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Abstract
We extend the parton-hadron-string dynamics (PHSD) transport approach in the
partonic sector by explicitly calculating the total and differential partonic scatter-
ing cross sections as a function of temperature T and baryon chemical potential
μB on the basis of the effective propagators and couplings from the dynamical
quasiparticle model (DQPM) that is matched to reproduce the equation of state
of the partonic system above the deconfinement temperature Tc from lattice
quantum chromodynamics (QCD). We calculate the collisional widths for the
partonic degrees of freedom at finite T and μB in the time-like sector and con-
clude that the quasiparticle limit holds sufficiently well. Furthermore, the ratio
of shear viscosity 𝜂 over entropy density s, that is, 𝜂/s, is evaluated using the col-
lisional widths and compared to lattice QCD(lQCD) calculations for μB = 0 as
well. We find that the ratio 𝜂/s does not differ very much from that calculated
within the original DQPM on the basis of the Kubo formalism. Furthermore,
there is only a very modest change of 𝜂/s with the baryon chemical μB as a
function of the scaled temperature T/Tc(μB). This also holds for a variety of
hadronic observables from central A+A collisions in the energy range 5 GeV
≤ √

sNN ≤ 200 GeV when implementing the differential cross sections into the
PHSD approach. Accordingly, it will be difficult to extract finite μB signals from
the partonic dynamics based on “bulk” observables.

K E Y W O R D S

heavy ions, quark-gluon plasma, transport models

1 INTRODUCTION

The phase transition from partonic degrees of free-
dom (quarks and gluons) to interacting hadrons is a
central topic of modern high-energy physics. In order to

[Correction added on 27 October, after first online publication: Projekt
Deal funding statement has been added.]

understand the dynamics and relevant scales of this transi-
tion, laboratory experiments under controlled conditions
are performed with relativistic nucleus–nucleus collisions.
Hadronic spectra and relative hadron abundances
from these experiments reflect important aspects of
the dynamics in the hot and dense zone formed in the
early phase of the reaction, and collective flows provide
information on the transport properties of the medium
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generated on short time scales. As relativistic heavy-ion
collisions start with impinging nuclei in their ground
states, a proper nonequilibrium description of the entire
dynamics through possibly different phases up to the
final asymptotic hadronic states—eventually showing
some degree of equilibration—is mandatory. To this aim,
the parton–hadron–string dynamics (PHSD) transport
approach (Bratkovskaya et al. 2011; Linnyk et al. 2013) has
been formulated about a decade ago and was found to well
describe observables from p+A and A+A collisions from
SPS to LHC energies, including electromagnetic probes
such as photons and dileptons (Linnyk et al. 2016).

While heavy-ion reactions at RHIC and LHC ener-
gies probe a partonic medium at small baryon chemi-
cal potential 𝜇B, the current interest is in collisions at
lower bombarding energies (FAIR, NICA) where the net
baryon density is higher than 𝜇B accordingly. In order
to explore the partonic systems at higher 𝜇B, the PHSD
approach is extended to incorporate partonic quasiparti-
cles and their differential cross sections that depend on T
and 𝜇B explicitly.

2 THE PHSD APPROACH

The PHSD transport approach (Bratkovskaya et al. 2011;
Cassing & Bratkovskaya 2009; Linnyk et al. 2013) is
an off-shell transport approach based on Kadanoff-Baym
equations in the first-order gradient expansion (Cassing
2009) using “resummed” propagators from the dynami-
cal quasiparticle model (DQPM) (Cassing 2007) for the
partonic phase. In PHSD, the parton spectral functions 𝜌j
(j = q, q, g) are no longer 𝛿- functions in the invariant mass
squared as in conventional cascade or transport models but
depend on the parton mass and width parameters:

𝜌j(𝜔,p) =
𝛾j

Ej

(
1

(𝜔 − Ej)2 + 𝛾2
j

− 1
(𝜔 + Ej)2 + 𝛾2

j

)
, (1)

separately for quarks/antiquarks and gluons (j = q, q, g).
With the convention

E2(p2) = p2 + M2
j − 𝛾2

j , (2)

the parameters M2
j and 𝛾 j are directly related to the real and

imaginary parts of the retarded self-energy, for example,
Πj = M2

j − 2i𝛾j𝜔.
The actual parameters in Equation (1), that is, the

gluon mass Mg and width 𝛾g—used as input in the present
PHSD calculations—as well as the quark mass Mq and
width 𝛾q, are depicted in Figure 1 as a function of the
scaled temperature T/Tc for different 𝜇B. These values for
the masses and widths have been fixed by fitting the lattice
quantum chromodynamics (QCD) results from Borsanyi
et al. (2012, 2014) in thermodynamic equilibrium.

F I G U R E 1 The effective quark (a) and gluon (b) masses M
and widths 𝛾 (from a fit to the entropy density from lattice QCD
data) as a function of the temperature T for different 𝜇B. The
vertical dashed lines correspond to the dynamical quasiparticle
model (DQPM) 𝜇B-dependent critical temperature Tc(𝜇B)

A scalar mean-field Us(𝜌s) for quarks and antiquarks
can be defined by the derivative,

Us(𝜌s) =
dVp(𝜌s)

d𝜌s
, (3)

which is evaluated numerically within the DQPM. Here,
V p is a potential energy density

Vp(T, 𝜇q) = T00
g−(T, 𝜇q) + T00

q−(T, 𝜇q) + T00
q−(T, 𝜇q), (4)

where the different contributions T00
j− correspond to the

space-like part of the energy-momentum tensor compo-
nent T00

j of parton j = g, q, q (cf. Section 3 in Cassing 2007).
The scalar mean-field Us(𝜌s) for quarks and antiquarks is
repulsive as a function of the parton scalar density 𝜌s and
shows that the scalar mean field is in the order of a few GeV
for 𝜌s > 10 fm−3. The mean-field (Equation (3)) is used in
the PHSD transport calculations and determines the force
on a partonic quasiparticle j, that is,

∼ Mj∕Ej∇Us(x) = Mj∕Ej dUs∕d𝜌s ∇𝜌s(x), (5)

where the scalar density 𝜌s(x) is determined numeri-
cally on a space–time grid. Furthermore, a two-body
interaction strength can be extracted from the DQPM
and from the quasiparticle width in line with Peshier &
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Cassing (2005). The transition from partonic to hadronic
degrees-of-freedom (and vice versa) is described by covari-
ant transition rates for the fusion of quark–antiquark
pairs or three quarks (antiquarks), respectively, obey-
ing flavor current conservation and color neutrality,
as well as energy–momentum conservation (Cassing &
Bratkovskaya 2009). As the dynamical quarks and anti-
quarks become very massive close to the phase transition,
the formed resonant “pre-hadronic” color–dipole states
(qq or qqq) are of high invariant mass too and sequentially
decay to the ground-state meson and baryon octets, thus
increasing the total entropy.

On the hadronic side, PHSD explicitly includes
the baryon octet and decouplet, the 0−- and 1−-meson
nonets, and selected higher resonances as in the
Hadron-String-Dynamics (HSD) approach (Bratkovskaya
et al. 2004a, 2004b; Cassing 2002; Cassing & Bratkovskaya
1999). Note that PHSD and HSD (without explicit par-
tonic degrees-of-freedom) merge at low energy density,
particularly below the local critical energy density 𝜀c≈
0.5 GeV fm−3.

2.1 Initial conditions

The initial conditions for the parton/hadron dynami-
cal system have to be specified additionally. In order to
describe relativistic heavy-ion reactions, we start with
two nuclei in their “semi-classical” ground state, boosted
toward each other with a velocity 𝛽 (in z-direction), fixed
by the bombarding energy. The initial phase–space dis-
tributions of the projectile and target nuclei are deter-
mined in the local Thomas-Fermi limit as in the HSD
transport approach (Cassing & Bratkovskaya 1999) or the
Ultra-relativistic Quantum-Molecular Dynamics model
(Bass et al. 1998a, 1998b). We recall that, at relativistic
energies, the initial interactions of two nucleons are well
described by the excitation of two color-neutral strings that
decay in time to the known hadrons (mesons, baryons,
antibaryons) (Bengtsson & Sjostrand 1987). Initial hard
processes—that is, the short-range high-momentum trans-
fer reactions that can be well described by perturbative
QCD—are treated in PHSD (as in HSD) via PYTHIA. The
novel element in PHSD (relative to HSD) is the “string
melting concept” as also used in the a multi-phase trans-
port model (Lin et al. 2005) in a similar context. However,
in PHSD, the strings (or possibly formed hadrons) are only
allowed to ‘melt’ if the local energy density 𝜖(x) (in the
local rest frame) is above the transition energy density 𝜖c,
which in the DQPM is 𝜖c ≈ 0.5 GeV fm−3. The mesonic
strings then decay to quark–antiquark pairs according to
an intrinsic quark momentum distribution,

F(q) ∼ exp(−2b2q2), (6)

in the meson rest frame. The parton final four momenta
are selected randomly according to the momentum dis-
tribution (Equation (6)) (with b = 0.66 fm), and the
parton–energy distribution is fixed by the DQPM at a
given energy density 𝜖(𝜌s) in the local cell with scalar
parton density 𝜌s. The flavor content of the qq pair is
fully determined by the flavor content of the initial string.
Through construction, the “string melting” to massive par-
tons conserves energy and momentum, as well as the
flavor content. In contrast to Lin et al. (2005), the par-
tons are of finite mass—in line with their local spec-
tral function—and additionally obtain a random color
c = (1,2,3) or (r,b,g). Of course, the color appointment
is color neutral, that is, when selecting a color c for the
quark randomly, the color for the antiquark is fixed by
−c. The baryonic strings melt analogously into a quark
and a diquark, while the diquark, furthermore, decays to
two quarks. Dressed gluons are generated by the fusion
of nearest neighbor q + q pairs (q + q → g) that are flavor
neutral until the ratio of gluons to quarks reaches the value
Ng∕(Nq + Nq) given by the DQPM for the energy density
of the local cell. This “recombination” is performed for all
cells in space during the passage time of the target and
projectile (before the calculation continues with the next
time step) and conserves the four-momentum as well as
the flavor currents. We note, however, that the initial phase
in PHSD is dominated by quark and antiquark degrees of
freedom.

2.2 Partonic cross sections

On the partonic side, the following elastic and inelastic
interactions are included in PHSD qq ↔ qq, q q ↔ q q,
gg ↔ gg, gg ↔ g, qq ↔ g, qg ↔ qg, gq ↔ gq exploiting
“detailed-balance” with cross sections calculated from the
leading Feynman diagrams using the effective propaga-
tors and couplings g2(T/Tc) from the DQPM (Moreau et al.
2019).

Partonic reactions such as g + q ↔ q or g + g ↔ q + q
have been discarded in the present calculations due to their
low rates as the large mass of the gluon leads to a strong
mismatch in the energy thresholds between the initial and
final channels. In this case, q stands for the four light-
est quarks (u,d,s,c). Furthermore, the evaluation of photon
and dilepton production is calculated perturbatively, and
channels such as g + q → q + 𝛾 are included. In this case,
the probability for photon (dilepton) production from each
channel is added up and integrated over space and time
(Linnyk et al. 2016) without introducing any new parame-
ter in the PHSD approach as the electromagnetic coupling
is well known.
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Numerical tests of the parton dynamics with respect to
conservation laws and interaction rates in and out of equi-
librium in a finite box with periodic boundary conditions
have been presented in Ozvenchuk et al. (2013a). In fact, in
Ozvenchuk et al. (2013a), it was shown that the PHSD cal-
culations “in the box” give practically the same results in
equilibrium as the DQPM. We note in passing that the total
energy is conserved in the box calculations up to about
three digits, while in the heavy-ion collisions addressed
here, the violation of energy conservation is typically less
than 1% (Cassing & Bratkovskaya 2009).

3 TRANSPORT PROPERTIES OF
THE PARTONIC SYSTEM

The starting point to evaluate viscosity coefficients of par-
tonic matter is the Kubo formalism (Kubo 1957), which
was also used to calculate the viscosities within the PHSD
in a box with periodic boundary conditions (cf. Ref.
[Ozvenchuk et al. 2013b]). We focus here on the calcula-
tion of the shear viscosity based on Aarts & Martinez Resco
(2002), which reads:

𝜂Kubo(T, 𝜇q) = −∫
d4p
(2𝜋)4 p2

xp2
y

×
∑

i=q,q,g

di
𝜕fi(𝜔)
𝜕𝜔

𝜌i(𝜔,p)2, (7)

where the notation f i(𝜔) = f i(𝜔,T,𝜇q) is used for the
distribution functions, and 𝜌i denotes the spectral func-
tion of the partons, while di stand for the degener-
acy factors. We note that the derivative of the distribu-
tion function accounts for the Pauli-blocking (−) and
Bose-enhancement (+) factors. Following Lang et al.
(2012), we can evaluate the integral over 𝜔 = p0 in
Equation (7) by using the residue theorem. When keeping
only the leading order contribution in the width 𝛾(T,𝜇B)
from the residue—evaluated at the poles of the spectral
function 𝜔i = ±Ẽ(p) ± 𝑖𝛾—we finally obtain:

𝜂RTA(T, 𝜇q) =
1

15T ∫
d3p
(2𝜋)3

×
∑

i=q,q,g

(
p4

E2
i Γi(pi,T, 𝜇q)

di((1±fi(Ei))fi(Ei))

)
,

(8)

which corresponds to the expression derived in the relax-
ation time approximation (RTA) (Sasaki & Redlich 2009)
by identifying the interaction rate Γ with 2𝛾 as expected
from transport theory in the quasiparticle limit (Blaizot &
Iancu 1999). We recall that 𝛾 is the width parameter in

F I G U R E 2 The ratio of shear viscosity to entropy density as a
function of the scaled temperature T/Tc for 𝜇B = 0 from
Equations (7) and (8). The solid green line (𝜂Kubo/s) shows the
results from the original dynamical quasiparticle model (DQPM) in
the Kubo formalism, while the dashed green line (𝜂RTA

2𝛾 ∕s) shows the
same result in the relaxation time approximation Equation (8). The
solid red line (𝜂RTA

Γon ∕s) results from Equation (8) using the
interaction rate Γon calculated by the microscopic differential cross
sections in the on-shell limit. The dashed gray line demonstrates the
Kovtun–Son–Starinets bound (Kovtun et al. 2005) (𝜂/s)KSS = 1/(4𝜋),
and the symbols show lQCD data for pure SU(3) gauge theory taken
from Astrakhantsev et al. (2017) (pentagons)

the parton propagator (Equation (1)). The interaction rate
Γi(pi, T,𝜇q) (inverse relaxation time) is calculated micro-
scopically from the collision integral using the differential
cross sections for parton scattering as described in Section
2.2. Furthermore, we recall that the pole energy is E2

i =
p2 + M2

i , where Mi is the pole mass given in the DQPM.
Here, we use the notation (Tex translation failed), which
includes the contribution from all possible partons that,
in our case, are the gluons and the (anti-)quarks of three
different flavors (u,d,s).

The actual results are displayed in Figure 2 for the ratio
of shear viscosity to entropy density 𝜂/s as a function of
the scaled temperature T/Tc for 𝜇B = 0 in comparison to
those from lattice QCD (Astrakhantsev et al. 2017). The
solid green line (𝜂Kubo/s) shows the result from the original
DQPM in the Kubo formalism, while the dashed green line
(𝜂RTA

2𝛾 ∕s) shows the same result in the RTA (Equation (8))
by replacing Γi by 2𝛾 i. The solid red line (𝜂RTA

Γon ∕s) results
from Equation (Equation (8)) using the interaction rateΓon

calculated by the microscopic differential cross sections in
the on-shell limit. We find that the ratios 𝜂/s do not dif-
fer very much and have a similar behavior as a function
of temperature. The approximation (Equation (8)) of the
shear viscosity is found to be very close to the one from
the Kubo formalism (Equation (7)), indicating that the
quasiparticle limit (𝛾 ≪M) holds in the DQPM.
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F I G U R E 3 The lines of constant entropy density over baryon
density s/nB in the (T,𝜇B/T) plane as evaluated by using the lattice
EoS

We note in passing that there is no strong variation with
𝜇B for fixed T/Tc(𝜇B); however, the ratio increases slightly
with 𝜇B in the on-shell limit, while it slightly drops with
𝜇B in the Kubo formalism for the DQPM (Moreau et al.
2019). Accordingly, there is some model uncertainty when
extracting the shear viscosity in the different approxima-
tions.

4 OBSERVABLES FROM
RELATIVISTIC NUCLEUS–NUCLEUS
COLLISIONS

Before coming to the actual PHSD results we show
in Figure 3 the lines of constant entropy density over
baryon density s/nB in the (T,𝜇B/T) plane as evaluated
by using the lattice equation-of-state. Here, the high ratio
s/nB = 420 roughly corresponds to LHC energies, while at
FAIR/NICA energies, one has s/nB≈ 30. Accordingly, one
might find some traces of the explicit 𝜇B dependence of
the partonic cross sections in observables at FAIR/NICA
energies. We mention that, when implementing the differ-
ential cross sections and parton masses into the PHSD5.0
approach, one has to specify the” Lagrange parameters”
T and 𝜇B in each computational cell in space–time. This
has been conducted by using the lattice equation of state,
which is practically identical to the lattice QCD equation
of state, and a diagonalization of the energy–momentum
tensor from PHSD as described in Moreau et al. (2019).

Figure 4 displays the actual results for hadronic
rapidity distributions in case of 5% central Pb+Pb

collisions at 30 A GeV for PHSD4.0 (Palmese et al. 2016)
(green dot-dashed lines), PHSD5.0 with partonic cross
sections and parton masses calculated for 𝜇B = 0 (blue
dashed lines), and with cross sections and parton masses
evaluated at the actual chemical potential 𝜇B in each indi-
vidual space–time cell (red lines) in comparison to the
experimental data from the NA49 Collaboration (Alt et al.
2006, 2008a, 2008b). Here, we focus on the most abundant
hadrons, that is, pions, kaons, protons, neutral hyperons,
antiprotons, and antihyperons. We note in passing that
the effects of chiral symmetry restoration are incorporated
as in Palmese et al. (2016) as this was found to be manda-
tory to achieve a reasonable description of the strangeness
degrees of freedom reflected in the kaon and neutral
hyperon dynamics. As seen in Figure 4, there is practically
no difference in rapidity distributions for all the hadron
species from the different versions of PHSD within line
width, which implies that there is no sensitivity to the
new partonic differential cross sections and parton masses
used. A comparison to the available experimental data is
included (for orientation) but not discussed explicitly as
this has been carried out in more detail in Palmese et al.
(2016).

5 SUMMARY
In this contribution, we have described the PHSD trans-
port approach (Linnyk et al. 2016) and its recent extension
to PHSD5.0 (Moreau et al. 2019) to incorporate differential
“off-shell cross sections” for all binary partonic channels
that are based on the same effective propagators and cou-
plings as used in the QGP equation of state and the parton
propagation. To this end, we have calculated the partonic
differential cross sections as a function of T and 𝜇B for the
leading tree-level diagrams (cf. appendices of Moreau et al.
2019). Furthermore, we have used these differential cross
sections to evaluate partonic scattering rates Γi(T,𝜇B) for
fixed T and 𝜇B, as well as to compute the ratio of the shear
viscosity 𝜂 to entropy density s within the Kubo formalism
in comparison to calculations from lattice QCD (lQCD).
It turns out that the ratio 𝜂/s calculated with the partonic
scattering rates in the RTA is very similar to the origi-
nal result from the DQPM and to lQCD results such that
the present extension of the PHSD approach does not lead
to different partonic transport properties. We recall that
the novel PHSD version (PHSD5.0) is practically param-
eter free in the partonic sector as the effective coupling
(squared) is determined by a fit to the scaled entropy den-
sity from lQCD. The dynamical masses for quarks and
gluons are then fixed by the HTL expressions (Linnyk
et al. 2016). The interaction rate in the time-like sector is,
furthermore, calculated in leading order using the DQPM
propagators and coupling.
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F I G U R E 4 The rapidity
distributions for 5% central Pb+Pb
collisions at 30 A GeV for PHSD4.0
(green dot-dashed lines), PHSD5.0 with
partonic cross sections and parton
masses calculated for 𝜇B = 0 (blue dashed
lines), and with cross sections and
parton masses evaluated at the actual
chemical potential 𝜇B in each individual
space–time cell (red lines) in comparison
to the experimental data from the NA49
Collaboration (Alt et al. 2006, 2008a,
2008b). All PHSD results are practically
the same within the line width

When implementing the differential cross sections and
parton masses into the PHSD5.0 approach, one has to
specify the “Lagrange parameters” T and 𝜇B in each com-
putational cell in space–time. This has been performed by
using the lattice equation of state and a diagonalization of
the energy–momentum tensor from PHSD as described in
Moreau et al. (2019). As an example, we have shown the
results for hadronic rapidity distributions from the previ-
ous PHSD4.0 (Palmese et al. 2016) with the novel version
PHSD5.0 (with and without the explicit dependence of the
partonic differential cross sections and parton masses on
𝜇B) for 5% central Pb+Pb collisions at 30 A GeV. No dif-
ferences for all the hadron “bulk” observables from the
various PHSD versions have been found at FAIR/NICA
energies within line width, which implies that there is
no sensitivity to the 𝜇B-dependence of the new partonic
differential cross sections used.

Our findings can be understood as follows: The
fact that we find only small traces of the 𝜇B depen-
dence of partonic scattering dynamics in heavy-ion “bulk”
observables—although the differential cross sections and
parton masses clearly depend on 𝜇B—means that one
needs a sizable partonic density and large space–time QGP
volume to explore the dynamics in the QGP phase. These
conditions are only fulfilled at high bombarding energies
(top SPS, RHIC energies) where, however, 𝜇B is rather low.

On the other hand, decreasing the bombarding energy to
FAIR/NICA energies and, thus, increasing 𝜇B, leads to col-
lisions that are dominated by the hadronic phase where
the extraction of information about the parton dynamics
will be rather complicated based on “bulk” observables.
Further investigations of other observables (such as flow
coefficients vn of particles and antiparticles, fluctuations,
and correlations) might contain more visible “𝜇B traces”
from the QGP phase.
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