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a b s t r a c t

Point-based geometry representations have become widely used in numerous contexts, ranging from
particle-based simulations, over stereo image matching, to depth sensing via light detection and
ranging. Our application focus is on the reconstruction of curved line structures in noisy 3D point
cloud data. Respective algorithms operating on such point clouds often rely on the notion of a
local neighborhood. Regarding the latter, our approach employs multi-scale neighborhoods, for which
weighted covariance measures of local points are determined. Curved line structures are reconstructed
via vector field tracing, using a bidirectional piecewise streamline integration. We also introduce
an automatic selection of optimal starting points via multi-scale geometric measures. The pipeline
development and choice of parameters was driven by an extensive, automated initial analysis process
on over a million prototype test cases. The behavior of our approach is controlled by several parameters
— the majority being set automatically, leaving only three to be controlled by a user. In an extensive,
automated final evaluation, we cover over one hundred thousand parameter sets, including 3D test
geometries with varying curvature, sharp corners, intersections, data holes, and systematically applied
varying types of noise. Further, we analyzed different choices for the point of reference in the
co-variance computation; using a weighted mean performed best in most cases. In addition, we
compared our method to current, publicly available line reconstruction frameworks. Up to thirty times
faster execution times were achieved in some cases, at comparable error measures. Finally, we also
demonstrate an exemplary application on four real-world 3D light detection and ranging datasets,
extracting power line cables.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity

Press Co. Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Datasets based on points as geometric primitives have become
ery popular in recent years. Noisy point cloud data are, for
xample, obtained from different capturing devices, such as depth
ameras, during stereo matching, or in light detection and ranging
LiDAR) scanners (e.g. Toth and Jóźkòw (2016), Foix et al. (2011)).
oreover, such data are also common in particle-based simula-

ions (e.g. Ihmsen et al. (2014)). In this context, we currently focus
n the automatic reconstruction of curved line structures from
oisy 2D/3D point cloud data. To this end, we investigated the
evelopment of geometric measures for analyzing such data, as
ell as the automatic choice of optimal local point neighborhoods

or further processing.
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Our application area is the reconstruction of airborne scans.
In these, data come with high noise, uncertainty, geometric di-
versity, as well as also at high volumes. As stated in Devore
et al. (2013), the reconstruction of airborne scans has received
lesser attention than that of small-sized objects. Related work
often focuses on small and well-defined objects, for which normal
vectors may even be known (see e.g. Lu et al. (2017)). This notion
is also supported in the review in Berger et al. (2013), where the
authors point out the lack of a comprehensive evaluation specific
for different sub-classes of reconstruction algorithms.

In our framework curved line structures are extracted based
on a mesh-free streamline reconstruction strategy (e.g. Tao et al.
(2013)). Starting from automatically determined initial seed po-
sitions, important and dominant directions are identified in point
cloud neighborhoods. The latter are based on weighted second
order tensors of local point covariance. Size variations in the
geometric features are captured through analysis over multiple
scales. Based on the determined geometric measures, we au-
tomatically set algorithm parameters: the selection of starting

points and integration directions, the radii of the directional
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earch neighborhoods, as well as the direction evaluation. A large
et of varying 2D and 3D geometries serves as a test-bed for auto-
atic analysis, including different types of noise and data holes.
econstruction errors are quantified with metrics that compare
o the original undistorted point cloud geometry. Our heuristic
ramework is capable of robustly reconstructing 3D curved lines
rom distorted point sets; with the following main contributions:

• Analysis of geometric measures in point clouds to automat-
ically set neighborhood radii.

• Scoring functions to automatically select integration start
points and optimized integration radii.

• Use of a hybrid vector field, for reconstruction via streamline
integration.

• Noise rate estimation via geometric measures.
• New error measures for line reconstruction evaluation.
• Extensive automated analysis of parameter choices, such as

covariance centroids and weighting factors.

After presenting the related work, we first provide an overview
f the complete reconstruction pipeline in Section 3. Thereafter,
e introduce the key elements of the framework in Section 4.
irst, the distance-weighted geometric measures are addressed;
ext, we present the hybrid vector field employed for streamline
ntegration, based on Eigenvectors and angular-weighted direc-
ions; and finally, the use of multiple line-lets for streamline
ntegration is introduced. In Section 5 we focus on the automa-
ion of the method: detecting good start point candidates and
dentifying optimal radii for Eigenvector pre-computation. Finally,
erformance evaluation and curved line reconstruction results
re presented in Section 6. We introduce adequate error metrics,
ompare to recently proposed alternative techniques, and indi-
ate the real-world application. In the next section we will cover
rior research results, separated into several associated domains.

. Related work

Line Reconstruction in Points Clouds: In Dey and Wenger
2001) an algorithm based on a Voronoi diagram of the point
loud was introduced; nearest neighbors were connected using
n angle-to-Voronoi edge ratio and a topological condition. They
ere able to connect irregular point samples with sharp corners;
owever, existing points were connected directly, which is not
ppropriate for the noisy and densely sampled geometry targeted
n our work. A Voronoi-based approach was also followed in Zeng
t al. (2008), augmented with a human vision inspired crite-
ion, directly connecting points. They also provide an overview
f curve reconstruction algorithms, such as CRUST, or NN; and
utperformed these with their DISCUR algorithm. They success-
ully performed line reconstructions of small point sets, including
harp corners, boundaries, and multiple components. However,
hey could not handle large and very noisy data, interpolation
etween samples, or 3D reconstructions. A method based on a
niform grid was developed in Lin et al. (2005). A sequence of
itting rectangles was computed containing points of the cloud.
he center points of the rectangles were then connected and used
long with border intersections to control a B-spline as curve ap-
roximation. While the method could handle jittered data, it was
ot robust against speckle noise; also, branches or sharp corners
ere not supported. Other works focused on fitting polynomials
o noisy point clouds. In Ruiz. et al. (2013) a noise-adaptive
moothing term was added to the curve fitting; they employed
principal component analysis (PCA) in a pre-processing step

or segmentation, and constructed piecewise curves, supporting
ranches and crossings. While our approach follows a different
irection, similarities exist in the use of a weighted PCA, as well
s the piecewise reconstruction strategy. Nevertheless, they only
2

provided examples for 2D; and the method was hampered by
outliers and data holes. Fitted B-splines were employed in Flöry
(2009), where the authors extended line and surface reconstruc-
tions to avoid user-defined regions. Nevertheless, for 3D they
focused on surfaces, not on lines; and branches or crossings were
not targeted in their work. A line reconstruction algorithm based
on half disks and an angle-weighted probability function was
suggested in Philsu and Hyoungseok (2010). From a start point,
additional ones were selected and concatenated into a line. The
method could handle line crossings; further, when noise was
introduced, lines could still be reconstructed. However, the result
would always be located at the outermost border of a curved
point cloud. In our approach we also employ an angle-weighted
directional component. In Hasirci and Ozturk (2011) lines were
reconstructed via a PCA, using an adaptive radius selection. They
employed a normalized maximal Eigenvalue to decide on an
optimal radius, and then generated 3rd order polynomials to
reconstruct a line. Albeit, their method was limited to smooth
lines and could not handle crossings, branches, or data holes. They
extended their work in Ozturk and Hasirci (2013) by applying a
minimal Euclidean spanning tree for point thinning. This enabled
robust support for branches and crossings, but also introduced
gaps at the intersections. In a different context, transmission lines
were reconstructed in Jaw and Sohn (2017), via segmentation
and piecewise regression. They focused on an automatic, robust,
and precise method dealing with noise induced by wind; they
compared to and outperformed the Hough Transform.

Most recent publications on 2D line reconstructions of point
clouds can be found in Ohrhallinger et al. (2016), Ohrhallinger
and Wimmer (2018), and Ohrhallinger and Wimmer (2019). First
the CRUST and NN approaches were extended, focusing on very
sparsely sampled data. They select a local nearest neighbor and
the opposite half-space neighbor, and prove that this permits
connecting up to 60◦ sharp corners with a larger ϵ-sampling than
previous methods. The authors further extended their introduced
HNN-CRUST algorithm to FitConnect, by first estimating a local
feature size and generating new points via blending in noisy
regions. An extensive analysis on many examples is provided and
compared to other work on line reconstruction. They were able to
successfully deal with sharp corners and varying noise. A further
extension improves line smoothness. However, their focus was
on 2D-manifolds; T-junctions, crossings, and 3D reconstructions
were not covered.
Surface Reconstruction in Point Clouds: In the early 1990s, tan-
gent planes computed via covariance analysis to define implicit
surface functions were introduced in Hoppe et al. (1992). Using
these, they reconstructed surfaces with the Marching Cubes iso-
surface algorithm. However, the covariance was not weighted
and, thus, more prone to noise. In McIvor and Valkenburg (1997),
several methods for local surface and normal estimations were
compared. They analyzed the estimation performance on artificial
geometries and added growing noise. They focused on quadratic
fitting and mentioned a covariance-based technique, but did not
include it in their comparison. A benchmark for surface recon-
struction algorithms was provided in Berger et al. (2013), compar-
ing ten state-of-the-art approaches for point clouds with defined
normals; among them: compactly supported radial basis func-
tions (CSRBF) (Ohtake et al., 2005; Wendland, 2005), simple point
set surfaces (SPSS), implicit moving least squares (IMLS), mul-
tilevel partition of unity (MPU). The results showed that there
was no superior, general technique for surface reconstruction.
Polynomial basis functions for distance weighting, as introduced
e.g. for CSRBF in Wendland (2005), were also included as weight-
ing candidates in our work. In Giraudot et al. (2013) they also
aimed at the reconstruction of point sets, automatically adjusting

to locally varying sampling and noise properties. A noise adaptive
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istance function was employed and an implicit function was
ound as a zero iso-line (or surface). The method yielded robust
esults to outliers and jittered point sets, but differed in that it
equired closed smooth shapes as prerequisite.
ensor and Covariance Techniques: An algorithm to compute
aussian and mean curvature on polygon meshes was presented
n Taubin (1995), where a tensor product of direction vectors
o neighboring vertices was introduced to estimate a surface
urvature. They constructed a curvature represented by a 2 × 2
atrix in the local surface tangent plane. The method is limited

o meshes and not applicable to 3D point cloud data. In Berkmann
nd Caelli (1994) a 2nd fundamental form and a Gauss map esti-
ation of surfaces was introduced, based on covariance in a local
eighborhood. They detected regions in depth images and dis-
inguished between planar, parabolic, and curved segments. They
ndicated that their method was robust to noise, due to the use
f covariances, instead of the closed fundamental form. However,
his only holds for low noise ratios. A similar weighted product
o compute a covariance matrix in point cloud neighborhoods
as proposed in Alexa and Adamson (2004) to estimate normals.
he method operates on a point cloud, but the points are known
o originate from a surface geometry, again, with low noise in
he data. In Liu et al. (2012) a voting technique was applied to
ake the normal vector estimation robust against noise. They
mployed shape factors for coloring and as a confidence measure.
n our work, the shape factors are defined differently; our method
chieves robustness by weighted covariance.
ine Following in Tensor Fields: Lines extracted from diffu-
ion tensor fields have been used in the medical domain to
isualize features in magnetic resonance images. Here, the con-
ection between different regions of the brain are of interest,
llustrated by fiber tracking. Early approaches employed Eigen-
ector streamlines following the major Eigenvector of the 2nd
rder tensor (Basser et al., 2000), or a vector tensor multiplication
o compute the next step direction (Chou et al., 2006). Crossing
ibers could attract streamline integration to switch to a different
iber. Thus, extensions have been proposed to favor the original
irection, when at a crossing (Weinstein et al., 1999). We also in-
estigate direction selection strategies, but operate on mesh-less
ata instead of the uniform grids in diffusion tensor works.
oint Cloud Classification: In Natale et al. (2010) shape factors of
PCA of indoor 3D flash LiDAR images were analyzed by a deci-
ion network for point classification. They parameterized shape
actors by the number of neighbors in rather small neighbor-
oods. We use different shape factor definitions and parameterize
y radius. Similarly, also in Weinmann et al. (2015) shape fac-
ors were employed as input to a random forest classifier. They
mproved their true positives by 3% via relying on the geometric
edian in the data.

. Reconstruction pipeline overview

Our framework for the extraction of curved line structures in
oisy point cloud data is composed of several individual key steps
see also Fig. 1):

1. Geometric measures: Geometric measures are locally com-
puted via weighted covariances, in multi-scale neighbor-
hoods of the point cloud data. An optimal neighborhood
radius is determined in a point-wise fashion, based on
these local measures.

2. Start points: Seed positions for the piecewise streamline
integration are automatically selected based on the previ-
ously computed measures.

3. Grow lines: From the start points line-lets are grown in
parallel, following streamlines in a hybrid vector field. They
follow point samples, which are likely to have been sam-
pled from continuous line geometry.
3

Fig. 1. Main processing steps of the reconstruction pipeline.

4. Prune lines: The growing line-lets are tested for crossings
and corners, and extended to overcome data holes. Finally,
they are pruned, and then concatenated into curved line
structures as output.

Each pipeline step involves a number of parameters for control
of the outcome. For most of these, we have carried out extensive
automated initial tests to determine and fix best performing pa-
rameters. A few parameters remain that can be manually adapted,
if desired, providing still some user-control over the pipeline out-
come (see Section 5.3). In the following, we will first describe the
individual steps in more detail, and then address the automation.

4. Reconstruction of linear structures

4.1. Geometric measures

A central element of our reconstruction framework is numer-
ical geometric measures, characterizing local linearity, planarity,
and sphericity; following Westin et al. (Westin et al., 1997). To
obtain these measures for any location in a point cloud we first
calculate weighted second order tensors

˜
t , which are constructed

from all direction vectors within a neighborhood:

t =
1∑N

i=1 ω(di)

∑N
i=1 ω(di)(vi ⊗ vi), with (1)

vi = pi − c, di = |vi|/r,

where c is a specifically determined 3D center location (denoted
below as centroid), pi a point in the local neighborhood of c within
neighborhood radius r , N the number of neighbor points for that
adius, di normalized distances, and ω(x) a radial distance weight-
ing function. Note that without using the weighting function and
employing the mean position for c , we would obtain standard
covariance matrices of the local point cloud as these tensors, on
which then a principal component analysis could be carried out.
Also note that distance queries and computations in the point
cloud are accelerated with an octree data structure.

We tested thirty different normalized scalar functions for
the weighting in Eq. (1). Possible candidates were, for instance,
quadratic, cubic, compactly-supported RBF, or SPH smoothing
kernels. In an initial controlled, automated study we computed
reconstruction errors for these candidate functions; varying pa-
rameters such as neighborhood radius, number of points, jitter
noise strength, etc. In total, 1.35 million parameter combinations
were automatically tested, on a circle and a rectangle test shape,
in about 7 hours of run time. In the end, the best performance
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as found for a weighting function similar to the Fermi–Dirac dis-
ribution (originating from quantum statistics, but here without
hysical constants) (McDougall et al., 1938):

(2)

The shape of the graph is controlled by two parameters T ∈

[0.0, 0.4] and m ∈ [0.0, 1.0]. The former blends from a step to
linear function, while the latter shifts the function along the x-

axis. In our automated experiments, we found weighting curve (I),
with parameters (0.1, 0.6) to be best for the tensor computation
(also see plot above). Note that further below we will also make
use of a similar weighting function for mesh-less interpolation; in
that context, curve (II), with parameters (0.05, 0.35) performed
best. These values resulted from analyzing scatter-plots of the
best reconstructions in the automatic testing mentioned above.1

Further stabilization against noise can be achieved by choosing
suitable method for determining the centroid c . Several strate-
ies in the tensor computation above have been proposed in the
ast. Especially the presence of noise has a strong influence on the
omputation, which makes using the mean (MN) not necessarily
he optimal choice. Eq. (1) is a weighted PCA when employing the
N. Another option is to instead employ the geometric median

MD), which has been found to be robust against noisy data (Lip-
an et al., 2007; Lin et al., 2014). Further, we also investigated

he option to introduce a weighting into the mean and median
omputation (WMN, WMD); the centroid locations then vary
ependent on the chosen weight function. For computing the
eometric median we employ the Weiszfeld algorithm (Plastria,
011), which makes use of an exponential function in its iter-
tions. Adding a weight function in the algorithm controls the
trength of the iterative shift. Such weighted centroid variants
ield locations in-between the geometric median and the mean.
inally, a further option could be to use the actual points of the
oint cloud itself as the ‘‘centroids’’ in the tensor estimation, thus
kipping any mean or geometric median computation; this yields
he so-called point distribution tensor (PDT) (Ritter and Benger,
012). We compared these different options in performance tests
ith varying 3D test geometries (see Section 6.5). As a generally
ell-performing candidate, WMN with quadratic inverse stood
ut.
Employing the WMN as centroid and the Fermi–Dirac weight-

ng function in the tensor calculation, we finally obtain our
eometric measures. An Eigenvector decomposition of

˜
t yields

easures for local linearity, planarity, and sphericity, according
o Westin et al. (1997):

L = (λ3 − λ2)/L, CP = 2(λ2 − λ1)/L, CS = 3λ1/L, (3)

ith Eigenvalues of
˜
t: λ3 > λ2 > λ1, L = λ1 + λ2 + λ3,

nd associated Eigenvectors e3, e2, e1. Both the Eigenvalues and
igenvectors will be central for the reconstruction of the curved
ine structures via vector field integration. It should be noted that
oth depend on the neighborhood radius, which controls the set
f points considered for their computation. Both can vary signif-
cantly depending on how the neighborhood radius is selected.
herefore, we explored the measures further, as functions of radii.

1 Further details available in the supplementary material.
4

Fig. 2. Geometric measures, computed at a centroid in small example 2D point
clouds, with and without noise (top). The geometric measures (bottom) change
with the radius; linearity is initially high and decreases when a corner is reached.

4.2. Dependence on neighborhood radius

In the tensor computation above one could employ a fixed ra-
dius for the neighborhood of a certain point. However, depending
on local feature scale this may or may not include representative
geometric information. Moreover, if 3D jitter noise is present,
with an amplitude larger than the radius, the sphericity measure
will be dominant, independent of other structures. Thus, it will
be challenging, or even impossible, to find only a single radius
that is optimal in all cases; especially, when sampling resolution
changes; or linear features occur at different scales.

The change of the geometric measures dependent on a se-
lected radius is visualized in Fig. 2; the three measures are com-
puted for two exemplary 2D point clouds (top), yielding graphs as
functions of growing radii (bottom). Note that for this 2D case the
sphericity measure yields zero; while the sum of the measures is
one. The centroid (orange), for which the measures are computed,
is located on a part of a point-sampled rectangle corner (blue),
once without (left) and once with jitter noise (right). In the former
case, as soon as the radius includes at least two neighboring
points the linearity graph reaches a maximum of 1.0, and re-
mains there until the growing radius covers the corner (stippled,
larger dark-orange circle). At this point the linearity starts to
decrease, while planarity increases. In the latter, noisy case, an
initial peak at small scale marks the radius, at which the two
closest points are covered, yielding high linearity. This measure
decreases down to the jitter noise amplitude; and then increases,
also until the corner is reached. Using different weighting func-
tions in Eq. (1) results in changes in the linearity graph. Therefore,
we also evaluated the fitness of the weighting functions with
regard to properties of the linearity graph: the maxima/minima at
small radii, the plateau at large radii, and the overall smoothness
of the resulting graph. Regarding the smoothness, the Fermi–
Dirac (I) weighting showed a good behavior, especially, when
employing the MD, WMD, and WMN centroids. Quadratic weight-
ing also performed well, but occasionally produced discontinuity
artifacts in the geometric measure graphs. Further, a direct vi-
sualization of the multi-scale space was developed illustrating
different parameter choices Ritter et al. (2021).

4.3. Vector field integration

In order to reconstruct curved line structures in point clouds,
we employ vector field integration (see e.g. Tao et al. (2013)).
This denotes streamlines evolving along a certain direction in the
mesh-less data, following the original geometry. Integration steps
are numerically calculated using an explicit Runge–Kutta method.
We tested various variants up to order five, but the influence of
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Fig. 3. Angle-weighted direction vectors; the previous integration direction
gray) is used as reference. With it, cosines of angles are employed, obtained
ia dot products with all neighbor directions (one example shown in blue). The
inal direction (red) is the normalized mean of the weighted vectors in the
eighborhood. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

his was found to be small; thus, for our experiments we rely on
simple and fast third order RK32 scheme.
For the integration process, local direction vectors are re-

uired, which will be determined based on the previously com-
uted Eigenvectors (note that the latter are bidirectional and
ay have to be flipped). We have analyzed different methods

or computing directions; in the end two were combined into a
ybrid approach.
Since we work with mesh-less data we have to either: inter-

olate between directions computed at existing data cloud points
i or to directly compute a direction at an arbitrary position xj.
he first approach for finding an integration direction at a loca-
ion xj computes an average of neighboring major Eigenvectors;
eighted based on normalized distances:

E(xj) =
1∑N

i=1 ω(di)

∑N
i=1 ω(di) e3,i, (4)

with major Eigenvectors e3,i of N neighboring points, given by the
selected radius; and di the normalized distances. The Eigenvectors
are aligned according to the direction used in the previous inte-
gration step dt−1; i.e. they are flipped if they oppose the current
streamline major direction. For the weighting function ω(.) we
employ the Fermi–Dirac (II) function mentioned above, which led
to slightly improved results in the interpolation. This first ap-
proach is useful for noisy data and larger scale features, providing
a very smooth and robust direction selection. Since the Eigen-
analysis has already been performed, no additional computation
is required.

A second option for finding an integration direction is to
employ the (normalized) sum of angle-weighted local difference
vectors:

dA(xj) = nrm
( N∑

j=1

ω

(
1 −

cos(ϕj) + 1
2

)
vj,i

)
, (5)

with vj,i = xj − pi being difference vectors, between location
xj and N neighboring points pi, again for a given radius. The
cosine term is computed using the angles ϕi between the nor-
malized vectors dt−1 and vj,i (see also Fig. 3); finally, ω(.) again
is the Fermi–Dirac (II) weighting function, this time evaluated
with the angle-based term. Directions computed with the second
method stay closer to the geometry, and overall reconstruction
performance is better for smaller-scale features. As this method
includes angle computations at the current streamline integration
position it must be executed at ‘‘run-time’’ for each integration
step. Later, we will obtain the final integration direction as a
weighted average of dE and dA (see Section 5.2). For this, optimal
eights and radii will be automatically determined based on the

re-computed geometric measures.

5

4.4. Piecewise reconstruction

As an improvement of the previously outlined vector field
integration, we further propose to grow multiple, smaller stream-
lines simultaneously, in breadth first fashion. Starting from dif-
ferent points, integrations are evolved in parallel, both in for-
ward and backward direction, yielding so-called line-lets. In each
integration step the evolving line-lets are checked for various
conditions (and possibly terminated): i.e. exceeding a maximum
step count, exiting the bounding box of the point cloud, passing
beyond a maximum distance threshold, colliding with another
line-let end, or intersecting another line-let segment. In case of
a collision, line endings are merged; in case of an intersection,
line endings are placed at the intersection point. In 3D, intersec-
tions of skew lines (i.e. segments) are determined by checking
their closest points. Line segment endings and closest skew line
segment points are merged, when their distance falls below a
distance threshold: ∆mrgh, where h is the integration step size
nd ∆mrg a weighting factor (set to 1.4). Furthermore, if during
he integration a line direction from one step to the next changes
y more than 70◦, a new line-let is seeded and a branch created.
ndings at intersections, collisions, as well as branch seeds are
abeled as closed; whereas line segment endings generated due to
xceeding the bounding box or the distance threshold are labeled
s open.
In a final (pruning) step, points are deleted from all line-lets,

tarting from the open endings. The deletion process propagates
ackwards until the distance to the closest point in the point
loud is smaller than a user defined threshold. A second user
ontrolled parameter is the maximum integration distance. In-
reasing the latter enables to overcome data holes and decreasing
he former allows to delete long open branches. Finally, note that
or efficient intersection computations, the points of the line-lets
re also organized in a separate octree. In the next section, the
utomation of the process will addressed.

. Process automation

.1. Selection of start points

A key element in our piecewise reconstruction is the setting
f start points for multiple line-let creation. We propose to au-
omate this according to the linearity graphs introduced above.
oints for starting the vector field integration should be located
n ‘‘good’’ linear regions in a point cloud. Thus, we analyze
ach linearity graph to determine such locations. As outlined
bove, linearity measures are determined for different radii. First,
n order to accelerate the process, and to focus on features at
ifferent scales, we propose to increase the search radii rk for this

computation according to an exponential function (instead of a
linear increase):

rk = ∆mdn 1.5k, (6)

where k can be considered as a discrete index to the set of ex-
amined radii, proportional to log(r); the parameter ∆mdn denotes
the (approximate) median minimum distance between any two
points in the point cloud (computed either for the whole cloud or
for a random subset). Distances are computed for the Nth-closest
neighbors (we employed N = 6). Based on these, the median for

mdn is determined.
We found that the integral area underneath a specific part

f the linearity graph CL already represents a robust feature for
tart point selection. To illustrate this Fig. 4 shows graphs for
ix locations on an exemplary noisy point cloud of a rectangle
note that the abscissas in the subplots employ a log scale for rk).
ocations on a linear portion of the cloud exhibit a larger integral
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Fig. 4. Six linearity graphs on a rectangle at distinct locations. The abscissas
mploy a log-scale for the radii. The approximated integrals A, up to the last

local minimum, as well as the maximum CL,max are used for start point detection.

Fig. 5. (Left:) Linearity integral sum values over (ordered) point indices, deter-
mined for the two point clouds shown in Fig. 6. (Right:) Examples of linearity
graphs for three selected points. Locations with a high sum (indicated by
ellipses) are in linear regions and considered as good start points for the
streamline integration.

(see 2, 4, 5). In contrast, corner points (6) and points in noise (1,
3) typically show a smaller integral and graph maxima. Thus, we
propose to estimate an approximate integral A of the linearity
raph CL for points in the cloud. It is computed by summing up
inearity values for (exponentially growing) radii rk, from zero
o the last occurring local minimum in the graph; numerically
pproximating the analytic integral (shaded gray areas in plots).
ote that from a certain maximal radius, linearity values will
emain constant.

As a further illustration of the proposed feature, Fig. 5 shows
he linearity integral values computed at the centroids of the
pen rectangles depicted in Fig. 6. This example was computed
ithout (top) and with noise (bottom). As can be seen, the areas
ith large integral values (marked by ellipses) remain relatively
obust. Therefore, large values of A may yield points in linear
egions.

Based on the above, to obtain good start points we employ a
core function, which can be computed either for all points or for
reduced random subset (initially with distance parameter d set
o 1.0):

s = d · N0.01
1

(
CL,max · A

)4
, (7)

where CL,max is the maximum linearity value in the examined
interval of radii and N1 the number of neighbors in the first
non-empty neighborhood encountered (when growing the ra-
dius). Thus, orphaned points are slightly down-voted. Further, in
this specific case a small computational improvement could be
achieved by using the PDT for computing CL,max, instead of using
ne of the other centroid computation approaches.
Employing the scoring function, we determine the highest-

coring initial point; setting d = 1. Next, using the latter as a
seed, we then progressively identify additional start points, by
evaluating the same (cached) equation, now with d being set to
the shortest distance to all so far selected start points. Note that
candidates can be skipped if a minimum number in N is not
1

6

Fig. 6. Start points selected for two example geometries — without and with
noise. Points are chosen dependent on their score Os; numbers indicate the order
of selection. Linearity integrals at locations (a) and (b) are shown in Fig. 5. On
the right, the decreasing scoring function for consecutive candidates is depicted.

reached (by default 2 points). In very noisy data, employing a
minimum number of 6 points improved the results. The candidate
in the current points with the highest score Os is then added to
the set of selected start points, and the process is repeated with
the remaining ones. The process stops if a maximum number of
starting points has been found.

Fig. 6 illustrates identified start points on two geometries,
one without and one with jitter noise. The numbers in the plot
indicate the order in which candidates were selected according to
the score Os. As can be seen, the first start point is found in both
cases at the center of a long rectangle edge, while corner locations
and noise points are avoided. For the initial point (1), distances to
start point candidates are shown by dotted lines. Larger distance
is favored. Therefore, start points remain at a reasonable distance
from each other. The graph on the right shows the decreasing
score Os for a progressively increasing number of selected start
points. The score function is designed multiplicative, since the
scale of d cannot be normalized; this still permits a relative
orting.

.2. Radii and weights for integration direction

As indicated above, the final streamline integration direction
or the current step dt will be determined as a weighted average
f vectors dE and dA:

t = µ dE +
(
1 − µ

)
dA, (8)

ith µ being a blending weight. The computation of both di-
ection vectors depends on the neighborhood radius, which we
lso propose to determine automatically. Similar to the automatic
tart point selection, the graph of the linearity measure can be
tilized for this.
After a single numerical integration step, the streamline end

osition will usually not be located exactly at a point of the point
loud. Therefore, we first find the point pi closest to the current
ntegration position xt , within a search radius of rt = 1.25 ·∆mdn.
t this point the pre-computed linearity graph will be further
xamined. This permits finding an optimal neighborhood radius,
or the current step in the streamline integration process.

Large radii would be a good selection in point cloud regions
ith noisy and coarse structures, while for regions with fine
tructures small radii should be chosen. As an example for the
ormer, consider the maximum in the linearity graph for point 4
n Fig. 4 (marked with a *); for the latter, consider the (first) max-
mum in the graph at location 6 in Fig. 8. Thus, the analysis of the
xtrema in the linearity graph will be a means for automatically
electing the neighborhood radius.
Linearity graphs will generally exhibit several local minima

nd maxima at varying radii; typically, up to four extrema were
resent in our examined geometries. Accordingly, we designed a
econd scoring function. It is evaluated for each local maximum
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Fig. 7. Elements of scoring function, based on local maximum at kj and
neighboring minima at kj− and kj+ of the linearity graph.

Fig. 8. Optimal radii and directions dE shown via line segments on two
xemplary point cloud geometries.

n the linearity graph, at the corresponding radius (with index kj)
or that specific maximum:

m =

(
1 −

kj
K

)
CL,j +

Aj

A
−

δ

2
. (9)

Here, j denotes the radius index of the currently examined local
maximum, for the radius given by kj. CL,j denotes the respective
linearity value, and K the total number of discrete radii indices
considered for the current linearity graph. Further, A and Aj
re again (numerically approximated) integrals of the graph. The
ormer spans the same interval of radii, as explained above;
owever, the latter is only computed for an interval between the
losest local minima, to the left and to right of j (indicated by j−
nd j+, respectively). Finally, δ denotes the difference between
L,j and the larger of the two linearity values at the neighboring
ocal minima, i.e. δ = CL,j−max(CL,j−, CL,j+). For better illustration,
he involved quantities are visualized in Fig. 7.

The scoring function is comprised of three terms, which can
ake values ranging from 0.0 to 1.0; higher being better. Note that
n the first term small radii are preferred (i.e. small kj), since it
s beneficial to adjust to small-scale features if they are present.
dditionally, larger linearity values CL,j generally also indicate
ood radii candidates. In the second term, large local integrals Aj
re favored, which also hints at linear structures. Finally, peaky
axima will be voted down via δ in the third term. The score Om

will be computed for all local maxima, and the radius associated
with the highest score will be retained for the computation of dE
and dA. In order to illustrate this step, Fig. 8 depicts obtained radii
and directions dE for two example point clouds. Line segments
are shown, each with length given by the determined optimal
radius and direction by vector dE . The radius, and thus length of
line segments, increases in regions of large linear structures (1),
in noise (2), and at low curvature (3); in contrast, it is smaller at
corners (4), crossings (5), and fine details (6).

We blend the two direction vectors via µ. When the linear-
ity and the integral at the chosen optimal local maximum j is
large, then dE would be a stable choice; otherwise dA should
be prioritized to follow close-by geometry. Thus, we propose to
automatically set the blending parameter as:

µ =
1 Aj

+

(
CL,j −

1)
. (10)
2 A 2
7

Fig. 9. (Top/Left): Six test ‘‘2D’’ geometries: Circle, Rectangle, Triangle, Line,
Wave, and Crossing. (Top/Right): Four 3D geometries: Elbow, Mikado, Helix, and
Crossing3D (depth indicated by gray gradient). (Bottom): Added noise types;
from left to right: undistorted reference, jitter noise, distribution noise, outlier
noise, and hole(s).

Furthermore, to ensure that both methods for direction selec-
tion still influence the final outcome, we additionally clamp this
blending factor to the interval [0.05, 0.95].

Finally, the step size of the numerical streamline integration
is also automatically set to h= 0.5 ∆mdn; note that this ensures
on average a neighborhood size of about six points. In order to
improve computational efficiency, we carry out in parallel the
computation of geometric measures and Eigenvectors, as well as
the radius selection. The direction dE is determined at the current
integration neighborhood and interpolated on the pre-computed
Eigenvectors using the Fermi–Dirac (II) weighting. To compute dA
the previous integration direction and current streamline position
have to be known; thus, it is obtained progressively.

5.3. User control

While our framework exhibits several parameters, we propose
to fix most of them. This is achieved either through the outlined
automatic selection processes, or through extensive prior auto-
mated parameter analysis runs. In our current framework, a user
has to manually control mainly three parameters:

• MaxIterations: The maximum number of streamline integra-
tion steps.

• StartPointsNr: The number of start points for line-let inte-
gration.

• DistanceCutoff : The maximally allowed distance from an
integration point to the closest data point; used to overcome
holes.

All remaining parameters are pre-defined; albeit, a user could
djust them still, if desired, for additional control. Examples are
he pruning distance DistancePrune: the maximally allowed dis-
ance from a line-end to a closest point in the cloud, as well
s MaxRadius: the maximum geometric analysis radius (set to
0∆mdn). We provide a user with an interactive visualization
nterface, for easy control and assessment of the reconstruction.

. Analysis and results

.1. Point cloud test geometries

For our analysis we employ six ’’2D’’ and four 3D test ge-
metries: Circle, Rectangle, Triangle, Line, Wave, and Crossing; as
ell as Elbow, Helix, Mikado, and Crossing3D (see Fig. 9); these
xhibit features such as varying curvatures, sharp corners, and
ine crossings. All are sampled as 3D point clouds (the ‘‘2D’’
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Fig. 10. Noise rate nR (orange), as well as averaged minimum and maximum
geometric measures per jitter noise – for linearity (gray), planarity (blue), and
sphericity (green) – for a rectangle (saturated colors) and a circle (desaturated
colors) point cloud. The averaged minimum sphericity grows linearly at lower
jitter values. Thus, it was chosen as a noise rate measure and scaled for
normalization, see Eq. (11). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

geometries are displaced out of the plane with a cosine function).
Different types of noise were added to these geometries; we
employ four categories, inspired by noise that may occur during
real-world data capture: unsteady trajectories and vibrations may
produce jitter noise; shadowing or multiple scans may introduce
density distribution noise; levitating particles or other small ob-
jects may produce random outliers; intensity cut-offs in sensors
or occlusions may lead to holes. Fig. 9 also illustrates the effects
of these on a line segment (bottom). All effects are controllable
in our framework by appropriate parameters: jitter amplitude Sj,
istribution blend Sd, data hole start ta and end te, and the number

of additional, random outliers M .

6.2. Noise estimate

Below, we will test the reconstruction process on various
noisy example geometries. Note that only for our own, artificially
generated data these noise parameters will be known exactly. In
contrast, for arbitrary point clouds the latter have to be estimated.
We found that the mean of all sphericity graph minima directly
related to the noise in the data. Therefore, we propose a metric
quantifying noise strength nR in arbitrary data:

nR = c ·
1
N

∑N
i=1 min

r
CS,i(r), (11)

ith CS,i(r) denoting sphericity of point with index i, at multi-
scale radius r . Further, a constant scaling factor c = 3.15 was
ncluded, normalizing nR for our test cases to interval [0.0, 1.0].
ig. 10 illustrates the change of this noise estimate, with respect
o increasing 3D jitter noise. Plots are shown for the ’’2D’’ test
ases of Rectangle and Circle. Moreover, also the change in mini-
um and maximum of the three shape measures is indicated. At

he bottom, a view of the rectangular point cloud with increas-
ng noise is provided. For both geometries, nR initially increases
ostly linearly, later plateauing for higher, more extreme noise.
The noise rate nR is independent of distribution noise and

ata holes. Below we will use this measure for evaluating and
omparing results, dependent on noise magnitude. As indicated,
lso real-world datasets, for which the noise parameters are not
nown, could be compared in this way.

.3. Error metrics

In order to evaluate the automatic reconstructions in noisy
oint clouds, we require appropriate error metrics. An option
ould be to adapt existing error measures, such as in Berger
8

et al. (2017), to our case of curved line geometries. Nevertheless,
we decided to develop metrics tailored to point-sampled linear
structures, comparing differences to a ground truth in geometry,
reconstruction length, as well as amount of coverage.

First, geometric differences are quantified using an adapted
Hausdorff metric and an average minimal distance metric. For
comparison, we employ as ground truth equidistant point sam-
ples Λ on the (known) test geometries. These are compared to
our reconstructions given by the streamline integration points
Ω , obtained with constant step size. For these we compute two
errors — firstly, the point-based Hausdorff metric:

EH = max
{
max
x∈Λ

min
y∈Ω

d(x, y),max
y∈Ω

min
x∈Λ

d(x, y)
}
, (12)

with d(., .) being the Euclidean distance between two points; and
secondly, an average minimal distance metric:

EV =
1

NΩ + NΛ

(∑
x∈Λ

min
y∈Ω

d(x, y) +
∑
y∈Ω

min
x∈Λ

d(x, y)
)

, (13)

ith NΩ and NΛ being the number of points in both compared
ets. These two metrics indicate the local geometric quality of a
econstruction.

As these two metrics remain stable even if only a part of a
oint cloud is reconstructed, we developed two additional mea-
ures, accounting for the reconstruction completeness.
The first is given as the ratio between the (estimated) length

f the reconstruction and the (known) length of the original line:

Len = len(Ω)
/

len(Λ), with (14)

len(Ω) =

NΩ−1∑
i=1

|xi+1 − xi|,

with xi being consecutive points of the reconstruction. If the re-
constructed line is shorter than the original one, then ELen < 1.0;
which we consider as incomplete coverage. Moreover, if ELen >

1.0, then the reconstruction may, in some form, cover the orig-
inal geometry several times (note that it may still not be fully
reconstructed).

The second completeness metric determines the amount of
coverage. For each line-let a corresponding arc-length interval
[s, e]l is computed, with s and e being the start and end parame-
ters (in arc-length) of Λ, and l the line-let index. The union of all
intervals divided by the length of the original point cloud yields
a completeness measure:

ECom =
1

len(Λ)
∑

|U|
(ei − si), ei, si ∈ Ui (15)

=
⋃
l∈L

[s, e]l.

ECom approaches 1.0 if the union of all arc-lengths covers the full
original geometry; if ECom < 1.0, then the reconstruction is again
incomplete. Using these additional two metrics, a reconstruction
is considered as unique, if ELen ≃ ECom.

6.4. Initial exemplary reconstructions

In order to illustrate the performance of our complete re-
construction pipeline we first show a smaller set of qualitative
results. Examples of the previously described test geometries
were reconstructed (see Figs. 11 and 12), both without as well
as with varying degrees of noise. If not explicitly indicated for
a specific case, then jitter and distribution noise were both set
to 1.0. Automatically determined start points are shown as black
circles. As can be seen, the combination of start point selection
and line-let integration allowed for handling of sharp corners
and line crossings in these initial test examples. The adaptive
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Fig. 11. Automatic reconstructions (red lines) of six ‘‘2D’’ test geometries,
ithout and with noise (with nR specified). The number of points is N = 174.
lack dots are automatically set start points. Noise cases are either generated
ith parameters M = 87, Sj = 1.0, Sd = 1.0, or according to values included

nline via triplets. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 12. Automatic reconstructions (red lines) of four 3D test geometries, with
and without noise (with nR specified). Number of points is N = 260. Black dots
ark detected start points. Noise parameters are shown as triplets; for the
lbow: M = 130, Sj=Sd=1.0.

able 1
verage error measures for 3D reconstructions of ten example cases, as in
igs. Fig. 11 and Fig. 12. For each geometry, the numbers for the noise-free
left) as well as the noisy (right) case are indicated (separated by ‘/’). Only
econstructions deemed as successful were used for the error computation.
Geometry ELen EH EV Success Time

[%] [10−2] [10−2] [%] [ms]

Circle 100/99 4/68 2/27 100/91 8/17
Rectangle 98/96 14/108 2/36 100/82 8/17
Triangle 99/91 17/90 3/35 100/73 20/24
Crossing 103/105 10/95 3/26 100/73 6/14
Line 103/109 7/117 3/32 100/91 6/19
Wave 102/108 33/52 3/16 100/91 8/19

Elbow 99/100 18/109 4/35 100/91 13/27
Helix 101/106 12/110 4/26 100/82 11/26
Crossing3D 103/123 7/88 3/33 100/45 12/26
Mikado 104/108 4/39 2/10 100/45 14/13

selection of radius and integration direction made reconstruction
of noise-free as well as noisy point clouds possible.

For these example geometries we also examined the previ-
usly mentioned error metrics. To this end, first 11 noise seeds
ere randomly generated for each of them. The noise parameters
ere not limited, possibly generating extreme cases, which could
ot be reconstructed. Thus, the maximum noise amplitudes were
hen lowered, until at least five visually successful (according
9

Fig. 13. Reconstructions (red) of incomplete data. The stippled gray rectangles
indicate the location of data holes in the original point clouds. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

to an observer) reconstructions were obtained. Then, the error
metrics were computed per case, and averaged. The final results
are compiled in Table 1; both for noise-free (left number) and
noisy (right number) cases. Here, success indicates the percentage
of successful reconstructions, per test case, as assessed by an
observer. As can be seen, when (stronger) noise is present, the
success rate reduces; for these examples on average to about
60%. Geometries with corners exhibited higher errors εV . This
is also due to smoothing effects, introduced by the weighting
functions and smoothing radii. Further, Crossing, Line, and Wave
were quite susceptible to outlier noise. The latter represented the
most difficult case, especially if jitter noise became too high.

In a further test, we also qualitatively examined the robustness
of the reconstruction to data holes. The latter have to be over-
come by numerical integration across empty regions. In this case,
either another line-let may be encountered or a user-specified
length be exceeded. Fig. 13 shows three qualitative examples on
the circle and the rectangle geometry, again with and without
noise. The size of the holes (indicated by stippled rectangles in
the figure) is about 12% of the total line length.

6.5. Comprehensive analysis of reconstruction

6.5.1. Test dataset
In order to perform a more quantitative and broad perfor-

mance evaluation, we obtained reconstructions with our de-
scribed approach in an extensive batch processing. Overall, 4.45
million parameter runs were executed, each representing a recon-
struction attempt. Runs were grouped by five centroid types (see
Section 4), and 6 configuration sets. Each set with one centroid
consisted of 127k runs. All ten test geometries were sampled with
128, 256 or 512 points, and reconstructed with varying noise. The
distribution noise parameter Sd as well as the jitter parameter
Sj were increased from 0.0 to 1.0; both with a step size of 0.1.
Similarly M , the number of outliers, was increased from 0 to
0.4N , with a step of ⌊0.1N⌋. Finally, due to the randomness in
the noise generation, reconstructions were repeated seven times
with different noise seeds.

6.5.2. Computational performance
The experiment was run on an Intel i7-9700@3.60GHz. Com-

putation times as well as error metrics were recorded for each
reconstruction. Over all parameter sets, the mean computation
time for obtaining the geometric measures was 32.8 ms, while
the integration took on average 7.8 ms. Fig. 14 (left) provides box
plots of the overall computation time for the reconstructions, per
centroid type. Also, the median times are given as numbers. The
point distribution tensor is obviously the fastest, the geometric
median the slowest. However, note that the PDT is anyhow used
in all methods, as discussed in Section 5.1.
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Fig. 14. (Left:) Computation time of the reconstruction (multi-scale analysis and
integration). (Right:) Averaged success-rates of 4.45 million parameter runs. Six
configuration sets were tested with five different centroid settings.

Fig. 15. Success-rates per geometry, for the best performing configuration set
of each centroid candidate. Overall, the weighted mean (WMN) performs best,
followed by the mean (MN).

6.5.3. Success rate
Instead of relying on the judgment of an observer, we now

chose to automatically determine reconstruction success based
on the previously introduced error measures. We consider a
reconstruction as successful, when ELen ∈ [0.9, 1.2], ECom ∈

0.95, 1.05], and EV ≤ 0.25. Fig. 14 (right) illustrates the col-
ected success rates for the different centroids. On average, the
eighted mean (WMN) yields a 19% higher rate than the PDT
0.374 vs. 0.315). Note that in this study the success in general
s lower, since considerable noise is added to the runs.

Next, Fig. 15 indicates the success rates, per geometry. How-
ver, here only the best performing configuration set (of six) per
entroid was kept. WMN performs better in almost all cases,
ith the exception of the Mikado geometry. It especially handles
ases well that include corners; the employed quadratic inverse
eighting function helps in stabilizing the reconstructions. Due
o this, we recommend using WMN for the centroid computation,
or generic noisy 3D point clouds. Unless otherwise specified, it
as been employed in the majority of our presented cases.
Generally, Wave, Mikado, and Crossing3D are the most chal-

enging cases for our reconstruction approach. The curved nature
f the wave makes it very sensitive to jitter noise, usually failing
hen Sj ≥ 0.3. At similar jitter amplitudes also the closely passing
ikado lines cannot successfully be reconstructed anymore.

.5.4. Influence of noise
Next, we examine the effect of noise type and parameter

etting on the reconstruction results. In Fig. 16 success rates are
lotted, again separated by geometry. This time, rates are shown
or different noise values/intervals; from top to bottom: jitter
oise amplitude Sj, outlier noiseM , and distribution noise Sd. Note
hat here, WMN was employed for the centroid computation.
urther note, that a bar plotted for e.g. Sj = 0 includes the full
anges of the other noise parameters, i.e. in this case M and Sd.
s can be seen, the success rate mainly depends on jitter noise.
n contrast, changing distribution and outlier noise has a smaller
ffect. Also, as already discussed above, the Wave and Mikado
epresent the most difficult cases.
10
Fig. 16. Effect of increasing noise on success rates, per geometry; using WMN
and the best configuration set. Shown are jitter noise amplitude Sj (top), outlier
noise M (center), and distribution noise Sd (bottom). Reconstruction performance
is mostly independent of outlier and distribution noise. For Sj ≥ 0.8 most
reconstructions fail. Wave and Mikado are highly sensitive to jitter noise.

Fig. 17. Success rates, plotted for varying noise rate intervals; again separated
per geometry. Using a single noise rate facilitates overall comparisons of
reconstruction success vs. noise, even for unknown datasets. Moreover, also
effects of algorithm variations can be compactly visualized. Here, for instance,
results are also shown for the variation of enforcing a minimum of 6 candidate
points in the computation of Os; here visualized with stippled bars. This yields
improvements in the success rate, in presence of high noise.

6.5.5. Comparisons using new noise rate
Above we had introduced a new noise rate measure in Eq. (11).

It can be computed for arbitrary point clouds to characterize
overall noise, thus also making comparisons easier. Fig. 17 depicts
success rates, per geometry, according to intervals of noise rate
nR. As expected, success rates drop when the noise rate increases.
gain, the poor performance of the Wave example becomes ap-
arent. In addition, also possible variations of our approach for
pecial cases can be studied this way. As an example, for high
oise cases using 6 candidate points for computing Os could be

enforced, as discussed above. As can be seen via the stippled bars
in the plot, this sometimes would yield improvements.

6.6. Comparison to FitConnect/StretchDenoise

Next, we compared our approach to the recently published
reconstruction methods FitConnect (Ohrhallinger and Wimmer,
2019) and StrechDenoise (Ohrhallinger and Wimmer, 2018). Four
challenging geometries introduced in their work were also tested
in our framework; point clouds of a ‘‘monitor’’ outline, a spiral, a
circle, and a ‘‘bunny’’. The examples include different geometric
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Fig. 18. Comparison of the reconstruction of three geometries of Ohrhallinger
and Wimmer (2019) – using our approach (left), FitConnect (middle), and
trechDenoise (right).

eatures, such as corners, curved and straight sections, sparse
eometry, as well as variable jitter noise. All geometries were
ested using the original geometries specified by the respective
uthors. In addition, we also tested our geometry of a crossing
ith FitConnect.
For the experiment we used the authors’ codes, which are

ublicly available online: (FitConnect, 2018) and StretchDenoise
2018). Only minor modifications were made, to ensure com-
arable computation time measurements, vector graphics plots
f results after computation, and loading of our crossing exam-
le. Fig. 18 compares the reconstructions of four test cases, for
ur approach, FitConnect, and StrechDenoise. Our method yields
moother reconstructions; but corners may be smoothed out,
nless line-lets meet. The reconstructions with FitConnect follow
ccasionally a more zigzaggy path, especially for lower noise
ates. However, it can produce sharper corners. Regarding the
unny, our approach exhibited some artifacts: the small gap
etween the ears was not reconstructed correctly; a merged line
esulted. Nevertheless, in contrast, the crossing lines example
ould not be reconstructed with FitConnect or StrechDenoise.
We compiled error measures and computation times for these

xperiments, comparing all three approaches in Table 2. Note that
or this, the results from the FitConnect and StrechDenoise frame-
work and the ground truth data were loaded into our framework
to compute the error measures. We found that our method was
capable of producing results of similar accuracy, while in most
cases being faster.

A further experiment was carried out, comparing StretchDe-
noise and our method, when increasing the noise levels for a
2D circle. Fig. 19 depicts six configurations of increasing jitter
and outlier noise. The parameters, including the aggregated noise
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Fig. 19. Comparison of a noisy circle with different strengths of noise: our
approach (top half) and StrechDenoise (bottom half); the same noise settings are
employed for both methods (N = 174). StretchDenoise exhibited difficulties with
outlier noise, deteriorating when e.g. 30% outliers are present (bottom half, row
1, right). In contrast, our approach could handle jitter noise Sj = 0.5 and 100%
additional outliers (top half, row 2, middle). Further, even strong noise with
Sj = 1.0 and 150% can be handled, by enforcing 6 candidate points for Os (top
alf, row 2, right).

able 2
rror measures and timings of five reconstructions, comparing with FitConnect
FitC.) (Ohrhallinger and Wimmer, 2019) and StrechDenoise (StrD.) (Ohrhallinger
nd Wimmer, 2018). Our method can be several times faster; with similar
esults. The best performing method is indicated in bold font.
Geometry Method EH EV ECom ELen Time

[10−2] [10−2] [10−2] [10−2] [ms]

Monitor
Our 02 0.3 100 101 67
FitC. 02 0.2 100 106 2420
StrD. 02 0.2 100 103 2470

Circle
Our 09 04 100 103 4
FitC. 11 03 100 102 10
StrD. 36 08 100 125 12

Spiral
Our 36 08 100 108 5
FitC. 31 06 75 106 23
StrD. 20 07 80 99 34

Bunny
Our 39 13 90 97 7
FitC. 71 12 100 124 4
StrD. 31 6 100 103 6

Crossing Our 46 02 100 103 9
FitC./StrD. – – – – >94

rates nR, are indicated. StrechDenoise (bottom half) could handle
itter noise up to Sj ≈ 0.4, with up to 30% additional outliers.
ur approach (top half) was capable of handling Sj ≈ 0.5, with
p to 100% additional outliers. Moreover, by enforcing a 6-point
eighborhood for computing Os, this can be further improved to
≈ 1.0, with 150% outliers.
j
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Fig. 20. Power line reconstruction of an urban LiDAR scan. Two different views
of the reconstruction; 57k points in 2.1mins. (Bottom): Computed geometric
measures at selected locations: (a) close to a tree with sphericity becoming
the second dominant shape value; (b) automatic start point, with dominant
linearity integral on an isolated linear structure; (c) roof location where planarity
becomes more dominant. The line (I) first follows a bundle of cables and then
continues along a pole onto the roof’s gable; i.e. a linearly directed structure of
the roof-surface. Here, the WMN was employed.

6.7. Application on real-world LiDAR data

Four smaller subsets ranging from 39k to 111k points of a
massive LiDAR dataset were selected to test our method on real-
world data; including houses, bushes, trees, and power lines. The
data contain jitter, distribution, and outlier noise. Figs. 20 to 23
illustrate the results, using the WMN and exponential radius
growth.2 The algorithm extracts the main cable geometries of
the high-resolution scans. Coloring according to the median of
the geometric features for each LiDAR point provides a good
visual classification. The maximum analysis radius was chosen
manually and set to 15m, to capture all linearity scales. The
integration step size was increased to about 0.3m. The datasets
shown in Figs. 22 and 23 also performed well with the default
parameters. The main linear structures from the larger, noisy real-
world datasets were reconstructed. Computation time ranged
from 0.25 to 5.8mins dependent on data size, point distributions,
and maximum radius.

Note that in Fig. 20 an artifact appeared on the roof of the
right house. Also, the integration continued onto the roof and
followed some of its edges. Stopping criteria were not adjusted
to this specific dataset. The WMN reconstructed the cable system
successfully. Further, employing the WMD enhanced the recon-
struction of the cable bundle as well as it enabled to integrate
better along the roof surface edges.

A part of a power line consisting of three parallel cables was
tested, see Fig. 21. Here, the start point selection favors the outer
cables and ignores the inner one. The upper cable is covered
completely and the lower by about 80%. Also one of the poles

2 Further examples are also shown in the supplementary video.
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Fig. 21. Automatic reconstruction of a triple power line of about 66m length
sampled with holes and jitter noise; 111k points in 5.8mins. (Top-View:) Start
points are selected at the outer two cables. The upper cable is fully reconstructed
and the lower to about 80%. At the right pole connection the streamline switches
sides. Besides the cables, the left pole gets selected also reconstructed.

Fig. 22. Three of four single cables are successfully reconstructed of a larger
urban scene; 97k points in 2.7mins (0.8mins with default). (Side-View:) At
the right side, due to the very sparse sampling cable was left out in the start
point selection and could, thus, not be reconstructed. The cable bundle (right) is
covered, but the streamline switches between cables. The cable crossing is well
connected.

becomes selected and reconstructed. For the dataset shown in
Fig. 22 the single Y-shaped cables were reconstructed as well as
parts of a bundle of cables. Due to the sparse sampling of the
single cable on the right, starting points are not detected and,
thus, it is not reconstructed. Fig. 23 shows another scene where
the main cable is successfully reconstructed, whereas again a
sparsely sampled cable and a section of a bundle is not covered
by the curve reconstruction.

6.8. Discussion of centroid variants

As outlined above, different methods for computing the cen-
troids can be selected. This influences both the tensor computa-
tion and the geometric features. The latter will differ in scale and
smoothness. Thus, the selection will influence the results of the
score function and the vector field. In general, WMN exhibited
the best performance. Still, in Table 3 we indicate the advantages
and disadvantages of the different options.
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Fig. 23. The main linear feature, a cable on the left, is successfully traced; 39k
points in 0.9mins (0.25mins with default). Whereas, a sparsely sampled cable
and a bundle of cables are not covered by the reconstruction on the right.

Table 3
Centroid performance by different aspects.

PDT MN WMN WMD MD

Computation time ++ + + – ––
Success rate – + ++ + –
Crossings – – + – –
Wave –– + + – –
Examples + + + + +
Extreme noise – – ++ + – –
LiDAR – – + + –

PDT clearly outperforms the others concerning computation
ime. WMN performs best in the overall success rate, and it
s beneficial for reconstructing crossings. Both MN and WMN
how the most success for the difficult Wave case. Moreover,
ll approaches could handle the test cases in FitConnect (2018),
tretchDenoise (2018) (see above). For computing the maximum
inearity CL,max in the starting point score Os, using the PDT has the
dvantage that it down-votes noisy starting points. In extreme
oisy cases, as the circle above, MN and WMN performed best.
or our real-world LiDAR datasets, WMN and WMD performed
est in reconstructing the cables.

. Conclusion

We have presented a framework for the reconstruction of
urved line structures from noisy 3D point clouds. The method
mplements a piecewise streamline integration, in a neighbor-
ood tensor field. The approach employs weighing functions at
everal steps, e.g. tensor computation, point cloud interpolation,
nd angular weighting. The Fermi–Dirac weighting function gave
ood results and stabilized against noise. Linearity graphs for dif-
erent radii were examined to automatically set parameters and
teer the algorithm. This includes setting start points, detecting
ptimal neighborhood radii, and finding directions for integration
y using two new scoring functions based on the geometric mea-
ures. Further, multiple line-lets are grown forward and backward
n parallel; they intersect to form the final global reconstruction.
his permits to handle non-manifold lines and sharp corners.
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A thorough analysis was carried out on different test geome-
tries, with different types and amounts of noise. This highlighted
the performance and the limits of the method for each test geom-
etry. With the automated parameter runs, we explored different
centroids for the tensor computation: e.g. mean or geometric
median and weighted variants; opting for the weighted mean.
Further, we compared our method to the recently introduced Fit-
Connect and StretchDenoise algorithms, with respect to error met-
rics and computation time. Our reconstructions were smoother,
supported higher noise rates, and could handle crossings, while
usually being faster. However, in some test cases the geometry
reconstruction was not fully successful. Finally, we tested our
method on four noisy real-world LiDAR datasets and were able to
reconstruct single cables including holes and crossings. However,
some artifacts such as partial coverage were also encountered.

In future work, we will investigate further the application to
LiDAR cases; especially, including linearity and sphericity into the
stopping criteria and/or the pruning step, increasing robustness
against sparse sampling and improve on parallel curve recon-
struction.

The executable of the tool and the source code for geometric
measure computation and line reconstruction are provided online
as well as the data and evaluation tools for the parameter run
benchmark (MssfReconstruct, 2019). A video demonstrating the
method, selected test cases, and the LiDAR reconstruction can be
found here: https://marcel-ritter.com/mssfreconstruct.
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