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A new method of event characterization based on Deep Learning is presented. The PointNet models can 
be used for fast, online event-by-event impact parameter determination at the CBM experiment. For this 
study, UrQMD and the CBM detector simulation are used to generate Au+Au collision events at 10 AGeV 
which are then used to train and evaluate PointNet based architectures. The models can be trained on 
features like the hit position of particles in the CBM detector planes, tracks reconstructed from the hits 
or combinations thereof. The Deep Learning models reconstruct impact parameters from 2-14 fm with 
a mean error varying from -0.33 to 0.22 fm. For impact parameters in the range of 5-14 fm, a model 
which uses the combination of hit and track information of particles has a relative precision of 4-9%
and a mean error of -0.33 to 0.13 fm. In the same range of impact parameters, a model with only track 
information has a relative precision of 4-10% and a mean error of -0.18 to 0.22 fm. This new method of 
event-classification is shown to be more accurate and less model dependent than conventional methods 
and can utilize the performance boost of modern GPU processor units.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The Compressed Baryonic Matter (CBM) detector is presently 
being constructed for the Facility for Antiproton and Ion Research 
(FAIR). CBM will study the properties of strongly compressed bary-
onic matter using high energy nucleus-nucleus collisions with 
beam energies from 2 to 10 AGeV at the SIS-100 accelerator [1–3]. 
An important feature of the CBM experiment is the very high event 
and trigger rate which allows the detection of rare particles as 
well as the study of observables which require large event samples, 
such as higher orders of fluctuations and correlation functions. The 
full exploitation of these properties of the CBM detector requires 
new analysis techniques allowing for the ultra fast analysis of the 
continuous stream of events created at the detector. In this work 
we will introduce a new analysis method based on Deep Learn-
ing (DL). In particular, we will employ this new type of model for 
impact parameter estimation at the CBM experiment.

Recently, there have been many applications of Machine learn-
ing (ML) techniques in high energy physics [4–8], and on the ex-
perimental side ML and DL methods are mainly used in tasks such 
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as particle identification, tracking, event reconstruction and extrac-
tion of different physical observables [9–26]. These models have 
been shown to be superior to traditional algorithms in terms of 
their accuracy and processing speed. This makes machine learn-
ing techniques an ideal candidate for processing highly complex 
experimental data.

The impact parameter is essential in understanding the event 
geometry and analysis of collected data. A method which can 
rapidly determine the centrality of an event, even before any infor-
mation on the particles created is known, would be very important 
for a first step event selection. In addition, an accurate determi-
nation of the initial volume of the system is very important for 
the analysis of fluctuations [27,28] and correlations and thus for 
the search of observables sensitive to a possible phase transition 
or critical point. Although most theoretical calculations require the 
impact parameter as an input, it is not directly measurable in ex-
periments. Usually, final state observables such as the mid-rapidity 
charged particle multiplicity and the number and energy of spec-
tator fragments are used to determine the centrality of a colli-
sion from which then the impact parameter is estimated. For the 
CBM experiment, this was done using a Monte Carlo Glauber (MC-
Glauber) model. These estimators are then used to group events 
into various centrality classes based on the centrality percentile 
[29]. Note that such a method cannot determine the impact param-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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eter of an individual event but only provides the likely distribution 
of impact parameters within a given centrality class.

Machine Learning (ML) approaches have been previously pro-
posed as a method for the impact parameter determination in 
heavy ion collisions. Feed forward networks, used with event gen-
erator output, have shown to perform better than conventional 
methods in [30–32]. Other studies [33–35] used neural networks 
or conventional machine learning methods to determine the im-
pact parameter in real experimental data. However, these studies 
were using shallow neural networks or traditional machine learn-
ing models trained directly on output from event generators like 
the Quantum Molecular Dynamics (QMD), Isospin Quantum Molec-
ular Dynamics (IQMD), Ultra relativistic Quantum Molecular Dy-
namics (UrQMD) or Classical Molecular Dynamics (CMD) model 
[36–41]. Experimental constraints were only taken into account 
by simple filters based on detector acceptance or event selection 
criteria. Such simplifications do not take into account the uncer-
tainties in the data introduced by detector efficiency or resolution 
and do not reflect the real output of a detector setup. The observ-
ables used in the previous studies are available only after several 
stages of processing such as track reconstruction, particle identi-
fication and efficiency corrections. Although models based on this 
input are easier to interpret, their main shortcoming is that any 
bias or constraints in the processing algorithms would also add 
to the uncertainty of the predictions. Furthermore, to make any 
judgement on the computational efficiency of such models one has 
to employ them in a more realistic setup that closely mimics the 
real data processing in the corresponding experiment.

Finally, an important motivation of using a neural network with 
direct detector output information is the flexibility of the networks 
output. If the analysis of the impact parameter can be done within 
such a model, the desired observable could be simply exchanged 
by other possible observable of interest and event characteristics 
like collective flow or the appearance of exotic particles. Thus, as 
we will show the DL-analysis is not only quite appropriate for 
the determination of the impact parameter, but serves as an ex-
ample on how a generalized analysis can be performed using DL-
methods.

1. The CBM detector

CBM is a fixed target experiment that can be configured for 
electron-hadron measurements as well as muon-hadron measure-
ments. A micro strip detector based Silicon Tracking System (STS) 
[42,43] reconstructing momenta and tracks of charged particles is 
one of the key components of the CBM experiment. The STS com-
prises of 8 equidistant planar detector stations placed from 30-100 
cm downstream the target. The STS provides a single hit resolution 
of 25 μm and a momentum resolution of 1%. The CMOS pixel based 
Micro Vertex Detector (MVD) [43] is designed to reconstruct open 
charm decays with a secondary vertex resolution of 50 μm. MVD 
comprises of 4 silicon pixel layers located 5-20 cm downstream 
the target. The MVD together with STS are placed in the gap of 
a dipole magnet with magnetic field of 1 Tm. A Ring Imaging 
CHerenkov [44] detector is used to identify electrons from decay 
of low mass vector meson decay while high energy electrons and 
positrons are identified using the Transition Radiation Detector. Re-
sistive Plate Chambers based Time Of Flight (TOF) measurements 
are used to identify hadrons [45]. Aforementioned detector sys-
tems are the basis of the electron-hadron configuration which is 
considered in this analysis. The collisions will produce up to 1000 
charged particles at the maximum interaction rate of 10 MHz, pro-
ducing 1 Tbytes/s of raw data. The data are then processed using a 
First Level Event Selector (FLES) [46], which performs online event 
building, reconstruction, tracking and event selection. It is inter-
esting to note that a CBM full-system test-setup named mCBM has 
2

Table 1
Datasets used in the study. The last column defines the impact parameter distri-
bution of the events. The training dataset has a uniform distribution of impact 
parameter while a constant or bdb distribution is used in the testing datasets.

Dataset # events Impact parameter [fm] Impact parameter distribution

Train 105 0-16 uniform
Test1 18 × 500 0.5 - 16 constant
Test2 106 0-16 bdb
Test3 105 0-16 bdb

been constructed at the SIS18 facility of GSI/FAIR. As this setup 
offers additional high-rate detector tests in nucleus-nucleus colli-
sions under realistic experimental conditions, it can be used to test 
the present analysis also at lower energies than at the full CBM de-
tector.

2. Simulation and datasets

The microscopic relativistic N-body hadron transport model 
UrQMD 3.4 [47,48] is selected for use as event generator for the 
present study. UrQMD provides both a reasonable, physically well 
motivated scenario for the primary nucleus-nucleus collision as 
well as a fast, robust N-body event-by-event output in the CBM 
energy range. These generated UrQMD events then serve as the 
input to the subsequent CbmRoot [49] detector simulation frame-
work, which performs event-by-event transport of all particles of 
each event through the detector subsystems. The standard macros 
in CbmRoot are used to perform particle transport, detector re-
sponse and event reconstruction. The default detector geometry for 
electron-hadron configuration (sis100_electron) was simulated us-
ing the Geant3 [50] software. Since UrQMD does not include any 
weak or electromagnetic decays of the produced hadrons, these 
are performed within the Geant3 package. The present analysis in-
cludes only those particles which produce hits in the two main 
silicon detectors (STS and MVD). Even though the CbmRoot can 
perform the full detector simulation according to the experimental 
specifications, it does not include a realistic simulation of different 
backgrounds which may lead to additional noise. The study of such 
effects and how DL may be able to reduce the impact of detector 
noise, will be studied in future works.

With the current simulation setup, four different datasets, la-
belled as Train and Test1-Test3, of Au+Au collisions at 10 AGeV are 
generated for this study. The DL models were trained using dataset 
Train which contains 105 events with impact parameters in the 
range of 0 to 16 fm, sampled from a uniform b-distribution.

Datasets Test1, Test2 and Test3 were used to quantify the perfor-
mance of the trained models. The first testing set Test1 contains 18 
subsets, each comprising of 500 events with a different but fixed 
impact parameter from 0 to 16 fm. Datasets Test2 and Test3 contain 
106 and 105 events respectively with impact parameters sampled 
from a bdb distribution (i.e. the probability of an impact parameter 
b is proportional to b, from 0 - 16 fm). Thus, Test2 and Test3 con-
tain impact parameter distributions which are different from the 
training set which is important for a meaningful validation of the 
models. Moreover, Test3 uses a modified physics scenario which 
will be explained later in the paper.

The features of all the datasets are presented in Table 1.

3. Deep Learning models

Deep Learning is a subset of Machine Learning which uses mul-
tiple layer neural networks that can capture deep correlations in 
the data [51]. This enables the computer to find better solutions 
to complex problems, which traditional ML techniques cannot find. 
PointNet is a deep learning architecture optimised to learn from 
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point cloud data [52]. Point clouds are collection of unordered 
points in space where each point represents the ‘N’ dimensional 
attributes of an element that contributes to the collective structure 
of the cloud. One of the important features of the PointNet model 
is that it can learn to be invariant to the order of input points.

The PointNet architecture can be extremely useful in nuclear 
and particle physics experiments, as most of the sensor or detec-
tor data has the geometrical structure of point clouds. PointNet 
can be used to train deep learning models which take raw experi-
mental data as input. Here the predictions are independent of the 
ordering of the particle tracks or hits. In this study, we have devel-
oped four PointNet based models that learn from different types of 
detector outputs such as hits and tracks of particles as features to 
determine the impact parameter of each collision. A point in the 
pointcloud is therefore defined by the attributes of a hit or a track. 
More detailed information on the construction and training of the 
PointNet can be found in the supplemental material in Appendix A.

Impact parameter regression is a supervised learning problem 
where the model learns to map the inputs to the impact parameter 
of the event upon being trained on labelled data. During train-
ing, the model goes through several samples of data to learn the 
correlations in the input data and the expected output. The loss 
function is used as a measure of how well the model has learned 
during the training stage. In this study, the models were trained 
using 75% of events in dataset Train with the Mean Squared Error 
(MSE) as the loss function. The remaining 25% of events were used 
for validation. Other metrics such as Mean Absolute Error (MAE) 
and coefficient of determination (R2) were used to select the best 
model for further analyses. If ytrue , ypred and 〈ytrue〉 are the true 
impact parameter, DL predictions and the mean of true values re-
spectively, the coefficient of determination is calculated as

R2 = 1 −
∑

(ytrue − ypred)
2

∑
(ytrue − 〈ytrue〉)2 + ε

(1)

where the second term is the fraction of variance unexplained by 
the predictions and ε is a small positive number to prevent divi-
sion by zero. The sums run over all validation events.

Training the models require the tuning of several hyperpa-
rameters to achieve its best performance. We started with net-
work structures similar to the original PointNet implementation, 
and then tuned different hyperparameters using a trial and error 
method until an optimum performance, as defined by MSE, MAE 
and R2, was observed. The models developed in this study are 
briefly described below.

Model-1 (M-hits):
This model (M-hits) uses the x, y, z position of the hits of parti-
cles in the MVD detector as input attributes. Since our inputs are 
just hits in the detector planes, this model can perform impact pa-
rameter determination before track finding and fitting. Since the 
PointNet architecture requires a fixed input size, the event with 
maximum number of hits (Nmax = 1995) in the training dataset is 
used as reference to fix the input dimensions (N×F) to be 1995×3. 
Any event with smaller numbers of hits has the remaining rows 
filled with zero. When the maximum number of hits exceeded 
1995 in the testing datasets, hits were dropped randomly to fit 
into the input dimensions. Note that in principle the input size 
could also be extended to take into account the exponential tail of 
the Ncharge distribution, but that would also increase the compu-
tational time.

Model-2 (S-hits):
This model uses the x, y, z coordinates of hits in the STS detec-
tor planes. Similar to the M-hits model, S-hits also does not require 
3

Table 2
Main features of the trained DL models. An epoch is defined as a single training pass 
through the entire training dataset. The number of parameters (# param.) refers to 
the weights, biases and kernels of the model together with non-trainable parame-
ters which define the structure of the network. This number roughly corresponds to 
the complexity of the model. The MSE, MAE and R2 are for the validation data. The 
last column gives an estimate for the execution speed of the model on a GPU card.

Model Epochs # param. MSE MAE R2 Events/s

M-hits 128 3 · 106 0.43 0.51 0.979 660
S-hits 354 3 · 106 0.47 0.54 0.976 159
MS-tracks 372 6 · 106 0.40 0.50 0.981 1092
HT-combi 484 10 · 106 0.39 0.49 0.981 435

tracking to be performed before impact parameter can be recon-
structed. The maximum number of hits present in an event in 
the training data was 9820. Therefore, the input dimensions (N×F) 
were fixed to be 9820×3 with provisions analogue to M-hits to 
overcome smaller or larger number of hits in testing data.

Model-3 (MS-tracks):
The MS-tracks model uses the features of tracks reconstructed 
from, both, the hits in MVD and STS, for predicting the impact 
parameter. Hence, this model can be used to estimate the impact 
parameter only after track reconstruction. In this model, the x, y, z 
coordinates, dx/dz, dy/dz and charge-to-momentum ratio (q/p) of 
tracks of particles in the first and last plane of the tracks are the 
attributes of a point in the 12 dimensional point cloud. Therefore, 
the input dimensions are 560×12 (N×F) where 560 is the maxi-
mum number of tracks present in an event from the training data. 
Events with fewer tracks are filled with rows of zeros to maintain 
the same input dimensionality.

Model-4 (HT-combi):
This model learns from the combination of both hit and track in-
formation used by the M-hits and MS-tracks respectively. It uses 
the hits from MVD together with tracks reconstructed from hits 
in MVD and STS to determine the impact parameter of an event. 
It takes the MVD hits with dimensions 1995×3 and MVD + STS 
tracks with dimensions 560×12.

4. Performance of the models

The DL models were trained via backpropagation until the val-
idation MSE (loss) started saturating or diverged from the training 
loss. The MAE and coefficient of determination of the validation 
dataset were also considered before choosing the final weights for 
the model. The trained models were then tested on datasets Test1, 
Test2 and Test3 to evaluate their performances. The details of the 
final models are tabulated in Table 2. All models achieved an R2

value of about 0.98 upon training. It can be seen that increasing 
the complexity (# param.) increases the training duration required 
for the model to converge to an optimal solution. Nevertheless, 
all the models finally achieve similar scores for MSE, MAE and R2

with the MS-tracks and HT-combi achieving a marginally better R2

value.
To study the speed of the DL models, 10000 events from the 

dataset Test2 were tested on a Nvidia Geforce RTX 2080 Ti with a 
graphics processing memory of 12 GB. The MS-tracks model was 
found to be the fastest with a prediction speed of about 1092 
events/second while the S-hits model was the slowest with a speed 
of about 159 events/second. However, the MS-tracks can only be 
deployed after track reconstruction, which means that some sort of 
pre-processing is required which takes computational time. It must 
also be noted that the models were not optimised for speed. It is 
possible to improve the model speed by reducing the model com-
plexity, by modifying the input dimensions to make an optimum 
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Fig. 1. Histogram of the charged particle track multiplicity as a function of impact 
parameter. The distribution is generated using the 106 minimum bias events in 
Test2.

utilisation of the available resources or by using more advanced 
GPUs. Nevertheless, the current speed is promising to be useful 
for an online analysis of data, if performed parallelly on multiple 
GPUs. In addition, the advantage of a more complex model, as in 
our study, is that it can also be used for other analysis tasks which 
can then be performed at a similar speed.

While conventional methods of centrality determination, based 
on connecting the number of charged tracks in an event with its 
centrality [29], can be useful for a broad grouping of events, it 
lacks the ability to perform accurate impact parameter determina-
tion of individual events. This is evident from Fig. 1, in which the 
charged particle track multiplicity is plotted as a function of im-
pact parameter. For a given track multiplicity, there is a wide range 
of possible impact parameters. This spread in track multiplicity is 
the largest for the most interesting central events. Similarly, for the 
most peripheral events, a track multiplicity could correspond to a 
large range of impact parameters.

Accurate impact parameter determination on an event by event 
basis is therefore not a trivial task that can be accomplished only 
based on a single variable like track multiplicity. It requires mod-
elling of other known and unknown correlations in the experi-
mental data to the impact parameter. Moreover, an online event 
analysis demands minimal pre-processing of the raw experimental 
data. This makes PointNet based DL models an efficient candidate 
for event by event impact parameter determination. As a basic ref-
erence for the performance of our DL models, we will use a much 
simpler polynomial fit that can also perform event-by-event pre-
dictions from track multiplicity of the event. This model (Polyfit) 
uses a third order polynomial fit to the track multiplicity as func-
tion of impact parameter to determine the impact parameter

b = a0 + a1 × x + a2 × x2 + a3 × x3 (2)

where b and x are impact parameter and the number of charged 
tracks, respectively. The fit gives the following parameters:

a0 = 14.28; a1 = −7.01 × 10−2; a2 = 2.13 × 10−4;
a3 = −2.70 × 10−7.

To quantify the precision of DL models we will first look at the 
spread of the predictions of the DL models for a fixed input impact 
parameter. The relative precision in the predictions of DL models 
can be calculated as σerr/btrue where, σerr is the standard devia-
tion of the distribution of the prediction error (true − predicted)

and btrue is the true impact parameter. The relative precision in 
4

Fig. 2. Relative precision of the DL models as a function of impact parameter. The 
results from the Polyfit model (grey) are also plotted to benchmark the performance 
of DL models. The events used are from dataset Test1, and predictions are for a fixed 
impact parameter.

Fig. 3. Mean error of the predictions as a function of the impact parameter. The 
events used are from dataset Test1, and predictions are for a fixed impact parameter. 
The error bars are smaller than the symbol size.

predictions is plotted as a function of impact parameter for differ-
ent DL models and the Polyfit model in Fig. 2. It is evident that the 
simple model fails for the most central collisions (b < 2 fm) with 
the relative precision increasing up to 200% while the DL models 
have a better precision in comparison. At 0.5 fm, the worst relative 
precision observed in DL models was about 79% and this dropped 
below 50% for events with impact parameter 1 fm or above. For 
events from 3 - 16 fm, the spread in predictions of DL models and 
polynomial fit model are similar.

However, the standard deviation of error in predictions quanti-
fies only the precision of the model. The predictions can be consid-
ered both accurate and precise only if the error distributions have 
a mean close to zero and an acceptable precision. Fig. 3 shows the 
mean of the error in predictions as a function of the impact pa-
rameter for Test1. The polynomial fit model has a poor accuracy 
in comparison to DL models, despite its comparable precision in 
mid-central and peripheral events. The DL models have a mean er-
ror between -0.33 to 0.22 fm for events with impact parameter 
2-14 fm, while the mean for the Polyfit model fluctuates between 
-0.7 and 0.4 fm. For events in the range 5-14 fm, the HT-combi and 
Polyfit offer a relative precision of 4-9% and 2-8% respectively. De-
spite their similar precision (for 5-14 fm), HT-combi yields more 
accurate predictions, with a mean error of -0.33 to 0.13 fm, while 
the polynomial fit exhibits mean errors varying between -0.7 to 
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Fig. 4. Mean error in predictions as a function of centrality. Dataset Test2 is used in 
which peripheral events are more likely to occur. The track multiplicity is used for 
the centrality binning. The points at 90% centrality are results from events with no 
tracks reconstructed. Therefore the Polyfit and MS-Tracks model do not have a data 
point at 90% centrality.

0.4 fm. These results indicate that the DL models use more infor-
mation than just the number of charged tracks to determine the 
impact parameter.

In an actual collision experiment, the probability of having 
events with impact parameter (b) is proportional to the impact 
parameter, which gives a different distribution of the impact pa-
rameters than the ones used in the Train dataset: i.e. peripheral 
events are more likely. To study the performance of the DL mod-
els in such a scenario, dataset Test2 was used to predict the impact 
parameter for different centrality classes with a bin width of 5%. 
The mean of the prediction error is plotted as a function of cen-
trality in Fig. 4. The DL models have a mean error close to zero 
for most of the centrality classes while there are large fluctuations 
in the simple polynomial model. Another interesting factor is that 
the number of events which has at least 1 hit in the MVD de-
tector but no tracks (using MVD and STS hits) reconstructed were 
about 10% of Test2. These are “empty” events for the track mul-
tiplicity based method. However, the DL models can use hits to 
make predictions of the impact parameter of these events, though 
the error is large in comparison to their predictions for central and 
mid-central events.

The accuracy of the reconstructed impact parameter of an event 
can depend on how accurate the simulation model can describe 
the outcome of single events. This introduces a bias on the pre-
dictions from the choice of the event generating model. The de-
pendence of the DL predictions on the physics model is studied by 
predicting the events from a separate dataset, that introduces dif-
ferent physics (Test3), on the DL model trained on dataset Train. To 
generate Test3, the final charged particle multiplicity in the tested 
events was modified by an increase of the pion production cross 
section in UrQMD. To do so, the �-baryon absorption cross section 
in the UrQMD model was decreased by a factor 2, resulting in an 
increased pion production, especially for central collisions. The in-
creased number of pions is reflected in the difference of the mean 
charged track multiplicity (�M) for events in Test3 and Test2, for 
a given centrality as shown in the inlet of Fig. 5. There is a dif-
ference of about 14 tracks for most central events and it reduces 
to less than 3 for peripheral collisions. This change in physics is 
translated to a shift in the mean of the error distributions (μshi f t

err ) 
given by,

μ
shi f t
err =

√
(μerrT 3 − μerrT 2)2 (3)
5

Fig. 5. Inset: Difference of the mean track multiplicity for datasets Test3 and Test2
(�M) as a function of centrality. The change of the pion cross section in Test3
is expected to be more visible in central collisions and leads to a larger number 
of charged tracks. Large figure: Difference of the mean of error distributions for 
datasets Test3 and Test2 as a function of centrality. The increased pion production 
in central events leads to a systematic under-prediction of the impact parameter in 
Test3. However, the DL models appear less model dependent than the polynomial 
fit.

where μerrT 3 and μerrT 2 are the mean in the prediction errors for 
dataset Test3 and Test2 respectively. This shift in mean is plotted as 
a function of centrality in Fig. 5. It is observed that the DL models 
show a shift in the mean of up to 0.32 fm while the polynomial 
fit shows a shift up to 0.53 fm. The shift is more evident for cen-
tral collisions as expected. This means that the DL network learns 
more information than the Polyfit about the event features inde-
pendent of the event multiplicity and thus is less model dependent 
than a simple fit. The MS-tracks and HT-combi show slightly bet-
ter robustness to the physics modification compared to M-hits and 
S-hits models. The track multiplicity of the event is definitely an 
important feature with strong correlation with impact parameter. 
However, as DL models learn other information in the data in ad-
dition to track multiplicity, they tend to be more robust than the 
polynomial fit model which essentially depends only on the track 
multiplicity.

5. Conclusion and discussion

In this study, we have shown that pointnet-based DL models 
can be used for an accurate determination of impact parameter in 
the CBM experiment. The use of input data with minimum pre-
processing and high processing speed of DL models make it an 
ideal candidate for online event selection. It is also interesting to 
note that all four types of models (M-hits, S-hits, MS-tracks and 
HT-combi) lead essentially to comparable precision in the deter-
mination of the underlying impact parameter. Indeed track-based 
modelling shows only marginally better performance in evaluating 
validation data.

The DL models are a reliable tool for impact parameter deter-
mination over impact parameters in the range 2-14 fm. Events 
having an impact parameter less than 2 fm is only a very small 
fraction of the total events in an experiment. Nevertheless, the pre-
dictions are still better than the prediction from the polynomial 
fit which fails for most central events. The deep learning mod-
els show a superior performance in comparison to a simple model 
which relies only on the track multiplicity. However, all methods 
to estimate impact parameter will have a bias in the predictions 
acquired from the physics models used in data generation. This is 
true for Glauber based estimation as well. In addition, the training 
data used in this DL study using the UrQMD model and CBM de-
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tector simulation may not perfectly represent real data. This model 
bias can be estimated for DL models by comparing the predictions 
of a model on different event generator data. This bias could also 
be minimised by using events from multiple event generators in 
the training samples. The use of these DL models in the experi-
ment would also require more investigations into the robustness 
of the model against expected detector noise and efficiency. How-
ever, these are beyond the scope of this paper and are desirable 
for further investigations in future. The practical application of a 
DL based event selection algorithm however requires further stud-
ies on the scalability of the prediction speed on multiple GPUs 
and also the possibilities to incorporate other selection criteria. It 
was also found that the model complexity can be further reduced 
without significant change in the performance. Therefore, the pre-
diction speed can also be scaled up by reducing the number of 
model parameters. The results of an ablation study on the M-hits
model to see the performance change with reduced number of pa-
rameters are described in Appendix B.

The PointNet based models presented in this study use infor-
mation like tracks and hits of particle which are available in every 
heavy ion collision experiment immediately during data collection. 
It is intended to use the developed model architectures in other 
heavy ion collision experiments, e.g.: ALICE at the Large Hadron 
Collider (LHC) or HADES at the SIS18. Here the model can be em-
ployed and studied with real data. Moreover, the models used in 
this paper can readily be generalised for tasks other than impact 
parameter determination. In the future it is worthwhile to study 
if a similar model can be used also for more complex tasks like 
identification of rare physics processes, determination of other ob-
servables and the detection of QCD phase transition.
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Appendix A. The PointNet structure

The PointNet model for classification or regression uses two 
joint alignment networks to transform the data in input and fea-
ture space and a symmetric function to accumulate all global fea-
tures. The joint alignment network makes the model invariant to 
certain geometric transformations while the symmetric function 
makes the model invariant to input order.

All the models in this study used ReLU activation units and 
Adam optimiser (learning rate = 0.00001). The convolution layers 
were always followed by Batch normalisation layers. The convo-
lution operations (1-D) used kernels of size 1 to ensure that the 
local features from individual points were segregated separately. 
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Dropout layers with dropout probability of 0.5 were used after 
every dense layer in the models to control overfitting. The mod-
els use a common structure for input and feature transformation 
networks (Itrans and Ftrans) as illustrated in Fig. A.6. When used 
for input transformation, the network has input dimensions N×F 
where N is the maximum number of hits or tracks (depending on 
the model) in the data and F is the number of input attributes per 
point. For the feature transformation network, the input dimen-
sions are N×K where K is the number of features maps produced 
by the previous convolution layer. The input passes through a se-
ries of convolution and Batch normalisation layers to perform input 
order independent feature extraction before aggregation of global 
features using an average pooling layer. The global features are 
then regressed using a Deep Neural Network (DNN) to output F2 or 
K2 numbers respectively which act as the transformation matrices. 
The overall structure of models is also similar to the alignment 
networks. Features extracted after input and feature transforma-
tions also use average pooling layer to collect global features and 
then finally find the impact parameter from these features using 
a DNN. The network architecture and the hyperparameters of the 
models used in this study are described in detail below.

A.1. Model-1 (M-hits)

The model architecture of M-hits which use hits from MVD is 
illustrated in Fig. A.7. The input transformation network (Fig. A.6) 
learns to generate a 3×3 matrix (F×F) which transforms the three 
dimensional points in the input space. This network uses three 
convolution layers which generates 64, 128 and 1024 feature maps 
respectively. The transformed input passes through Forward net-
work 1 which consists of 2 layers of convolutions producing 64 
feature maps each. This data is then transformed by a 64×64 ma-
trix (K×K) learned by the feature transformation network (Fig. A.6) 
with three convolution layers (64, 128 and 1024 feature maps). The 
data then passes through a series of 3 convolution layers (Forward 
network 2) with 128, 256 and 512 feature maps respectively. Fi-
nally the global features are collected using Average pooling func-
tion with pool size of 1995. This segregates 512 global features of 
the event which is passed to the pointcloud regression network 
made of a three layered Neural Network with 256, 128 and 1 neu-
ron respectively.

A.2. Model-2 (S-hits)

This model uses hits of particles detected in the STS detector. 
The structure is similar to M-hits model with the only difference 
happening in the input shape. The input has dimensions 9820×3 
as the maximum number of hits present in the training dataset 
was 9820.

A.3. Model-3 (MS-tracks)

The basic structure of data flow in this model is similar to that 
of M-hits model. However, this model requires a tracking algorithm 
as it utilises the tracks of particles reconstructed from STS and 
MVD as features. An input transformation network with similar 
structure to the one in M-hits model learns the 12×12 alignment 
matrix. The forward network 1 comprises of 2 convolution layers 
producing 128 feature maps each. The extracted features from For-
ward network 1 are transformed by a 128×128 matrix (K×K). The 
matrix is learned by the alignment network with 3 convolution 
layers (128, 256 and 1024 feature maps). The extracted features 
then pass through a Forward network 2 similar to M-hits model. 
Then an average pooling layer (pool size = 560) segregates the 
global features and feeds them to a regression network similar to 
that of M-hits.
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Fig. A.6. General structure of the joint alignment networks. This network is used as input and feature transformation networks in all the models. All convolution layers are 
followed by Batch normalisation layers. The convolution kernels (blue rectangles) have size 1. When used as input transformation network, the input has dimensions N×F 
where N is the maximum number of hits or tracks expected in an event and F is the number of input attributes of each hit or track (e.g. F = 3 if the model uses x, y, z 
coordinates of all hits as input feature). The alignment network then learns an F×F matrix. Similarly, when the network is used as feature transformation network, the input 
has dimensions N×K where K is the number of features maps produced by the convolution layer preceding the feature transformation network.

Fig. A.7. General structure of M-hits, S-hits and MS-tracks models. The main difference among the models is the input shape which depends on the maximum number of 
hits or tracks expected in an event (N) and the number of attributes considered for each hit or track (F). This changes the dimensions of the input transformation matrix 
accordingly. The dimensions of the feature transformation matrix (K×K) are equal to the number of feature maps extracted by the last convolution layer of forward network 1.

Fig. A.8. Structure of the model HT-combi. The model is a combination of M-hits and MS-tracks. Both models independently extract the global features and then they are 
concatenated before being fed to a regression network.
A.4. Model-4 (HT-combi)

In this model, two separate networks similar to M-hits and MS-
tracks run parallel to perform input transformation, feature trans-
formation and global feature extraction. Finally, the global features 
are concatenated and fed into the regression network with 512, 
256, 128 and 1 neuron respectively. The model structure is illus-
trated in Fig. A.8.

Appendix B. Performance without joint alignment networks

The joint alignment networks used in the study are a straight-
forward application of those networks in [52]. The intuition behind 
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the usage of these networks is to enable the DL models to learn 
certain transformations in the data that can better expose the cor-
relations in the data for the convolution layers after it. The same 
idea of input transformations can be extended to feature space 
too. The learned features could be transformed before feeding it 
to the next convolution layer. If there exist some correlations that 
are highlighted upon the transformation, the model could bene-
fit from the transformation. We tested the performance change of 
M-hits model without the alignment networks. The results are tab-
ulated in B.3. It is seen that the performance is only marginally 
improved when both alignment networks are used. When only the 
feature transformation network was removed, the validation loss 
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Table B.3
Performance change of the M-hits model without the alignment networks. Itrans and 
Ftrans are Input transformation and Feature transformation networks respectively. 
The MSE, MAE and R2 are for the validation data. The last column shows the num-
ber of epochs the model took to converge to its best performance.

Model MSE MAE R2 Epoch

original M-hits 0.4290 0.5123 0.9789 128
without Itrans and Ftrans 0.4378 0.5196 0.9784 455
without Ftrans 0.4304 0.5137 0.9788 172

was slightly better than the case with both alignment networks 
removed. Although the performance improvement is marginal, it 
must be noted that the models without the alignment networks 
tend to overfit more compared to the original M-Hits model. This 
was observed in the difference between their training and valida-
tion loss. The use of an alignment network also gives more stability 
in the training, avoiding sudden fluctuations in the validation loss. 
Moreover, the model also converges faster with the use of align-
ment networks.
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[5] K. Zhou, G. Endrődi, L.G. Pang, H. Stöcker, Phys. Rev. D 100 (1) (2019) 011501.
[6] J. Steinheimer, L. Pang, K. Zhou, V. Koch, J. Randrup, H. Stoecker, J. High Energy 

Phys. 1912 (2019) 122.
[7] Y.L. Du, K. Zhou, J. Steinheimer, L.G. Pang, A. Motornenko, H.S. Zong, X.N. Wang, 

H. Stöcker, Eur. Phys. J. C 80 (6) (2020) 516.
[8] P. Thaprasop, K. Zhou, J. Steinheimer, C. Herold, arXiv:2007.15830 [hep -ex].
[9] D. Bourilkov, Int. J. Mod. Phys. A 34 (35) (2020) 1930019, https://doi .org /10 .

1142 /S0217751X19300199.
[10] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. 

Aurisano, K. Terao, T. Wongjirad, Nature 560 (7716) (2018) 41–48, https://doi .
org /10 .1038 /s41586 -018 -0361 -2.

[11] D. Guest, K. Cranmer, D. Whiteson, Annu. Rev. Nucl. Part. Sci. 68 (2018) 
161–181, https://doi .org /10 .1146 /annurev-nucl -101917 -021019.

[12] A.J. Larkoski, I. Moult, B. Nachman, Phys. Rep. 841 (2020) 1–63, https://doi .org /
10 .1016 /j .physrep .2019 .11.001.

[13] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, J. High En-
ergy Phys. 07 (2016) 069, https://doi .org /10 .1007 /JHEP07(2016 )069.

[14] P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, Phys. Rev. D 93 (9) (2016) 
094034.

[15] P.T. Komiske, E.M. Metodiev, M.D. Schwartz, J. High Energy Phys. 01 (2017) 110.
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