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Abstract The complex magnetotelluric (MT) apparent resistivity tensor can be decomposed into two
real tensors, the apparent resistivity and the resistivity phase tensors, which represent relationships
between the observed electric field at a point on the Earth's surface and an associated apparent current
density. We explain the differences between these tensors and conventional estimates of apparent
resistivity and phase for simple resistivity environments and demonstrate, using canonical models in 1‐D
and 2‐D environments, that both tensors are more sensitive to vertical and horizontal resistivity gradients
than their conventional counterparts. The properties of the new tensors are explained using
electromagnetic induction theory and the effects of associated charges at resistivity boundaries. We
introduce a new way to plot tensor ellipses, which brings significant improvements to the interpretation
of MT data, using appropriate visualization software. The apparent resistivity tensor gives information
about the magnitude and direction of apparent resistivity subsurface structures and has a strong response
to vertical resistivity contrasts. The resistivity phase tensor is highly sensitive to vertical boundaries and
the associated fields in the TM mode. It is also free from static distortions under the same conditions
implied for the conventional phase tensor. These findings have prompted a study in the potential of the
new tensors for 3‐D inversions. The results from a 3‐D inversion of a canonical oblique conductor
straddling two quarter spaces show distinct improvements in resolving the boundaries of the conductor
and open a promising field for future studies.

1. Introduction

The period‐dependent magnetotelluric (MT) response tensor (Z) relates the horizontal electric andmagnetic
fields measured at the Earth's surface. It is the fundamental parameter in the MT method and is used to
obtain information about the resistivity structure of the Earth. The MT response tensor is usually presented
as period‐dependent apparent resistivity (ρa,Z) and phase (φ) curves that are directly derived from tensor
components as ρa,Zij = (μ/ω)|Zij|

2 and φij = tan−1(Im(Zij)/ Re (Zij)) . This concept originates with the one‐
dimensional interpretation of subsurface resistivity structures (e.g., Vozoff, 1986) related to the off‐diagonal
elements of Z exclusively. The curves can be used to present MT data prior to inversion approaches and
allow for some preliminary conclusions on the resistivity depth distribution if the diagonal tensor elements
are close to zero. If the response is highly three‐dimensional, the diagonal tensor elements will be signifi-
cantly different from zero and the interpretation of the apparent resistivity and phase curves will be difficult
and less intuitive.

The phase tensor (PT) introduced by Caldwell et al. (2004) reduces the MT response tensor to its phase
information and provides the possibility to visualize the tensors by their principal components (maximum
and minimum phases) and associated orientations. Methods for the presentation of tensors as ellipses have
been presented by various authors (e.g., Bibby, 1986; Bibby et al., 2005; Booker, 2014; Caldwell et al., 2004;
Caldwell & Bibby, 1998; Moorkamp, 2007), and they allow for a compact representation of spatial and
period‐dependent tensor information.

Several studies have introduced apparent resistivity tensors in different contexts: Caldwell and Bibby (1998)
used them for long‐offset time domain electric field data, Caldwell et al. (2002) used them to present
controlled‐source MT data, and Weckmann et al. (2003) showed examples for natural source field MT data.
Brown (2016) developed the theory to define an extended‐Born MT scattering tensor and apparent back-
ground electric and magnetic fields from a complex apparent conductivity tensor. In this paper we use the
inverse of this apparent conductivity tensor, the complex apparent resistivity tensor, and decompose it into
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a real and imaginary tensor. Here, the real tensor is directly comparable to the apparent resistivity tensor in
Weckmann et al. (2003). In addition, we introduce the resistivity phase tensor, which is closely related to the
imaginary part of the complex apparent resistivity tensor. It quantifies an additional spatial dispersion and is
associated with the horizontal gradient of the resistivity in the region where most of the electric current is
focused. The theoretical developments in Brown (2016) suggested that the new tensors could provide a useful,
intuitive, and compactmethod for the presentation of all MT data, in a coordinate system independent of that
chosen to measure the electromagnetic (EM) fields. Geophysical and geological interpretations in 3‐D resis-
tivity environments could be simplified if well‐established graphical representations of the tensors as ellipses
are deployed.

The primary purpose of this paper is to explore the effectiveness—and limitations—of the new tensors, to
visualize MT data and provide insight to the underlying EM processes in multidimensional resistivity envir-
onments. The COMSOL Multiphysics® platform is used to generate EM fields from a suite of canonical, 1‐D
isotropic, 1‐D anisotropic, and 2‐D resistivity models. The electric, magnetic, and current density fields are
exported to visualization software with the flexibility to display the fields and associatedMT tensors in a vari-
ety of forms. The forward modeling studies revealed a high sensitivity of the new tensors to horizontal and
vertical resistivity contrasts, which led us to investigate their potential to improve the resolution of resistivity
anomalies in 3‐D inversions. The results are compared to established inversion parameters, such as the com-
plex impedance tensor (e.g., Heise et al., 2008; Kelbert et al., 2012; Meqbel et al., 2016; Tietze & Ritter, 2013)
and exclusive phase tensor inversions (Patro et al., 2013; Tietze et al., 2015). A comprehensive review about
these approaches that also addresses the resolvability of resistivity structures is given by Miensopust (2017).

The paper is organized into three subsequent sections. Section 2 introduces the concept of apparent resistiv-
ity and resistivity phase tensors, whose (real) elements can be compared easily with the conventional defini-
tions of apparent resistivity and phase, and elements of the phase tensor (Caldwell et al., 2004) in 1‐D and
2‐D resistivity environments. Section 3 focuses on forward modeling studies using COMSOL Multiphysics®.
First, the period‐dependent changes and sensitivities of the new tensors to a simple 1‐D resistivity structure
are investigated in the context of EM induction (section 3.1). Section 3.2 shows an example of the MT tensors
for a 1‐D anisotropic layered‐Earth resistivity model to demonstrate the period‐dependent changes in the
ellipse parameters representing some of the MT tensors. Section 3.3 presents the numerical modeling results
of a 2‐D isotropic resistivity plate model and describes the spatial and period‐dependent behavior of the tensor
ellipses associated with EM induction and charges at resistivity boundaries. In section 4 the new tensors are
incorporated into the 3‐D MT inversion software ModEM (Kelbert et al., 2014). Their performance is tested
using a canonical 3‐D model (Tietze et al., 2015), and the results are compared with those from the conven-
tional MT response tensor (Z) and phase tensor (ϕ).

2. The Apparent Resistivity Tensor and the Resistivity Phase Tensor

The relationshipEh= ZBh between the horizontal electric field andmagnetic induction,Eh (V/m) andBh (T)

respectively, at the surface of the Earth, contains information about the subsurface electrical conductivity in
the period‐dependent 2 by 2 MT response tensor, Z (m/s). Brown (2016) used an analogy for the propagation
of plane EM waves through a homogeneous, dissipative, and anisotropic conductivity model half‐space to

construct a second rank 3 by 3 tensor γ (m−2) consisting of quadratic functions of complex wave numbers
associated with the EM waves in the model. The approach has similarities with the c‐response

(Schmucker, 1987), which relates a 1‐D resistivity distribution to the first vertical derivative of the horizontal
electric field. In the following, the formulations of Brown (2016) are restricted to the horizontal EM fields

and all tensors (Z, γ, σ, σa, ρa) have a dimension of 2 by 2.

In a uniform anisotropic half‐space the complex wave numbers of γ reduce to vertical wave numbers and the
electrical conductivity properties related to the second vertical derivative of the horizontal electric field are
given by

∂2Eh

∂z2
¼ γ Eh ¼ iωμσð Þ Eh ¼ iωμ Jh (1a)

where σ is the actual horizontal anisotropic conductivity tensor and Jh is the actual (2 × 1) current density
vector at an observation point.
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For an arbitrary subsurface conductivity structure, the conductivity tensor and the current density vector
become apparent quantities σa and Ja, respectively, where Ja (A/m

2) is the (2 × 1) apparent current density
vector required to satisfy the equality with the second vertical derivative of Eh at the observation point. In
nonuniform environments (1a) becomes

∂2Eh

∂z2
¼ γa Eh ¼ iωμσað Þ Eh ¼ iωμ Ja (1b)

The concept of a complex apparent conductivity tensor σa (S/m) is similar to that of the apparent resistivity
(ρa,Z) derived from theMT response tensor Z in nonuniform environments. For measurements at the surface
above an arbitrary conductivity structure, it characterizes the electrical properties in a volume beneath the
measurement site. Its real part represents the dissipative behavior of the subsurface, and its imaginary part
represents the effects on the phases due to EM induction in the presence of conductivity variations with
depth (1‐D structures) and additional effects due to electric fields from charges associated with lateral con-
ductivity heterogeneities (2‐D and 3‐D structures).

The apparent conductivity tensor is a quadratic function of Z given by (Brown, 2016)

σa ¼ −iω
μ

� �
det Yð Þ ZT Y (2)

where μ is the free space magnetic permeability, det represents the determinant of a matrix, the superscript T
represents the transpose, and Y = Z−1 (s/m) is the inverse of the MT response tensor. The complex apparent
resistivity tensor, ρa (Ω m), is therefore defined as

ρa ¼
iμ
ω

� �
det Zð Þ Z YT (3)

An apparent current density vector, Ja , consistent with the definition in (1b), is related to the observed
electric and magnetic fields at a point on the surface by

Eh ¼ ρa Ja ¼
iμ
ω

� �
det Zð Þ Z YT Ja (4a)

Bh ¼ iμ
ω

� �
det Zð Þ YT Ja (4b)

The complex apparent resistivity tensor in (3) can be regarded as a normalisation of the observed MT electric
field with respect to an apparent current density related to the observed magnetic field in (4b).

The complex apparent resistivity tensor can be decomposed into real and imaginary parts, and magnitude
and phase:

ρa ¼ Ua þ iVa ¼ Ua Iþ iU−1
a Va

� � ¼ Ua Iþ iϕað Þ (5)

which provides new definitions of Ua and ϕa as the apparent resistivity tensor and resistivity phase tensor,
respectively. The components of Ua, Va and ϕa can be derived as functions of the real and imaginary parts
of the MT response tensor Z, by expanding (3) with the definitions of the quantities in (5; see Appendix B).

To distinguish the new tensors from existing MT parameters, for example, the phase tensor (PT, ϕ), the
acronyms CART, RT, and RPT are introduced for the complex apparent resistivity tensor (ρa), apparent
resistivity tensor (Ua), and resistivity phase tensor (ϕa), respectively.

2.1. Distortion

Distortions of electric and magnetic fields at an observation site are the consequences of changes in regional
electric currents caused by, for example, electrical coupling among regional structures (e.g., Park, 1985),
local subsurface conductivity heterogeneities (e.g., Groom & Bailey, 1989), and topography (e.g., Jiracek,
1990). It is crucial to account for those effects during the visual interpretation and modeling/inversion of
MT data. Thus, the following section examines the impact from distortion on the new MT tensors.
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A rigorous treatment of EM distortion due to local structures (Chave & Smith, 1994) relates the horizontal
components of the observed, distorted EM fields, Eh and Bh to their regional, undistorted counterparts, Er

h

and Br
h by

Eh ¼ CEr
h (6a)

Bh ¼ Br
h þDEr

h ¼ I þDZrð ÞBr
h (6b)

where the superscript r refers to regional fields, andC andD are real, period‐independent, second rank, 2 × 2
electric and magnetic distortion tensors, respectively. The distorted MT response tensor Z is

Eh ¼ CZr IþDZrð Þ−1Bh ¼ ZBh (6c)

The original phase tensor analysis (Bibby et al., 2005; Caldwell et al., 2004) makes the common assumption
of static (galvanic) distortion where the conditionD= 0 implies thatBh ¼ Br

h and Z=CZr. This results in an
observed electric field that is a linear superposition of the regional field and a scattered electric field in‐phase
with the regional field. The PT is defined by decomposingZ into its real and imaginary parts,U andV respec-
tively, so that Z = (U + iV) = U(I + iϕ) and, similarly, Zr = Ur(I + iϕr). From this it is easily verified that
ϕ = ϕr and therefore the PT ϕ is distortion‐free. The inverse of the MT response tensor Y, its transpose YT,

and their associated phase tensors ϕY and ϕTY respectively, are given by

Y ¼ UY þ iVY ¼ Iþ iϕYð Þ UY (7a)

ϕY ¼ VYU−1
Y ¼ −ϕ (7b)

ϕT
Y ¼ −ϕT (7c)

As Booker (2014) noted, the phase tensor is purely a property of the observed MT response tensor, its geome-
try is independent of the assumption that Bh ¼ Br

h so it is meaningful even if the horizontal magnetic field is
distorted.

If D = 0, (6b) and (4b) imply that the apparent current density Ja ¼ J ra is distortion‐free, consistent with the
condition Bh ¼ Br

h. From (6a) and (4a), the distorted electric field is therefore

Eh ¼ CEr
h ¼ C ρraJ

r
a

� � ¼ Cρra
� �

Jra (8a)

Therefore, the relationship between the distorted apparent resistivity tensor and the regional resistivity
tensor is

ρa¼Cρra (8b)

From the definition of ϕa in (5), and following the approach in Caldwell et al. (2004):

ϕa ¼ U−1
a Va ¼ CUr

a

� �−1
CVr

a

� � ¼ Ur
a

� �−1
Vr

a ¼ ϕr
a (8c)

whereU r
a is the (undistorted) regional RT. Hence, the RT (Ua) is distorted and the RPT (ϕa) is free from dis-

tortion if the condition D = 0 is imposed.

If local conductive heterogeneities are very different from regional structures, the condition Ja ¼ J ramay not
be a good approximation so the regional horizontal magnetic field may be changed. Brown (2016, equation
28) assumed that similar to the electric field, the distorted magnetic field is also a linear superposition of the
regional magnetic field and a scattered magnetic field in‐phase with the regional magnetic field. In these cir-
cumstances, a single 2 × 2 tensor C is sufficient to parameterize the distortion of both EM fields. The dis-
torted apparent current density and distorted magnetic field are related using (4)

Bh ¼ iμ
ω

det Zð ÞYT

� �
Ja (9a)

¼ iμ
ω

det Cð Þ det Zrð Þ C−1
� �T

Yrð ÞT
� �

Ja (9b)

¼ iμ
ω

det Zrð Þ Yrð ÞT
� �

P−1Ja (9c)
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where the tensor P−1= (det(C))−1(Zr)TCT(Yr)Tand P−1Ja ¼ gJ rawhere g is a real scalar, equal to unity if C is
known independently. The tensor P is complex, so the amplitude and phase of the distorted apparent current
density must be different from the regional apparent current density for a distorted magnetic field assumed
to be in‐phase with the regional magnetic field. From (9b), the observed electric field in this model is

Eh ¼ ZBh ¼ det Cð Þ C iμ
ω

det Zrð ÞZr C−1
� �T

Yrð ÞT
� �

Ja ¼ ρma Ja (10)

where ρma ; the CART in the presence of distorted electric and magnetic fields, which are in‐phase with their
respective regional fields, can be decomposed into real and imaginary parts, Um

a and Vm
a respectively. It is

easily verified (numerically) that the RPT ϕm
a ¼ Um

a

� �−1
Vm

a ¼ ϕr
a; so it is distortion‐free. As the PT ϕ is also

distortion‐free in this model (Brown, 2016), the RPT ϕa, defined in (5), is free from distortion under the same
conditions imposed for the conventional PT. If local heterogeneities are so strong that the distorted and
regional magnetic fields are not in phase, Brown (2016, equation 30) may be employed.

The findings above imply that similar to the PT, the RPT is a suitable interpretation and/or inversion para-
meter in the presence of galvanic distortion.

2.2. Comparison of Different Definitions

The matrix elements of Ua may be compared simply with the conventional definition, ρa,Zij = (μ/ω)|Zij|
2 for

resistivity distributions based upon MT response tensors with off‐diagonal elements only (uniform half‐
spaces, 1‐D isotropic, 1‐D horizontally anisotropic, and 2‐D distributions in a coordinate system aligned with
the strike). In terms of Uij,Vij, the real and imaginary parts of Zij, respectively, these are

Ua¼ μ
ω

2U12V12 0

0 2U21V21

� �
(11a)

ρa;Zij¼
μ
ω

U2
ij þ V2

ij

� �
(11b)

The elements of the RT are different from ρa,Zij, except where Uij = Vij at sites above a uniform half‐space or
horizontally anisotropic half‐space in strike coordinates.

The RPT quantifying the phase differences between the horizontal electric and apparent current density
fields does not have a simple relationship with the PT or the conventional phase of the MT response
tensor, φij = tan−1(Vij/Uij), because the latter two represent the phase differences between the electric and
magnetic fields. In the absence of any distortion, the relationship between the RPT and the PT is

ϕa ¼ tr ϕð Þ UT
Y þ ϕUT

Yϕ
T

� �þ det ϕð Þ−1ð Þ UT
Yϕ

T−ϕUT
Y

� �� �−1
× −tr ϕð Þ UT

Yϕ
T−ϕUT

Y

� �þ det ϕð Þ−1ð Þ UT
Yh þ ϕUT

Yϕ
T

� �� � (12)

where tr is the trace of a matrix.

For the class of resistivity distributions based upon MT response tensors with off‐diagonal elements only,
(12) simplifies to a relationship between ϕa and ϕ where both quantities are distortion‐free:

ϕa ¼ 0:5 tr ϕ−ϕ−1
� �

I− ϕ−ϕ−1
� �� �

(13)

It is instructive to compare the matrix elements of ϕa and ϕ for this class:

ϕa ¼
V2
12−U

2
12

� �
2V12U12

0

0
V2
21−U

2
21

� �
2V21U21

0
BBB@

1
CCCA (14a)

ϕ ¼
V21

U21
0

0
V12

U12

0
BB@

1
CCA (14b)
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The (arctangents of the) diagonal elements of the PT have the same magnitude as the conventional phase of
the MT response tensor φij. The RPT elements are, however, composed of quadratic differences rather than
linear ratios in the PT elements. As will be shown in the next section, this implies that the RPT is more
sensitive to the structure of 1‐D isotropic (and anisotropic) media than the PT.

2.3. Ellipse Parameters

In this section the calculation and representation of the tensor ellipse principal axes is addressed.We demon-
strate for the first time how to visualize and understand the fundamental physics behind the new tensors.

An arbitrary 2 × 2 second rank tensor χ can be represented as an ellipse in the x‐y plane defined by four para-
meters that are constructed from the four tensor elements. Three of these parameters are invariant to a rota-
tion about the z axis; these are the magnitudes of the principal major and minor axes of the ellipse χmax and
χmin, respectively, and a skew angle β, which defines the position of themajor axis relative to a reference axis.
In the case of the CART, the angle δ between the major axes ofUa and Va represents an additional invariant.
The fourth parameter is the angle α, which defines the position of the reference axis relative to the coordi-
nate axes. In this study all angles are counterclockwise from the coordinate axis pointing eastward.

The calculation of the ellipse parameters (e.g., Bibby et al., 2005; Caldwell et al., 2004; Moorkamp, 2007) cor-
responds to a singular value decomposition where the singular values represent the principal ellipse axes
magnitudes. However, singular value decompositions are nonunique, and the calculation of the ellipse axis
direction and the determination of the correct quadrant of the principal values can pose a problem if one or
both of the principal axes becomes negative (Booker, 2014). As will be shown in the next sections this applies
for the RPT and it is also true for the imaginary part of the CART. Booker (2014) includes the circulation
direction of a tensor to obtain unambiguous measures for the principal signs and axes directions. We there-
fore adapt his method and compute the ellipse parameters using the equations in Appendix A.

The common presentation of the tensors as ellipses hampers the recognition of the size of the principal axes.
To address this problem, the ellipses are often normalized and color coded by the value of themajor axis with
the result that the size of the minor axis can be difficult to read. Häuserer and Junge (2011) plot the major
and minor axes as colored orthogonal bars, but in uniform or 1‐D situations the orientation of the bars is
arbitrary and confusing. For this reason, we introduce a combination of both schemes and plot the ellipses
color coded by the value of the major axis and superpose the minor axis as a bar with its respective color.
Thus, the orientation of the principal axes will only become relevant in higher dimensional (or anisotropic
1‐D) environments.

For the CART (Ua and Va) the size of the minor axis is relative to the size of the major axis by a logarithmic
scale, whereas the length of the major axis is kept constant. As the principal axes ofVamay become negative,
the length of the axes reflect absolute values, while the linear color range includes negative resistivity values.
For the RPT and the PT the sizes of the ellipses/bars are proportional to the arctangents of the principal axes.
To account for negative values for ϕa the size of the axes equals the absolute value and the color range is
extended from−90° to 90° (0° to 90° for the PT). Note that in this plotting scheme the major axes will always
correspond to the largest absolute (positive or negative) tensor axis. Similar to Ua and Va, each ellipse prin-
cipal axis of the phase tensors is normalized by its corresponding major axis. To prevent vanishing ellipses
for principal values close (or equal) to zero, absolute values of 2° (or 2 Ωm for Va) were added to the minor
and major axes of each tensor (not affecting the color values).

In Figure 1 the tensor ellipses are plotted for a 1‐D layered resistivity model (Figure 1a), a 2‐D resistivity dis-
tribution consisting of two quarter spaces (Figure 1b), and an arbitrary 3‐D structure (Figure 1c). The model
in Figure 1a comprises a 2‐km‐thick conductive layer at 2‐km depth. For 1‐D models the major and minor
axes of the MT tensors have equal magnitudes and their representation corresponds to a uniform circle.
The circles in Figure 1a refer to a period of 100 s, which is representative for EM fields that pass from the
conductive layer to the underlying resistive half‐space. In such case the principal axes of Va and ϕa become
negative and those of ϕ are smaller than 45°. For the interpretation of the 2‐D ellipses in Figure 1b it is
emphasized that the CART and its derivatives RT, RPT, and Va are driven by changes in the electric fields,
while the PT is driven by the magnetic field. This implies thatUa, Va, and ϕa axes perpendicular to the strike
(currents crossing the boundary) refer to the TM mode and axes parallel to the boundary refer to the
TE mode and vice versa for the PT. The individual modes are represented by the minor or the major
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axis depending on the location of the site relative to the boundary (on the resistive or conductive side, cf.
Figure 1b). Va is generally sensitive to changes in the subsurface resistivity and does not represent any
absolute resistivity values. If there is no change in resistivity, Va is equal to zero. The RPT is directly
related to Va, and parallel axes have always identical signs. For the 2‐D situation in Figure 1b, the PT
major and minor axes are orthogonal to the axes of the RPT. This changes when the major axes of the
RPT become negative (cf. following sections). In that case the respective axes of the PT are smaller than
45° and are reflected by its minor axes. In 3‐D environments the principal axes of Ua, Va, ϕa, and ϕ are
not necessarily parallel. Here, the skew (β) of Ua, Va, and ϕa is generally more distinct than that of ϕ. As
the RPT and the PT are free from galvanic distortion, an oblique orientation between the principal axes of
both tensors is a clear indicator for three‐dimensionality.

Figure 1. The geometrical representation of tensors as ellipses for a 1‐D, 2‐D, and 3‐D resistivity distribution.
(a) Ua, Va, ϕa, and ϕ ellipses (top to bottom) above a 1‐D resistivity distribution (2‐km‐thick conductive layer with
10 Ω m resistivity at 2‐km depth; background resistivity: 1,000 Ω m). The tensors are shown for a target period of 100 s,
representative for EM fields leaving the conductive layer and entering the resistive half‐space. This results in negative Va
and ϕa principal axes. (b) Ua, Va, ϕa, and ϕ ellipses at observation points on the conductive (left, ρ1 = 10 Ω m) and
resistive (right, ρ2 = 1,000 Ω m) side of a 2‐D resistivity distribution consisting of two quarter spaces with EM field
measurement axes aligned to the direction of strike. The tensors are shown in 1.5‐km distance to the boundary for a period
of 10 s. Note how the orientations of the principal axes change across the boundary for each ellipse. (c) Ua, Va, ϕa, and
ϕ ellipses at an observation point above a 3‐D resistivity distribution (background ρ2 = 1,000 Ω m, conductive anomaly
ρ1 = 5 Ω m at 2‐km depth). The tensors are shown for a period of 5 s. Note the existence of finite invariant skew angles,
β for each of the three ellipses and the finite mixed invariant angle, δ between Ua and Va (shown in the Va plot). The
color values of the tensors in (a and b) correspond to the respective color bars in (c).
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3. MT Tensors in Multidimensional Resistivity Environments

The fields and responses for the forward models shown in this section are calculated using COMSOL
Multiphysics® 5.3. Detailed information about forward modeling using COMSOL is given in Löwer (2014),
and examples of its application are shown in González‐Castillo et al. (2015), Löwer and Junge (2017), and
Cembrowski and Junge (2018). Generally, where the area of interest is restricted to the EM fields at the
Earth's surface, a reasonable discretization accuracy of the model structures depends on the skin depth
(δmax), the target period, and site locations. For the studies shown here, the EM fields at depth were of equal
interest, and therefore, the model discretization was chosen to be independent of the target frequency and
included a very high resolution at geometric boundaries. All models (1‐D and 2‐D) were calculated in a
three‐dimensional environment with a total model expansion of 6δmax × 6δmax × 3δmax (x, y, z). To limit
computational costs, an inner model grid (10 km × 10 km × 10 km) embracing all relevant geometries
was defined (Figure 2). The need for a highly resolved inner grid resulted in up to 106 FE cells with more
than 107 degrees of freedom. The EM wave equations were solved in the frequency domain for three/four
periods per decade, using an iterative solver (BiCGStab, Biconjugate gradient stabilized) in combination
with a multigrid algorithm. Using amulticore desktop system (8 cores at 3.4 GHz) with 64‐GB internal mem-
ory, the run time for the plate model in section 3.3 (22 target periods) was ~3 hr. The fields and response
functions shown in the following sections were extracted from the inner model via the COMSOL
Multiphysics® 5.3 with MATLAB Livelink and visualized in MATLAB 2018a.

To validate the COMSOL modeling, analytical solutions of the MT response tensors have been computed
using the horizontally anisotropic 1‐D forward model of Dekker and Hastie (1980) and the general
anisotropic 1‐D forward model of Pek and Santos (2002). The 1‐D isotropic and anisotropic models resulted
in insignificant differences among the surface MT response tensors in all three methods. A comparison
between the COMSOL and the Dekker and Hastie response for the anisotropic model in section 3.2 is given
in the supporting information (Figure S1).

3.1. MT Tensors in 1‐D Isotropic Environments

The assertions from section 2.2 are tested by investigating the period‐dependent relationships among the
diagonal elements of the RT, RPT, and PT and the conventional apparent resistivity (ρa,Z) for a 1‐D isotropic
model consisting of three layers with resistivity 1,000, 10, and 1,000 Ωm, thicknesses of 2,000 m for periods
between 0.001 and 10,000 s (Figures 3a and 3b). For the phase tensors (RPT and PT) the arctangents of the
diagonal elements are plotted. In addition to the diagonal elements, all tensors (RT, RPT, and PT) are
visualized as ellipses for eight representative target periods. To illustrate the behavior of the EM fields, the
magnitudes of the electric and magnetic fields and the current density are shown for two periods of 0.018
and 10 s (Figure 3c).

Figure 2. COMSOL finite element mesh for the 2‐D plate model in section 3.3. The mesh elements are only visualized at
selected object surfaces. (a) The dimension of the total model is 10,000 km × 10,000 km × 5,000 km and a 500‐km air
layer (not shown). The mesh elements in the outer box are coarse and become finer in the negative y direction to resolve
the plate at 2‐km depth. (b) The dimension of the inner model is 10 km × 10 km × 10 km. Here the mesh is very fine,
especially to the surface and at the plate boundaries.
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In each layer (j = 1,3), the electric and magnetic fields behave (e.g., Kaufman & Keller, 1981) as

Ej ¼ aje
ikjz þ bje

−ikjz;Bj ¼ kj
�
ω aje

ikjz−bje
−ikjz

� �
; b3 ¼ 0; kj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
iωμ0σj

p

For periods <0.003 s, the current density is in‐phase with the electric field and both lead the magnetic field
by 45° so the system is behaving like a uniform half‐space. In Figure 3b this implies a constant apparent
resistivity (Ua and ρa,Z) of 1,000 Ω m, a RPT of 0°, and a PT of 45°. For this period range the electric and
magnetic field amplitudes decrease with depth in an oscillatory manner. The induced currents also decrease
to zero with depth; in the upper part of the layer they give rise to a magnetic field that almost completely
cancels the primary magnetic field beneath them and almost equals the primary magnetic field above them
(Kaufman & Keller, 1981).

Between 0.003 and 0.3 s, the phase differences, between the magnetic field and its associated conduction
currents, and the electric field, increase to a maximum due to the increase of the magnetic field associated
with higher current density, particularly in the upper part of the second layer where the current density
increases discontinuously across the first/second layer boundary (Figure 3c, fields at 0.018 s). At the surface,
the magnetic field remains at twice the primary magnetic field amplitude, while the amplitude of the electric
field slowly decreases, so decreasing the apparent resistivity. Simultaneously, RPT and PT increase to
a maximum.

As the period increases (0.3–3 s), RPT and PT return to 0° and 45°, respectively. At the same time, the
apparent resistivities reach a minimum.

Figure 3. Results from a 1‐D forward model. (a) The model comprises a conductor with a resistivity of 10Ωm embedded
in a 1,000Ωm half‐space. (b) Left: Apparent resistivity curves from the RT (Ua) and the conventional apparent resistivity
(ρa,Z) from the MT response tensor (Z). Ua is additionally visualized by tensor ellipses for eight representative target
periods. Right: Phase curves and tensor ellipses derived as the arctangents of the RPT (ϕa) and the conventional PT (ϕ).
(c) The magnitudes of the electric field (|E|), magnetic field (|B|), and current density (|J|) as depth sections for two
periods (0.018 s (55.5 Hz) and 10 s).
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For periods beyond 3 s, the RPT and the PT decrease to a minimum before returning to their uniform half‐
space values at the longest periods (>10,000 s). The apparent resistivity increases to the background value of
1,000Ωm. At these periods, the magnetic field tends to decrease linearly with depth in the lowest third layer,
while the decrease in the electric field is small. The currents are concentrated within the conductive anomaly
(Figure 3c, fields at 10 s).

Figure 3b shows that the RT responds more rapidly than ρa,Z with increasing period to the presence of the
conductor, stays at a minimum for a wider period range, and emerges more steeply to reach the asymptotic
value. This implies a higher sensitivity to resistivity contrasts in the vertical direction and might include the
possibility of better resolution of thin conductive layers. The same applies to the RPT, which shows steeper
gradients and higher variations in amplitude (by a factor of 2) compared to the conventional PT. It is empha-
sized that the half‐space value of the RPT is at 0° (compared to 45° for the PT). This implies negative phase
values for a transition from a conductor to a resistor.

The electric, magnetic, and current density field phases related to the model in Figure 3a are presented in
Figure S2 (supporting information). In Figure S3 response curves and field amplitudes are shown for a
1‐D model comprising a thin conductive layer of 200 m. They corroborate the improved resolution of a thin
conductive layer using the new tensors.

3.2. MT Tensors in 1‐D Anisotropic Environments

In this section we focus on the sensitivity of Ua, Va, and ϕa to a 1‐D anisotropic resistivity distribution in
comparison to the conventional phase tensor ϕ. A detailed discussion about the interpretation of the PT is
given by Booker (2014), and the impact of electrical anisotropy on the MT response is summarized by
Martí (2014).

The results from a 1‐D anisotropic forward model are presented in Figure 4. The model comprises a 2‐km‐

thick anisotropic layer whose top is at 2‐km depth, embedded in a half‐space with resistivity of 1,000 Ω m
(Figure 4a). The anisotropic resistivities are 10 Ω m in the x direction (ρx) and 1,000 Ω m in the y direction

Figure 4. Results from a 1‐D anisotropic forward model. (a) The resistivity model. (b) Period dependence of the RT (Ua)
and the imaginary part of the CART (Va). For periods >0.05 s, both tensors show the direction of the anisotropy. The
RT exclusively presents apparent resistivity values. (c) RPT (ϕa) and conventional PT (ϕ). For periods from 0.05 to 5 s
(sensitive to the anisotropic body) the minor and major axes have opposite directions. The highlighted period (0.021 s) is
related to the fields shown in Figure 5.

10.1029/2018JB017221Journal of Geophysical Research: Solid Earth

HERING ET AL. 7661



(ρy), rotated by −20° (i.e., counterclockwise). The coordinate system uses the MT convention with the x axis
pointing north and the y axis pointing east.

In Figure 4b the tensors Ua and Va are shown, representing the CART for a period range from 0.001 to
10,000 s. At the short periods (0.001–0.01 s), the major and minor axes of Ua have equal length consistent
with the uniform background resistivity of 1,000 Ω m. With increasing period (>0.05 s) Ua responds to
the anisotropic layer. The tensors are rotated by −20° to be aligned with the anisotropy directions, and
the major axes are parallel to ρy and reproduce the resistivity value of 1,000 Ω m over the entire period
range. The minor axes are parallel to ρx and show the transition from the overlying resistor into the conduct-
ing direction of the anisotropic body by decreasing apparent resistivity values. These reach a minimum at
about 5 s and increase again with longer periods due to the underlying resistive half‐space. The Va tensors
also demonstrate the anisotropy direction with their major axes parallel to the conducting anisotropy axis.
In contrast to Ua, the values of Va respond to spatial changes (gradients) of the resistivity. Consequently,
its response is largest when entering (positive values) and leaving (negative values) the anisotropic layer.
In between the values go back to 0 Ω m (at ~5 s) representative of a uniform half‐space. The minor axes
are parallel to the resistive anisotropy direction, which equals the background resistivity. They are equal
to 0 Ω m over the whole period range.

The RPT is related to the imaginary part of the CART so also responds to changes in the resistivity
(Figure 4c). For the shortest periods, ϕa and ϕ take values of 0° and 45°, respectively, in a uniform half‐space.
With increasing period they are affected by the anisotropic body, showing a similar pattern as the isotropic
case in section 3.1. The phases respond to the resistivity contrast at shorter periods thanUa (0.021 s), but just
for the fields related to currents in the conductive directions. This causes the split and the alignment of the
tensors with the anisotropy axes for the periods up to 5 s, where the minor and major axes of ϕ and ϕa have
opposite directions. For longer periods, the lower boundary of the conductive layer produces PT values
below 45° and RPT values below 0°. The tensor responses are reflected in the minor axes of the PT and
themajor axes of the RPT. For all periods the sensitive axis of the RPT is parallel to the conductive anisotropy
direction and it is perpendicular in the case of the PT. The insensitive axes are 0° and 45°, respectively.

The magnitude and phase for the electric, magnetic, and current density fields related to the anisotropic 1‐D
model are shown (Figure 5) for a period of 0.021 s. In a generally anisotropic layer, the fields can be regarded
as two independent pairs of downgoing and upgoing waves (Pek & Santos, 2002) so the fields may be visua-
lized as two perpendicular depth slices, related to the magnetic field excitation in the x and y directions.
Depending on the excitation, the magnetic and electric field components decrease either smoothly with
depth (Bx excitation) or show abrupt changes (By excitation). Due to the oblique angle (−20° from the x axis)
of the resistivity principal axes within the anisotropic layer, the current density is not parallel to the electric
field and gives rise to a different depth dependence. For example, there is a strong concentration of currents
in the x direction at the top of the layer producing an enhanced magnetic field in the y direction in the upper
uniform layer. At the surface, the magnitudes of the RT (Ua) in the x and y directions are appropriate for a
homogeneous half‐space but the phase tensors (RPT and PT) are more sensitive and respond earlier to the
varying resistivity. The origin of this phase behavior is related to the depth dependence of the current den-
sity, influenced by the anisotropic layer for both excitations that results in an apparent current density at the
surface (Ja), which influences both the electric and magnetic field (equation 4). In contrast to the PT (ϕ),
which is driven by changes in the magnetic field, the RPT (ϕa) is driven by changes in the electric field.
This is crucial for the explanation of opposite directions of the responding axes of the tensors.

3.3. MT Tensors in 2‐D Environments

In this section we add a vertical boundary to our model, which leads to the concept of the TE and TMmode
with currents parallel and normal to the surface of the boundary. In the absence of galvanic sources, the
conservation of electric charge is a fundamental principle explaining the existence of the TM electric field.
The free charge density (qf, C/m

3) arises wherever the conductivity has a gradient (∇σ) and there is an
electric field component in the direction of ∇σ. For a discontinuous change in conductivity from σ1 to σ2,
the conductivity gradient approaches infinity at each side of the boundary and the volumetric free charge
density becomes a surface charge density (τf, C/m

2) confined to the boundary separating the two regions
(Li & Oldenburg, 1991). The surface charge creates a discontinuity in the normal components of the
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electric displacementD and the electric fieldE; it maintains the continuity of the normal component of J and
results in a refraction of the current density at the respective surface. Following Li and Oldenburg (1991):

D2n−D1n ¼ τf (15a)

E2n−E1n ¼ τf
ε

(15b)

J2n−J1n ¼ 0 (15c)

In the case of quasi‐stationary time‐varying EM fields, the charge density changes synchronously (i.e., is
approximately in phase) with the electric field. The time‐varying surface charge distribution on a conductiv-
ity interface is given by Kaufman (1985):

τf tð Þ ¼ t0s σ1−σ2ð ÞEn tð Þ (16a)

t0s ¼ 2ε
σ1 þ σ2

(16b)

En ¼ En1 þ En2

2
(16c)

where En is the averaged normal component of the electric field at a point on the interface and ε is the
electrical permittivity. In the frequency domain (16a) and (16b) can be written as

τf ωð Þ ¼ −2 ϵ
σ2−σ1
σ2 þ σ1

� �
En ωð Þ (17)

A conducting medium beneath the Earth's surface can be considered as piecewise homogeneous, that
is, consisting of different regions of uniform conductivity separated by sharp boundaries, so only

Figure 5. Electromagnetic fields for the anisotropic 1‐D model in Figure 4. Magnitude and phase values for (a) electric
field, (b) magnetic field, and (c) current density at a period of 0.021 s (47 Hz), for Bx excitation (component names in
black letters) and By excitation (green letters). The fields in the x and y directions are visualized as perpendicular depth
slices. The upper and lower boundaries of the anisotropic body between 2‐ and 4‐km depth are marked by two black
circles. The anisotropy directions are indicated by the green (10 Ω m) and black (1,000 Ω m) arrows at 0‐km depth.
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surface charges arise (Kaufman, 1985). The magnetic fields associated with these charges are negligible
because the currents associated with the time‐varying charge are the same order of magnitude as
the displacement currents, which are neglected in the quasi‐stationary assumption for MT (Jones &
Price, 1970).

The impact of the vertical boundary and associated charges on the new tensors is investigated using a 2‐D
plate model consisting of a 2‐km‐thick conducting plate (10 Ω m) at 2‐km depth, which is surrounded by
a 1,000 Ω m half‐space. The plate is extended to infinity in the x direction and in the negative y direction
(Figure 6a). An accurate representation of the EM fields and associated charges requires the discretization
of the model to be exceedingly fine (Figure 2b).

Ua, ϕa, and ϕ are shown at four sites (Figure 6b) along a profile across the vertical boundary (Figure 6a, lower
plot). For the shortest periods (0.001–0.01 s) the responses indicate a uniform half‐space. From 0.021 to 1 s,
Site A approximates a 1‐D situation, while Sites B, C, and D show strong 2‐D effects, which manifest in a sig-
nificant split between the major and minor axes of Ua, ϕa, and ϕ. For the RT and the PT the major axes are
perpendicular and the minor axes are parallel to the plate boundary; for the RPT it is the opposite. In the
period range between 0.1 and 1 s the minor axes of the RPT at Sites C and D take highly negative values,
while the major axes are still positive. This coincides with PT major axes above and minor axes below 45°,
respectively. With increasing period both principal axes of the PT drop below 45°. Due to the centering of
the RPT at 0°, there is an abrupt change in the direction of the minor and the major axes at ~5 s, because
here the absolute value of the negative axes (perpendicular to the boundary) becomes larger than the value
of the positive axes (parallel to the boundary). For periods between 2.1 and 100 s, 2‐D effects are also
observed at Site A. Below 10 s both principal axes (at all sites) of ϕa and ϕ are smaller than 0° and 45°, respec-
tively. Toward the longest periods, Ua, ϕa, and ϕ again approximate a uniform half‐space, except for Ua at
Site A where the tensor split persists.

3.3.1. Tensors, Fields, and Charges in the TM Mode
In Figure 7, the magnitudes and phases of themagnetic, electric, and current density fields at a period of 0.1 s
are shown for the TM mode related to the plate model in Figure 6. In this mode the magnetic fields are
parallel to the plate boundary (Bx) and electric fields cross the boundary (Ey). The latter results in induced

Figure 6. Results for a simple 2‐D plate model. (a) Section of the inner part of the model. The plate is 2 km thick, its top
is at 2 km depth, and it extends to infinity in the x direction and negative y direction. The location of four observation
sites is marked along a profile in y direction (a:−4 km, b:−1 km, c: 1 km, and d: 4 km). (b) Theoretical response for the RT
(Ua), RPT (ϕa), and conventional PT (ϕ). The highlighted period is related to the fields shown in Figures 7 and 9.
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galvanic currents with horizontal and vertical components (Jy, Jz). In Figures 7a and 7c, the streamlines of
the electric field and the current density, plotted on top of the magnitudes, illustrate how the currents are
concentrated in the conducting plate at the upper and vertical boundaries. To maintain the continuity of
the normal component of J, surface charges build at the vertical boundary. The boundary therefore
resembles a charged plane, involving a secondary electric field with components in the y and z directions.
The magnetic field in the TM mode is more homogeneous and has no vertical component, consistent with
the assumption that the magnetic field related to the boundary charges is negligible. The horizontal
magnetic field phase (ϕBx) at the surface is 0° and complicated near the conducting anomaly. The electric
field phase (ϕEy) changes at and across the plate boundary surfaces and therefore causes differences in ϕ
and in ϕa for sites above and next to the conductor.

The magnetic field (Bx) at the surface is constant along the y axis, but the electric field (Ey) decreases with
depth for sites above the conductor. While the behavior of the fields beneath Site A resembles that within
a 1‐D half‐space, only the magnetic field component shows a decay governed by the underlying depth‐
dependent resistivity. The magnitudes and phases of the electric and current density field components are
strongly influenced by the charges on the vertical boundary. For ϕa, these variations result in highly negative
minor axes perpendicular to the plate boundary (and coincidentally large major axes for the TEmode) in the
respective period range between 0.1 and 1 s. The effects are also observed by PT values below 45°, but they
are distinctly less significant.

The surface charge density (τf) according to (17) is presented at the surfaces of the plate for two different tar-
get periods (Figure 8a). As the fields pass from a resistor to a conductor, the sign of τf is negative. Depending
on the period‐dependent penetration depths, the charges are dominant on the upper edge for 0.021 s and at

Figure 7. Magnitudes and phases of the EM fields at a period of 0.1 s in the TM mode for the 2‐D plate model from
Figure 6. (a) Electric fields (Ey and Ez) and streamlines. (b) Magnetic fields (Bx and Bz). (c) Current density (Jy and Jz)
and its streamlines. There are significant vertical Ez and Jz but no Bz (no tipper vectors).
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the upper and lower edges for 0.21 s. On the upper and lower plate surfaces, charges accumulate close to the
edges but they decrease quickly with increasing distance from the vertical boundary. In Figure 8b the period‐
dependent charge accumulation is shown at six different locations (A–F) on the plate boundary. At the upper
edge there is a maximum of the charge density at 0.021 s and at the lower edge at 0.21 s (Figure 8a). At A, 2
km from the vertical boundary, the charge density is small at all periods. For periods longer than 0.21 s, τf
decreases at all points on the plate and vanishes for the longest periods. These findings imply that the
observed tensor responses in the TM mode are highly influenced by charge accumulation in the period
range from 0.001 s to approximately 100 s.

3.3.2. Tensors and Fields in the TE Mode
In the TE mode the electric (Ex) and current density fields (Jx) are parallel to the vertical plate boundary so
charges do not build up and the observed effects are similar to 1‐D induction above different subsurface con-
ditions. The EM fields have different penetration depth depending on the location along the y axis. The TE
mode includes a vertical magnetic field (Bz) but Bz is not directly related to any charges at the vertical bound-
ary. The magnitudes and phases of the E, B, and J components are shown (Figure 9) for the TE mode for a
period of 0.1 s. The magnitude of the electric field (Ex) at the surface above the plate is decreased and that of
the magnetic field (By) is enhanced due to the currents accumulated at the upper plate boundary (Jx). This
leads to a decrease in Ua for the tensor component parallel to the boundary (x direction). For sites above
the resistive half‐space, the magnetic field decreases and the electric field increases. Ua is parallel to the
boundary and therefore increases with increasing distance to the vertical boundary. The electric field phase
(ϕEx) at the surface is larger above the conductor than above the resistor. This links directly to the PT com-
ponent perpendicular to the boundary and the RPT component parallel to the boundary, which are both

Figure 8. Surface charge density (τf) at the boundaries of the 2‐D platemodel from Figure 6. (a) The surface charge density
is visualized at the surfaces of the conducting plate for two periods (0.021 and 0.21 s). As the fields pass from a resistor to a
conductor, the charge density is negative. In general, the charges are dominant on the vertical surface with a
maximum close to the edges. (b) The surface charge density is shown for six points at (a) −2 km, −2 km; (b) −0.05 km,
−2 km; (c) 0 km, −2.05 km; (d) 0 km, −3 km; (e) 0 km, −3.95 km; and (f) −0.05 km, −4 km. The maximal amplitude of
the charge density is dependent on the depth and the period. The plots in (a) are chosen for periods where the
charge density amplitude is maximum at the upper and the lower plate edge, respectively.
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larger above the conductor than beside it. Similar to the 1‐D isotropic and anisotropic cases, the variation in
ϕa is more distinct than in ϕ.

3.4. Conclusions on the Forward Modeling Studies

Each of the components of the CART, Ua , Va, and ϕa , and the phase tensor, ϕ can be represented as
ellipses (cf. Figure 1). The RT quantifies the apparent dissipative behavior of the electric field as it dif-
fuses through the resistive subsurface (Brown, 2016), and for a given period, the tensor is sensitive to
the resistivity in a region below the observation point where most of the electric current is focused.
The RPT (and similarly Va) quantifies an additional spatial dispersion associated with the phase relation-
ships between the electric field and apparent current density. It is represented by an ellipse with a major
axis indicating the horizontal direction of the maximum apparent induction current density, associated
with the horizontal gradient of the resistivity in the region where most of the electric current is focused.
The PT ellipse has similar properties where the direction of its major axis points toward the preferred
flow direction of the induction current, similar to the real part of the vertical magnetic transfer function
(Caldwell et al., 2004).

The results for the 1‐D forward model in section 3.1 demonstrate the high sensitivity of the RT and the RPT
to vertical resistivity gradients, which might improve the ability to resolve thin conductive layers. Period‐
dependent RPT curves can be interpreted like conventional PT curves. Their uniform half‐space value is
0°; phases above 0° imply a transition from a resistor to a conductor, and negative phases occur if the fields
pass into a resistor.

In anisotropic 1‐D environments (section 3.2), the RT principal axes align with the anisotropy directions.
The imaginary part of the CART is sensitive to resistivity gradients and is directly related to the RPT. In

Figure 9. Magnitudes and phases of the EM fields at a period of 0.1 s in the TEmode for the 2‐D platemodel from Figure 6.
(a) Electric fields (Ex and Ez). (b) Magnetic fields (By and Bz) and its streamlines. (c) Current density (Jy and Jz). There
is a strong Bz but no Ez or Jz.
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contrast to the PT, which relates the magnetic to the electric field, the RPT relates the electric field to the
apparent current density vector. As a consequence, the axes of the RPT and the PT, which are sensitive to
the resistivity gradient in the conductive anisotropy direction, are orthogonal. The RPT response is more
pronounced than the PT.

The 2‐D plate model (section 3.3) introduced the tensors in the TM‐ and the TE mode. For the CART and
the RPT, the TM mode relates to the tensor axes perpendicular to the plate boundary and for the PT to
the axes parallel to the plate boundary. For the TE mode it is the opposite. In the TM mode the charges
at the vertical resistivity boundary cause a strong secondary electric field. For a conductive anomaly
this generates negative RPT minor axes, which reflect the high sensitivity of the RPT to horizontal
resistivity gradients.

4. 3‐D Inversion with Apparent Resistivity Tensors

The previous sections demonstrate that the CART (ρa) and the RPT (ϕa) have a high sensitivity to horizontal
and vertical resistivity gradients. This might be of benefit in 3‐D inversion schemes, especially for the resolu-
tion of horizontal and vertical boundaries. To test this hypothesis, the new tensors were incorporated into
the 3‐D inversion code ModEM (Kelbert et al., 2014). The focus of this study is the comparison with the
MT response tensor (Z) and PT (ϕ) inversion results for the well‐investigated synthetic 3‐D oblique conduc-
tor model (Ledo, 2006; Tietze et al., 2015).

4.1. ModEM Adaption, Inversion Setup, and Data Errors

The ModEM inversion software (Kelbert et al., 2014) is based on a nonlinear conjugate gradient algorithm,
which minimizes the penalty function ψ = ψd+λψm, where ψd is the data regularization term, ψm the model
regularization term, and λ the trade‐off parameter (Egbert & Kelbert, 2012).

Besides including the calculation of the forward response, it is necessary to include the calculation of the
data sensitivities for the new tensors, that is, the change in the theoretical response with respect to changes
in themodel resistivity. Similar to the calculation of PT sensitivities (Patro et al., 2013; Tietze et al., 2015), the
sensitivity calculations for Ua, Va, and ϕa can be accomplished using a linear combination of the MT
response tensor sensitivities and the derivatives of Ua, Va, or ϕa with respect to the real and imaginary com-
ponents of Z (Uij and Vij, ij= 1,2). The sensitivities, with respect to the electric field on the model grid (e), are
calculated using the chain rule (Tietze et al., 2015):

∂χij
∂e

¼ ∂χij
∂Zij

∂Zij

∂e
¼ ∂χij

∂Uij

∂Uij

∂e
þ ∂χij
∂Vij

∂Vij

∂e
; (18)

where χ represents either Ua or Va or ϕa. A detailed derivation of the sensitivities is given in Appendix B.

The oblique conductor model is composed of a regional 2‐D structure, represented by two quarter spaces of
500 and 50Ωmand an oblique 3‐D structure of 5Ωm (Figure 10a). The quarter spaces are located in a depth
range between 0.1 and 71 km; the conductor is rotated by 45° from the x axis; it has a dimension of 9 × 9 × 30
km3 and is located at 2.56‐kmdepth. Themodel is covered by a 100‐m‐thick layerwith a resistivity of 100Ωm.

For comparison with existing results, the forward response, which served as input to the inversion, was cal-
culated using the ModEM forward solver. The inner model domain had a horizontal extension of 50 × 50
km2 and was discretized by a 1 km × 1 km mesh. In the outer model, the horizontal mesh element size
was increased by a factor of 1.2, until a total model size of 500 km was reached. In the vertical direction
the surface cell size was 0.02 km and was increased by a factor of 1.2 to a depth of 500 km. The inner model
used for the forward calculation is shown in Figure 10b. Subsequently, the forward response was calculated
for a site array of 10 × 10 sites with a site spacing of 4 km (Figure 10a). The forward response is shown
(Figure 11) for Ua, Va, ϕa, and ϕ at all sites for three representative periods (0.1, 1, and 100 s). At 0.1 s the
tensors mainly indicate a 1‐D situation, but 2‐D and 3‐D effects are already present with clear splits in the
principle axes of Va and ϕa. Ua demonstrates distinctly the different resistivity values above the two quarter
spaces. The responses at 1 s are dominated by 2‐D and 3‐D effects, while for 100 s the horizontal 2‐D struc-
ture becomes dominant for the entire data set. Prior to inversion, Gaussian noise was added to the synthetic
data, in accordance with the definition of the data errors.
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The inversion grid was chosen to be the same as for the forward model, except for the horizontal cell spacing
in the inner model, which was set to 2 km (Figure 10c).

For field data, it is convenient to calculate tensor errors using the delta method (Efron, 1982) under consid-
eration of the error covariance (Booker, 2014). Nevertheless, for this study we followed Tietze et al. (2015)
and Miensopust (2017) and defined the data errors relative to the individual tensor amplitudes. We set the
errors to 3% of |ϕij| and 3% of |ϕa,ij| in combination with a floor of 0.03 for PT and RPT. MT response tensor
errors were set to 3% of |Zij| in combination with a floor of 3% of |Zxy × Zyx|

1/2. Finally, the errors for Ua and
Vawere defined to be 3% of |ρa,ij|. Several empirical inversion tests yielded an optimal error floor of 5Ωm for
both, Ua and Va.

4.2. Inversion Results

We used a covariance smoothing of 0.3 in x, y, and z directions and present inversion results from a starting
model of 100Ωm. The influence of the startingmodel on the inversion results is directly related to themodel
regularization scheme, which in the case of ModEM is based on differences between the current model and
the a priori model (e.g., Siripunvaraporn & Egbert, 2000). This is important, especially for the PT and the
RPT inversions, which lack information about absolute resistivity values. Tietze et al. (2015) concluded that
inversion results are most accurate if the prior model resistivity is close to the regional average of the subsur-
face resistivity. Further tests concerning the prior model are not part of this study.

The inversion results are shown (Figure 12) for five different inversion input parameters: MT response ten-
sor (Z), CART (ρa), PT (ϕ), RPT (ϕa), and a joint inversion between RT (Ua) and RPT. The inversion of ρawas
implemented by performing a joint inversion of Ua and Va.

The results are presented for five different depth slices (0.05, 0.9, 2.8, 5, and 15 km) and a vertical profile in
the strike direction of the conductor (Figure 12). The PT inversion is similar to the result from Tietze et al.

Figure 10. Three‐dimensional resistivity model. (a) Geometry, resistivity (left), and site array (right). (b) Finite differences
(FD) mesh with resistivity values for the calculation of the forward response in ModEM. The mesh is shown for the
inner part of the model and only at selected surfaces. (c) Inner part of the FD mesh used for the inversion in ModEM.
The mesh is very fine at the surface and becomes coarser with depth. In the horizontal direction the grid is a factor of
2 coarser than the forward calculation grid. The resistivity of the starting model is 100 Ω m.
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(2015) with a 100 Ω m prior model and no vertical magnetic field transfer functions. As our focus is on the
conductive anomaly, we show our results in a smaller resistivity range.

The inversion results are all very good, and all parameters converged to the target RMS of 1.00. Nevertheless,
there are differences in the models. The RPT and PT inversions both have difficulties in reproducing the
resistive quarter space, most obviously in the case of the RPT inversion. Here, the lack of information about
the absolute resistivity causes the inversion algorithm to generate a conductor close the surface (the upper
left part of the model space) to reproduce the resistivity gradient observed in the RPT and PT responses.
The high sensitivity of the RPT seems to enhance this effect. With regard to the resolution of the conductor,
the RPT yields a slightly more homogeneous response with a stronger contrast to the 50 Ωm quarter space,
but the differences are very small. For an inversion with the MT response tensor (Z), the quarter spaces are

Figure 11. Responses from the forward calculation with ModEM. The RT (Ua), imaginary part of the CART (Va), RPT
(ϕa), and conventional PT (ϕ) are shown for three periods, 0.1, 1, and 100 s.
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well resolved, but the upper surface of the conductor (2.8‐km depth) is not well defined. This is better for the
inversion using ρa, but here the 50 Ωm quarter space at depth (15‐km slice) produces resistivity values that
are too high. The resolution of the lower boundary of the conductor is more distinct for an inversion on ρa
compared with one on Z. This can be seen in the vertical profile, where the distinction between the
conductor and the underlying quarter spaces is closer to a horizontal boundary for the inversion with ρa.
On the other hand, the thickness of the conductor is underestimated by the inversion with ρa; this
coincides with an underestimation of the absolute resistivity value of the conductor so producing a
conductance close to the true conductance value. The CART results are in good agreement with the
stronger response to horizontal boundaries for ρa compared to ρa,Z (section 3.1).

Figure 12. Inversion results from a starting model of 100 Ω m. The left column shows the original model, and the other columns show results for inversions
with different input parameters. The rows contain the model resistivity at different depths slices and along a vertical depth section whose location is indicated
by the dashed line.
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The best inversion result is achieved by a joint inversion of Ua with ϕa. The quarter spaces are reproduced,
the boundaries of the conductor are well defined (vertically and horizontally), and the location of the lower
boundary is in very good agreement with the true model. Here, the strong response to horizontal boundaries
in the amplitude information in Ua complements the high sensitivity of ϕa to vertical resistivity boundaries
(section 3.3).

The quality of each inversion is expressed by Lρ, that is, the differences between the logarithmic resistivities
of the inversion model (ρinv) and the true model (ρtrue):

Lρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
log10 ρinv;i

� �
− log10 ρtrue;i

� �� �2
N

vuuut
(19a)

with i = 1 : N for inversion cells located in the inner (50 × 50 × 80 km3) model domain. It yields a value of
0.316 in case of the inversion for Ua together with ϕa, which is superior to the results from Z (0.344), ρa
(0.344), ϕ (0.384), and also ϕa (0.425).

A visual interpretation of the inversion results (Figure S4 in the supporting information) demonstrates the
deviation of the inversion models (ρinv) from the true model (ρtrue) for each inversion cell by calculating:

Δρ ¼ log10 ρinvð Þ− log10 ρtrueð Þ
log10 ρtrueð Þ ·100 (19b)

The inversions were calculated on a server with 2 CPUs (12 cores at 2GHz) and 96‐GB internal memory.
Computation times ranged between 20 hr for an inversion on Z and 27 hr for ρa. The convergence perfor-
mance and count of nonlinear conjugate gradient iterations of the different input parameters demonstrates
(Figure 13) that an inversion on Z is more efficient than all other inversion parameters. ModEM offers sev-
eral methods for tuning the inversion process, and the default settings are optimized for an inversion on Z.
Nevertheless, the convergence of the new tensors is good and there may be room for improvement in
the future.

The visualization of the tensor misfit (Figure 14) is similar to that of Cembrowski and Junge (2018), who fol-
low Booker (2014) by taking the absolute difference between the observed (χobs, inversion input) and the pre-
dicted (χpred, inversion output) tensors (χ = Ua,Va, ϕa,or ϕ). Here, we show the differences of the tensor
principal axes magnitude (χmax, χmin) and the difference in the magnitude of the rotation angle (α − β).

Figure 13. The left plot shows the number of nonlinear conjugate gradient iterations for the five different inversion
approaches. The inversion with the MT response tensor (Z) is most efficient and takes less than 30 iterations. ϕa and ϕ
are equally efficient (32 iterations), the inversions for Ua with ϕa and for the CART (ρa) take the longest (40 and 41
iterations). The right plot shows the convergence performance for the five approaches.
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The color of the circles indicates the misfit of the rotation angle. A green color denotes 1‐D situations where
the direction of the tensors is arbitrary. By definition, this is the case if ϕmax− ϕmin < 5°, ϕa,max− ϕa,min < 5°,
or Ua,max − Ua,min < 0.03 · Ua,max. The radius of the circles marks a relative error of 5% in case ofUa and Va

and an absolute error of 5° in the case of ϕ and ϕa. The bars within the circles are scaled to the individual

Figure 14. Tensor deviations between responses from the inversion model and input data. The color of the circles
indicates the misfit of the rotation angle (α − β). The green color denotes 1‐D situations where the direction of the ten-
sors is undefined. The radius (r) of the circles marks a relative error of 5% in the case ofUa andVa and an absolute error of
5° for ϕ and ϕa. The bars within the circles are scaled to the individual tensor axes errors (vertical bars: major axis,
horizontal bars: minor axis). Horizontal or vertical bars crossing the circles imply errors larger than 5% or 5°, respectively.
The misfit plots of Ua and ϕa refer to the joint inversion of Ua and ϕa and the plots of Va to the inversion on ρa.
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tensor axes errors (vertical bars: major axis, horizontal bars: minor axis). Hence, horizontal or vertical bars
crossing the circles imply errors larger than 5% or 5°, respectively. The fit is shown at three periods (0.1, 1,
and 100 s) and refers to the joint inversion ofUa and ϕa, the inversion of ρa (Va is shown), and the inversion
of ϕ. The overall fit is very good and is mostly restricted to slight deviations in the major axis direction and
some major axis errors for Va at 1 s exceeding 5%. In addition, the inversion responses are shown in the sup-
porting information (Figure S5) and can be directly compared with tensors in Figure 11.

The previous results show a distinct improvement in resolving the boundaries of the conductive anomaly
using the new tensors. Nevertheless, there are several aspects that need to be investigated in future work,
such as more complex canonical models with two overlying conductors to explore the resolution of their
upper and lower boundaries. There is the application to real (noisy) data sets and the incorporation of the
distortion theory in Brown (2016) with the associated possibility of variable background resistivity for opti-
mized starting models. In addition, the utility of including vertical magnetic transfer functions in a joint
inversion with Ua and ϕa or exclusively ϕa needs to be tested.

5. Conclusions

We have introduced the complex apparent resistivity tensor (CART, ρa) and its associated apparent resistiv-
ity tensor (RT, Ua) and resistivity phase tensor (RPT, ϕa) in multidimensional environments. The tensors
provide insight into the complex apparent resistivity distribution of an MT data set. We showed by reference
to a 1‐D model that the RT and the RPT have a stronger response to vertical resistivity gradients than the
conventional apparent resistivity and phase. In anisotropic environments, Ua provides information about
the direction of the principal axes and corresponding resistivity. In higher dimensional environments, ver-
tical boundaries become significant. This was demonstrated for a 2‐D plate model with a study of the EM
fields in the TM‐ and the TE mode. In the TM mode charges at the vertical surface generate a strong RPT
response, which makes it a suitable measure for horizontal resistivity changes. The new tensors bring a sig-
nificant improvement to the interpretation of MT data, as they provide a compact and comprehensive
method to visualize amplitude and phase information contained within the commonMT transfer functions.
The distinct response to resistivity contrasts, especially for the RPT, allows for immediate conclusions on
subsurface structures and dimensionalities, prior to computationally expensive inversions. They also facili-
tate the selection and setup of appropriate modeling/inversion approaches.

The new tensors have been successfully incorporated into the ModEM code for a synthetic inversion study
based on the oblique conductor model (Tietze et al., 2015). All inversion parameters converged successfully
to the target RMS of 1.00 and have a satisfactory fit. Although the MT response tensor (Z) is best in terms of
convergence speed, the speed performance of the new tensors is adequate. With regard to the inversion
model quality, the RPT and PT inversions are hampered when reproducing background resistivity values
(the quarter spaces), especially for the RPT. The comparison between the inversion for Z and the inversion
for ρa revealed advantages for Z when reproducing the quarter spaces but also showed the superiority of ρa
when resolving horizontal boundaries. The best model resulted from an inversion of Ua with ϕa. Here, the
high sensitivity to horizontal and vertical boundaries resulted in an excellent recovery of the oblique conduc-
tor and rendering of the surrounding quarter spaces. Hence, inverting for Ua and ϕa might pose an alterna-
tive to the inversion for Z, although more complex studies have to be realized to test this hypothesis.

Appendix A

The calculation of the tensor ellipse parameters is performed according to Booker (2014, Appendix 1) who
determines the correct quadrant and directions of the principal components by comparing the tensor to a
unit vector that circles clockwise around a unit circle. The proceeding is crucial as the RPT and the imagin-
ary part of the CART feature negative major and/or minor axes.

Applying a tensor χ (representing either Ua,Va, ϕa, or ϕ) to a family of radial vectors c(ω), which circle
clockwise around a unit circle, creates a second family of radial vectors p(ω):
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p ωð Þ ¼ χell c ωð Þ¼ χa 0

0 χb

� �
R ψð Þ c ωð Þ (A1:1)

R ψð Þ ¼ cosψ sinψ

− sinψ cosψ

� �
(A1:2)

Here, χell represents the tensor in a coordinate system aligned with the tensor principal axes and |χa| and |χb|
are the magnitudes of the principal axes. In this study, the polar angle ω indicates the angle to the y axis (east
in MT) and increases from 0 to 360°. The angle ψ is defined as the normalized skew:

ψ ¼ tan−1 χ12−χ21
χ11 þ χ22

� �
(A2)

From (A1.1) it follows that χell is defined as

χell¼
χa 0

0 χb

� �
R ψð Þ (A3)

Then, the tensor in the measurement coordinate system is given by

χ ¼ R θð Þ−1 χa 0

0 χb

� �
R ψð ÞR θð Þ (A4:1)

R θð Þ ¼ cosθ sinθ

− sinθ cosθ

� �
(A4:2)

With θ being the (counterclockwise) angle between the positive y axis (MT east) and themajor principal axis.

In practice, the angle θ can be determined iteratively by finding the angle ω0 so that the vector

p ω0ð Þ ¼ χ c ω0 þ ψð Þ (A5)

is parallel to the vector c(ω0 − ψ) and θ equals ω0.

Further, the magnitudes of the principal axes are calculated from (A4.1) and major and minor axes are
defined as |χa| and |χb|.

The circulation direction of the tensor relative to the unit circle can be derived by computing p(ω) for two
slightly increasing values of ω. Then, the signs of χa and χb are given in dependence of the circulation direc-
tion and the angle ω0 according to Booker (2014, Table 2).

Finally, the angle α between the coordinate axis pointing positive eastward and the tensor major axis is

α ¼ θþ 0:5 ψ (A6)

The skew β is given by

β ¼ 0:5 ψ (A7)

Appendix B

The ModEM inversion code adjusts an a priori model resistivity distribution iteratively until the difference
between the observations and the model theoretical responses reaches a defined minimum value. ModEM
achieves this by using a numerical computation of the change in the real and imaginary parts of each ele-
ment of the period‐dependent observed MT tensor due to a small change in each parameter defining the
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resistivity model at each iteration. A sensitivity (Jacobian) matrix, constructed from these computations, is
used to update the model resistivity distribution for the next iteration. ModEM was modified to calculate
the sensitivity matrix for each of the new tensors using the chain rule method for the calculation of the
PT (Patro et al., 2013; Tietze et al., 2015). This is best achieved using the analytical partial derivative of each
element in a (real) tensor with respect to changes in the real and imaginary parts of each element of the MT
response tensor Z = U+iV.

Real part of the apparent resistivity tensor, Ua

Ua 1;1 ¼ −μ
ω

U1;1V2;2 þ U2;2V 1;1−2U1;2V 1;2
� �

; Ua 1;2 ¼ −μ
ω

U1;1 V1;2−V2;1
� �þ V 1;1 U1;2−U2;1

� �� �

Ua 2;1 ¼ −μ
ω

U2;2 V 2;1−V1;2
� �þ V2;2 U2;1−U1;2

� �� �
; Ua 2;2 ¼ −μ

ω
U1;1V2;2 þ U2;2V1;1−2U2;1V2;1
� �

∂Ua 1;1

∂U1;1
¼ −μ

ω
V2;2;

∂Ua 1;1

∂U1;2
¼ 2μ

ω
V1;2;

∂Ua 1;1

∂U2;1
¼ 0;

∂Ua 1;1

∂U2;2
¼ −μ

ω
V1;1

∂Ua 1;1

∂V1;1
¼ −μ

ω
U2;2;

∂Ua 1;1

∂V1;2
¼ 2μ

ω
U1;2;

∂Ua 1;1

∂V2;1
¼ 0;

∂Ua 1;1

∂V2;2
¼ −μ

ω
U1;1

∂Ua 1;2

∂U1;1
¼ μ

ω
V2;1−V 1;2
� �

;
∂Ua 1;2

∂U1;2
¼ −μ

ω
V1;1;

∂Ua 1;2

∂U2;1
¼ μ

ω
V1;1;

∂Ua 1;2

∂U2;2
¼ 0

∂Ua 1;2

∂V1;1
¼ μ

ω
U2;1−U1;2
� �

;
∂Ua 1;2

∂V1;2
¼ −μ

ω
U1;1;

∂Ua 1;2

∂V2;1
¼ μ

ω
U1;1;

∂Ua 1;2

∂V2;2
¼ 0

∂Ua 2;1

∂U1;1
¼ 0;

∂Ua 2;1

∂U1;2
¼ μ

ω
V2;2;

∂Ua 2;1

∂U2;1
¼ −μ

ω
V2;2;

∂Ua 2;1

∂U2;2
¼ μ

ω
V1;2−V2;1
� �

∂Ua 2;1

∂V1;1
¼ 0;

∂Ua 2;1

∂V1;2
¼ μ

ω
U2;2;

∂Ua 2;1

∂V2;1
¼ −μ

ω
U2;2;

∂Ua 2;1

∂V 2;2
¼ μ

ω
U1;2−U2;1
� �

∂Ua 2;2

∂U1;1
¼ −μ

ω
V2;2;

∂Ua 2;2

∂U1;2
¼ 0;

∂Ua 2;2

∂U2;1
¼ 2μ

ω
V 2;1;

∂Ua 2;2

∂U2;2
¼ −μ

ω
V1;1

∂Ua 2;2

∂V1;1
¼ −μ

ω
U2;2;

∂Ua 2;2

∂V1;2
¼ 0;

∂Ua 2;2

∂V2;1
¼ 2μ

ω
U2;1;

∂Ua 2;2

∂V2;2
¼ −μ

ω
U1;1

Imaginary part of the apparent resistivity tensor, Va

V a 1;1 ¼ μ
ω

U1;1U2;2−V1;1V2;2−U
2
1;2 þ V2

1;2

� �
; V a 1;2 ¼ μ

ω
U1;1 U1;2−U2;1

� �þ V 1;1 V2;1−V1;2
� �� �

V a 2;1 ¼ μ
ω

U2;2 U2;1−U1;2
� �þ V2;2 V1;2−V2;1

� �� �
; V a 2;2 ¼ μ

ω
U1;1U2;2−V1;1V2;2−U

2
2;1 þ V2

2;1

� �
∂V a 1;1

∂U1;1
¼ μ

ω
U2;2;

∂V a 1;1

∂U1;2
¼ −2μ

ω
U1;2;

∂V a 1;1

∂U2;1
¼ 0;

∂V a 1;1

∂U2;2
¼ μ

ω
U1;1

∂V a 1;1

∂V1;1
¼ −μ

ω
V2;2;

∂V a 1;1

∂V 1;2
¼ 2μ

ω
V1;2;

∂V a 1;1

∂V 2;1
¼ 0;

∂V a 1;1

∂V2;2
¼ −μ

ω
V 1;1

∂V a 1;2

∂U1;1
¼ μ

ω
U1;2−U2;1
� �

;
∂V a 1;2

∂U1;2
¼ μ

ω
U1;1;

∂V a 1;2

∂U2;1
¼ −μ

ω
U1;1;

∂V a 1;2

∂U2;2
¼ 0

∂V a 1;2

∂V1;1
¼ μ

ω
V2;1−V 1;2
� �

;
∂V a 1;2

∂V1;2
¼ −μ

ω
V1;1;

∂V a 1;2

∂V2;1
¼ μ

ω
V1;1;

∂V a 1;2

∂V 2;2
¼ 0

∂V a 2;1

∂U1;1
¼ 0;

∂V a 2;1

∂U1;2
¼ −μ

ω
U2;2;

∂V a 2;1

∂U2;1
¼ μ

ω
U2;2;

∂V a 2;1

∂U2;2
¼ μ

ω
U2;1−U1;2
� �

∂V a 2;1

∂V1;1
¼ 0;

∂V a 2;1

∂V1;2
¼ μ

ω
V2;2;

∂V a 2;1

∂V2;1
¼ −μ

ω
V2;2;

∂V a 2;1

∂V2;2
¼ μ

ω
V1;2−V2;1
� �

∂V a 2;2

∂U1;1
¼ μ

ω
U2;2;

∂V a 2;2

∂U1;2
¼ 0;

∂V a 2;2

∂U2;1
¼ −2μ

ω
U2;1;

∂V a 2;2

∂U2;2
¼ μ

ω
U1;1

∂V a 2;2

∂V1;1
¼ −μ

ω
V2;2;

∂V a 2;2

∂V 1;2
¼ 0;

∂V a 2;2

∂V2;1
¼ 2μ

ω
V2;1;

∂V a 2;2

∂V2;2
¼ −μ

ω
V 1;1
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Apparent resistivity phase tensor, ϕa¼U−1
a V a

Φa 1;1 ¼ −K U1;1V 2;2 þ U2;2V1;1−2U2;1V2;1
� �

U1;1U2;2−V1;1V 2;2−U
2
1;2 þ V2

1;2

� ��

− U1;1 V 1;2−V2;1
� �þ V1;1 U1;2−U2;1

� ��
U2;2
�

U2;1−U1;2
� �þ V 2;2 V1;2−V2;1

� ��� �
Φa 1;2 ¼ −K U1;1V2;2 þ U2;2V 1;1−2U2;1V 2;1

� �
U1;1 U1;2−U2;1

� �þ V1;1 V2;1−V 1;2
� ��� �

− U1;1
�

V1;2−V2;1
� �þ V1;1 U1;2−U2;1

� ��
U1;1U2;2−V1;1V2;2−U2

2;1 þ V2
2;1

�� �

Φa 2;1 ¼ −K U1;1V 2;2 þ U2;2V1;1−2U1;2V1;2
� �

U2;2 U2;1−U1;2
� �þ V2;2 V1;2−V2;1

� ��� �
− U2;2
�

V2;1−V1;2
� �þ V2;2 U2;1−U1;2

� ��
U1;1U2;2−V1;1V2;2−U2

1;2 þ V2
1;2

�� �

Φa 2;2 ¼ −K U1;1V2;2 þ U2;2V1;1−2U1;2V1;2
� �

U1;1U2;2−V1;1V2;2−U2
2;1 þ V2

2;1

�� �

− U2;2
�

V2;1−V1;2
� �þ V2;2 U2;1−U1;2

� ��ðU1;1 U1;2−U2;1
� �þ V 1;1 V2;1−V1;2

�� ��
K ¼ 1

det Uað Þ ¼
1

H Ui;jV i;j
� �

The term K is therefore a function (only) of the real and imaginary parts of Z so that expressions for the par-
tial derivatives of ϕa must be calculated using the quotient rule for differentiation. The partial derivative of,
for example, ϕa 1,1 with respect to U1,1 may be written as F′ = (HG′ − GH′)/H2 for F = G/H, where G and H
can be written as (ax+b)(cx+d) − (ex+f)(gx+h), a,b,c,d,e, f, g, and h are constants, and x = U11.The partial
derivatives of G and H are 2(ac − eg)x+(ad+bc − eh − fg). The calculation of the partial derivative of
ϕa 1,1 proceeds as follows:

G ¼ U1;1V2;2 þ U2;2V 1;1−2U2;1V 2;1
� �

U1;1U2;2−V1;1V2;2−U
2
1;2 þ V 2

1;2

� �

− U1;1 V1;2−V2;1
� �þ V 1;1 U1;2−U2;1

� �� �
U2;2 U2;1−U1;2

� �þ V2;2 V1;2−V2;1
� �� �

a ¼ V2;2; b ¼ U2;2V1;1−2U2;1V2;1; c ¼ U2;2; d ¼ −V1;1V2;2−U2
1;2 þ V2

1;2

e ¼ V 1;2−V2;1; f ¼ V1;1 U1;2−U2;1
� �

; g ¼ 0; h ¼ U2;2 U2;1−U1;2
� �þ V2;2 V1;2−V2;1

� �
G′ ¼ 2 ac−egð Þx þ adþ bc−eh−fgð Þ ¼ 2V 2;2U2;2U1;1 þ V2;2 −V1;1V2;2−U2

1;2 þ V2
1;2

� �

þ U2;2V1;1−2U2;1V2;1
� �

U2;2− V1;2−V2;1
� �

U2;2 U2;1−U1;2
� �þ V 2;2 V1;2−V2;1

� �� �
H ¼ U1;1V2;2 þ U2;2V1;1−2U1;2V1;2

� �
U1;1V2;2 þ U2;2V1;1−2U2;1V2;1
� �

− U1;1 V1;2−V2;1
� �þ V 1;1 U1;2−U2;1

� �� �
U2;2 V2;1−V1;2

� �þ V 2;2 U2;1−U1;2
� �� �

a ¼ V2;2; b ¼ U2;2V1;1−2U1;2V1;2; c ¼ V2;2; d ¼ U2;2V1;1−2U2;1V2;1

e ¼ V1;2−V2;1; f ¼ V1;1 U1;2−U2;1
� �

; g ¼ 0; h ¼ U2;2 V2;1−V1;2
� �þ V2;2 U2;1−U1;2

� �
H ′ ¼ 2 ac−egð Þx þ adþ bc−eh−fgð Þ ¼ 2V 2

2;2U1;1 þ V2;2 U2;2V1;1−2U2;1V2;1
� �

þ U2;2V1;1−2U1;2V1;2
� �

V2;2− V 1;2−V2;1
� �

U2;2 V2;1−V1;2
� �þ V2;2 U2;1−U1;2

� �� �
∂ϕa 1;1

∂U1;1
¼ HG′−GH′

H2

B1. Tensor Element Errors

The sensitivities of the tensor elements above are prerequisites for the calculation of their errors from errors
in MT tensor observations. A preliminary study of 3‐D models indicates that assuming that covariance
between the real and imaginary MT tensor elements is zero, errors estimated for Ua and Va tensors may
be >20% larger than errors estimated using the full covariance in the delta method; they are often much lar-
ger for ϕa and ϕ tensors.
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