
ANaN — ANalyse And Navigate

Debugging Compute Clusters with Techniques from Functional Pro-
gramming and Text Stream Processing

Alexander Adler1,∗ and Udo Kebschull1,∗∗

1Goethe-Universität Frankfurt

Abstract. Monitoring is an indispensable tool for the operation of any large
installation of grid or cluster computing, be it high energy physics or elsewhere.
Usually, monitoring is configured to collect a small amount of data, just enough
to enable detection of abnormal conditions. Once detected, the abnormal condi-
tion is handled by gathering all information from the affected components. This
data is processed by querying it in a manner similar to a database.
This contribution shows how the metaphor of a debugger (for software applica-
tions) can be transferred to a compute cluster. The concepts of variables, asser-
tions and breakpoints that are used in debugging can be applied to monitoring by
defining variables as the quantities recorded by monitoring and breakpoints as
invariants formulated via these variables. It is found that embedding fragments
of a data extracting and reporting tool such as the UNIX tool awk facilitates con-
cise notations for commonly used variables since tools like awk are designed to
process large event streams (in textual representations) with bounded memory.
A functional notation similar to both the pipe notation used in the UNIX shell
and the point-free style used in functional programming simplify the combina-
tion of variables that commonly occur when formulating breakpoints.

1 Introduction

Large-scale computation is indispensable, not only in high energy physics, but also in many
other fields of physics, in fact in most fields of science. To simplify matters for users (i. e., sci-
entists using computers in order to solve scientific or engineering problems) of such compute
clusters, the users are not simply presented with bare computers. Rather, there are patterns
(see, e. g., [1] for a common approach) of operating setups and software frameworks that
enable users to spend more time thinking in the domain of their particular scientific problem
and less time thinking in terms of general programming or system administration. Therefore,
someone who is not identical to the user has to deal with issues of

1. setting up the cluster (operating system; user accounts; software packages in common
use; site-specific software)

2. operating the cluster (ensuring most or all machines are actually running; network
availability; patching operating system and other software; dealing with hardware up-
grades; backup).

∗e-mail: aadler@iri.uni-frankfurt.de
∗∗e-mail: uk@rz.uni-frankfurt.de

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 01041 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501041

Together, these two tasks enable correct and efficient behaviour of the cluster. Although
correctness and efficiency are intertwined, simply put, proper setup leads to correct, but not
necessarily efficient behaviour, whereas proper operation should aim at optimising efficiency
without harming correctness.

Although both tasks are seemingly only necessary at the initial commissioning stage of
the cluster, they remain relevant to a smaller degree throughout the cluster’s operation. Sys-
tems that log information about (lack of) correct and/or efficient operations are called moni-
toring software. A broad overview is given in [2].

Often, there is a trade-off in terms of which and how much data to collect: if too little
data is collected, no sensible conclusion can be drawn. If, on the other hand, too much data
is collected, the very process of collecting, transmitting, storing or processing large amounts
of data interferes with the cluster’s workload — observing the system changes the system in
adverse ways (sometimes dubbed “Heisenbug”, see e. g. [3]).

Monitoring is a relatively static tool; after having decided on the variables to be moni-
tored, changes in the frequency and precision of measurement require more than single-click
actions. In fact, monitoring is not typically used as an interactive tool, but rather as a means
of gathering data for later scrutiny. Therefore, the mode of interaction with monitoring is
more similar to querying a database with past information than to inspecting a live system.

Finally, there are monitoring solutions that are ready to use in a matter of minutes. But
since typical installations consist of many moving parts, significant changes can be required
for production use, thereby negating all advantages of simple (initial) deployment.

These observations about monitoring mean: Once a user or the monitoring system notice
degradation in correct and/or efficient operation, the first step includes looking at the data
stored by monitoring. If this doesn’t yield sufficient information for implementing an im-
provement strategy, monitoring — an often complicated subsystem with custom changes and
configurations — needs to be changed in order to collect more relevant data. In plain terms:
The cluster’s operator burns to get numbers about what’s happening on the nodes instantly,
but he/she has to fiddle with monitoring! The proposed solution is a software dubbed “cluster
debugger”:
Definition. A cluster debugger is a tool for interactive introspection of data similar to that
collected by monitoring and for interaction with nodes based on the outcome of that intro-
spection. It does not necessarily introduce new capabilities relative to monitoring, instead,
it caters to improved interactivity: The path between proposing a theory explaining the un-
wanted behaviour and finding evidence in favour or against the theory should consist of a few
keystrokes at most.

1.1 Existing work

To the best of the authors’ knowledge, there is no tool with the precise purpose of debugging
a compute cluster. Anecdotally, a cluster debugger would have been of some use in certain
situations that relate either to setup or maintenance of a cluster. Therefore, reviewing the state
of the art has to focus on the two areas:

• setting up compute clusters

• general monitoring of information technology

General monitoring. A very extensive list featuring over 700 entries is hosted at the
website of the SLAC National Accelerator Laboratory [4]. Most of these software packages
come with complete documentation. The list dates back to the year 1996. The number
of competing packages and the age of this branch of software makes it very plausible that
monitoring is a mostly solved problem.

2

EPJ Web of Conferences 245, 01041 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501041

Setting up compute clusters. There are many tools for provisioning computers. Since ev-
ery site has slightly different requirements and a basic provisioning tool can be developed in a
few hours, new tools appear regularly. A detailed overview of the most popular orchestration
and provisioning tools can be found in [5].

These two sets of tools are complementary: Monitoring is non-interactive, based on fixed
configurations, and mostly useful after the initial setup. Conversely, orchestration has more
interactive aspects (e. g., as a reaction to unexpected status message of the progress report, ad-
hoc commands can be supplied), based on often-changing configuration or ad-hoc commands,
and mostly used to perform the initial setup.

The cluster debugger has to supplement both sets of tools: It adds interactivity in order to
deal with issues in deployment (initial setup) and operation (optimisation).

A similar idea appears when considering debuggers for software on single machines:
Adding print statements at well-chosen points is very easy, tracing the execution of a pro-
gram’s relevant parts. On the other hand, this foregoes all interactivity that a symbolic de-
bugger like gdb offers. This interactivity is a major advantage of symbolic debugging, which
is a leading reason for the ongoing existence of symbolic debuggers. (The author found at
least one symbolic debugger for each of the 20 leading programming languages listed on the
TIOBE index as of January, 2020.)

A lot can be accomplished by “print debugging”, although symbolic debugging (anec-
dotally) improves on that by adding interactive and introspective capabilities. On a similar
note, it is expected that a more interactive monitoring tool adds to the capabilities of classical,
non-interactive monitoring, yielding a tool similar in spirit to symbolic debuggers.

2 ANaN — ANalyse And Navigate

We present the cloud debugger ANaN. It is a software tool that tries to achieve the following
properties:

• be easy to deploy to any Linux system (as high performance computing focusses on Linux)

• be reasonably easy to port to non-Linux, but POSIX-compliant systems

• interfere as little as possible with the system under consideration, ideally not at all (which,
clearly, is impossible)

• enable powerful interaction with the systems under consideration

• be as easy to operate as possible

• be extensible by native libraries

To enable this, several software tools and techniques have been applied.
Choice of implementation language. The language Lua 5.3 was chosen. Lua is a multi-
paradigm scripting language that is particularly light-weight; the full distribution weighs less
than 20 000 lines of code. The small size is hoped to lead to a small memory footprint. The
implementation language is the subset of C89 that also compiles as C++, therefore giving
access to a rich set of libraries. The syntax and semantics of Lua are similar to other “script-
ing” languages, although not identical. It is therefore hoped that a casual user should be able
to rapidly learn how to write tiny snippets of Lua code (mostly single expressions or single
statements) in order to operate ANaN. Lua’s parser can be used to deserialise large strings
into data structures relatively fast (according to [6], Lua’s original use case was configura-
tion of scientific software, which necessitates a not-too-slow parser that can deal with deeply
nested structures); there are sufficiently fast libraries for serialising Lua data structures into its
textual format. Therefore, Lua’s syntax for literal structures (strings, integers and structured
data types) was chosen for the wire format.

3

EPJ Web of Conferences 245, 01041 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501041

Functional Programming [7, 8]. This is a programming paradigm that focuses on the
mathematical notion of a function — a side-effect free computation — and views program-
ming as the composition of functions. Sharing of mutable state is either impossible or needs
at least to be made explicit.

The original plan for ANaN didn’t call for any functional techniques. After a phase of
experimentation, a powerful class of data sources (“AWK sensors”; to be introduced in the
next paragraph) was found to be most useful when no or only minimal state was changed
during collection of data. Furthermore, concatenations of tiny code snippets were found to
be a flexible toolbox for evaluating sensor data. The first observation led to further inquiry
into programming techniques; the second observation led to the UNIX pipe operator which
directs one program’s output into the next program’s input. Both observations together make
a strong point for functional techniques.
AWK. According to the POSIX programmer’s manual[9], AWK is a “pattern scanning and
processing language”. The previous paragraph’s AWK sensors are loosely modelled after
AWK, especially its general mode of operation:

• execute all BEGIN code blocks

• process the given list of files, and for each (generalised) line of each file do:

– split the line into tokens
– if the line matches a given pattern, execute the corresponding action

• execute all END code blocks

• return data gathered during execution

In fact it was found that all data sources (“sensors”) that have been implemented or
planned prior to the implementation of AWK sensors can be implemented as AWK sen-
sors, most of them using less code. Although the above outline shows many building blocks
for AWK sensors, sensible defaults make almost all of them optional. It is found that typical
AWK sensors use only two or three of the building blocks. A simple AWK sensor can be con-
structed ad-hoc at the command line; conversely, the behaviour of most short AWK sensors is
simple and predictable. Therefore, AWK was chosen as the paradigm for the construction of
sensors. In fact, all other types of sensors have been removed and replaced by corresponding
AWK sensors.

AWK is not a functional programming language by any standard: Actions are allowed to
create and mutate state. But most AWK sensors used so far don’t mutate state, or could be
changed not to do so, albeit using more computation time and network capacity as a result. It
is unclear if a modified language for AWK sensors would lead to purely functional sensors,
or how this modification would need to be performed.

2.1 Architecture

Overview. This briefly lists the main components and architectural decisions taken for the
implementation of ANaN; see also figure 1. Each statement is explained in more details in
the subsection Rationale.

1. ANaN consists of the two programs anan and anand: a debugger and a demon pro-
gram. The debugger is the interactive tool. The demons run on each system under
consideration.

4

EPJ Web of Conferences 245, 01041 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501041

anand

sensor1,1

...

sensor1,n

application
software
system1

· · ·

anand

sensork,1

...

sensork,n′

application
software
systemk

anan

Figure 1. Overview of ANaN: Many systems run anand besides the main applications; each instance
of anand executes a set of sensors; configurations and results are communicated to a central instance
of anan.

2. Every demon is configured with zero or more sensors. A sensor is a small algorithm
(see the previous discussion of AWK sensors) that gathers information. Each sensor is
run approximately every second.

3. The debugger presents the resulting time series as variables. The debugger also has
basic facilities to combine (e. g., correlate) and post process variables.

4. Breakpoints which act on the value of a variable can be defined. A breakpoint can
have one or more associated watch lists: Lists of variables whose values are stored
into circular buffers. After the breakpoint fires, the past watched values leading to the
breakpoint are available for introspection. Additionally, a few more values are stored
in the buffer.

5. Sensors are formulated in an analogous way to AWK scripts. In place of AWK, the
language for statements and expressions is Lua 5.3. Both anan and anand have run-
control files init.lua which are executed at each start. They can be used to load
additional modules for sensors and for use in the debugger.

6. The debugger is a command-line tool. The user communicates with it via Lua com-
mands.

Rationale. Here, each of the details listed in the Overview is motivated and compared to
possible alternative implementations or techniques. Each numbered paragraph corresponds
to the paragraph given there.

1. There has to be at least one place that sees all the data which is to be presented to the
user. The program anan does this. It also implements the user interface. Additionally,
each system under consideration needs to run some software that communicates the
necessary information to anan. This is implemented as the separate program anand.
An alternative would use persistent connections via ssh or similar. Although virtually
every system exposes ssh in some way, it was considered unwise to depend on this
service because it can be (and often is) configured in complicated ways which may
necessitate more configuration ANaN. Furthermore, ssh is critical for the cluster’s

5

EPJ Web of Conferences 245, 01041 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501041

operation, and the possibility of ANaN degrading this service can never be completely
excluded.

2. The frequency of about one evaluation per second was chosen as a compromise be-
tween overloading the systems under consideration (by gathering more often) and miss-
ing interesting events (by gathering more rarely). Since a typical sensor does only very
little file input/output and little computation, even this relatively high frequency (more
typical frequencies are once every 10 or 60 seconds) shouldn’t have too much of an im-
pact. The waiting is implemented by a call of sleep(1.0). Although this makes the
frequency slightly imprecise, it also prevents anand from cannibalising the machine’s
resources, as long as the sensors don’t run for prolonged time.

3. The facilities mostly follow the MapReduce paradigm [10]: Each variable can be trans-
formed algorithmically, and multiple variables can be correlated or combined in other
ways. There is even a rudimentary graphing routine using Unicode Block Charac-
ters for a simple visualisation of a single time series. All more advanced analysis and
graphing should be delegated to more specialised tools.

4. The combination of breakpoints and watch lists allows the following workflow: A the-
ory is proposed, claiming that a failure mode observable by the variable v is being
caused by the variables w1, w2, To find evidence for this theory, a breakpoint de-
pending on w is constructed with watch list w1, w2, Once the breakpoint fires, the
theory can be verified by inspecting the recorded data from the watch list. The sizes of
the circular buffers are configurable, so slowly developing processes can be observed.

5. The run-control files allow site-specific modifications, as well as a standard set of sen-
sors and evaluation pipelines that are deemed to be universally helpful. Since the en-
tire standard library of Lua is available, additional dynamic libraries may be loaded.
The extensibility comes at the price of possibly reduced security: The program anand
needs to run with elevated privileges. Otherwise, it is unlikely to be useful because
much interesting information cannot be accessed by unprivileged users.

As a security measure, all communication between anan and anand is encrypted and
signed via NaCl [11]. To the authors’ best knowledge, this should settle the question
of security: If the attacker controls the communication between the two programs, it is
infeasible to forge new messages (unless there is a security flaw in NaCl). The attacker
could replay old messages. Thereby, he could reset the configuration of demons to old
states (which were originally set by the debugger’s operator), or have the demons send
old messages. It is unclear how an attacker can take advantage of this, although both
attacks can be prevented by requiring increasing sequence numbers on each message.

If the attacker controls the run-control files or the binaries of the programs, the system
under consideration is already compromised.

6. The debugger’s operator is not expected to develop code at the command line. Com-
monly used sensors and evaluation steps can be provided in the run-control files. Sev-
eral syntactic shortcuts available in Lua can make it seem that the command language
for anan is not a real programming language. Consider the following sensor:

swaps = awk { -- an AWK sensor
files = ’/proc/swaps’, -- operating on this file,
rules = { -- yielding a mapping of

’’, ’yield{F[1] = F[3]}’ -- swap file name to size

6

EPJ Web of Conferences 245, 01041 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501041

} -- (field 1 maps to field 3)

Sensors of this complexity can be considered “extended one-liners”; more so, since
this line is more likely to be typed as

swaps=awk{files=’/proc/swaps’,rules={’’,’yield{F[1]=F[3]}’}}

Nevertheless, this verbose syntax is not considered optimal and therefore likely to
change.

3 Results and Conclusion

First synthetic benchmarks. A synthetic benchmark with 1000 systems under consid-
eration was performed; another benchmark with 10 000 is being prepared. The systems un-
der consideration are Docker containers [12], where 100 containers (throttled to 1% of a
CPU) run on each of ten virtual machines. The virtual machines are executed by KVM [13].
The virtualisation is dimensioned such that each virtual machine runs with a single CPU at
2100 MHz with 2 GB of RAM. (The operating system both on the virtual machines and in
the containers is Ubuntu 16.04.) An arbitrary CPU-intensive, but almost IO-free task runs in
each container. Additionally, anand is executed. A set of six simple sensors similar in com-
plexity to swaps above is executed. A manual introspection with top saw only fluctuating
values around 0% for the CPU usage of anand. — The debugger was run on another virtual
machine in a container. Although it was processing messages from 1000 demons, the system
load stayed around 0.1. No message loss was observed. No further analysis pipelines were
executed.
Deployment in production. A deployment in the next run of the ALICE experiment [14]
is being prepared. First, ANaN should run alongside the regular monitoring and closely
mimic its data gathering pattern. It will be tried to use primarily ANaN instead of monitoring
to search for unwanted behaviours, unless a problem in ANaN makes this impossible.
Future work. The niche of cluster debuggers is so-far unpopulated — if rightly so, will
be shown by the results of the above-mentioned experiments. Besides, the following future
goals seem relevant:

• simpler user interface (sensor and evaluation language)

• a set of standard sensors that is sensible to deploy almost anywhere

• the possibility to visually inspect variables

• real-time sensors that plug into kernel facilities such as Netlink [15], thereby continuously
gathering information that is submitted in second-spaced bunches

Source. The source code is currently hosted at
https://chiselapp.com/user/kedorlaomer/repository/anan

Conclusion. This paper presented ANaN, a debugger for compute clusters. It is found that
the reason for the lack of cluster debuggers is likely not technical; the tools presented here
have sufficient performance for being usable with hundreds, if not thousands of machines,
without interfering too much with the system under consideration. It is shown that it can be
used analogously to monitoring. The added value ove monitoring remains to be demonstrated.

7

EPJ Web of Conferences 245, 01041 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501041

References

[1] G. Hager, G. Wellein, Introduction to high performance computing for scientists and
engineers (CRC Press, 2010)

[2] G. Aceto, A. Botta, W. De Donato, A. Pescapè, Computer Networks 57, 2093 (2013)
[3] G. Weissenbacher, Explaining heisenbugs, in Runtime Verification (2012), Vol. 9333
[4] Network monitoring tools, https://www.slac.stanford.edu/xorg/nmtf/
nmtf-tools.html

[5] K. Torberntsson, Y. Rydin, A study of configuration management systems: Solutions for
deployment and configurationof software in a cloud environment (2014)

[6] R. Ierusalimschy, Programming in lua (Roberto Ierusalimschy, 2006)
[7] H. Abelson, G.J. Sussman, Structure and interpretation of computer programs (The

MIT Press, 1996)
[8] M. Felleisen, R.B. Findler, M. Flatt, S. Krishnamurthi, How to design programs: an

introduction to programming and computing (MIT Press, 2018)
[9] The Open Group Base Specifications Issue 7, 2018 edition (2018)

[10] J. Dean, S. Ghemawat, Communications of the ACM 51, 107 (2008)
[11] D.J. Bernstein, Networking and Cryptography library 3, 385 (2009)
[12] D. Merkel, Linux journal 2014, 2 (2014)
[13] Y. Goto, Fujitsu Scientific and Technical Journal 47, 362 (2011)
[14] K. Aamodt, A.A. Quintana, R. Achenbach, S. Acounis, D. Adamová, C. Adler, M. Ag-

garwal, F. Agnese, G.A. Rinella, Z. Ahammed et al., Journal of Instrumentation 3,
S08002 (2008)

[15] P. Neira-Ayuso, R.M. Gasca, L. Lefevre, Software: Practice and Experience 40, 797
(2010)

8

EPJ Web of Conferences 245, 01041 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024501041

