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Abstract

Can boundedly rational agents survive competition with fully rational agents? We develop a highly

nonlinear heterogeneous agents model with rational forward looking versus boundedly rational back-

ward looking agents and evolving market shares depending on their relative performance. Our novel

numerical solution method detects equilibrium paths characterized by complex bubble and crash dy-

namics. Boundedly rational trend-extrapolators amplify small deviations from fundamentals, while

rational agents anticipate market crashes after large bubbles and drive prices back close to fundamen-

tal value. Overall rational and non-rational beliefs co-evolve over time, with time-varying impact,

and their interaction produces complex endogenous bubble and crashes, without any exogenous

shocks.
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1 Introduction

“Given the uncertainty of the real world, the many actual and virtual traders will have

many, perhaps equally many, forecast [...] If any group of traders was consistently

better than average in forecasting stock prices, they would accumulate wealth and give

their forecasts greater and greater weight. In this process, they would bring the present

price closer to the true value.”

— Cootner, 1964

“. . . the rational expectations hypothesis is consistently rejected in individual forecast data.

Individual forecast errors are systematically predictable from forecast revisions. [. . . ]

overreaction to information is the norm in individual forecast data, meaning that

upward revisions are associated with realizations below forecasts.”

— Bordalo et al., 2020a

Do fully rational agents drive out irrational agents and bring asset prices back to fundamental value?

This question has a long tradition in economics. Friedman (1953) has been an early advocate of

the view that rational agents would outperform non-rational agents, who would lose money and be

driven out of the market. The above quote from Cootner (1964) is supportive of this rational view

and argues that not only will agents with more sophisticated forecasting rules drive out other rules,

but in addition they will prevent ”bubbles” and enforce prices to converge to fundamentals.

More recently the rational view has been challenged by behavioral approaches emphasizing the

importance and empirical relevance of “irrational” extrapolative expectations in generating asset

market bubbles. For example, Barberis et al. (2018) argue that bubbles may be triggered by shocks

to fundamentals and amplified by extrapolative expectations. Bordalo et al. (2020b) show that

expectations surveys have high explanatory power on stock price dynamics. Greenwood and Shleifer

(2014) show that empirical expected returns are highly correlated with past returns and stock prices,

while rational expectations would suggest the opposite. The second quote above is taken from

Bordalo et al. (2020a), who document systematic overreaction of individual forecasters to news. The

work of Hommes et al. (2005); Hommes (2021) shows the prevalence of coordination on extrapolative

expectations in laboratory experiments with human subjects.

This paper is an attempt to reconcile the rational and the behavioral approach. Our main contri-

bution lies in providing and solving a heterogeneous agents model in which “irrational agents” with

extrapolative expectations and fully rational agents co-exist and their fractions co-evolve over time

upon their relative success. The interactions between rational agents and extrapolative expectations

create endogenous fluctuations characterized by irregular bubble and crash dynamics in line with the
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empirical evidence above. Such heterogeneous agents models are highly nonlinear and therefore hard

to solve even numerically. We provide a novel numerical method to compute rational expectations

equilibria –i.e. solution paths along which rational agents have perfect foresight– characterized by

bubble and crash patterns. Extrapolative expectations amplify small deviations from the funda-

mental into growing asset bubbles, while rational agents stabilize these bubbles when they become

too large. These interactions between simple and sophisticated traders lead to complex bubble and

crash patterns in asset prices.

A novel contribution of our paper is to develop a numerical method to solve for the global

dynamics of a nonlinear system with endogenous cycles and chaotic equilibrium dynamics. Why is

this necessary? As in Grandmont (1985, 1998) we approach the question of whether or not agents

with non-rational expectations survive in a temporary equilibrium framework. The framework with

competing heterogeneous beliefs is adapted from Brock and Hommes (1997, 1998). A temporary

equilibrium map with heterogeneous expectations, including both forward looking and backward

looking agents is of the form

xt = F (Etxt+1, Xt−1), (1)

where F is the law of motion of the equilibrium price xt of a financial asset, andXt−1 = {xt−1, xt−2, . . . }

is the history of xt.
1 Our particular interest lies in models where F is highly nonlinear and may

exhibit complex equilibrium solutions, such as boom and bust cycles or chaotic and unpredictable

bubble and crash dynamics. The law of motion (1) may, for example, represent a heterogeneous

expectations model, where one type has simple backward looking expectations (e.g., some function

of xt−1) and another type has forward looking rational expectations (perfect foresight, hence the

term Etxt+1). The dynamics of (1) is then only implicitly defined as the current state xt depends on

the past xt−1, but also on the future xt+1. When F is nonlinear such systems are hard to solve. The

methodological contribution of our paper is to develop an explicit functional representation of the

global solution to the nonlinear system (1). This representation can be understood as an iterative

procedure over the sequence space, which allows us to simulate the global dynamics of the nonlinear

system. The degree of complexity of a rational expectations solution is increasing tremendously

when including boundedly rational agents in a model. To our best knowledge our paper is the first

to successfully apply such techniques to detect cycles and chaotic temporary equilibrium dynamics.

The paper is organized as follows. After discussing some related literature in the rest of this

section, the following Section 2 presents the temporary equilibrium asset pricing framework with

heterogeneous expectations and Section 3 develops the numerical solution method. Section 4 dis-

1F may e.g. be an Euler equation derived from intertemporal utility maximization.
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cusses some simple linear examples. In Section 5 we apply our numerical method to study the

competition between rational and non-rational agents and cycles that may emerge. Section 6 dis-

cusses an example with chaotic equilibrium dynamics, while Section 7 concludes.

Related Literature

A large literature has addressed the question of whether fully rational agents drive out irra-

tional agents. Rationality involves two important aspects: utility or profit maximization (Subjective

Expected Utility, SEU) and expectations (Rational Expectations Hypothesis). Blume and Easley

(2010) provide a survey and stimulating discussion of their and others’ work on the market selec-

tion hypothesis, that is, the question: do markets redirect resources toward rational SEU decision

makers? They conclude that utility maximization puts only few restrictions on asset prices and

stress the importance to study differences in beliefs. Sandroni (2000) and Blume and Easley (2010)

investigate how rational expectations fare against traders with non-rational beliefs. They show that

if markets are dynamically complete, the economy is bounded, and traders have a common discount

factor, then the market is dominated in the long run by those with correct expectations. Hence,

if there is any trader with correct beliefs, in the long run asset prices converge to their rational

expectations values. Finally, drawing on the literature on incomplete markets Cao (2018) find that

over-optimistic agents not only survive but can even benefit from expectations other than rational,

and can increase overall price volatility. None of these models generate realistic boom-bust cycles

however, as in our nonlinear framework.

Another branch of literature in behavioral finance – the literature on noise traders – also studies

models with rational and non-rational agents. “Noise traders”, a term due to Kyle (1985) and

Black (1986), are investors whose changes in asset demand are not driven by news about economic

fundamentals, but rather by non-fundamental considerations such as changes in expectations or

market sentiment. Early and influential papers include work of De Long et al. (1990b,a), showing

that noise traders can survive in a world with rational agents. The first paper shows that traders with

incorrect beliefs can earn higher expected returns than those earned by traders with correct beliefs,

because they take on extra risk. The second paper uses a 3-period model to show that in the presence

of positive feedback traders, rational speculation can be destabilizing. This model thus explains

overreaction to news about economic fundamentals, caused by rational informed speculators taking

into account the presence of feedback traders. None of these models use a temporary equilibrium

framework and bubble and crash cycles do not arise as in our model.

In an economy with heterogeneous agents, rational expectations are a strong assumption as

rational agents must fully understand the economic environment, the behavior of all non-rational

agents and their relative share among all traders, the latter being potentially time-varying. As
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mentioned above, temporary equilibrium systems with rational versus non-rational agents are hard

to study or even simulate. A less demanding assumption would be to replace the fully rational agents

by agents who would behave rationally only in a world where all other agents behave rationally too.

In a homogeneous rational world prices would be at fundamental value. Therefore, homogeneous

rational agents are often called fundamentalists. There is a large literature on fundamentalists versus

chartists models (see e.g. the survey in Hommes (2006)). These models are easier to handle as one

would replace the future value xt+1 in (1) by a fundamental equilibrium value, which then typically

leads to backward-looking learning models that are straightforward to simulate or can even be

studied analytically. Such models however do not allow to analyse the interaction of heterogeneous

agents if some of the agents are perfectly rational.

Our paper also relates to more recent heterogeneous agents models in behavioral macro eco-

nomics, see e.g. the chapters in the Handbook of Computational Economics, Vol. 4, Heterogeneous

Agent Modeling (Hommes and LeBaron, 2018), in particular the chapter of Branch and McGough

(2018) on the micro-foundations of heterogeneous agents macro models and the recent survey on

behavioral macroeconomics provided in Hommes (2021).

Our numerical method shows that the model with rational and trend-extrapolative agents can

feature multiple equilibria, that is there may be multiple stable rational expectations equilibria. The

type of dynamics then depends crucially on whether rational expectations are anchored around a

fundamental or nonfundamental steady state. Prices are stationary –but larger than the fundamen-

tal value– if rational expectations are anchored around the nonfundamental steady state. In this

equilibrium, the extrapolative drift away from the fundamental and the stabilizing effect of rational

agents are in exact balance. The exact same model features boom-burst dynamics between the

fundamental price and the nonfundamental steady state if rational expectations are anchored at the

fundamental steady state. Such multiple equilibria that do not depend on fundamental variables are

commonly referred to as sunspots.2 This finding is important because expectations anchoring play

a central role in macroeconomics, e.g. for the conduct of monetary economics (Woodford, 2005).

The anchoring of long-term expectations is also considered as an explanation for the breakdown of

the macroeconomic relationship between inflation and real activity (“the missing Deflation/Inflation

puzzle”) by Coibion and Gorodnichenko (2015) and Ball and Mazumder (2018). Mertens and Ravn

(2014) and Aruoba et al. (2018) discuss implications of expectations driven liquidity traps. In these

models, a sunspot can trigger agents to coordinate on an (unstable) equilibrium in which the zero

lower bound on nominal interest rate (ZLB) binds, which in turn causes unfavorable macroeconomic

2See e.g. Benhabib and Farmer (1999) for a survey on sunspots in macroeconomics.
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conditions. The concept of sunspot equilibria has also been used to explain asset price bubbles (e.g.

Gali, 2014). While to our best knowledge, of the sunspot equilibria treated in the literature at least

one equilibrium is indetermined and hence dynamically unstable (e.g. the ZLB steady state or the

sunspot asset price bubbles), in our model both steady states provide a stable equilibrium.

By exploring the chaotic dynamics that may result from the interaction of heterogeneous agents

including rational traders, our paper also adds to the literature on the dynamics of financial crisis.

A host of studies (see e.g. Schularick and Taylor, 2012; Greenwood and Hanson, 2013; López-Salido

et al., 2017; Greenwood et al., 2020) documents that rapid asset price growth together with excessive

credit growth are a good predictor of financial crisis and financial fragility events. Their work however

can neither explain why asset prices start to rise in the first place, nor why they eventually collapse.

We close this gap by showing that extrapolative dynamics can arise endogenously even if a sizable

share of agents is fully rational. In our heterogeneous agents model such “bubbles” burst when

deviations of asset prices from fundamental value become large and more and more agents switch

to a rational forecasting rule endogenously bringing prices back close to fundamental value.

Lastly, by developing a numerical iterative procedure that allows solving systems with cycles

and chaotic dynamics we also contribute to the literature on computational methods. Our method

is related to the extended path method by Fair and Taylor (1983) as well as to the policy func-

tion iteration method proposed by Coleman (1990, 1991), which has been applied successfully in

macroeconomic research.3 Instead of iterating on a numerical representation of the solution to F as

in a policy function iteration algorithm, we directly iterate on the expected future trajectory (the

“extended path” {Etxt+s}∞0 ) given Xt−1. Other than with the extended path method, we do not

ex-ante truncate this expected future trajectory and do not require any root findings methods, which

may cause numerical instability. See Judd (1998), Miranda and Fackler (2004) and Ljungqvist and

Sargent (2012) for comprehensive, general surveys of numerical methods in economics. Finally, our

approach can be seen complementary to the literature on rational inattention (Sims, 2003, 2010) as

we show that if the rational predictor is costly and alternative predictors are successful, a sizable

fraction of agents has an incentive to opt for the non-rational prediction.

2 An asset pricing model with heterogeneous beliefs

In this section we recall the main dynamic equations of the asset pricing model with heteroge-

neous beliefs of Brock and Hommes (1998), henceforth BH98. This model allows for heterogeneous

boundedly rational agents, who switch between different forecasting rules based upon their relative

3Recent examples include Gust et al. (2017); Atkinson et al. (2019); Richter and Throckmorton (2016).
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performance. BH98 consider two broad classes of agents: fundamentalist who believe that the asset

price is equal to its fundamental value – the discounted sum of expected future dividends– and

chartists, who use simple forecasting strategies to extrapolate patterns in past prices. BH98 show

that the heterogeneous expectations model exhibits complex, chaotic bubble and crash dynamics,

with agents switching between stabilizing fundamentalist strategies and destabilizing trend-following

strategies.

Notice that fundamentalists act as if they are rational agents in a homogeneous rational world.

However, in a model that includes heterogeneous non-rational agents, the fundamentalists are not

fully rational, because they do not take the behavior of non-rational agents into account. A novel

feature of the current paper is that we consider fully rational agents in this heterogeneous agent

setup, having perfectly rational expectations that take into account the behavior of other non-

rational agents. Full rationality, however, makes the model hard to solve, even numerically.

Consider an asset market where agents can choose between a risk free asset paying a gross return

R = 1 + r, where r > 0 is the interest rate, and a risky asset that pays an uncertain dividend

yt in each period. Agents are neither constrained in borrowing nor in short-selling. There are H

different trader types with different expectations about the future price of the asset. Furthermore,

each trader type is a myopic mean variance maximizer, which implies that trader type i’s demand

zi,t for the risky asset is a linear function of his belief xei,t+1 about the asset price in t+ 1 as well as

today’s price. Let xt be defined as the deviation of the asset price at time t from its fundamental

value. The market clearing price then reads as a no-arbitrage condition of the form

Rxt =

H∑
i=1

ni,tx
e
i,t+1, (2)

where 1/R represents the (time-invariant) discount rate and ni,t represents the fraction of trader

type i with all fractions adding up to 1. This equation will also be called the law of motion (LOM)

of the model. Notice that if all agents are fundamentalists, i.e., believe that the future deviation

from fundamental value is zero, then the realized market price will be exactly at fundamental value.

Hence, the fundamental value is a rational expectations equilibrium (REE) steady state of the model.

As a simple, but typical, example exhibitng cycles, we focus on a model with three types of agents

of which two types will be symmetrical. Agents are either rational (type 1) or biased optimists (type

2) or biased pessimists (type 3). The biased forecasts are given by

xe2,t+1 = +b and xe3,t+1 = −b, (3)
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where the magnitude of the bias is denoted by b > 0. Rational agents have perfect information

about the model, including the behaviour of all other agents, and the rational forecast is given by

the expectation Etxt+1 conditional on the information available at time t.4

Market clearing with rational versus biased agents is then given by

Rxt = n1,tEtxt+1 + (n2,t − n3,t)b, (4)

where nh,t, h = 1, 2, 3 denotes the fractions of rational, optimistic and pessimistic agents at time t,

with all fractions adding up to 1. In the case of a deterministic model, i.e. absent any exogenous

disturbances, rational agents have perfect foresight and we can simply set Etxt+1 = xt+1 to obtain5

Rxt = n1,txt+1 + (n2,t − n3,t)b. (5)

Following Brock and Hommes (1998), these fractions are updated according to the performance

measure πi,t for each predictor i, given by realized profits:

πi,t = (xt −Rxt−1)(xei,t −Rxt−1)− 1REC, (6)

where C is the information gathering cost for obtaining the rational expectations forecast and 1RE

an indicator function that equals one if the agent is rational and zero otherwise. All other predictors

are costless. The first bracket of the first term at the RHS of (6) denotes the actual resale value of the

asset minus the opportunity costs for financing the purchase in the previous period. The term in the

second brackets represents agent type i’s demand, resulting from the mean-variance maximization

given the agent’s past belief about the price. The choice of the performance measure is an essential

ingredient of the model in determining the properties of the dynamic system. Realized profits from

trading qualify as a natural choice for the fitness measure. Notice that the best forecaster does

not necessarily earn the highest profit. In order to receive a positive profit it is sufficient to have

made a correct choice on whether to go short or long. Likewise, any trader A that has a strong

positive belief about next periods price will invest more money in the asset than another trader B

with a relatively lower positive forecast. Even if B’s forecast was perfectly correct, trader A may

still earn higher profits since he invested more. This feature, i.e. that profits are not proportional to

4In the rest of this work we are using the terms rational and rational expectations interchangeably. Like all agents
in our model, rational agents are mean-variance maximizers, based on rational expectations of future prices.

5Notice that in this model, due to the absence of any short selling and borrowing constraints, a boom in asset
prices is implicitly accompanied by an increase in leverage and credit growth. As mentioned earlier, this constitutes
a feature of empirical relevance that we will further discuss in Section 6.
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forecasting errors, is unique to financial markets and captured by Equation (6). Further, note that

the asset pricing model with heterogeneous beliefs is a zero-sum game, that is, the profits averaged

over all agent types add up to zero minus the information gathering costs for rational agents.6

The fraction of agents evolves endogenously depending on the relative performance. More pre-

cisely, the fraction of type i = 1, ...,H is determined by a multinomial discrete choice model depend-

ing on the past performance of the predictor:

ni,t =
eβπi,t−1∑H
j=1 e

βπj,t−1

. (7)

If a predictor has been relatively more successful than others, it is more likely to be chosen and

hence the fraction of agents using this predictor increases. β is called the intensity of choice which

governs how quickly agents switch between predictors. If β →∞, all agents will immediately switch

to the most successful predictor. This completes the specification of the asset pricing model with

heterogeneous beliefs.

3 Numerical solution

We continue by describing our numerical solution method. Plugging the performance measure (6)

into the fractions (7) and inserting the result into the market clearing equation (4), the model’s state

xt at date t can be expressed as a (known) nonlinear function f :

xt = f(xt+1, xt−1, xt−2, xt−3). (8)

Notice again that xt is a function of the forward looking rational forecast of next periods price xt+1,

as well as of past values xt−1, xt−2, xt−3.7

We propose a novel numerical method to solve for the rational expectation equilibrium of a

class of highly nonlinear problems where complicated dynamics may arise, and we are particularly

interested to detect cycles or chaotic solutions. To our best knowledge we are the first in applying

iterative numerical methods to solve for cyclic and chaotic rational expectations equilibria of nonlin-

ear temporary equilibrium mappings.8 We are looking for a state-space solution of this model, i.e.

6More precisely, using the equilibrium pricing equation (2) a simple computation shows that
∑

i ni,tπi,t+1 =
0− nR,tC, where nR,t is the fraction of rational agents in period t and C the cost for rational expectations.

7For the 3-type example with purely biased agents introduced in the previous section, the fractions ni,t, through
the performance measure, depend only on two lagged state variables xt−1, xt−2. In Section 6 we will consider another
2-type example, where one of the forecasting rules is a trend-following rule that depends on the lagged state variable
xt−1, so that the time-varying fractions, through the performance measure depend on an additional lagged variable
xt−3. Therefore our notation uses three lagged state variables to cover all examples.

8Grandmont (1985) shows the existence of cycles and chaos in simpler 1-dimensional overlapping generations

9



a functional representation that only depends on known states at time t. Since f is nonlinear and

xt depends on its future value xt+1, we can not solve explicitly for a state-space solution in closed

form and must rely on numerical solution techniques.

The intuition behind our numerical method goes as follows: the current price xt depends on

xt+1, which again recursively depends on future prices. As the future is ex-ante unknown, any

representation of the law of motion that depends on future prices is not useful and we require a

solution to the system that depends only on past state variables. Assume that a steady steate to f

is known. We start by guessing that xt+1 is in the steady state and, given this guess, solve for xt. We

then update our guess on xt+1 by using our current computation for xt and assuming that in xt+2

the system will be in the steady state. Using the new guess on xt+1, we update the computation on

xt, which can then be used to re-evaluate the guess on xt+1. That means, we go back and forth in

time, thereby updating and extending guesses on the expected future trajectory of x. We stop once

new guesses on values that are far in the future do not affect our approximation of xt+1 anymore.

Such a (functional) recursive state-space representation that yields the current state of the system

as a function of the history of past state state variables is commonly referred to as a policy function.

Thus, assume the existence of a policy function g for the model described by f in (8) for a given

Xt−1 = {xt−1, xt−2xt−3}:

xt = g(xt−1, xt−2, xt−3). (9)

If a function g exists, using (8) it must satisfy

xt = f(xt+1, xt−1, xt−2, xt−3) (10)

= g(xt−1, xt−2, xt−3). (11)

By moving time forward one period and inserting g we get

xt+1 = g(xt, xt−1, xt−2) (12)

= g(g(xt−1, xt−2, xt−3), xt−1, xt−2). (13)

Then our problem boils down to finding a function g that satisfies

g(xt−1, xt−2, xt−3) = f(g(g(xt−1, xt−2, xt−3), xt−1, xt−2), xt−1, xt−2, xt−3). (14)

models of the form xt = f(xt+1). Our method computes cycles and chaotic rational expectations equilibria model for
2- and higher dimensional temporary equilibrium mappings.
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If f is nonlinear we can not solve for the function g explicitly, but we can approximate it numerically.

Define the approximation error ζt (also often called Euler Equation error, EEE) at time t as

ζt = |g(Xt−1)− f(g(g(Xt−1), xt−1, xt−2), Xt−1)|, (15)

with Xt = {xt−1, xt−2, xt−3}. The following proposition provides an algorithm to find a function g

that approximates a solution to f :

Proposition 1. An approximate state space solution g(·) to (8) with steady-state x̄ and a given

Xt−1 is, up to a precision of ζt < ε, given by

xt = g(Xt−1) = f(x̂1,K , Xt−1), (16)

with

x̂i,k =


xt+i for i < 0,

f(x̂i+1,k−1, x̂i−1,k, x̂i−2,k, x̂i−3,k), for 0 ≤ i ≤ k,

x̄ for k < i,

(17)

where it holds for K > 1 that |x̂1,K − x̂1,K−1| < ε. Note that x̂i,k can be interpreted as the kth guess

on xt+i.

In practice, this implies a simple iterative scheme over k and i. To clear notation, let x̂i,k be

the guess on xt+i at iteration k and define X̂i,k = {x̂i,k, x̂i−1,k, x̂i−2,k}. Start the iteration with

k = i = 0 and set x̂0,0 = f(x̄, Xt−1).9 Now increase k → 1 and note that since x̂1,0 = x̄ (i.e. the

guess on xt+1 for k = 0), it follows that x̂0,1 = x̂0,0. For k = i = 1 it is that x̂1,1 = f(x̄, X̂0,1),

where X̂0,1 = {x̂0,1, xt−1, xt−2}. Increment k to k = 2 and recursively calculate x̂i,2 for i ∈ {0, 1, 2}.

Continue to increase k, and for each k recursively calculate x̂i,k for i ∈ {0, 1, · · · , k} until it holds

for k = K that |x̂1,k − x̂1,k−1| < ε. The iterative scheme is illustrated in Table 1.

Why does this work? By repeatedly increasing k and calculating x̂1,k, we get a better approxima-

tion of the expected future trajectory of xt with every iteration. Incrementing k implies increasing

the horizon for which this trajectory is calculated. For K, convergence of |x̂1,K − x̂1,K−1| to a value

below ε means that the iteration calculates expected values of this series that are far into the future

and will not have a significant impact on the value of xt. Note that the definition of ζt involves

g(Xt) = g(g(Xt−1), ·) inserted in f , i.e. the value of xt+1 as implied by g given Xt−1. For this

9In theory, many other guesses may also work where x̄ is not the steady state. However, as we are considering
complicated maps with potential boom-burst dynamics, there may also be guesses for which the procedure may simply
diverge due to infinite bubble solutions. We want to ex-ante rule out such solutions.
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x̂0,k x̂1,k x̂2,k · · · x̂K−1,k x̂K,k

k = 0 f(x̄, Xt−1) x̄ x̄ · · · x̄ x̄

k = 1 f(x̄, Xt−1) f(x̄, X̂0,1) x̄ · · · x̄ x̄

k = 2 f(x̂1,1, Xt−1) f(x̄, X̂0,2) f(x̄, X̂1,2) · · · x̄ x̄

k = 3 f(x̂1,2, Xt−1) f(x̂2,2, X̂0,3) f(x̄, X̂1,3) · · · x̄ x̄
...

...
...

...
...

...

k = K − 1 f(x̂1,K−2, Xt−1) f(x̂2,K−2, X̂0,K−1) f(x̂3,K−2, X̂1,K−1) · · · f(x̄, X̂K−2,K−1) x̄

k = K f(x̂1,K−1, Xt−1) f(x̂2,K−1, X̂0,K) f(x̂3,K−1, X̂1,K) · · · f(x̄, X̂K−2,K) f(x̄, X̂K−1,K)

Table 1: Illustration of our numerical method. As above, X̂i,k = {x̂i,k, x̂i−1,k, x̂i−2,k} and x−s,k = xt−s for
s ∈ {1, 2, 3}.

reason we require the convergence of x̂1,K instead of x̂0,K , that is, the convergence of the guess on

xt+1 given Xt−1. This ensures that the actual error on g(Xt−1) is also below ε at each time step t.

The limiting function gK(Xt−1) then approximates the true state-space representation g for a given

Xt−1, and we can used g to simulate the global dynamics.

We are interested in the (long run) dynamics for the relevant domain given a vector of initial

values X0 = (x0, x−1, x−2) and aim to find the solution given these initial values. Note that the

limiting function gK(Xt−1) is, while being an ε-precise approximation of g, not a global solution

but holds only for Xt−1. That means we must reevaluate g for every point on the trajectory.

Computationally, this can efficiently be implemented by re-using the series of x̂i,K from gK(Xt−2)

for the evaluation of g(Xt−1) by just dropping x̂0,K . The evaluation of a time series for the example

given in Figure 4 of length 1000 only takes about 210 milliseconds on a normal laptop. Further note

that convergence of gK for a given value of ε implies that the actual approximation error on g must

be below ε.

Our method has a few significant advantages over alternative methods. First, it does neither rely

on interpolation nor on root finding (as e.g. policy function iteration or the Fair-Taylor method).

This maintains a high degree of accuracy and numerical stability. A crucial advantage of our method

over methods that are based on a grid is that it is fully insensitive to the so called curse of dimen-

sionality.10 Further, compared to grid-based methods our method does not require an ex-post

specification of a bounded domain. For our case in which f is highly nonlinear this is of particular

importance: for some regions in the immediate neighborhood of the trajectories discussed further

below, there may only exist explosive solutions. As for these regions no rational expectations equi-

libria exist, global convergence of a grid-based policy function is hence impossible. Note that our

method inherits its convergence properties, similar to other dynamic programming techniques, from

the contraction mapping theorem. It is not strictly necessary that f is a contraction mapping as

10The curse of dimensionality describes the problem that the computational complexity of standard grid-based
methods grows exponentially in the number of states.
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long as the contraction property holds for at least one implicit higher order mapping of f of the form

(f ◦ f ◦ · · · ◦ f). Further note that our method can be seen as a policy function iteration solved for

only one particular initial state Xt−1, where all grid points are chosen endogenously to solve for the

anticipated path given Xt−1.

As a robustness exercise, we also adapt a policy function iteration algorithm to our highly

nonlinear problem, thereby building on Coleman (1990, 1991). Details and simulations for this

alternative method can be found in Appendix A. Although approximation errors with the policy

function iteration algorithm are several magnitudes larger, the method generally delivers the same

results qualitatively and quantitatively, however at considerably larger computational costs.11

4 Linear examples

In this section we provide two linear examples in order to get some intuition on how rational

agents affect the dynamic of a heterogeneous agents asset pricing model. These examples also help

to illustrate the workings behind our numerical method. Rational expectations solutions to linear

systems are well understood and a solid body of literature provides robust and efficient solution

methods (see e.g. Klein, 2000; Rendahl, 2017). Hence, if the mapping f in (8) is linear, our method

can be expected to converge when the conditions of Blanchard and Kahn (1980) are satisfied. Note

also that the state-space representation g is closely related to the Minimum State Variable (MSV)

solution concept for rational expectations solutions of dynamic models in the adaptive learning

literature (Evans and Honkapohja, 2003). The MSV solution technique is convenient in linear

models, where it can be computed explicitly.

The first linear example illustrates how our method works in a homogeneous asset pricing model.

Consider the simplest model

xt = R−1Etxt+1 (18)

where xt and Etxt+1 are the deviation and expected deviation from fundamental price and 0 <

R−1 < 1 is the (constant) discount factor. Under perfect foresight the model becomes xt = xt+1/R.

One can compute MSV solutions of the form xt = bxt−1. Substituting this solution in the model

gives xt = (b2/R)xt−1. This induces a so-called T-map: T (b) = b2/R, a concept extensively used in

the adaptive learning literature (Evans and Honkapohja, 2003). The fixed points of the T-map are

b = 0 and b = R, corresponding to the two perfect foresight MSV solutions. To gain understanding of

11An exception for this is the parameter region of the two-type model with sunspot equilibria that we discuss in
Subsection 6.2. For the model specification discussed there approximation errors of the alternative method are large
and simulation results misleading.
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the stability properties of the system we can, similar to our iterative method from Section 3, look at

a sequence of b-values under the T-map: bk+1 = T (bk).12 A simple graphical analysis of the T-map

shows that when the initial value b0 < R, bk converges to 0, while b0 > R leads to bk diverging to∞.

This simple example illustrates that (i) MSV solutions with perfect foresight exist, and (ii) iteration

of the T-map shows that b = 0 is a stable MSV solutions, while b = R is an unstable MSV solution.

Iterations of the T-map are thus path-dependent on whether initial conditions are smaller or larger

than the threshold b0 = R. Iteration of the T-map is similar to the numerical approximation of the

policy function g by a the limiting function gk of the sequence g0, g1, · · · , gk, etc. In fact, when

applying our numerical algorithm with steady state function x̄ = 0, the sequence of numerical maps

gk exactly coincides with the sequence of T-maps, i.e. gk = T k.13

As a second linear example, consider a 3-type asset pricing model with rational agents versus

trend-followers versus fundamentalists. To allow for complex eigenvalues the trend-extrapolating rule

has an extra lag xt−2, and is of the form xe2,t+1 = xt−1 + γ(xt−1 − xt−2). This generates oscillatory

behaviour in the system. The fractions of the three types are nRE , nγ and n0 = 1− nRE − nγ and

they are – for now – fixed. The linear dynamic model is given by:

Rxt = nRExt+1 + nγ
(
xt−1 + γ(xt−1 − xt−2)

)
+ n0 · 0, (19)

where we set R = γ = 1.1.

Assuming nγ = 0.75, Figure 1 illustrates four cases:

1. For nRE = 0 trend-followers and fundamentalists share the market. As a result the price

oscillates and converges quickly to its fundamental value.

2. Replacing a small fraction of the fundamentalist by rational agents, with nRE = 0.1, leads to

stable oscillations that converge slowly to the fundamental value (orange curve). This shows

that rational agents are destabilising compared to fundamentalists, because rational agents are

taking into account the oscillatory behavior caused by trend-followers.

3. The case nRE = .16 has a larger share of rational agents and fewer fundamentalists and shows

a perfect oscillation (green plot). With the trend-extrapolating coefficient γ = R this leads

to a system with complex eigenvalues on the unit circle. Comparing with the previous case,

rational agents further amplify the persistent oscillations caused by trend-followers.

4. Any further increase of nRE > .16 (not in the figure) at the cost of fewer fundamentalists

12In the learning literature, this concept is known as iterative E-stability.
13Note that because the model in (18) does not have any state variables, a limiting policy function g consistent

with our exposition in Section 3 would simply be a constant: gk = c and independent of the histroy Xt−1.
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Figure 1: Time series of 3-type model with rational versus trend-extrapolating rule versus fundamentalists. Stable
oscillations for nRE = 0 and nRE = 0.1 (blue and orange) and persistent oscillations for nRE = 0.16 (green). When
rational agents replace fundamentalists (nRE = 0.1) slowly converging oscillations arise (orange), because rational
agents anticipate the presence of trend-followers.

will cause the complex eigenvalue to cross the unit circle, leading to two eigenvalues with

modulus larger than one. This violates the Blanchard-Kahn conditions and renders the rational

expectations system indeterminate.

This linear example provides some intuition about the effect of rational agents in a heterogeneous

(linear) world. In the presence of non-rational agents, rational agents are destabilizing compared

to fundamentalists, because they take the boundedly rational behaviour into account. In the next

section the fractions of these different types of agents become time varying, depending on the relative

success of each strategy. With agents switching between different strategies, the system becomes

highly nonlinear and to simulate the model we need to rely on our numerical solution technique.

5 Nonlinear simulations in the three-type model

In this section we apply the numerical solution method to the asset pricing model with heterogeneous

expectations and use it to study the survival of (ir)rational beliefs. We consider two typical examples

to illustrate the complex dynamical behavior in the model. The first example is the 3-type model

with rational agents versus optimistic and pessimistic biased agents, as introduced in Section 2.

This example exhibits periodic boom and bust cycles along which the fractions of rational and

non-rational agents co-evolve over time. The second example is a 2-type model with rational agents
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versus trend-extrapolators, which exhibits chaotic bubble and crash dynamics as discussed in Section

6. In both examples rational agents can not drive out irrational agents, but the fractions of rational

and irrational beliefs rather co-evolve endogenously causing boom and bust cycles.

5.1 An example with biased agents and limit cycles

Consider the 3-type example with rational agents versus optimistic and pessimistic biased agents

as given in (5), with time varying fractions given by (6) and (7). Since the fitness measure of the

biased types includes two lags of x, this 3-type system is of the form

xt = f(xt+1, xt−1, xt−2). (20)

There are three behavioral parameters: the intensity of choice β, the bias b and the costs C, whose

benchmark values are given in Table 2. For our benchmark, the parameters β and b are normalized

to 1 and the costs for rational expectations are set to zero. Independent of the parametrisation,

there exists a trivial fundamental steady state x = x̄ = 0 where the steady state fractions n̄2 = n̄3

of both biased agents is equal. Througt this section, we only consider this fundamental steady state

for our solution g.

R β b C
0.99−1 1 1 0

Table 2: Benchmark parametrisation

Let us first explore the potential dynamics of the system by varying the intensity of choice

parameter β. The bifurcation diagram in Figure 2 shows the long-run dynamics of price deviations

from fundamental as a function of the intensity of choice β.14 For low values of β, the simulations

show that the fundamental steady state is stable and the solution converges to it. As β increases, the

steady state becomes unstable and a limit cycle emerges after a Hopf-Bifurcation at β ≈ 1.2. The

amplitude of these cycles increases with β; for higher values of β a stable 4-cycle arises. Figure D.26

in Appendix D illustrates the policy functions g for different values of β graphically. Phase diagrams

can be found in Appendix C.

Figure 3 shows a similar bifurcation diagram for the bias parameter b: when the bias b increases,

the system destabilizes through a Hopf-bifurcation and cycles of increasing amplitude arise as the

bias increases. For large values of the bias b a stable 4-cycle arises.

14For each bifurcation diagram below and in Section 6 we draw a linear sequence of 1000 parameter values from
the shown interval. For each draw, we use our method to simulate a time series of 2,000 periods, of which we discard
the first 1,000 iterations as convergence period.
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Figure 2: Bifurcations w.r.t. the intensity of choice β.
All other parameters as in Table 2. Required minimal
precision is ε = 1e− 14.

Figure 3: Bifurcations w.r.t. bias b. All other parameters
as in Table 2. Required minimal precision is ε = 1e− 14.

To understand the cycles in more detail, Figure 4 shows time series of the price deviations from

the fundamental, the fractions of the three agent types, the profits of each of the three types and the

realized profits (i.e. the profit of each type multiplied by the fraction of that type).15 The dynamics

of prices and fractions is (almost) periodic and the fractions of the three types co-evolve over time.

Moreover, the fractions of optimists and pessimists fluctuate significantly stronger than the fraction

of rational agents.16 The reason is that the realized profits of rational agents always lie between

the profits of the optimistic and the pessimistic traders: while the price forecast of rational agents

is always perfect, their profit according to (6) – and hence their fraction – depends on the squared

realized excess return (xt − Rxt−1)2. The realized profit of optimists or pessimists is given by the

realized excess return times their asset demand. In a booming market optimistic traders will then

earn higher profits than rational agents since they have overestimated the change in price and hence

bought more of the risky asset than rational agents. During a bust, the opposite holds: pessimistic

traders buy less (or short the risky asset more) and will earn higher profits than rational agents. As

a result, the fraction of rational agents always lies between the fractions of optimists and pessimists.

For high values of the intensity of choice this effect becomes stronger, as illustrated in Figure

5 for β = 500. For such high intensity of choice, in each period the market is fully dominated by

either optimists or pessimists, with the fraction of rational agents always being (almost) 0. In the

15The asset market is a zero sum game, that is,
∑

h nhtπh,t+1 = 0. Hence, any positive profits by one type must be
balanced by losses by another type. In case of information gathering costs for rational agents, aggregate net profits
sum to −nRC, i.e. minus the aggregate costs.

16Note that, due to the symmetric construction of optimistic and pessimistic traders, the dynamics of optimists and
pessimists are in fact symmetric.
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limiting case of β = ∞ in each period the fraction of optimists or pessimists is either 0 or 1, while

the fraction of rational agents is 0. Asset prices then follow a 4-cycle subsequently dominated for

two periods by optimists and the other two periods by pessimists.

Figure 4: Time series for β = 2.0. Left: Prices and the evolution of the fraction of the different trader types over time.
Right: Profits of the different trader types. Theoretical profits are as defined in Equation (6). Realized profits are
theoretical profits multiplied by the fraction of each type respectively. All other parameters as in Table 2. Required
minimal precision is ε = 1e− 14.

This 3-type example illustrates that rational agents do not generally drive out boundedly rational

agents from the market. If agents tend to switch to more successful strategy quickly, there is always

a fraction of boundedly rational agents that is sufficiently successful to gather a share of the market.

Any rational agent then adjusts his belief accordingly and by doing so amplifies the boundedly

rational traders’ beliefs. In the limit of an infinite intensity of choice, in fact the rational agents are

driven out of the market and the price exhibits booms and busts in which optimistic and pessimistic

traders subsequently dominate the market. These boom and bust cycles arise even in the absence

of any information gathering costs for rational agents. Our numerical solution method easily picks

up these boom and bust cycles with endogenously fluctuating rational and non-rational beliefs.

5.2 Comparing rational and fundamentalist traders

Fundamentalists traders are agents who believe that the price will always return to its funda-

mental value or, stated differently, who believe that the price deviation from fundamental will be

0. In a homogeneous world, fundamentalists are fully rational and the zero steady state would

be the rational solution. In their asset pricing model with heterogeneous beliefs, BH98 focused

on backward-looking expectations rules and considered many examples with fundamentalists versus

chartists. However, BH98 did not consider the global dynamics of examples with forward-looking ra-
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Figure 5: Time series for very high β = 500. Left: Time series of prices and the evolution of the fraction of the
different trader types over time. Right: Profits of the different trader types. Theoretical profits are as defined in
Equation (6). Realized profits are theoretical profits multiplied by the fraction of each type respectively. All other
parameters as in Table 2. Required minimal precision is ε = 1e− 14.

tional agents as we do here enabled by our numerical solution method. A natural question is whether

in a heterogeneous agents model fully rational agents are stabilizing or destabilizing compared to

fundamentalist agents.

To address the question, we compare the dynamics of two 3-type models. The first is our model

with rational agents versus optimistic and pessimistic biased agents, as before. In the second model

rational agents are replaced by fundamentalists, who always predict 0 deviation. The equilibrium

pricing equation (5) then simplifies to

Rxt = (n2,t − n3,t)b, (21)

with the modified fractions n2,t and n3,t (see BH98 for full details).

The bifurcation diagram in Figure 6 shows the long run behavior of both 3-type models as a

function of the intensity of choice β. The diagram shows that the 3-type model with rational agents

becomes unstable earlier, i.e., for lower value of the intensity of choice, than the 3-type model with

fundamentalists. Hence, rational agents are destabilizing compared to fundamentalists in this 3-type

world. The intuition is again that rational agents anticipate the presence of non-rational agents and

thus amplify the effect of a positive or negative bias. In contrast, fundamentalists always predict the

fundamental value and thus always add a stabilizing force in the presence of non-rational agents. In

summary, the fact that rational agents take into account and anticipate the behavior of non-rational

agents amplifies the destabilizing effect of these non-rational agents.
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Figure 6: Bifurcations w.r.t. β. In cyan the same simulation with fundamentalists instead of rational agents. All
other parameters as in Table 2. Required minimal precision is ε = 1e− 14.

We have studied a 3-type example with rational agents versus optimists and pessimists, applying

our numerical method to (20). The numerical approximation method works very well in this 3-type

example and allows for solutions with a minimal required precision of ε = 1e−14. We cross-check our

results with an alternative policy function iteration method in Appendix B. The alternative method

provides quantitatively and qualitatively very similar results where average and maximum EEE are

both very small. An likely reason for this is that the map f in (20) is bounded to the interval of

biases, that is, xt ∈ [−b, b]. Another reason for why the alternative method works well in the 3-type

world is, that the trajectory does not describe any sudden jumps but is – over the respective domain

– relatively smooth. In the next section we will consider a 2-type example with rational versus

a trend-extrapolating rule. This environment poses more challenges to both numerical methods,

because of the existence of explosive bubble solutions.

6 Chaotic solutions in a two-type model

We now consider another example with two trader types: rational agents vs. trend followers. Agents

can choose between the rational, perfect foresight forecast at positive information gathering costs

and a freely available trend-extrapolating forecast. Our numerical method detects chaotic bubble

and crash dynamics. During the bubble phase trend-extrapolators dominate the market, thereby

fueling the bubble. When the forecasting errors of the trend-extrapolators increase, the fraction

of rational agents increases and eventually drives prices back close to its fundamental value, after

which the story repeats and a new bubble forms.
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The beliefs of trend followers are given by

xet+1 = γxt−1, (22)

where γ denotes the degree of trend extrapolation. For γ > 1 trend-followers believe that the price

deviation from the fundamental value will increase in the next period. The 2-type model with

rational versus trend-following agents is given by

Rxt =(1− nt)xt+1 + ntγxt−1 (23)

πRE,t =(xt −Rxt−1)2 − C (24)

πBR,t =(xt −Rxt−1)(γxt−2 −Rxt−1) (25)

nt =
eβπBR,t−1

eβπBR,t−1 + eβπRE,t−1
. (26)

Here nt is the fraction of trend-followers and 1 − nt the fraction of rational agents, who incur

information gathering costs C > 0.

Note that, since the last periods prediction of trend-followers now enters the profit equation,

there is an extra time-lag and the function f is of the form (8) and the state-space from is xt =

g(xt−1, xt−2, xt−3) as in (9), which poses additional computational challenges.

The following theoretical result about the fundamental steady state xt = 0 and two additional

non-fundamental steady states builds on Brock and Hommes (1998), who discuss this example briefly.

Lemma 1 (Existence of a steady state for the 2-type model). Let m∗ = 1 − 2R−1γ−1 and x∗ be the

positive solution (if any) of

x∗ =
√
z (27)

for

z =
2 arctanh (m∗) /β + C

(γ − 1)(R− 1)
. (28)

Let E1 = (0, tanh(−βC/2)), E2 = (x∗,m∗) and E3 = (−x∗,m∗).

1. For γ < R, E1 is the unique steady state.

2. For γ > 2R− 1, there exist the three steady states E1, E2 and E3.

3. For R < γ < 2R− 1, there are two possibilities:

(a) if m∗ < tanh(−βC/2) then E1 is the unique steady state.

(b) if m∗ > tanh(−βC/2) then E1, E2, and E3 are the steady states
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Note that for the baseline simulations below, we initialize our policy function with the positive

nonfundamental steady state whenever it exists, i.e. x̄ ≡ max{0, x∗}. Throughout this section we

use the parameters from Table 3. To eliminate approximation errors as much as possible, we set the

required precision to ε = 1e− 14.

R β γ C
1.1 1.5 1.15 0.5

Table 3: Parametrisation for the two-type model.

6.1 Chaotic boom and bust cycles with rational traders

Figure 7 shows the bifurcation diagrams for the parameters C and γ, with R = 1.1, γ = 1.15

and C = 0.5. For low values of γ < 1.15 the solution converges to the fundamental steady state.

As γ increases, a positive stable non-fundamental steady state arises, which becomes unstable for

γ ≈ 1.172. Cycles and chaos arise for higher values of the trend-extrapolation coefficient. Figure 8

shows the respective bifurcation diagram with respect to β. The figure suggests chaotic bubble and

crash dynamics for values of β larger than 2.490., while Figure 7 (left) shows a similar bifurcation

route to chaos as the cost parameter C increases.

Figure 7: Bifurcation diagrams w.r.t. cost parameter C (left) and γ (right). All other parameters as given in Table
3. Required minimal precision is ε = 1e− 14.

The respective time series of prices, fractions and profits are displayed in Figure 9. The solution

starts close to the fundamental value 0, with the fraction of trend followers larger than the fraction

of rational agents because of the information gathering costs. With trend-followers dominating and

sufficiently aggressive, prices increase exponentially. At some tipping point, however, the fraction of

trend extrapolators drops to almost zero and all agents switch to the rational strategy. The asset
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bubble bursts and prices drop back close to the fundamental steady state 0, from where the process

repeats. Phase diagrams are provided in Appendix C.

Figure 8: Bifurcations w.r.t. β. All other parameters as given in Table 3. Required minimal precision is ε = 1e− 14.

A graphical illustration of the policy function underlying the dynamics displayed in Figure 9 is

shown in Figure 10. The mapping has three regions, independently of the value of xt−3: for low

values of xt−1 and high values of xx2
the function maps to a low xt (region 1). Likewise, high values

of xt−1 and low values of xt−2 also map to low values of xt (region 2). Along the diagonal of the

(xt−1, xt−2) plane, the function maps to increasing values of xt (region 3). In the bubble phase, the

trajectory of Figure 9 travels along this diagonal. When xt−3 increases (as xt rises), region 1 shrinks

as region 2 grows and moves towards the diagonal (illustrated in the plane in the middle). When

the trajectory is approaching its peaking point (right plane in Figure 10), region 1 disappeared and

region 2 takes almost half of the image, thereby mapping xt back close to the fundamental steady

state. The figure also illustrates the complexity of the underlying problem, which our method is

able to capture very well.

Intuitively it is clear that the fundamental steady state with xt = 0 for all t, is unstable once

γ > R and C > 0 and β large enough. If this is the case, any increase of C > 0 or β will shrink the
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Figure 9: Time series for β = 2.5, b = 0.0, γ = 1.15, R = 1.1 and C = 0.5. Left: Time series of prices and the
evolution of the fraction of the different trader types over time. Right: Profits of the different trader types. Theoretical
profits are as defined in Equation (6). Realized profits are theoretical profits multiplied by the fraction of each type
respectively. Required minimal precision is ε = 1e− 14.

fraction of rational agents at the steady state and the extrapolative forces will therefore dominate

around xt = 0. This finding is confirmed by the time series and bifurcation diagrams.

Figure 10: Heatmap for slices of the policy function g for the chaotic time series in Figure 9. The mapping of f
is nontrivial and not smooth on the relevant domain. For this figure we use the policy function iteration method
outlined in Appendix A with a grid of 300× 300× 300 points to obtain a high resolution of the image. Note that for
the dynamics of the time series this increase in precision is not relevant.

To get some understanding of the complicated dynamics it is useful to consider the case β =∞,

that is, the case where all agents switching immediately to the better performing forecasting rule.

At the fundamental steady state all agents are trend-followers, because of the costs for rational

expectations. When γ > R, C > 0 and β =∞ the fundamental steady state is locally unstable, but
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globally stable, that is, after an unstable bubble phase solutions converge to the fundamental steady

state. This implies existence of homocinic orbits, that is, numerical solutions that converge to the

fundamental steady state both forward and backwards in time. As stressed by Brock and Hommes

(1997) the existence of homoclinic orbits implies complex, chaotic dynamics. The following theorem

substantiates our numerical findings.

Theorem 1 (Homoclinic Orbit). Let the intensity of choice β =∞, costs C > 0, the trend-coefficient

γ > R and γ 6= R2. Then the 2-type system has a homoclinic orbit.

Proof. The profits of rational agents and trend-followers are given by

π1,t =(xt −Rxt−1)2 − C (29)

π2,t =(xt −Rxt−1)(γxt−2 −Rxt−1) (30)

The switching depends on the sign of the profit difference:

∆πt = π1,t − π2,t = (xt −Rxt−1)(xt − γxt−2)− C. (31)

Since β =∞, close to the fundamental steady state all agents will be trend-followers, because the

first term of the RHS is close to zero and the information gathering costs for rationality dominate.

When all agents are trend-followers the pricing equation simplifies to xt = (γ/R)xt−1. The funda-

mental steady state is unstable when γ > R, with the unstable eigenvector given by
(
(γ/R)2, γ/R, 1

)
.

Take an initial state close to the fundamental steady state along the unstable eigenvector:

x−2 = ε, x−1 = ε(γ/R), xt = ε(γ/R)2. (32)

As long as the fraction nt,2 = 1, the solution follows the unstable eigenvector and at time t, xt =

ε(γ/R)t+2. To determine the point in time when agents switch to rational expectations, we need to

look at the profit difference between rational expectations and the trend-following rule at date t:

∆πt =

[
ε
( γ
R

)t+2

−Rε
( γ
R

)t+1
] [
ε
( γ
R

)t+2

− γε
( γ
R

)t]
− C

=ε2
( γ
R

)t+1 ( γ
R
−R

)( γ
R

)t [( γ
R

)2
− γ
]
− C

=ε2
( γ
R

)2t+2
(
γ −R2

R

)2

− C.

For γ 6= R2 it holds that
(
γ−R2

R

)2
> 0 while

(
γ
R

)2t+2
increases exponentially in t whenever γ > R.
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This means that eventually ∆πt > 0 and, given β = ∞, all agents will then switch to rational

expectations and the price will jump to the fundamental steady state. �

Keeping Theorem 1 in mind, let us summarize the economic intuition behind the dynamics in

Figures 8 - 9, thereby explicitly referring to the empirical findings of Greenwood and Shleifer (2014);

Greenwood et al. (2020) and others. If price deviations from the fundamental are small, profits

are low and the cost for the rational predictor is high relative to profits. This supports the rise

of extrapolating forces, which are reinforced by the small fraction of rational agents. As prices

are expected to rise, agents are willing to further indebt to finance asset purchases and credit will

grow alongside with asset prices. As prices rise, the information costs (the costs of rationality)

become negligible relative to profits. Rational agents however know that prices cannot continue to

grow forever. Their foresight of the burst of the bubble in the future causes a small deviation of

prices from the explosive trajectory. This however constitutes a relatively large loss in profits for

extrapolating agents, which triggers a large fraction of agents to be willing to pay the costs of the

rational predictor. An increase of the fraction of rational agents finally leads to the burst of the

bubble.

6.2 Multiple equilibria and the role of steady-state anchoring

Let us have a closer look at values of β between 1.6 and 2.3, leaving all other parameters

as before. For this range of parameters we detect multiple valid rational expectations equilibria

with fundamentally different price dynamics. Equilibrium selection depends on whether rational

expectations are anchored around the fundamental steady state (x = 0) or the non-fundamental

steady state at x∗: if rational expectations are anchored around the fundamental steady state, we

get similar dynamics as in subsection 6.1 with boom-burst dynamics in the intermediate region

between 0 and x∗. When expectations are anchored at the nonfundamental steady state x∗, the

nonfundamental steady state is stable and stationary.

In what follows we understand an anchor to long-term expectations as being the expected finite

value of x when time goes to infinity. Technically, for our method x̄ is the initial guess at time t

for every future state xt+1, xt+2, . . . , xt+∞. These guesses are alternated and corrected during the

iterative procedure, and the iteration halts once adding xt+K = x̄ does not significantly change

the evaluation of xt (through xt+1). That means the anchor x̄ is also the finitely final value of x

when time approaches infinity, and all xt+s, s < K are chosen such that the trajectory leads in the

neighborhood of x̄.

Consider a value of β = 2.14 and note that for the given parameters it holds that R < γ < (2R−1)

andm∗ > tanh(−βC/2). This implies that E2 and E3 are the two additional non-fundamental steady
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states with x∗ ≈ ±3.426. In Figure 11 (left) we plot the time series of xt for the chosen value of

β = 2.14. The blue line depicts the dynamics from the bifurcation diagrams (Figures 7 and 8),

for which the guesses on future expectations are initialized in the fundamental steady state, i.e.

x̄ = 0. The price first approaches a value slightly below 2.4 and then shows erratic local boom-

bust dynamics that are hard to predict. The orange line shows the same simulation exercise but

initializing future expectations in the non-fundamental steady state x∗, i.e. x̄ ≡ x∗. Although this

simulation is started from the same initial state X0, the trajectory converges to x∗, which is a locally

stable steady state. Hence, the system is sensitive to the path of future expectations, which may

not be unique. Anchoring future expectations around x̄ is a device of equilibrium selection which

can heavily affect the global dynamics of f .

Figure 11: Left: time series for β = 2.14, all other parameters as in Table 3. Right: corresponding fractions of
trend followers. For the blue line, the policy function is initialized in the unstable fundamental steady state. The
policy function of the orange line is initialized at the locally stable non-fundamental steady state and exhibits no
approximation errors. Both trajectories origin from the same initial conditions X0. Required minimal precision is
ε = 1e− 8.

To understand this feature, first note that both trajectories indeed constitute valid rational

expectations equilibria. For both setups, the convergence criterion of the iterative procedure is

reached and agents predict the future trajectory of prices with very high precision. After the time

series is initialized with X0, prices grow with a growth rate φ = xt/xt−1 ∈ (1, γ/R).17 At time

t = T̄ , similarly to the chaotic example from the last subsection, rational agents believe that prices

will not continue to rise beyond the threshold value around 2.4. This belief is self-fulfilling through

the expectations feedback and prices drop. As a consequence, more agents will adapt the rational

expectations forecast and prices will collapse further in period t = T̄ + 1, confirming the rational

forecast in period t = T̄ . So far the dynamics were similar as in Subsection 6.1. The arising

oscillating patterns are self-sustained and driven by the fact that the beliefs of rational agents are

anchored below the threshold value close to 2.4.

17Note that it can be shown that for finite β > 0 and Xt, the growth rate of the boom-path (i.e., the growth rate
of the trajectory that leads away from the fundamental steady-state) is not constant.
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Consider now the case in which prices converge to x∗. As above, following X0 the belief of

rational agents that prices will continue to rise is also self-fulfilling. As rational expectations are

anchored at x∗, the price will not collapse at t = T̄ but increase further, finally converging to x∗.

This non-fundamental steady state is locally stable because in x∗ the weight nt on the belief of

trend-followers exactly chancels out extrapolating forces γ. It must hold that

1− n∗

R
+
n∗γ

R
= 1 ⇐⇒ n∗ =

R− 1

γ − 1
. (33)

In summary, we find that not only are price beliefs self-fulfilling, but also the belief of the respec-

tive steady state is an important feature of a rational expectations equilibrium, and the anchoring

of beliefs can have essential impact on the long-run dynamics of a system. Our exercise adds an

important policy implication to the literature on expectation anchoring and multiple equilibria (see

Section 1): if expectations are anchored around an unstable steady state, complicated dynamics can

arise. If policy institutions can influence expectations, e.g. through forward guidance policies as con-

ducted by the US Federal Reserve between 2008 and 2015, a successful re-anchoring of expectations

to an alternative steady state has the power to stabilize the price dynamics.

7 Conclusion

In this work, we study the dynamics of a simple financial market model that is characterized

by the coexistence of perfectly rational forward-looking and boundedly rational backward-looking

agents. The relative share of each type of agent varies depending on their market performance,

which gives rise to complicated endogenous bubble and crash dynamics. To find solutions to such a

highly nonlinear heterogeneous agents model we develop and employ a novel and efficient iterative

numerical method.

Rational agents anticipate the trend-extrapolating behavior of non-rational agents and therefore

amplify instabilities caused by boundedly rational agents. Trend-extrapolators magnify small devi-

ations from the fundamental price. The nontrivial interaction between rational forward-looking and

non-rational backward-looking agents leads to bubble and crash dynamics with time-varying impact

of rational and irrational behavior. As prices increase, rational agents anticipate and stabilize large

bubbles, driving prices back to fundamental value.

Our heterogeneous agents model exhibits multiple equilibria which depend on the expected finite

value when time goes to infinity. When future expectations are anchored on fundamental value

asset price fluctuations exhibit bubble and crash patterns. In contrast, when finite expectations are

anchored at a high non-fundamental steady state, this belief becomes self-fulfilling and prices are
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larger than the fundamental price in the long run.

Our iterative method for numerically solving rational expectations equilibria in highly nonlinear

heterogeneous agents models with rational and non-rational agents can be easily applied to other

perfect foresight models in macroeconomics and finance.
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Appendix A Alternative solution method: policy function iteration

Additionally to the method outline in Section 3 we use a computational procedure that is based

on the method of policy function iteration (Coleman, 1990, 1991) to solve for the rational expectation

equilibrium.

Recall from Section 3 that our problem is to find a function g that satisfies

g(xt−1, xt−2, xt−3) = f(g(g(xt−1, xt−2, xt−3), xt−1, xt−2), xt−1, xt−2, xt−3). (A.1)

Define Y = (y1, y2, . . . , ym) the vector of m grid points for each dimension of f and let Y = Y ×Y ×Y

be the grid on which g is defined. Hence, g resides on a cube in R{m×m×m}. Initialize the procedure

with g0. Then, given the kth iterate gk we can use (14) to find the (k + 1)-iterate gk+1:

{
gk+1(z1, z2, z3) = f(gk(gk(z1, z2, z3), z1, z2), z1, z2, z3)|zi ∈ Y for every i ∈ {1, 2, 3}

}
. (A.2)
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If f is well behaved, i.e. f is continuous with bounded derivative on its domain, a reasonably

chosen norm of (gk+1 − gk) converges to zero when k goes to infinity. Halt the iteration once

‖gk+1 − gk‖ < ε for some sufficiently small ε. The limiting function gK then approximates the true

state-space representation g and can be used to simulate the global dynamics. However, in this

paper we consider highly nonlinear maps and the dynamics of f may be unstable for some regions

in its domain Y. E.g. for some vectors of initial states, f may exhibit only explosive solutions and

the iterative procedure will diverge for these vectors. Such instabilities are indeed quite common

for the functions we consider due to the possible existence of infinite bubble solutions. Divergence

for some regions of the state space does however not rule out the existence of bounded solutions for

other regions.

Given that an overall measure of convergence of the complete policy function may fail to display

local convergence for some regions of the grid, we require a convergence measure that is insensitive

to this problem. We are interested in the (long run) dynamics for the relevant domain given a vector

of initial values X0 = (x0, x−1, x−2) and aim to find the solution given these initial values. Given

(14), a solution for x1 = g(X0) also implies finding a solution for x2 = g(X1) as g(X0) = f(x2, X0).

Recursively, finding a solution for x1 = g(X0) hence implies solving for the complete relevant future

path of x, given the initial state X0. That means that a sufficient local convergence criterion is

|gk+1(X0)− gk(X0)| ≤ ε, (A.3)

for a very small ε.18 We provide an assessment of accuracy and numerical stability based on average

and maximum Euler equation errors.

A second important practical matter is the choice of grid points. A growing literature treats

sophisticated methods for the choice of an appropriate grid (see e.g. Gerstner and Griebel, 1998;

Judd et al., 2014). However, these methods are not particularly useful for our case as sometimes,

some variables are highly cross-dependent, and sometimes they are not. This makes it hard to assign

a higher density of grid points to some regions of the grid. It is also hard to ex-ante identify the

necessary support of the grid because the amplitude of potential cycles may depend on the parameter

choice. Endogenous grid methods (e.g. Carroll, 2006) are not particularly useful because the strong

nonlinearities in our model impose a challenge on the convergence of the optimal choice of grid points

themselves. Lastly, we can not use grids that put more weight to some regions of the state space

18For all numerical experiments in this paper we chose ε = 1e− 10 and X0 = (0.1, 0.2, 0).
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than others for two reasons. First, because we can not identify these regions ex-ante.19 Second, even

if we can ex-ante identify regions that are in particular relevant for the trajectory following X0, it

might still be necessary to have a sufficiently dense grid in regions that are not actually close to this

trajectory, as these regions may be important for convergence of the iterative procedure.

As a result, we only consider Cartesian grids. We initialize the grid with a comfortable support

(y0, ym), iterate on it for a small number of times and use the last iteration to simulate the model.

We then shrink the grid to fit the bounds of the simulated time series plus some leeway.20 We repeat

this procedure until (min{gk(X0)}T0 ,max{gk(X0)}T0 ) ≈ (y0, ym). For the bifurcation diagrams in

the following section we chose m = 100. This means for every parameter value considered in the

bifurcation diagram we must find g which is represented on a grid of one million vectors. As all the

examples we consider have a steady state at zero, we initialize the map g0 ≡ 0 with zeroes. As we

will discuss in Section 6, the choice to initialize g0 at a certain steady state focal point can have

implications for convergence and steady state selection.

Appendix B Comparison of the method from section 3 with policy function iteration

To check the accuracy of the policy function iteration algorithm, we use the average and maximum

absolute Euler equation errors of the time series. Absolute Euler equation errors (EEE) are defined

as the absolute value of the difference between the functional approximation g and the function

f , where g is used to solve for the expectations xet+1. This is equivalent to the calculation of

approximation errors ζt in the main body. Hence:

EEEaverage =
1

T

T∑
t=0

|g(xt−1, xt−2, xt−3 − f(g(·), xt−1, xt−2, xt−3)| (B.1)

and

EEEmax = max
{
{|g(xt−1, xt−2, xt−3 − f(g(·), xt−1, xt−2, xt−3)|}Tt=0

}
(B.2)

where T is the lenght of the simulated series after the convergence period.

For Figures 2 to 6 from the 3-type model with cycles, the average and maximum EEE are both

very small. The time series presented in Figure 4 come with an average EEE of the magnitude of

1e − 5 and a maximum EEE of 1e − 4. This is documented in Figures B.12-B.14. The bifurcation

maps and associated time series are qualitatively and quantitatively very similar to those presented

19For example, the grid that represents a limit cycle would need much detail close to the bounds of the limit cycle,
less detail in the center.

20Leeway is necessary because when approximated on a more fine-grained grid, g may again map beyond the bounds
of the previous simulated series. This in fact happens quite frequently.
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in Section 5, where we use the method we describe in Section 3.

Figure B.12: Average and maximum absolute Euler equation errors for the simulations in Figure 2 when using policy
function iteration.

Figure B.13: Average and maximum absolute Euler equation errors for the simulations in Figure 3 when using policy
function iteration.

Figure B.14: Average and maximum absolute Euler equation errors for the simulations in Figure 6 when using policy
function iteration.

For the two-type example in (6), with more complex dynamics, non-negligible errors occur, which

are documented in Figures B.16 and B.17. In fact, the policy function iteration method is unable to

correctly solve for the dynamics of the intermediate region of β that we discuss in Subsection 6.2.

Figure B.15 shows the same bifurcation diagram as Figure 8 from the main body, but using the

policy function iteration algorithm.

Figure B.19 shows the errors over time for the time series from Figure 9, but using the policy
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Figure B.15: Bifurcations w.r.t. β solved using policy function iteration. All other parameters as given in Table 3.

Figure B.16: Average and maximum absolute Euler equation errors for the simulations in Figure 8 when using policy
function iteration. This plot shows that the numerical method is working well for the chaotic bubble and crash
solutions. However, our numerical method is unable to well-approximate the policy function in the intermediate
parameter region, where the system is close to the bifurcations of (stable) non-fundamental steady states.

function iteration method. Although the dynamics display complicated bubble-crash dynamics,

errors are at a very small level and the time series match those from the main body. In contrast,

Figure B.20 shows the simulations for β = 2.14 using policy function iteration to solve for the

dynamics. Large errors occur and the policy function iteration algorithm is unable to solve for the

boom-burst dynamics displayed in Figure B.20. The dashed red line draws f(g(·), Xt−1), i.e the
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Figure B.17: Average and maximum absolute Euler equation errors for the bifurcation w.r.t. the cost parameter C
as in Figure 7 but when using policy function iteration.

Figure B.18: Average and maximum absolute Euler equation errors for the bifurcation w.r.t. the trend-following
parameter γ as in Figure 7 but when using policy function iteration.

value of xt as implied by f while using the policy function to approximate xt+1. Indeed, while the

policy function predicts the erratic waves quite well, the prices that are implied by using f directly

is at times slightly lagging behind. The policy function iteration method correctly solves for the

timing of a collapse, but the relatively large approximation error stems from the failure to predict

the exact value of x during the course of the collapse. We explain this by the fact that, compared to

the limit cycles in Section 5, the cycles only span over a relatively small domain of the whole grid.

Overall, in terms of approximation errors our method introduced in Section 3 performs several

magnitudes better than policy function iteration.
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Figure B.19: Top: time series for β = 2.5 solved using policy function iteration, all other parameters as in Table 3.
The policy function is initialized with the unstable fundamental steady state g0 = 0. Bottom: corresponding absolute
Euler equation errors, which are the absolute value of the difference between the blue and the dashed red line.

Figure B.20: Top: time series for β = 2.14 solved using policy function iteration, all other parameters as in Table 3.
The policy function is initialized with the unstable fundamental steady state g0 = 0. Bottom: corresponding absolute
Euler equation errors, which are the absolute value of the difference between the blue and the dashed red line.
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Appendix C Phase plots

Figure C.21: Phase plot in (xt, n1,t)-space for different values of β corresponding to the bifurcation diagram with
limit cycles in Figure 3 (based on policy function iteration).
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Figure C.22: Phase plot in (xt, n2,t)-space for different values of β corresponding to the bifurcation diagram with
limit cycles in Figure 3 (based on policy function iteration).

Figure C.23: Phase plot in (xt−1, xt)-space for different values of β corresponding to the bifurcation diagram with
limit cycles in Figure 3 (based on policy function iteration).
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Figure C.24: Phase plot in (xt, nt)-space for different values of β corresponding to the bifurcation diagram with
chaotic dynamics in Figure 8 (based on policy function iteration).

Figure C.25: Phase plot in (xt−1, xt)-space for different values of β corresponding to the bifurcation diagram with
chaotic dynamics in Figure 8 (based on policy function iteration).
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Appendix D Grapical illustrations of the policy functions

Figure D.26 represents slices of the policy function g. from the 3-type example in Figure 3. The

function is smooth for β = 1.1 (upper left panel) and, as reflected by an increase in contrast in the

figure, becomes steeper as β increases. For β = 7 in the last diagram the function is very steep, in

particular in the center. This coincides with the region for β in which the dynamics display a stable

4-cycle with values only in the periphery.

Figure D.26: Heatmap for the policy function g for β = 1.1 (ul), β = 2.5 (ur), β = 4 (ll) and β = 7 (lr), all other
parameters as in Table 2. When β increases the function becomes steeper. At the diagonal a small change in xt−1 or
xt−2 leads to a large change in xt = g(xt−1, xt−2). The illustration is based on policy function iteration.

Figure 10 shows slices of the policy function for the chaotic example in Figure 9. The Figures

D.27 and D.28 show the policy functions for Figure 11, initialized with different steady states.
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Figure D.27: Heatmap for the policy function g for the time series in Figure 11 initialized in the unstable fundamental
steady state (g0 = 0). The illustration is based on policy function iteration.

Figure D.28: Heatmap for the policy function g for the time series in Figure 11 initialized in the locally stable non-
fundamental steady state (g0 = x∗). The illustration is based on policy function iteration.
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