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Zusammenfassung

Die Topologie, als Disziplin der Mathematik, hat in der Physik der konden-
sierten Materie Einzug gehalten, da sich mit ihrer Hilfe bestimmte exotische
quantenmechanische Phänomene beschreiben lassen. Zu diesen gehören die
Zustände wie der Quanten-Hall-Effekt, der anomale Quanten-Hall-Effekt,
der Quanten-Spin-Hall-Effekt und viele weitere. Die Aufgabe der Topologie
besteht darin, die Zustände durch topologische Invarianten zu beschreiben;
ganze Zahlen, die sich durch Beiträge von allen besetzten Moden im Viel-
teilchensystem berechnen lassen. Die topologischen Invarianten stehen
damit im Kontrast zu konventionellen Ordnungsparametern, die sich lokal
berechnen lassen, um beispielsweise Bose-Einstein-Kondensation oder Fer-
romagnetismus zu beschreiben.

Zwar existieren topologische Zustände auch in Materialien, tatsächlich
haben sich aber solche Zustände als eine faszinierende Anwendung von
Quantensimulatoren bewährt. Ein wichtiges Beispiel von Quantensim-
ulatoren sind ultrakalte Quantengase in optischen Gittern. Ein direkter
Vergleich zu elektronischen Systemen zeigt: Elektronen, als Quantenobjekte,
beeinflussen durch ihre Dynamik im Ionengitter den makroskopischen Zu-
stand des Materials. Das ist analog zu einzelnen Atomen in ultrakalten
Quantengasen, die sich als Quantenobjekte im durch Laserfelder erzeugten,
optischen Gitter bewegen. Ultrakalte Quantengase eignen sich dadurch
als Simulatoren für elektronische Systeme. Tatsächlich aber sind ultrakalte
Atome durch ihre gute Kontrollierbarkeit in der Lage, exotische Quanten-
zustände zu erzeugen, die weit über konventionelle elektronische Systeme
hinausgehen. So lassen sich zum Beispiel auch diverse, in Materialien
bisher unbeobachtete, topologische Zustände mit Hilfe von künstlichen
Eichfeldern herstellen.

Ein weiterer, gut kontrollierter Parameter in ultrakalten Quantengasen
ist die Wechselwirkung zwischen jeweils zwei Atomen. Systeme mit Wech-
selwirkungen zwischen den Teilchen sind schwierig zu lösen, da sogar
schon im Fall von drei miteinander wechselwirkenden Teilchen in der klas-
sischen Physik keine analytische Lösung vorliegt. In ultrakalten Quan-
tengasen sind typischerweise zehntausende Teilchen beteiligt, in elektro-
nischen Systemen liegt die Größenordnung sogar bei 1023. Lösungen zu
wechselwirkenden Problemen sind somit immer approximativ und es haben
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sich viele Methoden für unterschiedliche Anwendungsfälle etabliert. Die
dynamische Molekularfeldtheorie, kurz DMFT, ist beispielsweise in der
Lage den gesamten Phasenübergang zwischen einem Metall und einem
Mott-Isolator zu beschreiben. Das ist nur möglich, da in der DMFT Korrek-
turen von lokalen Quantenfluktuationen enthalten sind, die in der konven-
tionellen, statischen Molekularfeldtheorie vernachlässigt werden.

Die vorliegende Arbeit widmet sich weitreichend der Physik des Hof-
stadter-Hubbard-Modells, das insbesondere für ultrakalte Quantengase in
optischen Gittern relevant ist. Ursprünglich beschreibt das Hofstadter-Mo-
dell Elektronen in einem zweidimensionalen Gitter, auf das senkrecht ein
starkes Magnetfeld ausgerichtet ist. Je nach Stärke des Magnetfelds nehmen
die Elektronen Zustände ein, deren Energiespektrum ein selbstähnliches
Muster bildet. Dieses Fraktal wird Hofstadter-Schmetterling genannt. Er
wurde bisher nur in künstlichen Systemen beobachtet.

Die meisten topologischen Zustände sind isolierend in ihrem Inneren,
aber dafür leitend an ihren Rändern. Diese Randzustände sind nicht nur
leitend sondern auch robust. Das heißt, dass sie ihre Leitfähigkeiten nicht
verlieren, wenn beispielsweise eine Störstelle vorliegt. Diese Eigenschaften
machen topologische Zustände sehr interessant für zukünftige technische
Anwendungen.

Topologische Randzustände wurden bisher noch nicht in zweidimen-
sionalen ultrakalten Quantengasen beobachtet. Ein Grund hierfür ist die
intrinsische Inhomogenität dieser Experimente, die es erschwert, eindeutig
zwischen dem Inneren und dem Rand des Systems zu unterscheiden. Wir
untersuchen in dieser Arbeit den Randzustand, der zwischen zwei topo-
logisch unterschiedlichen Vielteilchen-Phasen des zweidimensionalen, zei-
tumkehrsymmetrischen Hofstadter-Hubbard-Modells entsteht. Der räum-
liche Übergang dieser beiden Phasen wird durch einen äußeren, räumlich
variierenden Kontrollparameter erzeugt, in diesem Fall ein gestaffeltes Po-
tential. Dieses kann in einem optischen Gitter durch ein Übergitter real-
isiert werden. Bei einem kritischen Wert des gestaffelten Potentials ist ein
topologischer Phasenübergang zu erwarten, wodurch in dieser Stelle im
Raum ein Randzustand entsteht. Randzustände oder die Grenze zwischen
zwei topologisch verschiedenen Phasen sind nicht durch Unterschiede in
der Dichteverteilung der Atome ablesbar, stattdessen geben verschiedene
Transporteigenschaften Hinweise auf topologische Randzustände. Wir be-
trachten die räumlich aufgelöste Kompressibilität und beobachten einen
Randzustand in der Mitte des Systems. Mit Hilfe der DMFT können wir die
Kompressibilität auch für den wechselwirkenden Fall berechnen und finden,
dass die Wechselwirkung den Randzustand nicht zerstört sondern lediglich
seine Position verschiebt. Er ist folglich robust gegen die Wechselwirkung.

Wir charakterisieren die beiden Phasen, zwischen denen sich der topo-
logische Randzustand befindet, durch topologisches Pumpverhalten. Dies
ist äquivalent zur Hall-Spannung, die sich senkrecht zur ursprünglichen
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Spannung in einem Hall-Zustand aufbaut. Das topologische Pumpen zeigt
deutlich den topologischen Unterschied beider Phasen im System. Weiter-
hin berechnen wir einen topologischen Index im Konfigurationsraum, kurz
LCM, wodurch wir die topologische Phasenseparation noch präziser charak-
terisieren können. Hierfür haben wir den LCM-Index generalisiert, um
ihn auf zeitumkehrsymmetrische Systeme anwenden zu können. Dies
ist jedoch nur für einen Spezialfall möglich. Das System erlaubt durch
Spin-Bahn-Kopplung Prozesse, bei denen sich der Spinzustand eines sich
bewegenden Teilchens im Gitter ändert. Dieser Prozess ist in ultrakalten
Quantengasen ebenfalls von außen durch ein künstliches Eichfeld kontrol-
liert. Im Spezialfall maximaler Spinmischung lässt sich das System durch
eine Transformation in zwei neue, virtuelle Spinzustände zerlegen. Diese
Vereinfachung ermöglicht nun die Verallgemeinerung des LCM-Indexes auf
zeitumkehrsymmetrische Systeme. In Fall der topologischen Phasensepa-
ration zeigt diese Technik mit dem LCM-Index, dass der Sprung des topo-
logischen Index an dem selben Raumpunkt eintritt, an dem sich auch der
Randzustand befindet. Dies gilt auch für den wechselwirkenden Fall und
bestätigt somit die Korrespondenz zwischen den topologischen Invarianten
und den Transporteigenschaften am Rand für wechselwirkende Systeme im
optischen Gitter.

Wir wenden die beschriebenen Techniken, die sich besonders für inho-
mogene, wechselwirkende Systeme eignen, auf ein typisches Problem der
ultrakalten Quantengase an, auf die harmonische Falle. Es zeigt sich, dass
sich abhängig von der Teilchenzahl im System topologische Phasen durch
die Steigerung der Wechselwirkungsstärke in der Mitte der harmonischen
Falle induzieren lassen. Ein Grund hierfür sind die beiden kompetitiven
Energieskalen von der harmonischen Falle und von der Wechselwirkung.
Die stärkere Wechselwirkung unterdrückt doppelt besetzte Gitterplätze im
System und drängt somit Teilchen weiter nach außen an den Fallenrand.
Dies verändert effektiv die Füllung des Gitters in der Mitte des Systems,
wodurch topologische Phasenübergänge abhängig von der zugrunde lie-
genden Bandstruktur stattfinden. Die Ergebnisse lassen sich hier ebenfalls
mit dem LCM-Index belegen.

Die Vielzahl von Anwendungen des LCM-Indexes führt zu der Frage
der experimentellen Messbarkeit. Hierfür überführen wir den Ausdruck
für den LCM-Index in eine Funktion von Ein-Teilchen-Dichtematrizen. Der
LCM-Index an einem Raumpunkt lässt sich somit als die doppelte Summe
aller Raumpunkte berechnen, die mit dem ursprünglichen Raumpunkt
ein Dreieck mit endlicher Fläche bilden. Natürlich ist es experimentell
unmöglich, die Beiträge aller Raumpunkte zu erfassen. Wir fokussieren
uns daher auf den Beitrag der kleinsten Dreiecke und untersuchen diese
Näherung in Hinblick auf die oben genannten Systeme, der topologischen
Phasenseparation und der harmonischen Falle. Hierbei stellen wir fest, dass
diese Näherung nur dann sinnvoll ist, wenn die Bandlücke der zu unter-
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suchenden Phasen groß ist, wenn diese also weit von einem topologischen
Phasenübergang entfernt sind.

Weiterhin diskutieren wir einen Vorschlag für die experimentelle Mes-
sung der Ein-Teilchen-Dichtematrizen im Konfigurationsraum und somit
des LCM-Indexes. Dies wäre durch eine tomographische Messung des
Quantenzustandes möglich. Hierfür wird das optische Gitter mit Hilfe der
richtigen Laserkonfiguration plötzlich in ein Dimer-Gitter gewandelt, in
dem jeweils nur zwei Gitterplätze miteinander gekoppelt sind. Die plötz-
liche Änderung des Gitterpotentials führt zu einem Nicht-Gleichgewichts-
zustand, bei dem zeitliche Oszillationen der lokalen Teilchendichte zu be-
obachten sind. Diese könnten im Experiment mit Hilfe eines Quantengas-
Mikroskops sichtbar gemacht werden. Eine analytische Rechnung zeigt,
dass man aus den zeitlichen Oszillationen Eigenschaften über die zu mes-
sende Ein-Teilchen-Dichtematrix extrahieren kann. In Kombination mit
unseren Untersuchungen der topologischen Phasenseparation wäre es somit
möglich, in einem System sowohl den Randzustand als auch die topologis-
che Invariante genähert zu messen.

In einer weiteren Studie untersuchen wir die Auswirkungen von einem
Ungleichgewicht der Populationen von den zwei Spinarten auf topologische
Phasen unter starken, repulsiven Wechselwirkungen. Dieses Problem ist
für ultrakalte Quantengase in optischen Gittern relevant, da sowohl Spin-
Ordnungen durch starke Wechselwirkung mit Spin-Ungleichgewicht als
auch topologische Phasen experimentell beobachtet wurden. Die Kombi-
nation beider Effekte wirft die Frage auf, inwieweit die beiden jeweiligen
Grundzustände ineinander überführt werden können. Um diese Frage zu
klären, führen wir zuerst klassische Monte-Carlo-Simulationen durch und
finden einen neuen, exotischen Grundzustand, bei dem die makroskopische
Magnetisierung endlich ist und einen Beitrag hat, der orthogonal zu allen
äußeren Felder ausgerichtet ist. Der Grund hierfür liegt in den künstlichen
Eichfeldern, die in Kombination mit dem Spin-Ungleichgewicht zu einer
geometrischen Frustration des Gitters führen. Tatsächlich finden wir in
dieser Form von geometrischer Frustration das theoretische frustrierte XY-
Modell für die Spin-Komponenten in der Ebene wieder. Somit eröffnet
dieses System einen unerwarteten und realistischen Weg zu einem bekann-
ten, über Jahrzehnte ausführlich studierten Problem. Wir untersuchen
weiterhin die Stabilität dieser Phase in Hinblick auf lokale Quantenfluktu-
ationen mit Hilfe der DMFT. Hierbei finden wir, dass ein Teil der Phase
aus dem Phasendiagramm verschwindet, also instabil hinsichtlich lokaler
Quantenfluktuationen ist. Stattdessen bildet sich ein Ferrimagnet.

Das ursprünglich zweidimensionale Hofstadter-Modell lässt sich auch
auf höhere Dimensionen verallgemeinern. Dies ist deshalb besonders in-
teressant, da sich topologische Phasen in zwei Dimensionen extrem von
denen in drei Dimensionen unterscheiden können. So gibt es beispiels-
weise nicht nur isolierende topologische Phasen sondern auch topologisch
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geschützte Semimetalle. Wir untersuchen das dreidimensionale, zeitum-
kehrsymmetrische Hofstadter-Hubbard-Modell für beliebige Ausprägung
der Spin-Mischung. Wie bereits oben beschrieben, lässt sich der Spezialfall
bei maximaler Spin-Mischung vereinfachen. Dies gilt nicht im allgemeinen
Fall. Wir entwickeln drei unterschiedliche Methoden für die Berechnung
von topologischen Invarianten in wechselwirkenden, dreidimensionalen,
zeitumkehrsymmetrischen Systemen basierend auf gewundenen Randbe-
dingungen, Wilson-Schleifen und auf dem LCM-Index. Mit Hilfe dieser
Techniken lässt sich das gesamte Phasendiagramm charakterisieren, wel-
ches sowohl starke und schwache topologische Isolatoren ausweist als auch
ein Nodallinien-Semimetall. Dieses exotische Semimetall entsteht in Berei-
chen im Phasendiagramm zwischen starken und schwachen topologischen
Isolatoren bei bestimmten Werten der Spin-Mischung. Wir stützen unsere
Resultate durch Berechnung der zugehörigen Randzustände, bei denen es
sich im dreidimensionalen Fall um Oberflächenzustände handelt und finden
die Übereinstimmung zwischen den topologischen Invarianten und den
daraus resultierenden Eigenschaften für Oberflächenzustände.

In dieser Arbeit wird das Hofstadter-Hubbard-Modell in vielen Facet-
ten mit Hilfe der DMFT analysiert, wobei das Hauptaugenmerk auf dem
Kontext der ultrakalten Quantengase in optischen Gittern liegt. Das Hof-
stadter-Modell lässt sich in solchen Systemen realisieren und Hubbard-
Wechselwirkungen können heutzutage routinemäßig implementiert wer-
den. Der endgültigen Realisierung des Hofstadter-Hubbard-Modells steht
allerdings noch ein Hindernis im Weg. Topologische Phasen werden in
ultrakalten Quantengasen durch periodisch getriebene Systeme geschaffen,
die im Hochfrequenzfall einen effektiven, statischen Hamilton-Operator
erzeugen. Wechselwirkungen führen zu Multiphoton-Anregungen, wo-
durch letztendlich ein Heizeffekt entsteht, der das ultrakalte Quantengas
zerstört. Trotzdem sind die Bestrebungen der aktuellen Forschung groß,
solche Heizeffekte einzudämmen und es existieren die ersten experimen-
tellen Studien zu wechselwirkenden, topologischen System in ultrakalten
Quantengasen in optischen Gittern. Die in der vorliegenden Arbeit ent-
wickelten Methoden lassen sich sehr allgemein auf weitere Systeme an-
wenden. Sie sind anwendbar auf topologische, zeitumkehrsymmetrische
Systeme in zwei und drei Dimensionen, mit Hubbard-Wechselwirkung so-
wie möglicherweise gebrochener Translationssymmetrie. Weitere mögliche
interessante Anwendungsgebiete für diese Methoden, die über das Hof-
stadter-Hubbard-Modell hinausgehen, sind unter anderem die verdrehte
Graphen-Doppelschicht, die durch Moiré-Muster sowohl supraleitende als
auch isolierende Phasen aufweist, und der topologische Proximity-Effekt,
der dem gleichnamigen Effekt bei Supraleitern entlehnt ist. All dies sind
Themen, die zur Zeit heiß diskutiert werden.
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”I might indeed be crazy but this is not evidence for it.”

– Steven H. Simon, Solvay workshop, Brussels 2019
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Preface

My favorite word in English is indistinguishability. This is not only because
it exhibits more syllabi than its German translation Ununterscheidbarkeit -
which is rare - but also because it is a fundamental concept of quantum
many-body physics leading to unbelievably fascinating consequences. Let us
ask the question: What happens when we exchange two particles inside
a collective of many indistinguishable particles? When we measure any
physical observable on this collective before and after the exchange, nothing
should have changed since we cannot tell which particle is which, they sim-
ply cannot be distinguished. However, the quantum state, or equivalently,
the wavefunction, as they are not observables, may have changed. One would
assume that this has no consequences as they are not observable. It turns
out, however, that the square of the absolute value of the wavefunction
is an observable, specifically, it is the density of particles. Because of the
square, the wavefunction can change in two ways without changing the
density of particles: Either it is multiplied by a plus sign or by a minus sign.
What sounds rather dull right now, has vast consequences in the theory
of many quantum particles and divides the world into two different types
of particles: There are bosons and there are fermions. Light, e.g., consists
of bosons while all matter is made of fermions. Bosons like to condense
into a single state when it’s cold, fermions always stay in different states.
A boson can be made out of two fermions but not the other way around.
These are just a few general examples of their extreme difference. Of course,
the world is not only plus or minus and there are particles which are neither
bosons nor fermions. But this simple consideration should elucidate what
I love about theoretical physics. We started with a very simple question
which boiled down to a simple minus sign, however, after decades or even
a century of research such rich physics can evolve and blossom. For me this
is pure elegance. Of course this elegance does not come for free and the
present work is an example for that. Plenty of different theories, relevance
for experiments, heavy numerical computations, and thousands of lines of
coding are required just to take a small step forward in research.

The numerical part of this work is based on codes which were inherited
and improved over many generations of postdocs and Ph.D. students in
the Hofstetter group. I am thankful for being part of that. Moreover, I am
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grateful for the excellent collaboration with Jun-Hui Zheng. Together we
have published a number of interesting articles over the last three years.
I also would like to thank Constantin Meyer-Grant, Jaromir Panas, and
Irakli Titvinidze for their careful reading of the manuscript, their valuable
comments, and their time. I would like to thank the German Research
Foundation (DFG) as I am very grateful for their funding of my position as a
Ph.D. student within the research unit FOR 2414 as well as the access to the
supercomputing facilities at the Center for Scientific Computing Frankfurt.
Finally, I would like to thank Walter Hofstetter as my supervisor in the last
three years. He taught my precious skills in research, as well as academia in
general, from which I will always benefit.

The last words within this manuscript were written down during the
time when Covid-19 has become a part of everyone’s life. The huge confu-
sion of this new threat, however, slowly fades away and there is much hope
for the return to the life we know, without pandemic.
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Abstract

The Hofstadter model, besides the Haldane and Kane-Mele models, is the
most common tight-binding model which hosts topologically nontrivial
states of matter. In its time-reversal-symmetric formulation the model can
even describe topological insulators. Experimentally, the Hofstadter model
was realized with ultracold quantum gases in optical lattices which is a well-
controlled way to engineer quantum states of tight-binding Hamiltonians.
Another established control parameter in ultracold quantum gases are two-
particle, on-site interactions, also known as Hubbard interactions. This work
aims at introducing the reader to the concepts of topological states of matter,
a collection of corresponding tight-binding models, and the methodology
to treat interacting topological states with dynamical mean-field theory.
We present recent results for inhomogeneous, interacting systems, spin-
imbalanced magnetic systems, propose experimental detection methods,
and extensions to three-dimensional topological states.
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Chapter 1

Introduction

There is a common perception of material properties: some materials can
conduct current such as metals and some cannot, e.g., ceramics. Then there
are semiconductors which relax the strict picture of conductor and insulator.
The semiconductors opened a huge world of technological applications and
are the reason for the high abundance of computers nowadays. Another
state of matter, which exists in some materials and also has properties of
both conductors as well as insulators, is the so-called topological insulator.
It behaves like insulators in the bulk, i.e., the inner part of the material,
but is conducting at its boundary. Boundary states are common since the
physics at surfaces is intrinsically different compared to bulk physics. The
crucial difference to the boundary states of topological insulators, however,
is that the latter are robust. This means perturbations such as impurities
cannot destroy them. If one cuts off a piece from a topological insulator the
boundary changes. Subsequently, also the conducting boundary states are
recovered at the new boundary. There is a deep mathematical reason for this
behavior which will be discussed later in this chapter. Before we come to
that, we introduce the family of quantum Hall effects which can be understood
as the consequence of nontrivial topological properties of the physical state
of matter.

We start this introduction with a historical overview of the different
quantum Hall effects in Sec. 1.1 without going too much in-depth on the
physical principles leading to the exciting field of Hall physics. Instead, we
introduce the concept of topology in condensed matter physics in Sec. 1.2
and apply it to the Hall effects introduced in Sec. 1.1. In Sec. 1.3 we briefly
review quantum simulators with a closer look on the field of cold atomic
gases in optical lattices in Sec. 1.4. We then combine the topological states
and the cold atom setups in Sec. 1.5. This is followed by an introduction
to Floquet theory in Sec. 1.6 in order to connect the theory with the experi-
mental implementation. Eventually, the Hubbard model in the context of
dynamical mean-field theory is reviewed in Sec. 1.7.
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1.1 Family of quantum Hall effects

The classical Hall effect was discovered by Edwin Hall in 1879 [1]. It arises
from the electrodynamic equation of motion for a charged particle, e.g., an
electron in a conductor, exposed to an electric field E and a magnetic field B

M
dv
dt

= −eE− ev× B, (1.1)

where M, e, and v are the particle’s mass, electric charge, and velocity,
respectively, and t denotes time. To get an interpretation of this equation,
we picture a two-dimensional (2d) material in the xy plane. An applied
electric field E = Eêx with E > 0 in x direction will accelerate the electron
in x direction, where we denote unit vectors in µ direction as êµ. From a
finite perpendicular magnetic field B = B⊥ êz, the electron will experience a
force in y direction which is the origin of the measurable Hall voltage. This
is associated with the Hall resistivity Rxy which is found to be proportional
to B⊥. The diagonal resistivity Rxx, on the other hand, is associated with
currents along the electric field. Here, it vanishes in this simple vacuum
description. Treating the Drude model would result in a finite constant
resistivity. This very basic treatment of the classical Hall effect shows us
the two relations Rxy ∝ B⊥ and Rxx = 0. In the following we will introduce
the quantum-mechanical extensions of the Hall effect and will observe
the severe deviations from these relations. We will follow the books by
Ezawa [2] and by Bernevig and Hughes [3] as well as the lecture notes by
Asbóth et al. [4] and by Tong [5].

1.1.1 Integer quantum Hall effect

At low temperatures T, typically quantum effects play an enhanced role
which leads to experimental deviations from the classical theory. This is
because the thermal energy kBT is much smaller than other energy scales
in the system, where kB is Boltzmann constant which we set to 1. In 1980
von Klitzing et al. [6] measured at a temperature T = 1.8 K and a magnetic
field strength of 13 T a plateau for the Hall resistivity in contrast to the
proportional behavior as predicted by the classical theory discussed above.
This suggests that the Hall resistivity is quantized. It turns out that it
obeys Rxy = 2πh̄/(e2ν), where ν = 2πh̄ρ0/(eB⊥) assumes integer values.
Here, ρ0 is the electron density in the sample. The effect is called integer
Quantum Hall effect (IQH). The value of the plateau can be measured with
extreme precision which stimulated the idea to measure the fine-structure
constant [7] in the original experiment. In 1985 von Klitzing was awarded
the Nobel Prize for these findings.

A paradigmatic lattice model for the IQH is the Hofstadter model pub-
lished in 1976 [8] which is based on ideas by Harper from 1955 [9]. We will
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introduce the Hofstadter model, or sometimes Harper-Hofstadter model, in
Sec. 2.1.

1.1.2 Quantum anomalous Hall effect

As a follow up, Edwin Hall published in 1881 his findings on the Hall effect
in ferromagnetic materials and reports that the effect is ‘several times greater’
compared to paramagnetic materials [10]. It was then dubbed anomalous
Hall effect. The naı̈ve perception here, is that the finite magnetization of the
material gives rise to an effective magnetic field which modifies the Hall
effect. However, it is not sufficient to explain the huge increment of the
Hall effect in ferromagnetic materials. In 1954 the first quantum mechanical
theory involving spin-orbit coupling (SOC) to describe the anomalous Hall
effect was published [11]. Today it is assumed that many effects are involved
and cumulatively contribute to this phenomenon. The quantum anomalous
Hall effect (QAH) in real materials roots in quantum mechanical as well as
topological mechanisms [12]. The QAH has been measured in thin magnetic
topological insulators in 2013 [13].

In 1988 Haldane proposed a 2d tight-binding model which possesses a
nontrivial Chern number even though there is no net magnetic flux pene-
trating the 2d lattice [14]. The model is an approach to the nontrivial QAH.
We will go into more detail of the Haldane model in Sec. 2.4.

1.1.3 Quantum spin Hall effect

The spin Hall effect (SHE) was introduced theoretically by Dyakonov and
Perel in 1971 [15,16]. It corresponds to classical spin transport in conductors
within an external magnetic field. In the SHE, SOC effects of the material
will yield a finite spin polarization of the Hall effect. This makes the SHE
intriguing for applications in spintronics reviewed in Ref. [17].

The quantum spin Hall effect (QSH) was theoretically introduced in
the context of semiconductors [18, 19] and in graphene [20]. The latter
established the so-called Kane-Mele model, see Sec. 2.5, which describes
spinful electrons in graphene accompanied with SOC. It is regarded as a
milestone for the field of topological insulators. The SOC opens a gap which
is topologically nontrivial. However, it turns out that in real graphene the
SOC is too small, which stimulated research in other systems like HgTe
quantum wells. A tight-binding model here is the so-called BHZ model [21],
which led to the experimental confirmation of the QSH in 2007 by König et
al. [22] followed by a review on the QSH [23].
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1.1.4 Further relatives

Besides the IQH, QAH, and QSH there are even more versions of the quan-
tum Hall effect. The content of this work will be concerned with quantum
states related to the former three, however, we will briefly mention some of
the most intriguing other versions.

The fractional Quantum Hall effect (FQH) was discovered in 1982 by
Tsui et al. [24] showing a plateau at fractional numbers of the transverse
resistivity in contrast to the IQH. The so-called Laughlin wavefunction is
an approximative analytic form for the groundstate of the FQH at odd
fractional fillings of the lowest band [25]. A common modern framework is
to explain the FQH in the composite particle picture where electrons and
flux quanta combine to quasiparticles [26] following anyonic statistics [27].
This and the fact that FQH states exhibits long-range entanglement [28] is
condensed in a new concept which is called topological order.

The quantum valley effect is a version of the Hall effect in which the
transport properties are assigned to valleys in the Brillouin zone (BZ). In
graphene, e.g., there are two valleys in the BZ. It is then possible to find a
mapping between the QSH and the quantum valley effect [29].

We thus far discussed only Hall effects which occur in 2d. In fact, there
is no limitation to the dimensionality. Depending on the symmetry of the
system, topologically nontrivial states can emerge in any dimension [30].
The three- and four-dimensional generalizations to the quantum Hall effect
exist, mostly theoretically. Recently, however, the 4d quantum Hall effect
has been measured in 2018 with cold atoms [31] and the 3d quantum Hall
effect in 2019 in ZrTe5 [32].

1.2 Topological states of matter

We will try to introduce the concept of topology without mentioning the
words ’coffee cup’ or ’doughnut’. Topology is a branch of mathematics
which investigates mathematical objects in a very free abstraction. Topology
is concerned with the preserved properties of objects under deformations,
twistings, and stretchings. It stands in sharp contrast to geometry, which
is concerned with measures of a shape such as lengths, angles, etc. The
difference can be illustrated with an example. In Fig. 1.1(a) we show the
surface of a polyhedron, a geometrical object which consists of v vertices, e
edges, and f faces, which are all three integer numbers. Geometry would
be interested in, e.g., its total surface area or its volume. In topology, this is
different. A nice example from topology is the so-called Euler characteristics
χ [33]:

χ = v− e + f . (1.2)
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Figure 1.1: Example for topology: The polyhedron in (a) and the torus in (b)
have the same genus, i.e., the same number of holes.

As we can see, no geometrical quantities such as surface areas or angles
enter this equation, only numbers from counting appear. The value of
χ is thus independent of the exact form of the polyhedron. It turns out
that for any polyhedron the Euler characteristics is χ = 2 − 2g, where
g is called genus and represents the number of holes in the polyhedron,
Fig. 1.1(a) has one hole g = 1. The Gauss-Bonnet theorem connects the Euler
characteristics to a continuous quantity, the Gauss curvature. The Gauss
curvature comes from the field of differential geometry and is a measure for
the curvature of a 2d surface defined at each point of the surface in space.
The 2d integral of the Gauss curvature over the entire closed surface yields
the Euler characteristics. Thus also smooth surfaces such as the torus in
Fig. 1.1(b) can be associated with an integer number. The genus, as such
a number, is an example of a topological invariant. Both, the polyhedron
and the torus exhibit the same topological invariant g = 1 even though their
appearance is completely different.

1.2.1 Topology in condensed matter physics

The connection to condensed matter physics was first built up through the so-
called TKNN invariant [34], see Sec. 1.2.4, which corresponds to the physical
quantity of conductivity. In Sec. 1.1, we realized that conductivity, as it is
the inverse of resistivity, is a central quantity in Hall effects. The TKNN
invariant thus connects the mathematical concept of topology with Hall
physics. Another closely related quantity is the Berry curvature introduced
in 1984 by Berry [35], see Sec. 3.5. Berry investigated the quantum phase
of a state which is changed on a closed path in the parameter space. In the
adiabatic limit the so-called dynamical phase vanishes, however, a geometric
phase remains which is now dubbed Berry phase. Via Stokes’ theorem this
quantity is then linked to a two-dimensional integral. It is the comment by
Barry Simon in Berry’s paper which provides the missing link to topology in
math. He stated that the integrand in Berry’s formula has the mathematical
structure of a curvature. This reminds us of the discussion on the Gauss
curvature in Sec. 1.2.

In the TKNN paper the Kubo formula was used to compute the conduc-
tivity of a quantum Hall system to find a quantized value [34]. This formula
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happens to be the equivalent to Berry’s formula. Now the topological in-
variant obtains a physical meaning which is the quantization of the Hall
conductivity.

1.2.2 Topological invariants

The TKNN invariant is the first example of a topological invariant in con-
densed matter systems. As it was applied to a 2d lattice pierced by a
magnetic field, it describes the quantization of the IQH. This corresponds
to the Hofstadter model, see Sec. 2.1. The conductivity assumes values of
integer multiples of e2/h where h is the Planck constant. The topological
invariant here is an integer, or Z number. This is just an instance of a more
general concept of the classification of topological states of matter. In fact,
topologically nontrivial states like the IQH are not restricted to 2d and
may obey certain symmetries. Ryu et al. [30] introduced a classification for
topological states. Herein, the dimensionality and the symmetries of the
system uniquely define the type of topological invariant which describes
the physical state. The symmetries involve time-reversal symmetry (TRS),
particle-hole symmetry, and the combination of both, the chiral symmetry.
Other symmetries are expressed through unitary operations which always
decouples the Hamiltonian into irreducible blocks. The classification aims
at identifying these irreducible blocks. Time-reversal and particle-hole trans-
formations, on the other hand, are anti-unitary operations and thus give rise
to these fundamental symmetries. Translational symmetry is not involved
since the classification should also apply to disordered systems. It turns
out that the three mentioned symmetries give rise to ten symmetry classes.
The classification thus consists of a table for the ten symmetry classes in
all dimensions, see Ref. [30, Table 3.]. The entries then provide the type
of topological invariant to characterize the corresponding state. These are
either trivial or the classification obeys a Z or Z2 number. The IQH, e.g.,
has no symmetries and occurs in 2d. From the table one then finds a Z clas-
sification which is consistent with our discussion above. How to calculate a
topological invariant in practice depends on the specific case and we will
provide examples in Sec. 1.2.4 for the nonsymmetric case in 2d and Sec. 3
for the TRS case in 2d as well as 3d. It is important to note that topological
invariants are only defined if a gap is open since all occupied eigenstates
contribute to their calculation. Partially filled bands may fluctuate which
cannot yield a quantized value.

1.2.3 Boundary states

In the last section, we manifested the concept of a topological invariant for a
quantum many-body state. Let us consider a state with a Z classification
where the topological invariant is an integer-valued constant assigned to
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Figure 1.2: Schematic of topological edge states: (a) a topological phase
in cylinder geometry (b) the wavefunction ψ(x) of the chiral edge state
resides at the boundaries of the cylinder with penetration depth l (c) the
energy spectrum with the two edge modes crossing the band gap (d) inverse
penetration depth as a function of momentum k.

an insulator and robust with respect to smooth deformations of the Hamil-
tonian. This is true as long as the gap is finite and has huge impact on the
resulting state. There is an intuitive picture of what happens at the interface
of two topologically distinct insulating phases with invariants ν1 and ν2,
respectively. The topological invariants cannot change as long as the band
gap remains open for both insulators. However, because the two phases are
topologically different ν1 6= ν2, there must be a change of the topologically
invariant from ν1 to ν2. Yet, this is possible only if the gap is closed. As a
result, there must exists at least one gapless state called boundary state. In
2d it is mostly dubbed edge state and in 3d surface state. The so-called bulk-
boundary correspondence states that the difference of topological invariants
ν1 − ν2 corresponds to the number of robust, gapless edge states sitting at
the interface [36, 37]. In the interacting case, the bulk-boundary correspon-
dence is expected to hold as well [38]. On the other hand, in non-hermitian
systems the bulk-boundary correspondence is violated [39, 40]. Since we
only cover hermitian systems in this work, we expect the bulk-boundary
correspondence to hold.

In Fig. 1.2, we schematically present the edge states of a IQH state. The
2d state in cylinder geometry is shown in (a) where the chiral states sit at the
edges of the system. The term ’cylinder geometry’ refers to the boundary
condition of the system. In the 2d cylinder geometry, one spatial direction
exhibits periodic boundary conditions (PBC) and the other one exhibits open
boundary conditions (OBC). As a counterexample, in torus geometry, both
spatial variables have PBCs.
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The wavefunction ψ(x) of the edge state is localized at the edges as
shown in Fig. 1.2(a) and decays into the bulk as shown in (b). Here, one can
define a penetration depth l which measures the localization of the edge
states at the boundary. In (c), we show the energy spectrum of this system.
Considering the bulk bands only, with the lower band being completely
filled and the upper band being empty, the system is an insulator. With
edge states, however, the system becomes gapless at the boundary. The
term ’edge states’ is slightly misleading since a single state, associated with
one k value, corresponds to just one point in the energy spectrum. What is
usually meant is the edge mode which connects the upper and the lower
bulk band, i.e., runs over many k values [41]. However, the name edge state
is commonly used and for practical reasons we stick to this convention. An
edge state crosses the whole band gap once. This means that we can assign
a group velocity ∂E/∂k to the edge state at the Fermi energy. This group
velocity is positive for the edge state at one edge and negative for the edge
state at the other edge as highlighted in Fig. 1.2(a). Furthermore, we show
the inverse penetration depth l−1 of the edge states in (d) which shows that
the edge state is well localized as soon as it is energetically well separated
from the bulk bands. For more introductory details on edge state spectra
consult Refs. [42, 43].

One of the most intriguing consequences of the described edge states
stems from their chirality. In the most simple nontrivial scenario, there is
one edge state per edge which has a certain chirality. If we focus on one
edge only this means there is only one state at the Fermi energy and this
state has a finite group velocity, say positive. This means there is no state
with negative velocity, what implies that the state cannot backscatter at an
impurity on that edge since there is no state to scatter into with a negative
velocity. This feature is called robustness. Therefore, topological edge states
are referred to as robust, gapless, conducting edge states.

1.2.4 Quantum Hall and Chern insulators

The quantum Hall insulator and the Chern insulator are both topologically
nontrivial states. The quantum Hall insulator is achieved through a strong
magnetic field which creates the quantum Hall effect, as it was introduced
in Sec. 1.1.1. The topological properties of this state are characterized by
the Chern number C, or originally called TKNN invariant, as described
in Sec. 1.2. Let us think of a 2d lattice system in momentum space, so
k = (kx, ky) is a good quantum number. The Chern number is defined as
the integral of the Berry curvature over the whole BZ summed over all filled
bands [4, 34, 35]:

C =
i

2π

Nocc

∑
n=1

∫
dkxdky

[
〈∂kx ψn(k)|∂ky ψn(k)〉 − 〈∂ky ψn(k)|∂kx ψn(k)〉

]
(1.3)
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Here, |∂kµ
ψn(k)〉 is the kµ derivative of the Bloch state of the nth band

corresponding to the spatial direction µ = x, y. Equation (1.3) is an example
of a topological invariant. We observe that it is expressed by contributions
from all Nocc occupied states. The contribution of all the occupied states
makes it a global quantity, in fact, it is in general not possible to express it
through local quantities. Besides its nontrivial Chern number, the IQH state
also hosts chiral edge states, as explained in Sec. 1.2.3, where the number of
edge states is equal to the Chern number.

The word Chern insulator is used for a topologically nontrivial state
without an externally applied field, i.e., without net magnetic flux piercing
the 2d plane. Thus it corresponds to the state of the QAH of Sec. 1.1.2. A
Chern insulator is also characterized by the Chern number in Eq. (1.3) and,
correspondingly, also hosts chiral edge states. Examples for tight-binding
models which generate the quantum Hall insulator and the Chern insulator
are the Hofstadter model in Sec. 2.1 and the Haldane model in Sec. 2.4,
respectively.

1.2.5 Topological insulators

In the preceding section, we have understood that quantum Hall and Chern
insulators are topologically protected, i.e., they carry a nontrivial Chern
number which can only change upon a gap closing. They also host ro-
bust, gapless, conducting, chiral edge states which cannot backscatter as
explained in Sec. 1.2.3. Topological insulators, on the other hand, are states
which are not only topologically protected but also by symmetry, namely
TRS. It thus corresponds to the QSH discussed in Sec. 1.1.3 and to the
symmetry class AII recalling our discussion in Sec. 1.2.2. Until topologi-
cal insulators were introduced [20, 44] it was believed that TRS breaking
is necessary for nontrivial states such as the IQH. This triggered a huge
excitement in the field [3, 45].

The most simple way to construct a TRS topologically nontrivial system
is to think of two copies of a quantum Hall insulator each assigned to
one spin-1/2 spin state with flipped magnetic field. This means that the
spin-up particles are exposed to the positive magnetic field and the spin-
down particles to the negative one of the same magnitude. Upon time
reversion, the magnetic fields as well as the spin states flip and one obtains
the same system. This is the spin conserving case, i.e., spin-up and down
particles are not coupled and can be treated independently. Let us say
the Chern number of the spin-up particle is C↑ = 1. Then, because of the
opposite magnetic fields due to TRS, the spin-down particles must have
Chern number C↓ = −1. We observe that the total Chern number C↑ + C↓
vanishes even though there are edge states. These edge states, however, do
not contribute to any mass transport, sometimes also called charge transport,
but rather to spin transport. This is why these edge states are dubbed helical
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and a spin Chern number (C↑ − C↓)/2 can be defined which equals to 1 in
this case.

The concept of a topological insulator, however, is more general than
just two copies of a quantum Hall insulator. To understand this concept, we
have to look at the fundamental symmetry of the system, TRS, following
Ref. [3] here. The time reversion operator is denoted Θ̂. Certainly, Θ̂ will not
change a particle’s position r but will reverse its motion, i.e., its momentum
p. In operator language this is expressed as

Θ̂r̂Θ̂−1 = r̂, Θ̂p̂Θ̂−1 = −p̂, (1.4)

where r̂ and p̂ stand for the position and the momentum operator, respec-
tively. Looking at the commutator [r̂, p̂] = ih̄, where h̄ = h/(2π), we find
Θ̂iΘ̂−1 = −i which makes Θ̂ an anti-unitary operator. For spin-1/2 systems
the time reversion operator can be represented as

Θ̂ = eiπσy/2K̂ = iσyK̂, (1.5)

where K̂ is the complex conjugation operator, K̂iK̂−1 = −i with K̂2 = 1. The
square of the time reversion operator yields

Θ̂2 = iσyK̂iσyK̂ = iσy(−i)(σy)∗K̂2 = −(σy)2 = −1. (1.6)

The property Θ̂2 = −1 puts 2d TRS topological states into the AII class
within the ten-fold way of the symmetry classification [30], see Sec. 1.2. In 2d
and 3d, this implies the characterization of topological states byZ2 numbers,
what we will see in this and the following sections. In four dimensions the
states are characterized by an integer number, i.e. a Z number, a fact that
is later discussed in Sec. 4.1.1. Methods of how to compute the Z2 number
to characterize topological insulators are presented in Sec. 3 and diverse
generalizations to it are a substantial part of this work.

For a half-integer spin system, the Kramers theorem applies. Let us
consider a Hamiltonian Ĥ(k) of a lattice system with quasimomentum k.
Upon time reversion the sign of the quasimomentum of the Hamiltonian
flips k [3]:

Θ̂Ĥ(k)Θ̂−1 = Ĥ(−k) (1.7)

The TRS of the system then has the following implications on the energy
spectrum E(k) of the system. The spectrum is defined as Ĥ(k)|ψ(k)〉 =
E(k)|ψ(k)〉. The energy of the time-reversed state Θ̂|ψ(k)〉 is computed as

Ĥ(k)Θ̂|ψ(k)〉 = Θ̂Ĥ(−k)Θ̂−1Θ̂|ψ(k)〉 = Θ̂Ĥ(−k)|ψ(k)〉
= Θ̂E(−k)|ψ(k)〉 = E(−k)Θ̂|ψ(k)〉.

(1.8)

Thus, we find that the time-reversed partner Θ̂|ψ(k)〉 at k has the same
energy as the state |ψ(−k)〉 at −k. This is illustrated in Fig. 1.3(a) where we
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Figure 1.3: Schematic for edge states of topological insulators at one edge:
(a) Kramer’s degeneracy at k = 0, π of time-reversed partners I and II, (b)
edge state of a topological insulator, and (c) two edge states of a topological
insulator which gap out at momenta not equal to 0 or π.

defined |ψI I(k)〉 = Θ̂|ψI(k)〉. Since the BZ is periodic, there exist two special
points where we find degeneracies due to the above argument. These values
are 0 and π, called time-reversal invariant momenta (TRIM). In 2d, e.g.,
the following four TRIM exist: (0, 0), (π, 0), (0, π), and (π, π). We observe
in Fig. 1.3(a) that at these special points there are degeneracies which are
protected by the TRS, dubbed Kramers degeneracies.

In contrast to a quantum Hall state or a Chern insulator, a topological
insulator hosts counter-propagating, helical edge states. This means that in
principle back scattering could occur if spin mixing was present. However,
since the TRS-protected degeneracies cannot be lifted, the state which crosses
the band gap will not gap out. This is shown in Fig. 1.3(b) for one pair of
edge states at one edge only. If a second pair of edge states exists, as shown
in Fig. 1.3(c), band crossings can occur at quasimomenta not being equal to 0
or π. At these points, TRS is not protective against coupling of the crossing
bands and they can hybridize and eventually gap out. The many-body state
is then topologically equivalent to the topologically trivial state. In fact, only
an odd number of edge state pairs per edge is topologically nontrivial. This
emphasizes the characterization by a Z2 number as the topological invariant
for topological insulators.

The quantum state of a topological insulator survives only if TRS is
present, otherwise spin-mixing terms could gap out the nontrivial edge
states. This is why they are sometimes called symmetry-protected topolog-
ical states. Other symmetries can also protect the topologically nontrivial
state. A further example is the topological crystalline insulator which incor-
porates mirror symmetries of the system [46].

1.2.6 Three-dimensional topological states

In the preceding section we have focused the 2d topological insulator state.
Topological insulators are, however, not restricted to 2d and were gener-
alized to 3d also exhibiting TRS [47–49], reviewed in Ref. [50]. From the

31



Figure 1.4: Schematic for three-dimensional topological insulators: (a) two-
dimensional topological insulator ν = 1 (b) weak topological insulator
(ν0; ν1, ν2, ν3) = (0; 0, 0, 1) as a stack of two-dimensional topological insula-
tors (c) strong topological insulator (ν0; ν1, ν2, ν3) = (1; 0, 0, 0) with colors
representing different spin states.

topological classification [30] we understand that these states also obey a Z2
characterization. In contrast to the 2d equivalent, not a single Z2 number
but four Z2 numbers are required for the full characterization of the 3d
topological state. This comes from the fact that in 3d there exist eight TRIM.
If one fixes one component ki of the quasimomentum k = (kx, ky, kz) to
ki = 0, π, we obtain a 2d plane. We recognize again a 2d BZ spanned by
(k j, kl) with i 6= j 6= l. These 2d BZs again obey the characterization of a 2d
topological insulator as explained before. There are six of such 2d planes
in the 3d BZ each carrying a Z2 number. However, they are not entirely
independent and one can reduce the number to four independent Z2 num-
bers (ν0; ν1, ν2, ν3). Since a Z2 number can only assume two different values,
this yields in total 16 possible many-body states including the topologically
trivial state (0; 0, 0, 0).

The most simple way to think of the 3d generalization is by coupling 2d
topological insulators, depicted in Fig. 1.4(a), in order to achieve a 3d stack
as shown in Fig. 1.4(b). The edge states are now surface states encircling
the topological insulator around the stacking direction. This state is dubbed
weak topological insulator (WTI) since is was assumed that it is sensitive to
violations of the translational symmetry. However, the numerical study of
Ref. [51] has shown robustness against surface disorder. We observe a clear
anisotropy of the WTI which is determined by the three numbers ν1, ν2, ν3.
The stacking picture works only for weak coupling between the layers.

For strong inter-layer coupling, there is no equivalent to 2d such as
stacking. Here, a very intriguing state can emerge which is called strong
topological insulator (STI). The interesting feature of this state is, that it
hosts a single Dirac cone [52] at its surface BZ. Due to TRS, this cone is
spin-momentum locked, i.e., any value of the surface quasimomentum ksurf,
being element of the 2d surface BZ, is assigned to a fixed spin state. This
means that a certain spin state has a determined propagation direction on
the surface. We illustrate this phenomenon in Fig. 1.4(c) by assigning color
to the spin state. The STI is characterized by the so-called strong invariant
ν0. Systems where the strong invariant together with the weak invariants
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are simultaneously nontrivial are studied in Refs. [53, 54].
With the STI we encountered a 3d state which has no equivalent, i.e.,

adiabatic connection to a state, in 2d. But in 3d, even more fascinating states
are revealed. Thus far, as in the 2d case, the states were insulating in the bulk
but conducting at the boundaries. In 3d, however, there exist gapless bulk
states which are topologically protected. Examples of which are Dirac, Weyl,
and nodal-line semimetals [55, 56]. In Sec. 4.4, we will go into detail of 3d
topological states of matter with explicit application of the 3d generalization
of the TRS Hofstadter model. The 2d version of which will be introduced in
Sec. 2.2.

1.3 Quantum simulators

The idea of a quantum simulator goes back to Feynman in 1982 [57–60].
Quantum simulation is regarded as one of the four main quantum technolo-
gies, next to quantum computing, quantum communication, and quantum
metrology [61]. Feynman proposed to simulate a quantum system with
another equivalent quantum system, instead of a classical machine. The
reason for that is the exponential growth of the Hilbert space with the sys-
tem size and the subsequently increased demand of computational memory.
Consider, e.g., a system of N quantum spins with two spin states. A state
vector of this system is 2N-dimensional. Handling a state vector like this on
a classical machine restricts the number of quantum spins to small values.
A system of N qubits on the other hand contains this amount of information
in its very own quantum state.

Quantum simulations are nowadays conceptually divided into the so-
called digital and analog quantum simulations. The former corresponds to
a set of quantum objects like qubits which are assembled in circuits freely
programmable to the specific problem to be investigated. This resembles the
idea of the universal quantum simulator [62] and constitutes a very flexible
concept. Its scaling is, however, problematic as reflected by the small number
of fault-tolerant qubits in current quantum computers. Analog quantum
simulations, on the other hand, are systems which obey a Hamiltonian
which is as close as possible to the Hamiltonian of the system to be simulated.
This makes analog quantum simulators a model-specific system, i.e., they
are restricted to resemble a certain system. Approaches that combine the
benefits from both concepts exist as well [63].

Physical realizations of quantum simulator candidates are manifold.
Almost all of them rely on very low temperatures such that the physics is
governed by quantum mechanics and the state is not destroyed by thermal
fluctuations. They differ, however, by their type of quantum object, i.e., the
carrier of information, and the respective confining potential. For example:
Cold atom experiments are neutral atoms trapped in light fields. Trapped ion
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systems consist of ions in microwave fields. Superconducting circuits feature
electrons in superconductors. Finally, photonic lattices constitute photonic
excitations in optical media. We will go into depth of cold atoms in Sec. 1.4.
In trapped ion setups, the Coulomb force can be exploited, in contrast to
neutral atoms, to prepare well controllable arrays of laser-cooled trapped
ions whose interactions and manipulation can be realized with different
laser fields [64]. To realize superconducting circuits, well-developed chip
fabrication methods can be used for creating structures of resonators which
will then host electronic excitations [65]. Photonic lattices can be created
by engineering structures inside optical media through local change of the
refraction index. Photonic excitations then resemble the photonic quantum
simulator [66, 67].

Applications for a quantum simulator range from condensed-matter
physics [68–71] via high-energy physics [72,73] to quantum chemistry [74,75]
and many more. Instances for quantum simulators for condensed matter
physics exist numerously. A few examples of proposed and actually con-
ducted experiments are: the bosonic [76] as well as the fermionic [77] Mott in-
sulator, the BEC-BCS crossover [78,79], the Fermi pressure [80], the fermionic
antiferromagnet (AFM) [81], lattice gauge theories [82], high-temperature
superconductivity [83] with cold atoms, spin systems [84] and entangled
states with trapped ions [85], many-body localization in superconducting
circuits [86], or the relativistic Zitterbewegung in photonic lattices [87]. Of
course, this is just a small fraction of successful applications for quantum
simulators.

1.4 Cold atoms in optical lattices

As we have mentioned in the last section, cold atomic gases [88–90], or
ultracold quantum gases, in optical lattices are a popular candidate for
quantum simulators with a multitude of applications. The foundation for
ultracold quantum gases in optical lattices is the interaction between atoms
and photons. Light fields are used to both trap the atoms, which is necessary
to avoid reheating of the atoms at any kind of container wall, and cool
the atoms to temperatures low enough to reveal quantum effects. The
origin of state-of-the-art cold atom experiments has led to a Nobel Prize
in physics [91–93]. But the real kick off for cold atom experiments was the
first observation of the 1925 proposed Bose-Einstein condensation [94, 95] in
1995 [96–99] which again led a Nobel Prize in 2001.

Trapping

The trapping of atoms, as already proposed in Ref. [100], relies on the
effective force field F(r) acting on the atom which stems from the light field.
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Let us consider the atom on a semi-classical level as a simple harmonic
oscillator with resonance frequency ω0, i.e., the atom is a two-level system
with excitation energy h̄ω0 [101]. The atom is now exposed to a driving light
field with frequency ω. In the dipole approximation the respective force is
then proportional to the gradient of the intensity field I(r) of the driving
light field:

F(r) =
ω2

0 −ω2

(ω2
0 −ω2)2 + ω2Γ

∇I(r). (1.9)

We note that the sign of the force depends on the two frequencies ω and
ω0. If the light field frequency is tuned below the resonance frequency, i.e.,
ω < ω0, the light field is dubbed red-detuned. The force field points along
the gradient of the intensity field towards the maxima of the intensity field.
Effectively, the atoms will then align at the intensity maxima of the light
field. A red-detuned trap can readily be engineered with a tightly focused
laser beam. Analogously, in a blue-detuned light field the atoms will align
at the intensity minima of the light field. The endeavor here, is to surround
the atomic cloud with a blue-detuned laser field. Since the intensity is low
in the center of this kind of trap, unwanted atom-photon interactions can be
minimized [101]. The potential profile of traps originating from Gaussian
beam shapes is approximately harmonic, i.e., quadratic in the leading order
of the spatial variables.

By imposing two counter-propagating laser beams one can create stand-
ing wave potentials with a spatially periodic profile. These periodic lattices
can be used to simulate tight-binding models. This applies if the potential
depth of the lattice is sufficiently deep such that the Wannier functions are
well localized and the occupation of higher bands is suppressed [102, 103].
The lattice structure makes the so-called optical lattices an ideal candidate
for simulating solid state systems [70, 71, 104–106]. On the one hand, in opti-
cal lattices, atoms obey a tight-binding Hamiltonian within a laser potential,
while on the other hand, in solid state systems electrons obey a tight-binding
Hamiltonian within the ionic background potential. Moreover, since cold
atoms in optical lattices are extremely versatile, the achieved states can go
way beyond the simulation of electronic systems: It is possible to create
quantum gases made out of fermions [107], bosons, or even mixtures of
them [108, 109]. Their internal degrees of freedom can represent almost
arbitrarily many spin degrees of freedom [110]. The interaction strength can
be tuned through Feshbach resonances [111]. Topologically nontrivial gauge
fields [112–115] and spin-orbit coupling [116] can be engineered. Disorder
can be imposed [117]. Long-range interactions through Rydberg excitations
can be created [118], and much more is possible.

As we mentioned above, trapping potentials possess an approximately
harmonic profile. However, recent experiments have shown uniform ul-
tracold Bose [119] as well as Fermi [120] gases created with so-called light
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sheets. An even more exciting development is the application of digital
mirror devices (DMD) [121]. Here, almost any potential landscape can be
realized, however, a resolution better than a typical lattice constant of an
optical lattice is not yet achievable.

Cooling

In order to reveal the interesting quantum physics with ultracold quantum
gases, one has to reach temperatures below a few nano Kelvin. This is
because for these quantum gases, critical temperatures for, e.g, the conden-
sation of bosons or degenerate fermions, lie in the micro to nano Kelvin
regimes [105]. To achieve ultracold quantum gases within optical lat-
tice potentials, typically the quantum gas is cooled to very low temper-
atures without the potential, i.e., only with the confining trapping potential
being present. Subsequently, the optical lattice potential is ramped up
in an adiabatic fashion [122]. For the cooling of atomic quantum gases
[91–93, 101, 123, 124], many different techniques exist which make use of
different effects: there is Doppler cooling which exploits the Doppler effect
leading to a steady and selective absorption of photons of momentum point-
ing against the propagation direction of the atoms. Randomly directed
emission of photons then leads to an effective slow down of the atoms. With
this cooling technique one can achieve temperatures down to the so-called
Doppler limit. To reach temperatures below this limit, further cooling tech-
niques have to be applied. Within Sisyphos cooling the atoms have to climb a
potential which is constantly tuned to slow down the atoms. For evaporative
cooling the trapping potential is modulated such that particles with large
velocity will escape from the trap but slow particles remain inside the trap.
In order to cool fermions down to very low temperatures, even more ad-
vanced cooling techniques like sympathetic cooling are required since at very
low temperatures single-state fermions cannot interact and thus they cannot
thermalize [125]. These techniques are nowadays established. A more recent
method to reach very low temperatures is the so-called entropy extraction
scheme [126]. The idea of that scheme is to have a system which consists
of two parts. The first part is the region of interest where the quantum gas
should reach very low temperatures and will eventually be probed. The
second region serves as a reservoir into which entropy will be redistributed.
To this end, one uses a dimple trap which consists of an ordinary harmonic
trap and an additional dimple in the trap center. The dimple serves as the
region of interest. The chemical potential is tuned such that the dimple is
filled with particles as well as parts of the remaining region of the harmonic
trap. Now the harmonic trap is expanded while the dimple itself remains
unchanged. Subsequently, this draws energetic particles out of the dimple
into the expanded regions while lowering the entropy within the dimple.
This techniques has been successfully applied in an experiment to create an
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antiferromagnet with fermions in an optical lattice [81].

Probing

To measure ultracold quantum gases, one utilizes many different detection
techniques. A standard method is the time-of-flight imaging which can
be used to measure the temperature [91–93] or correlations [106] of the
quantum gas. Here, the atoms are released from the trap by suddenly
switching it off. After a hold time tTOF, a snapshot of the expanding atom
cloud is taken through absorption imaging. The obtained spatial density
distribution n(r) is directly related to the momentum distribution in the
cloud n(k) and thus reveals information about its state and the temperature.

Quantum gas microscopes are another powerful method for the investi-
gation of cold atoms in optical lattices which were realized for bosons [127]
as well as fermions [128] and are now an established method used to detect,
e.g., the Fermi-Hubbard AFM [81]. A quantum gas microscope, as the name
suggests, indeed, combines an optical microscope and a cold atom setup.
Typically, the microscope points on a 2d quantum gas, however, 3d configu-
rations are possible [129]. Atoms which occupy different lattice sites are then
fixed by ramping up the lattice depth such that they do not escape the lattice
during the detection. Then the atoms are illuminated by a near-resonant
laser beam. The optical setup, the microscope supported by a semi-spherical
lense inside the vacuum chamber, is optimized to reach resolution length
scales which are just below the lattice constant of the optical lattice. This
high resolution can even be used for single-site addressing within the op-
tical lattice [130]. Also, it is possible to create arbitrary potentials such as
optical lattice potentials with a short lattice spacing which is independent
of the laser frequency. This is done by projecting a mask through the mi-
croscope [127]. A quantum gas microscope can thus detect with single-site
resolution, address with single-site resolution, and create arbitrary potential
landscapes similar to the DMD explained above.

Interactions

Interactions between particles in cold atom setups can be tuned in a flexible
manner via so-called Feshbach resonances [111, 131]. We consider two parti-
cles which scatter with a background s-wave scattering length aBG, where
we assume that the temperatures are sufficiently low such that only s-wave
scattering takes place. A possible bound state between the two particles
would host different vibrational excitations. The Feshbach resonances then
occur if the energy of the separated particles matches the energy of a vibra-
tional state. By applying an external magnetic field with magnitude B the
coupling between the separated state and the vibrational states can be tuned.
This is represented by the resonance formula for the s-wave scattering length
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of ultracold collisions

a(B) = aBG

(
1− ∆

B− B0

)
, (1.10)

introduced in Ref. [132], where B0 and ∆ are atom-specific parameters. The
resonances occur at B = B0 where a(B) diverges and another transition
from repulsive to attractive particle interaction happens at B = B0 + ∆. It
is therefore in principle possible to achieve any interaction strength as, e.g,
shown in the BEC-BCS crossover [78, 79].

1.5 Topological states in cold atomic gases

Topological states of matter are nowadays routinely engineered in cold
atomic setups [133–136]. This is only possible by overcoming a huge ob-
stacle: Cold atoms are charge neutral. Therefore, they do not couple to a
magnetic field, in stark contrast to electrons in materials. There exist dif-
ferent methods to solve this problem. Common experimental approaches
are rotating quantum gases, laser-assisted tunneling, lattice shaking, and
synthetic dimensions. Rotating quantum gases resemble the physics of
a charged particle within a magnetic field since the Coriolis force and the
Lorentz force are mathematically equivalent [137]. Experimental realizations,
however, are hard to control [138–140]. Synthetic dimensions [141] use the
internal degree of the atoms of the ultracold quantum gas, i.e., the hyperfine
states [142]. Through appropriate laser coupling of these states, excitations
can, hop between different hyperfine states. With this, one can engineer a
synthetic dimension with a finite number of lattice sites corresponding to
the finite number of accessible hyperfine states. Synthetic dimensions can
be very versatile as it will become apparent further below. A drawback,
however, is the implementation of interactions since local interactions in the
real dimension become nonlocal in the synthetic dimensions.

We will go into more detail of the techniques of laser-assisted tunnel-
ing and lattice shaking in the specific examples of the realizations of the
Hofstadter and Haldane models in Secs. 2.1 and 2.4, respectively. The fol-
lowing little excerpt demonstrates the development of topological states in
cold atom setups which is of course not exhaustive: In 2013, groups in Mu-
nich [112] as well as at MIT [113] both independently realized the Hofstadter
Hamiltonian using laser-assisted tunneling. In 2014, the Haldane Hamil-
tonian on a brick-wall lattice was realized at ETH Zurich [114]. In 2015,
the Chern number was measured from the Hall response in the Hofstadter
model [143]. The same year, two groups independently engineered topolog-
ical states with synthetic dimensions [144, 145]. A year later tomographic
schemes to measure Chern numbers were independently implemented by
groups in Munich [146] and Hamburg [115]. Topological states were first
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combined with a quantum gas microscope in 2017 at MIT [147] including
two-body interactions. In 2018, driven interacting topological states were
realized [148] at ETH and in Munich, the 4d quantum Hall effect was ex-
plored with synthetic dimensions [31]. In 2019, the first three-dimensional
topological state, a nodal-line semimetal, was realized in Hong-Kong [149].
This year a group in Paris performed an experiment with synthetic dimen-
sions measuring the local Chern marker [150], a local topological indicator
in real space, see Sec. 3.4.

It is important to mention that both lattice shaking as well as laser-
assisted tunneling are methods which drive the system since both rely
on time-periodic modulation of the laser fields. The high frequency limit,
however, can be static. In some cases, the realized Hamiltonians in the
experiment happen to be effective high-frequency Hamiltonians. We will
discuss more about that in the next section and in Secs. 2.1 as well as 2.4.

1.6 Driven systems and Floquet theory

As mentioned in the preceding section, topologically nontrivial states are
engineered by periodically driving systems of ultracold quantum gases.
Periodically driven systems can exhibit interesting phases. If the driving
frequency is much higher than all other energy scales in the system, the
high oscillations can be integrated out leaving behind an effective system.
An impressive example in classical physics is the Kapitza pendulum [151].
It consists of a normal pendulum which is fixed to a periodically driven
mounting. In parameter regimes, where the driving frequency scales with
the driving amplitude, the pendulum can oscillate upside down. Its motion
is not anymore governed only by gravity but rather is subject to an effective
force which points in the opposite direction.

The theory of dynamical systems is of course more involved than the
static case. Here, we provide a brief introduction to Floquet theory which
is an established framework to investigate periodically driven quantum
systems. In general, the time-evolution operator from time t1 to t2 of a
system with a time-dependent Hamiltonian Ĥ(t) is given by

Û(t2, t1) = Tt exp
[
−i
∫ t2

t1

Ĥ(t′)dt′
]

, (1.11)

where Tt is the real-time ordering operator and h̄ = 1. Floquet theory can
be regarded as the analog of Bloch theory for the time domain. It can be
applied if Ĥ(t) is periodic in time with a period T [151–153]. The so-called
stroboscopic Floquet Hamiltonian ĤF[t0] is defined for the evolution of one
period as

Û(t0 + T, t0) = e−iĤF [t0]T, (1.12)
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where t0 is the onset time of the periodic drive. We find that ĤF[t0] is
time-independent, in contrast to the original Hamiltonian Ĥ(t). Hence Tt
of Eq. (1.11) is obsolete. The dynamics of ĤF[t0] is stroboscopic, i.e., only
time steps of multiples n of the period T are described. For a general time
evolution, we can use Eq. (1.12) in combination with two additional time
evolution operators:

Û(t2, t1) =Û(t2, t0 + nT)Û(t0 + nT, t0)Û(t0, t1)

=Û(t2, t0 + nT)e−iĤF [t0]nTÛ(t0, t1)

=e−iK̂F [t0](t2)e−iĤF [t0](t2−t1)eiK̂F [t0](t1)

(1.13)

This can be justified from the property Û(t2, t1) = Û(t2, t′)Û(t′, t1) of the
time evolution operator for arbitrary t′. In the last equation of Eq. (1.13), we
have defined the so-called stroboscopic kick operator K̂F[t0](t).

The stroboscopic Floquet Hamiltonian ĤF[t0] and the associated stro-
boscopic kick operator K̂F[t0](t) are not unique and depend on t0. Every
choice of t0, however, is only a gauge choice and the solutions for different
t0 are equivalent. In particular, they should all be equivalent to a solution
which is independent of t0 as

Ĥeff = eiK̂eff(t0)ĤF[t0]e−iK̂eff(t0). (1.14)

Here, we have defined the effective Hamiltonian Ĥeff and the effective
kick operator K̂eff(t). Both the stroboscopic Floquet Hamiltonian and the
effective Hamiltonian carry the same amount of information about the
system. In general, their construction is demanding. Therefore, expansions
are necessary. We will first present the Magnus expansion of ĤF[t0] and then
the high-frequency expansion of Ĥeff.

The stroboscopic Floquet Hamiltonian in Eq. (1.12) and the stroboscopic
kick operator can both be expanded in powers of the inverse frequency Ω−1.

ĤF[t0] =
∞

∑
n=0

Ĥ(n)
F [t0] and K̂F[t0] =

∞

∑
n=0

K̂(n)
F [t0], (1.15)

where the superscript (n) denotes that the term scales with the nth power in
Ω−1. The expansion is done by rewriting ĤF[t0] as a function of Ĥ(t) using
Eqs. (1.11) and (1.12). Subsequently, the expansion can be performed using
the Baker-Campbell-Hausdorff formula. The stroboscopic kick operator
K̂F[t0](t) can be expanded in a similar way. This yields for the zeroth order
terms

Ĥ(0)
F [t0] =

1
T

∫ t0+T

t0

Ĥ(t′)dt′ and K̂(0)
F [t0](t) = 0. (1.16)

This procedure for the stroboscopic Floquet Hamiltonian is called Mag-
nus expansion. The effective Hamiltonian in Eq. (1.14) can either be obtained
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from the Magnus expansion and a subsequent gauge transformation or
directly by the high-frequency expansion of the effective Hamiltonian. The zeroth
order terms here read

Ĥ(0)
eff =

1
T

∫ T

0
Ĥ(t′)dt′ and K̂(0)

eff (t) = 0, (1.17)

which is the same results as the zeroth order term of the Magnus expan-
sion. For higher order terms, however, the two approaches differ, i.e., they
coincide only in the infinite-frequency limit.

1.7 Hubbard model in the context of dynamical mean-
field theory

This section is dedicated to the Hubbard model and the applied dynamical
mean-field theory (DMFT) without gauge fields. The aim is to provide a
basic understanding of interacting tight-binding models and to introduce
dynamical quantities necessary in the context of this work. In 1963, Hub-
bard, Kanamori, and Gutzwiller independently simplified the problem of
interacting electrons in a solid by restricting the system to the lowest en-
ergy band and neglecting all electron-electron interactions which are not
on-site [154–156]. The resulting tight-binding model is called Hubbard
model. Even though the original model includes only two terms, any model
including extensions to these is normally also called a Hubbard model. We
now consider the 3d Hubbard model for spin-1/2 fermions on a simple
cubic lattice. The Hamiltonian in second quantization reads

Ĥ = −t ∑
〈ij〉σ

ĉ†
iσ ĉjσ + U ∑

i
n̂i↑n̂i↓, (1.18)

where the first term describes hopping in the lattice with t being the hopping
energy and the second term describes on-site, two-particle interactions with
interaction strength U. Here, i = (x, y, z) stands for a lattice site vector and
the 〈. . . 〉 denotes nearest neighbors. The creation and annihilation operators
of a fermion in spin state σ at site i are ĉ†

iσ and ĉiσ, respectively. Eventually,
the particle number operator is defined as n̂iσ = ĉ†

iσ ĉiσ.
There is no exact solution known to the model in Eq. (1.18), at least in

3d, and the model has kept theoretical physicists busy since its first mention.
A successful approximate method, however, is DMFT, which becomes more
reliable in higher dimensions. We will introduce DMFT in Sec. 3.1 and will
now focus only on its results with regard to the model in Eq. (1.18).

Interacting systems can be described by means of Green’s functions. On
a single-particle level, the Green’s function is a two-point correlator, i.e.,
it is a correlation function of two field operators. The correlator is then
computed over the quantum statistical ensemble of the many-body states.
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The attribute ’single-particle’ refers to the propagation of one particle being
surrounded by all other particles in the system statistically interacting with
this particle. At zero temperature, the Green’s function can be expressed
as [157, Eq. (2.116)]

G(k, ω) =
1

ω + iη − E(k)− Σ(k, ω) + µ
(1.19)

where k is the momentum, ω is the frequency, and µ is the chemical potential.
E(k) are the eigenenergies of the noninteracting Hamiltonian and Σ(k, ω) is
the selfenergy. The sign of the infinitesimal number η determines whether
(1.19) is the retarded or advanced Green’s function. We will omit η and
always refer to the retarded Green’s function. The negative imaginary part
of the Green’s function yields the spectral function

A(k, ω) = − 1
π

ImG(k, ω), (1.20)

which is a generalization of the energy spectrum of noninteracting systems to
interacting systems. It provides information about the existence of quantum
states as a function of ω and k. The spectral function is normalized according
to
∫

dωA(k, ω) = 1. Performing the k-space integration of A(k, ω) results
in the density of states (DOS).

Two natural quantities which appear in the study of fermionic Hubbard
models are the antiferromagnetic (AFM) order parameter, or staggered
magnetization, m and the double occupancy nD. On a cubic lattice, they are
defined as

m =
1

Ns
∑

i
(−1)x+y+z〈n̂i↑ − n̂i↓〉, nD =

1
Ns

∑
i
〈n̂i↑n̂i↓〉. (1.21)

Here, 〈. . . 〉 denotes the quantum-statistical average in equilibrium and Ns
is the number of lattice sites. Here, m is expressed for a polarization of
magnetic moments in z direction. The model in Eq. (1.18), on the other hand,
exhibits a SU(2) spin-rotation symmetry. However, the spins can always
be rotated into the z direction because of this symmetry and therefore the
expression in Eq. (1.21) is sufficient. In the half-filled, noninteracting case
nD is strictly equal to 0.25 since there is a probability of 0.5 for each spin
state to occupy a site.

In general, the selfenergy Σ(k, ω) in Eq. (1.19) is a complex-valued func-
tion of k and ω. In mean-field theories, with the exception of cluster mean-
field theories, the selfenergy is momentum-independent Σ(k, ω) = Σ(ω). In
contrast to static mean-field theories, where the selfenergy ΣMF is a constant
and real-valued, in DMFT, the selfenergy is frequency-dependent. In the
limit of infinite frequency, both selfenergies coincide Σ(ω → ∞) = ΣMF.
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Deviations from that can be quantified through the so-called correlation
strength Ξ [54, 158, 159]

Ξ =
Σ(ω = 0)− ΣMF

ΣMF
. (1.22)

This quantity measures the deviation from the static mean-field result and
thus can be regarded as a quantification of local quantum fluctuations.

Finally, we introduce the quasiparticle weight as a measure for Fermi
liquid behavior. It is a useful quantity in the context of Mott insulators.
Following Ref. [160], we perform a low-energy expansion of the selfenergy
in Eq. (1.19) as Σ(k, ω) ≈ Σ(k, 0) + ω[∂ωΣ(k, ω)]ω=0 such that we find

G(k, ω) =
Qk

ω + iη − Ẽ(k) + µ
+ G′(k, ω), (1.23)

where G′(k, ω) contains the deviations from the expansion. The first term
has the structure of a noninteracting Green’s function with the weight Qk.
The so-called quasiparticle weight Qk and the renormalized energies Ẽk are
defined as

Qk =

(
1− ∂Σ(k, ω)

∂ω

∣∣∣∣
ω=0

)−1

, Ẽk = Qk[Ek − Σ(k, 0)]. (1.24)

For a k-independent selfenergy Σ(k, ω) = Σ(ω), it follows that the quasi-
particle weight becomes a constant Qk = Q. This is indeed the case in
DMFT which we will introduce in Sec. 3.1. In order to get an intuition for
the quasiparticle weight, we compute the effective mass

M∗ ∝
(

∂2Ẽk

∂k2

)−1

(1.25)

The attribute ’effective’ here refers to the renormalization through interac-
tions in contrast to the effective mass renormalized through an optical lattice
potential [85]. Originally, the analog with the physical mass works at energy
minima where the nonconstant leading term is quadratic. The effective mass,
however, can also be defined elsewhere in the energy landscape and thus
can assume even negative values. From Eqs. (1.24) and (1.25), we find that
Q = M/M∗ which suggests that the quasiparticle weight is a measure for
the modification of the mobility of the particles due to interactions. Q = 1
means there is no decrease of mobility compared to the noninteracting case
and Q = 0 signifies that the particles are localized due to their infinite
effective mass arising from inter-particle interaction.

In Fig. 1.5 we show the phase diagrams of the cubic Hubbard model
defined in Eq. (1.18). We show the staggered magnetization in (a) as the
order parameter for AFM. We observe the immediate onset of AFM as U is
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Figure 1.5: Phase diagrams of the cubic Hubbard model defined in Eq. (1.18):
(a) the staggered magnetization m and (b) the double occupancy both de-
fined in Eq. (1.21), (c) the correlation strength Ξ defined in Eq. (1.22), as well
as (d) the quasiparticle weight Q defined in Eq. (1.24) as a function of the
temperature T and the interaction strength U . Superexchange temperature
of the cubic lattice is shown as thick black line T = 6t2/U. We also high-
light three instances of many-body phases of the cubic Hubbard model for
different values of (U, T): the paramagnetic metal (I) for (5, 0.11), the antifer-
romagnet (II) for (11, 0.26), and the Mott insulator (III) for (21, 0.51). Results
were obtained from real-space DMFT with a two-site unit cell combined
with an exact diagonalization solver with four bath sites.

finite for zero temperature. The critical temperature for the phase transition
between paramagnetic and AFM phases is called Néel temperature TN . The
Néel temperature of the Hubbard model is an intensely studied quantity. It
is strongly dependent on the method since fluctuations play an important
role here. DMFT mostly overestimates the Néel temperature compared to
quantum Monte Carlo results [161–163], since it neglects to some degree
nonlocal fluctuations. Moreover, within DMFT the choice of the specific
solver can lead to different results [164]. For the strongly interacting limit
the many-body state of the Hubbard model in Eq. (1.18) maps to an effective
Heisenberg spin model. This is because at half filling and low enough
temperatures the many-body state will be part of a subspace with one
particle per lattice site. Excitations will occur as hopping processes to nearest
neighbors and back. This is expressed through the Heisenberg Hamiltonian

Ĥ = J ∑
〈ij〉

Ŝi · Ŝj, (1.26)
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where we defined spin operators as Ŝi = ĉ†
i σĉi with σ = (σx, σy, σz) being

the Pauli vector. The effective spin interaction origins from second-order
hopping processes, i.e., the forth-and-back hopping or exchange mecha-
nisms with nearest neighbors in the Hubbard model. These processes scale
with the superexchange energy J = t2/U > 0. AFM ordering is anticipated
to occur if the superexchange energy is equal to the temperature. In a cubic
lattice the number of partners for the superexchange is six, i.e., the Néel
temperature becomes TN ∼ 6J = 6t2/U in the cubic lattice in the strong
interaction limit. We plot this simple relation in Fig. 1.5 as a thick black
line. It coincides with the phase transition of the DMFT results, however,
this is again an overestimation as a reduced value for the Néel temperature
of TN = 3.83J is known in the literature, e.g., in Refs. [165–167]. Since
this value is just shown in these references, but does not appear explicitly
in Ref. [168] which is commonly cited for this value, we take a moment
to understand where it comes from. Reference [168] is an exhaustive col-
lection of results for the Heisenberg model using the high-temperature
expansion technique. The Heisenberg model therein without external field
reads [168, Eqs. (1.1), (1.3), and (1.4)]

Ĥ = −2J1s2 ∑
〈ij〉

Ŝi · Ŝj. (1.27)

This relates to our definition of the spin coupling energy as J = |2J1|s2,
where s is the spin, being 1/2 in our case. For J1 > 0, the system becomes
ferromagnetic for temperatures below the Curie temperature TC. For J1 < 0,
the Néel temperature can be related to the corresponding Curie temperature
for the same value of |J1| through Ref. [168, Eq. (5.6)]:

TN − TC

TC
≈ 0.63

qX
, (1.28)

where q is the coordination number and X = s(s + 1) is equal to 3/4 in
our case of a spin-1/2 system. In a simple cubic lattice the coordination
number is q = 6 and we find with Eq. (1.28) that TN ≈ 1.14TC. In [168, Table
III.] an estimate for the Curie temperature is given for the simple cubic
lattice of TC = 1.68J1. Finally, with the conversion above this yields a Néel
temperature of TN ≈ 1.915|J1| = 3.83J.

The double occupancy nD is sometimes used as an order parameter
to characterize the Mott insulator phase. However, the Mott insulator is
more complex than just a suppressed value for nD. Additionally, not every
insulator which emerges from increasing interaction is a Mott insulator. We
show the double occupancy in Fig. 1.5(b). We observe a clear decrease for
increasing interaction strength. This is consistent with the notion that the
energy penalty for doubly occupied sites scales with U. The temperature
dependence, on the other hand, seems to be rather week. In Ref. [169] the
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double occupancy as a function of the temperature for the cubic Hubbard
model has been investigated and shows a rather flat behavior. We made
sure that the results of Ref. [169] are consistent with our results.

In contrast to static mean-field theories, the DMFT yields a selfenergy
which is frequency-dependent Σ(ω). As described above, the correlation
strength is a measure for the frequency-dependent features of the selfenergy
solution. We show the correlation strength Ξ in Fig. 1.5(c). We observe that
Ξ is largest at the phase transition between the AFM and the paramagnetic,
strongly interacting phase which coincides with the black thick line as
described above in the discussion on the Néel temperature.

The last phase diagram in Fig. 1.5(d) shows the quasiparticle weight
which we introduced in Eq. (1.24). In the weakly interacting and in the
AFM regime, the quasiparticle weight is almost 1. Only in the remaining
regime, we observe that the quasiparticle weight vanishes for the paramag-
netic region above the black line for strong interaction strength and high
temperature. As discussed above, if the selfenergy is k-independent, a van-
ishing quasiparticle weight Q = 0 is equivalent to a divergent effective mass.
Figuratively speaking, the particles are localized because of their infinite
effective mass.

In discussing the four quantities of Fig. 1.5, we have identified three
different many-body phases of the cubic Hubbard model of Eq. (1.18) which
we label I, II, and III. Phase I is a paramagnetic phase with finite double
occupancy and finite quasiparticle weight and is metallic since it persists at
small U and the noninteracting case is metallic. Phase II is an AFM, since
only here we find finite staggered magnetization. In fact, this AFM phase
splits up into subphases. For small U, one finds a Slater insulator [170]. This
is because on bipartite lattices, like the cubic lattice, infinitesimal U will
cause a translational symmetry breaking. The unit cell doubles and thus the
BZ is reduced by a factor of 2. This leads to two bands in the reduced BZ.
These bands can hybridize and open a gap of size U. In the large U limit,
one finds a Heisenberg AFM which we discussed above. Furthermore, the
single-particle DOS of the AFM phase is always gapped [171]. Eventually,
phase III is identified as the Mott insulator [172]. It is a paramagnetic phase
and the only phase where the quasiparticle weight vanishes such that the
particles become localized through strong interactions. We also observe that
the double occupancy is strongly suppressed suggesting that there is one
particle per site, a property which is typical for a Mott insulator.

Let us go into more detail on these three phases and investigate the
corresponding selfenergy which is of course local within our DMFT results.
It is to say that the selfenergy as output from DMFT, in most cases, is a
function of imaginary Matsubara frequencies as most of the solvers work
in imaginary time. We will discuss more on that in Sec. 3.1.4. In Fig. 1.6,
column (a) we show the real part in blue and the imaginary part in orange
of the on-site selfenergy Σ(iωn) as a function of the fermionic Matsubara
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Figure 1.6: Dynamical quantities of the three phases in Fig. 1.5: paramagnetic
metal (I), antiferromagnet (II), Mott insulator (III). Column (a) shows the
real (imaginary) part of the selfenergy in blue (orange) as a function of
Matsubara frequencies ωn, column (b) shows the kx-kz-integrated spectral
function

∫
dkxdkz A(k, ω) with the definition in Eq. (1.20) as a function of ky

and as a function of the real frequencies ω, and column (c) shows the density
of states DOS =

∫
dkA(k, ω) as a function of ω. Energies are measured in

units of the hopping energy t.

frequencies:

ωn =
(2n + 1)π

β
with n ∈ Z. (1.29)

In Matsubara frequencies the selfenergy has the following symmetry:

ReΣ(−iωn) = ReΣ(iωn) and ImΣ(−iωn) = −ImΣ(iωn), (1.30)

which can be deduced from the Lehmann representation of the Green’s func-
tion and its hermiticity condition. Using the Cauchy-Riemann equations,
these symmetry conditions can be transferred to the selfenergy as a function
real frequencies Σ(ω). Therein, real and imaginary part will exchange their
roles, i.e., the real part of Σ(ω) is antisymmetric and the imaginary part is
symmetric. These symmetries have also an impact on the computation of
the quasiparticle weight defined in Eq. (1.24). Since only the derivative at
zero frequency contributes to Qk, we conclude that only the antisymmetric
part of the selfenergy is required, i.e., either ReΣ(ω) or ImΣ(iωn). The ex-
act analytical form for the latter can be obtained from the Kramers-Kronig
relations.
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Coming back to our results in Fig. 1.6, we observe in column (a) that
indeed the real part is always symmetric while the imaginary part is always
antisymmetric with respect to ωn. In phase I and III, the real part is con-
stantly zero, in contrast to phase II, where we find for the spin-up state an
approximately constant value of 5 and for the spin-down state a value of
-5. This corresponds to a spin-selective on-site potential. Note, that on the
nearest-neighbor sites, these values are flipped, which corresponds to the
AFM order. The imaginary part of the selfenergy has some features around
ωn = 0 in the cases I and II, which will slightly rescale the value of the quasi-
particle weight defined in Eq. (1.24). However, a drastic difference is visible
for the case III. Here, the imaginary part of the selfenergy is discontinuous
and even divergent. It is of course not possible to show real divergence
in numerics, however, we observe that the magnitude of the selfenergy is
much larger than any energy scale in the system except U.

From Figs. 1.6(b) and (c), we see that phase I is a metal, in phase II
we observe two bands each associated with one spin state. At half filling
the lower band is completely filled leading to an insulating state with spin
polarization at one site. This is exactly the scenario of a Slater insulator [170].
Therein, the noninteracting band splits into two spin-associated bands by
increasing the interaction strength. This eventually yields magnetic order. In
the phase III in Fig. 1.6(b) and (c), we again find two bands dubbed Hubbard
bands, but this time they are not associated with a certain spin state. In
fact, the phase is a paramagnetic insulator, a Mott insulator [172]. Let us
consider the transition from phase I to phase III by increasing U and fixing
T. In order to split the metallic band of the case I, the spectral function
defined in Eq. (1.20) has to vanish for all k. Via Eq. (1.19) this translates into
a divergence of the selfenergy at zero frequency, see Fig. 1.6(a), row III. This
would not be possible to describe with a constant selfenergy ΣMF. We like
to point out that this scenario is one of the highlights of DMFT since it is
capable of describing this metal-to-Mott-insulator transition. The full range
of this transition cannot be described in, e.g., static mean-field or Fermi
liquid theory. In real materials this is of interest, e.g, in transition metal
oxides, in which the d orbitals are partially filled. The resulting orbitals
in the compound narrow the wavefunctions of the electrons’ overlap and
their repulsive interaction becomes important [173]. A prototypical example
of a transition metal oxide and the corresponding DMFT calculations is
Vanadium Sesquioxide V2O3 [174]. The transition can be tuned through
applied pressure or doping [175]. In synthetic systems, cold atomic setups
are the ideal platform to study the metal-to-Mott-insulator transition [76,77].
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Chapter 2

Topologically nontrivial
tight-binding models

Generally, the many-body systems in the context of this thesis can be de-
scribed by a real-space Hamiltonian, whose parameter space includes the
continuous space of d-dimensional vectors in real space. The Hilbert space is
thus infinite dimensional, so discretization is required to make the problem
numerically manageable. However, the Hilbert space is still huge in most in-
stances. A successful simplification for lattice problems is the tight-binding
approximation. Herein, the wavefunction of particles, like electrons in solids
or atoms in optical lattices, is bound very closely to the potential minima.
These minima of the potential landscape constitute the lattice sites. The
potential itself corresponds to the ionic potential in solids or the optical
lattice for ultracold quantum gases. With the tight-binding approximation it
is then possible to energetically restrict the Hilbert space to a discrete set of
lattice sites. Tunnel couplings between the sites and on-site potentials can
then be conveniently expressed in matrix elements, being just numbers.

Cold atom experiments are well controllable configurations. With the
help of optical lattices it is possible to engineer very closely tight-binding
models in real setups. This is nicely reflected by the following statement
in Ref. [176]: “To study material systems, theorists create ‘spherical-cow’
models of real materials, whereas in cold atom physics experimentalists can
actually make spherical cows.”

In this chapter, we list the most common tight-binding models which
reveal nontrivial topological states. Even though this work is mainly dedi-
cated to the generalizations of the famous Hofstadter model, we will also
introduce other models to provide a broader perspective for the field by
showing differences and similarities between them. In Fig. 2.1, we show
schematic pictures of three spinless tight-binding models, the Hofstadter,
the Harper-Hofstadter-Hatsugai (HHH), and the Haldane model.
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Figure 2.1: Spinless tight-binding models for topologically nontrivial states:
(a) Hofstadter model with a square plaquette flux of α, (b) HHH model with
the hopping matrix elements of (a) and one additional diagonal hopping
matrix element leading to a plaquette flux per triangle of α/2, and (c) Hal-
dane model particles, which hop along the orange (green) links, acquire a
phase φ (−φ).

2.1 Hofstadter model

The quantum-mechanical problem of electrons confined to a 2d lattice and
exposed to a perpendicular magnetic field stimulated research over many
decades. This generated, among others, three famous publications which
appeared in a periodic manner of approximately 22 years after another.
Peierls first came up with the idea for the substitution of the momentum
operator in a system exposed to a magnetic field in 1933 [177]. Then Harper
used this in 1955 to study the case of a lattice structure exposed to small
magnetic field strength of 104 Oe which corresponds to 1 T in vacuum [9].
Finally, in 1976, Hofstadter investigated energy levels of electrons in strong
magnetic fields [8] giving rise to what is nowadays called Hofstadter butterfly.
He estimated that field strengths of around 109 G would be required in real
materials to observe this effect which corresponds to 105 T. For comparison,
the magnetic field record set in 2018 is 1200 T [178]. The story, however, does
not end here as it turns out that synthetic realizations of the IQH enable the
creation of such high field equivalents which we have discussed in Sec. 1.5.

The Hofstadter Hamiltonian, sometimes Harper-Hofstadter Hamilto-
nian, in the Landau gauge and in second quantization reads

Ĥ = −t ∑
x,y

[
ĉ†

x+1,y ĉx,y + ĉ†
x,y+1e2πiαx ĉx,y + h.c.

]
, (2.1)

where ĉx,y is the annihilation operator of a spinless fermion on site (x, y).
Of course, the Hofstadter model can also be constructed for bosons [112,
179], but we treat solely fermions in this work. In Eq. (2.1), as shown
schematically in Fig. 2.1(a), a fermion can hop along the x direction with
energy t but acquires a complex quantum phase when hopping in the y
direction. Through this phase, the vector potential A(x, y) enters in the
Peierls’ substitution as

e
h̄

∫
A · dl =

eBax
h̄

∫ y+1

y
ady′ =

eBxa2

h̄
= 2παx, (2.2)
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where we have used the Landau gauge A(x, y) = Baxêy for the second equa-
tion and the lattice constant is a. Note that x and y denote dimensionless
indices rather than coordinates. The corresponding real-space coordinate is
obtained through multiplication with a. We thus find the so-called plaquette
flux to be α = eBa2/h = ΦB/Φ0. Here, ΦB = a2B is the magnetic flux and
Φ0 = e/h is known as the flux quantum. The plaquette flux is proportional
to the magnetic field strength B and to the penetrated area a2. This squared
lattice constant is a main reason why the Hofstadter model cannot be re-
alized in real materials since a here is of the order of 1 Å = 10−10 m. In
contrast, in cold atom setups, a is of the order of a few 100 nm. However, it
is possible to control the magnitude of α directly as explained in Sec. 1.5.

Figure 2.2: Hofstadter butterflies: (a) For a driven optical lattice. Reprinted
with permission from Ref. [180]. Copyright (2020) by the American Physical
Society. (b) Hofstadter butterfly from an experiment with superconducting
qubits. From Ref. [181]. Reprinted with permission from AAAS. (c) Hofs-
tadter butterfly colored by the respective Chern number. Reprinted from
Ref. [182], with the permission of AIP Publishing. (d) Hofstadter butterfly in
the Kagomé lattice. Reprinted with permission from Ref. [183]. Copyright
(2020) by the American Physical Society.

Hofstadter solved the Harper equation [9] without restrictions for the
field strength and revealed the fascinating fractal structure of the energy
levels [8]. This is to be understood in the following way. Let us restrict
to the case of rational values for the plaquette flux α = p/q where p and
q are integers. If p is a multiple of q or if p = 0, the phase is trivial as it
then yields e2πiαx = 1. In the remaining cases, we find a periodicity of the
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Hamiltonian in Eq. (2.1) along the x direction with a period of q sites. We
deduce that this q-site unit cell yields q bands in the band structure. Plotting
the k-integrated bands as a function of α from 0 to 1, one finds the fractal
structure, the Hofstadter butterfly, also known as Hofstadter moth.

This structure is also found in related systems as we show in Fig. 2.2. In
Fig. 2.2(a), the butterfly appears in the theoretical calculation of a Floquet
system and in (b) it is detected experimentally with a system of super-
conducting qubits [184]. Figure 2.2(c) shows the Chern numbers [34], see
Sec. 1.2.2, of the different energy gaps in the butterfly [182] and (d) confirms
that the fractal structure is not restricted to square lattices as it appears, e.g.,
also in the Kagomé lattice penetrated by a flux [183].

Figure 2.3: Anti-magic lattice with the two states |g〉 and |e〉 corresponding
to even and odd sites, respectively. Resonant laser couplings between |g〉
and |e〉 impose a y-dependent quantum phase φi(y).

Let us take a look at the connection between the Hofstadter model and
actual experiments. As discussed before, solid state systems are not expected
to show Hofstadter physics since this would require very strong magnetic
fields. These strong magnetic fields, however, can be simulated in, e.g.,
cold atom setups. For the Hofstadter model, the proposal by Jaksch and
Zoller [185] has proven successful since it has been realized in experiments
[112, 113]. We schematically depict this in Fig. 2.3. Within this approach the
Hamiltonian in Eq. (2.1) is engineered using anisotropic hopping shown
in Fig. 2.3(a). Normal hopping, i.e., no additional phase is acquired, is
used along the y direction. But this normal hopping is suppressed in the
x direction either through lattice acceleration, a static electric field [185], or
a superlattice [186]. The hopping in the x direction is then restored through
laser-assisted tunneling, i.e., via an intermediate state which locally resides
between the original lattice sites in the x direction. This is achieved through
a so-called anti-magic lattice shown in Fig. 2.3(b) with the additional static
electric field. An anti-magic lattice is tuned such that the polarizabilities
of two internal states of the atom |g〉 and |e〉 are exactly opposite, i.e., they
have the same magnitude but a different sign. This results in a lattice where
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the states |g〉 sit on the even sites, while the states |e〉 sit on the odd sites.
Coming back to the laser-assisted tunneling process, one laser couples |g〉 at
site n with state |e〉 at site n + 1, another laser couples |e〉 at site n + 1 with
state |g〉 at site n + 2. These laser couplings are used to impose the complex
phases.

These phases, however, are the results of a more complex configuration.
In fact, the Hamiltonian achieved in the experiment, which resembles the
Hofstadter Hamiltonian in Eq. (2.1), is an effective Hamiltonian of a periodi-
cally driven system. Let us go into more detail following Refs. [151, 187]. In
this experiment, the system, which consists of a 2d optical lattice, is driven
trough running-wave laser beams which create an on-site potential of the
form

V(r, t) = V0 sin(δk · r + Ωt + φ0), (2.3)

where Ω is the periodic driving frequency, δk · r = φxy is a spatially inho-
mogeneous phase, and φ0 is a phase shift which will be important later
on. The amplitude V0 = ηΩ should scale with the driving frequency. The
time-dependent driven Hamiltonian has the form

Ĥ(t) =− t ∑
x,y

[
ĉ†

x+1,y ĉx,y + ĉ†
x,y+1ĉx,y + h.c.

]
+ ∑

x,y
[V(r, t) + ∆x] n̂x,y

(2.4)

where ∆ corresponds to the static electric field in x direction. A unitary
transformation is used to eliminate the time dependence of the on-site terms
which are linear in n̂x,y [113, 151]:

Û(t) = exp
{
−i
∫ t

t0

dt′
[
V(r, t′) + ∆x

]}
. (2.5)

The Hamiltonian in the rotating frame is found through

Ĥrot(t) = Û(t)Ĥ(t)Û†(t)− ih̄Û(t)
d
dt

Û(t). (2.6)

If the linear potential ∆x is resonant, i.e., ∆ = h̄Ω, the on-site terms cancel
out exactly and one is left with hopping terms only:

Ĥrot(t) = −t ∑
x,y

[
e−iζ sin(Ωt−φxy)+iΩt ĉ†

x+1,y ĉx,y

+e−iζ sin(Ωt−φxy) ĉ†
x,y+1ĉx,y + h.c.

]
,

(2.7)

where we defined ζ = 2η sin(φ0/2), where V0 = ηΩ. As we have dis-
cussed in Sec. 1.6, the zeroth order contributions of the stroboscopic Floquet
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Hamiltonian and the effective Hamiltonian coincide and can be found as
the time-averaged Hamiltonian. The time integral of Eq. (2.7) leads to Bessel
functions of the first kind with the integral representation:

Jn(x) =
1

2π

∫ π

−π
dtei(x sin t−nt) (2.8)

such that we finally arrive at the Hamiltonian

Ĥ = −t ∑
x,y

[
J1(ζ)e−iφxy ĉ†

x+1,y ĉx,y + J0(ζ)ĉ†
x,y+1ĉx,y + h.c.

]
, (2.9)

which corresponds to the Hofstadter Hamiltonian in Eq. (2.1) up to a 90◦

rotation and the subsequent identification φxy = 2παx. This can be achieved
by tuning the spatial modulation φxy = δk · r. The hopping anisotropy
J0(ζ)/J1(ζ) in Eq. (2.9) can be lifted through the tuning of the laser ampli-
tudes [188].

2.2 Time-reversal-symmetric Hofstadter model

As generalization to the Hofstadter model in Sec. 2.1, the TRS Hofstadter
model was introduced in 2010 [189]. Here, the field operators of Eq. (2.1)
are replaced through spinful field operators in the spinor representation
ĉx,y = (ĉ↑,x,y, ĉ↓,x,y) such that

Ĥ =− t ∑
x,y

[
ĉ†

x+1,ye2πiγσx
ĉx,y + ĉ†

x,y+1e2πiαxσz
ĉx,y + h.c.

]
+ λ ∑

x,y

[
(−1)x ĉ†

x,y ĉx,y

]
.

(2.10)

The Peierls phase is now spin-dependent as it is proportional to σz, where
σk is the kth Pauli matrix. Furthermore in Eq. (2.10) a spin-flip factor is intro-
duced for the hopping term in the x direction. Its magnitude is controlled by
the parameter γ which we call spin mixing. The last term in Eq. (2.10) is a
staggered potential along the x direction which controls the topological state.
For large λ a topologically trivial band insulator is expected at half filling.
In cold atoms, a staggered potential can be realized with a laser beam of
double the wavelength compared to the original optical lattice wavelength.

In Fig. 2.4, we show different instances of the TRS Hofstadter model in
the literature. Figure 2.4(a) is a band structure for the case α = 1/6, γ = 1/4,
and λ = 0.5. Here, we find many different insulating many-body states
depending on the filling fraction, e.g., a QSH state at half filling or a band
insulator at 2/3 filling, taken from [189]. Fig. 2.4(b) is the phase diagram of
the TRS Hofstadter model taken from Ref. [190] for α = 1/6 at half filling as
a function of the spin mixing γ and the staggered potential λ. We observe
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Figure 2.4: Instances in the literature on the TRS Hofstadter model showing
regimes of the QSH phase: (a) Example band structure of the TRS Hofstadter
model with finite staggered potential and spin mixing. Reprinted with
permission from Ref. [189]. Copyright (2020) by the American Physical
Society. (b) Phase diagram of the TRS Hofstadter model at half filling as
a function of the staggered potential and the spin mixing. Reprinted with
permission from Ref. [190]. Copyright (2020) by the American Physical
Society. (c) Phase diagram of the TRS Hofstadter-Hubbard model for finite
spin mixing as a function of the staggered potential and the interaction
strength. Reprinted with permission from Ref. [193]. Copyright (2020) by
the American Physical Society.

that there is a QSH phase in the regime of maximal spin-mixing γ = 1/4
and for 0 < λ < 3

√
2 ≈ 1.25 [191]. The staggered potential λ can thus be

used as a control parameter for the QSH phase since for λ > 3
√

2 the system
is in a topologically trivial, insulating state. In fact, it is found that the
parameter set α = 1/6, γ ≈ 1/4, and λ > 3

√
2 is the most simple setting to

achieve a QSH state in the TRS Hofstadter model at half filling [192]. This is
interesting for us because at half filling the influence of Hubbard interactions
has the highest impact and interaction effects are most pronounced.

Time-reversal-symmetric Hofstadter-Hubbard model

Coming to the interacting physics, the fermionic TRS Hofstadter-Hubbard
model was intensively studied by means of dynamical mean-field theory
[190,192,193]. It is obtained from adding the interaction term proportional to
U of the Hubbard model in Eq. (1.18) to the noninteracting TRS Hofstadter
Hamiltonian in Eq. (2.10). In Fig. 2.4(c) we show the phase diagram from
Ref. [193] for α = 1/6 and γ = 1/4 as a function of λ and U. It exhibits a
QSH state as well as a band insulating and a magnetically ordered phase
labeled MOSI in this figure. The QSH phase is most stable for λ ≈ 2U. This
can be understood from the competition between the staggered potential and
the Hubbard interaction. The staggered potential energetically favors double
occupancy while the Hubbard interaction favors either a Mott insulator or
an AFM, see Sec. 1.7, leading to singly occupied sites. Interactions thus
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effectively reduce the staggered potential, thus stabilizing the QSH state.
This is dubbed interaction-induced topological phase transition.

2.3 Harper-Hofstadter-Hatsugai model

From the Hofstadter butterfly, we see that the Hofstadter model never
exhibits a gap at half filling. In the TRS Hofstadter model, we have discussed
that a finite gap can be opened at half filling if spin mixing is present.
Another way to open a gap at half filling relies on the following extension
to the Hofstadter model. The Harper-Hofstadter-Hatsugai model [194] is
often abbreviated as HHH model. It generalizes the Hofstadter model
by introducing next-nearest neighbor hopping terms, i.e., particles can
now tunnel along the diagonals of the square lattice. This is schematically
depicted in Fig. 2.1(b) and yields the HHH Hamiltonian

Ĥ = −t ∑
x,y

[
ĉ†

x+1,y ĉx,y + ĉ†
x,y+1e2πiαx ĉx,y

+ ĉ†
x+1,y+1e2πiα(x+1/2) ĉx,y + ĉ†

x+1,y−1e2πiα(x+1/2) ĉx,y + h.c.
]

.
(2.11)

The next-nearest-neighbor hopping terms open a gap at half filling for values
of the flux α with even denominators. This is in contrast to the Hofstadter
model which is in the semi-metallic phase and has the advantage that
one can study topologically non-trivial phases of a two-band model. The
Hofstadter model, on the other hand, requires a minimum of three bands
α = 1/3 to find topologically nontrivial states. Concerning the nontrivial
diagonal hopping elements, we will notice the similarity to the Haldane
model in the next section. Another benefit of introducing the diagonal
hopping term becomes apparent in the case with interactions because there
is a gapped phase at half filling without the need for spin-mixing terms [195].

2.4 Haldane model

In 1988, Haldane introduced a model which, in contrast to the Hofstadter
model, yields a topologically nontrivial state without a net magnetic field
[14]. This corresponds to the anomalous Hall effect. Within the tight-binding
model, this is achieved on a honeycomb lattice with a complex-valued hop-
ping matrix element between next-nearest neighbors, as shown schemati-
cally in Fig. 2.1(c). The Hamiltonian reads [196]

Ĥ = −t ∑
〈ij〉

ĉ†
i ĉj − t′ ∑

〈〈ij〉〉
ĉ†

i eiφ ĉj + λ ∑
i

vi ĉ†
i ĉj. (2.12)
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Here, the first term corresponds to the usual nearest-neighbor hopping in
Hubbard models and the second term describes the next-nearest-neighbor
hopping accompanied by a nontrivial phase φ, which breaks TRS. The
honeycomb lattice exhibits two sites per unit cell corresponding to two
sublattices A and B. The last term in Eq. (2.12) corresponds to a staggered
potential of amplitude λ. The staggering is introduced through the function
vi = 1 if i ∈ A and vi = −1 if i ∈ B. The two-site structure of the
unit cell can conveniently be represented in a pseudo spin-1/2 basis by
means of Pauli matrices. This convenient form is achieved by Fourier
transforming the Hamiltonian in Eq. (2.12). The corresponding momentum-
space Hamiltonian matrix in this representation reads [14]

H(k) =− 2t′ cos(φ)∑
i

cos(k · ai)1

− t ∑
i

cos(k · ai)σ
x

− t ∑
i

sin(k · ai)σ
y

+

[
λ− 2t′ sin(φ)∑

i
sin(k · bi)

]
σz

(2.13)

where 1 is the 2× 2 identity matrix, the ai are three 2d real-space vectors
pointing to the nearest neighbor sites, and the bi are six real-space vectors to
the next-nearest-neighbor sites [197]. For t′ = 0, one recovers a model for
a honeycomb, or hexagonal, lattice, i.e., the most simple form of graphene
[197].

The Haldane model yields a nontrivial Chern number of 1 in some
regimes in the phase diagram as a function of λ and φ [14]. Since there is no
net flux piercing the 2d lattice, the Haldane model is a Chern insulator in
these regimes, see Sec. 1.2.4. Interestingly, the Haldane model is a theoretical
model to yield a Chern insulator, however, we will see in the next section
that is has relevance in graphene and thus, in actual materials.

The fermionic Haldane-Hubbard model incorporating two decoupled
spin species was studied in Ref. [198] leading to a phase diagram which is
qualitatively similar to that of the Hofstadter-Hubbard model at maximal
spin mixing as seen in Fig. 2.4(c). An explanation for this could be that at
maximal spin mixing the two spin species can be decoupled into two new
species. Each of them is exposed to a gauge field which does not show a net
magnetic field as in the Haldane model. We will go into more detail of that
spin decoupling in Sec. 4.1.

In Sec. 2.1 we have introduced the periodic driving protocol of an experi-
mental system in order to achieve the Hofstadter Hamiltonian as the Floquet
or effective Hamiltonian in the infinite-frequency limit. In the Hofstadter
case, this is done through time-periodic modulation of the on-site potential
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by means of a running wave laser beam. In contrast, the Haldane model
was realized through a periodic shaking of the lattice in which the relative
lattice position changes in time as [114]

rlat(t) = V0[cos(Ωt)êx + cos(Ωt + ϕ)êy], (2.14)

where the amplitude should again scale with the frequency V0 = ηΩ. The
lattice shaking in Eq. (2.14) can be achieved through retro-reflecting the laser
beams which build up the optical lattice. The reflection mirrors are mounted
on piezo-electric devices which are provided with an oscillatory voltage.
This results in an oscillatory spatial shift of the retro-reflected standing wave
laser beams. Tuning the phase shift φ of the lattice laser beams hence yields
the time-dependent lattice position of Eq. (2.14). In the Hamiltonian, this
drive couples to the atoms in the quantum gas as

∑
i

fi(t)n̂i, with fi(t) = i · E0|i=rlat(t) = E(t) · r. (2.15)

The last equation shows that this protocol in ultracold quantum gases is
equivalent to a drive with circularly polarized light E(t) [199–202]. To treat
the driven Hamiltonian, one follows the same steps as we have discussed
them for the Hofstadter model in detail, see Sec. 2.1. This includes the
transformation to the rotating frame, the Magnus expansion of the strobo-
scopic Floquet Hamiltonian, and the high-frequency expansion of the effec-
tive Hamiltonian. Here, the zeroth order reveals real-valued rescaled hop-
ping amplitudes. The first order contribution provides a nearest-neighbor
complex-valued hopping amplitude. This is in contrast to the inverse fre-
quency expansion of the Hofstadter model. We observe a clear difference in
the engineering between both models. In the driving protocol for the Hofs-
tadter model, the infinite-frequency Hamiltonian already features complex-
valued hopping amplitude, i.e., an artificial gauge field. For the driving
protocol for the Haldane model, the Ω−1 contributions is necessary to engi-
neer an artificial gauge field.

2.5 Kane-Mele model

The Kane-Mele model [20] is an exciting model and is sometimes regarded
as the discovery of topological insulators. The authors introduced SOC
terms in the tight-binding model for the electrons of graphene. Graphene is
treated as a flat, 2d honeycomb lattice which, as explained in the preceding
section, contains two sites in the unit cell corresponding to two sublattices
A and B [197]. We write the Kane-Mele Hamiltonian as

Ĥ = −t ∑
〈ij〉

ĉ†
i ĉj − t′ ∑

〈〈ij〉〉
ĉ†

i eiφσz
ĉj − i ∑

〈ij〉
ĉ†

i (d1σy − d2σx)ĉj, (2.16)
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where we used again the spinor representation of the field operators as in
Sec. 2.2. Originally, in graphene, only the first term is present. The second
term corresponds to next-nearest-neighbor hopping along with a nontrivial
phase φ. This resembles the Haldane model introduced in Sec. 2.4 for each
of the two spin states separately in a TRS manner which means that the
acquired phase is proportional to the σz Pauli matrix in spin space. This is
a fascinating reappearance of the Haldane model. The Kane-Mele model,
however, also covers possible spin-mixing processes through σx and σy

with amplitudes d1 and d2, respectively, described by the third term. For
finite d1 or d2, we cannot reduce the model to two separate Haldane models.
Eventually, it turns out that the SOC in graphene is very small [203, 204].
Thus, the QSH effect was not found in graphene but in HgTe quantum wells
instead [22]. Another candidate material is borophene, an analogous 2d
material made from boron, which is much less understood than graphene
but may give rise to interesting topological properties [205–207].
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Chapter 3

Methods

This chapter represents the theoretical toolbox which we utilize to address
the interacting topologically nontrivial tight-binding models we have intro-
duced in the section before. Throughout this work, we tackle interacting
systems by means of DMFT in its real-space version. We will introduce
DMFT including spin-mixing processes and pay particular attention to those
parts in the derivation that differ from standard DMFT, i.e., without spin
mixing. We continue with a brief review of the two solvers we used within
DMFT. These are the exact diagonalization solver and the continuous-time
quantum Monte Carlo solver in the auxiliary-field expansion. We then re-
view the maximum entropy method which is used to extract the dynamical
properties from the quantum Monte Carlo results. Eventually, we introduce
three methods for the computation of topological invariants, the local Chern
marker, Fukui’s method, and the Wilson loop technique.

3.1 Dynamical mean-field theory

DMFT in its original form is a nonperturbative and self-consistent method
for solving Hubbard models, see Sec. 1.7, approximately. The attribute
’nonperturbative’ means that DMFT does not rely on expansion parameters.
This is in contrast to, e.g., a high-temperature expansion or an expansion for
weak interaction strengths. The term ’self-consistent’ refers to the iterative
process to find a solution. Starting from an initial guess, the same quantity
is successively reinserted until convergence is reached. The name DMFT
prominently features ’mean-field theory’ which refers to one of the most
widespread class of theories in physics and chemistry to describe interacting
particles. Instead of computing explicitly the interactions between all the
particles, the problem is reduced to a single particle moving inside an
effective field. The field is called mean field because it resembles the mean
of all the individual fields created by each particle. As the name states, a
mean field is a statistical average and does, by itself, not fluctuate.
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The extension ’dynamical’ to the mean-field theory employs the in-
clusion of dynamical fluctuations in DMFT. These fluctuations are purely
quantum in nature which will be justified in the following. DMFT is rooted
in the limit of infinite dimensions d → ∞ [208, 209] in which the nonlocal
fluctuations vanish. The limit of infinite dimensions reduces the complexity
of the full quantum problem and will be discussed further below in this
section. The only remaining fluctuations are local and can only be tempo-
ral, i.e., dynamical. ’Temporal’ does not refer to real time in the sense of
time-dependent Hamiltonians. Rather it is to be understood from the Wick
rotation which states that statistical mechanics in d + 1 dimensions, i.e., d
spatial dimensions and one temporal dimension, is equivalent to quantum
mechanics in d dimensions. The rotation is performed by transforming real
time t to imaginary time τ = it. A figurative way to think of the quantum
fluctuations is that they occur on the imaginary time axis [210].

Since the first mention of the benefit of infinite dimensions, research
shows immense output during the early 90ies. The advances made during
that time are collected in the famous review by Georges et al. [211]. DMFT
in its original form is formulated for periodic boundary conditions. In
this work, we are interested in inhomogeneous system which brings us to
the real-space formulation of DMFT. In order to study interface systems,
Potthoff and Nolting used in 1999 [212] so-called inhomogeneous DMFT
where one spatial direction is treated in real space. Inhomogeneous DMFT
then was established for general layered systems [213]. The pure real-
space DMFT was applied in 2008 to cold atoms confined to a harmonic
trap [214,215]. For more overview on the developments of real-space DMFT
consult Refs. [216–218].

Before we discuss real-space DMFT, we introduce DMFT for extended
systems, such that k is a good quantum number and we can use the mathe-
matical advantages of momentum space.

3.1.1 DMFT equations

We consider the Hubbard model with a general hopping amplitude tσσ′
ij

which can couple the two spin-1/2 states σ and σ′ upon hopping from site i
to site j. This extends the standard Hubbard model in Eq. (1.18):

Ĥ = ∑
〈ij〉σσ′

tσσ′
ij ĉ†

iσ ĉjσ′ + U ∑
i

ĉ†
i↑ ĉi↑ ĉ†

i↓ ĉi↓. (3.1)

The system is fully described by the partition function expressed in the path
integral formalism as

Z =
∫

∏
iσ

Dc∗iσDciσ exp {−S[c∗iσ, ciσ]} . (3.2)
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Here, the action S[c∗iσ, ciσ] is a functional of the Grassmann variables ciσ and
c∗iσ, such that

S[c∗iσ, ciσ] =
∫ β

0
dτ {c∗iσ(τ) (∂τ − µ) ciσ(τ) + H[c∗iσ(τ), ciσ(τ)]} , (3.3)

where β = 1/T is the inverse temperature and H[c∗iσ, ciσ] corresponds to
the Hamiltonian with the field operators ĉiσ (ĉ†

iσ) being replaced by the
corresponding Grassmann variables ciσ (c∗iσ). Note that even though the
Grassmann variables ciσ (c∗iσ) describe annihilation (creation) of particles,
they are treated as independent variables. In the following, we drop the
imaginary time argument for the sake of readability.

We can define an effective action Seff[c∗oσ, coσ] which is a functional of
Grassmann variables at site o only. This can be achieved by integrating out
all other Grassmann variables ciσ and c∗iσ with i 6= o:

1
Zeff

exp {−Seff[c∗oσ, coσ]} =
1
Z

∫
∏

i 6=o,σ
Dc∗iσDciσ exp {−S[c∗iσ, ciσ]} (3.4)

where we introduced

Zeff =
∫

∏
σ

Dc∗oσDcoσ exp {−Seff[c∗oσ, coσ]} . (3.5)

In order to find a formal expression for the effective action we split the
original action S[c∗iσ, ciσ] into three parts:

S = So + S(o) + ∆S, (3.6)

where we omitted the functional arguments to have a compact form of the
equation. Therein,

So =
∫ β

0
dτ

[
∑
σ

c∗oσ(∂τ − µ)coσ + Uc∗o↑co↑c∗o↓co↓

]
(3.7)

is the local action which only contains Grassmann variables associated with
the site o. Both So and the effective action are local. The latter, however,
contains the information of the rest of the lattice due to the integration of
the respective Grassmann variables. In the cavity action

S(o) = −
∫ β

0
dτ ∑

i 6=o,σ
∑

j 6=o,σ′

(
tσσ′
ij c∗iσcjσ′ + tσ′σ

ji c∗jσ′ciσ

)
(3.8)

there are only Grassmann variables of the lattice excluding the site o. Finally,
the coupling between site o and the rest of the lattice is described by the
action

∆S = −
∫ β

0
dτ ∑

i 6=o,σ
∑
σ′

(
tσσ′
io c∗iσcoσ′ + tσ′σ

oi c∗oσ′ciσ

)
. (3.9)
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After integrating out the Grassmann variables of the sites i 6= o, we find for
the effective action [211, 219–221]:

Seff[c∗oσ, coσ] =
∞

∑
n=1

∑
i1,...in
σ1,...σn

∑
j1,...jn
σ′1,...σ′n

∫
dτ1 . . . dτndτ′1 . . . dτ′n

× η∗i1,σ1
(τ1) . . . η∗in,σn

(τn)ηj1,σ′1
(τ′1) . . . ηjn,σ′n(τ

′
n)

× G(o)σ1,...σn,σ′1,...σ′n
i1,...in,j1,...jn

(
τ1, . . . τn, τ′1, . . . τ′n

)
+ So + const.

(3.10)

where ηi,σ(τ) = ∑σ′ tσσ′
io coσ′(τ) acts as a source field coupled to the Grass-

mann variables ciσ(τ) in the rest of the system i 6= o. The 2n-point correlator

G(o)σ1,...σn,σ′1,...σ′n
i1,...in,j1,...jn

(τ1, . . . τn, τ′1, . . . τ′n) is the connected Green’s function associ-
ated with the cavity Hamiltonian. The cavity Hamiltonian corresponds to
the full Hamiltonian with the site o and all couplings to it being removed.

Up to Eq. (3.10) the theory is valid in any dimension d. Computing
a 2n-point correlator with n going to infinity is of course not feasible. In
the following, we show that Eq. (3.10) simplifies in the limit of infinite
dimensions, i.e., d→ ∞, according to the original works in Refs. [208, 209].
The noninteracting density of states is given as

ρ(ε) = ∑
k

δ(ε− E(k)), (3.11)

where E(k) corresponds to the energy spectrum of the lattice system. Here,
we assume a d-dimensional hyper-cubic dispersion with generalized hop-
ping amplitudes E(k) = −2 ∑d

m=1 tm cos(km). The Fourier transform of ρ(ε)
with respect to the energy ε yields

Φ(s) =
∫

dεeisερ(ε) =
∫

dεeisε ∑
k

δ(ε− E(k))

= ∑
k

∫
dεeisεδ(ε− E(k)) = ∑

k
eisE(k) = ∑

k
e−2is ∑m tm cos(km)

= ∑
k

∏
m

e−2istm cos(km) = ∏
m

∑
km

e−2istm cos(km)

(3.12)

where we have used the hyper-cubic lattice dispersion E(k) and the fact that
it factorizes. We now utilize ∑km

→ 1/(2π)
∫ π
−π dkm and find

Φ(s) =
1

(2π)d ∏
m

∫ π

−π
dkme−2istm cos(km) = ∏

m
J0(2stm), (3.13)

where J0(x) is the Bessel function of the first kind. Expanding the Bessel
function around s = 0, we find

J0(2stm) ≈ 1− (stm)2

4
≈ e−(stm/2)2

(3.14)
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and thus

Φ(s) ≈
d

∏
m=1

e−(stm/2)2
= exp

{
−d
(

st
2

)2
}

, (3.15)

where we have used in the second equation the average of generalized
hoppings t2 = ∑m t2

m/d [209]. Taking into account the proper normalization,
the back transform of Eq. (3.15) yields

ρ(ε) =
1√

2π(t2d/2)
exp

{
−ε2

2(t2d/2)

}
. (3.16)

Here, we observe that a nontrivial expression for the density of states is
achieved only if we fix the value for t∗ =

√
2dt when performing the limit

d → ∞. Thus, we find that the physical hopping energy must scale as
t ∼ d−1/2.

Coming back to Eq. (3.10), it turns out that there are three instances which
determine the scaling in d of a term of order n [41]: The first instance is the
number of independent summations which scales as dm, where 0 ≤ m ≤ 2n.
The second instance is the connected Green’s function which scales as d1−m.
Eventually, since the 2n source fields are proportional to the hopping t, they
contribute as t2n ∼ d−n. We conclude that the scaling of a term of order n is
dm × d1−m × d−n ∼ d1−n. Thus, in the limit d→ ∞, only the first term n = 1
will survive. Applying this limit, the effective action reads

Seff[c∗oσ, coσ] =

∑
σσ′

∫ β

0
dτ1

∫ β

0
dτ2 c∗oσ(τ1) (∂τ − µ) δ(τ1 − τ2)δσ,σ′coσ′(τ2)

+∑
σσ′

∫ β

0
dτ1

∫ β

0
dτ2 c∗oσ(τ1) ∑

ijσ̃σ̃′
tσ̃σ
io tσ′ σ̃′

oj G(o) σ̃σ̃′

ij (τ1 − τ2)coσ′(τ2)

+U
∫ β

0
dτc∗o↑(τ)co↑(τ)c∗o↓(τ)co↓(τ)

(3.17)

where δ(τ) and δσ,σ′ are the Dirac distribution function and the Kronecker

delta, respectively. Furthermore, G(o) σ̃σ̃′

ij (τ) denotes the single-particle cavity
Green’s function which includes the whole lattice except the lattice site o.
After applying a Fourier transformation

f (τ) =
1
β ∑

n
f (iωn)e−iτωn , (3.18)

with the fermionic Matsubara frequencies ωn = 2π(2n + 1)/β, we find the
so-called dynamical Weiss field

G−1σσ′
(iωn) = (iωn + µ)δσ,σ′ + ∑

ijσ̃σ̃′
tσ̃σ
io tσ′ σ̃′

oj G(o) σ̃σ̃′

ij (iωn). (3.19)
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We express the Matsubara cavity Green’s function G(o) σ̃σ̃′

ij (iωn), in terms of
the lattice Green’s function which can be achieved by expanding around the
atomic limit of the site o [211], such that

G(o) σ̃σ̃′

ij (iωn) =
[

Gij(iωn)−Gio(iωn)Goo
−1(iωn)Goj(iωn)

]σ̃σ̃′

, (3.20)

where we introduced the spin notation with the bold-face quantities being
2×2 matrices in spin space:

Gij =

(
G↑↑ij G↑↓ij

G↓↑ij G↓↓ij

)
and Tij =

(
t↑↑ij t↑↓ij

t↓↑ij t↓↓ij

)
. (3.21)

We focus on the last term of Eq. (3.19):

∑
ijσ̃σ̃′

tσ̃σ
io tσ′ σ̃′

oj G(o) σ̃σ̃′

ij (iωn) = ∑
ij

[
TioGijToj − TioGioGoo

−1GojToj

]σσ′

(3.22)

where we dropped the Matsubara frequency argument of the Gij for better
readability. The Green’s function is Fourier transformed between real and
momentum space as

Gij =
1

2π ∑
k

eiRijkGk, (3.23)

where Rij is the real-space vector connecting site i and j. In order to simplify
Eq. (3.22), we compute

∑
i

TioGio =
1

2π ∑
k

[
∑

i
eiRiokTio

]
Gk =

1
2π ∑

k
EkGk

=
1

2π ∑
k

(
ξ −G−1

k

)
Gk =

1
2π ∑

k
(ξGk − 1) = ξGoo− 1.

(3.24)

Here, Ek is the 2× 2 energy spectrum which results from the Fourier trans-
form of the hopping matrix element representing the noninteracting Hamil-
tonian. We have also introduced the abbreviation ξ = (iωn + µ)1− Σ(iωn)
according to Eq. (1.19), where Σ(iωn) is the 2× 2 matrix of the local selfen-
ergies Σσσ′(iωn). Analogously, we find

∑
j

GojToj = Gooξ − 1 (3.25)
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and

∑
ij

TioGijToj = ∑
ij

Tio

[
1

2π ∑
k

eiRijkGk

]
Toj

=
1

2π ∑
k

[
∑

i
eiRiokTio

]
Gk

[
∑

i
eiRojkToj

]

=
1

2π ∑
k

EkGkEk =
1

2π ∑
k

(
ξ −G−1

k

)
GkEk

=
1

2π
ξ ∑

k
GkEk −

1
2π ∑

k
Ek = ξ(Gooξ − 1),

(3.26)

where we have used Eq. (3.25) in the last equation and the fact that the
term 1/(2π)∑k Ek can be absorbed into the chemical potential. Plugging
Eqs. (3.24)–(3.26) into Eq. (3.22) yields

ξ(Gooξ − 1)− (ξGoo− 1)G−1
oo (Gooξ − 1) = ξ −G−1

oo , (3.27)

and we find for the dynamical Weiss field in Eq. (3.19) that

[G−1(iωn)]
σσ′ = (iωn + µ)δσσ′ − ξσσ′(iωn) + [G−1

oo (iωn)]
σσ′

= Σσσ′(iωn) + [G−1
oo (iωn)]

σσ′ ,
(3.28)

which is named the local Dyson equation and is one of the DMFT equations.
The mapping to an impurity model yields the next DMFT equation.

3.1.2 Anderson impurity model

The Anderson impurity model (AIM) is known since 1961 [222]. It describes
an impurity coupled to a bath of fermions. The fermions can only interact
at the impurity site and are noninteracting in the bath. The models, we
are interested in, feature a spin-mixing hopping amplitude which is not
considered in the original AIM. The Hamiltonian of the generalized AIM
reads

ĤAIM = ∑
kσσ′

εσσ′
k â†

kσ âkσ′ − µ ∑
σ

ĉ†
σ ĉσ + Uĉ†

↑ ĉ↑ ĉ
†
↓ ĉ↓

+ ∑
kσ

[
Vkσ â†

kσ ĉσ + V∗kσ âkσ ĉ†
σ + Wkσ â†

kσ ĉσ̄ + W∗kσ âkσ ĉ†
σ̄

]
,

(3.29)

where the noninteracting fermions in the bath are described by the oper-
ators âkσ and dispersion εσσ′

k . At the impurity, the fermions interact and
are described by the operators ĉσ. The amplitudes Vkσ and Wkσ describe
the spin-conserving and spin-mixing coupling between bath and impurity,
respectively. The bar notation applies as ↑̄ =↓ and ↓̄ =↑.
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As in Sec. 3.1.1, we construct the partition function as a path integral
and compute a local effective action

Z =
∫ (

∏
iσ

Da∗iσDaiσ

)(
∏

σ

Dc∗σDcσ

)
exp(−S[a∗iσ, aiσ, c∗σ, cσ])

=
∫

∏
σ

Dc∗σDcσ exp(−Seff[c∗σ, cσ]),
(3.30)

where the effective action for the AIM reads

Seff[c∗σ, cσ] = ∑
σσ′

∫ β

0
dτ1

∫ β

0
dτ2

{
c∗σ(τ1)G−1σσ′

(τ1 − τ2)cσ′(τ2)
}

+ U
∫ β

0
dτc∗↑(τ)c↑(τ)c

∗
↓(τ)c↓(τ),

(3.31)

where eventually the dynamical Weiss field is given as [190]:

G−1σσ
(iωn) = iωn + µ−∑

k

|Vk|2 + |Wk|2
iωn − εσσ

k
(3.32)

G−1σσ̄
(iωn) = −∑

k

V∗k Wk + W∗k Vk

iωn − εσσ̄
k

(3.33)

These equations define an impurity problem which is solved by methods
reviewed in Sec. 3.1.4. The solution manifests in the selfenergy Σ(iωn).
Solving an inhomogeneous system or a system with an extended unit cell
provides different local selfenergies Σi(iωn) for each site i. These can be
handled in the real-space DMFT algorithm.

3.1.3 Real-space DMFT

Let us consider a set of local selfenergies Σi(iωn) as an initial guess for the
real-space DMFT procedure. This is inserted into the lattice Dyson equation
which contains the interacting and the noninteracting single-particle Green’s
functions:

G−1
ij(iωn) = G−1

0 ij(iωn)− δijΣi(iωn). (3.34)

Here, G−1
0 ij(iωn) denotes the noninteracting lattice Green’s function which

is constructed from the noninteracting Hamiltonian via Eq. (1.19) and zero
selfenergy. The resulting Green’s function from Eq. (3.34) is inverted to
obtain the local Green’s functions as G(iωn)|ii = Gii(iωn). Using the local
Dyson equation defined in Eq. (3.28) we find again a dynamical Weiss field
which maps onto an impurity problem through Eqs. (3.32) and (3.33). From
these impurity problems, we obtain a new set of local selfenergies with
which we start over from the beginning. This self-consistent procedure is

68



repeated until convergence. Computationally the most expensive steps are
the matrix inversion of the lattice Green’s function and solving the AIM
which we will review in the next section. The inversion can become costly
since a full lattice Green’s function has to be inverted. One has to be careful
in choosing a proper system size since matrix inversion of an n× n matrix
scales with the third power in n. This scaling can of course be optimized
depending on the properties of the specific case.

3.1.4 Solvers

In DMFT solvers are used to solve the AIM which appears once per site
per iteration. Common solvers are the iterative perturbation theory [223],
numerical renormalization group [224,225], exact diagonalization [226], and
quantum Monte Carlo [227, 228]. We will only review the last two methods
since they have applications in this work.

Exact diagonalization

The AIM, as introduced in Eq. (3.29), features a bath with infinitely many
sites. In exact diagonalization (ED) the AIM is approximated by an impurity
interacting with a bath with a finite number of bath sites Nb [226]. The
procedure works as follows: For a given set of data for the Weiss field as a
function of frequency, one performs a numerical fit with the fit functions
in Eqs. (3.32) and (3.33). From this, one obtains the coefficients for the
AIM, i.e., {Vk, Wk, εσσ′

k }. This can be a numerical bottleneck since the fitting
procedure might suffer from bad convergence. In the present case, this
means the following. The parameters Vk and Wk are both complex-valued
leading to four free variables. In the parameter εσσ′

k there are four variables
encoded due to hermiticity. For systems with balanced hopping amplitudes
between the two spin states, we can assume that ε↑↑k = ε↓↓k . This leads to a
total number of seven free variables per bath site. Consequently, the fitting
function is a function of 7Nb variables. This large number diminishes the
success of a converged fit. Additionally, fitting routines depend on an initial
guess for the parameter set. In most of the calculations in the context of this
work we choose a random initial guess of a uniform distribution between 0
and 1. Depending on the system of interest, one should use more elaborate
initial guesses in order to work out a numerically stable algorithm.

For a given Nb, we can choose an occupation number basis to represent
the state vector of our approximate impurity problem

|Ψl〉 = |n↑0 , n↓0 , n↑1 , n↓1 , . . . , n↑Nb
, n↓Nb
〉, (3.35)

where nσ
i = 0, 1 is the occupation number of a fermion on site i with spin

σ [211]. We observe that the Hilbert space of the basis in Eq. (3.35) has
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dimension 4Nb+1 since there are four fermionic states per site and the system
contains Nb bath sites and one impurity site. The index l labels these 4Nb+1

states. The Hamiltonian matrix HAIM is then constructed through the matrix
elements

HAIM|lm = 〈Ψl |ĤAIM|Ψm〉, (3.36)

and can be diagonalized using standard routines. Note, that the basis in
Eq. (3.35) cannot be factorized in the spin degree of freedom as for example
in Ref. [211]. This is because our system allows for spin mixing in contrast to
the usually discussed spin-conserving Hubbard model. The drawback is that
a larger Hamiltonian has to be diagonalized. Since dense diagonalization
routines scale approximately with the third power in n for n× n matrices,
the slow down is of factor eight. After diagonalization, we are left with the
eigenvectors |Ep〉 and their associated energies Ep. The impurity Green’s
function is now computed as [157, 211]

G(iωn) = ∑
pq

(〈Ep|ĉ†|Eq〉)2

Ep − Eq − iωn

[
e−βEp + e−βEq

]
/ ∑

pq

[
e−βEp + e−βEq

]
. (3.37)

Here, the operator ĉ† connects an N-particle state with an N + 1-particle
state. The impurity Green’s function is then used to compute the selfenergy
through the local Dyson equation in Eq. (3.28).

Throughout this work, we solely perform finite-temperature calculations.
This means, that we need the full set of eigenvectors from the ED algorithm.
If one is interested in zero-temperature results only, the Lanczos algorithm is
commonly used to find the groundstate of a Hamiltonian matrix numerically
[229].

Continuous-time quantum Monte Carlo

In the quantum Monte Carlo technique (QMC) the AIM problem is solved
numerically exactly and thereby differs from ED where an approximation
of a finite bath is made. The Monte Carlo sampling, which is rooted in the
famous Metropolis algorithm [230], is applied to the effective action of the
AIM in Eq. (3.31). For a long time, the best method was the Hirsch-Fye
algorithm [231]. It introduces an equidistant discretization of the imaginary
time variable τ and a subsequent Hubbard-Stratonovich transformation.
This decouples the original fermionic degrees of freedom and introduces
new Ising-type spin degrees of freedom. These variables are then sampled
during the Monte Carlo process. The drawback of the Hirsch-Fye algorithm
is its equidistant discretization since the Green’s function, as a function of
imaginary time, evolves features, e.g., spikes at τ = 0, β. These features are
hard to capture at low temperatures which makes the algorithm inefficient
under such circumstances.
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Continuous-time quantum Monte Carlo (CT-QMC) methods [228, 232,
233] do not base on an equidistant discretization of the time axis but rather
allow for time steps of arbitrary size. We follow Ref. [228] which will suffice
for an overview on the CT-QMC methods. For a more detailed description
consult, e.g., the theses by Buchhold [234] or Panas [235]. In this work,
only the auxiliary field expansion of CT-QMC (CT-AUX) [236, 237] will be
used which we will recapitulate in the following. Two other expansions are
the interaction expansion (CT-INT) which is a weak-coupling expansion in
the interaction term. Weak coupling, in this case, does not imply that the
algorithm fails at describing strong interactions. It rather becomes inefficient
at strong interactions since numerous terms have to enter the expansion.
The third expansion is the hybridization expansion (CT-HYB) where the
expansion is performed in the hybridization function. All variations have
different advantages depending on the very system. CT-AUX is also a weak
coupling expansion, however, a Hubbard-Stratonovich transformation is
applied to decouple the interaction term first such that one is left with
auxiliary fields from the transformation. We start with the partition function
for a system with Hamiltonian Ĥ0 + Ĥ1 with Ĥ0 being the diagonal part of
the Hamiltonian. The interaction representation of the partition function
is [238]

Z = Tre−βĤ0
∞

∑
k=0

(−1)k
∫ β

τk−1

dτk· · ·
∫ β

0
dτ1Ĥ1(τk) . . . Ĥ1(τ1), (3.38)

where Ĥ1(τ) = eτĤ0 Ĥ1e−τĤ0 . We set Ĥ1 = V̂ − K/β, where K is a constant,
i.e., a shift of the chemical potential, and

V̂ = U ∑
i

(
n̂↑in̂↓i −

n̂↑i + n̂↓i
2

)
(3.39)

is equivalent to to the Hubbard interaction up to another shift of the chemical
potential by the average filling. For the AIM the sum over all lattice sites is
obsolete, so we drop the index i. We find for the partition function

Z =
∞

∑
k=0

(−1)k
∫ β

τk−1

dτk· · ·
∫ β

0
dτ1

× Tre−βĤ0 eτk Ĥ0
(
V̂ − K/β

)
e−τk Ĥ0 . . . eτ1 Ĥ0

(
V̂ − K/β

)
e−τ1 Ĥ0

(3.40)

and subsequently

Z =
∞

∑
k=0

(
K
β

)k ∫ β

τk−1

dτk· · ·
∫ β

0
dτ1

× Tre−(β−τk)Ĥ0

(
1− βV̂

K

)
e−(τk−τk−1)Ĥ0 . . .

e−(τ2−τ1)Ĥ0

(
1− βV̂

K

)
e−τ1 Ĥ0 .

(3.41)
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The interaction terms are then decoupled through [236]

1− βV̂
K

=
1
2 ∑

s=−1,1
eγs(n̂↑−n̂↓) with cosh γ = 1 +

βU
2K

. (3.42)

This leads us to

Z =
∞

∑
k=0

k

∑
q=0

∑
sq=−1,1

∫ β

τk−1

dτk· · ·
∫ β

0
dτ1

(
K
2β

)k

Zk({sq, τq}), (3.43)

with

Zk({sq, τq}) = Tr
k

∏
q=1

e−(τq−τk−1)Ĥ0 eγsq(n̂↑−n̂↓). (3.44)

Monte Carlo sampling can now be performed on the variables {sq, τq}.
The procedure works as follows. At first, it is initialized with a random
configuration of {sq, τq}. The configuration is then updated with probability
of 0.5 by an insertion or with probability of 0.5 by a removal of a so-called
vertex, i.e., a new spin s is inserted at imaginary time τ or an existing
spin is removed. The update is accepted with a probability determined by
the Metropolis algorithm [230]. The process is repeated until the desired
tolerance of the observable is reached.

The perturbation order 〈k〉 which is the mean number of vertices intro-
duced in the sampling is linear in the interaction strength U [237]. This
makes the CT-AUX algorithm computationally more demanding for larger
U. Thus, for large U the CT-HYB is the better choice [239].

3.2 Maximum entropy method

The maximum entropy method to analytically continue QMC data was
introduced by Jarrell and Gubernatis in 1996 [240]. As discussed above,
observables, e.g., the Green’s function G(τ), computed by QMC methods
usually are functions of imaginary time τ since the sampling of the imag-
inary time axis is restricted to the interval [0, β]. However, the dynamical,
physical properties are embedded in the Green’s function as function of real
frequencies G(ω), especially, in the spectral function A(ω) = −ImG(ω)/π.
It is connected to the imaginary-time Green’s function through

G(τ) =
∫

dω
e−τω

1± e−βω
A(ω), (3.45)

where the positive (negative) sign applies for fermions (bosons). The aim is
to invert this equation, i.e., to find A(ω) in terms of a given G(τ). This could
be done with standard fitting methods. This means one has to minimize
a likelihood function which measures the distance between the numerical
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data for G(τ) and the prescription in Eq. (3.45) as a function of A(ω). Start-
ing from an initial guess for A(ω) one would then iteratively minimize the
likelihood function until convergence. This would be a simple approach,
however, the exponential e−τω in Eq. (3.45) suppresses the large frequency
behavior of A(ω). This results in a noisy and nonunique result for A(ω)
since G(τ) already comes with noise due to the QMC sampling. Thus, in-
verting Eq. (3.45) even with small noise in G(τ) is an ill-defined problem
because it is not uniquely defined. In order to solve this, certain assumptions
are required. The maximum entropy method utilizes Bayesian statistical
interference for analytic continuation of the Green’s function and achieves a
smooth functional behavior. The problem is consequently restated as: What
is the most probable A(ω) given G(τ) which solves Eq. (3.45)? This trans-
lates into finding A(ω) which maximizes the conditional probability with a
given G(τ). Bayes’ theorem puts conditional probabilities into relation, it
reads

p(a|b) = p(b|a)p(a)
p(b)

, (3.46)

where p(a) and p(b) are the probabilities for event a and b, respectively.
Furthermore, p(a|b) and p(b|a) are the conditional probabilities of a given b
and b given a, respectively. By identifying a = A(ω) ≡ A and analogously
b = G(τ) ≡ G and assuming that G is given, we find

p(A|G) ∝ p(G|A)p(A), (3.47)

where we have dropped p(G) since it is a constant with regard to finding
the correct A(ω). Of the two remaining probabilities, p(G|A) is interpreted
as the likelihood function and p(A) as the prior. The likelihood function is
expressed by a least-square form p(G|A) ∝ e−χ2/2. In the simplest case of a
diagonal covariance matrix cov(ω, ω′) = cov(ω), where ’matrix’ refers to
the frequency space, we find

χ2 =
∫

dωcov(ω)(G− Ḡ)2, (3.48)

where Ḡ = Ḡ(ω) is the back-transformed A(ω) according to Eq. (3.45).
Usually, cov(ω) is kept constant. Minimizing Eq. (3.48) corresponds to a
least-square fit. As discussed above, a simple least-square fit would yield a
noisy, unusable result. Additional information is added through the prior
p(A) in the following way: The spectral density itself can be interpreted as
a probability density function since

∫
dωA(ω) = 1. The principle of maxi-

mum entropy states that this probability function maximizes an associate
entropy

S = −
∫

dωA(ω)ln
A(ω)

m(ω)
, (3.49)
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which measures the similarity between A(ω) and m(ω). m(ω) is the default
model which is also normalized to 1. In this similarity condition, the addition-
ally required information about the spectral function A(ω) enters, e.g., A(ω)
should be a smooth function of ω, so m(ω) should be a smooth function of
ω as well. With the entropic prior p(A) ∝ eαS we find for Eq. (3.47)

p(A|G) ∝ e−χ2/2+αS, (3.50)

which is to be maximized by A(ω). The factor α balances the two contribu-
tions. For small α the contribution of the likelihood function is dominant
and the result for A(ω) will become noisy without any physical informa-
tion. For large α the contribution of the entropic prior is dominant and the
result will be equal to the default model A(ω) = m(ω). There are different
methods to determine the best choice for α [241]. In this work, we use the
classic maximum entropy method which finds an optimal α by using again
Bayesian interference and maximizing

p(α|G, m) =
∫

p(A, α|G, m)dA (3.51)

and
p(A, α|G, m) ∝ p(A|G, m, α)p(α) ∝ e−χ2/2+αS p(α). (3.52)

For p(α) an analytic form like p(α) = 1/α is chosen. The algorithm maxi-
mizes Eq. (3.50) iteratively while finding a new value for α in each iteration.

3.3 Topological Hamiltonian

The topological Hamiltonian approach is a powerful method to compute
topological invariants of physical systems with many-body interactions.
Here, we follow Ref. [242] to derive the topological Hamiltonian. The
original idea was applied to inversion-symmetric systems [243], however,
the method is more general and does not depend on the symmetry of the
system. The field-theoretical generalization of the TKNN invariant or Chern
number, which is discussed in Sec. 1.2, to the interacting case is given by the
Ishikawa-Matsuyama formula [244]

CIM =
1

24π2

∫
dk0dkTr

[
εµνρ

(
Ĝ∂kµ

Ĝ−1
) (

Ĝ∂kν
Ĝ−1

) (
Ĝ∂kρ

Ĝ−1
)]

, (3.53)

where Ĝ = Ĝ(iωn, k) is the operator associated with the single-particle
Green’s function. It is constructed through Eq. (1.19) by replacing the energy
values E(k) with the Hamiltonian Ĥ(k). The arguments of the operator
are the Matsubara frequencies ωn = −ik0 and the 2d quasimomentum
k = (kx, ky). Note that we take the zero-temperature limit in which the
Matsubara frequency becomes a continuous quantity. Throughout this
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work, topological invariants will be computed in the zero-temperature
limit. The topological classification at finite temperatures is a challenging
topic. An example is the breakdown of the Hall conductivity at finite
temperatures. More general concepts like the Uhlmann number or the
ensemble geometric phase have to be used [245–248]. We assume that
Ĝ(iωn, k) can be diagonalized:

Ĝ(iωn, k)|α(iωn, k)〉 = gα(iωn, k)|α(iωn, k)〉 (3.54)

with normalized eigenstates |α(iωn, k)〉. Let us look at the Green’s function
operator at zero frequency Ĝ(0, k). Since the Green’s function is expressed
in terms of Matsubara frequencies, this is strictly speaking only valid at
zero temperature. However, approximate solutions of the finite-temperature
results can be used, see Sec. 4.1.

Since the imaginary part of the selfenergy is anti-symmetric with respect
to the frequency ImΣ(−iωn) = −ImΣ(iωn), it follows from Eq. (1.19) that
the Green’s function operator is hermitian at zero frequency. Thus, the
eigenvalues of Ĝ(0, k) are all real. We assume that Ĝ(0, k) has no zero
eigenvalue so we can group them into positive gα(0, k) > 0 and negative
gα(0, k) < 0 eigenvalues. This is reminiscent of a gapped spectrum of
a Hamiltonian with energies g−1

α (0, k) and one can associate states with
gα(0, k) < 0 with the notion of occupied bands in topological band theory,
see Sec. 1.2. A Chern number associated with these effective Hamiltonian
states is then computed as

CTH =
i

2π ∑
α:gα<0

∫
dk
[
〈∂kx α(0, k)|∂ky α(0, k)〉 − 〈∂ky α(0, k)|∂kx α(0, k)〉

]
.

(3.55)
Our aim is to show that CIM = CTH for certain conditions. To this end, we
consider the parametrized deformation of the Green’s function operator
Ĝ(iωn, k)

Ĝ(iωn, k, λ) = (1− λ)Ĝ(iωn, k) + λ
[
iωn + Ĝ−1(0, k)

]−1
(3.56)

where λ runs from 0 to 1. Changing λ corresponds to a smooth deformation
of the Green’s function operator. Topological phase transitions can only
take place if the Green’s function has a zero or pole [249]. Topological phase
transitions at a pole of the Green’s function correspond to a gap closing of
the spectrum. This is analogous to the noninteracting case. Here, we are
interested in the case of a zero, i.e., a topological phase transition occurs if
Ĝ(iωn, k, λ) has a zero eigenvalue at any frequency. We now show that the
deformation in Eq. (3.56) has no zero eigenvalues. For zero frequency, we
find Ĝ(0, k, λ) = Ĝ(0, k) which has no zero eigenvalue by assumption. For
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finite frequencies, it can be shown that for the sign of the imaginary part of
the Green’s function the following applies:

sgn〈a|ImĜ(iωn, k)|a〉 = −sgn(ωn). (3.57)

Note that away from zero frequency the eigenvalues are not strictly real
anymore. Moreover, for a divergent selfenergy which occurs, e.g., in Mott
insulators, see Sec. 1.7, the imaginary part of the Green’s function vanishes
and the left-hand-side of Eq. (3.57) becomes meaningless. Therefore, the
argument is not applicable in Mott-insulating regimes.

For the sake of readability, we omit the arguments of the states, i.e.,
we write |α〉 = |α(iωn, k, λ)〉. We compute the imaginary part of the eigen-
value gα(iωn, k, λ) of the operator Ĝ(iωn, k) which is defined analogously
to Eq. (3.54) as

Imgα(iωn, k, λ) =Im〈α|Ĝ(iωn, k, λ)|α〉

=Im〈α|
{
(1− λ)Ĝ(iωn, k)

+ λ
[
iωn + Ĝ−1(0, k)

]−1 }
|α〉

(3.58)

where we inserted Eq. (3.56) in order to achieve the last equation. Let us
consider the last term, proportional to λ, in Eq. (3.58)

Im〈α|
[
iωn + Ĝ−1(0, k)

]−1
|α〉 (3.59)

=Im〈α|
[
iωn + Ĝ−1(0, k)

]−1
∑
ν

|sν〉〈sν|α〉 (3.60)

=Im〈α|∑
ν

〈sν|α〉
[
iωn + Ĝ−1(0, k)

]−1
|sν〉 (3.61)

=Im〈α|∑
ν

〈sν|α〉 [iωn + εν]
−1 |sν〉 (3.62)

=Im ∑
ν

〈sν|α〉〈α|sν〉 [iωn + εν]
−1 (3.63)

=Im ∑
ν

|〈sν|α〉|2 [iωn + εν]
−1 (3.64)

=−ωn ∑
ν

|〈sν|α〉|2
ω2

n + ε2
ν

, (3.65)

where we inserted a complete set of eigenstates of the inverse Green’s
function at zero frequency G−1(0, k)|sν〉 = εν|sν〉 in Eq. (3.59). Thus, we
find for the imaginary part of the eigenvalue gα(iωn, k, λ)

Imgα(iωn, k, λ) = (1− λ)〈α|ImĜ(iωn, k)|α〉 − λωn ∑
ν

|〈sν|α〉|2
ω2

n + ε2
ν

. (3.66)
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As we discussed above for finite frequencies, the sign of the imaginary part
of the Green’s function obeys Eq. (3.57), thus Eq. (3.66) is a sum of two terms
which are both finite and which both have the same sign. This leads to a
finite value of Eq. (3.66) for all values of λ for finite frequencies. For zero
frequency the eigenvalues are real and nonzero as it was discussed above.
Consequently, there is no topological phase transition in the full range of
λ. We conclude that, if we compute Eq. (3.53) for the Green’s function
operator in Eq. (3.56), we find CIM[Ĝ(iωn, k, λ = 1)] = CTH. Thus, the zero
frequency Green’s function is sufficient to compute topological invariants
since it contains all the information about the topological properties of the
full Green’s function. This is an enormous simplification for investigating
interacting topological states. We emphasize that the assumption was that
Ĝ(iωn, k) does not have a zero eigenvalue at any frequency. An effective
Hamiltonian, which is dubbed topological Hamiltonian, is constructed [250]
as

Htop(k) = −G−1(0, k) = H0(k) + Σ(ω = 0, k), (3.67)

which is in matrix form. All methods which are used to compute topological
invariants in the noninteracting case can also be applied to the effectively
noninteracting Hamiltonian in Eq. (3.67). In Eq. (3.67), the selfenergy is
k-dependent. This is of course not the case for DMFT, see Sec. 3.1. In the
DMFT + topological Hamiltonian approach we find the very convenient
expression:

Htop(k) = H0(k) + Σ(ω = 0). (3.68)

We also note that the above derivation is independent of the symmetries
of the system and is thus not restricted to Chern numbers but can also be
applied to Z2 numbers in the TRS case. Generalizations to 3d and 4d as well
as the TRS case of Eq. (3.53) are given in Ref. [242].

3.4 Local Chern marker

The local Chern marker (LCM) was introduced in 2011 by Bianco and
Resta [251]. It is a quasi-local topological marker, which makes it possi-
ble to distinguish topological phases in inhomogeneous systems. Here, the
term ’marker’ instead of ’number’ emphasizes that this quantity is not a
topological invariant since those are nonlocal. Since its first mention, the
LCM has gained increased interest, especially, in the cold atoms commu-
nity. The main reason for that is the intrinsic inhomogeneity of cold atom
setups. Applications of the LCM range from topological quasi-crystals [252],
interacting, spin-conserving, fermionic Hubbard models [253], and nonequi-
librium, topological marker currents [254] to topological traps and interfaces
which will be discussed in this work [255–257] in Sec. 4.1. Here, we will
follow the derivation of Ref. [251] for the LCM, for more details consult
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Refs. [258, 259]. The Chern number can be written as

C =
i

2π ∑
n∈O

∫
dk
[
〈∂kx un(k)|∂ky un(k)〉 − c.c.

]
, (3.69)

where we insert an identity operator 1 = ∑m |um(k)〉〈um(k)| and find that

C =
i

2π ∑
n∈O

∑
m

∫
dk
[
〈∂kx un(k)|um(k)〉〈um(k)|∂ky un(k)〉 − c.c.

]
. (3.70)

Here, O stands for the set of occupied bands. The derivative with respect to
ki can be exchanged between the bra and the ket state according to

〈∂ki un(k)|um(k)〉 = −〈un(k)|∂ki um(k)〉, (3.71)

which follows from

0 = ∂ki δnm = ∂ki〈un(k)|um(k)〉
= 〈∂ki un(k)|um(k)〉+ 〈un(k)|∂ki um(k)〉.

(3.72)

Thus, for m ∈ O the derivatives in Eq. (3.70) can be exchanged. Also, the
indices n and m can be exchanged for m ∈ O. We find that all terms for
m ∈ O cancel with the complex conjugate, so they are real. Hence, this
yields

C =
i

2π ∑
n∈O

∑
m/∈O

∫
dk
[
〈∂kx un(k)|um(k)〉〈um(k)|∂ky un(k)〉 − c.c.

]
. (3.73)

Next, we use

〈un(k)|∇kum(k)〉 = −i〈ψn(k)|r̂|ψm(k)〉 n 6= m (3.74)

which can be regarded as a basis change from momentum to position basis
[258]. We furthermore find

C =
i

2π ∑
n∈O

∑
m/∈O

∫
dk [〈ψn(k)|x̂|ψm(k)〉〈ψm(k)|ŷ|ψn(k)〉 − c.c.] (3.75)

=
iNx Ny

(2π)3 ∑
n∈O

∑
m/∈O

∫
dk
∫

dk′
[
〈ψn(k)|x̂|ψm(k′)〉〈ψm(k′)|ŷ|ψn(k)〉 − c.c.

]
.

(3.76)

In the last equation, we have introduced another integration over k′ accord-
ing to

Ni

2π

∫
dki = 1, (3.77)
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where Ni is the number of lattice sites in i direction. Changing the arguments
in Eq. (3.76) from k to k′ is justified since the position operator does not
couple states with different k [259]:

〈ψn(k)|r̂|ψm(k′)〉 ∝ δkk′ . (3.78)

Now we define the projectors

P̂ =
Nx Ny

(2π)2 ∑
n∈O

∫
dk|ψn(k)〉〈ψn(k)| (3.79)

Q̂ = 1− P̂ =
Nx Ny

(2π)2 ∑
m/∈O

∫
dk′|ψm(k′)〉〈ψm(k′)|. (3.80)

Then Eq. (3.76) can be expressed as a trace

C =
2πi

Nx Ny
Tr
[
P̂x̂Q̂ŷ− Q̂ŷP̂x̂

]
= − 2πi

Nx Ny
Tr
[
P̂x̂P̂ŷ− P̂ŷP̂x̂

]
= − 2πi

Nx Ny
Tr
[
P̂2 x̂P̂2ŷ− P̂2ŷP̂2 x̂

]
= − 2πi

Nx Ny
Tr
[
P̂x̂P̂, P̂ŷP̂

]
= −2πi

∫
dr〈r|

[
P̂x̂P̂, P̂ŷP̂

]
|r〉 = −4πIm

∫
dr〈r|P̂x̂P̂ŷP̂|r〉

(3.81)

where we exploited the invariance of the trace under cyclic permutation. We
also used Q̂ = 1− P̂ and P̂2 = P̂ as well as [x̂, ŷ] = 0. We further defined
the eigenstates of the position operator r̂|r〉 = r|r〉. By omitting the final
position integration, one is left with a locally resolved quantity which is
dubbed local Chern marker, C =

∫
drC(r)

C(r) = −2πi〈r|
[
P̂x̂P̂, P̂ŷP̂

]
|r〉 = −4πIm〈r|P̂x̂P̂ŷP̂|r〉. (3.82)

3.5 Fukui’s method and twisted boundary conditions

Fukui’s method [260] is a numerical technique to compute the Chern number
of a system on a discretized BZ. First, we present the straightforward way
of discretizing the continuum formula for the Chern number. This, however,
has shown to be computationally inefficient. Fukui’s method, which we
show subsequently, resolves that and provides an alternative approach for
computing the Berry curvature in a discrete BZ. Finally, we will treat the
generalization to TRS systems which is possible through twisted boundary
conditions.

The Berry curvature of a single band reads

Ω(k) = ∂kx Ay(k)− ∂ky Ax(k) (3.83)

with the Berry connection

Aµ(k) = i〈u(k)|∂kµ
|u(k)〉. (3.84)
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With the discrete difference operator ∆kµ
f (k) = f (k + δkµ)− f (k), where

δkµ is the step size in µ direction on the discrete grid, the discretized expres-
sion for the Berry connection reads

Aµ(k) = i〈u(k)|∆kµ
|u(k)〉 = i〈u(k)|u(k + δkµ)〉 − i (3.85)

which yields
Ω(k) = ∆kx Ay(k)− ∆ky Ax(k), (3.86)

and finally

Ω(k) =i〈u(k + δkx)|u(k + δkx + δky)〉 − i〈u(k)|u(k + δky)〉
+i〈u(k + δky)|u(k + δkx + δky)〉 − i〈u(k)|u(k + δkx)〉.

(3.87)

This can be evaluated on a discrete grid of k values in the BZ denoted by
{kl}. The Chern number is then computed through

C =
1

2πi ∑
l

Ω(kl). (3.88)

In practice, this has proven to be numerically costly if one aims for a
well quantized result. The alternative approach of Ref. [260] is to define

Ω̃(kl) = ln
[
Ux(kl)Uy(kl + δkx)U−1

x (kl + δky)U−1
y (kl)

]
(3.89)

with

Uµ(kl) =
〈u(kl)|u(kl + δkµ)〉
|〈u(kl)|u(kl + δkµ)〉|

. (3.90)

Now, the Chern number is computed through

C =
1

2πi ∑
l

Ω̃(kl). (3.91)

We arrive at the expression in Eq. (3.89) by identifying a new gauge field
Ãµ(k) = ln Uµ(kl). Then the structure is equivalent to the former approach.
The advantage of the latter approach is that Eq. (3.89) is gauge invariant
because the phases of a U(1) gauge transformation will always cancel out.
Furthermore, it is shown that Eq. (3.91) is always an integer independent
of the lattice spacing [260]. It is also shown that the method reproduces the
correct Chern number even for coarsely grained discretizations of the BZ.

The described method can be used to compute Chern numbers, i.e., to
characterize topologically nontrivial states with explicitly broken TRS. In
order to compute Z2 numbers, the method must be modified with the help
of twisted boundary conditions (TBC). TBC were introduced in the context
of topological insulators [261, 262] as an equivalent to Laughlin’s Gedanken-
experiment [263]. Let us take a moment to understand this statement. In
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Laughlin’s Gedankenexperiment, we look at a 2d sample in cylinder ge-
ometry with electron reservoirs at each edge of the cylinder. A magnetic
field is penetrating the cylinder radially which induces the IQH in the sam-
ple. Furthermore, a solenoid is arranged axially inside the cylinder much
like in the Aharonov-Bohm effect. A flux Φ is adiabatically inserted into
the cylinder through the solenoid by increasing it from 0 to 2π. From the
Maxwell-Faraday law we find an electromotive force around the cylinder.
Subsequently, because of the IQH in the sample, this leads to a transverse
current along the cylinder. Since the bulk is insulating, the current will
pump electrons from one edge to the other. Gauge invariance requires
the initial and final states to be identical leading to a quantized number
of pumped electrons. In the picture of TBC, the wavefunction is periodic
with an additional phase factor. Consider, e.g., the boundary conditions
cx+Nx ,y = cx,y and cx,y+Ny = eiθy cx,y, i.e., PBC in x direction and TBC in the
y direction. This corresponds to the same cylinder geometry as the one
treated in Laughlin’s Gedankenexperiment with the mapping Φ = θx/(2π).

Let us continue with the TRS case. Here, the TBC are applied to Fukui’s
method, which we explained above [264]. With the analog of Laughlin’s
Gedankenexperiment, we have recognized the connection of topologically
nontrivial states and pumping, i.e., the change of polarization. In the TRS
case, the charge polarization vanishes. Thus, one has to consider the time-
reversal polarization [265]. This features a spin-dependent phase which the
wavefunction will acquire at the boundary and results in the following
spin-dependent TBC:

ĉx+Nx ,y = ĉx,yeiθx1 and ĉx,y+Ny = ĉx,yeiθyσz
, (3.92)

where Nx × Ny is the 2d sample size and we again used the spinor repre-
sentation ĉx,y = (ĉ↑,x,y, ĉ↓,x,y). θx and θy are the twist angles. Note that for
θx = 0 and θy = 0, the boundary conditions in Eq. (3.92) become PBC. For
the computation of the Z2 number, Fukui’s method is now applied onto the
twist angles instead of originally the momenta. To this end, a real-space
sample of Nx × Ny is computed for every value of θx and θy. This means, we
have another grid of size Nθx × Nθy of discretized values of the twist angles
{θl}. The Eqs. (3.89) to (3.91) then become

Ω̃(θl) = ln
[
Ux(θl)Uy(θl + δθx)U−1

x (θl + δθy)U−1
y (θl)

]
(3.93)

with

Uµ(θl) =
〈ψ(θl)|ψ(θl + δθµ)〉
|〈ψ(θl)|ψ(θl + δθµ)〉|

, (3.94)

where the |ψ(θl)〉 are the respective eigenstates of the Nx × Ny sample. The
Z2 number is given as

ν2d =
1

2πi ∑
l

Ω̃(θl). (3.95)
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In practice, a well-quantized result for Eq. (3.95) can be obtained already
for small values of Nx and Ny, e.g., twice the unit cell, and sufficiently large
values for Nθx and Nθy .

3.6 Wilson loops

The original Wilson loop originates from gauge-field calculations in high-
energy physics [266]. Here, in the condensed-matter context, it is used for
the generalization of the Zak phase [267] to multiband systems [268]. The
Zak phase ϕ corresponds to the Berry phase [35] applied to a lattice which
is exposed to a gauge field. The definition related to the Berry connection in
Eq. (3.84) reads

ϕC =
∮
C

dkA(k), (3.96)

where C is some closed 1d path within the BZ. As a generalization, the
Wilson loop constitutes a 1d topological invariant for multiband systems. In
our case, it is interesting because of TRS which necessarily implies multiple
bands.

In the following, we introduce the Wilson loop technique which is de-
rived from the transfer matrix method in Ref. [268] in which also the TRS
case is discussed. The technique can also be used for inversion symmetric
systems [269] and a scheme for the detection in cold atom setup has been
developed [270]. We define the position operator in the Wannier basis |jα〉,
where j denotes the lattice site index and α is an internal degree of freedom
as

X̂ = ∑
jα

e−2πij/N |jα〉〈jα|, (3.97)

where N is the number of lattice sites. We note that the complex phases j/N
of the eigenvalues of X̂ refer to the positions normalized to the lattice size
N. This will be used to determine the polarization, which also in the TRS
case [265], plays an important role in the topological classification of a many-
body state. We also define ∆k = 2π/(Na) being the stepsize between two
neighboring k values and a is the lattice constant. Of course, only occupied
bands will contribute to the polarization. Consequently, we consider the
projected position operator, see Eq. (3.81):

P̂X̂P̂ = ∑
nk
|ψnk〉〈ψnk|∑

jα
e−i∆kja|jα〉〈jα|∑

mk′
|ψmk′〉〈ψmk′ |. (3.98)

Now we rewrite the Bloch states in the center in terms of their cell-periodic
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parts |ψnk〉 = eikx|unk〉

P̂X̂P̂ = ∑
nmkk′

|ψnk〉〈unk|e−ikx ∑
jα

e−i∆kja|jα〉〈jα|eik′x|umk′〉〈ψmk′ |

= ∑
nmkk′

|ψnk〉∑
jα

e−ikxe−i∆kjaeik′x〈unk|jα〉〈jα|umk′〉〈ψmk′ |.
(3.99)

A central assumption in Ref. [268, Eq. (8)] is now that the states |jα〉 are
perfectly localized |jα〉 = |α〉δ(x− ja). Hence, we find

P̂X̂P̂ = ∑
nmkk′

|ψnk〉∑
j

e−ikja−i∆kja+ik′ ja〈unk|∑
α

|α〉〈α|umk′〉〈ψmk′ |. (3.100)

Here, the j sum results in a δ function and the α sum yields an identity since
we assume the spin basis |α〉 to be complete:

P̂X̂P̂ = ∑
nmkk′

|ψnk〉δ(k + ∆k− k′)〈unk|umk′〉〈ψmk′ |. (3.101)

We can write this expression as a matrix X in the k, k′ basis, where the matrix
elements Fnm

kk′ are matrices by themselves

X =



0 F0 0 0
0 F1 0

0
. . .

. . . 0
0 0 FN−2

FN−1 0 0


(3.102)

with Fnm
i = 〈un,ki |um,ki+∆k〉. Remember that k runs from 0 to 2π/a with

steps size ∆k = 2π/(Na) and the band index runs over the occupied bands.
The resulting matrix F has thus size N ·No ×N ·No, where No is the number
of occupied bands. Due to its block structure, the eigenproblem of X can
also be solved by a transfer matrix method [268]. To this end, we define the
ordered product of the Fi

D = F0F1F2 · · · FN−1, (3.103)

which is a matrix of size No × No. The N · No eigenvalues λX
nm of X and the

No eigenvalues λD
m of D are related through

λX
nm = N

√
λD

mei(θm+2πn)/N (3.104)

with n = 0, 1, . . . N − 1 and m = 0, 1, . . . No − 1. Here, θm are the complex
phases of the eigenvalues of D. As we mentioned above, these phases are
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related to the position in real space. What is now left to do is that during
a topological pump cycle, i.e., k performs a loop from 0 to 2π, one has to
follow these positions in real space and determine whether their winding
number is trivial or not. We will discuss how to numerically handle this
winding number in the context of 3d topological insulators in Sec. 4.4.
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Chapter 4

Results

This chapter constitutes a collection of new results which were obtained
during the study of interacting tight-binding models for topological states
in optical lattices by means of DMFT. Since tight-binding models are very
well resembled by cold atom experiments in optical lattices, we do not
only study the topological states but discuss possible detection methods
in cold atom setups as well. Moreover, the discussion covers different
generalizations to the Hofstadter model as well as the Haldane model which
were introduced in Sec. 2. We start this section with the main part of this
work, the inhomogeneous topological states studied with real-space DMFT.

4.1 Interacting, inhomogeneous topological states in
optical lattices

Cold atom setups possess an intrinsic inhomogeneity due to the trapping
potential which is commonly harmonic [101, 104, 106]. There has been
considerable effort to overcome the harmonic trap, going onward to arbitrary
trapping potentials using digital mirror devices [121] or light sheets [120],
see Sec. 1.4. These techniques, however, can so far not create potentials with
a resolution on the scale of the lattice spacing. The intrinsic inhomogeneity
is still present and, within this work, we tackle the problem using real-space
DMFT in the context of topological states.

4.1.1 Interacting Hofstadter interface

Besides cold atom experiments, topological insulators have various imple-
mentations in solid states, photonic crystals and even mechanical systems.
The latter shows that topological phases do not necessarily require quan-
tum physics. As explained in Sec. 1.2.3, most topologically non-trivial
phases demand the existence of robust conducting edge states. In solid state
systems, edge states could be observed at the step edge of layered ZrTe5

85



by making use of atomic force microscopy and angle-resolved photoemis-
sion spectroscopy (ARPES) [271] as well as scanning tunneling microscopy
(STM) [272]. In Ref. [273], edge states could be observed in artificial graphene
realized by a photonic crystal. In the classical case, a lattice model of two
mechanical pendula per site, which are coupled to neighboring sites in a
special manner, showed edge states [274]. This raises the question for edge
state detection in cold atom setups. In this context, an intrinsic problem
is that cold atom setups, in contrast to solid state materials, do not have a
well-defined edge since they rather constitute clouds. The cloud structure
originates from the smooth trapping potential which causes the density of
the gas to decrease continuously towards the boundary. In the noninteract-
ing case, a harmonic trap seems to destroy the localization of the edge states
and no clear distinction between bulk and edge can be made [41,275]. In the
interacting bosonic case, however, the localization of the edge states can be
recovered as it was investigated in the Thomas-Fermi approximation [276].
Despite the difficulties of the smooth trap, there exist diverse proposals
for the experimental detection of edge states. One method proposes to
relieve trapped edge states into formerly forbidden regions in the trap and
to observe them by direct imaging of the time evolution [277]. Other works
propose Bragg scattering and finding signatures of the edge states in the
measured spectra [41, 275, 278]. Finally, the idea of interfaces between two
topologically different phases is promising. In Ref. [279], a driving beam of
finite waist creates a topologically nontrivial Floquet system in the center of
the configuration and edge states emerge at the phase boundary. Another
approach to create a topological phase boundary is by varying a staggered
potential spatially. This has beeen studied in the noninteracting Haldane
model [280]. Here, we follow this approach applied to the TRS Hofstadter
model we introduced in Sec. 2.2. We are especially interested in the influence
of two-body interactions on the edge state since Feshbach resonances can be
used to tune the on-site interaction between atoms in the lattice.

The Hamiltonian we investigate is an inhomogeneous version of the TRS
Hofstadter-Hubbard model introduced in Sec. 2.2 and reads

Ĥ =− t ∑
x,y

[
ĉ†

x+1,ye2πiγσx
ĉx,y + ĉ†

x,y+1e2πiαxσz
ĉx,y + h.c.

]
+ ∑

x,y

[
λ(x)ĉ†

x,y ĉx,y + Uĉ†
↑,x,y ĉ↑,x,y ĉ†

↓,x,y ĉ↓,x,y

]
,

(4.1)

where we used again the spinor representation ĉx,y = (ĉ↑,x,y, ĉ↓,x,y). The
amplitude λ(x) of the staggered potential is now spatially dependent. We
set α = 1/6 and γ = 1/4 and focus on the half-filled case corresponding to
the phase diagram in Fig. 2.4(c). The size of the lattice is Nx × Ny. In order
to create a topological phase boundary in real space, we apply a staggered
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Figure 4.1: Schematic of the topological interface: spin-1/2 fermions de-
scribed by the Hamiltonian in Eq. (4.1) in a 2d lattice. The spatially depen-
dent staggered potential Eq. (4.2) is implemented and depicted as a gray
scale. This induces a topological phase separation and a boundary which
should feature helical edge states which is represented by blue/orange ar-
rows. Reprinted with permission from Ref. [255]. Copyright (2020) by the
American Physical Society.

potential of the form

λ(x) =
[

λL + (λR − λL)
x

Nx

]
(−1)x, (4.2)

where λL and λR correspond to the amplitudes of the staggered potential
at the left and the right boundary of the system. We chose this form of
the potential since it could be realized by superponing two standing-wave
laser beams with slightly shifted wavevectors. The result would be a beads
profile which could be tuned such that the envelope is approximately linear
and matches the form of Eq. (4.2).

The present system is depicted schematically in Fig. 4.1. The parameters
λR and λL are chosen such that the critical value λc ≈ 1.25 is reached in the
center of the system, where we expect a topological phase boundary and
hence an edge state. See Sec. 2.2 for details.

Spin decoupling

For the present case of γ = 1/4, i.e., for maximal spin mixing such that
a spin is exactly flipped when hopping one lattice site in x direction, the
problem can be simplified. To this end, we introduce new fermion operators

d̂σ,x,y =

{
ĉσ,x,y if x is even
ĉσ̄,x,y if x is odd

(4.3)

which represent decoupled, virtual spins. Here, the bar notation again flips
a spin, i.e., ↑̄ =↓ and ↓̄ =↑. Rewriting Eq. (4.1) in terms of d̂ operators we
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find

Ĥ =− t ∑
x,y

[
d̂†

x+1,yd̂x,y + d̂†
x,y+1e2πiα(−1)xxσz

d̂x,y + h.c.
]

+ ∑
x,y

[
λ(x)d̂†

x,yd̂x,y + Ud̂†
↑,x,yd̂↑,x,yd̂†

↓,x,yd̂↓,x,y

]
,

(4.4)

where we once again use the spinor representation d̂x,y = (d̂↑,x,y, d̂↓,x,y). We
observe that under this transformation the spin-mixing phase, which was
originally acquired in the x hopping process in Eq. (4.1), vanishes completely
in Eq. (4.4). However, the flux α becomes a staggered flux (−1)xα similar
to the flux pattern of the very early realization of the Hofstadter model in a
cold atom experiment [112]. Now we want to argue that the transformation
in Eq. (4.3) is unitary, that it does not change the physics, and hence does
not change the topological state of the system. To this end, we make use
of topological field theory since any interactions can be straightforwardly
included in stark contrast to topological band theory [281]. Here, the Z2
number is expressed by the extended momentum-frequency integral

P2 =
εµνρστ

120(2π)3

∫
d3kdudvTr

[
Ĝ∂µĜ−1Ĝ∂νĜ−1Ĝ∂ρĜ−1Ĝ∂σĜ−1Ĝ∂τĜ−1

]
.

(4.5)
Herein, εµνρστ is the five-dimensional anti-symmetric tensor. Furthermore,
k = (iωn, kx, ky) is the generalized momentum which contains the Matsub-
ara frequency ωn and the physical 2d momentum. u and v are residual
variables from dimensional reduction [282], and the greek indices run over
iωn, kx, ky, u, v. Moreover, Ĝ = Ĝ(k, u, v) represents the extended Green’s
function operator which satisfies Ĝ(k, 0, 0) = Ĝ(k) = Ĝ(iωn, kx, ky). The
4+1-dimensional integral stems from the second Chern number in 4+1 di-
mensions which is said to be fundamental. Here, ’fundamental’ means that
the topological properties of the system can be classified by an integer, e.g.,
the second Chern number in 4+1 dimensions or the first Chern number
in 2+1 dimensions, see Refs. [30, 31]. The TRS cases in 3+1 and 2+1 di-
mensions can be derived from the 4+1 dimensional system by dimensional
reduction [282]. The residual dimensions remain as Wess-Zumino-Witten
terms [283] inside the integrals [281]. This is why we find five integration
variables in Eq. (4.5). We will now show that the number P2 in Eq. (4.5)
can be expressed in the basis of the transformation in Eq. (4.3). This yields
the same form which shows that its value is independent of the basis. We
introduce the unitary transformation Û such that d̂ = Û ĉ. By interpreting
the position inside a unit cell as an internal degree of freedom, we find that
U is position-independent and consequently momentum-independent. The
Green’s function in the Fourier-transformed d̂ basis reads

G̃(iωn, kx, ky) = 〈Tτ d̂kx ,ky(τ)d̂
†
kx ,ky

(0)〉 = UG(iωn, kx, ky)U †, (4.6)
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where Tτ is imaginary-time ordering operator. The extended Green’s func-
tion operator follows directly satisfying ˆ̃G(k, 0, 0) = ˆ̃G(k) = ˆ̃G(iωn, kx, ky).
We can now rewrite Eq. (4.5) in terms of this new extended Green’s function
operator simply by using Ĝ = Û † ˆ̃GÛ which follows from Eq. (4.6). Then we
exploit the properties of the trace, i.e., cyclicly permuting the order of the
operators to get:

P2 =
εµνρστ

120(2π)3

∫
d3kdudvTr

[
G̃∂µG̃−1G̃∂νG̃−1G̃∂ρG̃−1G̃∂σG̃−1G̃∂τG̃−1

]
.

(4.7)
Thus, the number P2 can readily be expressed in terms of the new fermionic
operators and we find that it is invariant under the transformation defined
in Eq. (4.3). The advantage of this is that the newly introduced fermions
are spin-conserved, i.e., d̂↑ and d̂↓ are decoupled. As a consequence, we can
compute Chern numbers of each species and the Z2 number is determined
as the difference of both, see Sec. 1.3. This means we only need to compute
Chern numbers instead of Z2 numbers which is easier to do. The drawback
is that we are restricted to a maximal spin mixing of γ = 1/4.

Edge states at the interface

Edge states between topologically different many-body phases can gener-
ally not be observed in the particle density but rather through transport
properties, i.e., their conduction behavior. This can be quantified by, e.g, the
spectral density or the compressibility at the Fermi level ω = 0. The spectral
density is obtained from the imaginary part of the Green’s function, see
Sec. 1.7. In this particular instance, we consider the cylinder geometry, i.e.,
the system possesses OBCs in the x direction, associated with the real-space
variable x, and PBCs in the y direction, associated with the momentum
space variable ky. Consequentially, due to the Fourier transform, the Green’s
function is diagonal in ky. On the other hand, it is not diagonal in the
variable x, i.e., it exhibits nonlocal components. For the spectral density,
nonlocal contributions are neglected. To emphasize this, we use the symbol
ρ instead of A as in Sec. 1.7. The ky-momentum-integrated spectral density
of a particle in spin state σ at the Fermi level reads

ρσ
x = − 1

π

∫
dkyImGσσ

xx (ω = 0, ky). (4.8)

Here, the Green’s function in cylinder geometry is expressed as

Gσσ′
xx′ (ω, ky) =

[
ω + iη + µ− H(ky)− Σ(ω)

]−1
∣∣∣σσ′

xx′
(4.9)

Here, ω is the real frequency, η is a small broadening factor, µ is the chemical
potential, H(ky) is the noninteracting Hamiltonian matrix in spin and x
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coordinate basis, and Σ(ω) is the selfenergy in spin-position basis. We
consider a system of 48 lattice sites along the x direction, i.e., H(ky) and
Σ(ω) are of the size 96× 96.

Another quantity for determination of the conduction properties is the
compressibility. It quantifies whether particles can be added to the system if
the chemical potential is slightly increased. If so and if additionally there is
no disorder, the system is in the metallic state; otherwise it is insulating. We
are interested in a version of the compressibility in cylinder geometry: Gen-
erally speaking, the particle density of a system can be calculated through
the energy integral over the spectral density times the distribution function.
This translates in our case to

nσ
x(ky) =

∫
dωnF(ω)ρσ

x(ω, ky) (4.10)

= − 1
π

∫
dωnF(ω)ImGσσ

xx (ω + iη, ky), (4.11)

where the η term makes sure that one does not integrate over poles. nF(ω) is
the Fermi-Dirac distribution function which can be expressed as [157, (3.5)]

nF(ω) =
1

eβ(ω−µ) + 1
=

1
2
+

1
β ∑

n

1
iωn −ω + µ

. (4.12)

We insert Eq. (4.12) into Eq. (4.10) and find

nσ
x(ky) =

1
2

∫
dωρσ

x(ω, ky) +
1
β ∑

n

∫
dω

ρσ
x(ω, ky)

iωn −ω + µ

=
1
2
+

1
β ∑

n
Gσσ

xx (iωn, ky),
(4.13)

where we have used for the second equality that the spectral function is
normalized as well as the spectral representation of the Matsubara Green’s
function [157, Eq. (3.118)]. The formula in Eq. (4.13) shows a direct relation
between the particle density and the Matsubara Green’s function.

The compressibility now follows as the derivative of the particle density
with respect to the chemical potential κ = ∂n/∂µ at constant temperature
and volume:

κσ
x (ky) =

∂nσ
x(ky)

∂µ
=

1
β ∑

n

∂

∂µ
Gσσ

xx (iωn, ky) (4.14)

= − 1
β ∑

n,x′,σ′
Gσσ′

xx′ (iωn, ky)

[
∂

∂µ
G−1(iωn, ky)

]σ′σ′

x′x′
Gσ′σ

x′x (iωn, ky) (4.15)

where we have used that ∂A = −A
(
∂A−1) A in Eq. (4.15) which applies for

an invertible matrix A since A−1A = 1. In order to perform the remaining
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derivative, we consult Eq. (4.9) and make the assumption that the selfenergy
does only weakly depend on µ, i.e., ∂Σ/∂µ� 1 is negligible. We are then
left with

κσ
x (ky) = −

1
β ∑

n,x′,σ′
Gσσ′

xx′ (iωn, ky)Gσ′σ
x′x (iωn, ky). (4.16)

This expression has the advantage that it contains only Matsubara Green’s
functions which are directly obtained in DMFT. Thus, the local compress-
ibility as a measure to find edge states is straightforwardly obtained from
the DMFT results through Eq. (4.16). On the other hand, an expression for
the compressibility can be found in the following way [284–286]: In the
grand-canonical ensemble the particle density in cylinder geometry reads

nσ
x(ky) = 〈n̂σ

x(ky)〉 =
Tr n̂σ

x(ky)e−β(Ĥ−µN̂)

Tre−β(Ĥ−µN̂)
, (4.17)

where the operator measuring the total number of particles is defined as
N̂ = ∑σ,x n̂σ

x(ky). Performing the derivative with respect to µ, we find the
compressibility as

κσ
x (ky) = β ∑

σ′,x′

[
〈n̂σ

x(ky)n̂σ′
x′ (ky)〉 − 〈n̂σ

x(ky)〉〈n̂σ′
x′ (ky)〉

]
, (4.18)

which corresponds to nonlocal correlations between site x and all sites of the
lattice x′. We claim that this is a quantity which could actually be measured
in cold atom experiments by using a quantum gas microscope. Here, the
idea is to extract the averages in Eq. (4.18) from cold atom measurements.
For the average density, this is done by sampling over many quantum gas
microscope images. The correlation term, on the other hand, is more tricky
to obtain. Here, in every image the product of the density of every site x with
every other site x′ has to be computed. To this end, one needs to develop an
algorithm which finds the correct position of the site in the image. Also, care
must be taken for influences from noises and drifts during the experiment.
Topological states and quantum gas microscopes have been combined in an
experiment [147], however, in this instance the focus was on the trajectory
of the particles rather than on measuring correlations.

We show the spectral function as well as the local compressibility as
functions of the site index x in Fig. 4.2(c) for the noninteracting case in
blue and the moderately interacting case with U = 2 from DMFT results
in orange. Note that the tilde refers to the virtual spin basis of Eq. (4.3)
discussed above. The first observation is that the spectral function as well
as the local compressibility coincide up to small deviations which can be
attributed to the small, rather arbitrarily chosen, parameter η in Eq. (4.9). We
show that these two quantities should indeed coincide: Recalling Eq. (4.10)
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Figure 4.2: Spectral density as well as local compressibility as functions of x
in (c). Edge state spectra for the noninteracting and moderately interacting
case in (a) and (b), respectively. Contributions are taken from the highlighted
areas in (c). The parameters for the potential in Eq. (4.2) are λL = 0 and
λR = 2.5. Reprinted with permission from Ref. [255]. Copyright (2020) by
the American Physical Society.

at zero temperature T = 0 and inserting Eq. (4.9) yields

nσ
x(ky) = −

1
π

∫ 0

−∞
dωIm

[
ω + iη + µ− H(ky)− Σ(ω)

]−1
∣∣∣σσ

xx

= − 1
π

∫ µ

−∞
dωIm

[
ω + iη − H(ky)− Σ(ω− µ)

]−1
∣∣∣σσ

xx

(4.19)

where we have performed the shift ω + µ→ ω. Performing the derivative
with respect to µ gives the compressibility

κσ
x (ky) = −

1
π

Im
[
ω + iδ + µ− H(ky)− Σ(0)

]−1
∣∣∣σσ

xx
+O

(
∂Σ
∂µ

)
, (4.20)

which exactly corresponds to the spectral density at the Fermi level, i.e.
ω = 0, ρσ

x(ω = 0, ky). Note that particle conservation is required for the
two quantities to coincide. In superconducting systems, e.g., they can
deviate [286].
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Coming back to the result in Fig. 4.2(c), we observe for the noninteracting
case a peak of the envelope function of the compressibility in the middle
of the system at x ≈ 24. Since we have chosen λL = 0 and λR = 2.5 in
our potential in Eq. (4.2), this is where we expect the critical value of λ(x ≈
24) ≈ 1.25. Thus, the edge state is indeed found from the compressibility.
The spiky appearance of the compressibility is explained in the following
way: In the normal Hofstadter model, see Sec. 2.1, the flux is constant
throughout the lattice, i.e., every plaquette is pierced by the same amount of
flux α. However, if we perform the transformation of Eq. (4.3) the system is
mapped onto spin-decoupled fermions subject to a staggered flux α(−1)x

as explained above. For the used value of α = 1/6, the plaquette flux is
now position-dependent and has a magnitude of 2π(2x + 1)/6 which has
a periodicity of 3. This inhomogeneous flux pattern is the reason for the
spiky profile of the compressibility which only emerges due to the spin-
mixing process. The envelope function is approximately Gaussian which
we understand as an increased extent of the edge state into the bulk due to
the underlying linearly increasing staggered potential amplitude: An edge
state decays off a sharp edge in an exponential fashion with respect to x.
Since in the present consideration the edge is smooth, i.e., linear in x, this
gives another contribution which results in an Gaussian decay of the edge
state into the insulating bulk.

The spectrum of the edge state in the noninteracting case is made visible
by plotting out the spectral function as a function of ky and ω. This is shown
in Fig. 4.2(a). The edge state crosses the band gap once with positive group
velocity ∂ω/∂ky. There are no states with negative group velocity such that
backscattering is impossible and consequently the edge state is robust. We
capture the full contribution of the extended edge to the spectral function by
including a certain region of x values. This is highlighted as a blue shaded
area in Fig. 4.2(c).

In the interacting case, with U = 2, we observe in Fig. 4.2(c) that the
peak in the compressibility is shifted to the right x ≈ 36 as compared to
the noninteracting case. Here, we can also compute the spectral density by
analytically continuing the selfenergy from DMFT via the maximum entropy
method which we discussed in Sec. 3.2. The x values of the Green’s function
which contribute to the spectral function of this edge state are highlighted
as an orange shaded are in Fig. 4.2(c). Plotting the spectral density as shown
in Fig. 4.2(b), shows almost the same picture as in the noninteracting case.
This shows that the edge state is robust against Hubbard interactions and
just shifts its location towards higher values of λ(x). This is consistent since
the band gap has not been closed between U = 0 and U = 2 and thus no
topological phase transition could take place. At larger interactions, the
gap could close if the system undergoes either a band insulator to AFM
transition or a band insulator to Mott insulator transition. Complementary
to the results in Fig. 4.2, we show the compressibility as function of x and
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U for three different sets of λL and λR in Fig. 4.3. We observe that with
increasing difference λR − λL the edge state becomes more pronounced as
the edge itself becomes sharper. Also, the edge state is shifted towards the
right side as interactions are increased. The edge state is surrounded by
dark regions which correspond to vanishing compressibility and therefore
to insulating phases.

Figure 4.3: Compressibility as function of x and U for different potentials as
defined in Eq. (4.2). The red lines in (c) correspond to the cases discussed
in Figs. 4.2 and 4.4. Reprinted with permission from Ref. [255]. Copyright
(2020) by the American Physical Society.

Topological pumping

So far, we have argued that there are two insulating many-body phases
separated by a gapless edge state in between. We shall now argue that these
phases are indeed topologically different, i.e., they carry different topological
invariants. One approach is to look at the Hall response of the system also
known as topological pumping. In particular, we look at the transverse
shift a particle experiences if it is moved in the longitudinal direction. In
our case, we change ky. The Hall response is then read out from the shift
in the x direction. After a full pump cycle of 2π the particle is pumped
further by a quantized amount. The idea of measuring Hall response in
optical lattices in the cylinder geometry is proposed by Ref. [287]. The Hall
response, also dubbed anomalous velocity, was also measured in Ref. [143]
for the first experimental determination of the Chern number in artificial
systems. Topological pumping is furthermore used in 1d topological systems
[288,289]. This is referred to the Thouless pump [290] which can be mapped
to a 2d static system via the Rice-Mele model [288, 291, 292]. In Fig. 4.4, we
show the line particle density as a function of x with changing ky for the
noninteracting case in (a) and with interactions of U = 2 in (b). For (a),
we observe, following a full pump cycle of ky, that on the left-hand side
of the system, 0 . x . 20, the shift in x of the particle density is 6 which
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corresponds to the size of the unit cell corresponding to a topologically
nontrivial phase. On the right-hand side, 30 . x . 48, however, the particles
are not pumped during one pump cycle corresponding to a topologically
trivial phase. This nicely shows how the transition region, 20 . x . 30, in
the center of the system separates the two topologically different phases. In
the interacting case (b), the topologically nontrivial region extends more to
the right, 0 . x . 25, compared to the noninteracting case in (a) which is
consistent with the shift of the edge state through interactions as seen from
Figs. 4.2 and 4.3.

Figure 4.4: Topological pumping: particle density as function of x and ky
for the noninteracting case as well as the interacting case with U = 2. The
parameters for the potential in Eq. (4.2) are λL = 0 and λR = 2.5. Reprinted
with permission from Ref. [255]. Copyright (2020) by the American Physical
Society.

Local spin Chern marker

Even though the pumping behavior in Fig. 4.4 nicely reflects the topological
phase separation and the connection between topological states and the
Hall response, the results are quite complicated and one desires a simpler
function of the variable x only. This brings us to the concept of real-space
interpretations of topological indices. In Sec. 3.4, we have introduced the
local Chern marker (LCM) by Bianco and Resta [251]. In the present case,
we can directly apply it in our virtual spin basis defined in Eq. (4.3) since
it contains two decoupled spin species. We also have shown that the Z2
number does not depend on the basis and that it can be simply obtained
from the difference of the two Chern numbers in the virtual spin basis.
By exploiting TRS, it is even sufficient to compute only one of the Chern
numbers.

Before we look at the results for the LCM, we have to consider some
subtleties concerning the LCM in cylinder geometry. Since the LCM can
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Figure 4.5: Local Chern marker in cylinder geometry: (a) on the full lattice,
(b) on the cut-off lattice corresponding to the red cut-off marks in (a), and
(c) the y average 〈LCM〉y of the LCM on the cut-off system depicted in (b)
for U = 0, λL = 0, and λR = 2.5. Reprinted with permission from Ref. [255].
Copyright (2020) by the American Physical Society.

be written in the form of a commutator, its trace must always vanish. In
practice, this implies that the LCM will have nonphysical boundary effects
which compensate the bulk value of the LCM. In particular, these boundary
effects depend on the size of the system. The boundary will be cut off in the
results to get rid of the unphysical boundary effects. Interestingly, boundary
effects emerge also for PBC. The reason for that is, that the position operator
in the expression of the LCM in Eq. (3.82) is not well-defined with PBC in a
finite system. There is no labeling for the matrix elements of the position
operator such that it could smoothly connect the last site with the first site.
As a result, boundary effects occur for PBC as well. In Fig. 4.5, we show the
LCM for the full system in (a). Then the result is cut at the red lines shown in
(a) and one obtains the LCM for the cut-off system shown in (b). Finally, the
average in y direction is taken in order to get a function of x only, as shown
in (c). The spiky profile arises due to the same reason as the spiky profile of
the compressibility, as we explained above. Consequently, we smoothen our
data by applying an average over 3 lattice sites. This corresponds to half of
a unit cell, but is sufficient to achieve a smooth result.

In order to investigate finite interactions, we make use of the topological
Hamiltonian approach which we introduced in Sec. 3.3. It is a very general
technique and can be straightforwardly applied to our system. In Fig. 4.6,
we present the line average of the LCM for one of the decoupled virtual
spin states as a function of x and U computed with the topological Hamil-
tonian. We observe that the LCM is well quantized in regions where we
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Figure 4.6: Local Chern marker line average as a function of interaction
strength U for λL = 0 and λR = 2.5. The red stars denote the position of
the maxima of the compressibility corresponding to the result in Fig. 4.3(c).
Reprinted with permission from Ref. [255]. Copyright (2020) by the Ameri-
can Physical Society.

expect the system to be insulating. Light regions correspond to the topologi-
cally nontrivial phase, where the LCM is nonzero, and dark regions to the
topologically trivial one, where the LCM is zero. In the transition region,
the LCM has no physical meaning since the system is gapless here. We
also plot the maxima of the compressibility corresponding to the result of
Fig. 4.3 as red stars to provide an estimate of where the edge state is located.
Here, we find excellent agreement between the two results. The change of a
topological invariant has to coincide with the existence of a gapless state.
This confirms the bulk-boundary correspondence with interactions [249] at
the smooth interface.

4.1.2 Local Chern marker of smoothly confined, interacting Hofs-
tadter fermions

Another application of our framework for real-space DMFT combined with
the topological Hamiltonian are cold atom systems confined by a trapping
potential. Trapping potentials in the context of topological states have been
widely discussed: noninteracting topological states within trapped optical
lattices [275], the trapped Hofstadter model [41], possible detection of edge
states in traps using quench dynamics [277], single-particle dynamics in the
trap [293], trapping effects in periodically driven systems in 1d [294] as well
as 2d [295], and trapped interacting bosons [276].

Here, we are interested in interacting fermions in the TRS Hofstadter
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model confined to a harmonic trap. The Hamiltonian for this system reads

Ĥ =− t ∑
x,y

[
ĉ†

x+1,ye2πiγσx
ĉx,y + ĉ†

x,y+1e2πiαxσz
ĉx,y + h.c.

]
+ ∑

x,y

[
λ(−1)x ĉ†

x,y ĉx,y + V(x)ĉ†
x,y ĉx,y + Uĉ†

↑,x,y ĉ↑,x,y ĉ†
↓,x,y ĉ↓,x,y

]
,

(4.21)

where we have introduced the trapping potential V(x) = V(x− x0)2 which
is chosen to be harmonic with x0 being the position of trap center. The
potential is constant in y since we will again consider the cylinder geometry.
The trapping potential depth V is chosen such that the potential assumes
a value of 10 in units of hopping energies at the boundaries of the system.
We choose this value since it exceeds the total bandwidth of the Hofstadter
model with the flux set to α = 1/6 [192] which energetically suppresses the
probability for the occupation of a state at the boundary.

In the system described by Eq. (4.21), there are three competing energy
scales, with t = 1, being the staggered potential amplitude λ, the trapping
potential depth V, and the interaction strength U. Since V is fixed as ex-
plained above and U should vary, we are left with choosing a proper regime
for λ. Our aim is to investigate the stability of topological states in the
presence of the trap. Under the assumption that in the center of the system
the particles obey the bulk physics we choose λ such that the particles in
the trap center remain in the topologically nontrivial phase. To this end, we
consult the phase diagram of Ref. [193] which is reproduced in Fig. 2.4(c)
and rescale λ = λ(U) with the interaction strength as

λ(U) =
1
2
+

U
3

, (4.22)

which ensures that in the trap center the system is in the QSH phase even
for strong interactions and does not undergo a phase transition into a mag-
netically ordered but topologically trivial phase, according to Fig. 2.4(c).

A technical challenge for real-space DMFT applied to the trapped sys-
tem is the determination the number of particles inside the trap. DMFT is
generally formulated in the grand-canonical ensemble such that the chemi-
cal potential is fixed and the number of particles can fluctuate. However,
from the experimental point of view, it is more feasible to look at a constant
number of particles confined in the trap and to investigate the influence of
interactions. Within DMFT, this can be achieved by applying an algorithm
during the DMFT loop which readjusts the chemical potential. After each
self-consistency iteration, the number of particles is computed and com-
pared to the desired number of particles. If the actual number exceeds the
desired number of particles, the chemical potential is reduced or the other
way around, similar to a bisection method. As a result, the number of parti-
cles should converge to the desired value while the selfenergy converges
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Figure 4.7: Results of the algorithm to fix the number of particles inside
the trap. (a) four different values of the number of particles per line in x
direction N̄ = 19.2, 22.4, 25.6, 28.9 averaged over the full range of interaction
strengths U. (b) the corresponding chemical potentials as a result of the
algorithm.

simultaneously. In order to guarantee convergence, one must be careful in
different parameter regimes and in the implementation of this algorithm.
It is recommended to find a chemical potential which is close to the final
chemical potential by prior considerations. In Fig. 4.7, we show the results
of this algorithm. The data is obtained from real-space DMFT with a QMC
CT-AUX solver, see Sec. 3.1.4. Due to the cylindric geometry of the system,
the total density profile nx,y does not depend on the coordinate y. We are
thus only interested in the number of particles for an arbitrary value of
y. Furthermore, we introduce the average number of particles for a set of
interaction strengths

N̄ =

〈
∑
x

nx,y=0

〉
U

(4.23)

In Fig. 4.7(a), we show the result for fixing the average number of particles
to four different values of N̄ = 19.2, 22.4, 25.6, 28.9 represented in different
colors. Figure 4.7(b) shows the corresponding adjusted chemical potentials.
The fluctuations in the data stem from the QMC sampling.

We show the total line density profile nx = n↑x + n↓x of the trapped system
as a function of x and U in Fig. 4.8. First, we observe that the width of the
profile as well as the occupation in the trap center increase with increasing
average particle number N̄. Secondly, the width increases with increasing
interaction strength and at the same time the profile becomes flatter, i.e., the
occupation at the trap center decreases. The former mechanism stems from
the competition of the Hubbard interaction U with the trapping potential
V, the latter from the suppression of doubly occupied sites due to strong
interactions U, which refers to bulk physics and is tuned through λ, see
Eq. (4.22).
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Figure 4.8: Line density profile as a function of x and U for different val-
ues of the total number of particles N̄ = 19.2, 22.4, 25.6, 28.9 defined in
Eq. (4.23). Reprinted with permission from Ref. [257]. Copyright (2020) by
the American Physical Society.

For strong interaction U = 5 and large number of particles N = 29.2, we
find an interesting side effect which is a feature of the trapping potential. In
Fig. 4.9, we plot the spin-resolved line density profiles nσ

x , the magnetization
n↑x − n↓x, and the spectral density ρx. We observe that the magnetization is
constantly zero except for two very localized points in the system at x ≈ 9
and x ≈ 37. Here, the magnetization shows peaks which suggests a spatially
small region of magnetic order. Another interpretation could be that there
are very well-localized edge states, in contrast to the usually extended edge
states in trap geometries [41, 275]. For the sake of clarification, we plot the
spectral density ρx as a red line in Fig. 4.9 and find that the edge states are
still extended and decay into the trap center. The left edge state resides at
5 . x . 17 and the right one at 30 . x . 43. Moreover, the edge states are
not influenced by the magnetic peaks. We conclude that these peaks are of
purely magnetic nature. We explain their emergence as follows: The region

Figure 4.9: Magnetic state at the trap boundary for strong interactions: spin-
resolved density profiles nσ

x , magnetization n↑x − n↓x, and spectral density
ρx. Reprinted with permission from Ref. [257]. Copyright (2020) by the
American Physical Society.
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10 . x . 35 is approximately half filled but protected by the topological
gap and can thus not be magnetized through strong interactions. The outer
regions x < 5 and x > 37 have small occupation and can therefore also
not be magnetized. Only at specific points, i.e., at x ≈ 9 and x ≈ 37, the
topological protection is lifted, because the system is gapless here according
to the underlying band structure [257]. The occupation is still large enough
to induce magnetic ordering.

Figure 4.10: Local Chern marker (LCM) of the interacting, trapped system
as a function of x and U for different average number of particles N̄ =
19.2, 22.4, 25.6, 28.9 defined in Eq. (4.23). Reprinted with permission from
Ref. [257]. Copyright (2020) by the American Physical Society.

Let us now turn to the computation of the LCM, see Sec. 3.4, for the
interacting, trapped system. We again apply the topological Hamiltonian
technique, see Sec. 3.3, first which reduces the interacting problem to an
effectively noninteracting one and the LCM can directly be applied. In order
to find the selfenergy at zero frequency, we perform a polynomial fit for the
smallest Matsubara frequencies in magnitude. Through this simple estimate
the application of the rather complicated maximum entropy method, which
was introduced in Sec. 3.2, can be avoided. As in the section before, we
apply the unitary transformation of Eq. (4.3) since we focus on γ = 1/4
and the transformation simplifies the Z2 problem to a Chern problem, see
Sec. 1.3. We show the LCM as a function of x and U for different numbers
of particles in Fig. 4.10. First, we find that in the outer regions, where no
particles are present, the LCM is zero which is expected for the vacuum.
Secondly, the LCM can be very spiky in the gapless regimes, however, in
those, the LCM has no physical meaning. So we can safely ignore these large
fluctuations of the LCM. The interesting regions in Fig. 4.10 are the blue
ones. Here, the LCM assumes the quantized value -1 which corresponds to
a topologically nontrivial QSH phase. These regions appear at larger values
of U for a large average number of particles N̄. This is because the bulk in
the center of the system needs to have a proper filling in order to be in the
gapped QSH state. As we explained above, interactions change the density
profile because of the suppression of doubly occupied sites.
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Concluding this section, we have developed a framework for studying
topological phases of matter with Hubbard interactions in inhomogeneous
systems. Hence, we are able to analyze and characterize the topological
interface even if the phase separation is smooth. Also trapping potentials
are smooth in cold atom setups and we studied the competition between
the confining trap and the interaction in the system which gives rise to
interaction-induced topological phase transitions within the trap.

4.2 Tomography of the local Chern marker

In the previous section, we encountered the local Chern marker (LCM) and
learned that it is very useful for the investigation of topologically nontrivial
states in systems where the translational lattice symmetry is broken. This
is frequently the case for cold atom experiments since they are built from
laser potentials which usually vary smoothly in space. This prompted the
question whether the LCM is a quantity which can be observable in cold
atom setups. In the following, we show that the LCM can be rewritten in
terms of the single-particle density matrix for which we then propose a
tomographic scheme for its measurement. We recall Eq. (3.82) for the LCM,
C(r) = −4πIm〈r|P̂x̂P̂ŷP̂|r〉, which is of course only applicable for gapped
systems. We now insert the definition of the projector, Eq. (3.80), onto the oc-
cupied eigenstates P̂ = N ∑n∈O

∫
dk|ψn(k)〉〈ψn(k)| with the normalization

constant N , such that

C(r) =− 4πN 3Im ∑
nmq

∫
dkdk′dk′′

× 〈r|ψn(k)〉〈ψn(k)|x̂|ψn(k′)〉〈ψn(k′)|ŷ|ψn(k′′)〉〈ψn(k′′)|r〉.
(4.24)

We now introduce two complete sets of eigenstates of the position operator
1 = ∑r |r〉〈r| yielding

C(r) = −4πN 3Im ∑
r′r′′

∑
nmq

∫
dkdk′dk′′

× 〈r|ψn(k)〉〈ψn(k)|x̂|r′〉〈r′|ψn(k′)〉
× 〈ψn(k′)|ŷ|r′′〉〈r′′|ψn(k′′)〉〈ψn(k′′)|r〉.

(4.25)

Using x̂|r〉 = x|r〉, and analogously ŷ|r〉 = y|r〉, this leads to

C(r) = −4πN 3Im ∑
r′r′′

∑
nmq

∫
dkdk′dk′′x′y′′

× 〈r|ψn(k)〉〈ψn(k)|r′〉〈r′|ψn(k′)〉
× 〈ψn(k′)|r′′〉〈r′′|ψn(k′′)〉〈ψn(k′′)|r〉.

(4.26)
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We define the single-particle density matrix as

ρ(r, r′) = N ∑
n

∫
dk〈r|ψn(k)〉〈ψn(k)|r′〉, (4.27)

with ρ(r, r) = n(r) being the on-site particle density. Then we find for the
LCM [254, 256]

C(r) = −4πIm ∑
r′r′′

x′y′′ρ(r, r′)ρ(r′, r′′)ρ(r′′, r). (4.28)

Hence, the LCM can be rewritten in terms of the single-particle density
matrix summed over to spatial variables running over the whole lattice. We
understand that the word ’local’ in LCM is therefore a misnomer, however,
we will find that in some regimes the quantity is at least quasi-local, i.e.,
decays fast enough as |r − r′| → ∞. Further, we find that the formula in
Eq. (4.28) is a summation over triangles in real-space with the three corner
points at r, r′, and r′′ and a nonvanishing area. The area does not vanish
since all three corner points have to be different. If, e.g., r = r′ 6= r′′, we find

ρ(r, r′)ρ(r′, r′′)ρ(r′′, r) = n(r)ρ(r, r′′)ρ(r′′, r). (4.29)

Since ρ(r, r′) = ρ∗(r′, r), the right-hand side is strictly real, thus, has no
contribution in Eq. (4.28). Hence, only off-diagonal elements ρ(r, r′) of dif-
ferent density matrices contribute. The idea is now to make the off-diagonal
element of the single-particle density matrix experimentally accessible in
order to find the LCM in Eq. (4.28). Since the summation of r′ and r′′ run
over the whole lattice, which includes an infinite number of triangles to
be summed, a proper cut off should be determined. To this end, we re-
order the summation in Eq. (4.28) into a summation of groups of equally
shaped triangles. The shape is determined by the area and the perimeter
of a triangle, which constitute the joint quantity l = (area, perimeter). The
LCM is then computed by C(r) = ∑l cl , where cl is the contribution to the
LCM from all the triangles which have the same l. These contributions
are of course model-dependent. Here, we apply the scheme to the Harper-
Hofstadter-Hatsugai (HHH) model introduced in Sec. 2.3. The benefit of
this model is that the minimal model for nontrivial topological properties
has a two-site unit cell which is achieved for the flux α = 1/2. This is in
contrast to the Hofstadter model, introduced in Sec. 2.1, where at least three
sites in a unit cell are required to show nontrivial topological properties. We
do not consider spin degrees of freedom to keep the system as simple as
possible. It is described by the tight-binding Hamiltonian

Ĥ = −t ∑
x,y

[
ĉ†

x+1,y ĉx,y + (−1)x ĉ†
x,y+1ĉx,y + i(−1)x ĉ†

x+1,y+1ĉx,y

+i(−1)x ĉ†
x,y+1ĉx+1,y + h.c.

]
+ λ ∑

x,y
(−1)x ĉ†

x,y ĉx,y.
(4.30)

103



Figure 4.11: Contributions to the local Chern marker cl as a function of
l = (area, perimeter) for different values of the staggered potential λ in (a)-
(i). The topological phase transition occurs at the critical value λc = 2 [195].
The colormap corresponds to the absolute value of cl in log scale down to
a cut off 10−7 for better visibility. The blue (red) circles denote the positive
(negative) sign of the contribution cl . C refers to the sum of all computed
cl . The data is obtained for the HHH model in Eq. (4.30) on a 40 × 40
lattice. Reprinted with permission from Ref. [256]. Copyright (2020) by the
American Physical Society.
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Here, we use the hopping energy as the unit of energy t = 1 and λ is the
amplitude of the staggered potential which is a control parameter for the
topological phase of the Hamiltonian in Eq. (4.30). There is a phase transition
at λc = 2: For 0 ≤ λ < 2, the system is in a topologically nontrivial phase
with Chern number C = 1 while for λ > 2 it is in a topologically trivial
phase, C = 0 [195].

Microscopic contributions

We show the contributions to the LCM cl as a function of the area and the
perimeter in Fig. 4.11 for different values of the staggered potential λ. The
absolute value of cl is shown as a colorcode and the sign is depicted as a blue
(red) circle for a positive (negative) sign. Furthermore, the C denotes the sum
of all computed contributions cl which should resemble the Chern number.
We observe that all cl with zero area vanish as we discussed above. Next, we
see that in Fig. 4.11(a) the contribution from l = (0.5, 2 +

√
2) is the highest

and two orders of magnitude larger than the remaining contributions. We
will call the contribution from l = (0.5, 2 +

√
2) the first-order contribution.

We will investigate whether this quantity is suitable to detect topological
phase separations in ultracold quantum gases in optical lattices.

As we increase the staggered potential, the system will undergo a phase
transition at the critical value for the staggered potential λc = 2. As λ
approaches λc the first-order contribution decreases and more positive
contributions from larger triangles emerge. Right after the phase transition,
in Fig. 4.11(f), these contributions from larger triangles flip sign such that
the summation with the first-order contribution vanishes. Increasing λ even
further reduces the number of nonvanishing contributions.

As the results in Fig. 4.11 show, the first-order contribution is the largest
and it might be sufficient to determine topological properties in inhomoge-
neous systems. We now focus on the first-order contribution which means
that we only include triangles in Eq. (4.28) which contain off-diagonal ele-
ments of density matrices ρ(r, r′), where r is nearest or next-nearest neighbor
of r′. In the case of a square lattice with two sites in the unit cell, there exist
eight such ρi which we label with numbers i = 1, . . . 8. This is shown in
Fig. 4.12, where the two sites of the unit cell are labeled with A, marked in
red, and B, marked in black, respectively. The eight ρi appear repeatedly
according to the lattice symmetry. In x direction the lattice is periodic with
period 2 and in y direction it is translationally symmetric. We only consider
translational symmetries; mirror symmetries might even further reduce
the number of different ρi. Since the density matrix is complex-valued the
ρi possess an associated direction such that, e.g., ρ1 connects (x, y) with
(x + 1, y + 1) and ρ∗1 connects (x + 1, y + 1) with (x, y) as shown in Fig. 4.12.
The LCM C(rA) of site rA is now computed as the sum of all possible combi-
nations of three connected ρi with rA being the starting point. There are 48
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Figure 4.12: Schematic of the lattice of the Hamiltonian in Eq. (4.30) with the
two-site unit cell (A, B). Sublattice A (B) is colored in red (black). The num-
bers label the density matrices connecting two sites, e.g., ρ1 connects (x, y)
and (x + 1, y + 1), ρ2 connects (x + 1, y) and (x, y + 1), and so on. Reprinted
with permission from Ref. [256]. Copyright (2020) by the American Physical
Society.

combinations of that. Starting with ρ1, three exemplary terms are

C(rA) = −4πIm [(xA + 1)yAρ1ρ7ρ4 + (xA + 1)(yA + 1)ρ∗7ρ∗4ρ∗1
+ (xA + 1)(yA + 1)ρ1ρ4ρ3 + . . . ,

(4.31)

and analogously for rB

C(rB) = −4πIm [(xB + 1)yBρ5ρ3ρ8 + (xB + 1)(yB + 1)ρ∗8ρ∗3ρ∗5
+ (xB + 1)(yB + 1)ρ5ρ8ρ7 + . . . ,

(4.32)

with another 48 terms. The examples in Eqs. (4.31) and (4.32) can be retraced
from Fig. 4.12 by applying Eq. (4.28) with only nearest and next-nearest
neighbors. We define the unit cell average C̄ = [C(rA) + C(rB)]/2. Comput-
ing C̄ and using that rB = rA + êx, we find that

C̄ = −4π(ρ7 − ρ3)(2ρ5ρ8 + 2ρ6ρ∗8 − ρ1ρ4 − ρ2ρ∗4). (4.33)

This formula is applicable for any square lattice model with a two-site unit
cell. It is not specific for the HHH model.

Finite-size scaling

In Fig. 4.13(a), we show the bulk average C̄ as well as the first-order contri-
bution as functions of the staggered potential λ for different system sizes
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N × N. While we observe that the transition of C̄ becomes sharper with in-
creasing N, the first-order contribution is independent of N. This is because
the first-order transition is almost local, i.e., it contains only contributions
from a small neighborhood of nearest and next-nearest neighbors.

Figure 4.13: Topological phase transition of the system described by the
Hamiltonian in Eq. (4.30) controlled through the staggered potential λ. (a)
bulk average of the LCM C̄ as a function of λ for different system sizes
N × N. (b) rescaled C̄ ∼ f̃ ([λ− λc]N1/ν). (c) determination of the critical
exponent of the topological phase transition ν. Reprinted with permission
from Ref. [256]. Copyright (2020) by the American Physical Society.

Let us now look at the scaling of the LCM with the system size. In
Ref. [254], the LCM for the Haldane model, see Sec. 2.4, has been investi-
gated. Therein, a finite size analysis has been performed. We will now go
along these lines for the HHH model. We assume that finite size effects
occur if the bulk correlation length ξ is of the same order as the system size
N, where we consider square lattices N × N and the lattice constant is set to
unity. The bulk average of the LCM C̄ thus should behave as a function of
ξ/N. This leads us to C̄ ∼ f (ξ/N). We further assume that the correlation
length is divergent obeying a power law at the topological phase transition
at λc. This yields the relation ξ ∼ (λ− λc)−ν. For the bulk average of the
LCM we thus find the following scaling behavior:

C̄ ∼ f (ξ/N) ∼ f ([λ− λc]
−ν/N)

∼ f̃ ([(λ− λc)
−ν/N]−1/ν) ∼ f̃ ([λ− λc]N1/ν),

(4.34)

where we have defined f̃ in the second line being a function of (ξ/N)−1/ν,
in contrast to f (ξ/N). In order to use this new function, we have to find
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an estimate for the exponent ν. To this end, we define ∆λ, a window in
which the phase transition happens, and look at its scaling. We assume that
it is of the form log ∆λ = −(1/ν) log N. To check with the data, we define
∆λ = |λ0.95 − λ0.05| with C̄(λ = λ0.95) = 0.95 and C̄(λ = λ0.05) = 0.05 for
different values of N. This is shown in Fig. 4.13(a) with the grey dashed
lines representing C̄ = 0.95 and C̄ = 0.05, respectively. The intersections
with the actual curves of C̄ then defines λ0.95 and λ0.05 and thus ∆λ. We now
plot log ∆λ as a function of log N in Fig. 4.13(c) and a linear fit yields the
critical exponent ν ≈ 1.02. With this value, we can now plot the rescaled
C̄ according to Eq. (4.34). This is shown in Fig. 4.13(b). We observe that
all curves for different values of N collapse onto a single universal curve.
In Ref. [254] it is suggested that this confirms that the LCM can be used to
determine a topological phase transition, in a similar fashion like a local
order parameter. Of course, the two perceptions of a topological phase
transition and a local order parameter are contradictory since topological
properties are global properties and cannot be reduced to local properties.
Especially at the phase transition, the correlation length diverges and finite
size effects play a role no matter how large the system is. However, it
turns out that away from the topological phase transition the LCM can give
a good idea of the topological properties of the system. This is because
the contributions to the LCM become more localized away from the phase
transition as we stressed while discussing Fig. 4.11.

As we have analyzed the contributions, the scaling, and the first-order
contribution of the LCM in detail, let us now look at two examples. We have
investigated the smooth topological interface as well as the harmonic trap
in the context of interacting topological states in Sec. 4.1. We have seen the
good applicability of the LCM in these systems and will now compare it to
its first-order contribution, which we already introduced in this section. In
Fig. 4.14(a), we show the LCM and the first-order contribution as a function
of the spatial coordinate x for the half-filled HHH model described by
the Hamiltonian in Eq. (4.30). The system confined through a harmonic
trapping potential on a 40× 40 lattice and we set λ = 0. We observe that
the first-order contribution resembles the qualitative behavior of the LCM,
but quantitatively does not reach the quantized value of 1 in the center of
the system as the LCM does. As it was expected from the results in Fig. 4.11
the first-order contribution is responsible for the main contribution to the
LCM but the remaining contribution from higher orders is still significant.
On the other hand, the first-order contribution might act as an indicator
for topological nontrivial spatial regions even without a quantized value
since it well coincides with the drop off of the LCM when going from the
trap center to the boundary of the system. We also plot the density profile
in Fig. 4.14(a) and observe that the drop off is already resembled by the
corresponding density profile in the trapped system. It is anticipated that
the LCM as well as its first-order contribution vanish for a vanishing density
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Figure 4.14: Examples for inhomogeneous systems: (a) harmonic trap and
(b) smooth topological interface to apply the LCM and its first-order contri-
bution. Reprinted with permission from Ref. [256]. Copyright (2020) by the
American Physical Society.

of particles.
In Fig. 4.14(b), we show the results for the LCM and its first-order contri-

bution for the smooth topological interface as it was already introduced in
Sec. 4.1.1. The smooth interface is created by a staggered potential whose
amplitude is linearly increased in space. We compute the HHH model on a
lattice of size 100× 20 and add a potential of the form λ(x) = (−1)x5x/100
such that we find λ(0) = 0 and λ(100) = 5. Thus, we expect that the
critical value λc is reached at x = 40 so we expect the LCM to drop here
from 1 to zero. This is indeed the case as shown in Fig. 4.14(b) and we
can clearly identify the phase separation between the topologically trivial,
40 < x < 100, and nontrivial phase, 0 < x < 40. The first-order contribution,
on the other hand, looks rather smooth and a phase transition, at first glance,
cannot be read off easily. To circumvent this, we fit the data of the LCM and
the first-order contribution with hyperbolic tangent functions according to
a tanh(cλ− cλ′)− b. Here, a, b, c, and λ′ are fitting parameters, where λ′

directly gives an estimate of the critical value for the phase transition λc.
The fit curves are shown in red for the LCM and in orange for the first-order
contribution in Fig. 4.14(b). The dashed line of the respective curve shows
the value for the fit parameter λ′ and thus shows the estimated location
of the phase transition. For the local Chern marker we find λ′ ≈ 2 which
is exactly the expected value of the critical value λc. For the first-order
contribution, we find λ′ ≈ 1.8 which underestimates λc by roughly 10%.

Let us now turn to the possible experimental measurement of the first-
order contribution to the LCM. As we discussed, it contains off-diagonal
matrix elements of the density matrix connecting two sites. Here, the sites
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are nearest neighbors or next-nearest neighbors. The aim is to quench the
system into an effective two-level system and look at the time evolution of
the density matrix to read out its off-diagonal elements. The two-site density
matrix is defined as

ρ̄(r, r′) =
(

n(r) ρ(r, r′)
ρ(r′, r) n(r′)

)
=

(
n(r) ρ(r, r′)

ρ∗(r, r′) n(r′)

)
. (4.35)

Here, the on-site densities n(r) can be measured by means of time-of-flight
measurements or quantum gas microscopes which we discussed in Sec. 1.4.
The off-diagonal elements ρ(r, r′), on the other hand, cannot be directly
measured and one needs to measure them indirectly via the diagonal terms.
This is done by effectively rotating ρ̄(r, r′) such that off-diagonal elements
are rotated into the diagonal element. This is dubbed tomography and is a
increasingly popular approach in cold atom setups [115, 196, 296–298].

We quench the system with a Hamiltonian ĤQ which both enables hop-
ping of particles between the two sites and imposes an on-site energy dif-
ference between the sites. In pseudo-spin representation, i.e., we use Pauli
matrices, this reads

HQ = J(cos θσx + sin θσz), (4.36)

where the σx term corresponds to the hopping with energy J cos θ and the
σz term corresponds to the on-site energy difference with magnitude J sin θ.
We chose the trigonometric expression to achieve an analytic result for the
subsequent time evolution. A similar measurement which corresponds to
θ = 0 has been performed before in ladder systems [299]. The density matrix
in Eq. (4.35) in pseudo-spin representation reads

ρ̄(r, r′) = n(r)
1+ σz

2
+ n(r′)

1− σz

2
+ Re[ρ(r, r′)]σx + iIm[ρ(r, r′)]σy.

(4.37)
The time evolution of ρ̄(r, r′) with HQ is

ρ̄(r, r′, t) = eiHQtρ̄(r, r′)e−iHQt, (4.38)

where we can use now the Euler relation for Pauli matrices

eian·σ = cos(a)1+ i sin(a)n · σ, (4.39)

where |n| = 1, in our case in Eq. (4.36) we have n = (cos θ, 0, sin θ). Hence,
we find

eiHQt = cos(tJ)1+ i sin(tJ) cos(θ)σx + i sin(tJ) sin(θ)σz. (4.40)

Combining Eqs. (4.35), (4.38), and (4.40) we find for the time evolution of
the on-site density at r

n(r, t) =n(r)− [n(r)− n(r′)] cos2(θ) sin2(tJ)

+ Re[ρ(r, r′)] sin(2θ) sin2(tJ)
+ Im[ρ(r, r′)] cos(θ) sin(2tJ).

(4.41)
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Figure 4.15: Quench potentials for the time evolution for the determination
of the off-diagonal density matrix elements for (a) nearest neighbors and (b)
next-nearest neighbors. Time evolution n(r, t) is shown in (c). Reprinted
with permission from Ref. [256]. Copyright (2020) by the American Physical
Society.

Through measuring n(r, t) at different points in time t and using Eq. (4.41)
as a fit function for the measured data we get access to the off-diagonal
elements of ρ̄(r, r′). Re[ρ(r, r′)] and Im[ρ(r, r′)] act as fit parameters. n(r′)
is either another fit parameter or can be measured. In Fig. 4.15(c) we exam-
plarily show the time evolution in order to determine the eight off-diagonal
density matrix elements ρi of the square lattice with a two-site unit cell
presented in Fig. 4.12 for a value θ = π/6.

Using a quantum gas microscope, n(r, t) could be simultaneously ac-
cessed for all lattice sites r at once by performing snap shots after different
evolution times t. The challenge here is to create a lattice potential which
dimerizes the lattice such that one achieves locally the Hamiltonian HQ
from Eq. (4.36). We propose a lattice potential scheme in Fig. 4.15(a) for
nearest-neighbor lattice sites and (b) next-nearest-neighbor lattice sites. The
corresponding laser configuration is also shown. For nearest neighbors in
x direction a laser with wavevector 2κ points in the y direction with π/κ
matching the lattice constant of the original square lattice. In x direction two
lasers with wavevectors 2κ and κ are applied which exhibit a small phase
difference. This phase difference is necessary to create the on-site energy
offset between the two dimer lattice sites. For next-nearest neighbors, the
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dimerization has to connect diagonally displaced lattice sites. A correspond-
ing dimerization potential can be generated by rotating the 2κ laser in y
direction by 45◦ into the x− y direction. The resulting potential is shown in
Fig. 4.15(b).

Even though the experimental implementation with the dimerization
potential might be comparably simple, it is not clear that coupling to neigh-
boring sites, which do not belong to the dimer, are sufficiently well sup-
pressed. In a future study, this could be answered by explicitly computing
the Wannier functions and subsequently the hopping matrix elements in
the potential. Furthermore, one could try to optimize the hopping matrix
elements as a function of the laser parameters such as intensities and phase
shifts. An alternative approach to measure the density matrix is proposed
in Ref. [298] where a quantum gas microscope is used to couple far distant
lattice sites through a two-level Hamiltonian by engineering a coupling
channel.

Concluding this section, we want to point out that approximating the
LCM by its first-order contribution might be helpful in situations where
the system is not close to a topological phase transition. It is then possible
through tomographic measurements to compute this first-order contribution
to the LCM. If a quantum gas microscope is implemented in the experimen-
tal setup for the detection of local densities it could also be used to measure
higher contributions to the LCM according to Eq. (4.28). To this end, an
automatized protocol would be necessary keeping track of all the contribu-
tions in Eq. (4.28). As we discussed for this example, the lattice symmetry
significantly reduces the number of measurements. Quantum gas micro-
scopes have already been combined with artificial gauge fields [147]. Such a
real-space measurement with cold atoms would then complement a similar
experiment in photonic systems [300] in which many different contribu-
tions to the topological index have been detected and collected to yield a
well-quantized number. Recently, the LCM has been measured in a cold
atom system with synthetic dimensions [150]. Synthetic dimensions are
well-suited for such measurements since the synthetic sites can be coupled
straightforwardly.

4.2.1 Tomography of the topological Hamiltonian

In the previous section, we have discussed the tomography of the LCM
using real-space state tomography for noninteracting inhomogeneous sys-
tems. For extended noninteracting systems, theoretical works proposed fast
Raman pulses [296] and quench dynamics [297] in order to map out the
corresponding state properties. Experimentally, the proposal of Ref. [297]
was realized in a shaken hexagonal lattice [115] and was improved though
lattice modulation techniques [301].

Tomography of states of systems with finite two-body interactions re-
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quires a different, more complex theoretical framework. We embed the
discussion of measuring the topological properties of many-body states into
this section. In Sec. 4.1, we have seen that the topological Hamiltonian Htop,
which we introduced in Sec. 3.3, is a convenient tool for computing topolog-
ical invariants of interacting systems. Therefore, accessing the topological
Hamiltonian of an interacting topological state experimentally would read-
ily lead to a topological invariant of the interacting system. Of course, this
applies only if the requirements for the topological Hamiltonian approach
is fulfilled, see Sec. 3.3. Unfortunately, Htop is an effective Hamiltonian and
does not describe a physical system. However, in the following, we discuss
a particular case in which the topological Hamiltonian can be related to the
single-particle density matrix. In the noninteracting case, the energy spec-
trum of a translationally invariant system consists of bands. If interactions
between the particles is present, these bands become broadened and one
has to consult the spectral function, see Sec. 1.7, as an analog to the energy
spectrum. If the broadening is small compared to other energy scales in the
system, we can still identify so-called quasiparticle bands. The broadening
is then associated with the inverse lifetime of these quasiparticles.

In a system with two quasiparticle bands, e.g. two sublattices, the
topological Hamiltonian can be related to the single-particle density matrix
in the following way [196]:

H−1
top(k) '

ρT(k)
ε+(k)

− 1− ρT(k)
ε−(k)

, (4.42)

where ρ(k) is the single-particle density matrix and ε±(k) correspond to
the upper and lower quasiparticle band, respectively. The single-particle
density matrix can be obtained from the full many-body density matrix

PMB = ∑
η

pη |η〉〈η|, (4.43)

where |η〉 is a many-body state and pη is the distribution function with
∑η pη = 1. The single-particle density matrix follows as

ρ(k)|ij = Tr
[
ĉ†

ki ĉkjPMB

]
. (4.44)

Here, i and j label the internal state of the two-level system according to the
sublattices A and B.

Coming back to Eq. (4.42), it is of course only valid if we can assign
quasiparticle bands, i.e., the linewidth is small. Furthermore, we observe
that the eigenstates of the inverse of Htop(k) are the same as the eigenstates
of the transpose of ρ(k) because the identity will only provide an offset to
the eigenvalues. We conclude that measuring the single-particle density
matrix reveals all the information we need for the topological Hamiltonian
which we can then use to compute the topological invariants.
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A density matrix ρ for a two-level system can always be expressed in
terms of Pauli matrices. This is true for its transpose as well. So, we find

ρ(k)T =
1
2
[1+ a(k) · σ] , (4.45)

where σ = (σx, σy, σz) is the Pauli vector. The components of a(k) can be
accessed through

ai(k) = Tr
[
ρ(k)Tσi

]
= ∑

η

pη〈η|ĉ†
kσi ĉk|η〉, (4.46)

where i = x, y, z. Here, we have used the two-sublattice pseudo-spinor no-
tation ĉ†

k = (ĉ†
Ak, ĉ†

Bk). Since a(k) fully determines ρ(k) which subsequently
determines Htop(k), we are interested in a method to measure a(k). Like in
the previous section, this is done by means of state tomography. Therein, it
was pointed out that direct measurements of the density distribution reveal
only the diagonal components of the single-particle density matrix. Using
a quench of the system to a new Hamiltonian then provides access to the
off-diagonal elements of the single-particle density matrix. The quench
two-level Hamiltonian should have the general form

ĤQ = ∑
k

ĉ†
kh(k) · σĉk, (4.47)

where h(k) is the quench protocol. The quench will put the system in a
nonequilibrium state such that the field operators evolve as e−iĤQt ĉk with
evolution time t.

The tomography scheme will contain three steps. First, the interaction
is switched off by tuning the respective Feshbach resonance, see Sec. 1.4.
Secondly, the system is immediately quenched with the Hamiltonian in
Eq. (4.47) with a finite evolution period 0 < t < τ. The components of
a(k, t) will evolve during this period as

ai(k, t) = ∑
η

pη〈η|ĉ†
keiĤQtσie−iĤQt ĉk|η〉. (4.48)

Finally, all potentials are switched off in order to perform a time-of-flight
measurement.

Before we discuss the exact tomography protocol, i.e., the form of h(k),
let us look at the measurement of the density distribution. In order to access
the momentum distribution of the particle density, one typically uses time-
of-flight measurements, see Sec. 1.4. According to Ref. [106], this distribution
reads

n̂TOF(k) ∝
1

t3
TOF

∑
rr′

eik(r−r′) ĉ†
r ĉr′ (4.49)
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where tTOF is the time-of-flight expansion time and ĉr is the field operator
which annihilates a particle at site r in real space. We rewrite the right-hand
side as

∑
rr′

eik(r−r′) ĉ†
r ĉr′ =∑

r
eikr ĉ†

r ∑
r′

e−ikr′ ĉr′

=

[
∑
r∈A

eikr ĉ†
r + ∑

r∈B
eikr ĉ†

r

]

×
[

∑
r′∈A

e−ikr′ ĉr′ + ∑
r′∈B

e−ikr′ ĉr′

]
∝(ĉ†

Ak + ĉ†
Bk)(ĉAk + ĉBk),

(4.50)

where we have used in the second equation that the lattice in real space
consists of two sublattices. In the last step, we performed a Fourier transfor-
mation. We obtain for the expectation value of Eq. (4.49):

nTOF(k) = 〈n̂TOF(k)〉 ∝
〈
(ĉ†

Ak + ĉ†
Bk)(ĉAk + ĉBk)

〉
, (4.51)

which we also rewrite:〈
(ĉ†

Ak + ĉ†
Bk)(ĉAk + ĉBk)

〉
=
〈

ĉ†
Ak ĉAk + ĉ†

Bk ĉBk

〉
+
〈

ĉ†
Ak ĉBk + ĉ†

Bk ĉAk

〉
=
〈

ĉ†
k1ĉk

〉
+
〈

ĉ†
kσx ĉk

〉
=1 + ax(k),

(4.52)

where we have used Eq. (4.46) in the last equation. In this we have dropped
the time argument. Note, however, that this value corresponds to the
value at the end of the quench, right at the beginning of the time-of-flight
expansion:

nTOF(k) = 1 + ax(k, τ). (4.53)

As we read off Eq. (4.52), only the first component of a(k, τ) can be accessed
through a time-of-flight measurement. The aim is now to set up quench pro-
tocols h(k) which map the other components onto ax(k, τ). Let us consider
the specific quench h(k) = (0, 0, 1). In an optical lattice experiment, this
corresponds to suppressing all hopping processes and imposing a staggered
potential. This is shown in Fig. 4.16(a) where all sites of sublattice A have
an energy offset of J and all sites of sublattice B an energy offset of −J.
Using Eq. (4.48) for i = x, the particular quench Hamiltonian leads to the
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Figure 4.16: Schematics of quench protocols for the tomography of a two-
level mixed state according to Eq. (4.47): (a) corresponds to h(k) = (0, 0, 1)
and (b) to h(k) = (cos(ky + φ), sin(ky + φ), 0).

evolution:

eiĤQtσxe−iĤQt =eitJσz
σxe−itJσz

= [cos(tJ)1+ i sin(tJ)σz] σx [cos(tJ)1− i sin(tJ)σz]

=
[
cos2(tJ)− sin2(tJ)

]
σx

+ i cos(tJ) sin(tJ) [σzσx − σxσz]

= cos(2tJ)σx − sin(2tJ)σy.

(4.54)

Together with Eqs. (4.48), (4.51), and (4.52), we find that ax(k) and ay(k) are
mapped onto ax(k, τ) in a periodic manner in τ. By fitting the experimental
data of different evolution times τ, one can obtain ax(k) and ay(k).

For a pure state, this is sufficient since we know that |a(k)| = 1. We are,
however, interested in interacting systems such that we deal with a mixed
state, i.e., |a(k)| < 1. Thus, a second protocol is necessary. One possibility
is to use h(k) = (cos(ky + φ), sin(ky + φ), 0) which corresponds to hopping
between nearest neighbors along the y axis only. The hopping process is also
accompanied by phase shift φ. This is depicted schematically in Fig. 4.16(b)
and can be engineered by periodic shaking [302,303]. Following the steps we
performed for the first protocol, the second protocol leads to the mapping

ax(k, τ) =
[
cos2(tJ) + sin2(tJ) cos(2ky + 2φ)

]
ax(k)

+ sin2(tJ) sin(2ky + 2φ)ay(k)
+ sin(2tJ) sin(ky + φ)az(k)

(4.55)

Eventually, we have full access to the vector a(k) and subsequently
to Htop(k) via Eq. (4.42). The Chern number would then readily follow
from Eq. (1.3) with the eigenstates of Htop(k). It is, on the other hand, also
possible to map out the Berry curvature and subsequently the Chern number
directly. This can be seen from the following formula for the Chern number
specialized to a two-level system:

C = − 1
4π

∫
dk
[
∂kx

ˆ̃a(k)× ∂ky
ˆ̃a(k)

]
· ˆ̃a(k), (4.56)
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where ˆ̃a(k) = ã(k)/|ã(k)| and ã(k) is a unitary transformation of a(k)
such that the periodicity of the BZ is properly implemented. The particular
form of Eq. (4.56) can be interpreted as a 2d winding number of the vector
ˆ̃a(k) [50]. Using this formula it is possible to map out directly the topological
phase transition in interacting systems. This has be shown for the interaction-
induced topological phase transition in the Haldane-Hubbard model [198]
in Ref. [196].

4.3 Spin-imbalanced Hofstadter-Hubbard model

In this section, we present a study on the fermionic Hofstadter-Hubbard
model with repulsive Hubbard interaction and an additional imbalance
in the population of spin-up and down particles. The spin-imbalanced
Hofstadter model has been investigated in the noninteracting case showing
diverse Chern insulating phases depending on the filling and the amount of
imbalance [304]. Also the attractive spin-imbalanced Hofstadter-Hubbard
model has been investigated giving rise to exotic many-body phases such
as striped supersolids [305]. What follows is the complementary study for
repulsive interactions.

We are interested in this model since the two groundstates of the TRS
Hofstadter-Hubbard model and the imbalanced Hubbard model are utterly
different. This is schematically highlighted in Fig. 4.17(a)-(d). Let us start
the discussion with the standard Hubbard model depicted in (a) which
was already discussed in Sec. 1.7. Here, the Hamiltonian of the model
exhibits the lattice symmetry L which contains translational, rotational, and
inversion symmetries of the lattice. The spin symmetry stems from the
present spin-1/2 fermions and its symmetry group is SU(2). Upon breaking
the symmetry spontaneously through Hubbard interactions the groundstate
is found to be AFM, see the subsection on the Heisenberg model in Sec. 1.7.
Applying an additional Zeeman field B, as shown in (c), the symmetry of
the Hamiltonian as well as the symmetry of the groundstate is reduced
compared to the case in (a). The Zeeman field induces a spin imbalance
and the groundstate will be a canted AFM. We note that the canted AFM
exhibits a finite net magnetization parallel to B which compensates the
Zeeman field. For infinitesimal field strength B = |B|, the spins remain
completely in the plane perpendicular to B. This is different when we go
over to the balanced TRS Hofstadter-Hubbard model shown in (b). Here,
the flux α, originating from the gauge field, breaks the SU(2) symmetry of
case (a) and the groundstate becomes an AFM pointing strictly in z direction.
We understand that the Zeeman field as well as the flux both break the spin
symmetry of the standard Hubbard model, however, in very different ways.
This leads to completely different groundstates and we are interested in
what the combination of these two effects will yield. Of course, the spin
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Figure 4.17: Symmetries of the Hamiltonians and the groundstates of the
symmetry-broken phase as well as schematics of these groundstates for:
(a) standard Hubbard model, (b) TRS Hofstadter-Hubbard model, (c) im-
balanced Hubbard model, and (d) imbalanced Hofstadter-Hubbard model.
Lattice symmetries are colored in purple and spin symmetries are colored
in yellow. The phase diagram schematically shows the groundstate of the
imbalanced Hofstadter-Hubbard model. Reprinted with permission from
Ref. [306]. Copyright (2020) by the American Physical Society.

imbalance will break the TRS.
Before we proceed, it is worth mentioning that the discussed system has

relevance in cold atomic experiments. Mazurenko et al. have measured
AFM long-range correlations in an optical lattice filled with the two lowest
hyperfine states of 6Li atoms [81]. The work is also remarkable since it uses
a technique to reshuffle entropy in the system, see Sec. 1.4, through which it
is actually possible to reach such low temperatures required for fermionic
superexchange. Shortly after, the canted AFM has been observed also with
6Li atoms by Brown et al. [307]. Currently, successful experiments featuring
artificial gauge fields and interactions are restricted due to enhanced heating
rate in the quantum gas experiments [308, 309]. However, Görg et al. have
measured magnetic correlations in driven systems and studied the interplay
between driving and interactions [148]. This shows that there is a good
chance for the realization of spin-imbalanced, interacting topological states
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in cold atom systems in the future. The Hamiltonian of the spin-imbalanced
Hofstadter-Hubbard model reads

Ĥ =− t ∑
x,y

[
ĉ†

x+1,y ĉx,y + ĉ†
x,y+1e2πiαxσz

ĉx,y + h.c.
]

+ U ∑
x,y

[
ĉ†
↑,x,y ĉ↑,x,y ĉ†

↓,x,y ĉ↓,x,y

]
,

(4.57)

where the flux is chosen in TRS manner due to the spin-selective field ασz.
TRS is preserved, as long as there is no Zeeman field B. Also, there are no
spin-mixing terms included such as in Sec. 4.1. We start investigating this
model in the strong interaction limit where the charge degrees of freedom
freeze out and the mapping to an effective Heisenberg model can be applied
[190]:

Ĥ = J ∑
x,y

{
Ŝx

x+1,yŜx
x,y + Ŝy

x+1,yŜy
x,y + Ŝz

x+1,yŜz
x,y

+ cos(4παx)
[
Ŝx

x,y+1Ŝx
x,y + Ŝy

x,y+1Ŝy
x,y

]
+ sin(4παx)

[
Ŝy

x,y+1Ŝx
x,y − Ŝx

x,y+1Ŝy
x,y

]
+ Ŝz

x,y+1Ŝz
x,y

}
,

(4.58)

with J = U/t2 being the superexchange energy, Ŝi
x,y = ĉ†

x,yσi ĉx,y the spin
operator at site x, y in coordinate space, and σi the ith Pauli matrix. Equa-
tion (4.58) is the effective spin Hamiltonian of the spin-balanced Hofstadter-
Hubbard model. Before we start discussing the spin-imbalanced system,
let us look at some of its features. By setting α = 1/2, the Hamiltonian in
Eq. (4.58) reduces to the usual Heisenberg model with an SU(2) degenerate
AFM groundstate, see Sec. 1.7. For general α, there is always Heisenberg
coupling between spins coupled along the x direction. For spins which are
coupled along the y direction, however, the spin components, which lie in
the ŜxŜy plane, possess a different coupling compared to the Ŝz component.
This asymmetry was discussed in Fig. 4.17(b) leading to an AFM ground-
state with a staggered magnetization pointing in the z direction, what we
call z antiferromagnet in Fig. 4.17. The term proportional to the cosine corre-
sponds to the scalar product of the two-dimensional in-plane spin vectors
and is maximized in magnitude if the spins are parallel or anti-parallel. The
term proportional to the sine corresponds to the z component of the cross
product of the neighboring spin vectors. It is maximized if the spin vectors
are in-plane and orthogonal to each other. This term corresponds to the
so-called Dzyaloshinsky-Moriya interaction [310, 311]. So we recognize the
competition between the cosine and the sine term. After α = 1/2, the second
most simple case is α = 1/4. Here, the cosine becomes (−1)x and the sine
vanishes completely. It is the easiest nontrivial case and will be the focus in
what follows.
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Classical Monte Carlo results

We now consider the classical limit of the Hamiltonian in Eq. (4.58), i.e.,
we are interested in the mean-field, or saddlepoint, solution 〈Ŝx,y〉 and
neglect fluctuations of Ŝx,y. Thus, we substitute the operators in Eq. (4.58) by
their respective expectation values Si

x,y = 〈Ŝi
x,y〉. Later, we will investigate

fluctuations within DMFT. In the classical limit, the Si
x,y are just numbers

and the groundstate of a finite system can be found by minimizing Eq. (4.58)
with respect to the set of Si

x,y. Also, in the classical limit, the spins are
normalized, i.e., |Sx,y| = 1. This simplifies the problem to two degrees
of freedom per site. A system of Nx × Ny classical spins has therefore
2× Nx × Ny degrees of freedom. PBC can reduce that number, however, in
general, it is a large number which makes the minimization difficult. This
problem can be tackled by means of Monte Carlo (MC) algorithms. Here, we
use annealing MC in order to find the groundstate of this high-dimensional
problem. Annealing MC algorithms are successful methods to find the
global minimum of a function. A schematic example of a classical spin
system is shown in Fig. 4.18. Out of an ensemble of spins (a) with total energy
E1 we randomly select one spin, shown in orange, which is then rotated in
a random fashion, shown in (b). The total energy change ∆E = E2 − E1 of
the new configuration (b) with energy E2 is measured. With the acceptance
probability of the Metropolis sampling min{1, exp(−β∆E)} [230], the new
spin configuration is accepted and the loop starts over as explained earlier.
Since the spin rotations are randomly performed, the total magnetization
is not conserved during this procedure. The prefix ’annealing’ stands for
the slow cool down of the temperature T = 1/β. For large T the sampling
can cover large areas of the state space. The temperature is then slowly
reduced to very low values such that the acceptance rate of high-energy
states is suppressed. This algorithm can be computationally costly but finds
the global minimum with slow enough cooling of T.

We now introduce spin imbalance to the Hamiltonian in Eq. (4.58). This
can be done by adding a Zeeman term −B ∑x,y Sz

x,y. This, however, deter-
mines the imbalance Sz := ∑x,y Sz

x,y only approximately during the MC
process and fluctuations will be present. In order to circumvent this prob-
lem, we make use of a method which allows us to set specific constraints
on the groundstate, the so-called constrained MC introduced in Ref. [312].
Here, the MC procedure is not applied to a single spin within an ensemble
of spins but rather to a pair of spins. The second spin is a compensation
spin which is used to recover the desired magnetization. We schematically
depict the constrained MC procedure in Fig. 4.18(c) and (d). Constrained
MC is applied because we want to preserve the total magnetization of the
possible sampled states, i.e., in our case Sz should be a fixed number. To this
end, two spins out of the ensemble are randomly selected, shown in orange
and green in (c). The orange spin is then randomly rotated as in normal MC
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Figure 4.18: Schematic comparison between normal Monte Carlo and con-
strained Monte Carlo [312]: In normal Monte Carlo a random spin is ran-
domly rotated from (a) to (b) and the energy difference determines the
acceptance probability. In constrained Monte Carlo, two random spins are
selected, while one (orange) is randomly rotated from (c) to (d), the other is
(green) rotated in such a manner that the total magnetization, say Sz, is not
changed.

and the green compensation spin used to match the correct value of the total
Sz magnetization, shown in (d). This means, that the Sz component of the
green spin is constrained by the sampling of the orange spin. The sampling
of the orange spin has two degrees of freedom. Due to the constraint, the
sampling of the green spin has just one degree of freedom. Thus a MC pro-
posal in constrained MC samples three spin degrees of freedom in contrast
to normal MC where there are only two degrees of freedom sampled.

We show the results for the spin Hamiltonian in Eq. (4.58) in the classical
limit obtained with constrained annealing MC in Fig. 4.19 for α = 1/4. In
order to find the correct size of the unit cell, we perform calculations for
different sizes of the unit cell Nx×Ny and compute the energy per spin. This
is shown in Fig. 4.19(a) for α = 1/4 and Sz = 1/3. We observe that multiples
of Nx × Ny = 2× 2 yield the same energy per spin which is smaller than
sizes not being multiples of 2× 2. This suggests that 2× 2 is the correct
size of the unit cell for the classical system. We show the corresponding
spin configuration in Fig. 4.19(b) for Sz = 1/3. Here, the blue colormap
stands for the on-site Sz component and the red arrows denote the on-site
SxSy components. Furthermore, the unit cell is labeled by A, B, A’, and B’.
We note that A and A’ as well as B and B’ exhibit the same Sz values but differ
in the respective Sx and Sy values. This results in a chequerboard pattern for
Sz

x,y. The SxSy components, however, possess a more complex pattern. Their
direction is rotated by 90◦ between the A and the A’ sites. This 90◦ rotation
also applies to the B and B’ sites. When summing up these contributions
within one unit cell we find that the net in-plane magnetization is finite, in
contrast to, e.g., a canted AFM.
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Figure 4.19: Constrained Monte Carlo results for the classical limit of the spin
Hamiltonian in Eq. (4.58) for α = 1/4: (a) energy per spin E as a function of
the size of the unit cell Nx × Ny, (b) spin configuration for Sz = 1/3, on-site
Sz components in blue-white color scale and on-site SxSy components as
red arrows, (c) schematic pattern of spin-spin couplings in the unit cell for
the Hamiltonian in Eq. (4.58) for α = 1/4, (d) sublattice Sz components and
transverse magnetization Sr as functions of the total magnetization Sz, and
(e) angles between spins in the SxSy plane within the unit cell. Reprinted
with permission from Ref. [306]. Copyright (2020) by the American Physical
Society.

We can explain the exotic spin pattern of Fig. 4.19(b) by looking closer
at the Hamiltonian in Eq. (4.58) for α = 1/4. For this value of the plaquette
flux, the term proportional to the sine is always zero. The term proportional
to the cosine, however, becomes an alternating function with respect to the
lattice site index x: cos(4παx) → (−1)x. This means that for even values
of x the coupling in y direction is AFM and for odd x it is ferromagnetic
(FM), as we depict schematically in Fig. 4.19(c). This scheme is reminiscent
of the XY model proposed by Villain which was originally introduced to
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form a spin glass without disorder [313]. Here, three FM bonds and one
AFM bond constitute the unit cell. As a result, the system is geometrically
frustrated since it cannot fulfill the preferred configuration of all these
bonds simultaneously. We can map the Villain model to our model through
J → −J. The Villain model in a broader context is also known as the fully
frustrated XY model, a special case of the frustrated XY model. Its classical
groundstate is known [313,314] and can be mapped to the spin configuration
of the in-plane components of Fig. 4.19(b) via rotating every other spin by
180◦. The frustrated XY model has attracted attention over many decades
because of its two phase transitions which have similar critical temperatures.
This made the problem complex and intriguing for theorists [314–316].

Coming back to the model in Eq. (4.58) for α = 1/4 and finite magneti-
zation Sz 6= 0, we are interested in the transition between the balanced and
the imbalanced case. As we know from Ref. [192], the spin configuration
of the classical groundstate for the Hamiltonian in Eq. (4.58) at Sz = 0 is
a z AFM. This is because the gauge field, present through α, breaks the
SU(2) symmetry of the normal Hubbard model, see Fig. 4.17. We show the
Sz components of the A and the B sublattices, equivalent to the A’ and B’
sublattices, in Fig. 4.19(d) as a function of the magnetization Sz. For Sz = 0,
we find the balanced case and Sz

A = −Sz
B = −1 corresponding to an AFM in

z direction. For large Sz we find Sz
A = Sz

B = Sz which corresponds to a FM
in z direction. Note that for very large values of Sz & 0.7 there are no data
points. This is because constrained MC suffers from bad sampling since it
becomes unlikely to find a proper compensation spin. At around Sz ≈ 0.4
we find a phase transition between these two regimes. For small increasing
values of Sz, the on-site value Sz

A increases from -1 while Sz
B decreases from

1. Since the spins are normalized in the classical limit, they must acquire
finite Sx and Sy components if Sz < 1. As discussed above, these in-plane
components sum up to a finite net magnetization which is inside the plane.
We quantify this transverse magnetization through

Sr =
1

Nx Ny

√√√√(∑
x,y

Sx
x,y

)2

+

(
∑
x,y

Sy
x,y

)2

. (4.59)

We observe that Sr is finite throughout the range 0 < Sz < 1. Furthermore,
we look at the angles between the in-plane spins of different sites of the unit
cell θij with i, j ∈ {A, B, A’, B’} in Fig. 4.19(e). We find that all angles are
constant during the full range 0 ≤ Sz ≤ 1 with some fluctuations at small
values of Sz. These arise from MC sampling since the energy difference for
different angles is very small in this regime.

123



DMFT results

After we have discussed the Hofstadter-Hubbard model in Eq. (4.58) in
the classical limit for the general spin-imbalanced case, we now study the
influence of quantum fluctuations leading to corrections to the classical limit
or even to new phases. We use real-space DMFT with an ED solver with
four bath sites, Sec. 3.1, in order to include all local quantum fluctuations.
In contrast to the constrained MC scheme, we do not have the possibility
to seek for solutions with an exactly determined magnetization Sz. Instead,
we introduce the spin imbalance through a finite Zeeman field B. We are
interested in the half-filled case, in which we can include the Zeeman field
directly into the chemical potential µσ = U/2± B, where the plus applies
for the spin-up, σ =↑, and the minus for the spin-down particles, σ =↓. This
formula ensures that the lattice is half-filled at any value of B.

Figure 4.20: Comparison between constrained Monte Carlo and DMFT
results in (a) and magnetization Sz as a function of the Zeeman field strength
B for different values of the interaction strength U in (b) including Eq. (4.62).

We perform DMFT calculations with different chemical potentials µσ

for the two spin species. We compare the DMFT results, exemplarily at
U = 22, with the constrained MC results of Fig. 4.19(d), corresponding to
the strong interaction limit, in Fig. 4.20(a). At Sz = 0 and 0.4 . Sz . 0.7, we
find perfect agreement between both the DMFT and the constrained MC
results. In the range 0 < Sz . 0.1, the two theories differ. Here, DMFT
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shows constantly Sz
B = 1 and Sr = 0, but an increasing Sz

A as a function of
B. We will later see that this corresponds to a ferrimagnet, a state which
cannot be obtained from the classical limit since it relaxes the strict spin
normalization at a site |Ŝx,y| ≤ 1. We conclude that the many-body phase
obtained with constrained MC partially breaks down in the presence of
local quantum fluctuations. We also observe that there are no data points
of DMFT in the grey shaded region in Fig. 4.20(a). This occurs because
we obtain solutions for a fixed Zeeman field B. We go into more detail
in Fig. 4.20(b), where we show the magnetization Sz as a function of the
Zeeman field B. For U = 22, which is the green curve, we clearly find a
jump in Sz when B passes over B ≈ 0.13 corresponding to a first-order phase
transition. The size of the jump, i.e., from Sz ≈ 0.1 to Sz ≈ 0.4, corresponds
to the width of the shaded region in Fig. 4.20(a). For U = 18, the size of
the jump is even larger. For U = 30, the size decreases until it vanishes at
U = 40. This point is marked as a black star in the phase diagram. It is a
critical point where the phase transition becomes a second-order instead of
first-order. For higher interaction strengths, the phase transition remains a
second-order phase transition. For infinite interaction strength, the energy
scale for the superexchange J = t2/U is completely suppressed such that
the Hamiltonian reads Ĥ = −B ∑x,y Ŝz

x,y. Since there is no hopping, this
Hamiltonian applies for a single site. We thus drop the site index and the
Hamiltonian reads

Ĥ = −Bn̂↑ + Bn̂↓, (4.60)

which is diagonal and has eigenstates | ↑〉 and | ↓〉. We find for the magneti-
zation

Sz =
〈↑ |(+1)e−βĤ | ↑〉+ 〈↓ |(−1)e−βĤ | ↑〉

〈↑ |e−βĤ | ↑〉+ 〈↑ |e−βĤ | ↑〉
(4.61)

=
e+βB − e−βB

e+βB + e−βB =
1

1 + e−2βB −
1

1 + e2βB . (4.62)

This solution is shown in Fig. 4.20(b) as solid black line and we find that is
an asymptotic curve for the DMFT curves as expected.

We now show the phase diagram of the spin-imbalanced Hofstadter-
Hubbard model. To this end, we define four different order parameters.
We remember that the Hofstadter-Hubbard model does not have the SU(2)
symmetry, so we keep track of magnetization in z direction only. The
order parameter for the FM phase is the sublattice average of the on-site
magnetization in z direction (Sz

A + Sz
B)/2. For the AFM order parameter, we

compute the sublattice difference of the on-site Sz components (Sz
A − Sz

B)/2.
Ferrimagnetism is quantified through the difference in length of the Sz

components between the sublattices |Sz
A| − |Sz

B|. The new phase which we
already found with constrained MC in Fig. 4.19(d) for Sz & 0.4 is assigned
to the order parameter Sr defined in Eq. (4.59). The four order parameters
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Figure 4.21: Order parameters for the four different magnetic phases of
the spin-imbalanced Hofstadter-Hubbard model obtained from DMFT.
Reprinted with permission from Ref. [306]. Copyright (2020) by the Ameri-
can Physical Society.

are depicted in Fig. 4.21. We observe that FM exists for a strong Zeeman
field B and AFM for small B. This stems from the competition between the
two energy scales of superexchange J and Zeeman field B. In the transition
region where J = t2/U ∼ B, we find the transversely magnetized phase
which we know from Fig. 4.19. Furthermore, for small B . 0.1 and strong
interactions U & 30, there exists a ferrimagnetic phase. In our results, the
ferrimagnet is strongest at U = 48 and B ≈ 0.1.

From the experimental perspective, spin correlations belong to the state-
of-the-art measurements in cold atom systems [81,307] and the manipulation
of spin correlations is possible as well [317]. Also quantum gas microscopes,
see Sec. 1.4, are a feasible platform to read out spin order and subsequently
magnetism for exotic phases as they appear in the present context [318, 319].
Fermions, however, require very low temperatures in order to be below the
superexchange temperature necessary to see magnetic order. A temperature
of 0.25 hopping energies, e.g., was only achieved through elaborate methods
such as the reshuffling of entropy within the system [81]. BECs, on the
other hand, are already achieved at higher temperatures. Also they have a
well-defined quantum phase corresponding to the broken U(1) symmetry.
This phase can directly be mapped to a 2d spin what made it possible to
investigate magnetism in a lattice of separated BECs [320, 321].
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4.4 Z2 characterization of the three-dimensional time-
reversal-symmetric Hofstadter-Hubbard model

The Hofstadter model, Sec. 2.1, was originally proposed as a model for a 2d
square lattice with a homogeneous magnetic flux piercing the 2d plane. Of
course, generalizations to higher dimensions exist. For the TRS-breaking
case, Halperin introduced the 3d generalization of the QHE in a periodic
potential in 1987 [322] which has recently been observed in ZrTe5 [32]. For
the Hofstadter model itself, there are generalizations in even dimensions
with Abelian gauge fields and in 4d with non-Abelian gauge fields [323].
Proposals for implementations in optical lattices which predict Weyl and
nodal-line semimetals exist as well [324]. In the TRS case, a study of the
3d generalization of the TRS Hofstadter model has led to weak topological
insulators (WTI) and strong topological insulators (STI) by studying the
boundary states [325]. We focus on the particular 3d generalization of
the TRS Hofstadter model to 3d which was introduced in Ref. [191]. The
noninteracting tight-binding Hamiltonian for the 3d TRS Hofstadter model
reads:

Figure 4.22: Schematic for the Hamiltonian in Eq. (4.63) for α = 1/6. Par-
ticles hopping on the lattice acquire different complex phases θ due to the
non-Abelian gauge field. Hubbard interactions in DMFT will induce local
selfenergies. For α = 1/6, there are six of these selfenergies Σi. A staggered
potential (−1)xλ along the x direction and the hopping amplitude along the
z direction control the topological phase. Taken from Ref. [326].

Ĥ = ∑
j

[
∑

µ=x,y,z
(−tµ)

(
ĉ†

j+µ̂e2πiθµ ĉj + h.c.
)
+ (−1)xλĉ†

j ĉj

]
, (4.63)

in a compact notation, where j = (x, y, z) is the 3d lattice vector and µ
runs over the three spatial variables. Here, µ̂ is the corresponding unit
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vector. The non-Abelian gauge field is chosen such that the complex matrix-
valued quantum phase has the form θ = (γσx, αxσz, αxσy). We further set
the hopping energies to tx = ty = t = 1 such that tz is an independent
parameter, tunable in cold atom experiments via the optical lattice laser
intensity in z direction. Note that for tz = 0, we recover decoupled layers
of the 2d, TRS Hamiltonian in Eq. (2.10). A schematic figure describing the
Hamiltonian in Eq. (4.63) is shown in Fig. 4.22 for α = 1/6.

Noninteracting, three-dimensional phases

At first, we are interested in the nontinteracting phases of the Hamiltonian
in Eq. (4.63) at half filling and we will later extend this to the Hubbard-
interacting case. For α = 1/6, the unit cell contains six lattice sites and the
Fourier-transformed Hamiltonian of Eq. (4.63) reads

H(k) =



O(1) T T†eikx

T† O(2) T
T† O(3) T

T† O(4) T
T† O(5) T

Te−ikx T† O(6)

 , (4.64)

where we defined T = te2πiγσx
and

O(x) =− 2t cos(ky) cos(2παx)1
− 2t sin(ky) sin(2παx)σz

− 2tz cos(kz) cos(2παx)1
− 2tz sin(kz) sin(2παx)σy + λ(−1)x1.

(4.65)

The Hamiltonian in Eq. (4.64) has 12 bands because of the size of the unit
cell multiplied with two spin degrees of freedom. We compute the gap ∆ at
half filling through

∆ = min
k

E+(k)−max
k

E−(k). (4.66)

Here, E±(k) are the highest occupied (-) and the lowest empty (+) band,
respectively. Since the Hamiltonian in Eq. (4.63) is particle-hole symmetric,
there is no indirect band gap and we find

∆ = min
k

[E+(k)− E−(k)] = 2 min
k

[E+(k)]. (4.67)

The band gap ∆ is found numerically by minimization routines with random
initial values for k. We show the result in Fig. 4.23(i) as a function of λ and
tz for different γ. We observe for large λ that for any γ, there is always
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a gapped phase whose critical value increases with increasing tz. This
is expected since we anticipate a band insulator (BI) for a large staggered
potential λ. This is because large λ will give rise to two groups of bands with
the same number of states in the spectrum. One of these groups contains
the high-energy bands and one the low-energy bands. Since we look at
half filling, this will then lead to a BI. It competes with increasing interlayer
coupling in the third dimension tz which is represented by the increasing
critical value of λ with increasing tz in Fig. 4.23(i). For γ = 0.2, we observe
a second gapped phase and for γ = 0.22 and 0.25 we observe, in total,
three gapped phases. If γ = 0.25, the three phases are separated by thin
gapless transition lines. For γ = 0.22, however, these transition lines expand
into a gapless region between the three gapped phases. We go into more
detail about that after we have discussed the topological characterization.
Figure 4.23(i), column (e) coincides with Ref. [191, Fig. 1(b)].

Figure 4.23: Noninteracting phases of the Hamiltonian in Eq. (4.63) for
α = 1/6: (i) gap ∆ defined in Eq. (4.66) and topological index ν defined
in Eq. (4.68) computed with (ii) twisted boundary conditions, (iii) Wilson
loops, and (iv) the local Z2 marker as functions of λ and tz for different γ.
The light green and the orange lines correspond to the noninteracting values
in Fig. 4.25. Taken from Ref. [326].

Three-dimensional phases with TRS are classified with Z2 invariants [30]
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and their characterization can be reduced to the characterization of 2d
phases [47]. As in Ref. [191], we define a topological index which is especially
useful for the present system since it exhibits the anisotropy tx = ty 6= tz
which corresponds to decoupled layers in the xz plane if tz = 0. A single
layer is characterized by a single Z2 number ν2D, computed with 2d methods.
Finite coupling in z direction makes this number now kz-dependent ν2D(kz).
This means that we can characterize all possible phases with tx = ty 6= tz
with one topological index

ν = ν2D(kz = 0) + ν2D(kz = π), (4.68)

which can assume three different values: 0, 1, or 2. This is in contrast to
the full classification with four different Z2 numbers which applies in the
general case as explained in Sec. 1.2.6. If ν = 0, the phase is topologically
trivial corresponding to (ν0; ν1, ν2, ν3) = (0; 0, 0, 0) being a BI. For ν = 1, we
find an STI with (1; 0, 0, 0) and for ν = 2 a WTI with (0; 0, 0, 1). Again, the
reason that we only find this particular WTI is the anisotropy tx = ty 6= tz.

Twisted boundary conditions

We now characterize the topological properties of the insulating phases
in Fig. 4.23(i). To this end, we utilize three different methods in order to
benchmark them against each other. The first method is based on twisted
boundary conditions (TBC) [193, 260, 262, 264] introduced in Sec. 3.5. Before
we apply the TBC, we Fourier transform the z direction of the real-space
Hamiltonian in Eq. (4.63). This yields the quantum number kz. For the
remaining xy plane we apply spin-dependent TBC as

ĉx+Nx ,y,kz = ĉx,y,kz eiϑx1 and ĉx,y+Ny,kz = ĉx,y,kz eiϑyσz
, (4.69)

where Nx × Ny is the size of the 2d system. As explained in Sec. 3.5, the
2d Z2 invariant is computed by sampling the (ϑx, ϑy) space. In contrast to
the purely 2d case, here, this Z2 number is dependent on the parameter
kz. We can thus apply the formula in Eq. (4.68). We show the results of ν
computed with spin-dependent TBC in Figs. 4.23(ii) as a function of λ and
tz for different γ. We observe that the three insulating phases in Fig. 4.23(i),
column (d) and (e) are indeed topologically different as shown in Fig. 4.23(ii),
column (d) and (e). Red regions correspond to the STI, yellow ones to the
WTI, and black ones to the BI phase. Interestingly, at γ = 0.2, we find a WTI
besides the BI in the region, λ, tz ≈ 1, where there was an STI at γ = 0.22.
Therefore, between γ = 0.2 and 0.22 there must occur a gap closing at this
region since there occurs a topological phase transition from a WTI to an
STI.
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Wilson loops

We benchmark the results obtained with TBC with the Wilson loop technique
[268,270] introduced in Sec. 3.6. The Wilson loop is computed on a closed 1d
contour Ck in the BZ which is 3d in the present case. The discretized Wilson
loop reads

D(Ck) = ∏
kj∈Ck

Fj, with Fmn
j = 〈um(kj)|un(kj+1)〉, (4.70)

where kj ∈ Ck, j = 1, 2, . . . is the discretized contour with stepsize ∆k.
The 2Nm × 2Nm matrix Fj is calculated from the cell-periodic part of the
Bloch functions |u(k)〉. Here, 2Nm corresponds to the number of occupied
bands. This means that the filling of the system is implicitly contained in
the definition of Fj. Note that in a TRS system of spin-1/2 fermions the
filling must be even, thus, 2Nm. As we see from Eq. (4.68), kz is set to π
or 0 since the topological indices can only change at the TRIM. We choose
Ck to go along kx such that the discretized Wilson loop in Eq. (4.70) is a
parametric function of ky only, i.e., D(Ck) = D(ky). The matrix D(ky) has
2Nm eigenvalues λm(ky) with m = 1, 2, . . . 2Nm. The complex phases of
the λm(ky) are as well functions of ky and will perform trajectories on a
cylinder in the (ky, θm) space, where ky runs from 0 to π [265] and θm, being
a phase, goes from 0 to 2π. Because of the TRS, at ky = 0, the θm are pairwise
degenerate corresponding to Kramer pairs. For 0 < ky < π, these pairs
can split. At ky = π, there must again be degenerate pairs, however, these
are not necessarily the same pairs as the ones at ky = 0. The number of
pairs changes during the parameter range 0 ≤ ky ≤ π, being even or odd,
defines exactly the desired Z2 number, see Sec. 3.6. The question we have to
answer numerically is now: how many times do the θm(ky) wind around
the cylinder (ky, θm) when tuning ky from 0 to π?

First, we sample θm(ky) for different values 0 ≤ ky ≤ π. Then we divide
the range of the values for θm(ky) into three parts according to the following
labels: I, where 0 < θm(ky) < 2π/3; II, where 2π/3 < θm(ky) < 4π/3,
and III, where 4π/3 < θm(ky) < 2π. Then we count the number ni of data
points θm(ky) being in one of the three regions i = I, II, III. We compute the
change in ni with respect to advancing ky by one step ∆ky, defining ∆ni with
i = I, II, III and discard any values which are not a permutation of (-1,0,1).
This kind of permutation corresponds to a single θm(ky) changing from one
region to another. If there is no change then ∆ni = 0 for all i, which does
not carry any information. We now measure the permutation of the ∆ni
by applying a Levi-Civita tensor. Summing these permutations yields an
even or an odd number, where the former is topologically trivial the latter
is topologically nontrivial. Let us look at two examples: In Fig. 4.24 we
show the winding of the θm(ky) for a topologically trivial case in blue and
a topologically nontrivial case in orange. The data set for the blue curve
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Figure 4.24: Examples to numerically determine the winding of the complex
phases θm(ky) of the eigenvalues of the Wilson loops D(ky), Eq. (4.70), across
0 ≤ ky ≤ π applied to the model in Eq. (4.64) with γ = 0.22, tz = 0.6, and
λ = 0.75. The blue and orange dots correspond to kz = 0 and π, respectively.
Taken from Ref. [326].

would correspond to

∆n = [(0,−1, 1), (0, 1,−1)] Levi-Civita→ (−1, 1) sum→ 0, (4.71)

which is even, corresponding to a trivial winding. For the orange data, we
have

∆n = [(0,−1, 1), (1, 0,−1), (−1, 1, 0)] Levi-Civita→ (−1,−1,−1) sum→ −3,
(4.72)

which is odd corresponding to a nontrivial winding. We show the results
for the Wilson loop technique in Fig. 4.23(iii) as a function of λ and tz for
different γ and find exact agreement with the results obtained with the
method using TBC in Fig. 4.23(ii).

Local Z2 marker

As a third method, we introduce the local Z2 marker as an TRS extension to
the local Chern marker which we introduced in Sec. 3.4 as a 2d quantity. We
then perform the extension to the 3d case according to Eq. (4.68). We define
the band-projected Chern number as

Cζξ(x, y) = 〈x, y|Pζ P̂x̂P̂ŷP̂Pξ |x, y〉, (4.73)

where ζ and ξ correspond to band indices of the {I,II} basis where II labels
states which are the time-reversed partners of the states labeled by I. Pζ
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projects onto these states. The projector P̂ projects onto occupied eigenstates
of the Hamiltonian, see Sec. 3.4, and |x, y〉 is an eigenvecor of the 2d position
operator. The expression in Eq. (4.73) determines a 2× 2 matrix. In the
basis of time-reversed partners {I,II}, this matrix is diagonal as the states of
band I evolve exactly opposite compared to the ones of band II [265, Fig. 3].
Thus in the {I,II} basis the matrix determined by Eq. (4.73) has only two
finite values corresponding to its eigenvalues. Since the eigenvalues are
independent of the basis in which the matrix is represented, we do not have
to find the states in the {I,II} basis but can use the spin basis {↑, ↓}. The
eigenvalues of this matrix correspond to real-space topological markers of
the TRS system. Because of the TRS, one eigenvalue is the negative of the
other. The generalization to 3d is similar to the one we performed for the
TBC method. We first Fourier transform the z component of the Hamiltonian
in Eq. (4.63). We are thus effectively left with a 2d real-space system which is
parameterized by kz. We can now apply the 2d local Z2 marker through the
Eq. (4.68). We show the results of the bulk average of the local Z2 marker in
Fig. 4.23(iv) as a function of λ and tz for different γ computed on a 30× 30
lattice. The bulk average is obtained by averaging the values of the local
Z2 marker over a unit cell in the center of the system. We observe that the
results qualitatively agree with the results in Figs. 4.23(ii) and (iii), however,
there are some mismatches when the gap in Figs. 4.23(i) becomes small.
This is expected since finite size effects will play an enhanced role if the gap
is small which has already been shown for the local Chern marker [256].
For sufficiently large gaps, however, the local Z2 marker is well quantized
providing a real-space tool to distinguish different topological phases in
inhomogeneous TRS systems.

Three-dimensional time-reversal-symmetric Hofstadter-Hubbard model

The three methods we introduced are capable of computing invariants for an
arbitrary value of γ referring to finite spin mixing. This is in stark contrast
to the approach we followed in Sec. 4.1 where the method was specialized to
values of γ = 0 or 1/4. Indeed, the topological nontrivial gap is the largest
at γ = 1/4 in 2d [189, 190] and 3d [191], which makes this parameter choice
most interesting for the study of topologically insulating phases. However,
in 3d there exist also gapless states which are topologically protected, as
discussed in Sec. 1.2.6. These states have been found in the time-reversal
broken case, in a generalized Hofstadter model [325]. By making use of the
topological Hamiltonian approach, which we introduced in Sec. 3.3, we can
also generalize the three methods to the interacting case with finite Hubbard
interaction. This enlarges the parameter space to interacting states as long
as the Green’s function does not have a zero, e.g., in a Mott insulator. On
the interaction strength itself, there is no restriction.

We now study the interacting phase diagram of the 3d, TRS Hofstadter-
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Figure 4.25: Phase diagrams of the 3d, TRS Hofstadter-Hubbard model. We
show the gap of the topological Hamiltonian in (a) and (c) as well as the
topological invariant ν, defined in Eq. (4.66), in (b) and (c) as functions of U
and λ in (a) and (b) for γ = 0.25 and tz = 0.2, and as functions of U and tz in
(c) and (d) for γ = 0.22 and λ = 0.75. The light green and the orange lines
denote the parameter space for the noninteracting limit which coincides
with the light green and the orange lines in Fig. 4.23. Taken from Ref. [326].

Hubbard model. Therefore, we add the Hubbard term U ∑j ĉ†
↑j ĉ↑j ĉ†

↓j ĉ↓j to
the Hamiltonian in Eq. (4.63) and apply real-space DMFT, see Sec. 3.1. We are
primarily interested in the symmetric phases, where there is no spontaneous
symmetry breaking. Since the unit cell of the system contains six sites for the
choice α = 1/6, there are six different selfenergies to compute, see Fig. 4.22.
Since nonlocal quantum fluctuations are suppressed for higher dimensions,
we expect even more accurate results than the already successful studies
for topological 2d systems with DMFT [190, 192, 193, 198, 253, 255, 257, 306].
In Fig. 4.25, we show the gap of the topological Hamiltonian ∆ in (a) and
(c) and the topological index defined in Eq. (4.66) in (b) and (d). Note that
(a) and (b) are functions of U and λ for γ = 0.25 and tz = 0.2, and (c) and
(d) are functions of U and tz for γ = 0.22 and λ = 0.75. The connection to
the noninteracting case is given by the light green and the orange lines in
Figs. 4.23 and 4.25. The grey regions in Fig. 4.25 correspond to many-body
states where the DMFT procedure found spontaneous symmetry breaking.
We go into more detail on this further below. The first observation we draw
from Fig. 4.25 is that the closing of the gap of the topological Hamiltonian ∆
always coincides with the topological phase transition. This is anticipated
since even though the topological Hamiltonian is not a physical Hamiltonian
but an effective one, its topological properties are the same as those of the
full interacting Hamiltonian. Since a topological phase transition occurs
only if the gap closes the topological as well as the full Hamiltonian have
to have the same transition points where the gap closes. Note, however,
that the topological Hamiltonian is not a legit low-energy Hamiltonian. So,
as soon as its gap becomes finite, there is no physical meaning related to
this quantity. Next, we observe that increasing the interaction strength U
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shifts the transition points towards higher values of λ and tz, respectively.
The competition between U and λ can be explained quite generally on a
mean-field level: Finite repulsive U creates an effective on-site potential
from the real part of the selfenergy. This selfenergy is larger on doubly
occupied sites. Those sites are the ones where the staggered potential is
small. Thus the Hubbard interactions effectively smoothen the staggered
potential, which results in a smaller effective staggered potential, which in
turn results in a higher critical value for the actual staggered potential.

For the explanation of the interaction effect in Figs. 4.25(c) and (d), we
have to go a detour via the staggered potential and again use mean-field
arguments: As just discussed, increasing the Hubbard U results in a decrease
of the effective staggered potential. If we look now at Fig. 4.23(ii), column
(d), at the orange line, we see that a decrease of λ shifts the transition points
toward higher values of tz, as we can observe in Figs. 4.25(c) and (d). This,
however, strongly depends on the position of the orange line and for other
parameters the competition between U and tz will differ.

Symmetry-broken phase

We will now have a brief look at symmetry-broken phases, i.e., magnetic
order is present. The effective spin Hamiltonian for the Hamiltonian in
Eq. (4.63) in the strong interaction limit is obtained from restricting the state
space to the subspace of singly-occupied sites only [190], i.e., charge degrees
of freedom are frozen but nearest-neighbor spin interactions can take place.
In this limit, the spin Hamiltonian reads

Ĥspin = ∑
j

∑
µ,ν,ρ cyclic

t2
µ

U

{
Ŝµ

j Ŝµ
j+µ̂

+ cos(4πθµ)
[
Ŝν

j Ŝν
j+µ̂ + Ŝρ

j Ŝρ
j+µ̂

]
+ sin(4πθµ)

[
Ŝν

j Ŝρ
j+µ̂ − Ŝρ

j Ŝν
j+µ̂

]}
,

(4.74)

where we defined the spin operators as Ŝµ
j = ĉ†

j σµ ĉj with σµ being the µth
Pauli matrix. The static gauge fields enter through θ = (γ, αx, αx). In 2d, it
was possible to argue that the spin interaction energy is minimized through
AFM ordering along the y direction with the magnetization direction point-
ing in Sz direction. Then one is left with a possibly enlarged unit cell in the
x direction only because the ordering in y direction can be recovered from
AFM order. This argument does not hold in 3d since the spin interactions
are much more complex. Note, that the argument also does not hold in the
spin-imbalanced case [306]. We thus have to find the correct size of the unit
cell empirically by comparing the groundstate energy for different sizes of
the unit cell Nx × Ny × Nz. This is very elaborate in the full quantum case
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Figure 4.26: Classical groundstate energy E per spin of the spin Hamiltonian
in Eq. (4.74) obtained from Monte Carlo studies for different sizes of the unit
cell Nx × Ny × Nz for (a) γ = 0.25 and tz = 0.2 and (c) γ = 0.22 and tz = 1.
The state with the smallest energy is highlighted with a blue circle in (a) and
(c), respectively. The corresponding spin configuration is shown in (b) and
(d), respectively. Taken from Ref. [326].

including fluctuations. Here, we only focus on the classical limit, where the
spin operators become numbers Ŝµ

j → Sµ
j and |Sj| = 1. The Hamiltonian

then becomes an energy functional E[{Sj}] with (3− 1) × Nx × Ny × Nz
degrees of freedom, where the factor 3− 1 stems from the three directional
spin degrees of freedom which are reduced by one due to the normalization
condition |Sj| = 1. We minimize E[{Sj}] via a Monte Carlo routine, the re-
sults are shown in Fig. 4.26 for unit cell sizes up to Nx×Ny×Nz = 6× 6× 6.
In (a), we show the groundstate energy per spin E for γ = 0.25 and tz = 0.2.
We observe that all multiples Nx × Ny × Nz = 2× 2× 2 yield the same
groundstate energy per spin which suggests that 2× 2× 2 might indeed
be the correct unit cell for this set of parameters. The spin configuration of
the 2× 2× 2 groundstate is shown in (b) revealing ferromagnetic ordering
along the x direction and AFM ordering along the y and z directions. In
Fig. 4.26(c) and (d), we show E and the spin configuration with lowest
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energy per spin, respectively, for γ = 0.22 and tz = 1. We conclude that for
different parameters the unit cell can be very large and the spin ordering
can become very complicated.

Surface states

Let us now turn to the investigation of the surface states of the 3d, interacting
topological states we found in Fig. 4.25. We use a configuration in which
the system is finite in the x direction but extended in the y and z directions.
The surface BZ is then spanned by the quantum numbers ky and kz from
the PBC. kx is not a good quantum number anymore since we have to apply
OBC in the x direction. We visualize the surface states with the spectral
density which is specialized to these boundary conditions as:

ρX(ω, ky, kz) = −
1
π ∑

σ,x∈X
ImGσσ

xx (ω, ky, kz)

Gσσ′
xx′ (ω, ky, kz) =

[{
ω− Σ(ω)− H0(ky, kz)

}−1
]σσ′

xx′
,

(4.75)

where X defines a spatial region of x coordinates in which the spectral
density should be computed. We set the extent of the system in x direction
to Nx = 60 and define the left surface L for 1 ≤ x ≤ 3, the bulk B as
25 ≤ x ≤ 36, and the right surface R as 58 ≤ x ≤ 60. Note that G(ω, ky, kz)
in Eq. (4.75) is a 2Nx × 2Nx matrix, as well as the selfenergy Σ(ω) and the
Hamiltonian H0(ky, kz) which is the Fourier transform of the Hamiltonian in
Eq. (4.63) in the y and z directions. Note, that within the DMFT calculations
now 60 local selfenergies have to be calculated. We show the results for
the surface states in Fig. 4.27. The white symbols correspond to the white
symbols in Fig. 4.25 determining the parameter sets used. The red squares
highlight the TRIM. We plot only a quarter of the surface BZ since the results
are mirror symmetric with respect to the ky and kz axes. In (a) and (b) we
show the topologically nontrivial insulating phases, where (a) corresponds
to the surface states of the STI. We observe that the Fermi surface encircles
exactly one TRIM as predicted by Ref. [47]. In contrast, in (b), the Fermi
surface encloses two TRIM also in agreement with Ref. [47]. As these curves
represent cuts through the 2d dispersion of the surface BZ Esurf(ky, kz) = EF,
we have a notion of the propagation direction of the surface state via the
group velocity through

~vsurf = ~∇Esurf(ky, kz), with ~∇ = (∂ky , ∂kz)
T. (4.76)

We deduce from the curves in Fig. 4.27(a) and (b) that the surface state of
the WTI in (b) will only propagate in y direction. The surface state of the
STI in (a), on the other hand, can propagate in any direction in the yz plane.
This is a typical property of an STI hosting a Dirac cone on its surface which
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is spin-momentum locked such that propagation is possible in any direction
but no backscattering occurs.

Nodal-line semimetal

Let us now focus on the gapless region in the phase diagram presented
in Fig. 4.25(c) and (d). As it was shown for the 3d generalization of the
Kane-Mele model in Ref. [327], the gapless region between an STI and a WTI
or BI can exhibit exotic features. In this particular case, a Weyl semimetal
was found. In our case, we are in a similar situation as the gapless region
we are interested in, is located between a WTI and an STI. We look at the
surface states as well as the bulk state in three different instances in the
phase diagram in Fig. 4.25(d) assigned through three white symbols. In
Fig. 4.27(c), column R we find that the right surface state resembles that
of a WTI as, e.g., shown in Fig. 4.27(b), column R. The left surface state,
on the other hand, in Fig. 4.27(c), column L is more similar to a surface
state of an STI, however, a piece is missing. This means that it does not
completely perform a loop, as a cut at constant energy through a Dirac cone
would do, but rather stops at a certain point (ky, kz) ≈ (3, 1) in the surface
BZ. This reminds us of a Fermi arc, which is the surface state of a Weyl
semimetal [56]. By looking at the bulk state in Fig. 4.27(c), column B, we find
a small curve at (ky, kz) ≈ (3, 1) rather than a single point as it would be the
case in a Weyl semimetal. An even closer view of the gapless state is shown
in the full 3d BZ in Fig. 4.27(f) where the blue line denotes a finite spectral
density in 3d and the red lines correspond to projections on the respective 2d
BZ. Here, we clearly observe a nodal-loop which winds around the kz axis
at (kx, ky) = (0, π). However, we first have to determine its topological
properties in order to clarify whether this is indeed a nodal-line semimetal
or just an accidental band touching. For the case without TRS, the Berry
phase must assume a nonzero value if it is computed by integrating along a
path linking the nodal line. This is the topological invariant which protects
the nodal line from gapping out as a result of perturbations. On top of that,
nodal lines can possess so-called topological charges like Weyl points which
can be calculated from a 2d topological invariant which is computed from
integrating over a surface completely enclosing the nodal line [55]. In our
case, we have to use methods generalized to the TRS case. For the TRS
generalization of the Berry phase θB we use the Wilson loop, introduced in
Sec. 3.6, as

θB = ImTrlog ∏
j

Fj, Fmn
j = 〈um(kj)|un(kj+1)〉, (4.77)

analogously to Eq. (4.70). Indeed, we find θB = π if the Wilson loop and
the nodal line are linked and θB = 0 if not. The gapless region in Figs. 4.23,
column (d) and 4.25(c) and (d) is thus a nodal-line semimetal. We also
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Figure 4.27: Surface states of 3d TRS Hofstadter-Hubbard model. The white
symbols denote the parameter sets corresponding to the white symbols in
Fig. 4.25. (a) and (b) show the surface BZ of insulating states and (c)-(e)
those of gapless states. (f) shows the nodal line in the full 3d BZ. Taken from
Ref. [326].
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performed a calculation to compute the Z2 number on the surface of a box
completely enclosing the nodal line. This, however, yields zero from which
we conclude that the nodal line in the present case has no topological charge
and could gap out if it shrinks to a point.

For increasing interaction strength, we see in Figs. 4.27(c)-(e) a transition
of the left surface state but not of the right one. During the transition from
U = 1 to U = 3 we see in Fig. 4.27(c)-(e), column L that the original curve
of the spectral density splits up into two curves. One of them looks like
the surface state of a WTI. This we can explain again from a mean-field
argument. If we start with U = 0 at the point tz = 0.2 and λ = 0.75 in
Fig. 4.23(ii), column (d) and increase the interaction strength, the staggered
potential λ is effectively reduced as explained above. The position in the
phase diagram then effectively moves downwards in the phase diagram. At
the same point, there is a phase transition to the WTI as it was anticipated
from the form of the surface states. Increasing U even further leads to
a spontaneously broken symmetry as shown in Fig. 4.25(c) such that the
mean-field arguments we draw from the noninteracting phase diagrams in
Fig. 4.23 do not hold anymore.

4.4.1 Topological proximity effect in layered systems

At this point of the manuscript, we have discussed 2d and 3d topological
states of matter. We realized that the physics of both can be quite different.
A straightforward way to think of the transition from 2d to 3d would be
layering. This means, we stack samples of 2d systems on top of each other
and allow them to couple. Repeated stacking of layers would eventually
result in a 3d object.

It turns out, however, that interesting physics emerges already for stack-
ing only two layers. Here, we refer to the bulk topological proximity effect
(BTPE) [328]. Proximity effects are known in diverse fields of physics, e.g.,
in superconductivity. Herein, thin normal conductors can become super-
conducting when sandwiched between two superconductors [329, 330]. In
fact, the superconducting order parameter has a finite value in the normal
conductor which decreases with some typical penetration depth.

In the context of topological states, we can make an analogous con-
sideration. Let us think of two 2d systems. The first one is described by
Hamiltonian ĤA and is topologically trivial, the other is topologically non-
trivial and obeys Hamiltonian ĤB. These two should be coupled via the third
spatial dimension through a coupling operator R̂. The total Hamiltonian
then reads

Ĥ =

(
ĤA R̂
R̂† ĤB

)
. (4.78)

If we consider the topologically nontrivial system B as a perturbation
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to the topologically trivial system A, the corrections to ĤA would be of
the form −R̂Ĥ−1

B R̂†. The topological properties of a system are encoded
in its eigenstates, see, e.g., the Chern number in Eq. (1.3). Let us assume
that the system B exhibits the Chern number CB = 1. System A has a
trivial Chern number CA = 0, so all nontrivial topological properties come
from the eigenstates of the perturbation from system B. If we assume that
the coupling R̂ changes the topological properties, the eigenstates of the
perturbation are the same as the eigenstates of ĤB with negative energies. In
static systems the Chern numbers of the full set of bands have to add up to 0.
This means that the eigenstates of the negative energies have to yield the
negative Chern number. Concluding this consideration, the topologically
trivial system A becomes topologically nontrivial with Chern number -1
when coupled to the System B with Chern number 1. This is the BTPE. Note
that it is a phenomenon which originates from the bulk properties of the
respective systems. It is as such to be distinguished from edge physics as it
was discussed, e.g., in Sec. 4.1.1.

Originally, the BTPE was shown to exist in a topologically nontrivial spin-
orbit-coupled layer coupled to a flat band in Ref. [328]. It has been measured
in thin films coupled to a 3d topological insulator [331]. Theoretically, the
BTPE has been considered as an application for topological invariants in
open systems [332]. Moreover, it was discussed in great detail for layers of
the Haldane model [333].

Here, we look at the BTPE in the multilayer case, i.e., more than two
layers stacked upon each other [334]. We study this for L honeycomb lattices.
The nontrivial topological properties enter through a Haldane layer, see
Sec. 2.4, as the hth layer. The corresponding Hamiltonian reads

H(k) =



. . .
~hi−1(k) · σ r1

r1 ~hi(k) · σ r1
r1 ~hi+1(k) · σ

. . .

 , (4.79)

where σ = (1, σx, σy, σz) is a four vector containing the 2× 2 identity matrix
and the Pauli matrices. The Hamiltonian in Eq. (4.79) has 2× 2 Hamiltonians
on its diagonal, one for the ith layer with i = 1, ...L. They are coupled
through hopping with energy r. We furthermore use the pseudo spin-1/2
representation of the 2× 2 Hamiltonians which we introduced in Eq. (2.13).
The vector representation for the Hamiltonian of the Haldane layer reads

~hh(k) =


−2t′ cos(φ)∑i cos(k · ai)
−t ∑i cos(k · ai)
−t ∑i sin(k · ai)

−2t′ sin(φ)∑i sin(k · bi)

 , (4.80)
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where we set the staggered potential to zero at the layer i = h. For the
honeycomb layers, i.e. i 6= h and t′ = 0, we have the following vector
representation for the Hamiltonian

~hh(k) =


0

−t ∑i cos(k · ai)
−t ∑i sin(k · ai)

λ

 . (4.81)

Throughout the remaining discussion on layered systems, we will set t′ = 1
as the unit of energy and set λ = 1, φ = π/2, and t = 4.

Having defined our model system, we now come to the computation of
topological invariants. First of all, one might wonder how to define a Chern
number for a multilayer system since Chern numbers are defined in 2d. In
fact, the Chern number of a single band is defined on a 2d torus. As we
see in Eq. (1.3), the total Chern number of a system is the sum of the Chern
numbers of all occupied bands. This is helpful for the present system as we
can interpret the layer index as an additional degree of freedom in the unit
cell, much like an orbital. Consequently, the Chern number is computed
from the 2L-dimensional eigenstates with associated energies below the
Fermi level. Eventually, this yields the Chern number of the full system.

One might also wonder, whether a Chern number can be assigned to a
single layer, as it was suggested in the beginning of this subsection on the
weak perturbation. In Ref. [335], a topological invariant for a subsystem α
based on the single-particle density matrix was introduced:

Iα =
i

2π

m

∑
j=1

∫
dkxdky

[
〈∂kx ψ̄j(k)|∂ky ψ̄j(k)〉 − 〈∂ky ψ̄j(k)|∂kx ψ̄j(k)〉

]
, (4.82)

where |ψ̄j(k)〉 is the jth eigenstate of the reduced density matrix ρα and
the summation runs over the eigenstates of the largest m eigenvalues. This
is in contrast to the Chern number where the eigenstates of the smallest
eigenvalues contribute. To determine m, we need to discuss a feature of
open systems. As in the interacting case, which was discussed in Sec. 3.3,
in open systems the Green’s function not only exhibits poles but can also
exhibit zeros. Bands associated with these zeros are called blind bands.
They are absent in closed and nontinteracting system, but can also carry
topological properties [249]. In an open system with Npole conventional
bands and Nblind blind bands, we find m = Npole − Nblind.

Let us turn to a specific example of a multilayer system, the trilayer
system, i.e., L = 3. Here, we find two distinct cases of how to assemble one
Haldane layer (HL) and two honeycomb, or graphene, layers (GL). These
cases are h = 1 and h = 2. In principle, we could also have h = L = 3
but this case is equivalent to h = 1 due to the symmetry of the system. We
denote the case h = 1 as HGG as the HL is on top of the two GL. This is
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Figure 4.28: Band gap ∆, Chern number C, and layer-specific invariants Iα

for the trilayer systems as functions of the inter-layer coupling r, where the
Haldane layer is (a,c) on top of the graphene layers and (b,d) sandwiched
between the graphene layers. (e) and (f) constitute zooms into the weak r
regime of (a) and (b), respectively. (g) positions of Dirac cones in the BZ as
a function of r inside the semimetallic regime. Reprinted with permission
from Ref. [334]. Copyright (2020) by the American Physical Society.

schematically depicted in Fig. 4.28(c). The case h = 2 is referred to as GHG
in which the HL is sandwiched between the two GL which is schematically
shown in Fig. 4.28(d).

In Fig. 4.28, we present the band gap ∆ of the full system, the Chern
number C, and three different layer-specific invariants Iα as functions of
the inter-layer coupling r for the two configurations HGG in (a) as well as
GHG in (b). Generally, we note that topological phase transitions are always
accompanied with a gap closing which is what we expect. Moreover, we
observe in Fig. 4.28(a) that in the strong coupling regime r ≈ 30 the system
is gapped with ∆ ≈ 4 and has a Chern number of C = 1. In contrast, in (b),
the system is also gapped with ∆ = 2 but exhibits a trivial Chern number
C = 0. Already at this stage, we note that the topological properties do not
only depend on the number ratio of topologically nontrivial layers to trivial
layers but also on the particular implementation. In the weak coupling
regime 0 ≤ r ≤ 3, the dependence of ∆ and C on r is rather complicated.
We zoom into this regime in Figs. 4.28(e) and (f) for the HGG and the GHG
cases, respectively. We also plot the layer-specific invariants Iα in this regime.
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Here, α = 1 denotes that only the eigenstates of the reduced single-particle
density matrix of subsystem GL1 enter in Eq. (4.82). It thus is an topological
invariant for GL1 only. This applies analogously for α = 2. When we write
α = 12, we mean that the subsystem is the combined system of both GL1
and GL2. In Fig. 4.28(e), we observe that C changes twice while r is tuned.
This can be explained by two subsequent changes of I1 and I2, respectively.
In particular, we find that I12 = I1 + I2, i.e., the layer-specific invariants obey
some kind of sum rule. On the other hand, when looking at Fig. 4.28(f) there
occurs only once a change of C. This change is by no means resembled in
the layer-specific invariants I1 and I2 since they are constantly zero in the
full range of r. Only I12 reflects the change of C up to a constant offset of 1.
Clearly, the sum rule which applied in the HGG case is violated here in the
GHG case. The system in the GHG rather behaves as the original BTPE of a
bilayer system. This means, the BTPE, which is induced by the HL, emerges
in the combined layer of both GL1 and GL2.

The discrepancy between the HGG and the GHG case can be explained
with the emergence of dark states [336–338]. We note that the GHG configura-
tion exhibits a mirror symmetry at the middle layer which is absent for the
HGG configuration. Let us look at the Hamiltonian in Eq. (4.79) for L = 3
and h = 2. Out of the set of six-dimensional eigenvectors, there are two
eigenvectors which can be written in the form(

v±1 (k), v±2 (k), 0, 0, v±1 (k), v±2 (k)
)T , (4.83)

where
(
v±1 (k), v±2 (k)

)T is an eigenvector of the 2× 2 Hamiltonian ~d(k) · σ
corresponding to Eq. (4.81) and ± refers to the upper and lower band of
this Hamiltonian. The important part here, is that the two eigenstates in
Eq. (4.83) have vanishing amplitude at the middle layer which is the HL.
They are thus completely decoupled from the HL and are referred to as dark
states. In the presence of a dark state, the HL only couples to another pair
of states. This is exactly the situation of a bilayer system since four states
are involved. Remember that per layer two states are present because of the
two-site unit cell.

Another observation of Figs. 4.28(a) and (b) is the gapless phase in the
regime 3 . r . 6.5. We find that the extent of this regime is identical
between the cases HGG and GHG. In fact, we find a semimetal which
exhibits six Dirac cones. In Fig. 4.28(g) we show the positions of these Dirac
cones within the 2d BZ at the Fermi level. Herein, K and K′ denote the
high-symmetry points of the honeycomb BZ [197]. The color code reflects
the values of the coupling r. At around r ≈ 3, three pairs of Dirac cones are
created. Increasing r causes the Dirac cones of one pair to separate which
is highlighted by two arrows. At around r ≈ 6.5, the Dirac points meet
again in pairs, but this time with different partners, and annihilate. This
phase is an instance of a quasi-2d semimetal. Other instances are reported
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in Refs. [190, 339], see also Ref. [52]. The pair creation and annihilation
mechanism we described above when discussing Fig. 4.28(g) is reminiscent
of a mechanism in 3d topological insulators [327, 340]. Therein, Weyl points
are created in pairs, move within the 3d BZ, and are again annihilated in
different pairs. This occurs in Weyl semimetals which emerge in the phase
diagram between STI, WTI, and BI. Semimetals between 3d topologically
insulating phases have been discussed in the previous section.

We now discuss results of the general multilayer system with L layers
and the HL sitting at position h. Here, we will restrict ourselves to the
discussion of the strong coupling limit where r is much larger than all other
energy scales in the system. Using perturbation theory it was shown in
Ref. [334] that the energy spectrum of the full system can be separated into
L pairs of energy bands ε±(k, κz)

E(k) = −2r cos(κz) + ε±(k, κz), (4.84)

where κz = nπ/(L + 1) with n = 1, ...L is a quantum number of a standing
wave mode along the stacking direction of the layers. Since r is large, the
pairs of energy bands are energetically separated from the other pairs with
a scaling proportional to r. In fact, each pair resembles a separate effective
set of Haldane bands with effective parameters

λeff =
[
1− |N |2 sin2(κzh)

]
λ and t′eff = |N |2 sin2(κzh)t′. (4.85)

Here, the normalization constant N is determined from the amplitude of
the wavefunction |N |2 sin2(κzh) of the standing wave mode at the HL.

Figure 4.29: Strong coupling regime r = 50 for the general multilayer case.
The color code refers to the numerical computation of C. The critical value Lc
is defined in the text. Reprinted with permission from Ref. [334]. Copyright
(2020) by the American Physical Society.

For a single pair of Haldane bands, we find the Chern insulating state
only if the lower band is completely filled and the higher band is completely
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empty. For the multilayer system in the strong coupling regime, this means
that only the two bands closest to the Fermi energy determine whether the
full system is topologically trivial or not. Furthermore, only if these two
bands, which are closest to the Fermi energy, belong to the same effective
Haldane model, nontrivial topological properties can emerge. We conclude
that only for odd values of L the system can be topologically trivial. In
Fig. 4.29 we show the Chern number in the strong coupling regime r = 50 as
a color scale. Here, C is determined numerically using Eq.(1.3). We observe
that indeed if L is even, the multilayer system is always topologically trivial
independent of h. We also see that if h is even, the multilayer system is
again always topologically trivial independent of the value of L. This effect
is attributed to the emergence of dark states as it was explained above for
the trilayer system. Finally, we can determine a limit for the number of
layers L the system can have, while remaining topologically nontrivial. This
limit is determined from the effective parameters λeff and t′eff. The Haldane
model shows a Chern insulator state if |λ|/t′ < 3

√
3 otherwise it is a band

insulator. Computing this limit for the effective parameters, which depend
on L, yields an upper bound Lc for the number of layers such that the system
can still show nontrivial topological properties for any L and h. For λ = 1
and t′ = 1, this yields Lc ≈ 11.4 which we depict in Fig. 4.29. Indeed, we
find from the numerical results for C that beyond Lc the system is always
topologically trivial.

Concluding the section on layered systems in the context of the BTPE,
we have found that the topological properties of the full multilayer system
sensitively depend on the particular configuration. We have argued that
the emergence of dark states in the multilayer system can cause the system
to alter its topological properties. In fact, dark states are present even
without the presence of any topologically nontrivial ingredients, such as
the Haldane model in this case. Usually they do not have strong influence
on global properties of the system. In the context of topological states,
however, we show that dark states do matter. Experimentally, multilayer
systems might be feasible to implement in cold atom systems with synthetic
dimensions [333]. One would think of a 2d system in the real dimensions
with atoms possessing many addressable hyperfine states. These hyperfine
states act as layers and can be coupled via Raman transitions. In order to
implement the BTPE, one would then have to impose an artificial gauge
field on only one of these hyperfine states. This could be done through state-
selective laser-assisted tunneling or lattice shaking as we have introduced
the methods in Sec. 2.
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Chapter 5

Conclusion

Within this work, we have introduced the reader to the field of topological
states of matter and the possible experimental realization within the con-
text of cold atomic gases in optical lattices. These highly tunable and well
controlled systems allow one to built quantum simulators of tight-binding
Hamiltonians. Among others, the on-site interaction between the atoms is
tunable over a large range which makes it especially interesting to study
Hubbard Hamiltonians. This work is dedicated to a variety of Hofstadter-
Hubbard models, which generalize the seminal Hofstadter model. The
difficult many-body problem, which arises due to the interparticle interac-
tion, is treated by means of dynamical mean-field theory which is able to
describe the full complexity of the metal-to-Mott-insulator transition.

The aim of this work is to theoretically describe cold atom systems
hosting interacting, topologically nontrivial states of matter. These problems
become very complex and require a numerical toolbox which is able to
tackle problems originating from different fields of physics simultaneously.
With this, we were able to investigate interacting, inhomogeneous, and
spin-orbit-coupled states in two as well as in three dimensions.

This work can act as a starting point for future investigations of interact-
ing topological states of matter in two and three dimensions [45, 50, 55, 56]
with numerical methods such as DMFT [211], as well as their possible
realizations and probing in quantum simulators, especially in cold atom
experiments [133, 136]. The long-term aim could be the study of emergent
topological states like topological Mott insulators [341] and other quantum
spin liquid states [342] by means of the cluster extension to DMFT [343, 344]
and even quantum-classical DMFT as an application of quantum computing
algorithms [345–347]. In the following, we recapitulate the results of this
work and propose different projects as an outlook for further research:
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Real-space DMFT study of inhomogeneous systems

Two-dimensional topological states are nowadays routinely engineered in
cold atomic setups [112–115]. However, an obstacle for detecting, e.g., topo-
logical edge states, in these systems is their intrnisic inhomogeneity such
that in many cases bulk and edge cannot be distinguished adequately. In
order to circumvent this issue, we study the smooth interface between a
quantum spin Hall and a band insulating phase in a 2d optical lattice and the
effect of the Hubbard interaction [255]. Due to the high degree of inhomo-
geneity, we use the real-space version of DMFT [214, 215]. We characterize
the topological properties of the interacting interface system by looking
at topological pumping as well as the local Chern marker [251], general-
ized to the spinful case, in combination with the topological Hamiltonian
approach [242]. The edge state itself is accessible from the local compress-
ibility. We propose quantum gas microscopy to measure correlations and,
subsequently, the edge state. Moreover, in another study [257], we analyze
the competition between Hubbard interactions and a harmonic confining
potential. In the bulk of the system, this gives rise to an interaction-induced
topological phase transition similar to Refs. [193, 196] where the competing
energy scales are the Hubbard interaction and the staggered potential. The
underlying mechanism is the redistribution of the particle profile and the
suppression of doubly occupied sites due to the interaction strength.

The used numerical methods could, e.g., be applied to twisted bilayer
graphene (TBG) which shows insulating and superconducting behavior at
different dopings [348] at the so-called magic twist angles [349]. Real-space
DMFT could be used to study the effect of local quantum fluctuations in
the whole range of interaction energies since it is nonperturbative. This
enables the investigation of possible Mott regimes and thus goes beyond
the Hartree-Fock approach to TBG [350, 351]. In cold atom systems, it is
possible to tune the interaction energies freely by using Feshbach resonances.
The study of TBG in cold atom setups is proposed in Ref. [352] and it is
discussed that tunable interlayer hopping could increase the value of magic
twist angles. This is helpful for a real-space DMFT study since a small twist
angle yields a very large unit cell. Thus, for a DMFT study, one would start
with a larger angle and use exact diagonalization methods to efficiently
solve the impurity problems of the DMFT iterations.

Spin-imbalance-induced frustration

Canted antiferromagnetism [307] as well as the TRS Hofstadter model [112]
can be realized in cold atom experiments. This leads to the study of the TRS
Hofstadter-Hubbard model with additional TRS-breaking spin-population
imbalance [306]. Here, we connect the two different groundstates of the
spin-imbalanced Hubbard model and the Hofstadter-Hubbard model which

148



are a canted antiferromagnet and a z-antiferromagnet, respectively. We find
an exotic classical groundstate exhibiting a transverse net magnetization.
Upon including local quantum fluctuations, this state is stable for some
parameter regimes but breaks down into a ferrimagnet in different regimes
of the phase diagram. The origin of frustration stems from the gauge field
in the system, leading to a nontrivial modification of spin-spin interaction
coefficients of the Heisenberg and Dyzaloshinskii-Moriya terms [190].

Here, it would be interesting to seek for emergent quantum phases, such
as valence bond states and quantum spin liquids [342], arising from the
nonlocal quantum fluctuations. Spin imbalance could serve as an experi-
mentally accessible control parameter to tune the lattice frustration in cold
atom systems. An interacting extension to the Harper-Hofstadter-Hatsugai
model [194], which includes next-nearest neighbor hopping, is possible. This
model is closely connected to the spin-1/2 J1-J2 Heisenberg model [353].

Tomography

Probing topological states in cold atom systems is an active research topic.
Possible schemes base on Hall drifts [143], tomography [115, 272, 297], in-
terferometry [270, 354], and depletion [355], among others. We develop
tomographic schemes based on the single-particle density matrix in real
space [256] as well as in momentum space [196], where the latter even
enables the probing of interacting states.

3d topological states are much less abundant among cold atom experi-
ments than 2d states. A reason for that is the difficulty to realize and probe
these states. A recent setup successfully created a nodal-line semimetal [149]
whose probing relies on a certain symmetry of the system. The demand for
interacting schemes is still unabated which motivates the development of
tomographic schemes based on the single-particle density matrix approach
and reconstruction techniques [356].

Three-dimensional topological states

A 3d generalization of the TRS Hofstadter model was proposed [191] which
hosts weak and strong topological insulator phases. We investigate this
model by means of generalizations of methods based on twisted boundary
conditions [264], Wilson loops [268], and the local Chern marker [251]. It
appears that for finite spin mixing the gapless transition lines between the
topological insulator regimes extend to gapless regions featuring a nodal-
line semimetal. We study the bulk and surface states of these 3d topological
states for finite interactions with real-space DMFT. The drumhead surface
states of a NLSM have a diverging density of states which make them
intriguing for interaction effects that strongly depend on the spin-orbit
coupling [357].
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The methods developed in Ref. [326] are suitable for any 3d multiband
Hubbard model. It is thus attractive to apply them to models which pre-
serve the surface flat band of the drumhead states. In Ref. [357] surface
antiferromagnetism in a NLSM is predicted. Ref. [358] reports on a surface
Chern insulator which emerges from the interplay of interactions and spin-
orbit coupling. In combination with an interface configuration [255] these
phenomena could be accessible in cold atom systems.

Layered systems

The topological proximity effect was introduced [328] as an analogue to the
proximity effect in superconductivity. When a 2d topologically nontrivial
system with Chern number C = 1 is coupled to a topologically trivial layer,
the trivial layer becomes nontrivial with Chern number C = −1. In a further
study [334], we investigated this effect for multilayer systems and find that
the induced topological properties not only depend on the number of layers
but also on their spatial configuration. This is explained by the emergence
of dark states which effectively decouple from the nontrivial layer. Also a
quasi-2d, semi-metallic phase emerges which persists even in the presence
of spin-orbit coupling and a staggered potential. Within this phase we
observe a creation and annihilation process of pairs of Dirac points which is
reminiscent of Weyl points in 3d topological states [327]. The topological
proximity effect has gained much attention since its first mention [328].
Bilayer systems are very promising candidates to host exotic quantum
matter such as chiral and Z2 quantum spin liquids [359], an interaction-
induced anomalous Hall insulator [360], and charge-ordered as well as
spin-ordered Chern insulators [361]. The induced Chern number in the
system of Ref. [328] has opposite Chern number compared to the inducing
one. Hence, one could seek for systems in which both Chern numbers are
equal. Moreover, the emerging semimetal in Ref. [334] suggests a connection
to 3d gapless topological states. It might be interesting to study the transition
from 2d to 3d physics using multilayer systems, especially in time-reversal-
symmetric (TRS) systems, that may reveal possible connections to weak
topological insulators.
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Abbreviations

1d, 2d, 3d one-, two-, three-dimensional/dimensions
AFM antiferromagnetic/antiferromagnet
AIM Anderson impurity model
BEC Bose-Einstein condensate
BTPE bulk topological proximity effect
BZ Brillouin zone
BI band insulator
CTQMC continuous-time quantum Monte Carlo
DMFT dynamical mean-field theory
DOS density of states
ED exact diagonalization
FM ferromagnetic/ferromagnet
GL graphene layer
HHH Harper-Hofstadter-Hatsugai
HL Haldane layer
IQH integer quantum Hall effect
LCM local Chern marker
MC Monte Carlo
OBC open boundary conditions
PBC periodic boundary conditions
QMC quantum Monte Carlo
QSH quantum spin Hall effect
STI strong topological insulator
TBC twisted boundary conditions
TRIM time-reversal-invariant momentum
TRS time-reversal symmetric/symmetry
WTI weak, topological insulator
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[75] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller, and J. I. Cirac.
Analogue quantum chemistry simulation. Nature, 574:215, 2019.

[76] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch. Quan-
tum phase transition from a superfluid to a Mott insulator in a gas of
ultracold atoms. Nature, 415:39, 2002.
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[222] P. W. Anderson. Localized magnetic states in metals. Phys. Rev., 124:41,
1961.

[223] A. Georges and G. Kotliar. Hubbard model in infinite dimensions.
Phys. Rev. B, 45:6479, 1992.

[224] K. G. Wilson. The renormalization group: Critical phenomena and
the Kondo problem. Rev. Mod. Phys., 47:773, 1975.

[225] W. Hofstetter. Generalized numerical renormalization group for dy-
namical quantities. Phys. Rev. Lett., 85:1508, 2000.

171



[226] M. Caffarel and W. Krauth. Exact diagonalization approach to corre-
lated fermions in infinite dimensions: Mott transition and supercon-
ductivity. Phys. Rev. Lett., 72:1545, 1994.

[227] J. E. Hirsch and R. M. Fye. Monte Carlo method for magnetic impuri-
ties in metals. Phys. Rev. Lett., 56:2521, 1986.

[228] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer,
and P. Werner. Continuous-time Monte Carlo methods for quantum
impurity models. Rev. Mod. Phys., 83:349, 2011.

[229] C. Lanczos. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. J. Res. Natl. Bur.
Stand., 45:255, 1950.

[230] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines. J.
Chem. Phys., 21:1087, 1953.

[231] J. E. Hirsch. Discrete Hubbard-Stratonovich transformation for
fermion lattice models. Phys. Rev. B, 28:4059, 1983.

[232] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein. Continuous-time
quantum Monte Carlo method for fermions. Phys.l Rev. B, 72:035122,
2005.

[233] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis.
Continuous-time solver for quantum impurity models. Phys. Rev.
Lett., 97:076405, 2006.

[234] M. Buchhold. Topological phases of interacting fermions in optical
lattices with artificial gauge fields. Master’s thesis, Goethe-Universität
Frankfurt, 2012.

[235] J. Panas. Investigation of the Bose-Hubbard model using dynamical mean-
field theory. PhD thesis, University of Warsaw, 2017.

[236] S. M. A. Rombouts, K. Heyde, and N. Jachowicz. Quantum Monte
Carlo method for fermions, free of discretization errors. Phys. Rev.
Lett., 82:4155, 1999.

[237] E. Gull, P. Werner, O. Parcollet, and M. Troyer. Continuous-time
auxiliary-field Monte Carlo for quantum impurity models. Europhys.
Lett., 82:57003, 2008.

[238] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn. Exact quantum
Monte Carlo process for the statistics of discrete systems. JETP Lett.,
64:911, 1996.

172



[239] E. Gull, P. Werner, A. Millis, and M. Troyer. Performance analysis of
continuous-time solvers for quantum impurity models. Phys. Rev. B,
76:235123, 2007.

[240] M. Jarrell and J. E. Gubernatis. Bayesian inference and the analytic
continuation of imaginary-time quantum Monte Carlo data. Phys.
Rep., 269:133, 1996.

[241] M. Kollar. The maximum entropy method:analytic continuation of
QMC data. In E. Pavarini, E. Koch, F. Anders, and M. Jarrel, editors,
Correlated Electrons: From Models to Materials. Forschungszentrum
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