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a b s t r a c t 

Spatio-temporal patterns in electroencephalography (EEG) can be described by microstate analysis, a discrete 
approximation of the continuous electric field patterns produced by the cerebral cortex. Resting-state EEG mi- 
crostates are largely determined by alpha frequencies (8-12 Hz) and we recently demonstrated that microstates 
occur periodically with twice the alpha frequency. 

To understand the origin of microstate periodicity, we analyzed the analytic amplitude and the analytic phase of 
resting-state alpha oscillations independently. In continuous EEG data we found rotating phase patterns organized 
around a small number of phase singularities which varied in number and location. The spatial rotation of phase 
patterns occurred with the underlying alpha frequency. Phase rotors coincided with periodic microstate motifs 
involving the four canonical microstate maps. The analytic amplitude showed no oscillatory behaviour and was 
almost static across time intervals of 1-2 alpha cycles, resulting in the global pattern of a standing wave. 

In n = 23 healthy adults, time-lagged mutual information analysis of microstate sequences derived from ampli- 
tude and phase signals of awake eyes-closed EEG records showed that only the phase component contributed 
to the periodicity of microstate sequences. Phase sequences showed mutual information peaks at multiples of 
50 ms and the group average had a main peak at 100 ms (10 Hz), whereas amplitude sequences had a slow 

and monotonous information decay. This result was confirmed by an independent approach combining temporal 
principal component analysis (tPCA) and autocorrelation analysis. 

We reproduced our observations in a generic model of EEG oscillations composed of coupled non-linear oscillators 
(Stuart-Landau model). Phase-amplitude dynamics similar to experimental EEG occurred when the oscillators 
underwent a supercritical Hopf bifurcation, a common feature of many computational models of the alpha rhythm. 

These findings explain our previous description of periodic microstate recurrence and its relation to the time scale 
of alpha oscillations. Moreover, our results corroborate the predictions of computational models and connect 
experimentally observed EEG patterns to properties of critical oscillator networks. 
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. Introduction 

The electrical activity of the cerebral cortex is a regular but highly
omplex spatio-temporal process that results from spontaneous neuronal
scillations and is further shaped by extensive intra-cortical connec-
ions, cortico-subcortical feedback loops as well as external input. Tem-
oral patterns are characterized by oscillations in the now classical fre-
uency bands that approximately spread the 0-100 Hz frequency range,
lthough higher frequencies occur ( Schomer and da Silva, 2011 ). The
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patial patterns formed by task-free spontaneous activity mostly lack
 uniform description, though stimulus-induced patterns are well un-
erstood in the context of numerous experimental paradigms such as
vent-related potentials ( Freeman, 2004a; 2004b; Murray et al., 2008 ).
 prominent approach to characterize spatial patterns recorded by sur-

ace electroencephalography (EEG) is the microstate algorithm, used
n both task-related and task-free EEG ( Koenig et al., 2002; Lehmann
t al., 1987; Murray et al., 2008 ). When using this clustering technique,
ypically four representative topographies (microstates) of the surface
mber 2020 
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lectrical potential are sufficient to explain approximately 70% of the
ariance of resting-state EEG data sets ( von Wegner et al., 2018 ). EEG
ime series can thus be represented by a sequence of labels taken from a
mall alphabet such as ( A, B, C, D ). Despite the massive compression ra-
io during the transition from the set of all possible EEG topographies to
 set of only four microstate maps, microstates have been proven to con-
ey valid information about the vigilance state ( Brodbeck et al., 2012 ),
unctional brain states ( Britz et al., 2010; Musso et al., 2010; Yuan et al.,
012 ), different classes of cognitive processes ( Milz et al., 2015; Zappa-
odi et al., 2019 ), and increasingly about anomalies in neuro-psychiatric
iseases ( Lehmann et al., 2005; Murphy et al., 2020; Musaeus et al.,
019; Nishida et al., 2013; Smailovic et al., 2019 ). Analytic strategies
nclude a classification of the microstate map geometries revealed by
he given clustering algorithm ( Koenig et al., 1999; Kuhn et al., 2015;
mailovic et al., 2019 ), as well as a characterization of the temporal
ynamics within the microstate sequences. Temporal properties of mi-
rostate sequences have been described by transition probability matri-
es, i.e. by Markov chain models ( Kuhn et al., 2015; Lehmann et al.,
005; Musaeus et al., 2019; Nishida et al., 2013; Schiller et al., 2019 ),
ut also as random walks with memory ( Van de Ville et al., 2010; von
egner et al., 2016 ). 
We recently used an information-theoretical method to show that

icrostate sequences display another feature, namely oscillatory or pe-
iodic properties ( von Wegner et al., 2017 ). In other words, microstate
abels appeared stochastically, but with a preferred time interval. When
 given microstate label, e.g. the map labelled ’A’, was observed at a
iven time, there was a significantly increased probability to observe
ap ’A’ again 50 ms, 100 ms, etc. later. Further analyses showed that

hese intervals correlated significantly with the dominant alpha frequen-
ies of the studied individuals. In particular, microstates recurred with
wice the alpha frequency. As the microstate label at each time point was
elected by maximum similarity with the current EEG topography, we
oncluded that spatial patterns of resting-state alpha oscillations showed
emporal periodicity ( von Wegner et al., 2017 ). 

The main goal of the present study was to identify the origin of these
eriodicities. The microstate procedure can be interpreted as a form of
imensionality reduction algorithm whereby the spatial information of
 continuous EEG data set is massively compressed. To track the origin
f microstate periodicity, we started our analysis at the very beginning
f the procedure, at the level of continuous EEG sensor data. By that
pproach, we aimed to overcome the limitations implied by only con-
idering EEG topographies at local maxima of the global field power
GFP, standard deviation of all voltage values across all EEG channels).
wo recent articles provided a critical view on the winner-take-all ap-
roach used in microstate fitting and emphasized the continuous nature
f the EEG dynamics that underlie microstate sequences ( Mishra et al.,
020; Shaw et al., 2019 ). Both studies raised the issue of relevant EEG
ynamics between GFP peaks which may not be represented adequately
y the microstate approach. 

Classical works ( Lehmann et al., 1987 ) and recent advances using
EG source reconstruction algorithms ( Milz et al., 2017 ) showed that
icrostates are mostly associated with alpha-band activity. For this rea-

on, and due to the fact that the concept of phase is only well defined
or narrow frequency bands ( Huang et al., 1998 ), the present analysis
ocuses on the 8-12 Hz alpha range, the dominant EEG spectral peak in
akeful rest ( Schomer and da Silva, 2011 ). Since EEG data at the sen-

or level is composed of amplitude-modulated oscillations with a dom-
nant frequency, we studied the EEG’s Hilbert transform which splits
his class of signals into two components without information loss, the
omponents being the (analytic) amplitude and the (analytic) phase. 

Apart from examining the origin of microstate periodicity, we were
otivated by the question if the phase of resting-state alpha oscillations

orms spatial patterns. The phase component of cortical oscillations has
eceived increasing attention as the carrier of biological information be-
ween neuronal populations such as different cortical areas, or the cor-
ex and subcortical nuclei ( Arenas et al., 2008; Masquelier et al., 2009 ).
tudies suggesting a specific biological role of the oscillatory phase in-
olve alpha oscillations ( Palva and Palva, 2011 ) as well as other EEG
requency bands ( Vidaurre et al., 2018 ). Also, the general theory of non-
inear oscillators and complex dynamical systems emphasizes the role of
hase dynamics in coupling and information transfer ( Pikovsky et al.,
001 ). 

Finally, microstates have been discussed in the context of critical
ynamics in the resting-state brain Van de Ville et al. (2010) , to which
mplitude and phase dynamics of EEG oscillations may contribute sep-
rately ( Daffertshofer et al., 2018 ). 

This set of questions motivated us to study the relation between mi-
rostates and alpha amplitude/phase patterns in more detail. In the fol-
owing, we try to answer some of these questions by comparison of con-
inuous EEG data and discrete microstate sequences derived from alpha
scillations, the analytic alpha amplitude and the analytic alpha phase.

The presentation is organized as follows. We examine the spatial
roperties of resting-state alpha oscillations as seen through the Hilbert
ransform. The visual identification of certain periodic phase patterns
phase rotors) is complemented by a quantitative description of geomet-
ical invariants (singularities) that allow the automatic detection and
uantification of these patterns. We then show that periodic phase pat-
erns coincide with periodic microstate motifs involving all four classical
icrostate geometries ( Koenig et al., 2002 ). Using time-lagged mutual

nformation, we examine to which extent the analytic amplitude and
hase contribute to microstate periodicity in a sample of 23 healthy
ubjects. Finally, we show that our results can be reproduced in a sim-
le computational model of coupled non-linear oscillators with a super-
ritical Hopf bifurcation as their central feature. We conclude with a
iscussion of the results within the broader context of spatio-temporal
EG patterns and critical brain dynamics. 

. Material and methods 

.1. Experimental data 

We analyzed 𝑛 = 23 EEG recordings from right-handed healthy sub-
ects (mean age: 23 yrs, range: 19–31, 9 males). All recordings were ac-
uired in an eyes-closed resting-state condition. All data segments had
 length of 120 s and were selected to be free of movement and elec-
rode artefacts, and to show clear posterior alpha activity without signs
f drowsiness or sleep. Written informed consent was obtained from all
ubjects and the study was approved by the ethics committee of the
oethe University, Frankfurt, Germany (reference number 305/07). 

.2. EEG signal processing 

All data sets were recorded with a 30 channel EEG setup, using
exible EEG caps matched to the individual head size and using the
tandard 10-20 electrode configuration. The initial sampling rate was
 kHz, and the data were re-referenced to the average reference as
ecommended for microstate analysis ( Murray et al., 2008 ) and down-
ampled to 250 Hz. Band-pass filters were obtained as zero-phase, 6th
rder Butterworth coefficients, resulting in a transfer function slope of
4 dB/octave. The alpha frequency band was obtained from 8 to 12 Hz
and-pass filtering. We verified that the phase response in the alpha
ange was identical to that of a linear phase finite impulse response fil-
er. As in our previous publications, the sampled EEG topography was
nterpolated and projected to a planar and regular 128 × 128 grid us-
ng cubic Clough-Tocher interpolation ( von Wegner et al., 2018; von

egner and Laufs, 2018; von Wegner et al., 2017 ). 

.3. Amplitude-phase decomposition 

To separate amplitude and phase dynamics of alpha oscillations, the
ilbert transform was applied to band-pass filtered EEG signals. In the

ollowing, alpha frequency band filtered data will be denoted 𝛼( r , t ),
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here r denotes 2D spatial coordinates and t is time. The Hilbert trans-
orm of a signal f ( s ) is commonly written as an integral transform 

 ̃( 𝑡 ) = PV 

1 
𝜋 ∫

+∞

−∞

𝑓 ( 𝑠 ) 
𝑡 − 𝑠 

𝑑𝑠 (1) 

here PV indicates the Cauchy principal value of the integral
 Boas, 2006 ). In the frequency domain, the Hilbert transform only re-
ains Fourier components of non-negative frequencies ( Oppenheim and
chafer, 1999 ). 

A practical way to visualize the Hilbert transform of an oscillatory
EG signal is the following. Let the band-pass filtered alpha oscillation
( r , t ) and its Hilbert transform 𝛼̃( 𝐫, 𝑡 ) be the real and imaginary parts
f the complex-valued signal 𝑧 ( 𝐫, 𝑡 ) = 𝛼( 𝐫, 𝑡 ) + 𝑖 ̃𝛼( 𝐫, 𝑡 ) . The complex time
eries z ( r , t ) is called the analytic signal and has the same number of sam-
les as the input signal. Each sample of the analytic signal is a vector in
he 2D plane of complex numbers and the trajectory of the analytic sig-
al describes a periodic motion around the origin. In polar coordinates,
he amplitude or radius of the trajectory is the envelope of the oscillatory
nput and the angle between the real axis and the current Hilbert vector
s the instantaneous phase. The analytic signal of the alpha oscillation
n Cartesian and polar coordinates is thus given as: 

 ( 𝐫, 𝑡 ) = 𝛼( 𝐫, 𝑡 ) + 𝑖 ̃𝛼( 𝐫, 𝑡 ) 

= 𝐴 ( 𝐫, 𝑡 ) e 𝑖𝜙( 𝐫,𝑡 ) (2) 

here A ( r , t ) denotes the analytic amplitude and 𝜙( r , t ) the analytic
hase. In our computations, phase values lie in the interval [ − 𝜋, + 𝜋] ,
ut other choices such as 𝜙 ∈ [0, 2 𝜋] are also consistent and do not
ffect the shown results in any way. For EEG data, the analytic am-
litude and phase values were calculated from the spatially interpo-
ated and band-pass filtered data sets using the discrete Hilbert trans-
orm as implemented in the open source SciPy package ( Oppenheim and
chafer, 1999 ). 

.4. Phase gradient and phase singularities 

The phase gradient ∇ 𝜙( r , t ) contains the discrete derivatives of the
hase field along the two spatial dimensions. In discrete 2D coordinates,
nd omitting the time index for simplicity, the phase gradient at location
 = ( 𝑚, 𝑛 ) was computed as: 

 𝜙𝑚,𝑛 = 

(
𝜙𝑚 +1 ,𝑛 − 𝜙𝑚,𝑛 , 𝜙𝑚,𝑛 +1 − 𝜙𝑚,𝑛 

)
. (3) 

To identify phase singularities, the rotation (or curl) of the phase
radient field was calculated by virtue of Stokes’ theorem as a contour
ntegral along a closed path C around each 2D coordinate (pixel). Scaling
he rotation of the gradient field by the factor 1 

2 𝜋 gives a quantity called
he topological charge 𝜎( r , t ) ( Bray, 1994; Bray et al., 2001; Bray and

ikswo, 2002 ). Thus, topological charge in continuous coordinates is
efined as 

( 𝐫 , 𝑡 ) = 

1 
2 𝜋 ∮𝐶 ∇ 𝜙( 𝐫 , 𝑡 ) dl (4) 

here dl is a differential line segment of the closed contour C .
umerically, we integrated along a square contour around each
ixel ( m, n ) ( Bray et al., 2001 ), i.e. along the set of pixels
 ( 𝑖, 𝑗) ∶ max ( ∣ 𝑖 − 𝑚 ∣, ∣ 𝑗 − 𝑛 ∣) ) = 1 } , following the mathematically posi-
ive (counterclockwise) direction. For a conservative, singularity-free
radient field, the rotation is zero and therefore, areas without phase
ingularities have a topological charge of zero ( 𝜎 = 0 ). A singularity at
he center of a rotor with mathematically positive (counterclockwise)
rientation has a positive topological charge 𝜎 > 0, a negative (clock-
ise) rotation has 𝜎 < 0 ( Bray and Wikswo, 2002; Qiao et al., 2009 ). As

he phase can wind around the singularity 𝑛 = 1 , 2 , … times in positive
r negative direction, the contour integral can have values of ± 2 𝜋n ,
nd the normalization constant 1 

2 𝜋 leads to (non-zero) integer values for
he topological charge, 𝜎 ∈ ℤ ⧵ {0} . We only found rotors with a winding
umber of 𝑛 = 1 , i.e. theoretical values of 𝜎 = ±1 . For experimental data,
he topological charge values are not exact integers but fluctuate around
nteger values due to the discretization and measurement noise. Here,
e applied an empirically derived threshold of | 𝜎| > 0.85 to identify
hase singularities. In discrete coordinates, an individual singularity can
over more than one pixel and may be fragmented into non-connected
oints by the thresholding procedure. We therefore applied a morpho-
ogical closing operator ( Jähne, 2005 ) of 7 × 7 pixel square shape to the
hresholded topological charge field. Therefore, phase singularities in all
ubsequent figures have a square shape. Overall, singularities are not dif-
cult to detect automatically. As topological charge values away from
ingularities are zero, and all singularities produce topological charge
eaks of the same absolute value, our results are stable even though the
hreshold is varied. 

.5. Microstate analysis 

For each data set, four EEG microstates were computed using the spa-
ial principal component analysis (PCA) method described in ( von Weg-
er et al., 2018 ). Briefly, the spatial principal components of EEG data
ectors taken at the local maxima of the global field power (GFP) time
ourse were computed. The first four components were identified as mi-
rostate maps. The EEG data vector at each time point t was compared
ith each microstate map by computing the squared correlation coef-
cient between the two 30-component arrays. The microstate with the

argest squared correlation coefficient determined the label of the mi-
rostate sequence L t at time t , being the optimum representative of the
urrent EEG topography (’winner-takes-all’ strategy). 

We decided to use the PCA-based method rather than the often used
odified K-means algorithm ( Pascual-Marqui et al., 1995 ) for three rea-

ons: the PCA method is faster, it is not stochastic, i.e. it always gives the
ame set of microstates for a given EEG data set, and it has the same pe-
iodic properties as microstate sequences obtained with other methods
 von Wegner et al., 2018 ). 

We also computed microstate sequences for analytic amplitude and
nalytic phase signals using the same method. We respected the 2 𝜋 pe-
iodicity of phase values 𝜙 ∈ [ − 𝜋, + 𝜋] by using their complex represen-
ation exp ( i 𝜙) during PCA and microstate fitting to the EEG data set. 

As an alternative way to compress the information from the 30 EEG
hannels, we used temporal principal component analysis, and retained
nly the first component (tPCA 1 ) which explains the maximum amount
f data variance. The tPCA 1 signal is a one-dimensional real-valued ar-
ay with the same number of temporal samples as the original EEG data
et. 

Both, spatial and temporal PCA were implemented in Python and are
vailable from our GitHub repository. 

.6. Autoinformation and autocorrelation analysis 

Periodicity in microstate sequences was quantified via time-lagged
utual information ( Kullback, 1959; von Wegner et al., 2017 ). Regard-

ng the microstate label L t at time t and the time-lagged label 𝐿 𝑡 + 𝑘 as ran-
om variables with Shannon entropies H ( L t ), 𝐻( 𝐿 𝑡 + 𝑘 ) and conditional
ntropy 𝐻( 𝐿 𝑡 + 𝑘 ∣ 𝐿 𝑡 ) , time-lagged mutual information for time lag k is
efined as: 

( 𝑘 ) = 𝐻( 𝐿 𝑡 + 𝑘 ) − 𝐻( 𝐿 𝑡 + 𝑘 ∣ 𝐿 𝑡 ) . (5) 

In analogy to autocorrelation functions, we have previously used the
erm autoinformation function (AIF) for the collection of mutual infor-
ation coefficients and we published the AIF code in the context of pre-

ious microstate-related articles ( von Wegner et al., 2018; von Wegner
nd Laufs, 2018 ). 

For real- and complex-valued signals x t , we used the standard def-
nition of autocorrelation coefficients r kk at time lag k given by 𝑟 𝑘𝑘 =
 

(
𝑥 𝑡 ̄𝑥 𝑡 + 𝑘 

)
where 𝔼 ( ⋅) denotes statistical expectation and 𝑥̄ 𝑡 + 𝑘 is the com-

lex conjugate of 𝑥 𝑡 + 𝑘 . To obtain the correct values for phase signals 𝜙,
hese were represented as complex numbers in autocorrelation analyses.

https://www.scipy.org/
https://github.com/Frederic-vW/eeg_microstates


F. von Wegner, S. Bauer, F. Rosenow et al. NeuroImage 224 (2021) 117372 

2

 

t  

m  

v  

t  

n  

t  

a  

d

𝑧

w  

a  

p  

f  

r  

c  ⟨
 

t  

fi  

T  

p

 

 

c
 

l

𝑧

w  

a  

b  

p

Δ

 

i  

o  

t  

{
 

t  

𝑑  

r  

2  

t  

a  

r  

w  

d  

i  

f  

r  

E  

l  

a  

t  

t

3

3

 

i  

E  

8  

o  

w
3  

p  

W  

t  

o  

o  

o  

e  

s  

t  

c  

t  

t  

p  

p  

s
 

o  

g  

i  

t  

t
 

p  

o  

p  

a  

o  

i  

o  

i  

(  

c  

p  

p  

i  

s  

a
 

E  

t  

l  

a  

p  

(  

c  

T  

c
 

p  

t  

f
 

b  

g  

r  
.7. Stuart-Landau oscillator lattice 

Stuart-Landau oscillators represent the mathematical normal form of
he supercritical Andronov-Hopf bifurcation ( Kuznetsov, 2004 ), a com-
on generating mechanism of non-linear oscillations. Using real-valued

ariables, the system can be written as a pair of differential equations, al-
ernatively, the two real variables can be combined into a single complex
umber. We will here use the latter approach which directly compares
o the complex EEG representation introduced via the Hilbert transform
bove ( Eq. (2) ). The dynamics of a single oscillator can be written as a
ifferential equation: 

̇  𝑡 = ( 𝜇 + 𝑖 ) 𝑧 𝑡 − 𝑧 𝑡 
||𝑧 𝑡 ||2 + 𝜌𝜉𝑡 (6) 

here 𝑧̇ 𝑡 denotes the time derivative of the complex variable 𝑧 ∈ ℂ ,

nd i is the imaginary unit. The variable z corresponds to the com-
lex EEG representation introduced above. Eq. (6) is a stochastic dif-
erential equation (SDE) that contains a noise term 𝜌𝜉t , where 𝜌 is the
eal-valued noise intensity and 𝜉𝑡 = 𝜉𝑅𝑒 

𝑡 
+ 𝑖𝜉𝐼𝑚 

𝑡 
are mutually independent

omplex-valued Gaussian random variables, i.e. 𝜉𝑅𝑒 
𝑡 
, 𝜉𝐼𝑚 
𝑡 

∼  (0 , 1) and
𝜉𝑅𝑒 
𝑠 
𝜉𝑅𝑒 
𝑡 

⟩
= 

⟨
𝜉𝐼𝑚 
𝑠 
𝜉𝐼𝑚 
𝑡 

⟩
= 

⟨
𝜉𝑅𝑒 
𝑠 
𝜉𝐼𝑚 
𝑡 

⟩
= 𝛿( 𝑡 − 𝑠 ) . In this paper, the noise in-

ensity was held constant at 𝜌 = 0 . 1 . The real-valued parameter 𝜇 de-
nes the bifurcation point ( 𝜇 = 0 ) and controls the onset of oscillations.
he supercritical Andronov-Hopf bifurcation is defined by the following
roperties: 

• For 𝜇 < 0, the system has a single stable fixed point 𝑧 𝑡 = 0 
• At the bifurcation, 𝜇 = 0 , the fixed point vanishes and for 
• 𝜇 > 0, the system has a stable limit cycle 𝑧 𝑡 = 𝐴 exp ( 𝑖𝑡 ) with radius
𝐴 = 

√
𝜇 and frequency 𝜔 = 1 , i.e. cycle length 𝑇 = 2 𝜋

For details, we refer the reader to the extended literature on bifur-
ation theory, e.g. ( Kuznetsov, 2004 ). 

The spatial dimension is introduced by arranging 𝑁 = 64 × 64 oscil-
ators on a discrete square lattice and coupling the elements diffusively: 

̇  ( 𝐫, 𝑡 ) = ( 𝜇 + 𝑖 ) 𝑧 ( 𝐫, 𝑡 ) − 𝑧 ( 𝐫, 𝑡 ) |𝑧 ( 𝐫, 𝑡 ) |2 + 𝜌𝜉𝑡 + Δ𝑧 ( 𝐫, 𝑡 ) (7) 

here r is the spatial variable (two discrete indices in the lattice case)
nd Δ is the discrete Laplace operator that implements the coupling
etween neighbouring oscillators. For the discrete lattice case, we im-
lemented the Laplace operator as: 

𝑧 ( 𝐫, 𝑡 ) = 

∑
𝑞 , 𝑑( 𝑟,𝑞 )=1 

( 𝑧 ( 𝐪 , 𝑡 ) − 𝑧 ( 𝐫, 𝑡 ) ) . (8) 

The value of the Laplacian at the spatial location 𝐫 = ( 𝑖, 𝑗 )
s the sum over the differences 𝑧 ( 𝐪 , 𝑡 ) − 𝑧 ( 𝐫, 𝑡 ) , where q ranges
ver the nearest neighbours of r , i.e. locations within unit dis-
ance ( 𝑑 ( 𝐫 , 𝐪 ) = 1 ). Explicitly, the neighbour set of 𝐫 = ( 𝑖, 𝑗 ) is
 ( 𝑖 − 1 , 𝑗 ) , ( 𝑖 + 1 , 𝑗 ) , ( 𝑖, 𝑗 − 1 ) , ( 𝑖, 𝑗 + 1 ) } . 

We interpreted the SDE in the Itô sense and numerically integrated
he system using the Euler-Maruyama scheme with a time step of
𝑡 = 0 . 01 ( Gardiner, 2004; Kloeden and Platen, 1992 ). Each simulation
un was allowed to equilibrate for 25000 time steps before recording
5000 iterations for analysis. We then down-sampled in time by a fac-
or of 25 to obtain the same number of samples per oscillation cycle
s for the EEG, i.e. approximately 25 samples per cycle (10 Hz alpha
hythm at 250 Hz sampling rate). The higher sampling rate ( 𝑑𝑡 = 0 . 01 )
as used to assure stability of the numerical solution to Eq. (7) , and
own-sampling was applied to allow direct comparison between exper-
mental and model data, excluding subtle differences introduced by dif-
erent sampling rates. The band-pass filter and Hilbert transform pa-
ameters for the simulated oscillator data were identical to those of the
EG recordings, relative to the Nyquist frequency. Microstates for model
attices were computed by imitating the EEG sampling procedure. To
chieve this, we selected 30 evenly spaced lattice sites and then applied
he same procedure that is detailed in the Microstate analysis subsec-
ion. 
. Results 

.1. Amplitude-phase decomposition in time and space 

The basic procedure used to process EEG data and to character-
ze spatio-temporal patterns is illustrated in Fig. 1 . Awake resting-state
EG data is characterized by amplitude-modulated oscillations in the
–12 Hz (alpha) frequency band, with the largest amplitudes occurring
ver the (parieto-)occipital cortex. This idea is illustrated in Fig. 1 A,
here the signal recorded at the left occipital EEG electrode (O1, 1–
0 Hz, gray trace) and the first component of a temporal principal com-
onent analysis (tPCA 1 , black) of the whole EEG data set are shown.
hile the O1 signal represents an actually recorded sensor signal, the

PCA 1 signal acts like a single (virtual) channel summarizing the activity
ccurring at all 30 sensors. In accordance with our previous report, we
bserved that both the frequency content and the amplitude dynamics
f both signals were similar ( von Wegner et al., 2017 ). We show an ex-
mplary tPCA 1 signal here because tPCA 1 time courses will be used in
ubsequent sections to corroborate results obtained from the microstate
ransform. Both methods achieve the same goal of compressing a multi-
hannel EEG signal into a one-dimensional signal by different computa-
ional means. While the microstate method yields a sequence of symbols
aken from the alphabet of microstate labels ( A, B, C, D ), the tPCA 1 ap-
roach gives a time series of real numbers. Microstate sequences will be
rocessed by information-theoretical methods whereas the tPCA 1 time
eries can be analyzed by standard signal processing methods. 

Fig. 1 B shows that alpha frequencies are the main constituent of
ccipital EEG activity during rest. The left occipital O1 signal (1–30 Hz,
ray, identical to the gray trace in A but with different amplitude scal-
ng) and the alpha band-pass filtered signal (8–12 Hz, black) both show
he amplitude-modulated oscillations that characterize task-free EEG ac-
ivity. 

Fig. 1 C summarizes the amplitude-phase decomposition of the al-
ha frequency band signal as obtained from the Hilbert transform. The
ccipital alpha oscillation (black line) is identical to the black trace in
anel B. The analytic Hilbert amplitude (blue line) has the same scaling
s the O1 signal. The analytic amplitude corresponds to the envelope
f the underlying oscillation, smoothly connecting its local maxima. It
s useful to keep this image in mind when moving to the spatial view
f alpha dynamics. The analytic amplitude represents the magnitude or
ntensity of the alpha oscillation at a given moment. The analytic phase
green line) encodes the current position within the 10 Hz oscillatory
ycle, i.e. the proximity to local maxima, minima or zero crossings. The
hase signal uses the right-hand scale ranging from − 𝜋 to + 𝜋. It is im-
ortant to note that the recurring discontinuities of the phase signal,
.e. the jumps from + 𝜋 to − 𝜋, only occur in the one-dimensional repre-
entation. The corresponding complex vector exp ( i 𝜙) moves smoothly
long the complex unit circle. 

Fig. 1 D briefly summarizes the steps leading from the continuous
EG signal to microstates, the details have been reported numerous
imes in the literature. The global field power (GFP) time series (black
ine) describes the spatial standard deviation across all EEG electrodes
t any given time and oscillates with twice the alpha frequency. EEG to-
ographies from time points where the GFP time series has local maxima
blue dots) are collected and processed by a dimensionality reduction or
lustering algorithm which outputs the representative microstate maps.
he algorithm to extract microstates in this case was spatial principal
omponent analysis (PCA). 

Fig. 1 E–H show spatial patterns or topographies taken at the time
oint of the GFP peak indicated in D (red dot). All topographies in
his report follow the geometry indicated in panel E (le = left, ri = right,
r = frontal). 

Fig. 1 E is the EEG microstate map that represents the actual alpha
and topography which is shown in Fig. 1 F. Both maps share the same
eneral symmetry, representing the basic idea of the microstate algo-
ithm. In this example, the best fitting microstate map has the label C ,
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Fig. 1. Analytic amplitude-phase decomposition of oscillatory EEG signals. A : Both, the left occipital electrode signal (O1, gray) and the multi-channel activity as 
summarized by the first temporal principal component (tPCA 1 , black) show an amplitude-modulated oscillation and similar temporal dynamics. B : The O1 electrode 
signal (gray) is dominated by the 8-12 Hz alpha frequency band component (black), showing that band-pass filtering only removes a small amount of data variance. C : 
The Hilbert transforms decomposes the O1 alpha oscillation (black) into two components, the analytic amplitude or envelope (blue), and the analytic phase (green), 
phase values are indicated by the right hand scale ( [ − 𝜋, + 𝜋] ). Phase discontinuities only occur in the one-dimensional representation. D : The global field power (GFP, 
black) oscillates at approximately twice the alpha frequency, local maxima are indicated with blue dots. E - H : Spatial EEG topographies evaluated at an arbitrary GFP 
peak that is indicated by the red dot in D . All topographies have the orientation indicated in E : left (le), right (ri) and frontal (fr). E : Using standard labelling, the 
microstate at the GFP peak indicated in D has the label 𝐿 𝑡 = 𝐶 and represents the instantaneous EEG topography shown in F. F : Instantaneous topography of the alpha 
band oscillation 𝛼( r , t ) at the time point t . G : Instantaneous topography of the analytic amplitude A ( r , t ) at the same time point as E, F and H . The occipital amplitude 
maximum is characteristic for resting-state alpha oscillations. H : The topography of the analytic phase signal 𝜙( r , t ) shows a single point in the fronto-central region 
where lines of constant phase (constant colour) coalesce and the value of the phase is undefined. 
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sing standard microstate labelling conventions ( Koenig et al., 2002 ).
he amplitude and phase components of the analytic alpha signal are
hown in G, H. The amplitude A ( r , t ) (G) shows that the maximum al-
ha magnitude occurs over occipital and parietal regions (red colours).
he analytic phase 𝜙( r , t ) (H) attains all values in the interval [ − 𝜋, + 𝜋]
nd varies smoothly at almost all locations of the scalp surface. An ex-
eption occurs at a fronto-central location where all phase values, or
quivalently all colours coalesce. As a consequence, the phase value at
his location cannot be defined unequivocally and these locations are
ermed phase singularities. However, around the singularities, the an-
lytic phase changes continuously and shows a large-scale order. To
void artificial discontinuities at boundaries where the (non-complex)
hase value jumps from + 𝜋 to − 𝜋, phase maps are plotted with a circular
olour map. It should be noted that the complex-valued EEG represen-
ation is continuous at these boundaries. 

.2. Phase gradient and phase singularities 

Points of undefined phase as shown in Fig. 1 H can be associated with
otating phase patterns. To visualize the temporal dynamics of phase
opographies, Fig. 2 A shows four snapshots of the alpha phase over the
ourse of approximately one alpha cycle, and with a spacing of 32 ms,
r 8 frames with respect to the EEG sampling rate of 250 Hz. Using the
hase colour scale shown on the right to track the phase field over the
lpha cycle, a rotation of the phase pattern is observed. The two centers
f rotation are located (i) close to the fronto-central midline, and (ii) fur-
her to the right (fronto-temporal area). Observing a fixed location dur-
ng this rotation, we can observe that the local oscillators run through
he full phase interval [ − 𝜋, + 𝜋] , with the exception of the singular point
ear the center of the scalp. At the same time, the rotational pattern
hows that the phase map away from the singularities shows a strong,
arge-scale ordering. Phase values are not scattered randomly across the
calp, but form a continuous field that maintains its symmetry during
he shown rotation. At other time points, phase singularities can occur
t different scalp locations and can move over time, as demonstrated
urther below. The locations shown in Fig. 2 do not seem to play a priv-
leged role and were chosen as an example. For better visualization, the
ata segment is animated in the supplemental file Mov1_Fig_2. 

Fig. 2 B quantifies the notions of phase rotation and phase singularity
ith analytical methods. The phase gradient ( Eq. (3) ) is visualized by
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Fig. 2. Phase singularities, rotors and phase ordering. A : From left to right, phase topographies 𝜙( r , t ) at four time points of an alpha oscillation cycle are shown. 
Visual analysis reveals two rotating phase patterns that complete approximately one rotational cycle over the 96 ms interval shown. There are two locations where 
the phase field is singular, i.e. where all phase values (all colours) coincide, one is found near the fronto-central midline, the other in the right fronto-temporal region. 
Following the colours along a closed loop encircling any one of the two points, it is noted that such a path visits all phase values in the [ − 𝜋, + 𝜋] interval continuously, 
demonstrating an ordering of the phase field around each singularity. Note the circular colour scale that avoids artificial discontinuities at ± 𝜋 boundaries. B : The 
phase gradient ∇ 𝜙( r , t ) (blue arrows) describes a counterclockwise rotation around the left singularity and a clockwise rotation around the right singularity at all time 
points. The counterclockwise rotation is summarized by the positive topological charge 𝜎( 𝐫, 𝑡 ) = +1 at the site of the left phase singularity (white square), whereas 
the clockwise gradient field rotation is encoded by a negative topological charge 𝜎( 𝐫, 𝑡 ) = −1 at the location of the phase rotor on the right (black square). 
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treamlines (blue arrows). These describe a counterclockwise (positive)
otation around the left phase singularity and a clockwise (negative)
otation around the singularity on the right. The topological charge,
s defined in Eq. (4) , is zero at all locations (gray background) except
rom the two phase singularities. In accordance with the orientation
f the two rotors, we find 𝜎( 𝐫, 𝑡 ) = +1 for the positive rotation (white
quare), and 𝜎( 𝐫, 𝑡 ) = −1 for the negative rotation (black square). Thus,
on-zero topological charge values localize phase singularities and the
ign encodes the direction of rotation. The extent and square shape of
he singularities as they appear in Fig. 2 are due to the image processing
perators described in the Methods section. When inspecting the supple-
ental video animations, it is important to note that the sign of the rotor

s defined by the direction of the phase gradient. This should not be con-
used with the rotation of the color values, which move in the opposite
irection. At the boundary between − 𝜋 and + 𝜋 phase values (blue) for
nstance, the spatial gradient points from + 𝜋 to − 𝜋, corresponding to a
hase increase along the positive direction on the complex unit circle.
s the Hilbert transform only retains positive frequencies, phase values

n the time domain jump from + 𝜋 to − 𝜋 (green line in Fig. 1 C). By con-
inuity, the color values rotate in the − 𝜋-to- + 𝜋 direction, i.e. opposing
he phase gradient vector. 

.3. Periodic microstate motifs and phase patterns 

We here show that periodic microstate motifs are associated with
eriodic patterns of the corresponding alpha oscillation from which they
ere computed. 

Fig. 3 illustrates the case of a periodic microstate pattern that occurs
uring a phase rotation around a phase singularity close to the vertex. In
rder to visualize the periodic dynamics that occur over approximately
ne and a half alpha cycles (144 ms), we chose an interval of 16 ms
etween the shown frames. In A, the microstate sequence L t forms a
eriodic motif ( ACC ) n which is repeated three times during the shown
ime interval. The alpha oscillation topographies 𝛼( r , t ) represented by
hose microstates are displayed in B and indicate that the periodicity of
he microstate labels is actually based on periodic EEG patterns, and not
n artefact introduced by the microstate algorithm. Highly similar alpha
atterns with inverted polarity appear with a period of ≈ 50 ms (indi-
ated by the asterisks at 0, 48, 96, 144 ms), while patterns of identical
olarity are repeated with approximately the period of the alpha oscilla-
ion (e.g. 0 and 96 ms or 32 and 128 ms). At the same time, the analytic
mplitude A ( r , t ) of the alpha oscillation, shown in C, remains almost
onstant over time, representing the classical alpha power distribution
ith an occipital maximum. The associated phase patterns 𝜙( r , t ) are

hown in D. While the location of the phase singularity remains almost
mmobile at the center of the map, the phase pattern completes a full
otation during the alpha oscillation cycle. The rotation velocity can be
isually estimated by comparing the phase pattern observed in the first
anel ( 𝑡 = 0 ms ) and the distribution of phase values attained after one
lpha cycle, in the time interval 96–112 ms. The phase gradient (blue
treamlines) and the negative topological charge in E quantify the on-
oing phase rotor and illustrate how efficiently the phase dynamics can
e described and detected by these topological invariants. An animation
f the data segment can be found in the supplemental file Mov2_Fig_3. 

We made similar observations when other microstate maps were in-
olved in periodic motifs. Fig. 4 illustrates the case of a periodic ( ABB ) n 
icrostate motif, given a 16 ms frame interval. Again, the alpha os-

illation (B) shows periodic behaviour with inverted polarities every
0 ms while retaining the same kind of spatial symmetry. Starting at
 = 0 ms , alpha topographies with a diagonal symmetry corresponding
o microstate type A are observed every 50 ms (asterisks indicate alpha
alf-cycles), while starting at 𝑡 = 16 ms , the opposite diagonal pattern,
.e. microstate class B , is observed every 50 ms. Though the analytic
mplitude in C changes during the 1,5 alpha cycles shown, the over-
ll symmetry with a maximum over the right parieto-occipital areas is
onserved. The phase patterns (D) in this example are organized by a
air of rotors over the right fronto-central region. Following the phase
radient patterns (E, blue streamlines) from left to right, the singularity
urther to the front and to the right rotates clockwise ( 𝜎( 𝐫, 𝑡 ) = −1 , black
quare), whereas the other one rotates in a counterclockwise manner
 𝜎( 𝐫, 𝑡 ) = +1 , white square). The example also illustrates the fact that
hase singularities are dynamic in space. In this case, both singularities
ove over time and their distance increases. The corresponding data

egment is animated in the supplemental file Mov3_Fig_4. 
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Fig. 3. Discrete and continuous EEG periodic- 
ity (I). A : At a spacing of Δ𝑡 = 16 ms , the mi- 
crostate sequence L t shows a periodic ( ACC ) n 
motif. Time points are indicated above, and ex- 
pected alpha half-cycles are indicated by aster- 
isks at 0, 48, 96, 144 ms. B : The alpha band to- 
pographies 𝛼( r , t ) represented by the microstate 
maps L t shown in A . Almost identical topogra- 
phies, but with inverted polarity, are observed 
at intervals close to half the alpha oscillation 
length, Δ𝑡 = 48 ms . The microstate fitting pro- 
cedure ignores EEG polarity. C : The analytic al- 
pha amplitude A ( r , t ) remains almost constant 
during the one and a half alpha cycles shown. 
D : The analytic phase 𝜙( r , t ) rotates around 
a singularity at the center of the phase map. 
As the alpha phase covers approximately 1,5 
cycles, there are approximately 1,5 spatial ro- 
tations. E : The phase gradient ∇ 𝜙( r , t ) (blue 
streamlines) describes a constant clockwise ro- 
tation around a central singularity. The singu- 
larity is localized by the negative topological 
charge (black square) and the clockwise direc- 
tion is defined by the negative sign 𝜎( 𝐫, 𝑡 ) = −1 . 

Fig. 4. Discrete and continuous EEG period- 
icity (II). A : At Δ𝑡 = 16 ms , the microstate se- 
quence L t has a recurring ( ABB ) n motif, us- 
ing standard microstate notation. Time points 
of expected alpha half-cycles are indicated by 
asterisks. B : The microstate maps A, B shown 
in A represent the concurrent alpha oscilla- 
tion topographies 𝛼( r , t ) with diagonal sym- 
metry axes. At each half-cycle of the alpha 
oscillation ( Δ𝑡 = 48 ms ) the alpha topographies 
show inverted polarity. C : The analytic ampli- 
tude pattern A ( r , t ) changes in shape but re- 
tains the same diagonal symmetry and constant 
polarity. D : The analytic phase field 𝜙( r , t ) is 
organized by rotations around two singulari- 
ties whose distance increases over time. E : The 
phase gradient ∇ 𝜙( r , t ) (blue streamlines) il- 
lustrates two phase rotors of opposite orienta- 
tion. The location and orientation of the rotors 
is fully described by the values of the topolog- 
ical charge field. Clockwise: 𝜎( 𝐫, 𝑡 ) = −1 (black 
square), counterclockwise 𝜎( 𝐫, 𝑡 ) = +1 (white 
square). 
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Next, we analyzed a periodic microstate pattern involving the mi-
rostate maps C and D , leading to a periodic motif ( CCD ) n shown in
ig. 5 A. The concurrent alpha topographies 𝛼( r , t ) are shown in B and
ollow the same periodicity as discussed above. The alpha patterns in B
how a high similarity with the associated microstates and invert their
olarity approximately every 50 ms, i.e. each half-cycle of the alpha os-
illation (asterisks in Fig. 5 A). During the same period, the analytic al-
ha amplitude in C is very stable in terms of spatial pattern and po-
arity. The phase patterns in Fig. 5 D show a pair of phase singularities
merging from a small fronto-central region and separating over time.
imilar to Fig. 4 , the two singularities rotate with opposite direction
s quantified by the gradient field (blue streamlines) and the value of
he topological charge 𝜎( r , t ) in E. The centrally located singularity ro-
ates counterclockwise, corresponding to a topological charge of 𝜎 = +1
white square), and the right-posterior rotor has a clockwise orientation,
quivalent to 𝜎 = −1 (black square). An animation of this data segment
s provided in the supplemental file Mov4_Fig_5. 
o  
.4. Spatio-temporal periodicity characterizes continuous and discrete EEG 

atterns 

So far, we have established a close relationship between periodic
icrostate patterns and rotating phase patterns in continuous EEG data

n three examples, using a spacing of Δ𝑡 = 16 ms . This section extends
nd quantifies these observations over a broader range of time lags and
sing the original EEG sampling interval of 4 ms. Fig. 6 illustrates the
elationship between periodic patterns in continuous EEG data and the
iscrete microstate representations using two independent approaches. 

First, we used microstate sequences computed from the EEG alpha
requency band and computed their autoinformation functions (AIF) as
pecified in ( von Wegner et al., 2018; von Wegner and Laufs, 2018; von
egner et al., 2017 ). We then computed microstate sequences and their
IFs from the analytic alpha phase and analytic alpha amplitude signals
btained by the Hilbert transform. 

In the second, microstate-independent approach, we processed alpha
scillations and their analytic amplitude and phase components by tem-
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Fig. 5. Discrete and continuous EEG periodic- 
ity (III). A : This microstate sequence L t has a 
periodic ( CCD ) n motif at Δ𝑡 = 16 ms . Expected 
alpha half-cycles are indicated by asterisks. B : 
The concurrent alpha topographies 𝛼( r , t ) show 

inverted polarities approximately every 48 ms. 
C : The analytic alpha amplitude A ( r , t ) has al- 
most constant shape and polarity during the 
144 ms interval shown. D : The analytic phase 
field 𝜙( r , t ) rotates around a pair of singularities 
of slowly varying position and spatial distance. 
E : The phase gradient ∇ 𝜙( r , t ) (blue stream- 
lines) and the topological charge map 𝜎( r , t ) 
define a pair of opposite rotors, one with clock- 
wise ( 𝜎 = −1 , black square) and the other with 
a counterclockwise ( 𝜎 = +1 , white square) ori- 
entation. 

Fig. 6. Periodic spatial patterns for a single subject shown by two methods. A : The autoinformation function (AIF) of a single subject microstate sequence shows a 
clear periodicity at multiples of 50 ms, or half the alpha wavelength (black curve). The AIF of microstate sequences calculated from the analytic phase of the EEG 

signal (green) has a periodicity very similar to the classical microstate transform, whereas the AIF of microstate sequences computed from the analytic amplitude 
decays non-periodically (blue). B : Autocorrelation analysis for the first principal components (tPCA 1 ) of alpha oscillations, analytic alpha amplitude and phase. The 
squared autocorrelation function (ACF 2 , black) for the tPCA 1 of the alpha band-pass data set shows a clear 50 ms periodicity (black line), representing periodic EEG 

topographies that invert their polarity at half the alpha wavelength. The tPCA 1 of the analytic phase has an ACF 2 with identical periodicity (green line), whereas the 
tPCA 1 of the analytic amplitude has non-periodic autocorrelations (blue line). 
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oral PCA rather than the microstate algorithm. For each of the three
ata sets, we only retained the first principal component (tPCA 1 ), i.e. the
omponent that explains most of the data variance. Conceptually similar
o the microstate approach, temporal PCA collapses all the spatial infor-
ation into a one-dimensional signal. An exemplary tPCA 1 segment was

hown in Fig. 1 A. Since the tPCA 1 signals are real-valued, rather than
 sequence of symbols, their periodicity could be quantified by classi-
al autocorrelation analysis instead of using the information-theoretical
ethod. 

Fig. 6 A shows the autoinformation functions (AIFs) for a microstate
equence computed from the alpha frequency band of a single subject.
he AIF shows a clear periodicity with a period of approximately 50 ms
black curve). The AIF of the microstate sequence computed from the an-
lytic alpha phase (green) follows the same periodic pattern with equal
ycle length. The microstate sequence obtained from the analytic alpha
mplitude, however, shows a monotonic decay without any peaks that
ould indicate periodicity. 

This observation was corroborated by the second approach using
emporal PCA. Fig. 6 B shows the squared autocorrelation functions
ACF 2 ) for the tPCA 1 signal of the alpha oscillation (black), the tPCA 1 
f the analytic phase (green) and the tPCA 1 of the analytic amplitude
blue). The observed pattern is identical to Fig. 6 A. Only the tPCA 1 com-
onents of the alpha oscillation (black line) and phase (blue line) signals
ave clearly periodic squared autocorrelation coefficients, with a mini-
um period of 50 ms. The amplitude-derived tPCA 1 autocorrelations

blue line), however, decay monotonously without periodic features.
he period length of 50 ms is due to the squaring of the autocorrelation
unction and reflects the microstate fitting procedure which considers
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Fig. 7. Microstate periodicities in 𝑛 = 23 resting-state recordings. A : EEG microstate sequences computed from the alpha frequency band show periodicities at 
multiples of 50 ms, consistent with resting-state oscillations centered around 10 Hz (or 100 ms) and polarity inversion over each half-cycle. B : Microstate sequences 
computed from the analytic alpha amplitude show slowly decaying AIFs without periodicity. C : Microstate sequences for the alpha phase follow the periodic pattern 
in A , with main peaks at multiples of 100 ms and minor peaks at multiples of 50 ms. 
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he squared correlation coefficient to measure similarity between EEG
opographies and microstate maps. 

Fig. 7 follows the logic of Fig. 6 A and shows the group results across
ur sample of 𝑛 = 23 healthy subjects in a resting-state condition. For
etter visibility, the AIFs for alpha oscillation microstates (A), analytic
lpha amplitude microstates (B) and analytic phase microstates (C) are
resented separately. Mean AIF coefficients are shown in black, the 95%
onfidence intervals as blue-shaded areas. Fig. 7 A shows that the peri-
dic AIF pattern presented in Fig. 6 A is stable across the sample, i.e. mi-
rostates reliably occur with a periodicity of 50 ms. The highest AIF
eaks are located at time lags of 50 and 100 ms, with subsequent peaks
howing a marked decrease in amplitude due to the stochastic nature
f microstate dynamics and due to averaging across subjects. For mi-
rostates computed from analytic alpha amplitudes, Fig. 7 B shows no
igns of periodic microstate recurrence. The mean AIF rather shows a
low and monotonous decay across the analyzed time lags up to 400 ms.
one of the individual AIFs had periodic peaks either. We concluded

hat spatial patterns of the analytic alpha amplitude show no periodic
attern in time, for the time scales studied. Fig. 7 C shows that alpha
hase microstates have periodic properties. The mean AIF shows two
lear peaks at time lags of 100 ms and 200 ms, with minor elevations at
0 ms, and possibly at 150 ms. 

The supplementary file contains a statistical characterization of the
ifferent microstate maps computed from full bandwidth (1–30 Hz)
ata, alpha band-pass filtered data, and analytic amplitude and phase
ata. GFP properties and explained variance metrics are reported in Ta-
le S1, and S2 contains descriptors of the microstate probability distri-
ution and the matrix of transition probabilities, in a microstate label-
ndependent way. Overall, we did not find large deviations from the
lassical full bandwidth microstate transforms. Exemplary microstate
aps from alpha band, analytic amplitude and phase data sets for one
ubject are illustrated in Fig. S1. 

.5. A coupled oscillator model of critical phase pattern formation 

Fig. 8 aims at reproducing the results obtained for experimental EEG
ata in the Stuart-Landau lattice model. All results shown here refer to a
attice model of size 64 × 64 with diffusive coupling and constant noise
evel ( 𝜌 = 0 . 1 , see Methods). Fig. 8 A and B show snapshots of the ana-
ytic phase of two different lattice simulations in which each oscillator
ndergoes an Andronov-Hopf bifurcation when the control parameter
changes from negative to positive values. For 𝜇 = −0 . 5 , both simula-

ions do not produce coherent phase patterns. Close to the bifurcation, at
= −0 . 1 , both simulations show a spatial ordering of the phase, which

ecomes clearer at 𝜇 = 0 , showing a single phase singularity at the cen-
er of the lattice for simulation A, and a pair of phase singularities with
pposite orientation in B. Going from 𝜇 = 0 to 𝜇 = 0 . 5 , the spatial sym-
etry of both simulations remains unaltered, but the described patterns

ecome sharper. The only difference between the simulations shown in
 and B are the random initial conditions and the stochastic differen-

ial contributions 𝜌𝜉t in Eq. (6) . This illustrates the fact that the number
nd location of phase singularities depends only on the stochastic ele-
ents of the model, not on the control parameter 𝜇 or geometric factors.
nimations of the two simulations are provided as supplemental files
ov5_CSLE_S1 and Mov6_CSLE_S2, respectively. 

Fig. 8 C and D illustrate the temporal dynamics of the systems shown
n A, B for a random lattice site. In C, we observe that there are no oscilla-
ory dynamics at 𝜇 = −0 . 5 , whereas close to the critical point ( 𝜇 = −0 . 1 ),
 low-amplitude oscillation can be discerned towards the end of the data
race. As expected for an Andronov-Hopf bifurcation, clear oscillations
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Fig. 8. Coupled oscillator model of periodic phase patterns. A, B : Spatial snapshots of phase patterns in coupled oscillator lattices for different control parameters 
𝜇. Below criticality ( 𝜇 = −0 . 5 ), the systems do not show clear spatial patterns. Close to the bifurcation point 𝜇 = 0 . 0 , phase singularities and associated phase rotors 
emerge (single rotor in A , a pair of rotors in B ). C : Time courses for a single oscillator show random fluctuations below the bifurcation point ( 𝜇 = −0 . 5 ) and an onset 
of stable oscillatory behaviour close to ( 𝜇 = −0 . 1 ) and above the supercritical Hopf bifurcation point 𝜇 = 0 . D : Time courses for the phase of a single oscillator show 

the transition from random phase changes ( 𝜇 = −0 . 5 ) to stable periodic phase dynamics when the control parameter passes the Hopf bifurcation point 𝜇 = 0 . E : The 
microstate algorithm is used to analyze spatial patterns of the model system at the bifurcation point ( 𝜇 = 0 ). The band-pass filtered oscillation produces microstates 
with a periodic AIF (black line) and a period length of 𝑇 = 2 𝜋 (vertical gray line). The same periodicity is found in the microstate AIF of the analytic phase signal 
(green line), but not for the AIF of analytic amplitude microstates (blue line). 
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ith increasing amplitude are observed for 𝜇 = 0 and 𝜇 = 0 . 5 . As the
atural frequency of Stuart-Landau oscillators is 𝜔 = 2 𝜋𝑓 = 1 , the cy-
le length is 𝑇 = 2 𝜋 ≈ 6 . 28 . In terms of amplitude dynamics, it is ob-
erved that beyond the bifurcation point, single site oscillations have a
onstant, non-modulated amplitude. Similar dynamics are observed for
he analytic phase shown in D. Below the bifurcation point the analytic
hase varies randomly and the direction of rotation fluctuates ( 𝜇 < 0).
lose to and beyond the bifurcation point 𝜇 = 0 , a stable rotation is rep-
esented by a steadily increasing phase, including jumps from + 𝜋 to − 𝜋

n the one-dimensional representation. Going from 𝜇 = 0 to 𝜇 = 0 . 5 , the
tochastic contributions markedly decrease and the phase dynamics at
= 0 . 5 appear practically deterministic. In general terms, temporal pat-

ern formation goes in parallel with spatial phase pattern formation. 
In E, a lattice simulation at the bifurcation point, i.e. with a constant
arameter setting 𝜇 = 0 , is analyzed with the microstate approach. To
his end, the time courses of 30 equally spaced lattice points were sub-
itted to the same PCA-based microstate algorithm as used for 30 chan-
el EEG data sets. This analysis was performed for the oscillatory model
utput as well as for the analytic amplitude and the analytic phase
omponents. The corresponding autoinformation functions (AIF) for the
odel microstate sequences are shown with the same colours as used

or EEG data. The oscillatory signal component, analogous to the alpha
hythm, has a periodic AIF (black line) with an oscillation length of 2 𝜋
vertical gray line), i.e. the cycle length of Stuart-Landau oscillators. In
ccordance with the phase rotors shown in A and B, phase microstates
lso have a periodic AIF (green line) with the same periodicity as the
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scillatory component. Microstates computed from the analytic ampli-
ude lead to microstates with a slowly and monotonously decaying AIF
blue line). In summary, Stuart-Landau oscillator lattices at the bifurca-
ion point of individual oscillators show microstate dynamics similar to
EG microstate data. The AIFs for control parameter settings 𝜇 far from
he bifurcation point do not resemble experimental AIF forms and can
e found in the supplementary file (Fig. ). 

. Discussion 

In the present work, we have established a connection between the
reviously described periodicity of EEG microstate sequences ( von Weg-
er et al., 2017 ) and the continuous spatio-temporal patterns formed by
lpha oscillations as measured by surface EEG. Our main results can be
ummarized as follows: 

• The periodicity of EEG microstate sequences reflects periodic pat-
terns of alpha oscillations in continuous space and time. 

• The oscillatory properties of microstate sequences are coded by the
analytic phase of alpha oscillations and not by the analytic ampli-
tude. 

• Over the course of 1–2 alpha cycles, the combination of quasi-
static amplitude and periodic phase patterns characterize sponta-
neous EEG activity as transient standing wave patterns. 

• Periodic phase patterns emerge from phase rotors, organized around
a small number of phase singularities which are dynamic over time.

• Pattern formation in resting-state alpha activity can be modelled by
near-critical coupled oscillator lattices close to an Andronov-Hopf
bifurcation. 

.1. Temporal properties of microstate sequences 

Resting-state microstate sequences have been modelled as Markov
rocesses ( Brodbeck et al., 2012; Gärtner et al., 2015 ) and via long-
ange correlated random walk models ( Van de Ville et al., 2010 ). In a
ecent publication, we employed an information-theoretical approach
nd found intermediate results with regard to temporal correlations
f microstate sequences ( von Wegner et al., 2017 ). In particular, we
ound autocorrelations or memory effects that clearly exceeded effects
hat can be described by a probability transition matrix approach. How-
ver, these memory effects did not differ from a Markov model for time
ags beyond 1000 ms. Our main finding was that the sequence of mi-
rostate labels showed oscillatory behaviour with a period of half the
lpha rhythm cycle (50 ms). 

The present results give further insight into the source of this periodic
ehaviour. Using the complex-valued EEG representation, it becomes
lear that the discrete microstate sequence yields a discretized view of
 continuous rotation of the alpha phase field. The actual phase rotors
evealed by the Hilbert transform and visualized in Figs. 2 –5 are not
isible in the standard microstate map geometries as the latter are cal-
ulated from actual EEG time courses which contain both, the analytic
mplitude and the analytic phase (see Eq. (2) ). The number and location
f these phase rotors vary over time and possibly contribute to the non-
tationarity of microstate sequences previously described ( von Wegner
t al., 2017 ). 

The phase field analysis provides the necessary link between spatial
nd temporal properties of alpha oscillations and explains how tempo-
al periodicity at the single electrode level translates into periodic mi-
rostate sequences. The distinct patterns of the phase field are no simple
orollary of the temporal oscillations at each electrode but provide in-
ights into the coupling of alpha oscillations across the cortical surface.
ctually, the phase of alpha oscillations at different scalp locations could
e uncorrelated, and we would still observe an alpha peak in the spectral
ensity of each EEG channel, but the sequence of spatial topographies
ould be uncorrelated and memory-less. At the same time, the aperiodic
ature of the analytic amplitude topographies could not have been pre-
icted. In contrast to our findings, oscillatory properties of microstate
equences could have been caused by periodic amplitude patterns. How-
ver, in all our subjects, the periodicity of EEG topographies was fully
ontained in the phase signals and not in amplitude signals. The emerg-
ng picture of a standing wave, i.e. the combination of a static ampli-
ude (or envelope) with a periodically changing phase will be further
iscussed in the following paragraph. 

Our results also contribute to an ongoing discussion regarding the
ommon approach to compute microstate maps only from EEG data vec-
ors at global field power (GFP) peaks ( Koenig et al., 2002 ). Two recent
ublications emphasized the continuous nature of EEG data and crit-
cized the winner-take-all approach used in microstate fitting ( Mishra
t al., 2020; Shaw et al., 2019 ). Both reports observed that EEG topogra-
hies often fail to fully separate into distinct clusters and that at many
ime points, several maps with similar goodness-of-fit values compete.
omparing discrete and continuous approaches, our results may help
o explain these observations. The rotating patterns we observed in our
ata show that the EEG topography does not switch from one pattern
o the next, it rather undergoes a continuous transition. In Fig. 3 , for
nstance, we observe that the actual EEG topography changes continu-
usly and solely due to a constant flow of the phase values, while the
mplitude remains constant. What changes instantaneously is the simi-
arity measure of the EEG topography with the microstate maps A and
, whereas the topography itself changes continuously. Thus, irrespec-
ive of the number and the geometry of the used microstate maps, there
ill always be a transition interval during which subsequent microstate
aps fit the topography equally well. Our results also suggest that the
icrostate approach does not miss any essentially different EEG pat-

erns between GFP peaks because the underlying EEG pattern changes
moothly, not abruptly. Despite the massive data compression effected
y the microstate approach, the essential alpha periodicity of the under-
ying EEG can be encoded by the limited set of 𝑛 = 4 microstate maps. In
he light of rotating phase patterns, the situation is similar to describing
he positions of a spinning wheel by a small number of representative
napshots or linear combinations of those. Any set of snapshots of the
otation will fail to represent the true pattern most of the time, but the
orrect sequence of snapshots can compress the continuous process ef-
ciently. 

Understanding the relation between continuous EEG and discrete mi-
rostate dynamics may help to choose the right approach for a given
uestion. Our hypothesis is that whenever two experimental conditions
an be distinguished by their fundamental EEG periodicity, e.g. wake
nd sleep, the conditions will also be separable by the periodicity of
heir microstate sequences. This hypothesis will be the subject of forth-
oming studies. 

In summary, the phenomenon of microstate periodicity can only be
nderstood from an integrated spatio-temporal perspective and thereby
rovides new insight into the general process of pattern formation in
he brain. 

.2. Spatio-temporal pattern formation in the brain 

In an early paper, Lehmann reported that alpha band topographies
hanged polarity every 50 ms, and observed that the maximum field
alues moved clockwise or counterclockwise between foci he termed
reference areas ( Lehmann, 1971 ). Actually, Lehmann’s analysis of lo-
al field maxima and minima can be understood as a simple discretized
hase analysis that can be extended to the full range of phase values
sing the Hilbert transform. The observation of periodically changing
olarities lies at the core of the microstate algorithm ( Lehmann et al.,
987 ) and led to the standard implementation of fitting microstate maps
o EEG topographies using the squared correlation coefficient between
patial patterns, i.e. ignoring polarity ( Pascual-Marqui et al., 1995 ). The
resent study reproduces these observations for continuous phase val-
es and shows that the phase field is actually structured by a small num-
er of phase rotors. As each oscillator runs through the [ − 𝜋, + 𝜋] inter-
al during one alpha cycle, a perfectly stable phase rotor completes a
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patial cycle in one alpha cycle also. In other words, the colour distri-
ution in phase topography plots repeats itself after one alpha cycle,
.e. after approximately 100 ms. Assuming nearly identical alpha fre-
uencies across the cortex, this also means that the phase values after
alf an alpha cycle are shifted by a value of approximately 𝜋. Using
q. (2) , the value of the actual EEG oscillation is the real value of A ( r ,
 ) e i 𝜙( r , t ) , or 𝛼( 𝐫, 𝑡 ) = 𝐴 ( 𝐫, 𝑡 ) cos 𝜙( 𝐫, 𝑡 ) . As cos ( 𝜙) = − cos ( 𝜙 ± 𝜋) , we find
hat 𝛼( 𝐫, 𝑡 + 

𝑇 

2 ) = − 𝛼( 𝐫, 𝑡 ) , where T is the length of the alpha cycle and
he amplitude distribution A ( r , t ) is arbitrary. In this model case of a
erfect phase rotor, the microstate goodness-of-fit, which is computed as
he squared correlation coefficient between 𝛼( r , t ) and each microstate
ap, is identical for t and for 𝑡 + 

𝑇 

2 . This short calculation shows that
he classical microstate algorithm applied to systems of phase rotors is
xpected to yield periodicities of half the oscillation length. This corre-
ponds exactly to the observations reported in ( von Wegner et al., 2017 )
nd to the results shown here, where phase rotors based on a 10 Hz os-
illation produce microstate sequences with a 50 ms periodicity. 

The general picture we deduce from our complex-valued EEG repre-
entation is that resting-state alpha oscillations transiently behave like
tanding wave patterns, which are characterized by ongoing oscillations
ith a stable envelope or amplitude distribution. Figs. 3–5 show that the
nalytic amplitude of alpha oscillations remains in a stable configuration
hile the actual alpha oscillation changes polarity several times. Stand-

ng wave patterns are in line with numerous predictions obtained from
eural field models, e.g. ( Coombes, 2005; Visser et al., 2017 ). Similar
esults were also obtained from models rooted in statistical mechanics
 Ingber and Nunez, 2011 ) with conceptual links to higher cortical func-
ions including theories of consciousness ( Nunez and Srinivasan, 2006;
isser et al., 2017 ), reminiscent of the ’atoms of thought’ hypothesis

n microstate theory ( Michel and Koenig, 2018 ). The functional role of
hase patterns in general and of the alpha phase in particular has been
iscussed in ( Ng et al., 2013 ) and ( Palva and Palva, 2011 ). Earlier works
iscussed the shape of beta and gamma frequency band phase cones and
heir relation to stimulus processing ( Freeman, 2004b ). Interestingly,
ubsequent work by Freeman based on these results introduced the idea
f metastable neural frames, conceptually very similar to the microstate
pproach ( Freeman, 2005; Freeman and Holmes, 2005 ). 

It should also be noted that the phenomenon of phase rotors does
ot necessarily have to occur in standing wave models and their exper-
mental validation in task-free EEG constitutes a novel finding in itself.
ecent computational experiments showed rotating activation patterns
n the whole brain scale ( Gabay et al., 2018; Roberts et al., 2019 ), and
ur results are the first experimental analog to these, to the best of our
nowledge. Contrary to cardiac electrophysiology research, there are al-
ost no accounts of rotor activities in the human brain, a notable excep-

ion being a study done with intracranial electrodes where rotors were
bserved in association with sleep spindles ( Muller et al., 2016 ). Phase
atterns similar to the ones shown here have also been reported for rat
ortex ( Huang et al., 2010 ). Spiral wave dynamics and phase rotors have
een reported in a large number of complex systems in physics, chem-
stry and biology, as summarized in the monograph ( Winfree, 2001 ).
ur present study shows that these patterns are continuously produced
y the resting brain and that they can be routinely recorded using simple
urface EEG in healthy wake subjects. 

Our study complements a large number of computational studies on
attern formation in the brain, providing insights into the kinds of pat-
erns that actually occur during task-free activity in the alpha frequency
ange. 

.3. Implications for critical brain dynamics 

The highly organized phase patterns found in experimental EEG data
aise the question of their biophysical meaning and possible implications
or brain function. A large number of publications has likened resting-
tate brain activity to a dynamical system near a bifurcation or a statis-
ical system near a critical state ( Daffertshofer et al., 2018; Linkenkaer-
ansen et al., 2001; Tagliazucchi et al., 2013 ). Based on biophysical
odels, cortical activity is often modelled as a network of coupled non-

inear oscillators, in which each individual oscillator system has intrin-
ic bifurcation points ( Deco et al., 2018; 2011; Valdes et al., 1999 ). The
tuart-Landau model analyzed here uses a spatially extended minimal
odel of a supercritical Andronov-Hopf bifurcation ( Kuznetsov, 2004 ),

he kind of bifurcation that occurs in many models of the cortical al-
ha rhythm ( Aburn et al., 2012; Grimbert and Faugeras, 2006; Spiegler
t al., 2010 ). Our results ( Fig. 8 ) show that when the control parameter
pproaches the bifurcation point ( 𝜇 = 0 ), the model lattice produces the
ame phase patterns, including singularities and rotors, that we observed
n experimental data. In the two examples shown, the model produces
 single phase rotor and a pair of phase rotors of opposite sign, respec-
ively. Location and number of phase rotors only depend on stochas-
ic effects. The rotor patterns can be discerned around the bifurcation
oint and become much clearer for larger 𝜇. Close to the bifurcation
oint, the model shows oscillations with clear amplitude modulation,
hereas for large 𝜇, the system has stationary phase rotors and stable
scillations with minimal amplitude modulation. In summary, resting-
tate EEG data shows properties similar to a system near a bifurcation,
here alpha oscillations are strongly amplitude-modulated and phase

otors appear and disappear in varying number and location. Moreover,
he analytic amplitude and phase dynamics at the critical point of the
odel are qualitatively similar to our experimental results, where peri-

dic phase patterns and aperiodic amplitude patterns can be observed
 Fig. 8 E). Thus, our results are in line with the general picture of near-
ritical resting-state dynamics. However, our results are based on the
patio-temporal feature of phase rotors, which has not been considered
reviously. As phase singularities can be detected at individual time
tamps, this method does not suffer from problems associated with tem-
oral non-stationarity often encountered with other measures of criti-
ality ( von Wegner et al., 2016 ). 

.4. Referencing and interpolation 

Before we conclude, we will discuss some methodological issues.
he first point concerns the choice of the EEG reference. Large parts
f this article are concerned with the spatio-temporal properties of the
nalytic alpha phase. The chosen reference (common average) deter-
ines the phase values of the recorded oscillations as it sets the esti-
ated zero level of the cortical potential. Therefore, in surface EEG, the
hase of an oscillation is always an estimate based on the given ref-
rence. A change of reference is equivalent to adding a fixed value to
ach EEG sensor raw value, thus introducing an offset. Thus, the con-
rete phase pattern and the location of phase singularities do indeed
epend on the used reference. However, the fact that phase singulari-
ies and phase rotors appear in resting state EEG does not depend on
he chosen reference. Microstate analysis in particular has been intro-
uced to obtain a reference-independent description of EEG dynamics
s reviewed in ( Murray et al., 2008 ). A common choice in microstate
esearch is the average reference ( Koenig et al., 1999; 2002; Lehmann
t al., 2005; Milz et al., 2015; 2017 ), which we used in this article as
ell as in our previous works ( Brodbeck et al., 2012; Kuhn et al., 2015;
on Wegner et al., 2016; 2017 ). As our aim was to establish a connection
etween microstates and continuous EEG dynamics while staying within
he standard microstate framework, the Hilbert transform was applied
o the same average-referenced data sets from which microstates were
omputed. Possible future developments could involve regularized ref-
rence techniques as proposed in Hu et al. (2018) and Yao et al. (2019) .

We also examined the 2D projection as a possible confounding fac-
or in our analysis. We therefore examined the analytic amplitude and
hase data in three dimensions, i.e. on the curved surface defined by
he actual electrode positions of the EEG cap before projection onto the
wo-dimensional plane ( Perrin et al., 1989 ). We consistently found that
he phase patterns, including singularities and phase rotors, were not
aused by projection but were also present on the curved surface. Given



F. von Wegner, S. Bauer, F. Rosenow et al. NeuroImage 224 (2021) 117372 

o  

v  

t
 

o  

s  

c  

c  

t  

o  

w  

p  

m
 

fi  

4

 

t  

a  

a  

m  

d  

e  

o  

o  

o  

m  

e  

m  

d  

i  

e
2  

h  

1  

s  

p  

E  

(  

o  

g  

a

5

 

t  

q  

q  

i  

r  

t  

p  

i  

l  

u  

i  

c  

l  

e
 

a

D

 

o  

a

C

 

a  

s  

J  

t

A

 

F

S

 

t

R

A  

A  

B  

B
B  

 

B  

 

B  

B  

 

C  

D  

 

D  

 

 

D  

F  

 

F  

F  

F  

G  

 

G  

G  

G  

H  

 

H  

 

ur aim to analyze the dynamics of classical microstates and to facilitate
isualization, we chose the planar two-dimensional EEG representation
hroughout the paper. 

Band-pass filtering and B-spline interpolation, both linear operations
n the data, cannot introduce phase rotors or more complex dynamics
uch as rotor pairs continuously moving across the scalp surface. These
onsiderations were verified in filtered and unfiltered versions of the os-
illator model. Other patterns we observed included pairs of singulari-
ies that emerge from a single location, or vice versa, move towards each
ther and coalesce in a single point (not shown here). This behaviour is
ell known in coupled oscillator theory and is routinely observed in ex-
eriments and models of other electrically active tissues such as cardiac
uscle ( Bray et al., 2001; Bray and Wikswo, 2002 ). 

In summary, the choice of reference, 2D projection, interpolation or
ltering in space or time cannot give rise to the observed phase patterns.

.5. Limitations 

Due to a number of free parameters and algorithmic choices inherent
o microstate methodology, the present study could not cover the whole
rea of microstate research. However, our previous studies provide solid
rguments why the here presented results are valid for variations of the
icrostate algorithm. The present study used the spatial PCA algorithm
etailed in von Wegner et al. (2018) and retained n = 4 microstates for
ach data set. We did not include variations of these two choices as
ur previous studies showed that microstate periodicity did not depend
n the clustering method ( von Wegner et al., 2018 ) or on the number
f microstates ( von Wegner et al., 2017 ). Specifically, we showed that
icrostate sequences had identical periodic signatures for five differ-

nt microstate algorithms, including PCA ( von Wegner et al., 2018 ). It
ust also be emphasized that we used 8–12 Hz band-pass filtered EEG
ata whereas most microstate studies used a frequency range that also
nclude the beta, theta and delta frequency bands, e.g. 1–40 Hz ( Britz
t al., 2010; Brodbeck et al., 2012; von Wegner et al., 2016; 2017 ) or 2–
0 Hz ( Koenig et al., 2002; Lehmann et al., 2005 ). The analytic phase,
owever, is only well defined for narrow-band signals ( Huang et al.,
998 ). If a narrow frequency band has to be chosen, both the resting-
tate condition and the microstate approach suggest the use of the al-
ha band, which on one hand is the dominant frequency in resting-state
EG, and on the other hand is the major contributor to microstate maps
 Milz et al., 2015 ). Future studies can extend the current findings to
ther EEG frequency bands of interest. In the supplementary Fig. S1 we
ive an example showing that full bandwidth (1–30 Hz) microstates are
lmost identical to alpha (8–12 Hz) microstate maps. 

. Conclusion 

The results presented in this paper yield new insights into the rela-
ions between continuous EEG oscillations and discrete microstate se-
uences. Apart from explaining the periodic nature of microstate se-
uences, our results provide a new view on critical pattern formation
n the brain. We hope that our results contribute to the efforts to nar-
ow the gap between continuous and frequency-based EEG analyses on
he one hand, and microstate research on the other hand. Our findings
rovide insight into the process that transforms continuous EEG data
nto the discrete microstate representation by showing that the oscil-
atory properties of microstate sequences are completely rooted in the
nderlying EEG phase and not in the amplitude dynamics. This find-
ng provides a possibly useful link between results on phase-coding in
ognitive processes ( Masquelier et al., 2009; Ng et al., 2013 ), particu-
arly those involving alpha oscillations ( Palva and Palva, 2011 ) and the
merging knowledge about microstates and cognition. 

Finally, phase rotors should be further evaluated for their usefulness
s biomarkers of physiological and pathological brain states. 
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