡
0ny×ny Iny

−C −B

 (16)

where Iny is an ny ×ny identity matrix and 0ny×ny is an ny ×ny zero matrix.

Applying the QZ or generalized Schur decomposition (unitary Q and Z and upper

triangular S and T with Q∗FZ = S and Q∗GZ = T), Higham and Kim (Theorem

3 2000) prove that all solvents or solutions of (16) are of the form P = Z21Z−1
11 =

Q11S−1
11 T11Q−1

11 . The decomposition is intricately related to the quadratic eigenvalue

problem (15) via

λ ∈C : (Fλ−G) y, where y=
[
x′ x′λ

]
for some x 6= 0 (17)

λ ∈C :Q (Sλ−T) ỹ, where ỹ= Z∗
[
x′ x′λ

]
for some x 6= 0 (18)

3Instead of the method of undetermined coefficients taken for expediency here, a multivariate

pivoted Blanchard (1979) approach that delivers the solution constructively is presented in the

appendix.



ACCURACY OF LINEAR DSGE SOLUTION METHODS 9

where the eigenvalues in both lines are identical following from unitary equivalence

(Moler and Stewart, 1973) and hence identical to the eigenvalues in (15) and the

latent roots of (14). From the upper triangularity of S and T it follows that the

spectrum or set of eigenvalues of the pencil PFG(λ) = Fλ−G is determined by the

diagonal entries of S and T

ρ(PFG)= {
tii/sii, if sii 6= 0; ∞, if sii = 0; ;, if sii = tii = 0; i = 1, . . . ,2ny

}
(19)

where sii and tii denote the i’th row and i’th column of S and T respectively.

Ordering the decomposition so that the eigenvalues outside the unit circle are in

the lower right blocks of S and T (hence S22 and T22), the necessary and sufficient

assumptions for a unique stable solution for yt of (10) to exist are (1) Regularity:

PFG(z) is called regular if there exists a z ∈C such that det (Fz−G) 6= 0; (2) Order:

Of the 2ny generalized eigenvalues, there are exactly ny stable roots inside the

unit circle, and consequently, exactly ny unstable roots outside the unit circle; (3)

Rank: Z11, the upper right block of Z, is nonsingular If and only if these three

assumptions are fulfilled does a unique solution P stable with respect to the closed

unit circle exist. Consequentially, the overwhelming majority of the linear solution

methods provided to researchers and practitioners in the standard numerical solution

packages enumerated at the beginning of the section can be summarized by this

single matrix decomposition.

Binder and Pesaran (1997) and Anderson (2010) are two prominent methods that

solve for P in a substantially different manner. Binder and Pesaran’s (1997) “fully

recursive method” works directly with the matrix quadratic (12) and iterates on

P̃k = Iny − ÃP̃−1
k−1C̃, where Ã ≡ B−1A, C̃ ≡ B−1C, P̃0 ≡ Iny (20)

Delivering the solution to the matrix quadratic (12) as P =−P̃−1
N C̃ for some maximum

iteration N. Anderson (2010) applies the bi-orthogonality that arises from the
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separation of stable and unstable solutions to solve for the left invariant space

associated with unstable solutions via4 yt

E t [yt+1]

=
 0ny×ny Iny

−A−1C −A−1B

yt−1

yt

 ⇒
[
V1 V2

] 0ny×ny Iny

−A−1C −A−1B

=M
[
V1 V2

]
(21)

where the vectors of V span the invariant space associated by unstable eigenvalues.

This gives yt = −V−1
2 V1 yt−1 as the solution to the homogenous problem, i.e., the

matrix quadratic (12), P = −V−1
2 V1. The key commonality of Binder and Pesaran

(1997) and Anderson (2010) in contrast to the methods above is that they avoid the

QZ or generalized Schur decompositon.

Apart from Anderson (2008), very little attention has been paid to comparing the

accuracy of different algorithms for linear models5 and to numerically addressing the

assumptions necessary for the existence of a unique stable solution.6 Improvements

in the accuracy of the solution to linear DSGE models has implications for many

nonlinear solutions as well. Anderson, Levin, and Swanson (2006) demonstrate that

even small inaccuracies in lower orders compound to larger errors in the computation

of higher, nonlinear solutions such as in Jin and Judd (2002).

Studies concerning the numerical robustness of generalized eigenvalue problems

date back at least to Stewart (1972) and Wilkinson (1979), who provided examples of

essentially arbitrary results from the QZ algorithm in the presence of nearly singular

4This assumes that A is invertible, the general case can be found in Anderson (2010) and is merely

slightly more involved, utilizing the shuffle-algorithm of Luenberger (1978) to yield an invertible A.
5This is in stark contrast to the many studies that examine the accuracy of different nonlinear

methods. See Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016) for an overview.
6Heilberger, Klarl, and Maußner (2015) provides an exception, showing that, theoretically, if the

rank assumption for the QZ decomposition is fulfilled for one ordering of the eigenvalues that conforms

to the unit circle separation, it holds for any ordering that conforms to the same.



ACCURACY OF LINEAR DSGE SOLUTION METHODS 11

pencils, i.e. violation of the regularity assumption above. The computation of eigen-

values numerically is likewise subject to finite precision. Hammarling, Munro, and

Tisseur (2013) provide a comprehensive study on improving the accuracy of quadratic

eigenvalue problems. Anguas, Bueno, and Dopico (2019) provides a comparison

of different conditioning numbers for the eigenvalues of matrix polynomials and

conditioning numbers of polynomial eiqenvalues can be obtained via eigenvalues for

perturbations of the polynomial or pseudospectra (see Tisseur and Higham, 2001;

Higham and Tisseur, 2002). Specifically, Tisseur and Higham (2001), Mengi and

Overton (2005), and Michiels, Green, Wagenknecht, and Niculescu (2006) apply

pseudospectra to stability radii in continuous-time applications. I will turn to the

pseudospectrum for insight into the saddle-path stability vis-a-vis the unit circle in

the problem laid out above.

Specifically, the pseudospectrum provides a perturbed analog to the spectrum or

set of eigenvalues/latent roots of (14) and (15)

ρε(M)= {λ ∈C : (M(λ)+∆M(λ))x = 0 for some x 6= 0 and ∆M(λ) (22)

with ‖∆A‖ ≤ εαA,‖∆B‖ ≤ εαB,‖∆C‖ ≤ εαC} (23)

where ∆M(λ) represents the perturbation of the quadratic7

∆M(λ)≡∆Aλ2 +∆Bλ+∆C (24)

and the αi ’s control the perturbation, which are set as αX = |X | using the 2-norm fol-

lowing Tisseur (2000). As shown in Tisseur and Higham (2001), this 2-norm definition

of the pseudopectrum corresponds to the backward errors of the eigenvalues.

As proven in Tisseur (2000), while the QZ or generalized Schur algorithm is

numerically stable for the generalized eigenvalue problem (Stewart, 1972), this is not

7This is perhaps easier to see via the identity M(λ)+∆M(λ)= (A+∆A)λ2 + (B+∆B)λ+ (C+∆C).



12 ACCURACY OF LINEAR DSGE SOLUTION METHODS

the case for the quadratic eigenvalue problem, as it does not respect the structure of

the latter. To see this, first define the pseudospectrum of (17) analogous to above

ρε(PFG)= {λ ∈C : (PFG(λ)+∆PFG(λ))x = 0 for some x 6= 0 and ∆PFG(λ) (25)

with ‖∆F‖ ≤ εαF ,‖∆G‖ ≤ εαG} (26)

comparing the perturbations involved in (25) with (22)

∆PFG(λ)≡∆Fλ−∆G =
∆F11 ∆F12

∆F21 ∆F22

λ−
∆G11 ∆G12

∆G21 ∆G22

 (27)

6=
 Iny 0ny×ny

0ny×ny ∆A

λ−
0ny×ny Iny

−∆C −∆B

 Iny

Inyλ

=
 0

∆M(λ)

 (28)

inspection underscores that, in general, perturbations of the QZ or generalized

Schur of the companion linearization (16) do not respect the specific structure in the

underlying matrix quadratic problem (12).

While the backward stability in the calculation of the eigenvalues does not fully

characterize the numerical stability of the solution of linear DSGE models, it high-

lights the potential for QZ or generalized Schur-based algorithms to underperform

algorithms that preserve the structure of the matric quadratic problem. I will turn to

demonstrating this in the next section using the specific model of section 2.

4. RESULTS

In this section I investigate the accuracy of the different methods, QZ- and non-

QZ-based, from section 3 in solving the model of section 2. The model was chosen to

be as simple as possible, in order to enable the symbolic solution of the underlying

matric quadratic problem; see Higham and Kim (2000) who argue that Matlab can

successfully solve two-dimensional matrix quadratic problems reliably. I provide

numerical results for two calibrations, see table 1, labeled standard and extreme.
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The standard calibration follows the RBC literature (see, e.g., King and Rebelo, 1999)

with the degree of habit formation, h and curvature in the utility function, σ, elevated

to match an equity premium of 7.8 in annual percentage points following (Mehra,

2003) for the post-war US and ω, the standard deviation of the technology shock,

adjusted to deliver a standard deviation of consumption growth, std (log ct), in line

again with the post-war US experience. The extreme calibration is chosen to bring the

eigenvalue separation between the stable and unstable pencils closer together, while

maintaining the match of the exact solution to the equity premium and consumption

growth volatility.

Besides assessing whether the different solution methods are able to recover the

exact solutions for the two calibration targets, I examine the underlying causes of

a degeneration in accuracy. Namely the largest absolute deviation in the matrices

for the linear solution or policy function (11), P and Q, and the largest absolute

difference in the finite eigenvalues of the quadratic eigenvalue problem (15) via

max(|∆eig|)≡max(|λexact −λmethod|) (29)

max(|∆P|)≡max(|Pexact −Pmethod|) (30)

max(|∆Q|)≡max(|Qexact −Qmethod|) (31)

Additionally, I provide plots of the pseudospectra of the matrix quadratic (22) and of

the QZ companion linearization (25). The results that are referred to as exact are

solved symbolically and evaluated using Mathlab’s VPA (variable precision arith-

metic) with 100 digits of accuracy.

Table 2 contains the results for the standard calibration. The first line contains

the equity premium predicted by the different methods and all of the methods

successfully predict an equity premium of 7.8 annual percentage points, likewise the

volatility of consumption growth, the third line, is identical across methods. Upon
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h β δ α σ ρ ω

Standard 0.966 0.99 0.025 0.36 98.1 0.95 0.134

Extreme 1-3.907E-05 1-1.750E-10 0.6715 1-5.751E-05 9.151 1-5.184E-04 3.068E-03

TABLE 1. Calibrations

closer examination, the second line, the exact equity premium and that predicted

by the varying methods differ to varying degrees. The most accurate method being

that of Binder and Pesaran (1997) with all QZ-based methods apart from Dynare

displaying degrees of accuracy several orders of magnitude lower. As laid out in

Villemot (2011), Dynare reduces the problem solved with the QZ algorithm by, among

others, eliminating zero column variables in the A and C matrices of the linear

system (10); this is in line with one of the suggestions by Hammarling, Munro,

and Tisseur (2013) to improve the accuracy of the quadratic eigenvalue problem.

This is reflected in the fifth line of the table, where the largest error in the finite

eigenvalues calculated by Dynare are in line with the non-QZ-based methods, those

of the remaining QZ-based methods are several orders of magnitude larger, and that

of Binder and Pesaran (1997) demonstrating the smallest error. The errors in the

resulting matrices for the linear solution or policy function (11), P and Q are of the

same order of magnitude. Despite the differences in the accuracy of calculating the

eigenvalues, all of the methods yield the same eigenvalue separation between the

stable and unstable pencils. Based on this standard calibration, the differences in

the solutions generated by the different methods are of no economic consequence.

Figure 1 plots the pseudospectra for the extreme standard of the matrix quadratic

(22) – in blue – and of the QZ algorithm (25) – in red – against the exact eigenvalues –

in black – for two different sizes of perturbations. In the left panel, the pseudospectra

are not visible, as they overlap with the exact results for perturbations of this size. For

slightly larger perturbations (right panel), the pseudospectrum of the QZ algorithms
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FIGURE 1. Pseudospectrum: Standard Calibration x-axis: real component,

y-axis: imaginary component, large black dots: eigenvalues, black curve: unit cir-

cle, small red dots: pseudospectrum QZ, small blue dots: pseudospectrum matrix

quadratic

encompasses the unit circle while that of the matric quadratic remains invisible at

this scale. This, following Tisseur and Higham (2001), indicates that the backward

error in calculating the eigenvalues is not only larger than under the QZ algorithm

than with the matrix quadratic, consistent with Tisseur (2000), but also that the

stable and unstable eigenvalues are potentially indistinguishable numerically.

Table 3 contains the results for the extreme calibration and the resulting predic-

tions for the two calibration targets now differ significantly across methods. While the

non-QZ-based methods continue to maintain a significant match with the calibration

targets, lines 1 and 3, the QZ-based methods including Dynare now miss predict the

equity premium by at least 75 annual basis points and as much as 3 annual per-

centage points, errors of genuine economic significance. The second line, containing

the differences of the equity premium predicted by the different methods and the

exact solution, now show the algorithm of Anderson (2010) being more accurate than

the method of Binder and Pesaran (1997). The differences in the accuracies of the
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predicted calibration targets ultimately stem from differences in the accuracies in

matrices for the linear solution or policy function (11), P and Q, as can be seen in the

last two lines of the table. Importantly, not a single algorithm displayed a warning

that their solutions might be inaccurate.

The accuracies in the calculation of the finite eigenvalues roughly reflect the

differences in the accuracy of the predicted calibration targets, yet the calculated

eigenvalue separations are roughly the same, being on the order of 2E−05. This

is significant for two reasons. First, the separation is several orders of magnitude

lower than under the standard calibration, pointing to a near overlap in the stable

and unstable pencils. Second, their rough agreement may provide the basis for a

diagnistic

Figure 2 plots the pseudospectra for the extreme calibration of the matrix quadratic

(22) – in blue – and of the QZ algorithm (25) – in red – against the exact eigenvalues

– in black – for two different sizes of perturbations. In contrast to the results for

the standard calibration in figure 2, the finite eigenvalues are all much closer to

the unit circle (see the scale on the x-axis) and dispersion away from the exact

eigenvalues is visible with perturbations several orders of magnitude smaller. Again,

the pseudospectrum of the QZ algorithm bleeds across the unit circle for smaller

perturbations than does the matrix quadratic (right panel).

Table 4 contains a summary of results from additional alternate calibrations (see

the appendix, Table 5), in all calibrations, the parameters are chosen to match the

equity premium of 7.8 and standard deviation of consumption growth of 0.566%.

Calibrations I and II are alternative standard calibrations, holding all parameters

apart from h, σ and ω constant. Calibration I has a higher curvature in the utility

function, σ, and a lower degree of habit formation, h, and calibration II vice versa

than in the standard calibration above. As in the standard calibration, the eigenvalue

separation is on the order of 1E−02 and all methods successfully recover the equity
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FIGURE 2. Pseudospectrum: Extreme Calibration x-axis: real component, y-

axis: imaginary component, large black dots: eigenvalues, black curve: unit circle,

small red dots: pseudospectrum QZ, small blue dots: pseudospectrum exact

E [rp]

Eig. Sep. Klein (2000) Sims (2001) Uhlig (1999) Dynare Anderson (2010) BP (1997)

I 1.1E-02 7.8 7.8 7.8 7.8 7.8 7.8

II 1.05E-02 7.8 7.8 7.8 7.8 7.8 7.8

III 1.17E-04 8.31 8.17 8.31 6.5 7.8 7.8

IV 1.97E-05 12.7 7.98 12.7 7.8 7.8 7.8

V 3.2E-05 7.74 11.7 7.74 7.8 7.8 7.8

VI 2.9E-05 6.99 9.64 6.99 7.8 7.8 7.8

TABLE 4. Results for additional calibrations I-VI, see the appendix

For Dynare, refer to Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto,

and Villemot (2011). BP (1997) refers to Binder and Pesaran (1997).

premium. Calibration III is similar to the extreme calibration above, but with a

slightly reduced degree of habit formation, h, and discount factor, β, compensated

by an increased curvature in the utility function, σ. With an eigenvalue separation
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on the order of 1E−04, the QZ methods demonstrate significant deviations in their

predicted equity premia as above, though now some methods over and some methods

under predict the premium. Both the alternative methods successfully match the

premium; under this calibration, the accuracy of the Binder and Pesaran (1997)

method exceeds that of Anderson (2010) (not shown in the table, full results are

available online). Calibrations IV-VI provide further examples of the arbitrary results

from QZ methods. With the eigenvalue separation on the order of 1E −05, some

methods do very well for some calibrations yet worse for others, with all the calibrated

parameters arguably very similar (see the appendix, Table 5). Interestingly, Dynare

in all of these calibrations successfully predicts the equity premium.

5. CONCLUSION

This paper has provided a concrete example, calibrated to macroeconomic and

financial data, of almost arbitrary numerical results from QZ-based methods, when

the underlying DSGE macroeconomic model has insufficient separation between the

backward looking, or stable, and the forward looking, or unstable, components of

the solution. This example was chosen to be as small as possible, two endogenous

variables, to enable an exact, symbolic solution. While certainly much more work

remains to deliver conditioning-like numbers when solving even linear DSGE models,

the results here provide a first step in that direction and, perhaps more importantly,

serve as a cautionary tale. Not a single one of the methods gave the user any

indication that the numerical solution it provided might imply an equity premium off

by several percentage points.
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APPENDIX

5.1. Multivariate pivot derivation of the linear solution. While this derivation contains nothing

substantially new compared with, say Klein (2000), its formulation commensurate with (10) enables a

straightforward application of Blanchard’s (1979) forward method, making the derivations potentially

more transparent and accessible than existing expositions in the literature.

Rearranging the model (10) into the companion linearization yields

F

 yt

E t [yt+1]

=G

yt−1

yt

+
0ny×nε

D

εt, F ≡
 Iny 0ny×ny

0ny×ny A

 , G ≡
0ny×ny Iny

−C −B

 (A1)

where Iny is an ny ×ny identity matrix and 0ny×ny is an ny ×ny zero matrix.

The generalized Schur decomposition (unitary Q and Z and upper triangular S and T with

Q∗FZ = S and Q∗GZ = T) of the matrix pencil PFG(z)= Fz−G, can be ordered arbitrarily to formS11 S12

0 S22

E t
[
ws

t+1
]

E t
[
wu

t+1
]
=

T11 T12

0 T22

ws
t

wu
t

+Q∗
0ny×nε

D

εt (A2)

With any generalized Schur decomposition of PDE(z), the spectrum or set of eigenvalues of the pencil

PDE(z) is determined by the diagonal entries of S and T
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ρ(PDE)= {
tii/sii, if sii 6= 0; ∞, if sii = 0; ;, if sii = tii = 0; i = 1, . . . ,2ny

}
(A3)

where sii and tii denote the i’th row and i’th column of S and T respectively. Ordering the decomposi-

tion so that the unstable eigenvalues are in the lower right blocks of S and T (hence S22 and T22),

this lower block can be solved forward following Blanchard (1979) to yield

wu
t = lim

j→∞
(
T−1

22 S22
) j

E t

[
wu

t+ j

]
−T−1

22

[
{Q∗}21 {Q∗}22

]
︸ ︷︷ ︸

≡{Q−1}2•

[
0′

ny×nε D′
]′

︸ ︷︷ ︸
≡D̂

εt =−T−1
22 {Q∗}2•D̂εt (A4)

where the invertibility of T22 and convergence of lim j→∞
(
T−1

22 S22
) j follow directly from the ordering

above. Using the definition Z
[
ws

t
′ wu

t
′
]′
=

[
y′t−1 y′t

]′
delivers

wu
t =

[
Z∗

21 Z∗
22

][
y′t−1 y′t

]′
=−T−1

22

[
{Q∗}21 {Q∗}22

][
0′

ny×nε D′
]′
εt (A5)

where ∗ indicates the complex conjugation of Z that delivers its inverse by virtue of it being a unitary

matrix. If the necessary and sufficient assumptions for a unique stable solution for yt of (10) from the

main text hold, the unique stable solution for yt is given by

yt = Z21Z−1
11 yt−1 −

(
Z22 −Z21Z−1

11 Z12
)
T−1

22

[
{Q∗}21 {Q∗}22

][
0′

ny×nε D′
]′
εt (A6)

where Z∗
22

−1 = Z22 −Z21Z−1
11 Z12 and Z∗

22
−1Z∗

21 =−Z21Z−1
11 follow from the properties of unitary matri-

ces.

h β δ α σ ρ ω

I 0.8617 0.99 0.025 0.36 324.3 0.95 8.355E-02

II 1-9.857E-05 0.99 0.025 0.36 6.109 0.95 6.175E-02

III 1-1.008E-04 1-8.991E-06 0.6402 1-5.680E-04 51.53 1-6.066E-05 7.742E-04

IV 1-6.829E-06 1-5.863E-08 0.6562 1-2.652E-05 1+2.591E-08 1-3.437E-03 1.594E-02

V 1-4.294E-06 1-1.012E-12 0.4727 1-9.990E-05 1+7.590E-08 1-9.628E-04 7.898E-03

VI 1-5.070E-06 1-4.259E-08 0.6539 1-5.715E-05 1+4.755E-05 1-1.221E-03 7.102E-03

TABLE 5. Additional Calibrations I-VI
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