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1 Introduction

This work is concerned with intermediate versions between the birational sec-
tion conjecture and the full section conjecture for curves over p-adic fields. We
are going to explain those and more general versions of the section conjecture
in this introduction. Each of them predicts that the rational points of a curve
can be described purely group-theoretically in terms of the étale fundamen-
tal group. The conjecture is part of a wider range of ideas, called anabelian
geometry, in which one tries to recover arithmetic and geometric information
from the associated fundamental groups. This area goes back to a letter of
Grothendieck to Faltings [Gro97] and is still largely conjectural today.

1.1 The section conjecture

We want to motivate briefly the basic ideas.

1.1.1 Rational points as sections

Let k be a field. Suppose that we are searching elements a1, . . . , an ∈ k which
satisfy a list of polynomial equations with coefficients in k:

Fj(a1, . . . , an) = 0 for j = 1, . . . ,m (∗)

with polynomials F1, . . . , Fm ∈ k[T1, . . . , Tn]. A tuple (a1, . . . , an) ∈ kn is
equivalent, via the rule Ti 7→ ai, to a ring homomorphism k[T1, . . . , Tn] → k
which is left inverse to the inclusion. The tuple satisfies the equations (∗) if
and only if the corresponding homomorphism factors through the quotient

A := k[T1, . . . , Tn]/(F1, . . . , Fm).

In other words, a k-rational solution to the equations (∗) is equivalent to a
retraction as follows:

A

k

This arithmetic problem can be expressed more geometrically in the language
of schemes. Elements of the field k are viewed as functions on a space Spec(k).
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1 Introduction

Similarly, elements of A are viewed as functions on X := Spec(A). The map
k → A defines a morphism X → Spec(k) in the opposite direction. A solution
(a1, . . . , an) ∈ kn of the equations (∗) is equivalent to a retraction as above and
thus translates under the Spec functor into a section:

X

Spec(k)

1.1.2 Sections on fundamental groups

Consider a continuous map of topological spaces f : X → B. We view this as a
family of spaces Xb := f−1(b) which is parametrised over the base B. Suppose
that we want to choose for every b ∈ B a point in the fibre xb ∈ Xb which
varies continuously with b in the sense that the resulting map B → X given by
b 7→ xb is continuous. In other words, we are looking for a continuous section:

X

B

An important invariant of a topological space is its fundamental group. It can
be used to analyse the given situation. To this end, one has to choose compat-
ible base points b0 ∈ B and x0 ∈ f−1(b0) and obtains a group homomorphism
induced by f :

f∗ : π1(B, b0)→ π1(X,x0).

Now let x : B → X be a given section of f . For any loop in the base B
starting and ending at b0 we get via x a loop in X starting and ending at
x(b0). This defines a homomorphism x∗ : π1(B, b0) → π1(X,x(b0)). As the
base points x(b0) and x0 do not in general coincide, x∗ is not yet a section of
f∗. However, if we assume that the fibre f−1(b0) is path-connected, then we
can choose a path γ : x(b0) x0 in f−1(b0) and obtain a homomorphism

sx : π1(B, b0) π1(X,x(b0)) π1(X,x0).
x∗ γ(−)γ−1

This is now indeed a section of f∗ since the path γ is mapped to the constant
path at b0 under f . Any other choice of path γ′ differs from γ by a loop
δ := γ′ ◦ γ−1 in f−1(b0) which starts and ends at x0. This changes the section
sx by a conjugation with i∗([δ]), where i∗ : π1(f−1(b0), x0) → π1(X,x0) is
induced by the inclusion of the fibre. The section x : B → X yields therefore
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1.1 The section conjecture

a well-defined π1(f−1(b0), x0)-conjugacy class of sections [sx]. The association
x 7→ [sx] is thus a map

( sections x : B → X of f ) −→
(
conjugacy classes
of sections of f∗

)
.

In particular, one can prove the non-existence of sections x : B → X of f
by showing the non-existence of sections π1(B, b0) → π1(X,x0) of f∗. This
latter point is also true if the space X itself rather than the fibre f−1(b0) is
path-connected.
To illustrate this with an example, consider the squaring map C× → C×,

z 7→ z2. On fundamental groups it induces the multiplication by 2 on Z. This
does not admit a section, so one can conclude that it is impossible to choose
for every nonzero complex number z ∈ C× a square root in a continuous way.

1.1.3 The étale fundamental group

We explained above that solutions to polynomial equations over a field k can
be viewed geometrically as sections of a map of schemes X → Spec(k). One
is therefore in a similar situation as in the previous paragraph: X can be
considered as a parametrised family of spaces over the base Spec(k). On first
sight, this point of view might seem fruitless since the underlying topological
space of Spec(k) consists only of a single point, corresponding to the zero
ideal in k. However, the underlying Zariski space of a scheme is generally
not suited to define the fundamental group via homotopy classes of loops.
Following [SGA 1, Exp. V], one takes a different approach and defines the étale
fundamental group of a scheme by transferring the role that the topological
fundamental group plays in the theory of coverings into the world of schemes.
To explain this, consider a connected scheme X. As base point we choose a

geometric point x0 of X, i.e. a morphism Spec(Ω)→ X with a separably closed
field Ω. The role that (finite) covering maps play in topology is taken by the
finite étale morphisms f : Y → X. The fibre f−1(x0) → x0 is a finite disjoint
union of copies of Spec(Ω) and can thus be viewed simply as a finite set. In
topology, one could define (under mild assumptions on the topological spaceX)
a group action by π1(X,x0) on the fibre f−1(x0) via path-lifting: given a loop γ
in X starting and ending at x0, and given a point y ∈ f−1(x0), one can lift
γ uniquely to a path γ̃ in Y starting at y, and one defines γ.y ∈ f−1(x0) as
the endpoint of γ̃. In the algebraic world, an element of π1(X,x0) is simply
defined as a system of permutations of f−1(x0) for every finite étale cover
f : Y → X. The system is only required to satisfy a naturality condition, i.e. a
compatibility with morphisms between finite étale coverings: for any two finite
étale coverings fi : Yi → X and a morphism g : Y1 → Y2 over X between them,
the following square has to commute for all γ ∈ π1(X,x0):

9



1 Introduction

f−1
1 (x0) f−1

2 (x0)

f−1
1 (x0) f−1

2 (x0).

γ

g

γ

g

This is expressed more economically as follows: we have a category Cov(X) of
finite étale coverings of X, we have a fibre functor Fibx0 : Cov(X) → FinSet
to the category of finite sets given by (f : Y → X) 7→ f−1(x0), and the étale
fundamental group π1(X,x0) is defined as the automorphism group of the fibre
functor:

π1(X,x0) := Aut(Fibx0).

One endows π1(X,x0) with the coarsest topology rendering the actions on all
fibres f−1(x0) continuous. In this way, π1(X,x0) becomes a profinite group.
Let us consider the special case that X = Spec(k) is the spectrum of a

field. The choice of a separable closure k/k defines a geometric base point
x0 : Spec(k)→ Spec(k). The connected finite étale coverings of Spec(k) are of
the form Spec(`) → Spec(k) with `/k a finite separable field extension. The
fibre over x0 can be identified with the set of k-embeddings Homk(`, k). The
absolute Galois group Gal(k/k) acts naturally on Homk(`, k), and it is easy
to see that every compatible system of permutations of the sets Homk(`, k) is
defined by an element of Gal(k/k). It follows that the étale fundamental group
of Spec(k) is precisely the absolute Galois group:

π1(Spec(k), Spec(k)) = Gal(k/k).

In particular, the étale fundamental group of Spec(k) contains a lot more in-
formation than the underlying Zariski space suggests. This is an expression
of the fact that the étale topology of a scheme (which is not a topology in
the classical sense but a Grothendieck topology) is a lot finer than the Zariski
topology.

1.1.4 The Section Conjecture for proper curves

Let X/k be a smooth, proper, geometrically connected curve over a field k
of characteristic zero. For example, X might be defined as the vanishing set
of a system of homogeneous polynomials in a projective space. Choosing an
algebraic closure k of k and a geometric base point x0 on Xk = X ⊗k k, we
have the following fundamental exact sequence of étale fundamental groups

1 −→ π1(Xk, x0) −→ π1(X,x0) −→ Gal(k/k) −→ 1. (1.1.1)

A k-rational point x ∈ X(k), being by definition a section of the structural
morphism X → Spec(k), induces a section sx of π1(X,x0) → Gal(k/k) by
functoriality:
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1.1 The section conjecture

X π1(X,x0)

 

Spec(k) Gal(k/k)

x sx

As explained in the topological situation above, in order to account for dif-
fering base points, the construction of sx depends on the choice of an étale
path x  x0 on the connected scheme Xk, where x : Spec(k) → Xk is the
canonical lift of x. The difference of any two such paths is a loop, i.e. an
element of π1(Xk, x0). As a consequence, the section sx is well-defined up to
π1(Xk, x0)-conjugacy. Over base fields k which are finitely generated over Q,
Grothendieck’s Section Conjecture [Gro97] predicts that the map

X(k) −→
(

conjugacy classes of
sections s of (1.1.1)

)
(1.1.2)

given by x 7→ [sx], is a bijection, provided that the genus of X is at least 2
(i.e. X is hyperbolic). The Section Conjecture as well as its analogue over
p-adic fields (the p-adic Section Conjecture) are still open (see [Sti13] for partial
results and evidence).

1.1.5 The Section Conjecture for open curves

Grothendieck formulated also a variant of the section conjecture for not nec-
essarily proper curves. He observed that even the k-rational points at infinity
(cusps), i.e. the points in X \X where X is the smooth compactification of X,
give rise to sections of the fundamental exact sequence (1.1.1) (cuspidal sec-
tions). The Section Conjecture for open curves predicts that every section
Gal(k/k)→ π1(X,x0) is induced by a unique k-rational point of X, i.e. either
by a cusp or a point in X. For not necessarily proper curves, the hyperbolicity
condition on X now takes the form χ(X) < 0, i.e. the Euler characteristic of X
should be negative. If g is the genus of X and r = #(X \X)(k) the geometric
number of cusps, then the Euler characteristic is given by

χ(X) = 2− 2g − r. (1.1.3)

Thus, X is hyperbolic if and only if Xk is either P1 minus at least three points,
a genus one curve minus at least one point, or a curve of higher genus with an
arbitrary number of points removed.

1.1.6 The Birational Section Conjecture

The formula (1.1.3) for the Euler characteristic suggests that X becomes “more
hyperbolic” as we remove more and more closed points. This motivates a bi-
rational variant of the section conjecture where X is reduced to its generic
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1 Introduction

point, i.e. the spectrum of the function field K. The fundamental exact se-
quence (1.1.1) in this case becomes a short exact sequence of absolute Galois
groups:

1 −→ GKk −→ GK −→ Gk −→ 1. (1.1.4)

Every rational point x ∈ X(k) induces birational sections as follows. Let
X̃ → X be the normalisation of X in the algebraic closure K/K and choose
a point x̃ over x in X̃. The GK-action on K induces an action on X̃ and the
stabiliser Dx̃|x ⊆ GK of the point x̃ is called the decomposition group of x̃|x.
The group Dx̃|x acts on the residue field κ(x̃) which is canonically isomorphic
to k. The resulting homomorphism Dx̃|x → Gk is surjective and its kernel Ix̃|x
is called the inertia group of x̃|x. A section s : Gk → GK is called section over
x if its image is contained in a decomposition group Dx̃|x for some x̃ over x.

1 Ix̃|x Dx̃|x Gk 1

1 GKk GK Gk 1

s

(1.1.5)

To explain why sections over x ∈ X(k) always exist, let Kh
x be the fixed field of

Dx̃|x in K, and set Uh
x := Spec(Kh

x). The field Kh
x is a henselisation of K at x,

and Uh
x plays the role of a small punctured neighbourhood of x in X. The top

row of (1.1.5) can thus be viewed as the fundamental exact sequence (1.1.1)
for Uh

x/k. Denote by T ◦X,x the Zariski tangent space without origin of X at x.
As a k-scheme, it is isomorphic to Gm; more intrinsically, T◦X,x is the spectrum
of the graded algebra of Kh

x filtered by integer powers of the maximal ideal mx.
Deligne, in his theory of tangential base points [Del89, §15], has constructed
an equivalence of categories between finite étale coverings of Uh

x and T◦X,x.
Consequently, the top row of (1.1.5) is isomorphic to the fundamental exact
sequence of T◦X,x /k. In particular, every k-rational point of T◦X,x, i.e. every
nonzero tangent vector at x, induces an Ix̃|x ∼= Ẑ(1)-conjugacy class of sections
over x with image in the decomposition group Dx̃|x.
The set of GKk-conjugacy classes of sections over x is traditionally called the

packet at x. Unlike the case of complete curves, there can be many conjugacy
classes of sections over the same point: the packet of sections at a cusp is
uncountable under only mild assumptions on the base field [Sti12, §4].
The Birational Section Conjecture states that for proper X/k, every section

of (1.1.4) lies over exactly one k-rational point of X. Over number fields,
the conjecture is still open, but its p-adic analogue over a finite extension of
Qp has been proved by Königsmann, using model theory of p-adically closed
fields [Koe05]. Pop has proved a “minimalistic” variant of this, where GK is
replaced with a very small quotient [Pop10]. For instance, in the case µp ⊆ k,
it suffices to work with the Z/pZ-metabelian quotient of GK . It is this latter
variant that we are going to generalise.
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1.2 The section conjecture for localisations of curves

1.2 The section conjecture for localisations of curves

The present work is concerned with intermediate versions between the full
section conjecture for a proper curve and the birational section conjecture for
its generic point. Let X/k be a smooth, proper, geometrically connected curve.

Definition 1.2.1. For an arbitrary set S ⊆ Xcl of closed points, define the
localisation of X at S as the pro-(open subscheme) of X

XS :=
⋂{

U ⊆ X dense open containing S
}
. (1.2.1)

The intersection is taken inside X in the scheme-theoretic sense, i.e. as a fibre
product of X-schemes.

The limit (1.2.1) exists by Proposition 2.4.3 below. Intuitively, XS is ob-
tained from X by removing all closed points except those in S. The underlying
topological space |XS | of XS is the subspace of |X| consisting of the generic
point ηX and the points in S. Thus, if S = Xcl, then XS = X; if S = ∅, then
XS = ηX . In general, XS lies in between ηX and X.
Let k/k be an algebraic closure and x0 a geometric point of XS ⊗k k. Let

Xuniv
S → XS be the associated universal profinite étale cover and X̃ → X the

normalisation of X in the function field of Xuniv
S . Given a k-rational point

x ∈ X(k) and a point x̃ in X̃ over x, we have a decomposition group Dx̃|x (the
stabiliser of x̃ under the π1(XS , x0)-action on X̃) and an inertia subgroup Ix̃|x
as above, forming a diagram that generalises (1.1.5):

1 Ix̃|x Dx̃|x Gal(k/k) 1

1 π1(XS ⊗k k, x0) π1(XS , x0) Gal(k/k) 1.

(1.2.2)
Again, we say that a section of the map π1(XS , x0) → Gal(k/k) is a section
over x if its image is contained in a decomposition group Dx̃|x for some x̃|x in
X̃. We prove in Proposition 3.1.7 below that sections exist over every k-rational
point of X.

Definition 1.2.2. We say that the localisation XS/k satisfies the section
conjecture if every section s : Gal(k/k) → π1(XS , x0) lies over exactly one
k-rational point of X.

One of our main results is the identification of sufficient conditions on XS

over p-adic base fields which imply the section conjecture for XS . We show in
this way that the section conjecture holds for instance whenever S is at most
countable (see Statement of Main Results in Section 1.4 below).
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1 Introduction

1.3 The liftable section conjecture

This work is mostly concerned with a variant of the section conjecture which
uses only small quotients of the fundamental group. In order to state it, we fix
a prime number p and introduce the following notation:

Notation 1.3.1. Let Π be a profinite group. Let Π = Π(0) D Π(1) D . . . be the
Z/pZ-derived series:

Π(0) := Π, Π(i+1) = [Π(i),Π(i)]
(
Π(i)

)p
.

We denote by

Π′ := Π/Π(1) = Πab ⊗ Z/pZ,

Π′′ := Π/Π(2)

the maximal Z/pZ-abelian and Z/pZ-metabelian quotient of Π, respectively.

Observe that the associations Π 7→ Π′ and Π 7→ Π′′ are functorial and that
surjective homomorphisms of profinite groups remain surjective under (−)′

and (−)′′.

Definition 1.3.2. Let Π � G be a surjective homomorphism of profinite
groups. A section s′ : G′ → Π′ is called liftable if there exists a section
s′′ : G′′ → Π′′ such that the following diagram commutes:

Π′′ G′′

Π′ G′.

s′′

s′

Let k be a field of characteristic zero and XS the localisation of a smooth,
proper, geometrically connected curve X/k at a set of closed points S ⊆ Xcl.
Let k/k be an algebraic closure, let Gk := Gal(k/k) be the absolute Galois
group of k and let π1(XS) be the fundamental group of XS with respect to
a geometric base point on XS ⊗k k, so that we have a surjective homomor-
phism π1(XS)→ Gk. We can again define what it means for a liftable section
s′ : G′k → π1(XS)′ to lie over a k-rational point of X (Definition 3.1.3), and
liftable sections do exist over every k-rational point (see Proposition 3.3.2 be-
low).

Definition 1.3.3. We say that XS/k satisfies the liftable section conjec-
ture if every liftable section s′ : G′k → π1(XS)′ lies over a unique k-rational
point of X.

14



1.4 Statement of main results

1.4 Statement of main results

1.4.1 The liftable section conjecture for good localisations

Our starting point is Pop’s proof of the birational liftable section conjecture
over finite extensions k/Qp containing the p-th roots of unity [Pop10, Theo-
rem A]. The aim of the present work is to generalise this result and its proof
to localisations of curves, thereby making a step from the birational case to-
wards the case of open or proper curves, where the section conjecture is still
unknown. Our main result is the identification of conditions on the localisation
of a curve which ensure that the liftable section conjecture holds. To this end,
we introduce in Definition 5.1.1 below the notion of a good localisation, de-
fined by four conditions roughly saying that there is a large supply of invertible
functions on XS . Our main theorem reads as follows:

Theorem A. Let k be a finite extension of Qp with µp ⊆ k. Let X/k be
a smooth, proper, geometrically connected curve and S ⊆ Xcl a set of closed
points. If XS is a good localisation, then XS/k satisfies the liftable section
conjecture.

The proof of Theorem A is the content of Chapter 5 and constitutes the
technical heart of this work.
As a demonstration of the usefulness of the theorem, we verify the conditions

for a good localisation in some cases, thereby obtaining concrete examples of
localisations of curves where the liftable section conjecture holds:

Theorem B. Let k be a finite extension of Qp with µp ⊆ k, let X/k be a
smooth, proper, geometrically connected curve and S ⊆ Xcl a set of closed
points. Assume that one of the following holds:

(a) S ⊆ Xcl is at most countable; or

(b) X is defined over a subfield k0 ⊆ k and S ⊆ Xcl contains only finitely
many algebraic points over k0.

Then XS satisfies the liftable section conjecture.

Remark 1.4.1. In the case S = ∅, Theorem B (a) specialises to Pop’s birational
result which was the starting point of our investigation [Pop10, Theorem A],
that every liftable section s′ : G′k → G′K lies over a unique k-rational point
x ∈ X(k).
Theorem B (a) for at most countable sets S is proved in §7.3. The main

ingredient is a new approximation theorem with invertibility conditions for
general valuations (Theorem 7.3.1). It is used to verify the conditions of a
good localisation in Theorem 7.3.3.
Theorem B (b) for sets with only finitely many algebraic points over a sub-

field k0 is proved in §7.4. See also Definition 7.4.1 for the definition of algebraic
points over k0.

15
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As a byproduct of the proof of Theorem A, we also obtain a result on the
index of a curve X/k. The index of X is defined as the greatest common
divisor of the degrees of all closed points:

index(X) = gcd{[κ(x) : k] : x ∈ Xcl}.

If X contains a k-rational point, then clearly index(X) = 1. In light of The-
orem A, the existence of a liftable section for a good localisation XS implies
the existence of a rational point and thus index(X) = 1. But only part of the
definition of a good localisation is needed to prove the following:

Theorem C (= Proposition 5.5.4, Corollary 5.5.5). Let k be a finite extension
of Qp with µp ⊆ k and let X/k be a smooth, proper, geometrically connected
curve of genus g. Let S ⊆ Xcl be a set of closed points such that every geo-
metrically connected, finite Z/pZ-elementary abelian cover W → XS satisfies
Pic(W )/p = 0.

(a) We have the implication:

∃ liftable section s′ : G′k → π1(XS)′ ⇒ p - index(X).

(b) If g > 0, we have the implication:

∃ section s : Gk → π1(XS) ⇒ index(X) = 1.

Part (b) of Theorem C is proved by combining part (a) with a result of Stix.
The assumptions of Theorem C are satisfied in particular when the complement
of S is uniformly dense in X (see Definition 6.3.8).

Remark 1.4.2. As explained in [Pop10, Remark (a) after Theorem B], the
assumption µp ⊆ k in Theorem A is necessary even in the birational case:
otherwise, the maximal pro-p quotient Gk(p) of Gk is a free pro-p group of
rank [k : Qp] + 1 [NSW08, Theorem 7.5.11]. This implies that there exist
sections s′ : G′k → π1(XS)′ and they are all liftable, even when X(k) is empty.

1.4.2 The liftable section conjecture without p-th roots of unity

If k is a finite extension of Qp which does not necessarily contain the p-th
roots of unity, then, by Remark 1.4.2, we cannot expect the liftable section
conjecture to hold over k. Nevertheless, quite generally, the validity of the
liftable section conjecture over a field extension `/k can be used to deduce a
form of the liftable section conjecture over k.
To state the precise result, let k be a field of characteristic zero and XS a

localisation of a smooth, proper, geometrically connected curve over k. Let
`/k be a finite Galois extension. Denote by

(XS ⊗k `)′′′ → (XS ⊗k `)′′ → (XS ⊗k `)′ → XS ⊗k `
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the beginning of the tower that corresponds to the Z/pZ-derived series for
π1(XS ⊗ `). Thus, from right to left, we have the maximal Z/pZ-elementary
abelian cover ofXS⊗k`, the maximal Z/pZ-metabelian cover, and the maximal
three-step Z/pZ-solvable cover. Denote by `′′′/`′′/`′/` the corresponding tower
of field extensions. Note that each of the three covers is Galois also over XS ,
being a characteristic cover of the Galois cover XS ⊗k ` → XS , and similarly,
each of the field extensions is Galois over k.

Definition 1.4.3. We say that a section s′ : Gal(`′/k)→ Gal((XS ⊗k `)′/XS)
is liftable (respectively, twice-liftable) if it admits a lift s′′ (respectively, s′′′),
forming a commutative diagram as follows:

Gal((XS ⊗k `)′′′/XS) Gal(`′′′/k)

Gal((XS ⊗k `)′′/XS) Gal(`′′/k)

Gal((XS ⊗k `)′/XS) Gal(`′/k)

s′′′

s′′

s′

In the case ` = k, if we set π1(XS)′ := Gal(X ′S/XS) and G′k := Gal(k′/k),
then this definition of a liftable section specialises to the definition of a liftable
section for the projection π1(XS)′ → G′k as above. We show in Propo-
sition 3.3.2 below that liftable and twice-liftable sections exist over every
k-rational point of X. The following result assumes the validity of the liftable
section conjecture for certain connected finite étale covers of XS . All those are
again localisations of curves, as is proved in Corollary 2.4.11 below.

Theorem 1.4.4 (= Corollary 3.5.3, Propositions 3.5.10 and 3.5.4). Let k be a
field of characteristic zero, let X/k be a smooth, proper, geometrically connected
curve and S ⊆ Xcl a set of closed points. Let `/k be a finite Galois extension
such that XS ⊗k ` satisfies the liftable section conjecture. Let s′ : Gal(`′/k)→
Gal((XS ⊗k `)′/XS) be a liftable section. Then there exists a unique k-rational
point x of X such that the restricted section

s′|Gal(`′/`) : Gal(`′/`)→ Gal((XS ⊗k `)′/(XS ⊗k `))

lies over x⊗k `. If moreover one of the following conditions holds:

(a) the prime p does not divide the degree [` : k]; or

(b) W ⊗k ` satisfies the liftable section conjecture for every geometrically
connected, finite étale subcover (XS ⊗k `)′ → W → XS, and s′ is twice-
liftable;
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then already s′ lies over x.

If k is a finite extension of Qp and `/k is a finite Galois extension with
µp ⊆ `, we can verify the hypotheses of Theorem 1.4.4 by showing that XS⊗k `
(respectively, W ⊗k ` for every geometrically connected, finite étale subcover
(XS ⊗k `)′ → W → XS) is a good localisation. In this way, we obtain the
following results:

Theorem D (= Theorems 7.3.4 and 7.4.16). Let k be a finite extension of Qp

and `/k a finite Galois extension with µp ⊆ `. Let X/k be a smooth, proper,
geometrically connected curve and S ⊆ Xcl a set of closed points. Assume that
one of the following holds:

(a) S ⊆ Xcl is at most countable; or

(b) X is defined over a subfield k0 ⊆ k and S ⊆ Xcl contains only finitely
many algebraic points over k0.

Then, if s′ : Gal(`′/k)→ Gal((XS⊗k `)′/XS) is a liftable section, there exists a
unique k-rational point x of X such that s′|Gal(`′/`) lies over x⊗k `. If moreover
one of the following holds:

• p does not divide [` : k]; or

• we are in case (a) and s′ is twice-liftable; or

• we are in case (b), every transcendental point over k0 is contained in S,
and s′ is twice-liftable;

then s′ itself lies over x.

Remark 1.4.5. If we choose S = ∅, then Theorem D (a) specialises to Pop’s
birational result for the function field K [Pop10, Theorem B]. However, it is
claimed there that every liftable section s′ : Gal(`′/k) → Gal((K`)′/K) lies
over a unique k-rational point, not only the restriction of such s′ to Gal(`′/`).
The discrepancy is explained by an error in the proof in §5 of loc. cit., and
while we do not have a counterexample we believe that extra conditions such
as in our Theorem D are probably necessary in order to conclude that the
liftable section s′ itself lies over the k-rational point.

1.4.3 The full section conjecture for localisations of curves

The liftable section conjecture is interesting in that it extracts information
about rational points from very small quotients of the fundamental groups.
But one can still deduce the section conjecture for the full fundamental groups
if the liftable version holds over all covers of a given localisation of a curve:
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1.5 Outline

Theorem 1.4.6 (= Proposition 3.5.10). Let k be a field of characteristic zero,
let X/k be a smooth, proper, geometrically connected curve and let S ⊆ Xcl be
a set of closed points. Assume that there exists a finite Galois extension `/k
such that W ⊗k ` satisfies the liftable section conjecture for every geometrically
connected, finite étale coverW → XS. Then XS satisfies the section conjecture,
i.e. every section s : Gk → π1(XS) lies over a unique k-rational point of X.

As an application we obtain new examples of localisations of curves satisfying
the section conjecture:

Theorem E (= Theorems 7.3.5 and 7.4.17). Let k be a finite extension of Qp,
let X/k be a smooth, proper, geometrically connected curve and let S ⊆ Xcl be
a set of closed points. Assume that one of the following holds:

(a) S is at most countable; or

(b) X is defined over a subfield k0 ⊆ k and S contains all transcendental
points and only finitely many algebraic points over k0.

Then XS satisfies the section conjecture.

Remark 1.4.7. In the case S = ∅, Theorem E (a) specialises to the Bira-
tional Section Conjecture for curves over p-adic fields, as proved by Königs-
mann [Koe05], which states that every section s : Gk → GK of the projection
of absolute Galois groups lies over a unique k-rational point x ∈ X(k).

1.5 Outline

We start by formally defining localisations of schemes at a subspace in Chap-
ter 2. The definition involves taking a limit over open subschemes, which is not
guaranteed to exist in the category of schemes. For this reason, the localisation
is defined in general only as a pro-scheme, essentially using the inverse system
of open subschemes as a placeholder for its limit. We prove a few properties
concerning the functorial behaviour of localisations. We also explain how to
define the fundamental group of a pro-scheme and show that it coincides with
the fundamental group of the limit scheme if the latter exists. We then spe-
cialise to localisations of curves, which can be described very explicitly. We
then explain profinite étale covers of general schemes and end the chapter with
a discussion of Kummer theory for a regular, integral scheme.
In Chapter 3 we develop the language around the section conjecture for lo-

calisations of curves using general quotients of the fundamental groups. The
existence of sections over each rational point is shown for a large class of quo-
tients. This entails in particular the maximal Z/pZ-abelian or maximal Z/pZ-
metabelian quotient which are relevant in the liftable section conjecture. We
then consider questions of descent type, i.e. we assume some statement over a
Galois extension `/k and deduce a similar statement over k. In particular, we
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analyse how the property of a section to lie over a rational point behaves in a
Galois extension by translating the question into the language of nonabelian
Galois cohomology. We apply the abstract machinery in the more special con-
text of the liftable section conjecture. It is shown that the validity of the
liftable section conjecture over a finite Galois extension `/k implies a version
over k. This is relevant for deducing a variant of the liftable section conjecture
over p-adic base fields which do not contain the p-th roots of unity, since the
liftable section conjecture itself holds only over base fields containing them.
We also show how the validity of the liftable section conjecture for all finite
étale covers implies the section conjecture for the full fundamental group.
In Chapter 4 we give a brief review of valuation theory for the convenience of

the reader. Besides discrete valuations associated to closed points on a curve,
more general valuations play an important role in the proof of the liftable
section conjecture for good localisations. While we can restrict ourselves to
rank 1 valuations for the most part of the proof, the use of Pop’s local-to-
global principle for Brauer groups, in particular, makes it necessary to discuss
valuations of higher rank. The relevant definitions and properties are collected
and proofs are given for a few statements.
Chapter 5 finally contains the proof of the liftable section conjecture for

good localisations. Good localisations are defined via four conditions which
roughly express that there is a large supply of invertible functions. They are
precisely what is needed in order to extend Pop’s proof in the birational case to
more general localisations of curves. The uniqueness statement in the liftable
section conjecture is proved first, before the more difficult existence question
is treated. This is the most technically involved part of this work. We refer to
Section 5.2 for a summary of the proof strategy.
In Chapter 6, the conditions for a good localisation are studied in more

detail. We prove general criteria which can be used to verify them. One set
of criteria uses approximation statements on the function field with respect to
valuations. Another criterion is formulated in terms of p-adic approximation
of divisors on the ambient curve.
The criteria are used in Chapter 7 to verify the conditions in a number of

cases, thereby obtaining concrete examples of localisations of curves over p-adic
fields which satisfy the liftable and general section conjecture. We first explain
how the proof specialises in the birational case. The easy case of a localisation
at finitely many points is also treated. We then show that localisations at
countable sets of points are good. The key ingredient here is a new approx-
imation theorem with invertibility conditions for general valuations. Finally,
we consider curves over p-adic fields which are defined over a subfield k0 and
show that localisations containing only finitely many algebraic points over k0

are good.
We close by raising in Section 7.4.2 some questions for future research to

continue this line of investigation.
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1.5 Outline

Notation

We use the following notations and conventions:

• For a prime number p, a Z/pZ-abelian (or Z/pZ-elementary abelian)
group is an abelian group which is annihilated by p. A Z/pZ-metabelian
group is a group which is an extension of a Z/pZ-abelian group by a
Z/pZ-abelian group.

• A field extension L/K is called Z/pZ-abelian (or Z/pZ-elementary
abelian, especially when there is the danger of confusion with p-cyclic
extensions) if it is Galois with Z/pZ-abelian Galois group. We use
the analogous terminology for Z/pZ-metabelian field extensions, and
similarly for Galois covers of connected schemes.

• As in 1.3.1 above, for a profinite group Π denote by Π = Π(0) D Π(1) D . . .
the Z/pZ-derived series and by

Π′ := Π/Π(1) = Πab ⊗ Z/pZ,

Π′′ := Π/Π(2)

the maximal Z/pZ-abelian quotient and maximal Z/pZ-metabelian quo-
tient of Π, respectively. Accordingly, the maximal Z/pZ-abelian exten-
sion of a fieldK will usually be denoted byK ′/K, and the maximal Z/pZ-
abelian cover of a scheme X will be denoted by X ′ → X. Analogous
notation is used for the Z/pZ-metabelian variants K ′′/K and X ′′ → X.

• If X is a scheme over a field k, and `/k is a field extension, the extension
of scalars is denoted by

X ⊗k ` := X ×Spec(k) Spec(`).

• For a scheme X, undecorated cohomology groups Hn(X,−) denote étale
cohomology. If L/K is a Galois extension of fields, Hn(L/K,−) denotes
the group cohomology for the Galois group Gal(L/K). In the special
case where L is a separable closure of K, we denote by Hn(K,−) the
cohomology for the absolute Galois group of K (which agrees with the
étale cohomology of Spec(K)).

• For a scheme X, we denote by Br(X) the cohomological Brauer group,
i.e. the étale cohomology group H2(X,Gm). The Brauer group of a field
K is denoted by Br(K).
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2 Localisations of schemes

In this chapter, we introduce the notion of localisation of a scheme at an
arbitrary subspace of its underlying topological space. We then consider more
specifically localisations of curves and finally discuss profinite étale covers. The
material contained in this chapter is kept on a quite general level. Rather than
containing concrete results, it serves to develop the language which is used to
formulate and later to prove statements about localisations of curves.
A localisation of a scheme is defined as an inverse limit of open subschemes.

As such a limit is not guaranteed to exist in the category of schemes, the
localisation can in general be defined only as a pro-object, essentially using the
inverse system of open subschemes as a placeholder for its limit. This is similar
in spirit to the construction of the real numbers where a Cauchy sequence of
rational numbers is used as placeholder for its limit. After recalling the notions
of pro-objects and pro-categories in Section 2.1, we define in Section 2.2 the
“formal localisation” (as a pro-object) and the actual localisation (if the limit
exists) of a scheme at a subspace. We prove a few properties concerning their
functorial behaviour. In Section 2.3 we define the fundamental group of a pro-
scheme and show that it coincides with the fundamental group of the limit
scheme if the latter exists. In Section 2.4 we specialise from general schemes to
normal, proper curves. Localisations of curves at sets of closed points are
guaranteed to exist in the category of schemes and can be described very
explicitly. Finally, in Section 2.5, we explain the notion of profinite étale covers
of a general scheme. This is another place where the question arises whether to
work with pro-schemes or limit schemes. We show that the two viewpoints are
equivalent under only mild assumptions. We close the chapter by discussing
Kummer theory for a regular integral scheme.
In the later chapters we work only with localisations of curves. We could have

restricted the discussion of localisations to this special case. In particular, there
is no need to define the fundamental group of a pro-scheme for the purposes
of this work. However, we haven chosen a higher level of generality in the
expectation that it may facilitate future investigations concerning the section
conjecture for higher-dimensional varieties.

2.1 Pro-categories

A category I is filtered if every finite subcategory admits a cocone. More
explicitly, I is filtered if it satisfies the following conditions:
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2 Localisations of schemes

(i) I is non-empty;

(ii) for any two objects i and j in I, there exists an object k and arrows
i→ k and j → k;

(iii) for any pair of parallel arrows f, g : i ⇒ j in I, there exists an arrow
e : j → k such that e ◦ f = e ◦ g.

The category I is cofiltered if the opposite category Iop is filtered.

Remark 2.1.1. The category associated to a directed poset is filtered. Con-
versely, every small filtered category receives a cofinal functor from a category
associated to a directed poset [SGA 4-1, Exposé I, §8.1].

Let C be a locally small category. A pro-object of C is a functor ϕ : Iop → C
with I a small filtered category. Pro-objects are usually denoted as (Xi)i∈I with
Xi = ϕ(i) for i ∈ I, the transition maps ϕ(α) : Xj → Xi for α : i→ j in I being
implicit. Another—more suggestive—notation is ”lim←−i∈I ”Xi, emphasising the
role of pro-objects as formal limits of objects in C.
Any pro-object X = ”lim←−i∈I ”Xi defines a functor C → Set by the rule

A 7→ lim−→i
Hom(Xi, A), called the functor pro-represented byX. This functor

is the limit of the representable functors Hom(Xi,−) in the opposite functor
category Fun(C, Set)op. Morphisms between pro-objects are defined as mor-
phisms between their pro-represented functors in Fun(C,Set)op. Explicitly:

Hom(”lim←−
i∈I

”Xi, ”lim←−
j∈J

”Yj) = lim←−
j∈J

lim−→
i∈I

HomC(Xi, Yj).

In this way, the pro-objects of C form the full subcategory of Fun(C,Set)op on
the functors which are cofiltered limits of representable functors. This category
is called the pro-category of C and is denoted by Pro(C).
The category C embeds into its pro-category via the Yoneda embedding
C → Pro(C), A 7→ Hom(A,−). We often identify objects in C with their
image in Pro(C). The embedding however does not preserve cofiltered limits in
general. Therefore, even when the cofiltered limit lim←−i∈I Xi exists in C, it has
to be distinguished notationally (by the quotation marks) from the pro-object
”lim←−i∈I ”Xi.

2.2 Localisations of schemes

In the following, let X be an arbitrary scheme, denote by |X| its underlying
topological space, and let S ⊆ |X| be an arbitrary subspace.

Definition 2.2.1. The formal localisation of X at S is the pro-(open
subscheme) of X

”XS” = ” lim←−
U⊇S

” U,
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where U runs over all open subschemes of X containing S. If the limit exists in
the category of schemes, it is called the localisation of X at S and denoted
by

XS := lim←−
U⊇S

U.

Remarks 2.2.2.

(1) The indexing category of the pro-object ”XS” is the poset category
formed by the open subschemes U of X containing S, ordered by re-
verse inclusion. It is directed since the open subschemes containing S
are closed under finite intersections.

(2) Since X itself appears in the inverse system, the localisation ”XS” has a
canonical morphism to X viewed as a pro-scheme. In this way, ”XS” is a
pro-scheme over X. It is clearly also a pro-(scheme over X). Those two
statements are equivalent as there is a canonical equivalence of categories
Pro(Sch /X) ' Pro(Sch)/X.

(3) If XS exists as a scheme, the projections XS → U with U ⊇ S an open
subscheme of X containing S define a natural morphism XS → ”XS” in
the category of pro-schemes.

(4) If the localisation XS exists as a scheme, then it is a fibre product over
X of the open subschemes U of X with U ⊇ S. Hence, we can write
suggestively

XS =
⋂
U⊇S

U,

if we agree to interpret the intersection in the appropriate scheme-
theoretic sense, i.e. as a fibre product over X.

(5) If x y is a specialisation of points in X with y ∈ S, then we have x ∈ U
for every U ⊇ S appearing in the inverse system above. Therefore, for
the purpose of defining ”XS” or XS , the set S can be assumed stable
under generisation without loss of generality.

(6) Assume that there is a cofinal system (Ui)i∈I of open subschemes of X
containing S such that all Ui are quasi-compact and quasi-separated and
all inclusions between them are affine. Then XS = lim←−i Ui = lim←−U⊇S U
exists in the category of schemes. By [EGA IV3, Prop. (8.2.9)], its un-
derlying topological space is

|XS | = lim←−
U⊇S
|U | =

⋂
U⊇S
|U | ⊆ |X|.

This is the smallest subspace of |X| containing S which is stable under
generisation. In particular, if S itself is already stable under generisation,
then |XS | = S.
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Example 2.2.3. Here are some simple examples of localisations:

(a) S = ∅: X∅ = ∅;

(b) S = |X|: X|X| = X;

(c) S = |U | with U ⊆ X open: X|U | = U ;

(d) S = {x} a single point of X: X{x} = Spec(OX,x);

(e) S = {ηX} the generic point for X integral: X{ηX} = ηX .

Examples (a) and (b) are of course special cases of (c), and Example (e) is a
special case of (d).

2.2.1 Functoriality

Localisations of schemes have the following functorial behaviour: let f : Y → X
be a morphism of schemes and let T ⊆ |Y | and S ⊆ |X| be subsets with
f(T ) ⊆ S. Then for every open subscheme U of X containing S, the inverse
image f−1(U) is an open subscheme of Y containing T , which therefore appears
in the inverse system defining ”YT ”. From this we obtain a morphism of pro-
schemes ”YT ”→ ”XS” which fits into a commutative diagram

”YT ” Y

”XS” X.

f

If the two localisations YT and XS exist in the category of schemes, then the
maps YT → f−1(U) → U for U ⊇ S similarly define a morphism YT → XS ,
and we have the extended commutative diagram

YT ”YT ” Y

XS ”XS” X.

f

2.2.2 Transitivity

Let X be a scheme and S ⊆ T ⊆ |X| subspaces. Assume that there is a
cofinal system (Ui)i∈I of open subschemes of X containing S such that all
Ui are quasi-compact and quasi-separated and all inclusions between them are
affine. Then the localisation XS exists and its underlying space is the subspace
|XS | =

⋂
U⊇S |U | of |X| (see Remark 2.2.2 (6)). The subspace T of |X| can

then also be viewed as a subspace of |XS |.

Proposition 2.2.4. In the given situation, the localisation (XS)T exists if and
only if XT exists, and in this case one has (XS)T = XT .
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2.3 Fundamental groups of pro-schemes

Proof. Since |XS | carries the subspace topology from |X|, the open subschemes
V of XS containing T are precisely those of the form V = V ′ ×X XS with V ′

an open subscheme of X containing T . With this we calculate:

(XS)T = lim←−
XS⊇V⊇T

V

= lim←−
X⊇V ′⊇T

(V ′ ×X XS)

= lim←−
X⊇V ′⊇T

lim←−
X⊇U⊇S

(V ′ ∩ U)

= lim←−
X⊇U⊇S

lim←−
X⊇V ′⊇T

(V ′ ∩ U).

Here we used the principle that limits commute with limits to move the limit
defining XS outside of the fibre product with V ′ and the limit over V ′. We also
used that the fibre product of two open subschemes of X is their intersection.
For any fixed X ⊇ U ⊇ S, the open neighbourhoods of T in X which are
contained in U are cofinal, so that we can drop the limit over U altogether and
find

(XS)T = lim←−
X⊇V ′⊇T

V ′ = XT .

2.2.3 Base change along closed morphisms

Localisation of schemes commutes with base change along closed morphisms:

Lemma 2.2.5. Let X be a scheme and S ⊆ |X| a subspace. Let f : Y → X
be a closed morphism. Assume that the localisation XS exists. Then Yf−1(S)

exists and the canonical map Yf−1(S) → XS ×X Y is an isomorphism.

Proof. Using the fact that limits commute with fibre products, we have

XS ×X Y = ( lim←−
U⊇S

U)×X Y = lim←−
U⊇S

f−1(U).

Thus, it suffices to show that the sets f−1(U) with U ⊆ X open containing S
are cofinal among all open V ⊆ Y containing f−1(S). For any open V ⊆ Y
containing f−1(S), the set U := X \f(Y \V ) satisfies S ⊆ U and f−1(U) ⊆ V ,
and U is open in X since f is closed.

2.3 Fundamental groups of pro-schemes

We want to extend the definition of the étale fundamental group of a scheme
to pro-schemes and compare the resulting notion with the fundamental group
of the limit scheme if it exists.
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2.3.1 Galois categories

Recall that a Galois category with fibre functor is a pair (C, F ) consisting
of an essentially small category C (i.e. the set of isomorphism classes is small)
and a functor F : C → FinSet to the category of finite sets with the following
properties:

(i) C has finite limits and colimits;

(ii) every object of C is a finite coproduct of connected objects;

(iii) F is exact and conservative. 1

Here, an object X of C is called connected if it has precisely two subobjects:
the initial object ∅ and X itself. Exactness of F means that finite limits
and colimits are preserved. The functor F being conservative means that a
morphism φ in C is an isomorphism if and only if F (φ) is an isomorphism in
FinSet. A morphism of Galois categories (C, F ) → (C′, F ′) consists of a
functor ϕ : C → C′ and a natural transformation (necessarily an isomorphism)
η : F ′ ◦ ϕ ' F . For any profinite group Π, the category Π-FinSet of contin-
uous permutation representations of Π on finite sets forms a Galois category
with the forgetful fibre functor Π-FinSet → FinSet. The fundamental fact
about Galois categories is that that any Galois category (C, F ) is equivalent to
(Π-FinSet, forget) for a unique profinite group Π. The group Π can be recov-
ered as the automorphism group Aut(F ) of the fibre functor F , equipped with
the coarsest topology making the tautological action on all discrete finite sets
F (X) continuous for X ∈ C.
To make this more precise, let ProfGp be the category of profinite groups

and GalCat the 2-category of essentially small Galois categories with fibre
functor. The category Fun((C, F ), (C′, F ′)) of morphisms between two Galois
categories with fibre functor (with the obvious definition of 2-morphisms) is
in fact a setoid, i.e. equivalent to a category with only identity morphisms, so
that GalCat is really a category rather than a 2-category. We have a functor

ProfGp −→ GalCatop (2.3.1)

which is given on objects by Π 7→ (Π-FinSet, forget). On morphisms, every
homomorphism of profinite groups f : Π→ Π′ induces a morphism

f∗ : (Π′-FinSet, forget)→ (Π-FinSet, forget)

which pulls back a Π′-action on a finite set to a Π-action on the same set
along f .

1This definition of a Galois category is taken from [Stacks, Tag 0BMQ]. This list of axioms
is equivalent but more concise compared to the original definition in [SGA 1, Exposé V,
§4].
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2.3 Fundamental groups of pro-schemes

Theorem 2.3.1 (Main Theorem of Galois Categories). The functor (2.3.1) is
an equivalence of categories

ProfGp ' GalCatop

with quasi-inverse (C, F ) 7→ Aut(F ).

Proof. The essential surjectivity is [SGA 1, Exp. V, Thm. 4.1]. Fully faithful-
ness is proved in [SGA 1, Exp. V, Cor. 6.3].

2.3.2 Colimits of Galois categories

Let (Ci, Fi)i∈I be a filtered diagram of Galois categories with fibre functor. For
simplicity, we assume that the index category I is a directed poset (cf. Re-
mark 2.1.1). Let

(C, F ) := colim
i

(Ci, Fi).

The underlying category C is given by the 2-colimit C = 2- colimi Ci, whose
objects are pairs (i,Xi) of an index i ∈ I and an object Xi ∈ Ci, and whose
morphisms are defined by

HomC((i,Xi), (j, Yj)) = colim
k≥i,j

HomCk(ϕik(Xi), ϕjk(Yj)),

where ϕik : Ci → Ck and ϕjk : Cj → Ck are the transition functors for the direct
system.

Corollary 2.3.2. The colimit (C, F ) = colimi(Ci, Fi) is a Galois category
with fibre functor, and there is a canonical isomorphism of profinite groups
Aut(F ) ∼= lim←−i Aut(Fi).

Proof. By the Main Theorem of Galois Categories 2.3.1, the filtered diagram
of Galois categories (Ci, Fi) is equivalent to a cofiltered diagram of profinite
groups (Πi)i∈I . The limit Π = limi Πi exists in the category of profinite groups.
Its image (Π-FinSet, forget) under the equivalence of categories (2.3.1) is the
colimit (C, F ) = colimi(Ci, Fi).

2.3.3 Fundamental groups of pro-schemes

Let X = (Xi)i∈I be a pro-scheme. Assume that all Xi are connected. Let
Cov(Xi) be the category of finite étale covers of Xi. Assume we are given com-
patible fibre functors Fi on the Cov(Xi) (for instance, via compatible geometric
points), so that (Cov(Xi), Fi) becomes a direct system of Galois categories with
fibre functor and we are in the situation of Section 2.3.2.

Definition 2.3.3. The category of finite étale covers of the pro-scheme
X = (Xi)i∈I is defined as

Cov(X) = 2- colim
i∈I

Cov(Xi).
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2 Localisations of schemes

The profinite fundamental group of X with respect to the fibre functors
(Fi)i∈I is defined as π1(X,F ) := Aut(F ), the automorphism group of the limit
fibre functor F = limFi : Cov(X)→ FinSet.

The associations (X,F ) 7→ (Cov(X), F ) and hence (X,F ) 7→ π1(X,F ), in
Definition 2.3.3 are well-defined (independent of the presentation up to canon-
ical isomorphism) and functorial. Namely, denoting by ConnSch∗ the cate-
gory of pairs (X,F ) with X a connected scheme and F a fibre functor on
Cov(X), the functor ConnSchop

∗ → GalCat, (X,F ) 7→ (Cov(X), F ) extends
to Pro(ConnSch∗)

op via the 2-universal property of ind-categories [SGA 4-1,
Exposé I, Prop. 8.7.3]:

(ConnSch∗)
op GalCat

Pro(ConnSch∗)
op Ind(GalCat) GalCat .

Cov

id

Cov colim

This uses the fact that the category GalCat admits small filtered colimits by
Corollary 2.3.2. It follows also from Corollary 2.3.2 that we have a canon-
ical isomorphism for every connected pro-scheme (Xi)i∈I with fibre functors
(Fi)i∈I :

π1((Xi, Fi)i∈I) = lim←−
i

π1(Xi, Fi). (2.3.2)

2.3.4 Comparison with the fundamental group of the limit
scheme

Assume now that the schemes Xi in the cofiltered diagram are quasi-compact
and quasi-separated (“qcqs” for short) and that the transition maps are affine.
Then the limit scheme X∞ := limiXi exists and is connected [EGA IV3,
Prop. (8.4.1) (ii)]. We want to compare the profinite fundamental group of
the limit scheme X∞ with that of the pro-scheme ”lim←−i ”Xi.
For simplicity, assume that the index category I is a directed poset (cf. Re-

mark 2.1.1).

Proposition 2.3.4. With the assumptions above, the canonical functor is an
equivalence

2- colim Cov(Xi) ' Cov(X∞). (2.3.3)

Proof. For a scheme X, denote by (Sch /X)fin.pres. the category of X-schemes
of finite presentation. By [EGA IV3, Thm. (8.8.2)], the canonical functor given
by

(i, Y → Xi) 7→ (Y ×Xi X∞ → X∞)

is an equivalence

2- colim (Sch /Xi)fin.pres. ' (Sch /X∞)fin.pres..
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2.4 Localisations of curves

By restricting to the full subcategories Cov(−) ⊆ (Sch /−)fin.pres., it follows
that the functor (2.3.3) is fully faithful. To show the essential surjectivity, let
Y∞ → X∞ be a finite étale cover. Then there exist i ∈ I and a morphism
Yi → Xi of finite presentation, such that Y∞ = Yi ×Xi X∞ as an X∞-scheme.
It is enough to show that there exists some j ≥ i such that the base change
Yi×XiXj → Xj is finite étale. By [EGA IV3, Thm. (8.10.5)], there exists some
such j1 ≥ i for the property “finite”, and by [EGA IV4, Prop. (17.7.8)] there
exists some such j2 ≥ i for the property “étale”, so we can choose any j in the
directed set I with j ≥ j1 and j ≥ j2.

Corollary 2.3.5. Let (Xi)i∈I be an inverse system of connected qcqs schemes
with affine transition maps and let X∞ = limiXi be its limit. Let F∞ be a fibre
functor on Cov(X∞) and Fi the fibre functor induced by F∞ on Cov(Xi) for
each i ∈ I. Then the canonical map is an isomorphism of profinite groups

π1(X∞, F∞) ∼= lim←−
i

π1(Xi, Fi).

Proof. The equivalence from Proposition 2.3.4 exhibits (Cov(X∞), F∞) as the
colimit of the Galois categories with fibre functors (Cov(Xi), Fi). By the Main
Theorem of Galois Categories 2.3.1 (and more specifically, Corollary 2.3.2),
this is equivalent to the claimed isomorphism of fundamental groups.

Remark 2.3.6. Corollary 2.3.5 can be rephrased as saying that for an inverse
system (Xi)i∈I of connected qcqs schemes with affine transition maps, the
canonical morphism lim←−iXi → ”lim←−iXi” from the limit scheme to the pro-
scheme induces an isomorphism on fundamental groups.

2.4 Localisations of curves

When considering localisations of curves, it is convenient to specify a set of
closed points at which to localise. The result should, in addition to the specified
closed points, always include the generic point. Hence, we define:

Definition 2.4.1 (Localisation of a curve at a set of closed points). Let X be
a one-dimensional integral scheme with generic point ηX . For a set of closed
points S ⊆ Xcl, define ”XS” (resp. XS) as the formal localisation (resp. the
localisation) of X at S ∪ {ηX} in the sense of Definition 2.2.1.

Remarks 2.4.2.

(1) If S 6= ∅, then the localisations at S and at S ∪ {ηX} are automatically
equal (see Remark 2.2.2 (5)). In the case S = ∅, the localisation X∅
at ∅ in the sense of Definition 2.2.1 would result in the empty scheme,
but with our convention of always including the generic point, we have
X∅ = {ηX}.
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2 Localisations of schemes

(2) An equivalent way of defining the localisation of a curve X at a set of
closed points S ⊆ Xcl is via ”XS” = ”lim←−U⊇S U” and XS = lim←−U⊇S U ,
with U running through the dense open subschemes of X containing S.

(3) Assume that there is a cofinal system (Ui)i∈I of open subschemes of X
containing S such that all Ui are quasi-compact and quasi-separated and
all inclusions between them are affine. Then the localisation XS exists
and has underlying topological space |XS | = S ∪ {ηX} ⊆ |X| according
to Remark 2.2.2 (6).

Proposition 2.4.3. Let k be a field and X/k a normal, connected, one-
dimensional variety over k. Then for every set of closed points S ⊆ Xcl,
the localisation XS exists. It is affine unless X is proper and S = Xcl.

Proof. Let X ↪→ X be the normal completion of X (see e.g. [EGA II,
Cor. (7.4.11)]). The localisation of X at S, if it exists, is equal to the lo-
calisation of X at the same set S by transitivity (Proposition 2.2.4). So we
may replace X with X and assume that X/k is proper, or equivalently pro-
jective [Stacks, Tag 0A26]. If S = Xcl, then XS exists and is equal to X (see
Example 2.2.3 (b)), which is not affine. Assume S ( Xcl. It suffices to show
that every open subscheme U ( X strictly smaller than X is affine, for then
the limit XS = lim←−S⊆U(X U exists and is affine, being an inverse limit of affine
schemes. Fix U = X \ {x1, . . . , xn} ( X. Using the Riemann–Roch Theorem
[Liu02, Theorem 7.3.17], there exists a rational function f on X which is
regular on U and has poles at all xi. It defines a finite morphism f : X → P1

k

under which U is the preimage of the affine line A1
k, hence U is affine.

2.4.1 Ringed space structure

As a ringed space, the localisation of a curve can be described as follows:

Proposition 2.4.4. Let k be a field, let X/k a normal, connected, one-
dimensional variety over k and S ⊆ Xcl a set of closed points. The localisation
XS is integral of dimension ≤ 1 with function field K equal to that of X. Its
underlying space is |XS | = S ∪ {ηX} ⊆ |X|, and the ring of regular functions
on an open subset U ⊆ |XS | is given by the intersection of local rings in K:

OXS (U) =
⋂
x∈U
OX,x.

Proof. The fact that the underlying space of XS is equal to S ∪ {ηX} was
noted in Remark 2.4.2 (3) above. This implies that XS is irreducible and of
dimension ≤ 1. For x ∈ |XS |, we have the equality of local rings OXS ,x = OX,x
by the transitivity of localisations for the subspaces {x} ⊆ S ∪{ηX} ⊆ |X|. In
particular, XS is reduced, hence integral, with function field K equal to that
of X. For an open subset U ⊆ XS , the comparison of local rings also implies
OXS (U) =

⋂
x∈U OXS ,x =

⋂
x∈U OX,x.
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2.4 Localisations of curves

Corollary 2.4.5. Let X/k and S ⊆ Xcl be as in Proposition 2.4.4. The ring
of regular functions on the localisation XS is given by the intersection of local
rings in K:

O(XS) =
⋂
x∈S
OX,x.

Proof. Immediate from Proposition 2.4.4.

2.4.2 Compactification

Let k be a field and W/k a k-scheme which arises as the localisation of a
normal, proper curve X/k at a set of closed points S ⊆ Xcl. The curve X/k
and the set S are uniquely determined by W . We explain how they can be
functorially recovered from W .
Let K be the function field of W and define W/k as the unique normal,

proper curve with function field K. It can be constructed as follows (see e.g.
[Sza09, §4.4] for details): the set of closed points of W is the set of discrete
valuation rings in K containing k. The underlying topological space of W
consists of those plus one generic point. The proper closed subsets are finite
sets of closed points. The local ring OW,x ⊆ K of a closed point x ∈ W cl is
precisely the discrete valuation ring represented by x. Finally, the structure of
a ringed space is given by

OW (U) =
⋂
x∈U
OW,x

for every open subset U ⊆W . The resulting locally ringed spaceW is a normal,
proper algebraic curve over k with function field K. Every codimension one
point ofW can be identified with a closed point ofW via its associated discrete
valuation ring.

Proposition 2.4.6. In the above situation, W/k is the localisation of W at
the set of codimension one points of W .

Proof. By the theory of proper, normal curves [Sza09, Cor. 4.4.8], the identity
isomorphism K ∼= K between the function fields of W and X extends uniquely
to an isomorphism W ∼= X of curves over k. Hence, W is a localisation of W .
By Remark 2.4.2 (3), the set of closed points of W at which the localisation
yields W is determined as the set of codimension one points of W .

The reconstruction of X and S from the localisation XS is functorial not
only with respect to isomorphisms but more generally with respect to finite
dominant morphisms:

Proposition 2.4.7. Let k be a field. Let X/k and Y/k be normal, proper
curves, and S ⊆ Xcl and T ⊆ Ycl sets of closed points. Let f : YT → XS be
a finite dominant morphism. Then f extends uniquely to a finite dominant
morphism f : Y → X with f(T ) ⊆ S:
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2 Localisations of schemes

YT Y

XS X.

f ∃! f

Proof. The finite dominant morphism f : YT → XS induces a finite extension
of function fields f∗ : κ(X)→ κ(Y ), which defines a finite dominant morphism
f : Y → X. Identifying closed points of Y (resp. X) with discrete valuation
rings in κ(Y ) (resp. κ(X)) containing k, the morphism f is given on closed
points by f∗−1(OY,y) = OX,f(y) for y ∈ Ycl. Since the local rings of codimension
one points of YT (resp. XS) agree with those of Y (resp. X), the restriction
of f to YT agrees with f as a map of topological spaces. But a dominant
morphism of integral schemes is uniquely determined by its underlying map
on topological spaces together with its induced function field extension. This
shows that the diagram commutes, i.e. that f extends f .

2.4.3 Characterisation

We can characterise those k-schemes that arise as localisations of curves:

Proposition 2.4.8. Let k be a field and W/k a normal, integral, noetherian,
separated k-scheme whose function field K is finitely generated of transcendence
degree 1 over k. Then W arises as the localisation of a normal, proper curve
over k at a set of closed points.

Proof. The Dimension Inequality [Mat89, Theorem 15.5] applied to any dense
open affine subscheme of W shows that dim(W ) ≤ trdeg(K/k) = 1. For any
codimension one point w ∈ W (1), the local ring OW,w is a normal, noethe-
rian domain of Krull dimension one, hence a discrete valuation ring in K
containing k. Let X/k be the smooth, proper curve with function field K
(whose construction was recalled above). Sending the generic point of W to
the generic point of X and every codimension one point w of W to the closed
point of X which represents the discrete valuation ring OW,w defines a map
on topological spaces |W | → |X|. Since W is assumed separated, the map
is injective, so we can identify |W | with a subspace of |X|. Let S ⊆ Xcl be
the set of codimension one points of W . Then W and the localisation XS

have the same underlying space, in other words we have a homeomorphism
|W | ∼= |XS |. For every w ∈ W (1), the local rings in K of W and X at w
coincide by construction: OW,w = OX,w. For every open subset U ⊆ W , we
have OW (U) = ∩x∈UOW,x = ∩x∈UOX,x. Comparing with Proposition 2.4.4,
we see that the map W ∼= XS is an isomorphism of locally ringed spaces over
k, i.e. an isomorphism of k-schemes.
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2.4.4 Descent

The property of being a localisation of a curve can be checked after a scalar
extension:

Proposition 2.4.9. Let `/k be an extension of fields and let W be a k-scheme
such that W ⊗k ` equals the localisation of a normal, proper curve over ` at a
set of closed points. Then the same holds for W/k.

Proof. We show that the properties of Proposition 2.4.8 which characterise
localisations of curves are inherited by W from W ⊗k `. The projection W ⊗k
` → W is surjective, which implies that W is quasi-compact and irreducible.
For any affine open subscheme U ⊆W , the homomorphism O(U)→ O(U)⊗k `
is injective by flatness. The ring O(U)⊗k ` = O(U ⊗k `) is integral, hence so is
O(U). Thus, the schemeW is integral. The property of being noetherian is also
inherited by O(U): any chain of ideals in O(U) gives rise to a chain of ideals
in O(U) ⊗k ` by tensoring; the latter stabilises, and faithful flatness of k → `
implies that the original chain stabilises in O(U). So W is locally noetherian,
and hence noetherian by quasi-compactness. The morphism W → Spec(k) is
separated [EGA IV2, Prop. (2.7.1)] andW is normal [EGA IV2, Cor. (6.5.4)] by
faithfully flat descent. If K and L denote the function fields of W and W ⊗k `,
respectively, then we have trdeg(K/k) = trdeg(L/`) = 1 by [EGA IV2, Prop.
(4.2.1)]. In conclusion, the characterisation of localisations of curves from
Proposition 2.4.8 applies to W .

2.4.5 Finite étale covers

Finite étale covers of the localisation of a curve are uniquely determined both
by their restriction to the generic point and by their extension to the complete
ambient curve:

Proposition 2.4.10. Let k be a field, X/k a normal, proper curve and S ⊆ Xcl

a set of closed points. Let K be the common function field of X and XS. There
are canonical equivalences between the following categories:

(1) connected finite étale covers of XS;

(2)
(
finite separable extensions L/K which are unramified over XS

)op;

(3) finite branched covers Y → X which are unramified over XS.

Here, an extension L/K is called unramified over XS if the normalisation
of XS in L is unramified (equivalently, étale) over XS . A finite branched
cover Y → X is a finite morphism of integral, normal schemes such that the
function field extension κ(Y )/κ(X) is separable. The finite branched cover is
called unramified over XS if the base change XS ×X Y → XS is unramified
(equivalently, étale). The equivalences (1) ' (2) and (3) ' (2) are both given
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by taking function fields (from left to right) and normalisations of XS , resp.
X, in L/K (from right to left).

Proof of Proposition 2.4.10. The equivalence (1) ' (2) holds more generally
for any normal, integral, locally noetherian scheme [SGA 1, Exp. I, Cor. 10.3].
By the theory of normal, proper curves [Sza09, Cor. 4.4.8], we have an anti-
equivalence between finite extensions L/K and finite dominant morphisms
from normal, connected curves Y → X. It remains to see that Y → X
being unramified over XS is equivalent to κ(Y )/K being separable and un-
ramified over XS . The fibre product XS ×X Y is a localisation of Y by
the compatibility of localisation with base change along closed morphisms
(Lemma 2.2.5), hence XS ×X Y is in particular normal and integral with func-
tion field κ(Y ). It is also finite over XS , thus integral over XS . So XS ×X Y
equals the normalisation of XS in κ(Y ). This shows that κ(Y )/K is unrami-
fied over XS if and only if Y → X is. In this case, κ(Y )/K must be separable
since Spec(κ(Y )) → Spec(K) is the restriction of the unramified morphism
XS ×X Y → XS to the generic point of XS .

Corollary 2.4.11. Let k be a field, X/k a normal, proper curve and S ⊆ Xcl

a set of closed points. Every connected finite étale cover of XS is of the form
Yf−1(S) → XS for some finite branched cover f : Y → X which is unramified
over XS.

Proof. We have the equivalence (1) ' (3) in Proposition 2.4.10 between con-
nected finite étale covers of XS and finite branched covers of X which are
unramified over XS . The functor from right to left sends Y → X to the nor-
malisation of XS in the function field of Y . As shown in the proof of Proposi-
tion 2.4.10, the result is the fibre product XS ×X Y , which equals Yf−1(S) by
Lemma 2.2.5.

2.5 Profinite étale covers

2.5.1 General remarks on profinite étale covers

Generally, in the theory of the étale fundamental group of a scheme, one con-
siders only covers of finite degree. One reason for this restriction is that one
would like to have a comparison isomorphism with the topological fundamen-
tal group in the case of a smooth complex algebraic variety. This amounts to
an equivalence of categories between topological covers and algebraic (étale)
covers. For finite covers, one has such an equivalence by Riemann’s Existence
Theorem [SGA 1, Exp. XII, Thm. 5.1], which however fails for covers of infinite
degree. For example, every finite connected topological cover of Gm(C) = C×
is of the form C× → C×, z 7→ zn for some n ∈ N, and hence induced by
an algebraic finite étale cover of Gm, wheras the topological universal cover
exp: C→ C× is transcendental and has no analogue on the algebraic side. In
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the world of schemes, the role of the universal cover of is played instead by the
universal pro-(finite étale) cover.
Assume thatX is a connected scheme and F is a fibre functor on the category

Cov(X) of finite étale covers. By a pointed cover of X, we mean a pair (Y, y)
of a finite étale cover Y → X together with a distinguished element y ∈ F (Y )
of the fibre. The universal pro-(finite étale cover) of X is by definition the
pro-object (Xuniv, xuniv) of the category of pointed finite étale covers of X
pro-representing the fibre functor F . This means, there are natural bijections

HomPro(Cov(X))(X
univ, Y ) ∼= F (Y ),

given by f 7→ f(xuniv), for all Y ∈ Cov(X). The pro-object Xuniv is not a
scheme but rather given by an inverse system of finite étale covers (Xi)i∈I , and
the universal point xuniv is really a compatible family of points (xi)i∈I with
xi ∈ F (Xi).
Consider more generally any pro-object (Yi)i∈I of the category of finite étale

covers of a scheme X. Since finite morphisms are affine, the inverse system
(Yi)i∈I corresponds to a direct system (Ai)i∈I of quasi-coherent OX -algebras.
The direct limit A∞ := lim−→i∈I Ai corresponds via the relative Spec functor to
a scheme Y∞ := Spec(A∞) which is affine over X. The scheme Y∞ is then the
inverse limit of the Yi:

Y∞ = lim←−
i

Yi.

In this way, every pro-(finite étale cover) gives rise to an actual scheme by
taking the limit. It is sometimes convenient to work with the limit scheme
rather than the pro-scheme. For example, this conforms with the habit of
studying infinite algebraic field extensions rather than direct systems of finite
extensions.

Definition 2.5.1. Let X be a scheme. A profinite étale cover of X is a
morphism Y∞ → X which arises as the limit lim←−i∈I Yi of an inverse system of
finite étale covers Yi → X.

The following proposition provides justification for not always carefully dis-
tinguishing between a pro-(finite étale cover) and the associated profinite étale
cover arising as its limit, at least if the base is quasi-compact and quasi-
separated.

Proposition 2.5.2. Let X be a quasi-compact and quasi-separated scheme.
Then the functor (Yi)i∈I 7→ lim←−i∈I Yi from Pro(Cov(X)) to profinite étale cov-
ers of X is an equivalence.

Proof. To define a quasi-inverse functor in the other direction, let Z → X be
any profinite étale cover. Let JZ be the category of factorisations Z → Zj → X
with Zj finite étale over X. This category is essentially small (i.e. the set of
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isomorphism classes of objects is small) and filtered, so that (Zj)j∈JZ is a pro-
object in Pro(Cov(X)). We claim that the functor Z 7→ (Zj)j∈JZ is left adjoint
to the functor lim←−, i.e. we have natural bijections

HomPro(Cov(X))((Zj)j∈JZ , (Yi)i∈I)
∼= HomX(Z, lim←−

i∈I
Yi)

for all (Yi)i∈I ∈ Pro(Cov(X)) and all profinite étale covers Z → X. Since both
sides commute with inverse limits in the second argument, we may assume that
the pro-object (Yi)i∈I consists of a single finite étale cover Y0 → X. Using the
definition of morphisms in the pro-category, the claimed bijection then takes
the form

lim−→
j∈JZ

HomX(Zj , Y0) ∼= HomX(Z, Y0).

This bijection exists tautologically since every X-morphism in HomX(Z, Y0) is
a factorisation Z → Y0 → X which appears in the inverse system (Zj)j∈JZ .
For a profinite étale cover Z → X, the adjunction morphism Z → lim←−j∈JZ Zj

is an isomorphism since Z is by definition an inverse limit of finite étale covers of
X, and all of those appear in the inverse system (Zj)j∈JZ . For a pro-(finite étale
cover) (Yi)i∈I , we have the adjunction morphism (Yj)j∈JY → (Yi)i∈I , whose
source is the pro-system of all finite étale factorisations lim←−i∈I Yi → Yj → X.
It is an isomorphism if the Yi are cofinal among all finite étale factorisations.
This holds since X is assumed quasi-compact and quasi-separated [EGA IV3,
Prop. 8.13.1].

For a connected, quasi-compact and quasi-separated scheme X with a fibre
functor F on Cov(X), Grothendieck’s Galois Theory for finite étale covers
extends in a straightforward way to profinite étale covers. For example, the
equivalence between finite étale covers and finite π1(X,F )-sets extends (by
taking pro-categories) to an equivalence between profinite étale covers and
profinite π1(X,F )-sets, i.e. profinite sets with a continuous π1(X,F )-action.
Just like for finite étale covers, we may define a profinite étale Galois cover
of X to be a profinite étale cover Y → X with Y connected such that AutX(Y )
acts transitively on F (Y ). In this case, the automorphism group

Gal(Y/X) := AutX(Y )op

carries a profinite topology with a neighbourhood basis of the identity consist-
ing of the subgroups Gal(Y/Y ′) with Y → Y ′ → X a finite connected subcover.
In particular, it makes sense to speak of the universal profinite étale cover, the
maximal abelian (profinite étale) cover and so on.

2.5.2 Profinite étale covers of integral, normal schemes

Proposition 2.5.3. Let Z be a normal, integral, noetherian scheme with func-
tion field K. There is a canonical equivalence between the following categories:
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2.5 Profinite étale covers

(1) connected profinite étale covers of Z;

(2)
(
separable extensions L/K which are unramified over Z

)op.

Proof. The equivalence, given by taking function fields and normalisations,
respectively, holds for finite covers and finite extensions by [SGA 1, Exp. I,
Cor. 10.3]. The profinite version follows with Proposition 2.5.2 by taking pro-
categories, using the fact that noetherian schemes are quasi-compact and quasi-
separated.

2.5.3 Kummer theory for regular, integral schemes

Let Z be a regular, integral, noetherian scheme and let K be its function
field. Let n ∈ N be a natural number which is invertible on Z, and assume
µn ⊆ O(Z). By Proposition 2.5.3, abelian covers of exponent n of Z (i.e.
Galois covers with abelian, n-torsion Galois group) correspond to unramified
abelian extensions of exponent n of K. Kummer theory tells us that all such
extensions arise by adjoining n-th roots of subgroups of K× containing K×n.
We determine the subgroup corresponding to the maximal abelian cover of
exponent n. For a codimension one point z ∈ Z(1), we denote by vz : K× � Z
the associated discrete valuation on the function field.

Proposition 2.5.4. In the above situation, let Z ′ → Z be the maximal abelian
cover of exponent n and let K ′Z/K be the corresponding extension of the func-
tion field. Then K ′Z is obtained from K by adjoining n-th roots of the subgroup
∆Z ⊆ K× given by

∆Z = {f ∈ K× | vz(f) ≡ 0 mod n for all z ∈ Z(1)}.

Proof. By Kummer theory, the extension K ′Z/K is generated by elements of
the form f1/n with f ∈ K×. It suffices to show that an extension K(f1/n)/K
is unramified over Z if and only if vz(f) ≡ 0 mod n for all codimension one
points z ∈ Z(1). Given f ∈ K×, assume that vz(f) 6≡ 0 mod n for some
z ∈ Z(1). Let w|vz be a valuation on K(f1/n) extending vz. Then we have
w(f1/n) = 1

nvz(f) 6∈ Z, so that the extension K(f1/n)/K is ramified over z.
Conversely, assume that vz(f) ≡ 0 mod n for all z ∈ Z(1) and let Y → Z be

the normalisation of Z in K(f1/n). We have to show that Y is étale over Z.
Since Z is assumed regular, it is in particular normal, and since n is invertible
in K, the extension K(f1/n)/K is finite separable. This implies that Y is finite
over Z. We can thus apply the Zariski–Nagata purity theorem, by which it
suffices to show that Y is étale over every codimension one point z ∈ Z(1). Let
tz ∈ mz be a local parameter at z and write f = t

vz(f)
z u with u ∈ O×Z,z. Since

vz(f) ≡ 0 mod n, we have K(f1/n) = K(u1/n). Replacing f with u, we may
therefore assume that f is invertible at z. The OZ,z-algebra OZ,z[X]/(Xn−f)
is then standard étale since f and n are both invertible. It is in particular
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2 Localisations of schemes

normal and therefore equals the normalisation of OZ,z in K[X]/(Xn−f). The
field K(f1/n) is a direct factor of K[X]/(Xn−f), so the normalisation of OZ,z
in K(f1/n) is a direct factor of OZ,z[X]/(Xn − f) and hence étale over OZ,z.
Thus, the extension K(f1/n)/K is unramified over z.

Remark 2.5.5. In the setting of Proposition 2.5.4, the subgroup ∆Z ⊆ K×

clearly contains both K×
n and the functions O(Z)× which are everywhere

invertible. Moreover, every n-torsion element of the Picard group Pic(Z) gives
rise to elements of ∆Z . Namely, if L is a line bundle on Z such that L⊗n is
trivial, then let 0 6= s ∈ LK be a nonzero rational section and t ∈ Γ(Z,L⊗n)
a global section of L⊗n defining a trivialisation OZ ∼= L⊗n. Then the quotient
f := sn/t is an element of K× and it is easy to see by looking at stalks of L
at codimension one points that f is contained in ∆Z . A different choice of
s changes f by an element of K×n; a different choice of t changes f by an
element of O(Z)×.
Since the Picard group of Z coincides with the Weil divisor class group, the

construction can also be described in terms of Weil divisors. Namely, given a
divisor D on Z such that nD is principal, let f ∈ K× be a rational function
with div(f) = nD. Then clearly, vz(f) ≡ 0 mod n for all z ∈ Z(1), so that
f ∈ ∆Z . The function f with div(f) = nD is determined up to an invertible
function in O(Z)×. If D is replaced with a linearly equivalent divisor, say
D′ = D + div(g), then f is changed by gn ∈ K×n.
We have thus a homomorphism Pic(Z)[n] → K×/K×

nO(Z)×, and the
preimage in K× of its image is precisely the group ∆Z which corresponds
by Kummer theory to the maximal abelian cover of exponent n of Z.
Remark 2.5.6. The group ∆Z appears in the short exact sequence

0 O(Z)×/O(Z)×
n

∆Z/K
×n Pic(Z)[n] 0,

with the map to Pic(Z)[n] given by f 7→ 1
n div(f). The exactness is easily

verified. The sequence can also be obtained from the Kummer sequence on the
étale site of Z. This requires the calculation of

H1(Z, µn) ∼= ∆Z/K
×n.

Here is a sketch of how this isomorphism can be derived:

1. the Leray spectral sequence for the sheaf µn under j : Spec(K)→ Z iden-
tifies H1(Z, µn) with the kernel of a map H1(K,µn)→ H0(Z,R1 j∗ µn);

2. the Kummer sequence on Spec(K) and the vanishing of R1 j∗Gm = 0
yield an isomorphism R1 j∗ µn ∼= (j∗Gm)/n;

3. the exact sequence for the sheaf of divisors DivZ = (j∗Gm)/Gm on Z
yields an isomorphism (j∗Gm)/n ∼= DivZ/n;

4. combining the above, H1(Z, µn) is identified with the kernel of the divisor
map K×/K×n → Div(Z)/n, which equals ∆Z/K

×n by definition.
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The starting point of the section conjecture for curves is the observation that
rational points induce sections on fundamental groups. We sketched this pro-
cedure in the introduction for the fundamental group of a proper curve and in
the birational variant for the absolute Galois group of its function field. Here,
we want to generalise this to localisations of curves (which lie in between the
generic point and the full curve), and to quotients of the fundamental groups.
The relation between a rational point x and a section s induced by it is that
the image of s is contained in a decomposition group of x, in which case we say
that s lies over x. In Section 3.1, the terminology is introduced for arbitrary
quotients of the fundamental group of the localisation of a curve. We then
show for the class of pro-C quotients that sections do exist over every rational
point. This entails in particular the case of liftable sections for the maximal
Z/pZ-abelian quotient. In Section 3.2 we observe the functorial behaviour of
sections lying over points. Afterwards, we address various questions of Galois
descent in the section conjecture. That is, we are assuming the validity of some
statement over a field extension `/k and deduce a similar statement over k.
The first such question in Section 3.3 concerns the existence of sections over
rational points. We show that over each rational point there exist liftable and
twice-liftable sections with respect to `/k in the sense of Definition 1.4.3, i.e.
on the level of the Galois groups Gal(`′/k) and Gal(`′′/k). In Section 3.4 we
define abstractly a Galois action on conjugacy classes of sections and discuss
its interpretation in terms of nonabelian group cohomology. Finally, in Sec-
tion 3.5, we apply the abstract machinery to prove descent statements in the
context of the section conjecture. Specifically, we prove Theorem 1.4.4 about
deducing a version of the liftable section conjecture over k from its validity over
a finite Galois extension `/k, and Theorem 1.4.6 about deducing the section
conjecture for the full fundamental groups from the liftable variant.

3.1 Sections induced by rational points

Let k be a field of characteristic zero and let X/k be a smooth, proper, geo-
metrically connected curve. Let S ⊆ Xcl be an arbitrary set of closed points
and XS the localisation of X at S (Definition 2.4.1). Let X̃S → XS be a profi-
nite étale Galois cover. Let k̃ be the field of constants of X̃S , i.e. the relative
algebraic closure of k in the function field of X̃S . Then X̃S is geometrically
connected over k̃ and we have the following short exact sequence whose terms
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3 Sections and points

are quotients of the fundamental exact sequence (1.1.1) for XS/k:

1 −→ Gal(X̃S/XS ⊗k k̃) −→ Gal(X̃S/XS) −→ Gal(k̃/k) −→ 1. (3.1.1)

This is the general setting in this Chapter 3. We want to explain how k-rational
points of X can give rise to sections of (3.1.1) in order to state variants of the
section conjecture which involve quotients of the full fundamental groups.

3.1.1 Sections over points

Assume first that x ∈ Xcl is a closed point, not necessarily k-rational. Let
X̃ → X be the normalisation of X in the function field of X̃S . It can also
be described as the inverse limit of the finite branched covers of X which
are obtained as the compactifications of all connected finite étale subcover
of X̃S → XS . Choose a point x̃ in X̃ over x. Via the functoriality of the
association (X̃S → XS) 7→ (X̃ → X), the right Galois action of Gal(X̃S/XS)

on X̃S extends to an action on X̃ by X-automorphisms.

Definition 3.1.1. The decomposition group Dx̃|x ⊆ Gal(X̃S/XS) of x̃|x
is defined as the stabiliser of x̃ under the action of Gal(X̃S/XS) on the set
of closed points of X̃. The normal subgroup Ix̃|x ⊆ Dx̃|x of elements acting
trivially on the residue field κ(x̃) is the inertia group of x̃|x.

Remarks 3.1.2.

(1) The decomposition group Dx̃|x and inertia group Ix̃|x are closed subgroups
of the profinite group Gal(X̃S/XS).

(2) Since we defined Gal(X̃S/XS) = Aut(X̃S/XS)op, Galois groups of cover-
ings of schemes act from the right. We write the action of Gal(X̃S/XS)
on closed points of X̃ as (x̃, γ) 7→ x̃γ . This is translated into a left action
via the rule γ(x̃) := x̃γ

−1 .

(3) Decomposition groups and inertia groups behave as follows under con-
jugation: for any γ ∈ Gal(X̃S/XS) we have γDx̃|x γ

−1 = Dγ(x̃)|x and
γ Ix̃|x γ

−1 = Iγ(x̃)|x.

We have the following diagram with exact rows:

1 Ix̃|x Dx̃|x Gal(κ(x̃)/κ(x)) 1

1 Gal(X̃S/XS ⊗k k̃) Gal(X̃S/XS) Gal(k̃/k) 1.

(3.1.2)

The vertical map on the right is induced by the inclusions in the field diagram
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κ(x̃)

k̃

κ(x)

k

Definition 3.1.3. A section s : Gal(k̃/k) → Gal(X̃S/XS) of (3.1.1) is called
section over x if its image is contained in a decomposition group Dx̃|x for
some x̃ over x.

Remarks 3.1.4. (1) If κ(x) = k and κ(x̃) = k̃, then the right vertical map
in (3.1.2) is an isomorphism and sections over x are the same as sections
of the top row.

(2) Sections can be conjugated by elements of the kernel. More precisely: for
any section s : Gal(k̃/k)→ Gal(X̃S/XS) and any γ ∈ Gal(X̃S/XS⊗k k̃),
we have a conjugate section γ(−)γ−1 ◦ s. If s is a section over x, say
im(s) ⊆ Dx̃|x, then γ(−)γ−1 ◦ s has image contained in the conjugate
decomposition group γDx̃|x γ

−1 = Dγ(x̃)|x. In particular, the property of
a section s to lie over x depends only its Gal(X̃S/XS ⊗k k̃)-conjugacy
class.

Lemma 3.1.5. Let x ∈ X(k) be a k-rational point. Then Gal(X̃S/XS ⊗k k̃)
acts transitively on the points of X̃ over x.

Proof. The projection X ⊗k k̃ → X is closed since Spec(k̃) → Spec(k) is an
integral and hence universally closed morphism. Denote by S⊗ k̃ the preimage
of S under the projection X ⊗k k̃ → X. The base change XS ⊗k k̃ equals the
localisation (X ⊗k k̃)S⊗kk̃ of X ⊗k k̃ by Lemma 2.2.5. Since x is k-rational,
there exists a unique point x ⊗ k̃ in X ⊗k k̃ over x. After renaming X ⊗k k̃
as X and S⊗k k̃ as S and x⊗ k̃ as x, it suffices to show that Gal(X̃S/XS) acts
transitively on the fibres of X̃ → X over closed points x of X.
Denote by K̃/K the function field extension of X̃S → XS , or also of X̃ → X.

It is a Galois extension with group G := Gal(X̃S/XS). Assume first that G is
finite. Let x̃ and ỹ be two points of X̃ over x and assume for contradiction that
x̃ 6= σ(ỹ) for all σ ∈ Gal(X̃S/XS). Then, using approximation, there exists a
rational function f̃ ∈ K̃ such that

f̃(x̃) = 0 and f̃(σ(y)) = 1 for all σ ∈ G.

Set f := Nm
K̃/K

(f̃) ∈ K, the norm of f̃ in the extension K̃/K. Then we have

f(x) =
∏
σ∈G

f̃(σ(x̃)) = 0,
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but also
f(x) =

∏
σ∈G

f̃(σ(ỹ)) = 1,

a contradiction! Assume now that G is not necessarily finite. Write X̃S → XS

as a limit of its finite Galois subcovers Wi → XS . Then G = lim←−i Gal(Wi/XS).
Let Xi → X be the normalisation of X in the function field of Wi, so that
X̃ = lim←−iXi. Given x̃ = (xi) and ỹ = (yi) over x, the set

{σ ∈ G : x̃ = σ(ỹ)} = lim←−
i

{σi ∈ Gal(Wi/XS) : xi = σi(yi)}

is nonempty as an inverse limit of nonempty finite sets.

Corollary 3.1.6. Let x ∈ X(k) be a k-rational point. If there exists some
section Gal(k̃/k) → Gal(X̃S/XS) over x, then for any x̃ in X̃ over x there
exists a section with image contained in Dx̃|x.

Proof. Let s : Gal(k̃/k) → Gal(X̃S/XS) be a section with im(s) ⊆ Dỹ|x for
some ỹ in X̃ over x. By Lemma 3.1.5, there exists γ ∈ Gal(X̃S/XS ⊗k k̃) such
that x̃ = γ(ỹ). Then the conjugate section s′ := γ(−)γ−1 ◦ s satisfies

im(s′) ⊆ γDỹ|x γ
−1 = Dγ̃(ỹ)|x = Dx̃|x .

3.1.2 The universal profinite étale cover

As a special case of the general setting, choose for X̃S → XS a universal profi-
nite étale cover Xuniv

S → XS . The Galois group Gal(Xuniv
S /XS) is canonically

isomorphic to the profinite fundamental group π1(XS), formed with respect to
the fibre functor pro-represented by Xuniv

S :

HomXS (Xuniv
S ,−) : Cov(XS) −→ FinSet .

The field of constants of Xuniv
S is an algebraic closure k of k, and the residue

field of any closed point of Xuniv
S is equal to k. With Gk := Gal(k/k), the

fundamental exact sequence (3.1.1) specialises to

1 −→ π1(XS ⊗k k) −→ π1(XS) −→ Gk −→ 1.

Proposition 3.1.7. Sections of π1(XS)→ Gk exist over every k-rational point
of X.

Proof. Let X̃ → X be the normalisation of X in the function field of Xuniv
S .

Let x ∈ X(k) and x̃|x in X̃. The profinite étale subcover Xh
S,x → XS of Xuniv

S

corresponding to the closed subgroup Dx̃|x ⊆ π1(XS) is a henselisation of XS

at x:
Xh
S,x := Spec(Oh

X,x)×X XS .
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Thus, if Kh
x denotes the fraction field of the henselian local ring Oh

X,x, then

Xh
S,x =

{
Spec(Oh

X,x), if x ∈ S,
Spec(Kh

x), if x 6∈ S.

Assume that x ∈ S. Denote by xh the image of x̃ in Xh
S,x. Then we have

κ(xh) = κ(x) = k, and a section s : Gk → π1(Xh
S,x) = Dx̃|x is obtained by

functoriality of Galois groups from the diagram

Xuniv
S Spec(k)

Xh
S,x Spec(k).

x̃

xh

Assume now that x 6∈ S. By Deligne’s theory of tangential base points [Del89,
§15], there is an equivalence of categories between finite étale covers of Xh

S,x

and finite étale covers of T◦X,x, the Zariski tangent space of X at x with
the origin removed, viewed as a scheme over k. This implies that the group
π1(Xh

S,x) = Dx̃|x is isomorphic, as a profinite group over Gk, to π1(T◦X,x). If we
choose v ∈ T◦X,x(k) (a nonzero tangent vector of X at x), and ṽ ∈ (T◦X,x)univ

over v, then a section s : Gk → π1(T◦X,x) ∼= Dx̃|x is obtained via the diagram

(T◦X,x)univ Spec(k)

T◦X,x Spec(k).

ṽ

v

In either case, sections over x exist.

3.1.3 Maximal pro-C covers

As another special case of the general setting, we can choose for X̃S → XS

a maximal Z/pZ-abelian or Z/pZ-metabelian cover. More generally, assume
that C is a class of finite groups which is closed under isomorphisms, subgroups,
quotients and finite products. An inverse limit of groups in C is called a pro-C
group. Every profinite group π has a maximal pro-C quotient given by

πC = lim←−
N

π/N,

where N runs through the open normal subgroups N E π for which π/N is
in C. Every homomorphism of π into a pro-C group factors uniquely through
π → πC . Given a connected, quasi-compact and quasi-separated scheme Y
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with geometric point y, the maximal pro-C cover (Y C , yC) → (Y, y) is the
pointed profinite étale Galois cover corresponding to the closed normal sub-
group ker

(
π1(Y, y) → π1(Y, y)C

)
of π1(Y, y). Thus, the Galois group of Y C/Y

is the maximal pro-C quotient of π1(Y, y):

Gal(Y C/Y ) = π1(Y, y)C .

As a pointed cover, (Y C , yC)→ (Y, y) is unique up to unique isomorphism; as
a mere cover (without distinguished point in the fibre over y), it is unique up
to non-canonical isomorphism.
Examples for C and Y C → Y include:

(1) C = all finite groups, Y univ → Y the universal profinite étale cover;

(2) C = finite abelian groups, Y ab → Y the maximal abelian cover;

(3) C = finite Z/pZ-elementary abelian groups, Y ′ → Y the maximal Z/pZ-
abelian cover;

(4) C = finite Z/pZ-metabelian groups, Y ′′ → Y the maximal Z/pZ-
metabelian cover;

(5) C = p-groups, Y (p)→ Y the maximal pro-p cover.

Now consider a localisation XS of a curve as above and let XCS → XS be its
maximal pro-C cover.

Proposition 3.1.8. The field of constants of XCS is the maximal pro-C exten-
sion kC/k, and sections Gal(kC/k)→ Gal(XCS/XS) exist over every k-rational
point x ∈ X(k).

Proof. Since XS ⊗k kC → XS is pro-C, it is a subcover of XCS/XS , hence kC

embeds into the field of constants k̃ of XCS . On the other hand, the surjective
homomorphism

Gal(XCS/XS)� Gal(k̃/k)

implies that k̃/k is a pro-C extension since C is closed under quotients. This
shows k̃ = kC .
Let x ∈ X(k). Let Xuniv

S → XCS → XS be the universal profinite étale cover.
By Proposition 3.1.7, there exists a section s above x, say im(s) ⊆ Dx̃|x with
x̃ a point over x in the normalisation of X in the function field of Xuniv

S . Let
xC be the image of x̃ in the normalisation of X in the function field of XCS and
consider the following diagram:

Dx̃|x π1(XS) Gk

DxC |x Gal(XCS/XS) Gal(kC/k).

s

sC
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Since C is closed under subgroups, the decomposition group DxC |x is a pro-C
group. This implies that the section s : Gk → Dx̃|x composed with the map
Dx̃|x → DxC |x factors through the maximal pro-C quotient Gal(kC/k), giving
the claimed section sC over x.

3.2 Functoriality

3.2.1 Compatible sections

Assume we have for i = 1, 2 a field ki, a geometrically connected qcqs scheme
Yi/ki and a profinite étale Galois cover Ỹi → Yi with field of constants k̃i. A
morphism f : (Ỹ1/Y1/k1)→ (Ỹ2/Y2/k2) of these data by definition consists of
three morphisms, all denoted by the same letter, forming the vertical arrows
in a commutative diagram:

Ỹ1 Y1 Spec(k1)

Ỹ2 Y2 Spec(k2).

f f f

The morphism f induces the following vertical maps f∗ in a commutative
diagram:

Gal(Ỹ1/Y1) Gal(k̃1/k1)

Gal(Ỹ2/Y2) Gal(k̃2/k2).

f∗ f∗ (3.2.1)

Definition 3.2.1. Two sections si : Gal(k̃i/ki) → Gal(Ỹi/Yi) (i = 1, 2) are
compatible with respect to f if they satisfy f∗ ◦ s1 = s2 ◦ f∗.

Some cases of interest are the following:

(1) Assume that the morphism f is an isomorphism on the fields of constants:
Spec(k̃1) ∼= Spec(k̃2) and Spec(k1) ∼= Spec(k2). In this case the induced
map f∗ : Gal(k̃1/k1) → Gal(k̃2/k2) is an isomorphism and for each sec-
tion s1 : Gal(k̃1/k1)→ Gal(Ỹ1/Y1) upstairs there is a unique compatible
section f(s1) : Gal(k̃2/k2)→ Gal(Ỹ2/Y2) downstairs which is given by

f(s1) := f∗ ◦ s1 ◦ f−1
∗ .

(2) Let Ỹ1 → Ỹ2 → Y be a tower of profinite étale Galois covers of Y . This
is the special case where Y1 = Y2 =: Y and k1 = k2 =: k. Then the
diagram (3.2.1) looks as follows:
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Gal(Ỹ1/Y ) Gal(k̃1/k)

Gal(Ỹ2/Y ) Gal(k̃2/k).

Given a section s1 : Gal(k̃1/k) → Gal(Ỹ1/Y ) upstairs, there is at most
one compatible section s2 : Gal(k̃2/k)→ Gal(Ỹ2/Y ) downstairs. This is
the case if and only if s1(Gal(k̃1/k̃2)) ⊆ Gal(Ỹ1/Ỹ2).

(3) Consider a single triple Ỹ /Y/k as above and let `/k be a subextension
of k̃/k. Then Y ⊗k `→ Y is a subcover of Ỹ → Y and the maps

Ỹ Y ⊗k ` Spec(`)

Ỹ Y Spec(k)

give rise to a diagram as follows:

Gal(Ỹ /Y ⊗k `) Gal(k̃/`)

Gal(Ỹ /Y ) Gal(k̃/k).

(3.2.2)

The diagram is cartesian, hence every section s : Gal(k̃/k)→ Gal(Ỹ /Y )
downstairs induces a restriction res`/k(s) : Gal(k̃/`)→ Gal(Ỹ /Y ⊗k `)
upstairs.

3.2.2 Functoriality for sections over points

Specialising the situation of the preceding paragraph §3.2.1, assume that each
Yi = (Xi)Si is the localisation of a smooth, proper, geometrically connected
curveXi over a field ki of characteristic zero at a set of closed points Si ⊆ (Xi)cl

for i = 1, 2. We are given profinite Galois covers (̃Xi)Si → (Xi)Si with fields of
constants k̃i/ki. Denote by X̃i → Xi the normalisation of Xi in the function
field of (̃Xi)Si . We are also given compatible morphisms f as follows:

(̃X1)S1 (X1)S1 Spec(k1)

(̃X2)S2 (X2)S2 Spec(k2).

f f f

From this one obtains induced morphisms X1 → X2 and X̃1 → X̃2 on the
compactifications, which we also denote by f . If x1 is a closed point of X1 and
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3.3 Existence of liftable sections over rational points

x̃1 ∈ X̃1 lies over x1, then f(x̃1) ∈ X̃2 lies over f(x1) ∈ X2 and the map

f∗ : Gal((̃X1)S1/(X1)S1)→ Gal((̃X2)S2/(X2)S2)

maps the decomposition group of x̃1|x1 into that of f(x̃1)|f(x1):

f∗(Dx̃1|x1) ⊆ Df(x̃1)|f(x1) .

Lemma 3.2.2. In the situation above, suppose f is an isomorphism k1
∼= k2 on

the base fields. Let si : Gal(k̃i/ki)→ Gal((̃Xi)Si/(Xi)Si) (i = 1, 2) be sections
which are compatible with respect to f . If s1 lies over a closed point x1 of X1,
then s2 lies over f(x1).

Proof. Since f induces an isomorphism on the base fields by assumption, the
map f∗ : Gal(k̃1/k1) → Gal(k̃2/k2) is surjective. Together with the compati-
bility of the sections, this implies im(s1) = f∗(im(s2)). Now the claim follows
from the preceding discussion.

For the special cases considered in §3.2.1 above, we find the following:

Lemma 3.2.3.

(a) Assume that f is an isomorphism on the fields of constants. If s1 is a
section over x1 ∈ X1, then f(s1) is a section over f(x1) ∈ X2.

(b) Let ˜̃XS → X̃S → XS be a tower of profinite étale Galois covers of XS with
fields of constants

≈
k/k̃/k. Let ≈s : Gal(

≈
k/k) → Gal( ˜̃XS/XS) be a section

over x ∈ Xcl. If ≈s descends to a section s̃ : Gal(k̃/k) → Gal(X̃S/XS),
then also s̃ lies over x.

(c) Consider a single triple X̃S/XS/k as above and let `/k be a subextension
of k̃/k. Let x be a closed point of X, let x̃ ∈ X̃ be a point over x, and x`
the image of x̃ in X⊗k`. If s : Gal(k̃/k)→ Gal(X̃S/XS) is a section over
x with im(s) ⊆ Dx̃|x, then the restriction res`/k(s) is a section over x`.

Proof. Parts (a) and (b) follow from Lemma 3.2.3. Part (c) follows from the
fact that the decomposition group Dx̃|x` is precisely the preimage of Dx̃|x under
the injective map f∗ : Gal(X̃S/(XS ⊗k `)) ↪→ Gal(X̃S/XS).

3.3 Existence of liftable sections over rational points

We have seen in Proposition 3.1.8 that liftable sections s′ : G′k → π1(X ′S) exist
over every rational point. We now want to generalise this to liftable (and
twice-liftable) sections in the sense of Definition 1.4.3, i.e. on the Galois groups
Gal(`′/k) or Gal(`′′/k) for some finite Galois extension `/k.
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Consider the following more general situation: let k be a field of characteristic
zero and Y/k a geometrically connected, quasi-compact and quasi-separated
scheme. Let Y univ → Ỹ → Y be a profinite étale Galois subcover of the
universal profinite étale cover and let k/k̃/k be the fields of constants. Set
π1(Y ) := Gal(Y univ/Y ) and Gk := Gal(k/k). The following lemma addresses
the question of when a section s : Gk → π1(Y ) on the level of full fundamen-
tal groups induces a section Gal(k̃/k) → Gal(Ỹ /Y ) on the quotients. This
property can be checked after a scalar extension:

Lemma 3.3.1. Let `/k be a finite extension contained in k̃ and denote by
G` := Gal(k/`) its absolute Galois group. Let s : Gk → π1(Y ) be a sec-
tion and denote by s` := res`/k(s) : G` → π1(Y ⊗ `) its restriction. If s`
induces a section s̃` : Gal(k̃/`) → Gal(Ỹ /Y ⊗k `), then s induces a section
s̃ : Gal(k̃/k)→ Gal(Ỹ /Y ).

π1(Y ) Gk

π1(Y ⊗k `) G`

Gal(Ỹ /Y ) Gal(k̃/k)

Gal(Ỹ /Y ⊗k `) Gal(k̃/`)

s

s`

s̃

s̃`

Proof. We have to show that the kernel Gal(k/k̃) of Gk → Gal(k̃/k) is mapped
to the identity in Gal(Ỹ /Y ) by s. But Gal(k/k̃) is also the kernel of the map
G` → Gal(k̃/`), so the claim can be checked for s` instead of s, where it holds
by assumption.

Now let k be a field of characteristic zero and XS/k the localisation of a
curve. Given a finite Galois extension `/k, let

(XS ⊗k `)′′′ → (XS ⊗k `)′′ → (XS ⊗k `)′ → XS ⊗k `

be, from right to left, the maximal Z/pZ-abelian cover of XS ⊗ `, the maximal
Z/pZ-metabelian cover, and the maximal three-step Z/pZ-solvable cover. Be-
ing characteristic covers of the Galois cover XS ⊗ `→ XS , they are all Galois
over XS . We denote by `′′′/`′′/`′/` the corresponding fields of constants. Re-
call from Definition 1.4.3 that a section s′ : Gal(`′/k) → Gal((XS ⊗k `)′/XS)
is called liftable (respectively, twice-liftable) if it admits a lift s′′ (respectively,
s′′′) as follows:
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Gal((XS ⊗k `)′′′/XS) Gal(`′′′/k)

Gal((XS ⊗k `)′′/XS) Gal(`′′/k)

Gal((XS ⊗k `)′/XS) Gal(`′/k)

s′′′

s′′

s′

Proposition 3.3.2. Let `/k be a finite Galois extension. For every k-rational
point x of X, twice-liftable sections s′ : Gal(`′/k) → Gal((XS ⊗ `)′/XS) exist
over x.

Proof. Let Xuniv
S → (XS ⊗ `)′′′ be the universal profinite étale cover, let k be

its field of constants and set π1(XS) = Gal(Xuniv
S /XS) and Gk = Gal(k/k).

Let x be a k-rational point of X. By Proposition 3.1.7, there exists a section
s : Gk → π1(XS) over x. Let s` := res`/k(s) : G` → π1(XS⊗`) be its restriction.
By Proposition 3.1.8, s` induces a section

s′′′` : Gal(`′′′/`)→ Gal((XS ⊗ `)′′′/(XS ⊗ `))

on the three-step Z/pZ-solvable quotients. Lemma 3.3.1 implies that also s
induces a section

s′′′ : Gal(`′′′/k)→ Gal((XS ⊗ `)′′′/XS).

The same argument applied to the maximal Z/pZ-abelian quotients shows
that s′′′ descends further to a section s′ : Gal(`′/k) → Gal((XS ⊗k `)′/XS)
which is therefore twice-liftable. By Lemma 3.2.3 (b) applied to the tower
Xuniv
S → XS ⊗k `→ XS , the liftable section s′ lies over x.

3.4 The Galois action on conjugacy classes of
sections

In order to prove descent statements for the liftable section conjecture with
respect to a Galois extension `/k, we need to analyse the Galois action of
Gal(`/k) on conjugacy classes of liftable sections defined on Gal(`′/`). We de-
fine here the Galois action in an abstract setting and explain its interpretation
in terms of nonabelian group cohomology, before applying the theory in the
context of section conjecture in the next section.
Let G be a profinite group and let E be an extension of G by a profinite group

A. Denote by Sec(E → G) the set of sections s : G → E and by S (E → G)
the set of their A-conjugacy classes. Let H ⊆ G be a closed normal subgroup.
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3 Sections and points

We can form the pullback extension EH := E ×G H = pr−1(H), an extension
of H by A:

1 A EH H 1

1 A E G 1.

pr

pr

Every section s : G→ E restricts to a section res(s) : H → EH . This passes to
A-conjugacy classes and defines restriction maps as follows:

Sec(EH → H) S (EH → H)

Sec(E → G) S (E → G).

res res

3.4.1 Definition of the Galois action

We are going to define an action of G/H on the set of conjugacy classes of
sections S (EH → H). For an element e ∈ E and a section t : H → EH , define
the section e(t) ∈ Sec(EH → H) by

e(t) := e(−)e−1 ◦ t ◦ pr(e)−1(−) pr(e).

This defines an action of E on Sec(EH → H).

Lemma 3.4.1. The action of E on Sec(EH → H) induces a well-defined action
of G/H on S (EH → H).

Proof. For a ∈ A we have pr(a) = 1, so that a(t) equals the A-conjugate
section a(−)a−1 ◦ t. To see that the action of E on Sec(EH → H) passes to
conjugacy classes of sections, let e ∈ E and t ∈ Sec(EH → H) and a ∈ A. We
can write ea = a′e with a′ ∈ A. Then we calculate

e(a(−)a−1 ◦ t) = (ea)(t) = (a′e)(t) = a′(−)a′−1 ◦ e(t),

which shows that e(a(−)a−1 ◦ t) is A-conjugate to e(t). So E acts on the set
S (EH → H). Since the normal subgroup A acts trivially, the action passes
to G.
Let h ∈ H and t ∈ Sec(EH → H). To calculate h([t]) ∈ S (EH → H), we

can choose t(h) ∈ E as a preimage of h under the projection and calculate

(t(h))(t) = t(h)(−)t(h)−1 ◦ t ◦ pr(t(h))−1(−) pr(t(h))

= t(h)(−)t(h)−1 ◦ t ◦ h−1(−)h

= t(h)(−)t(h)−1 ◦ t(h)−1(−)t(h) ◦ t
= t.

Thus H acts trivially on S (EH → H) and the action passes to G/H.
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Lemma 3.4.2. The restriction map res on conjugacy classes of sections maps
into the G/H-invariant subset:

res : S (E → G)→ S (EH → H)G/H .

Proof. Let s : G → E be a section and let g ∈ G. By definition, g(res([s])) is
the class of e(res(s)) for some lift e ∈ E of g. We may choose e = s(g), which
satisfies s(pr(e)) = e, and calculate

e(res(s)) = e(−)e−1 ◦ s|H ◦ pr(e)−1(−) pr(e)

= e(−)e−1 ◦ s(pr(e))−1(−)s(pr(e)) ◦ s|H
= e(−)e−1 ◦ e−1(−)e ◦ s|H
= res(s).

3.4.2 Interpretation in terms of nonabelian group cohomology

The Galois action on conjugacy classes of sections and the restriction map can
be understood in terms of nonabelian group cohomology. We give here a brief
summary and refer to [Ser02, Ch. I, §5] for details.

First nonabelian group cohomology. Let G be a profinite group which acts
on another profinite group A by continuous automorphisms. Denote the action
by (σ, a) 7→ σa. A continuous map c : G→ A is called a 1-cocycle if it satisfies

c(στ) = c(σ) σc(τ) for all σ, τ ∈ G.

Two 1-cocycles c1 and c2 are called cohomologous if there exists b ∈ A such
that

c2(σ) = b−1c1(σ) σb for all σ ∈ G.

This defines an equivalence relation on the set of 1-cocycles. The set of coho-
mology classes forms the cohomology set H1(G,A). In the case where A is a
finite abelian group, this coincides with the usual cohomology group defined
as a right derived functor. In general, however, H1(G,A) does not have the
structure of a group but merely of a pointed set: a set with a distinguished
element, given by the constant cocycle with value the identity element of A.

Interpretation via conjugacy classes of sections. To explain the connection
between nonabelian cohomology and sections, assume that we have a split
extension of profinite groups:

1→ A→ E → G→ 1.

Fix a continuous section s0 : G→ E. Then G acts on A by conjugation via s0:

σa := s0(σ)as0(σ)−1.
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3 Sections and points

Any other section s : G→ E has the form s(σ) = c(σ)s0(σ) for some continuous
map c : G→ A. The fact that s is a homomorphism translates into the cocycle
property for c. The map c is called the difference cocycle of s and s0. If
two sections are conjugate via some element b ∈ A, then the corresponding
difference cocycles are cohomologous. In this way, we have a bijection

S (E → G) ∼= H1(G,A) (3.4.1)

between the set S (E → G) of conjugacy classes of sections and the nonabelian
cohomology set H1(G,A). Under this bijection, the distinguished point of
H1(G,A) corresponds to the fixed section s0. The bijection is non-canonical in
that both the action of G on A as well as the difference cocycle map depend
on the chosen section s0.

Nonabelian inflation and restriction. Let G be a profinite group which acts
on another profinite group A by continuous automorphisms, and let H ⊆ G
be a closed normal subgroup. Then the quotient group G/H acts on the
subgroup AH fixed by H, so that also H1(G/H,AH) is defined. Every cocycle
c : G/H → AH induces a cocycle G � G/H → AH ↪→ A. This defines an
inflation map

inf : H1(G/H,AH)→ H1(G,A)

which is easily checked to be injective. We also have a restriction map

res : H1(G,A)→ H1(H,A),

given by restriction of cocycles from G to H. The group G acts on the set of
1-cocycles c : H → A by the rule

g(c)(h) :=
g
c(g−1hg).

The action passes to cohomology classes, upon which the subgroup H acts
trivially. This defines a well-defined action of G/H on H1(H,A). One can
check that the restriction map takes values in the G/H-invariant subset. As a
result, one obtains an inflation-restriction sequence of pointed sets:

1 H1(G/H,AH) H1(G,A) H1(H,A)G/H .inf res

This sequence is exact in the sense of pointed sets: at each term, the preimage
of the distinguished point under the outgoing map equals the image of the
incoming map. In the case where A is a finite abelian group, one recovers the
classical inflation-restriction sequence which arises from the Hochschild–Serre
spectral sequence.
To make the connection with the interpretation of nonabelian cohomology

classes as conjugacy classes of sections, suppose that we have an extension
E of G by a profinite group A, as in above, and let EH := E ×G H be the
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pullback extension. Assume that the extension E of G is split and fix a sec-
tion s0 : G → E. Let G act on A by conjugation via s0. We have bijections
S (E → G) ∼= H1(G,A) and S (EH → H) ∼= H1(H,A) given by taking differ-
ence cocycles with respect to s0 and res(s0), respectively. The action of G/H
on conjugacy classes of sections S (EH → H) translates into the action on
nonabelian cohomology H1(H,G), and restriction of sections classes translates
into restriction of cohomology classes:

S (EH → H)G/H H1(H,A)G/H

S (E → G) H1(G,A).

∼

∼

res res

3.5 Descent results for the section conjecture

We now apply the general theory from the previous section in the context of
the section conjecture. In particular, we show Theorem 1.4.4 about deducing
a form of the liftable section conjecture over k from the liftable section conjec-
ture over a finite Galois extension `/k, and Theorem 1.4.6 about deducing the
section conjecture for the full fundamental group from the liftable version.

3.5.1 Galois action on sections lying over points

Let k be a field of characteristic zero, XS/k the localisation of a curve and
X̃S → XS a profinite étale Galois cover with field of constants k̃. Let `/k be a
finite Galois extension contained in k̃. We have a diagram of Galois groups as
follows:

1 Gal(X̃S/XS ⊗ k̃) Gal(X̃S/XS ⊗ `) Gal(k̃/`) 1

1 Gal(X̃S/XS ⊗ k̃) Gal(X̃S/XS) Gal(k̃/k) 1

pr

pr

The extension in the top row arises from the second row via pullback. We
are thus in the situation of Section 3.4. Denote by S (X̃S/XS) the set of
Gal(X̃S/XS ⊗ k̃)-conjugacy classes of sections Gal(k̃/k) → Gal(X̃S/XS), and
similarly for the top row. Then we have a Galois action of Gal(`/k) on
S (X̃S/XS ⊗ `). Recall that the property of a section s` to lie over a point
of X ⊗ ` depends only on its conjugacy class (Remark 3.1.4 (2)). The Galois
action on section classes is compatible with the Galois action on points ofX⊗`:

Lemma 3.5.1. Let s` : Gal(k̃/`) → Gal(X̃S/XS ⊗ `) be a section over an
`-rational point x` ∈ X(`). Then, for every σ ∈ Gal(`/k), the class σ([s`]) lies
over σ(x`).
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Proof. Let σ ∈ Gal(`/k) and choose a lift σ̃ in Gal(X̃S/XS) = Aut(X̃S/XS)op.
We have a commutative diagram as follows:

X̃S XS ⊗ ` Spec(`)

X̃S XS ⊗ ` Spec(`)

σ̃op
σop σop

The automorphisms of Galois groups induced by functoriality are given by
conjugations:

Gal(X̃S/XS ⊗ `) Gal(k̃/`)

Gal(X̃S/XS ⊗ `) Gal(k̃/`).

σ̃−1(−)σ̃

pr

pr(σ̃)−1(−) pr(σ̃)

pr

Using this diagram, the section s` : Gal(k̃/`) → Gal(Ỹ /Y ⊗ `) gives rise to
another section (σ̃op)∗(s`) given by

(σ̃op)∗(s`) = σ̃−1(−)σ̃ ◦ s` ◦ pr(σ̃)(−) pr(σ̃)−1.

Comparing with the definition of the Galois action on conjugacy classes of
sections, we find that (σ̃op)∗(s`) represents the class σ−1([s`]) ∈ S (X̃S/XS⊗`).
By Lemma 3.2.3 (a), (σ̃op)∗(s`) is a section over σop(x`) = σ−1(x`).

Lemma 3.5.2. Assume that s` : Gal(k̃/`) → Gal(X̃S/XS ⊗ `) is a section
which lies over a unique `-rational point x` ∈ X(`). If s` arises by restriction
from a section s : Gal(k̃/k)→ Gal(X̃S/XS), then x` is k-rational.

Proof. If s` is the restriction of a section s : Gal(k̃/k) → Gal(X̃S/XS), then
the conjugacy class of s` is Gal(`/k)-invariant by Lemma 3.4.2. For every
σ ∈ Gal(`/k), the class σ(s`) lies over σ(x`) by Lemma 3.5.1. Hence, by the
Galois invariance, s` itself lies over σ(x`). We assumed that x` is the unique
point over which s` lies, so we conclude σ(x`) = x` for all σ ∈ Gal(`/k) and
hence, x` is k-rational.

We can now prove that the liftable section conjecture over a field extension
`/k implies a weak form of the liftable section conjecture over k.

Corollary 3.5.3 (= First part of Theorem 1.4.4). Assume that the base change
XS ⊗ ` satisfies the liftable section conjecture. Then, for every liftable section
s′ : Gal(`′/k)→ Gal((XS⊗ `)′/XS), there exists a unique k-rational point x of
X such that the restricted section res`/k(s

′) lies over x⊗ `.
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Proof. Let s′ be a liftable section with lift s′′ : Gal(`′′/k)→ Gal((XS⊗`)′′/XS).
Then the restriction res`/k(s

′) : Gal(`′/`)→ Gal((XS⊗ `)′/(XS⊗ `)) is liftable
with lift res`/k(s

′′). Since XS ⊗ ` satisfies the liftable section conjecture by
assumption, res`/k(s

′) lies over a unique `-rational point of X. This point is
then already k-rational by Lemma 3.5.2. The uniqueness of x follows from the
uniqueness statement in the liftable section conjecture for XS ⊗ `.

3.5.2 Twice-liftable sections

Looking at Corollary 3.5.3, it is natural to ask under which conditions the
liftable section s′ itself rather than only its restriction res`/k(s

′) is guaranteed
to lie over a k-rational point. We prove two different criteria which ensure this:
the first assumes a stronger liftability condition on s′ and the validity of the
liftable section conjecture not just for XS ⊗ ` but also for certain covers; the
second criterion makes use of Galois cohomology calculations and is satisfied
whenever the prime p does not divide the degree [` : k].

Proposition 3.5.4 (= Theorem 1.4.4 (b)). Assume that W ⊗ ` satisfies the
liftable section conjecture for every geometrically connected, finite étale sub-
cover (XS ⊗ `)′ → W → XS. Let s′ : Gal(`′/k) → Gal((XS ⊗ `)′/XS) be a
twice-liftable section. Then there exists a unique k-rational point x of X such
that s′ lies over x

Proof. Choose a lift s′′ : Gal(`′′/k)→ Gal((XS ⊗ `)′′/XS) of the twice-liftable
section s′ such that s′′ is itself liftable. Let

(XS ⊗ `)′ →W [s′]→ XS

be the connected, profinite étale subcover of (XS ⊗ `)′ that corresponds to
the image im(s′) ⊆ Gal((XS ⊗ `)′/XS). Write W [s′] = lim←−iWi as a limit
of connected finite étale subcovers. Then the groups Gal((XS ⊗ `)′/Wi) are
open subgroups of Gal((XS ⊗ `)′/XS) with intersection equal to im(s′). In
particular, eachWi is geometrically connected since Gal((XS⊗`)′/Wi) surjects
onto Gal(`′/k). The field of constants `′ of (XS ⊗ `)′ contains `, therefore the
cover (XS⊗`)′ →Wi factors throughWi⊗`. As a consequence, (XS⊗`)′′ → XS

factors through (Wi ⊗ `)′ and (XS ⊗ `)′′′ → XS factors through (Wi ⊗ `)′′:

(XS ⊗ `)′′′ (Wi ⊗ `)′′

(XS ⊗ `)′′ (Wi ⊗ `)′

(XS ⊗ `)′ Wi ⊗ `
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As s′ maps into Gal((XS⊗`)′/Wi), the lift s′′ of s′ maps into Gal((XS⊗`)′′/Wi)
and any lift s′′′ of s′′ maps into Gal((XS⊗`)′′′/Wi). Hence, s′′ induces a liftable
section s′i : Gal(`′/k)→ Gal((Wi ⊗ `)′/Wi) via the surjective homomorphism

Gal((XS ⊗ `)′′/Wi)� Gal((Wi ⊗ `)′/Wi).

By assumption, Wi⊗ ` satisfies the liftable section conjecture. Thus, by Corol-
lary 3.5.3, there exists a unique k-rational point xi of the compactification
Wi of Wi such that res`/k(s

′
i) lies over xi ⊗ `. By the compatibility of the

sections s′i and the uniqueness of the points xi, the xi form a compatible sys-
tem and thus define a k-rational point x[s′] = lim←−i xi of W [s′]. Choose a
closed point x′` over x[s′] in the compactification of (XS ⊗ `)′. Since `′ is
the field of constants of (XS ⊗ `)′, the point x′` is `′-rational. The decom-
position group Dx′`|x[s′] in Gal((XS ⊗ `)′/W [s′]) surjects onto Gal(`′/k). But,
by definition, Gal((XS ⊗ `)′/W [s′]) equals the image im(s′), so we have the
equality im(s′) = Dx′`|x[s′]. If x denotes the image of x[s′] in X, then we have
im(s′) ⊆ Dx′`|x, so that s′ is a section over x. The uniqueness of x follows from
the uniqueness in the liftable section conjecture for XS ⊗ `.

3.5.3 Descent for the property of lying over a point

As before, let k be a field of characteristic zero, XS/k the localisation of a
curve, and X̃S → XS a profinite étale Galois cover with field of constants k̃.
For a finite Galois extension `/k contained in k̃ we want to analyse under which
conditions a section s : Gal(k̃/k) → Gal(X̃S/XS) lies over a k-rational point
provided that its restriction res`/k(s) does so.
Let X̃ → X be the normalisation of X in the function field of X̃S . Let x

be a k-rational point of X and x̃ a k̃-rational point of X̃ over x. Denote by
i : Dx̃|x ↪→ Gal(X̃S/XS) the inclusion of the decomposition group. We have
the following diagram with exact rows:

1 Ix̃|x Dx̃|x Gal(k̃/k) 1

1 Gal(X̃S/XS ⊗ k̃) Gal(X̃S/XS) Gal(k̃/k) 1.

i

Write S (Dx̃|x) for the set of Ix̃|x-conjugacy classes of sections Gal(k̃/k)→ Dx̃|x

and S (X̃S/XS) for the set of Gal(X̃S/XS ⊗ k̃)-conjugacy classes of sections
Gal(k̃/k) → Gal(X̃S/XS). Every section of the top row induces a section of
the bottom row via the inclusion i. This defines a map on conjugacy classes of
sections

i∗ : S (Dx̃|x)→ S (X̃S/XS). (3.5.1)

Lemma 3.5.5. A section s : Gal(k̃/k)→ Gal(X̃S/XS) lies over x if and only
if its class is contained in the image of the map (3.5.1).
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Proof. If the class of s is contained in the image of i∗, then s is conjugate
to a section with image contained in Dx̃|x. Then s itself lies over x by Re-
mark 3.1.4 (2). Conversely, assume that s lies over x, say im(s) ⊆ Dỹ|x for some
point ỹ of X̃S over x. By Lemma 3.1.5, there exists some δ ∈ Gal(X̃S/XS ⊗ k̃)
with δ(ỹ) = x̃. Then the conjugate section δ(−)δ−1 ◦ s has image contained
in δDỹ|x δ

−1 = Dδ(ỹ)|x = Dx̃|x, so the class of s is the image of the class of
δ(−)δ−1 ◦ s under i∗.

Now let `/k be a finite Galois extension contained in k̃. Let x` be the image
of x̃ in X ⊗ `. Note that x` = x ⊗k ` because x is k-rational. In Section 3.4
we defined an action of Gal(`/k) on S (X̃S/XS ⊗ `) and on S (Dx̃|x`). Given
σ ∈ Gal(`/k) and [s`] ∈ S (X̃S/XS ⊗ `), by definition σ([s`]) is the class of

γ(s`) := γ(−)γ−1 ◦ s` ◦ pr(γ)−1(−) pr(γ)

for some lift γ ∈ Gal(X̃S/XS) of σ. The action on S (Dx̃|x`) is given by
the same rule with γ chosen in Dx̃|x. We have a commutative diagram with
restriction maps as follows:

S (Dx̃|x`)
Gal(`/k) S (X̃S/XS ⊗ `)Gal(`/k)

S (Dx̃|x) S (X̃S/XS)

i∗

i∗

res`/k res`/k (3.5.2)

Lemma 3.5.6. Assume the following:

(1) the map i∗ : S (Dx̃|x`)→ S (X̃S/XS ⊗ `) is injective;

(2) the left vertical map res`/k : S (Dx̃|x)→ S (Dx̃|x`)
Gal(`/k) is surjective;

(3) the right vertical map res`/k : S (X̃S/XS) → S (X̃S/XS ⊗ `)Gal(`/k) is
injective.

Then for every section s : Gal(k̃/k) → Gal(X̃S/XS) such that res`/k(s) lies
over x`, already s lies over x.

Proof. If res`/k(s) lies over x`, there exists some section class [t`] ∈ S (Dx̃|x`)
with [res`/k(s)] = i∗([t`]) by Lemma 3.5.5. The Gal(`/k)-invariance of
[res`/k(s)] implies the Gal(`/k)-invariance of [t`] by assumption (1). As-
sumption (2) yields the existence of a section class [t] ∈ S (Dx̃|x) with
[t`] = res`/k([t]). The injectivity assumption (3) implies [s] = i∗([t]), so
that already s lies over x by Lemma 3.5.5.

We turn to the question of whether the assumptions of Lemma 3.5.6 are
satisfied in our case of interest, where X̃S equals (XS⊗ `)′, the maximal Z/pZ-
abelian cover of XS ⊗ ` for some prime p, considered as a profinite étale Galois
cover of XS . In this case, we denote the point x̃ over x` in the compactification
of (XS ⊗ `)′ by x′`.
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3 Sections and points

Lemma 3.5.7. For X̃S = (XS ⊗ `)′, assumption (1) in Lemma 3.5.6 is satis-
fied.

Proof. The claim says that the map i∗ : S (Dx′`|x`) → S ((XS ⊗ `)′/(XS ⊗ `))
is injective. The group Gal((XS ⊗ `)′/(XS ⊗ `)) is abelian, therefore con-
jugacy classes of sections are the same as sections. The map on sections
i∗ : Sec(Dx′`|x`) → Sec((XS ⊗ `)′/(XS ⊗ `)) induced by the inclusion of the
decomposition group is clearly injective.

Let X̃S = (XS ⊗ `)′ and choose a section s0 : Gal(`′/k) → Dx′`|x, which
exists by Proposition 3.3.2. As explained in Section 3.4.2, conjugacy classes
of sections can be identified with nonabelian cohomology classes by taking
difference cocycles with respect to s0. Set

A := Gal((XS ⊗ `)′/(XS ⊗ `′)) and I := Ix′`|x` = Ix′`|x .

Then diagram (3.5.2) can be written as follows:

H1(`′/`, I)Gal(`/k) H1(`′/`,A)Gal(`/k)

H1(`′/k, I) H1(`′/k,A)

i∗

i∗

res`/k res`/k (3.5.3)

Observe that the cohomology sets which appear are in fact cohomology groups
since A and I are abelian.

Lemma 3.5.8. If p does not divide the degree [` : k], then both restriction
maps in diagram (3.5.2) are bijective.

Proof. The restriction maps in diagram (3.5.3) are part of an inflation-
restriction sequence which extends into degree 2 via a transgression map
since the groups A and I are abelian:

1→ H1(`/k,M)
inf−→ H1(`′/k,M)

res−→ H1(`′/`,M)Gal(`/k) tg−→ H2(`/k,M).

Here, M stands for either A or I. Note that we have MGal(`′/`) = M since the
group Gal((XS ⊗ `)′/(XS ⊗ `)) is abelian. By [Ser79, Ch. VIII, §2, Cor. 1],
the groups Hi(`/k,M) are annihilated by the order of Gal(`/k) for i ≥ 1. But
multiplication by # Gal(`/k) is an automorphism since M is Z/pZ-elementary
abelian and the degree [` : k] is coprime to p by assumption. So the groups
H1(`/k,M) and H2(`/k,M) vanish and the restriction maps are bijective, as
claimed.

Corollary 3.5.9 (= Theorem 1.4.4 (a)). If XS ⊗ ` satisfies the liftable
section conjecture and p does not divide [` : k], then every liftable section
s′ : Gal(`′/k)→ Gal((XS ⊗ `)′/XS) lies over a unique k-rational point.

Proof. There exists a unique k-rational point x such that res`/k(s
′) lies over

x ⊗ ` by Corollary 3.5.3. The assumptions of Lemma 3.5.6 are satisfied by
Lemmas 3.5.7 and 3.5.8. Hence, already s′ lies over x.
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3.5 Descent results for the section conjecture

3.5.4 Deducing the full section conjecture from the liftable
section conjecture

With a similar proof as for Proposition 3.5.4, we can deduce the section con-
jecture for the full fundamental groups from the liftable section conjecture for
geometrically connected covers. As usual, let k be a field of characteristic zero,
X/k a smooth, proper, geometrically connected curve and S ⊆ Xcl a set of
closed points. Let Xuniv

S → XS be a universal profinite étale cover, let k/k
be the corresponding field of constants and set π1(XS) := Gal(Xuniv

S /XS) and
Gk := Gal(k/k).

Proposition 3.5.10 (= Theorem 1.4.6). Assume that there exists a finite
Galois extension `/k such thatW⊗k ` satisfies the liftable section conjecture for
every geometrically connected, finite étale cover W → XS. Then XS satisfies
the section conjecture, i.e. every section s : Gk → π1(XS) lies over a unique
k-rational point of X.

Proof. Let s : Gk → π1(XS) be a section and let W [s] → XS be the profi-
nite étale subcover of Xuniv

S → XS corresponding to the closed subgroup
im(s) ⊆ π1(XS). Write W [s] = lim←−iWi as an inverse limit of connected,
finite étale subcovers. The Wi are geometrically connected over k since their
fundamental groups π1(Wi) contain im(s) and hence surject onto Gk. De-
note by si : Gk → π1(Wi) the section s with image restricted to π1(Wi). For
all i, we get an induced liftable section s′i : Gal(`′/k) → Gal((Wi ⊗k `)′/Wi)
by Proposition 3.3.2. By assumption, Wi ⊗ ` satisfies the liftable section con-
jecture. Hence, by Corollary 3.5.3, there exists a unique k-rational point xi of
the compactification Wi of Wi such that res`/k(s

′
i) lies over xi. Since the s′i

are compatible with each other via the transition maps, and the xi are unique,
the points xi form a compatible system, hence defining a k-rational point x[s]
of the compactification W [s] of W [s]. Let x̃ ∈ X̃ be a point over x[s] and let
x be the image of x[s] in X. The decomposition group Dx̃|x[s] ⊆ π1(W [s]) is
a subgroup surjecting onto Gk. But π1(W [s]) = im(s) by definition, thus we
have the equality Dx̃|x[s] = im(s). In particular, im(s) ⊆ Dx̃|x, hence s lies
over x.
The uniqueness of x follows from the uniqueness in the liftable section con-

jecture for XS ⊗ `.
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4 A brief review of valuation theory

We are going to recall briefly various notions from valuation theory. While
we are working with rank 1 valuations for the most part, one crucial input
that we are relying on is Pop’s local-to-global principle for Brauer groups of
function fields over p-adically closed fields, in which general Krull valuations
appear. For this reason, we do not restrict ourselves to rank 1 valuations in
this chapter. We give definitions and state properties mostly without proofs,
referring to [EP05] for details.

4.1 Basic notions

Definition 4.1.1.

(a) An ordered abelian group (Γ,≤) is an abelian group Γ, written addi-
tively, together with a linear order ≤ which is translation-invariant, i.e.
for all γ, δ, λ ∈ Γ the following implication holds:

γ ≤ δ ⇒ γ + λ ≤ δ + λ.

(b) A convex subgroup of an ordered abelian group Γ is a subgroup ∆ ⊆ Γ
such that for all γ ∈ Γ, if there exist δ1, δ2 ∈ ∆ with δ1 ≤ γ ≤ δ2, then
also γ ∈ ∆.

Proposition 4.1.2. Let Γ be an ordered abelian group. The set of convex
subgroups of Γ is linearly ordered by inclusion.

Proof. Let ∆, E ⊆ Γ be convex subgroups. Suppose E 6⊆ ∆ and choose ε ∈
E \ ∆. We can assume ε ≥ 0. We have to show ∆ ⊆ E. Let δ ∈ ∆. Again,
we can assume δ ≥ 0. Since Γ is linearly ordered, we have δ ≤ ε or ε ≤ δ.
The latter would imply ε ∈ ∆ since ∆ is convex. So we have 0 ≤ δ ≤ ε which
implies δ ∈ E because E is convex.

Definition 4.1.3. Let Γ be an ordered abelian group. The rank rk(Γ) of Γ is
defined as the length of the chain of convex subgroups of Γ.

Example 4.1.4.

(1) The trivial abelian group {0} is the unique ordered abelian group of rank
zero.
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4.1 Basic notions

(2) The group (R,+) with the usual archimedean order has only {0} and R
as convex subgroups, so it has rank 1.

(3) The group Z⊕ Z is an ordered abelian group with respect to the lexico-
graphic ordering:

(a, b) ≤ (a′, b′) ⇔ a < a′ or (a = a′ and b ≤ b′).

The subgroup {0} ⊕ Z ⊆ Z ⊕ Z is the only convex subgroup other than
the trivial group and the full group, so Z⊕Z with lexicographic ordering
has rank 2.

Lemma 4.1.5. Ordered abelian groups are torsion-free.

Proof. Let Γ be an ordered abelian group and let γ ∈ Γ such that nγ = 0 for
some n ∈ N. We are claiming γ = 0. Replacing γ with −γ if necessary we can
assume γ ≥ 0. Using this twice, we have

0 ≤ γ = 0 + γ ≤ γ + γ = 2γ,

and similarly 0 ≤ γ ≤ 2γ ≤ 3γ ≤ . . . by induction. But nγ = 0, so each
inequality is an equality, and in particular we have γ = 0.

Fact 4.1.6 ([EP05, Prop. 2.1.1]). An ordered abelian group Γ has rank 1 if
and only if it is isomorphic to a nontrivial subgroup of (R,+) with the induced
archimedean ordering.

Definition 4.1.7. Let K be a field. A valuation on K consists of an ordered
abelian group Γ and a surjective map

v : K � Γ ∪ {∞}

satisfying the following axioms for x, y ∈ K:

(i) v(x) =∞ ⇔ x = 0;

(ii) v(xy) = v(x) + v(y);

(iii) v(x+ y) ≥ min(v(x), v(y)).

The group Γ is called the value group of the valuation v. The rank of a
valuation is defined as the rank of its value group. The pair (K, v) is called a
valued field.

Here,∞ is an element formally added to Γ satisfying γ <∞ and∞+∞ =∞
and γ+∞ =∞+γ =∞ for all γ ∈ Γ by definition. Axiom (ii) can be rephrased
as saying that the map v|K× : (K×, ·) → (Γ,+) is a group homomorphism. A
general valuation as defined above is sometimes called a Krull valuation to
distinguish it from the more restrictive notion of a rank 1 valuation.
One frequently used consequence of Axiom (iii) is the following:
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4 A brief review of valuation theory

Lemma 4.1.8. Let v be a valuation on a field K. If x, y ∈ K are such that
v(x) 6= v(y), then equality holds in Definition 4.1.7 (iii):

v(x+ y) = min(v(x), v(y)).

Proof. We may interchange x and y if necessary and assume v(x) < v(y). By
Axiom (iii) this implies

v(x+ y) ≥ min(v(x), v(y)) = v(x).

We are claiming that this is an equality. The fact that the value group of v is
torsion-free implies v(−y) = v(y). Using Axiom (iii) again, we find

v(x) = v((x+ y)− y) ≥ min(v(x+ y), v(y)).

Since v(x) < v(y), the minimum on the right hand side cannot be attained for
v(y), so we have v(x) ≥ v(x + y). The equality v(x + y) = v(x) follows from
this by anti-symmetry.

Definition 4.1.9. Let v be a valuation on a field K. The valuation ring Ov
and valuation ideal mv of v are defined as follows:

Ov := {x ∈ K : v(x) ≥ 0},
mv := {x ∈ K : v(x) > 0}.

It follows from the definition of a valuation that Ok is a subring of K which is
local with maximal ideal mv. The residue field κ(v) of v is defined as

κ(v) := Ov/mv.

Given a valuation v with value group Γv on a field K, we have two canonical
short exact sequences:

1 O×v K× Γv 0,

1 1 + mv O×v κ(v)× 1.

v

The value group Γv is canonically isomorphic to the group K×/O×v with
ordering given by

aO×v ≤ bO×v ⇔ b/a ∈ Ov.

In this way, the value group Γv and the valuation map v : K → Γv ∪ {∞} are
both canonically determined by the valuation ring Ov ⊆ K alone. Valuations
with the same valuation ring are called equivalent. We usually do not dis-
tinguish between equivalent valuations. Thus, we will say that two valuations
are equal when we really mean that their valuation rings are equal. Especially
when their value groups are not a priori identified with each other, this is the
only sensible way to interpret equality of valuations, so there should be no
confusion.
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4.1 Basic notions

Definition 4.1.10. Let K be a field. A valuation ring in K is a subring
R ⊆ K such that for all x ∈ K× we have x ∈ R or x−1 ∈ R.

The valuation rings in K are precisely those subrings of the form Ov for
some valuation v on K. Thus, if we do not distinguish between equivalent
valuations, valuations on K can be identified with valuation subrings.

Examples 4.1.11.

(1) On any field there is the trivial valuation, defined by

vtriv(x) =

{
0, if x 6= 0,

∞, if x = 0.

Its valuation ring is the full field K, and its valuation ideal is the zero
ideal in K.

(2) Let p be a prime number. The p-adic valuation vp on Q with value
group Z is defined by

vp
(
pn
a

b

)
= n

for n ∈ Z and a, b ∈ Z, b 6= 0, with p - ab. The valuation ring of vp
consists of the rational numbers of the form a/b with a, b ∈ Z such that
p - b. The residue field equals Fp.

(3) Let X/k be a normal, proper curve over a field k. Let K be the function
field ofX. For every closed point x ∈ Xcl, the local ring OX,x is a discrete
valuation ring in K. Let tx be a uniformiser at x, i.e. a generator of the
maximal ideal mx ⊆ OX,x. Any nonzero rational function f ∈ K× can
be written in a unique way as f = tnxu with n ∈ Z and u ∈ O×X,x. The
integer n is called the order of f at x, and denoted by vx(f). This defines
a valuation vx : K× � Z. The valuation ring of vx is precisely the local
ring OX,x.

(4) Let X be a regular, integral scheme with function field K. For every
codimension 1 point x ∈ X(1), the local ring OX,x is noetherian of Krull
dimension 1. By the Auslander–Buchsbaum Theorem [AB59], OX,x is
moreover a unique factorisation domain and hence normal. This implies
that OX,x is a discrete valuation ring, which therefore defines a valuation
vx : K× � Z.

(5) Let k be a field and let F (X) ∈ k[[X]] be a power series which is tran-
scendental over the field of rational functions k(X). Then the map
f 7→ f(X,F (X)) is a well-defined embedding k(X,Y ) ↪→ k((X)) and
the X-adic valuation vX on k((X)) pulls back to a discrete valuation on
k(X,Y ):

v(f) := vX(f(X,F (X)).
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4 A brief review of valuation theory

One can think of f(X,F (X)) as the restriction of a rational function
on the plane to the graph of F , which is guaranteed to not be constant
infinity since F is transcendental. The restriction of f to the graph of F
then has an order of vanishing at the point (0, F (0)).

(6) Let k be a field, let Z ⊕ Z be equipped with the lexicographic ordering
and define a valuation v : k(X,Y )× → Z ⊕ Z of rank 2 on the field of
rational functions in two variables by the rule

v
(
XnY m g

h

)
:= (n,m),

where n,m ∈ Z and g, h ∈ k[X,Y ] with h 6= 0 and X,Y - gh. The valu-
ation ring Ov consists of those functions which are not constant infinity
on the y-axis and whose restriction to the y-axis is defined at the origin.
The roles of X and Y are not symmetric. For example, v(X/Y ) > 0 but
v(Y/X) < 0.

Definition 4.1.12. Let Γ be an abelian group. The rational rank rr(Γ) ≤ ∞
of Γ is defined as

rr(Γ) := dimQ(Γ⊗Z Q).

Fact 4.1.13 ([EP05, Prop. 3.4.1]). Let Γ be an ordered abelian group. Then
the rational rank and rank of Γ satisfy the inequality

rk(Γ) ≤ rr(Γ).

4.2 Valuations in field extensions

Definition 4.2.1. An extension of valued fields is a field extension L/K
where (K, v) and (L,w) are valued fields such that w|K = v (or in terms of
valuation rings: Ow ∩K = Ov). We have an induced inclusion of value groups
Γv ↪→ Γw and residue fields κ(v) ↪→ κ(w). The ramification index of L/K
is defined as the index

e(L/K) := e(w/v) := (Γw : Γv).

The inertia degree of L/K is defined as the degree of the residue field exten-
sion

f(L/K) := f(w/v) := [κ(w) : κ(v)].

An application of Zorn’s Lemma yields Chevalley’s Extension Theorem:

Fact 4.2.2 ([EP05, Theorem 3.1.2]). Let L/K be a field extension. Then every
valuation on K admits an extension to L.

The rank of a valuation is stable in algebraic extensions:
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4.3 The refinement relation

Fact 4.2.3 ([EP05, Cor. 3.2.5]). Let (K, v) ⊆ (L,w) be an extension of valued
fields. If L/K is algebraic, then the valuations v and w have the same rank.

In particular, every extension of the trivial valuation on a field K to some
algebraic extension L/K is trivial.
In a finite extension of a valued field, the ramification indices and inertia

degrees for the different extensions of the valuation satisfy the Fundamental
Inequality:

Fact 4.2.4 (Fundamental Inequality [EP05, Theorem 3.3.4]). Let (K, v) be a
valued field and let L/K be a finite field extension. Then there are only finitely
many extensions w1, . . . , wr of v to L and we have the inequality:

r∑
i=1

e(wi/v)f(wi/v) ≤ [L : K].

Definition 4.2.5. Let (K, v) be a valued field and let L/K be a Galois ex-
tension. For a valuation w extending v, the decomposition group of w|v is
defined as the stabiliser

Dw|v = {σ ∈ Gal(L/K) : σ(Ow) = Ow}.

Every element of the decomposition group induces an automorphism of the
residue field extension κ(w)/κ(v). The inertia group of w|v is defined as the
kernel

Iw|v = ker
(
Dw|v → Aut(κ(w)/κ(v))

)
.

The fact that L/K is Galois implies that the residue field extension
κ(w)/κ(v) is normal (but not necessarily separable). The canonical map
Dw|v → Aut(κ(w)/κ(v)) is surjective, so that we have a short exact sequence

1 Iw|v Dw|v Aut(κ(w)/κ(v)) 1.

For transcendental extensions, we have the following Dimension Inequality:

Fact 4.2.6 (Dimension Inequality [EP05, Theorem 3.4.3]). Let (K, v) ⊆ (L,w)
be an extension of valued fields. Let Γv and Γw be the value groups of v and w.
Then the following inequality holds:

trdeg(κ(w)/κ(v)) + rr(Γw/Γv) ≤ trdeg(L/K).

4.3 The refinement relation

Definition 4.3.1. Let K be a field and let v and w be two valuations on
K. We say that v is finer than w (and w is coarser than v) if the inclusion
Ov ⊆ Ow holds.
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4 A brief review of valuation theory

If v is a valuation on a field K, then every overring Ov ⊆ R ⊆ K is again a
valuation ring in K and thus defines a coarsening of v.

Fact 4.3.2 ([EP05, Lemma 2.3.1]). Let v be a valuation on a field K with
value group Γv. The coarsenings of v are canonically in bijection with each of
the following:

(1) overrings of Ov in K;

(2) prime ideals of Ov;

(3) convex subgroups of Γv.

The bijections are given as follows. An overring of Ov is a valuation ring
Ow for some valuation w on K. The inclusion Ov ⊆ Ow leads to an inclusion
mw ⊆ mv of maximal ideals in the reverse direction. Indeed, for x ∈ K×, we
have the implications:

x ∈ mw ⇒ x−1 6∈ Ow ⇒ x−1 6∈ Ov ⇒ x ∈ mv.

The maximal ideal mw of the coarsening w is a prime ideal of Ov. This defines
the map (1)→(2). In the other direction (2)→(1), the bijection is given by
forming the localisation Ov ⊆ (Ov)p at a prime ideal p of Ov. The map (3)→(2)
associates to each convex subgroup ∆ ⊆ Γv the prime ideal

p∆ := {x ∈ K : v(x) > δ for all δ ∈ ∆}.

In inverse map (2)→(3) is given by p 7→ ∆p with

∆p := {γ ∈ Γv : γ,−γ < v(x) for all x ∈ p}.

Observe that the bijections (1)∼=(2) and (2)∼=(3) are both inclusion-reversing.
The fact that the set of convex subgroups of an ordered abelian group is linearly
ordered implies that the set of coarsenings of v as well as the set of prime ideals
of Ov are linearly ordered as well. In particular, chains of prime ideals of Ov
of correspond to chains of convex subgroups of Γv. This shows that the rank
of v equals the Krull dimension of Ov.

Proposition 4.3.3. Let w be a valuation on a field K. The refinements of w
are canonically in bijection with valuations on the residue field κ(w).

Proof. Denote by π : Ow � κ(w) the residue map. For any refinement v of w,
corresponding to an inclusion of valuation rings Ov ⊆ Ow, the image π(Ov) is
a valuation ring in κ(w) and hence defines a valuation v on κ(w). Conversely,
given a valuation v on κ(w), the preimage π−1(Ov) is a valuation ring of
K contained in Ow, thus defining a refinement of w. The constructions are
mutually inverse.
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Proposition 4.3.4. Let (K,w) be a valued field and let (K ′, w′) be a valued
field extension. Then every refinement v of w extends to a refinement v′ of w′.

Proof. A refinement v of w corresponds to a valuation v on the residue field
κ(w). By Chevalley’s Extension Theorem, v extends to a valuation v′ on κ(v′).
This corresponds in turn to a refinement v′ of w′ and one checks easily that v′

extends v.

Algebraic extensions of valued fields have the following incomparability prop-
erty:

Proposition 4.3.5 ([EP05, Lemma 3.2.8]). Let (K,w) be a valued field and
let K ′/K be an algebraic extension. If v′ and w′ are two extensions of w to L
such that Ov′ ⊆ Ow′ , then v′ = w′.

Proof. Consider the residue field extension κ(w) ↪→ κ(w′). The valuations w
and w′, being refinements of themselves, correspond to the trivial valuations on
κ(w) and κ(w′), respectively. The refinement v′ of w′ corresponds to another
valuation v′ on κ(w′). Since v′ extends w by assumption, v′ extends the trivial
valuation on κ(w). But the fact that L/K is algebraic implies that κ(w′)/κ(w)
is algebraic. The trivial valuation extends only trivially in an algebraic exten-
sion, so v′ must be trivial and hence v′ = w′.

4.4 The topology induced by a valuation

Definition 4.4.1. Let v be a valuation on a field K with value group Γv. The
subsets of the form

Uγ(a) := {x ∈ K : v(x− a) > γ}

with a ∈ K and γ ∈ Γv form the basis of a topology on K, called the topology
induced by w.

Proposition 4.4.2. Let K be a field and v a valuation on K. The topology
induced by v gives K the structure of a topological field.

Proof. The claim means that the ring operations addition and multiplication as
well as the inversion map on K× are continuous. (The latter is not automatic.)
We omit the first two and show only the continuity of the inversion map.
Denote by Γv the value group of v. Let x ∈ K× and γ ∈ Γv. We have to show
that there exists some δ ∈ Γv such that for all y ∈ K× with v(x − y) > δ we
have v(x−1 − y−1) > γ. We can choose δ := max(v(x), γ + 2v(x)): indeed, if

69



4 A brief review of valuation theory

v(x− y) > δ, then we have v(y) = min(v(y − x), v(x)) = v(x) which implies

v(x−1 − y−1) = v(x−1y−1(y − x))

= v(y − x)− v(x)− v(y)

= v(y − x)− 2v(x)

> δ − 2v(x)

≥ γ.

Definition 4.4.3. Let K be a field. Two valuations v and w on K are de-
pendent if they have a common nontrivial coarsening. Otherwise they are
independent.

Consider the special case of a rank 1 valuation v on a field K. We have
the chain of length 1 of coarsenings Ov ⊆ K, corresponding to v itself and the
trivial valuation. By the definition of rank, there are no coarsenings in between.
In other words, a rank 1 valuation has no nontrivial proper coarsenings. As a
consequence, two rank 1 valuations are dependent if and only if they are equal.

Fact 4.4.4 ([EP05, Theorem 2.3.4]). Two valuations on a field K are depen-
dent if and only if they induce the same topology on K.

We have the following approximation theorem with respect to finitely many
independent valuations:

Fact 4.4.5 (Approximation Theorem [EP05, Thm. 2.4.1]). Let K be a field
and let v1, . . . , vn be pairwise independent valuations on K with value groups
Γ1, . . . ,Γn. Then for all fi ∈ K and all γi ∈ Γi (i = 1, . . . , n), there exists
f ∈ K such that vi(f − fi) > γi for i = 1, . . . , n.

Definition 4.4.6. Let (K, v) be a valued field. A sequence (xn)n∈N in K
is a Cauchy sequence if for all γ ∈ Γv there exists an N ∈ N such that
v(xn − xm) > γ for all n,m ≥ N . The sequence converges to x ∈ K if for all
γ ∈ Γv there exists an N ∈ N such that v(x− xn) > γ for all n ≥ N . If every
Cauchy sequence in K converges to an element of K, then K is complete with
respect to v.

By the usual process of taking Cauchy sequences modulo null sequences, one
constructs the completion (K̂, v̂) of a valued field (K, v). It has the same
value group and residue field and contains K as a dense subfield.
Suppose that v is a rank 1 valuation on K. Then the value group can be

embedded into R as an ordered group, so that v can be viewed as a map
v : K → R ∪ {∞}. One can then define an absolute value | · | : K → R≥0 by

|x| := ρ−v(x) for x ∈ K,

for some fixed real number ρ > 1. Axiom (iii) in the definition of a valuation
translates into the ultrametric triangle inequality:

|x+ y| ≤ max(|x|, |y|).
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Thus, the rank 1 valuation defines a non-archimedean absolute value on K.
Conversely, every non-archimedean absolute value defines a rank 1 valuation by
setting v(x) = − logρ(x). The two constructions are well-defined and mutually
inverse up to equivalence of valuations and absolute values.
The absolute value | · | associated to the rank 1 valuation v defines a metric

on K by d(x, y) := |x − y|, and the notions of topology, Cauchy sequence,
convergence and completion defined above coincide with the usual concepts for
metric spaces.

4.5 Henselian fields

Definition 4.5.1. A valued field (K, v) is called henselian if the valuation v
extends uniquely to every algebraic extension of K.

The fact that there exists an extension of the valuation to every algebraic ex-
tension is already guaranteed by Chevalley’s Extension Theorem (Fact 4.2.2).
The important property of henselian fields is the uniqueness of the extended
valuation. Clearly, every algebraic extension of a henselian field is itself
henselian with respect to the unique extension of the valuation.
An equivalent characterisation of henselian fields is that they satisfy Hensel’s

Lemma, expressing a way of lifting approximate roots of polynomials to actual
roots. In the following, f ′(X) denotes the formal derivative of a polynomial
f(X) ∈ K[X]:

Fact 4.5.2 (Hensel’s Lemma [EP05, Theorem 4.1.3]). A valued field (K, v)
is henselian if and only if for all f ∈ Ov[X] and for all a ∈ Ov such that
v(f(a)) > 2v(f ′(a)), there exists b ∈ K with f(b) = 0 and v(a− b) > v(f ′(a)).

Definition 4.5.3. A henselisation of a valued field (K, v) is a valued field
extension (Kh, vh) of (K, v) which is henselian and such that for every other
henselian field extension (L,w) of (K, v) there exists a unique embedding
Kh ↪→ L of valued fields over K.

The henselisation of a valued field is unique up to unique isomorphism of
valued field extensions as it is defined by a universal property. Every valued
field has a henselisation:

Fact 4.5.4 ([EP05, §5.2]). Let (K, v) be a valued field. Let Ksep/K be a
separable closure and choose an extension vsep of v to Ksep. Then the fixed
field under the decomposition group Kh := (Ksep)Dvsep|v with the restricted
valuation vh := vsep|Kh is a henselisation of (K, v).

For a rank 1 valuation, the henselisation can also be constructed as a subfield
of its completion. This follows from the fact that complete fields with respect
to a rank 1 valuation are henselian:
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Proposition 4.5.5. Let K be a field which is complete with respect to a rank 1
valuation v. Then (K, v) is henselian.

Proof. Choose a real number ρ > 1 and define the absolute value |x| := ρ−v(x)

on K. Then K is complete with respect to | · |. For a finite extension L/K,
any two norms on L compatible with | · | on K are equivalent by [EP05, Prop.
1.2.2]. This implies the uniqueness of the extension of v to L. As any algebraic
extension of K is a union of its finite subextensions, v extends uniquely to
every algebraic extension.

The following does not hold for valuations of higher rank:

Fact 4.5.6 ([End72, Theorem (17.18)]). Let v be a rank 1 valuation on a field
K. Let (K̂, v̂) be the completion and let Kh be the relative separable closure of
K in K̂ with restricted valuation vh := v̂|Kh . Then (Kh, vh) is a henselisation
of (K, v).

One important consequence is the following:

Proposition 4.5.7. Let (K, v) be a valued field and let (Kh, vh) be a henseli-
sation. If v has rank 1, then K is dense in Kh with respect to the topology
induced by vh.

Proof. Since v has rank 1, the henselisation (Kh, vh) embeds into the comple-
tion (K̂, v̂). The field K is dense in K̂, hence also in Kh.

The following fact is also needed later:

Proposition 4.5.8. Let (K, v) be a henselian valued field. Then K is also
henselian with respect to any coarsening w of v.

Proof. Let K ′/K be an algebraic extension. Let v′ be the unique extension of
v to K ′. We have to show that w extends uniquely to K ′ as well. Let w′ be any
extension of w to K ′. By Proposition 4.3.4, the refinement v of w extends to
some refinement of w′. But v′ is the only extension of v. This shows that every
extension w′ of w is a coarsening of v′. The coarsenings of v′ are linearly ordered
by refinement, so any two extensions w′1 and w′2 of w satisfy Ow′1 ⊆ Ow′2 or
Ow′2 ⊆ Ow′1 . By the incomparability property (Proposition 4.3.5), this implies
w′1 = w′2. Hence, the extension of w to K ′ is unique.
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5 The liftable section conjecture for
good localisations

This chapter, which is the technical heart of this work, contains the proof of the
liftable section conjecture for good localisations over p-adic fields containing
the p-th roots of unity (Theorem A). We start by introducing the four condi-
tions which define good localisations. They are precisely what is necessary in
order to generalise Pop’s proof of the birational liftable section conjecture to
localisations of curves.

5.1 Conditions for a good localisation

Let p be a prime number, let k be a field with char(k) 6= p such that µp ⊆ k,
and let X/k be a smooth, proper, geometrically connected curve. Denote by
K = κ(X) be the function field of X. For a closed point x ∈ Xcl, the degree
of x is defined as deg(x) := [κ(x) : k]. Let S ⊆ Xcl be a set of closed points.
In this situation, we formulate the following conditions:

(Sep) For all x 6= y in X(k), the map

O(XS∪{x,y})
× → k×/k×

p

given by f 7→ f(x)/f(y) is nontrivial.

(Pic) Every geometrically connected, finite Z/pZ-elementary abelian cover
W → XS satisfies

Pic(W )/p = 0.

(Rat) For all non-rational closed points x ∈ Xcl for which deg(x) is not
divisible by p, the map

O(XS∪{x})
× → κ(x)×/ k×κ(x)×

p

given by f 7→ f(x) is nontrivial.

The fourth condition assumes that k is a finite extension of Qp. For a
valuation w on K, we denote by Kh

w the henselisation of K with respect to w.

(Fin) For every rank one valuation w on K extending the p-adic valuation
on k, the following map has finite cokernel:

O(XS)× → (Kh
w)×/(Kh

w)×
p
.
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5 The liftable section conjecture for good localisations

Definition 5.1.1. Let k be a finite extension of Qp with µp ⊆ k and let X/k
be a smooth, proper, geometrically connected curve. Given a set of closed
points S ⊆ Xcl we say that XS is a good localisation if the conditions (Sep),
(Pic), (Rat), and (Fin) are satisfied.

Remark 5.1.2. Condition (Sep) expresses a way of separating rational points by
functions; Condition (Pic) concerns the Picard group; Condition (Rat) distin-
guishes rational from non-rational closed points; (Fin) is a finiteness condition.
Remark 5.1.3. The assumption µp ⊆ k is not necessary in formulating or, at
least in the cases we consider, verifying the conditions of a good localisation.
We include the assumption nevertheless as the importance of the notion of good
localisation is merely to provide sufficient conditions under which we can prove
the liftable section conjecture, and for that purpose the assumption µp ⊆ k is
crucial. In fact, the liftable section conjecture is false in general without this
assumption (see Remark 1.4.2).
Regarding Condition (Rat), note that the target of the map

O(XS∪{x,y})
× → κ(x)×/k×κ(x)×

p

is trivial if x is a k-rational point. In order to have a chance of Condition (Rat)
being satisfied, the group `×/k×`×p should be nontrivial whenever k ( ` is a
nontrivial finite extension with p - [` : k]:

Lemma 5.1.4. Let k be a finite extension of Qp. Then, for every nontrivial
finite extension k ( `, the natural map

k×/k×
p → `×/`×

p

is not surjective.

Proof. The multiplicative group of a p-adic local field k has the structure

k× = πZ × µq−1 × (1 + mk)

where π is a uniformiser, q is the cardinality of the residue field, and 1 +mk is
the group of principal units of k. The latter is a finitely generated Zp-module
of rank [k : Qp], with torsion part consisting of the p-power roots of unity in
k. As a consequence, we have

dimFp(k
×/k×

p
) = 1 + δk + [k : Qp]

where we set

δk =

{
1, if µp ⊆ k,
0, otherwise.

For a nontrivial finite extension `/k we have [k : Qp] < [` : Qp] and δk ≤ δ`.
This implies

dimFp(k
×/k×

p
) < dimFp(`

×/`×
p
),

so that the map k×/k×p → `×/`×
p cannot be surjective.
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Corollary 5.1.5. Let k be a finite extension of Qp with µp ⊆ k and let XS/k
be a localisation of a curve such that for every non-rational closed point x ∈ Xcl

with p - deg(x), the map

O(XS∪{x})
× → κ(x)×/κ(x)×

p

given by f 7→ f(x) is surjective. Then XS satisfies Condition (Rat).

Proof. The targets of the maps in question are nontrivial by Lemma 5.1.4, so
if the maps are surjective, they are nontrivial.

In Chapter 6 below, we prove some general criteria which imply the good-
ness of a localisation in terms of approximation of rational functions on X by
invertible functions on XS , and in terms of approximation of divisors on X by
divisors with support outside of S. The conditions are verified in some cases
in Chapter 7.

5.2 Outline of the proof

We give here a short summary of the proof of Theorem A. We start by treating
in Section 5.3 the injectivity statement of the liftable section conjecture, i.e.
we show that a liftable section lies over at most one rational point. This part
works over general base fields containing the p-th roots of unity and uses only
Condition (Sep) of a good localisation, which expresses a way of separating
rational points by functions.
To discuss the proof of the existence statement, let us fix some notation.

Let k be a finite extension of Qp with µp ⊆ k, let X/k be a smooth, proper,
geometrically connected curve and let S ⊆ Xcl be a set of closed points such
that XS is a good localisation. Let k/k be an algebraic closure, Gk := Gal(k/k)
the absolute Galois group and π1(XS) the étale fundamental group of XS with
respect to a geometric base point on XS ⊗k k. Denote by K the function field
of X and by K ′S/K the maximal Z/pZ-elementary abelian extension which is
unramified over XS , so that we have Gal(K ′S/K) = π1(XS)′. Assume we are
given a liftable section s′ : G′k → π1(XS)′. The image of s′ is a closed subgroup
im(s′) ⊆ π1(XS)′ and hence corresponds to a subextension K ⊆ M [s′] ⊆ K ′S .
We write M := M [s′] to ease the notation, keeping in mind that the definition
of M depends on the liftable section s′. Recall that the Brauer group of the
p-adic field k is canonically isomorphic to Q/Z via the invariant map from local
class field theory. We denote by α ∈ Br(k) the class with invariant 1

p (mod Z).
The proof of the existence of a rational point x ∈ X(k) over which s′ lies is
divided into the following steps:

Step 1 In Section 5.4 we show that the map Br(k)[p]→ Br(M)[p] of p-torsion
in Brauer groups is injective. This is where the liftability of the section
and Condition (Pic) of a good localisation are used. The proof uses a
combination of group cohomology and étale cohomology.
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5 The liftable section conjecture for good localisations

Step 2 By Step 1, the Brauer class α ∈ Br(k) with invariant 1
p maps to a non-

zero class in Br(M). Pop’s local-to-global principle for Brauer groups of
function fields over p-adic fields, which is used as a black box, implies
the existence of a rank 1 valuation w on M such that α does not vanish
in the henselisation Mh

w. The image of the section s′ is contained in the
decomposition group of w. The aim is to show that w is equal to the
discrete valuation at a k-rational point of X.

Step 3 The valuation w from Step 2 restricts to the p-adic valuation or the
trivial valuation on k. In Section 5.7 the former is ruled out by showing
that the residue characteristic of w cannot be positive. Denoting by Kh

w

the henselisation of K with respect to the restriction w|K , the extension
Kh
w ⊆Mh

w is “almost maximal Z/pZ-abelian” in the sense that the max-
imal Z/pZ-abelian extension of Kh

w has finite degree over Mh
w. This is a

consequence of Condition (Fin) of a good localisation. A subtle analysis
of Z/pZ-abelian extensions of mixed characteric henselian fields shows
that this makes Mh

w too large for the Brauer class α to survive if the
residue characteristic is of w positive.

Step 4 We conclude from Step 3 that the valuation w is the discrete valuation
associated to a closed point x of X. In Section 5.8, Condition (Rat) is
used to prove that this point must be k-rational.

Theorem C, which deduces information about the index of X from a liftable
section s′ : Gk → π1(XS)′, is proved in Section 5.5 as a byproduct of Step 1.
The conclusion is weaker than the liftable section conjecture but it holds under
fewer assumptions: instead of XS being a good localisation, only the validity
of Condition (Pic) is required.

5.3 Distinguishing points by their Z/pZ-abelian
sections

The first question in any variant of the section conjecture concerns the unique-
ness of the k-rational point over which a section lies. This question is generally
much easier than the existence question. In Proposition 5.3.2 below, we give
a proof on the level of Z/pZ-abelian fundamental groups over an arbitrary
base field k containing the p-th roots of unity for a localisation XS satisfying
Condition (Sep), thereby proving in particular the uniqueness statement in
Theorem A.
In this section 5.3, let k be any field with char(k) 6= p containing the p-th

roots of unity. Let X/k be a smooth, proper, geometrically connected curve
and S ⊆ Xcl a set of closed points. Let K be the common function field of
X and XS and let K ′S/K be the maximal Z/pZ-abelian extension which is
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unramified over XS . Recall from Proposition 2.5.4 that K ′S is obtained from
K by adjoining p-th roots of the elements of the group

∆S := {f ∈ K× : vs(f) ≡ 0 mod p for all s ∈ S},

where vs : K× � Z denotes the discrete valuation associated to a point s ∈ S.
Let π1(XS)′ → G′k be the canonical projection of Z/pZ-elementary abelian
fundamental groups induced by the structural morphism XS → Spec(k). For
a closed point x ∈ Xcl, denote by Dx ⊆ π1(XS)′ its associated decomposition
group. Note that Dx does not depend on the choice of a point over x since
the group π1(XS)′ is abelian, so that any conjugation indeterminacy vanishes.
Denote by Kh

x a henselisation of K at x.

Lemma 5.3.1. With the notation as above, let x, y ∈ Xcl be two closed points.
Then the intersection of decomposition groups Dx ∩Dy maps non-surjectively
to G′k under the projection π1(XS)′ → G′k if and only if there exist f ∈ ∆S and
a ∈ k× \ k×p such that

f ∈ (Kh
x)×

p
and af ∈ (Kh

y )×
p
.

Proof. Let k′/k be the maximal Z/pZ-abelian extension of k, which agrees with
the relative algebraic closure of k in K ′S . The projection π1(XS)′ → G′k can be
identified with the restriction map of Galois groups Gal(K ′S/K) → Gal(k′/k)
in the field diagram

K ′S

k′

K

k

The image of Dx ∩Dy in G′k equals the Galois group of k′ over k′∩(K ′S)Dx ∩Dy .
This is a proper subgroup of G′k if and only if the inclusion k ⊆ k′∩(K ′S)Dx ∩Dy

is strict. By the Galois correspondence for K ′S/K, the fixed field (K ′S)Dx ∩Dy

equals the compositum (K ′S)Dx · (K ′S)Dy . Let K/K ′S be an algebraic closure
and choose henselisations Kh

x and Kh
y in K. Then we have (K ′S)Dx = K ′S∩Kh

x ,
so that the extension (K ′S)Dx/K corresponds via Kummer theory to the group

ker
(
∆S → (Kh

x)×/(Kh
x)×

p)
= ∆S ∩ (Kh

x)×
p
,

and similarly for y. In conclusion, the fixed field (K ′S)Dx ∩Dy corresponds to
the subgroup (∆S ∩ (Kh

x)×
p
) · (∆S ∩ (Kh

y )×
p
) of K×. Using the Kummer

correspondence for k, we obtain the equivalences

Dx ∩Dy maps non-surjectively to G′k
⇔ k ( k′ ∩ (K ′S)Dx ∩Dy

⇔ k×
p ( k× ∩ (∆S ∩ (Kh

x)×
p
) · (∆S ∩ (Kh

y )×
p
).
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If Dx ∩Dy maps non-surjectively to G′k, then there exist a ∈ k× \ k×p and
f̃ ∈ ∆S∩(Kh

x)×
p and g ∈ ∆S∩(Kh

y )×
p such that a = f̃g, and then f := f̃−1 and

a satisfy the claim. If, conversely, there are f ∈ ∆S and a ∈ k× \k×p such that
f ∈ (Kh

x)×
p and af ∈ (Kh

y )×
p, then setting f̃ := f−1 and g := a/f̃ , we have

g ∈ ∆S since a and f are contained in the group ∆S , so that a is contained in
the right hand side but not the left hand side in the last equivalence above.

Proposition 5.3.2. With the notation as above, assume that the localisation
XS satisfies Condition (Sep). If a Z/pZ-abelian section s′ : G′k → π1(XS)
satisfies im(s′) ⊆ Dx ∩Dy with x, y ∈ X(k), then x = y.

Proof. Assume that x 6= y. Then by Condition (Sep), there exists some func-
tion h ∈ O(XS∪{x,y})

× such that h(x)/h(y) is not a p-th power in k. Set
a := h(x)/h(y) ∈ k× \ k×p and f := h/h(x). Then we have f ∈ O(XS)× ⊆ ∆S

and
f(x) = 1, af(y) = 1.

Since char(k) 6= p, the polynomial Xp − 1 is separable over k. This implies by
Hensel’s Lemma that f is a p-th power in Kh

x and that af is a p-th power in
Kh
y . So Dx ∩Dy does not surject onto G′k by Lemma 5.3.1, and in particular,

there exists no section s′ with image contained in Dx ∩Dy.

Remark 5.3.3. In the proof of Proposition 5.3.2 above, we only needed an
element in ∆S ∩ O×X,x ∩ O

×
X,y such that f(x)/f(y) is not a p-th power. This

is slightly weaker than Condition (Sep) which asserts the existence of such a
function in the subgroup

O(XS∪{x,y})
× ⊆ ∆S ∩ O×X,x ∩ O

×
X,y.

However, in our case of interest, where k is a finite extension of Qp and XS is
a good localisation, the two statements are almost equivalent. More precisely,
for a good localisation we have Pic(XS)/p = 0 from Condition (Pic). Assume
that even the localisation at the possibly larger set S′ := S ∪ {x, y} satisfies
Pic(XS′)/p = 0 (and k is a p-adic field). We show in Proposition 6.1.1 below
that this implies that Pic(XS′) is finite, so that we have Pic(XS′)[p] = 0.
Then the exact sequence from Remark 2.5.6 shows that the natural map
O(XS′)

×/p→ ∆S′/p is an isomorphism. With the inclusions

O(XS′)
× ⊆ ∆S ∩ O×X,x ∩ O

×
X,y ⊆ ∆S′ ,

it follows that the natural map

(O(XS′)
×)/p→ (∆S ∩ O×X,x ∩ O

×
X,y)/p

is surjective. Thus, under the assumption Pic(XS′)/p = 0, the map

∆S ∩ O×X,x ∩ O
×
X,y → k×/k×

p

given by f 7→ f(x)/f(y) is nontrivial if and only if it is nontrivial on
O(XS∪{x,y})

×, as required by Condition (Sep).
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5.4 Injectivity of p-torsion in Brauer groups

We now turn to the proof of the existence part of Theorem A. For the first step
in this Section 5.4, k is still allowed to be any field of characteristic char(k) 6= p
satisfying µp ⊆ k, and the only restriction we impose on XS is that Condi-
tion (Pic) be satisfied, i.e. every Z/pZ-elementary abelian finite étale cover
W → XS satisfy Pic(W )/p = 0. We assume we are given a liftable section
s′ : G′k → π1(XS)′ and use the notation introduced in Section 5.2. In particu-
lar, M = M [s′] denotes the subextension K ⊆ M ⊆ K ′S corresponding to the
image of the liftable section im(s′) ⊆ π1(XS)′ = Gal(K ′S/K). Let W [s′]→ XS

be the corresponding profinite étale cover.
The aim of this section 5.4 is to prove the following injectivity statement on

p-torsion in Brauer groups:

Proposition 5.4.1. With notations and assumptions as above, the following
map is injective:

Br(k)[p] ↪−→ Br(M)[p].

5.4.1 A lemma in group cohomology

The following lemma is where the liftability of the section s′ is used.

Lemma 5.4.2. Let Π� G be a surjective homomorphism of profinite groups.
Let s′ : G′ → Π′ be a liftable section (Definition 1.3.2) and let Γ ⊆ Π be the
preimage of im(s′) under the projection Π� Π′. Then the maps

H2(G′′,Z/pZ)→ H2(G,Z/pZ)→ H2(Γ,Z/pZ)

are injective on the image of H2(G′,Z/pZ) under inflation.

Proof. Consider a class in H2(G′,Z/pZ) which maps to zero in H2(Γ,Z/pZ). It
is represented by a central extension E of G′ by Z/pZ which admits a splitting
ϕ : Γ→ E over Γ.

Γ Π G

Γ/Π(2) Π′′ G′′

1 Z/pZ E G′ 1.

ϕ

ϕ

The claim is that there is a splitting already over G′′. By definition, Γ con-
tains the Z/pZ-commutator subgroup Π(1) = [Π,Π]Πp, which maps to zero
in the Z/pZ-elementary abelian group G′, hence ϕ restricts to a homomor-
phism ϕ|Π(1) : Π(1) → Z/pZ. This map similarly sends Π(2) to zero, the Z/pZ-
commutator subgroup of Π(1), so that ϕ factors through a map ϕ : Γ/Π(2) → E.
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5 The liftable section conjecture for good localisations

Since Γ/Π(2) is the preimage of im(s′) under the projection Π′′ � Π′, any lift
s′′ : G′′ → Π′′ of s′ lands in Γ/Π(2). By assumption, such a lift s′′ exists, and
then ϕ ◦ s′′ : G′′ → E is a splitting of E over G′′.

We apply Lemma 5.4.2 to the surjective homomorphism π1(XS)� Gk and
liftable section s′. The Z/pZ-elementary abelian cover W [s′] → XS corre-
sponds to the closed subgroup im(s′) ⊆ π1(XS)′ by definition, therefore the
preimage of im(s′) under the projection π1(XS) � π1(XS)′ equals the funda-
mental group π1(W [s′]) (using compatible choices of geometric base points).
Since µp ⊆ k by assumption, one can replace Z/pZ with the trivial Gk-module
µp in the lemma. Denoting by k′/k the maximal Z/pZ-abelian extension of k
in K ′S , we find that the map

H2(k, µp) −→ H2(π1(W [s′]), µp) (∗)

is injective on the image of H2(k′/k, µp) under inflation. The following lemma
shows that the image of H2(k′/k, µp) under inflation is in fact the full group
H2(k, µp), so that the map (∗) is injective.

Lemma 5.4.3. Let k be a field with char(k) 6= p satisfying µp ⊆ k. Then the
inflation map

H2(k′/k, µp) −→ H2(k, µp)

is surjective.

Proof. Consider the commutative diagram of cup products and inflation maps

H1(k′/k, µp) × H1(k′/k, µp) H2(k′/k, µ⊗2
p )

H1(k, µp) × H1(k, µp) H2(k, µ⊗2
p ).

inf inf

^

inf

^

The inflation maps on H1 are isomorphisms since µp is a trivial Gk-module and
the map

Hom(G′k, µp)→ Hom(Gk, µp)

is an isomorphism by the universal property of the maximal Z/pZ-abelian quo-
tient. The lower horizontal map is surjective by the Merkurjev–Suslin theorem
[MS82]. It follows that the inflation map on the right is surjective. We have
µ⊗2
p
∼= µp (non-canonically) as Gk-modules since µp ⊆ k, hence also the map

inf : H2(k′/k, µp)� H2(k, µp)

is surjective.
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5.4.2 Étale cohomology and cohomology of the fundamental
group

We recall how étale cohomology of a connected scheme relates to group coho-
mology of the profinite fundamental group. Let Z be a connected qcqs scheme,
let π : Z̃ → Z be the universal profinite étale cover and let π1(Z) = Gal(Z̃/Z).
For any sheaf F of abelian groups on the étale site Zét, we have a Hochschild–
Serre spectral sequence

Ep,q2 = Hp(π1(Z),Hq(Z̃, π∗F))⇒ Hp+q(Z,F),

obtained as the colimit of the Hochschild–Serre spectral sequences associated
to the finite Galois subcovers of Z̃ → Z. The spectral sequence induces com-
parison maps

Hn(π1(Z),F(Z̃)) −→ Hn(Z,F), n ≥ 0,

defined as the edge homomorphisms En,02 � En,0∞ ↪→ En. Here, we have

F(Z̃) := π∗F(Z̃) = colim
i
F(Zi),

the colimit being taken over all connected finite étale subcovers Z̃ → Zi → Z.

Proposition 5.4.4. Let F be a locally constant torsion sheaf on Zét. Then
the comparison map

Hn(π1(Z),F(Z̃)) −→ Hn(Z,F)

is an isomorphism for n = 0, 1, and injective for n = 2.

Proof. The claim follows if we show

H1(Z̃, π∗F) = 0,

since then Ep,12 = 0 for all p ≥ 0 in the Hochschild–Serre spectral sequence. As
étale cohomology commutes with colimits on a qcqs scheme, we may assume
that F is locally constant finite. Then F is representable by a finite étale Z-
group scheme GF and we can write H1(Z̃, π∗F) = H1(Z̃, GF ). Again by the
commutation of étale cohomology with limits, we have

H1(Z̃, GF ) = colim
i

H1(Zi, GF ),

where Zi → Z runs through the connected finite étale subcovers of Z̃ → Z. The
group H1(Zi, GF ) classifies GF -torsors over Zi. Let T → Zi be a GF -torsor.
Then T is finite étale over Zi because this can be checked on a trivialising cover
and GF is finite étale over Z. Every torsor becomes trivial over itself, so T
becomes trivial after pulling back along Zi×Z T → Zi. Since this is nonempty
and finite étale over Z, there exists a map Zj → Zi×Z T for some j, and hence
T becomes trivial in the colimit.
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5 The liftable section conjecture for good localisations

Returning to the proof of Proposition 5.4.1, the comparison maps in degree 2
for Spec(k) and W [s′] and the sheaf µp fit into a commutative square

H2(π1(W [s′]), µp) H2(W [s′], µp)

H2(Gk, µp) H2(k, µp).

(∗)

The left vertical arrow is the map (∗) which we have already proved to be
injective. With the injectivity of the comparison map from Proposition 5.4.4,
we conclude that the map in étale cohomology

H2(k, µp) ↪−→ H2(W [s′], µp) (∗∗)

is injective as well.

5.4.3 The Brauer group and the Kummer sequence

For any scheme Z on which the prime p is invertible, the Kummer sequence
yields a short exact sequence

0 Pic(Z)/p H2(Z, µp) Br(Z)[p] 0.

Taking Z = Spec(k) and Z = W [s′], respectively, and using Pic(k) = 0, the
resulting short exact sequences fit into a commutative diagram:

0 Pic(W [s′])/p H2(W [s′], µp) Br(W [s′])[p] 0

0 0 H2(k, µp) Br(k)[p] 0.

(∗∗)

The middle vertical arrow is the map (∗∗) which was previously shown to be
injective.
The scheme W [s′] is an inverse limit of geometrically connected finite étale

Z/pZ-elementary abelian covers Wi → XS . Since XS satisfies Condition (Pic)
by assumption, we have Pic(Wi)/p = 0 for all i. From this we obtain

Pic(W [s′])/p = lim−→
i

Pic(Wi)/p = 0

by the compatibility of étale cohomology with inverse limits of schemes. By
the previous discussion, this implies H2(W [s′], µp) = Br(W [s′])[p], and hence
the map

Br(k)[p] ↪−→ Br(W [s′])[p] (∗ ∗ ∗)

is injective.
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5.4 Injectivity of p-torsion in Brauer groups

5.4.4 Purity for the Brauer group

Finally, we recall Grothendieck’s Purity Theorem for the Brauer group:

Theorem 5.4.5 ([Gro66], Corollaire 1.10). Let Z be a regular, integral scheme
with function field K. Then the following map is injective:

Br(Z) ↪−→ Br(K).

Proof. Denote by j : Spec(K) → Z the inclusion of the generic point, and
by iz : z → Z the inclusion of a codimension 1 point z ∈ Z(1). Since Z is
regular, Z is locally factorial by the Auslander–Buchsbaum theorem [AB59]
(i.e. all local rings are factorial), so that the groups of Cartier divisors and
Weil divisors on Z are canonically isomorphic. The regularity is inherited by
every étale Z-scheme, therefore even the sheaves of Cartier divisors and Weil
divisors on the étale site Zét are isomorphic. Hence, we have the short exact
divisor sequence of étale sheaves on Z

0→ Gm → j∗Gm → DivZ → 0,

with the Weil divisor sheaf

DivZ =
⊕
z∈Z(1)

(iz)∗ Z.

We calculate

H1(Z,DivZ) =
⊕
z∈Z(1)

H1(z,Z) =
⊕
z∈Z(1)

Hom(Galκ(z),Z) = 0,

where the vanishing Hom(Galκ(z),Z) = 0 follows from the fact that the image
of any homomorphism (of topological groups) Gk → Z is a compact subgroup
of Z, but the trivial group is the only such subgroup. It follows now from the
long exact cohomology sequence that the following map is injective:

Br(Z) ↪−→ H2(Z, j∗Gm).

Consider the Leray spectral sequence

Ep,q2 = Hp(Z,Rq j∗Gm)⇒ Hp+q(K,Gm).

The stalk of R1j∗Gm at a geometric point z of Z with strictly henselian local
ring OZ,z is given by

(R1j∗Gm)z = H1(Spec(OZ,z)×Z Spec(K),Gm) = H1(Frac(OZ,z),Gm) = 0

by Hilbert’s Theorem 90, hence we have R1j∗Gm = 0. This implies E2,0
2 = E2,0

∞
in the spectral sequence, thus the edge map is injective:

H2(Z, j∗Gm) ↪−→ Br(K).

The map Br(Z)→ Br(K) in question is the composite of the two maps proved
to be injective.
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5 The liftable section conjecture for good localisations

Write W [s′] = lim Wi as an inverse limit of connected finite étale covers
of XS and denote by Mi the function field of Wi. Then each of the maps
Br(Wi)→ Br(Mi) is injective by Theorem 5.4.5. Passing to the (co-)limit, we
find that the map

Br(W [s′]) ↪−→ Br(M)

is injective. Combining with the injectivity of (∗ ∗ ∗), the proof of Proposi-
tion 5.4.1 is finished.

5.5 Consequences for the index

Before continuing with the proof of the liftable section conjecture for good
localisations, we want to explain how the injectivity result of Proposition 5.4.1
affects the index of a curve.
Let X/k be a smooth, proper, geometrically connected curve over an arbi-

trary field k.

Definition 5.5.1. The index of X/k is the greatest common divisor of the
degrees deg(x) = [κ(x) : k] for all closed points x ∈ Xcl:

index(X) = gcd{deg(x) : x ∈ Xcl}.

Definition 5.5.2. The relative Brauer group ofX/k is defined as the kernel

Br(X/k) := ker
(
Br(k)→ Br(X)

)
.

For every closed point x ∈ Xcl, the restriction-corestriction map

Br(k) Br(X) Br(κ(x)) Br(k)
corκ(x)/k

equals multiplication by deg(x) = [κ(x) : k], which implies that the relative
Brauer group Br(X/k) is annihilated by deg(x). It follows that Br(X/k) is
annihilated by index(X). In particular, if k is a p-adic field, then under the
isomorphism Br(k) ∼= Q/Z, the relative Brauer group Br(X/k) is contained in
the subgroup 1

index(X)Z/Z. By a result of Roquette, this inclusion is in fact an
equality:

Fact 5.5.3 ([Roq66]). Let X/k be a smooth, projective curve over a finite
extension k/Qp. Then, under the isomorphism Br(k) ∼= Q/Z, the relative
Brauer group of X/k equals

Br(X/k) = 1
index(X)Z/Z.

If X contains a k-rational point, then clearly index(X) = 1. Thus, for any
set of closed points S ⊆ Xcl such that the localisation XS satisfies the liftable
section conjecture for some prime number p, we have the implication:

∃ liftable section s′ : G′k → π1(XS)′ ⇒ index(X) = 1.
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But even without the full strength of the liftable section conjecture for XS ,
we can draw conclusions about the index of X from the existence of liftable
sections. The injectivity statement of Proposition 5.4.1 is enough to show the
following:

Proposition 5.5.4 (= Theorem C (a)). Let k be a finite extension of Qp with
µp ⊆ k and let X/k be a smooth, proper, geometrically connected curve. Let
S ⊆ Xcl be a set of closed points such that the localisation XS satisfies Condi-
tion (Pic). Then we have the implication:

∃ liftable section s′ : G′k → π1(XS)′ ⇒ p - index(X).

Proof. Let s′ : G′k → π1(XS)′ be a liftable section, denote by M/K the Z/pZ-
elementary abelian extension of the function field of X corresponding to the
im(s′) ⊆ π1(XS)′. Proposition 5.4.1 says that the pullback map of Brauer
groups along the composite morphism

Spec(M)→ Spec(K)→ X → Spec(k)

is injective on the p-torsion subgroup Br(k)[p] of the Brauer group. In particu-
lar, the map Br(k)→ Br(X) is injective on the p-torsion subgroup, i.e. we have
Br(X/k)[p] = 0. Since k is a p-adic field, the relative Brauer group Br(X/k)
is cyclic of order index(X) by Roquette’s Theorem. This implies p - index(X)
as claimed.

Combining this with a result of Stix, we obtain:

Corollary 5.5.5 (= Theorem C (b)). Let k be a finite extension of Qp with
µp ⊆ k and let X/k be a smooth, proper, geometrically connected curve of
genus g > 0. Let S ⊆ Xcl be a set of closed points such that XS satisfies
Condition (Pic). Then we have the implication:

∃ section s : Gk → π1(XS) ⇒ index(X) = 1.

Proof. Let s : Gk → π1(XS) be a section. Composing with π1(XS) → π1(X)
yields a section for the projection π1(X) → Gk. By [Sti10, Theorem 15], this
implies that index(X) is a power of p. But s also induces a liftable section
s′ : G′k → π1(XS)′, so that we have p - index(X) by Proposition 5.5.4, and
hence index(X) = 1.

Remark 5.5.6. We show in Proposition 6.3.11 below that Condition (Pic) is
satisfied for XS when the complement of S is uniformly dense in X (Defini-
tion 6.3.8). Thus, Proposition 5.5.4 and Corollary 5.5.5 apply in particular to
such localisations of curves.
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5 The liftable section conjecture for good localisations

5.6 A distinguished valuation

We continue with the proof of the liftable section conjecture for good localisa-
tions. From now on, k is assumed to be a finite extension of Qp with µp ⊆ k.
Denote by F the finite residue field of k. Let XS/k be a good localisation
and assume we are given a liftable section s′ : G′k → π1(XS)′. We use the
notation introduced in Section 5.2. Thus, K ′S/K denotes the maximal Z/pZ-
abelian extension which is unramified over XS and M = M [s′] denotes the
subextension K ⊆ M ⊆ K ′S corresponding to the image of the liftable section
im(s′) ⊆ π1(XS)′ = Gal(K ′S/K). Moreover, α ∈ Br(k) denotes the Brauer
class with invariant 1

p . By the injectivity statement of Proposition 5.4.1, the
class α does not vanish after pulling back to Br(M):

α|M 6= 0.

5.6.1 The local-to-global principle for Brauer groups

For a valuation w on M , denote by Mh
w the henselisation.

Proposition 5.6.1. There exists a rank 1 valuation w on M with Ok ⊆ Ow
such that we have

α|Mh
w
6= 0.

The key ingredient in the proof of Proposition 5.6.1 is Pop’s local-to-global
principle for Brauer groups of function fields over p-adically closed fields, which
we use as a black box. The class of p-adically closed fields includes all finite
extensions of Qp.

Fact 5.6.2 ([Pop88], Theorem 4.5). Let k be a p-adically closed field and M/k
a field extension of transcendence degree trdeg(M/k) = 1. Letting w run over
the valuations of M extending the p-adic valuation v on k, the following map
is injective:

Br(M) ↪−→
∏
w|v

Br(Mh
w).

Remark 5.6.3. If M is the function field of a smooth, proper, geometrically
connected curve X over a p-adic field k, the above local-to-global principle
is a consequence of the perfectness of Lichtenbaum’s duality pairing [Lic69,
Theorem 4]

Br(X)× Pic(X)→ Br(k) ∼= Q/Z.

Pop’s result, which is proved using model-theoretic methods, is a generalisation
to arbitrary extensions of transcendence degree 1 which are not necessarily
finitely generated. For a proof without the use of model theory see also [PS17,
§4.1].
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5.6 A distinguished valuation

Proof of Proposition 5.6.1. By Proposition 5.4.1, we have α|M 6= 0. By Pop’s
local-to-global principle 5.6.2, there exists a valuation w on M extending the
p-adic valuation v on k such that α|Mh

w
6= 0. The rank of w is at least 1 since

w is not trivial on k. Denote the value groups of w and v by Γw and Γv ∼= Z.
The Dimension Inequality 4.2.6 yields

trdeg(κ(w)/F) + rr(Γw/Γv) ≤ trdeg(M/k).

We have rr(Γv) = rr(Z) = 1 and trdeg(M/k) = 1. Using the additivity of
the rational rank in short exact sequences and the fact that the rank of w is
bounded by the rational rank (Fact 4.1.13), we find

rk(Γw) ≤ 2.

In particular, the rank of w is finite, so that there exists a unique rank 1
coarsening w1 of w on Mh

w. The restriction w1|k is a coarsening of the p-adic
valuation of k, i.e. we have Ok ⊆ Ow1 . By Proposition 4.5.8, Mh

w is henselian
also with respect to the coarsening w1. By the universal property, the henseli-
sation Mh

w1
embeds into Mh

w. Now α|Mh
w
6= 0 implies that α|Mh

w1
6= 0. Thus,

w1 satisfies the claim.

5.6.2 The central field diagram

In the following, let w be a rank one valuation on M with Ok ⊆ Ow such
that α|Mh

w
6= 0, which exists by Proposition 5.6.1. Extend w to a valuation w

on algebraic closure K and let L := Kh
w and Λ := Mh

w be the henselisations
of (K,w|K) and (M,w) inside K with respect to w. Note that L ⊆ Λ. The
compositum ML contains M and is henselian, being an algebraic extension of
the henselian field Λ, so the inclusion ML ⊆ Λ is an equality: ML = Λ. Set
L′S := K ′SL = K ′SΛ inside K, so that we have L ⊆ Λ ⊆ L′S . Let k′/k be the
maximal Z/pZ-abelian extension of k in K ′S . The fields fit into a diagram as
follows:

L′S = K ′SL

K ′S

k′ Λ = Mh
w

M

L = Kh
w

K

k

(5.6.1)
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5 The liftable section conjecture for good localisations

Lemma 5.6.4. The canonical restriction maps of Galois groups for the three
indicated extensions are isomorphisms:

Gal(L′S/Λ) ∼−→ Gal(K ′S/M) ∼−→ Gal(k′/k).

Proof. The second isomorphism holds by definition of M since the canonical
projection map π1(XS)′ → G′k restricts to an isomorphism im(s′) ∼= G′k. The
first restriction map is injective since L′S is defined as the compositum K ′SL.
The surjectivity of the composite map Gal(L′S/Λ) → Gal(k′/k) is equivalent
to the linear disjointness k′∩Λ = k. Let k1 := k′Λ. The map of Brauer groups
Br(k) → Br(k1) is isomorphic to multiplication by [k1 : k] on Q/Z [NSW08,
Cor. (7.1.4)]:

Br(k1) Q/Z

Br(k) Q/Z

inv
∼

inv
∼

[k1:k]

If k1/k is a nontrivial subextension of k′, its degree [k1 : k] is a multiple by p,
so that the Brauer class in Br(k) with invariant 1

p vanishes in Br(k1). But this
class survives in Λ by construction, hence we must have k1 = k.

5.6.3 Connection with the decomposition group

We introduced in Definition 3.1.3 the notion of a section lying over a closed
point. We can similarly define that a section lies over a valuation w̃ on K if
its image is contained in a decomposition group of w̃. In this sense, the given
liftable section s′ : G′k → π1(XS)′ lies over the valuation w that we obtained
from Proposition 5.6.1:

Proposition 5.6.5. The image of the liftable section s′ is contained in the
decomposition group Dw ⊆ π1(XS)′.

Proof. The henselisation L = Kh
w is the fixed field in K of the decomposition

group Dw|w ⊆ Gal(K/K) for an extension w|w. The image of Dw|w under the
surjection Gal(K/K) → Gal(K ′S/K) = π1(XS)′ is the decomposition group
Dw = Gal(K ′S/K

′
S ∩ L). Lemma 5.6.4 implies

K ′S ∩ L ⊆ K ′S ∩ Λ = M,

hence we have

Dw ⊇ Gal(K ′S/M) = im(s′).
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5.7 Ruling out mixed characteristics

5.7 Ruling out mixed characteristics

We have obtained in Proposition 5.6.1 a rank 1 valuation w on M satisfying
Ok ⊆ Ow such that α|Λ 6= 0 and im(s′) ⊆ Dw, and we want to show that its
restriction to K equals the discrete valuation associated to a k-rational point of
X. Since Ok ⊆ Ow, the restriction of w to k equals either the p-adic valuation
or the trivial valuation. The valuations associated to closed points are precisely
those that are trivial on k, so the former has to be ruled out. The key step is
to show that the extension Λ/L is an “almost maximal Z/pZ-abelian” in the
sense that the maximal Z/pZ-abelian extension L′/L has finite degree over Λ.
If the residue field of w has characteristic p, this makes the extension Λ/L “too
large” for the Brauer class α ∈ Br(k) with invariant 1

p to survive in Λ.

5.7.1 An almost maximal Z/pZ-abelian extension

We start by proving the claimed finiteness of the extension L′/Λ.

Lemma 5.7.1. Assume that w extends the p-adic valuation on k. Then the
degree [L′ : L′S ] is finite.

Proof. By definition, L′S equals the compositum K ′SL. Recall from Propo-
sition 2.5.4, that K ′S/K is the Z/pZ-elementary abelian Kummer extension
obtained by adjoining p-th roots of the elements of the group

∆S := {f ∈ K× : vs(f) ≡ 0 mod p for all s ∈ S}.

Hence, L′S/L is the Kummer extension corresponding to the subgroup
∆SL

×p ⊆ L×. The Galois group Gal(L′/L′S) is µp-dual via the Kummer
pairing to the quotient L×/∆SL

×p, so the claimed finiteness amounts to the
map ∆S → L×/L×

p having finite cokernel. Since ∆S contains O(XS)×, this
follows from Condition (Fin) for a good localisation.

Remark 5.7.2. We will show in Proposition 6.1.1 below that the vanishing
Pic(XS)/p = 0 from Condition (Pic) is equivalent to Pic(XS) being finite of
order not divisible by p. This implies Pic(XS)[p] = 0, and the exact sequence
from Remark 2.5.6 shows that the inclusion O(XS)× ↪→ ∆S induces an iso-
morphism

O(XS)×/O(XS)×
p ∼= ∆S/K

×p.

As a consequence, the map ∆S → L×/L×
p having finite cokernel is equivalent

to O(XS)× → L×/L×
p doing so. In other words, Condition (Fin) expresses

precisely the finiteness of the degree [L′ : L′S ].

Proposition 5.7.3. Assume that w extends the p-adic valuation on k. Then
the extension L′/Λ is finite.
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5 The liftable section conjecture for good localisations

Proof. By Lemma 5.7.1, it suffices to show that L′S/Λ is finite. By the iso-
morphism of Galois groups from Lemma 5.6.4, we have [L′S : Λ] = [k′ : k]. By
Kummer theory (or local class field theory), the degree of the maximal Z/pZ-
abelian extension k′/k is equal to the cardinality of k×/k×p, whose finiteness
follows from the structure of k×.

5.7.2 Almost maximal Z/pZ-abelian extensions of a mixed
characteristic henselian field

In order to analyse the given situation, we put ourselves in the general setting
where (L,w) is a henselian field of characteristic zero with residue characteristic
p > 0 such that L contains the p-th roots of unity. Let mL be the valuation
ideal and ` the residue field. Denote by `′ the residue field of the maximal
Z/pZ-abelian extension L′/L with respect to the unique extension of w. We
do not assume that the residue field of L is perfect; in particular, `′ may be
strictly greater than the maximal Z/pZ-abelian extension of ` since it contains
also the purely inseparable extension `1/p.

p-th roots for the residue field

Proposition 5.7.4. Let Λ be a subextension of L′/L such that the degree
[L′ : Λ] is finite; denote by λ its residue field. Then we have `1/p ⊆ λ.

Proof. If ` is finite, then `1/p = ` and there is nothing to prove, so we may
assume that ` is infinite. By Kummer theory, Λ = L(∆1/p) for a subgroup
L×

p ⊆ ∆ ⊆ L×. By assumption, we have

#
(
L×/∆

)
= [L′ : Λ] <∞.

Let ∆ be the image of ∆∩O×L under the reduction map O×L � `×. The group
`×/∆ is a quotient of O×L/(∆ ∩ O

×
L ), which is in turn a subgroup of L×/∆,

hence also `×/∆ is finite. Since we are in characteristic p, the set ` ∩ λp of
elements of ` which become a p-th power in λ is a subfield of `. It contains ∆
by construction. The claim now follows from the following lemma:

Lemma 5.7.5. Let F/K be an extension of fields with F infinite and F×/K×

finite. Then F = K.

Proof. Let d := [F : K] ≤ ∞. Then PK(F ) := F×/K× is a (d−1)-dimensional
projective space over K with only finitely many points. But K is infinite since
K× has finite index in the infinite group F×. So we must have d = 1.

Dividing by p in the value group

Proposition 5.7.6. Let Λ be a subextension of L′/L such that the degree
[L′ : Λ] is finite. Assume that ` is not finite or w(L) is not discrete. Then
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5.7 Ruling out mixed characteristics

for every element γ ∈ w(L) there exists a subextension E ⊆ Λ of the form
E = L(t1/p) with t ∈ L× such that γ becomes divisible by p in the value group
of E, i.e. γ ∈ pw(E).

Lemma 5.7.7. Let x ∈ L such that w(x) ≤ p
p−1w(p). Then w(x) becomes

divisible by p in the value group of the extension L((1 + x)1/p).

Proof. The Newton polygon of

f(X) := (1 +X)p − (1 + x) = Xp +

p−1∑
i=1

(
p

i

)
Xi − x,

is the lower convex hull of the points

(0, w(x)), (1, w(p)), . . . (p− 1, w(p)), (p, 0).

The condition w(x) ≤ p
p−1w(p) expresses that the points (i, w(p)) for 0 < i < p

lie on or above the line segment connecting (0, w(x)) with (p, 0).

w(p)
w(x)

p

The Newton polygon consists therefore only of this one line segment with slope
−w(x)/p and the roots of f in the splitting field L((1+x)1/p) all have valuation
w(x)/p. In particular, w(x) becomes divisible by p in the value group of the
extension.

Lemma 5.7.8. Let (L,w) be a valued field and let x, y, z ∈ mL be three ele-
ments satisfying (1+x)(1+y) = 1+z. Then we have w(z) ≥ min(w(x), w(y)),
and equality holds if w(x) 6= w(y).

Proof. After writing x+ y+ xy = z, this follows from from analogous additive
statement (Lemma 4.1.8).

Proof of Proposition 5.7.6. Let Λ = L(∆1/p) with L×p ⊆ ∆ ⊆ L×. As in the
proof of Proposition 5.7.4 above, the index of ∆ in L× is finite. Observe that
if γ ∈ pw(E) for some subextension E of Λ, then we have γ+ pw(L) ⊆ pw(E).
So given any γ ∈ w(L), in order to show that γ becomes divisible by p in an
extension of the form E = L(t1/p) ⊆ Λ, we are free to change γ by adding an
element of pw(L).
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5 The liftable section conjecture for good localisations

Assume first that ` is infinite. We claim that any γ > 0 in w(L) is of the
form γ = w(x) with 1 + x ∈ ∆. This is equivalent to saying that for every
t ∈ mL, there exists a unit u ∈ O×L such that 1 + tu ∈ ∆. Observe that the
elements 1 + tu with u a unit are precisely the elements not mapped to zero
by the homomorphism

ψ : (1 + tOL, ·) −→ (`,+), 1 + ty 7→ y mod mL.

Hence, we have to show that the restriction of ψ to ∆∩ (1 + tOL) is nontrivial.
But ∆ ∩ (1 + tOL) has finite index in 1 + tOL, so its image under ψ has finite
index in ` and is thus infinite, in particular nontrivial, which proves the claim.
Now let γ ∈ w(L) be arbitrary. Set λ := 1− ζ for a primitive p-th root of unity
ζ ∈ L×. We have pw(λ) = p

p−1w(p). Since w(L) embeds into R as an ordered
group, there exists a unique integer m ∈ Z such that

0 < γ +mpw(λ) ≤ p

p− 1
w(p).

As observed above, we are free to replace γ with γ + mpw(λ) and may thus
assume γ ∈ (0, p

p−1w(p)]. By our claim, there exists x ∈ L× with γ = w(x)
and 1 + x ∈ ∆, and we are done by Lemma 5.7.7.
Assume now that w(L) is nondiscrete. Then pw(L) is dense in w(L) and it is

enough to consider only those γ ∈ w(L) contained in an interval (0, ε) for some
suitable ε > 0. Since ∆ ∩ (1 + mL) has finite index in 1 + mL, we can choose
finitely many coset representatives 1 + ai. Then, for every x ∈ mL there exists
an i such that (1+x)(1+ai) ∈ ∆. Define z ∈ mL by 1+z = (1+x)(1+ai) ∈ ∆,
then Lemma 5.7.8 implies w(z) = w(x) if w(x) < w(ai). Therefore, if we set
ε := miniw(ai), then every value in the interval (0, ε) is of the form w(z) with
1 + z ∈ ∆, and hence becomes divisible by p in an extension of the desired
form by Lemma 5.7.7.

Remark 5.7.9. The hypothesis in Proposition 5.7.6 that ` be not finite or w(L)
not discrete is necessary: if L = k is a finite extension of Qp, then k′/k is finite
and hence k itself is an “almost maximal Z/pZ-abelian extension” of k, but the
conclusion of Proposition 5.7.6 that every element of the value group w(k) ∼= Z
becomes divisible by p in the (trivial) extension k does not hold.
The following lemma shows that, up to taking completions, local fields are

the only counterexamples:

Lemma 5.7.10. If the residue field ` is finite and the value group w(L) is
discrete, then the completion L̂ of L is a finite extension of Qp.

Proof. The restriction of w to Q ⊆ L is the p-adic valuation since char(`) = p.
Taking completions, we get Qp ⊆ L̂. With respect to the w-adic topology,
L̂ is locally compact since O

L̂
= lim←−nOL/m

n
L is profinite. This implies that

the dimension of L̂ over Qp is finite by general facts about topological vector
spaces [Bou87, Ch. I, §3.4, Theorem 3].
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5.7 Ruling out mixed characteristics

5.7.3 The Brauer group of a henselian field in unramified
extensions

Consider an arbitrary henselian field L with respect to a valuation w, and
a finite unramified Galois extension E/L. Denote by e/` the residue field
extension, which is Galois with the same group G := Gal(E/L) ∼= Gal(e/`).
Write Br(E/L) (and similarly Br(e/`)) for the relative Brauer group of the
extension E/L:

Br(E/L) = ker
(

Br(L) −→ Br(E)
)
.

The relative Brauer group Br(E/L) can also be described as the Galois co-
homology group H2(G,E×) by the inflation-restriction exact sequence (which
starts in degree 2 by Hilbert’s Theorem 90).
The aim of this subsection is to derive the following result:

Proposition 5.7.11 ([Pop88, §2]). There is a natural short exact sequence:

0 Br(e/`) Br(E/L) Hom(G,w(L)⊗Q/Z) 0.

Lemma 5.7.12. The group of principal units 1 + mE is G-cohomologically
trivial.

Proof. By [Ser79, Ch. IX §5, Theorem 8], we have to show that for each prime p
and each p-Sylow subgroupGp ofG, the Tate cohomology group Ĥ

q
(Gp, 1+mE)

vanishes for two consecutive integers q. Renaming EGp as L and Gp as G, it
suffices to show that

Ĥ
q
(G, 1 + mE) = 0 for q = 0, 1.

Noting that (1 + mE)G = 1 + mL, the claim for q = 0 is that the norm map

NmE/L : 1 + mE −→ 1 + mL

is surjective. The fact that E/L is unramified implies that the trace maps for
E/L and e/` satisfy

TrE/L(x) mod mL = Tre/`(x) for x ∈ OE ,

where x is the reduction of x modulo mE . As e/` is separable, we can choose
α ∈ OE such that TrE/L(α) 6≡ 0 mod mE . Now let 1+y ∈ 1+mL and consider
the equation

NmE/L(1 + αX) = 1 + y

in the variable X. The polynomial

P (X) := NmE/L(1 + αX)− (1 + y)

= NmE/L(α)Xn + . . .+ TrE/L(α)X − y,
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5 The liftable section conjecture for good localisations

where n = [E : L], has coefficients in OL and satisfies

P (0) = −y ≡ 0 mod mL,

P ′(0) = TrE/L(α) 6≡ 0 mod mL.

By Hensel’s Lemma, P has a root x ∈ mL, so that NmE/L(1 + αx) = 1 + y.
For q = 1, we have to show H1(G, 1 +mE) = 0. The short exact sequence of

G-modules
0 −→ 1 + mE −→ O×E −→ e× −→ 0 (5.7.1)

yields an exact sequence

. . . −→ O×L −→ `× −→ H1(G, 1 + mE) −→ H1(G,O×E) −→ . . .

The first map is clearly surjective. The group H1(G,O×E) equals the kernel of
the map Pic(OL) → Pic(OE) by the Hochschild–Serre spectral sequence for
the finite étale Galois covering Spec(OE) → Spec(OL) with group G. But
Pic(OL) = 0 as OL is a local ring, so we have H1(G,O×E) = 0 and hence the
group H1(G, 1 + mE) vanishes.

In light of the short exact sequence (5.7.1), we obtain from Lemma 5.7.12:

Corollary 5.7.13. For all integers q ∈ Z, the natural map of Tate cohomology
groups is an isomorphism:

Ĥ
q
(G,O×E) ∼= Ĥ

q
(G, e×).

In particular, Br(OE/OL) = Br(e/`).

Proposition 5.7.11 is now the special case n = 2 of the following proposition:

Proposition 5.7.14. For all n ≥ 1, there is a natural short exact sequence:

0 −→ Hn(G, e×) −→ Hn(G,E×) −→ Hn−1(G,w(L)⊗Q/Z) −→ 0.

Proof. Consider the short exact sequence

0 −→ O×E −→ E×
w−→ w(E) −→ 0.

We claim that the valuation map w induces surjections under Hn(G,−) for
all n ≥ 0, so that the resulting long exact sequence splits into short exact
sequences

0 −→ Hn(G,O×E) −→ Hn(G,E×) −→ Hn(G,w(E)) −→ 0, (5.7.2)

for all n ≥ 0.
Since E/L is unramified, L× surjects onto w(E). As a totally ordered abelian

group, w(E) is torsion-free. Hence, every finitely generated subgroup Γ of w(E)
is Z-free and admits a section s as follows:

94



5.7 Ruling out mixed characteristics

Γ

L× w(E).

s

w

As a map Γ → E×, the section s is G-equivariant since it takes values in
the G-invariant subgroup L× ⊆ E×. Applying Hn(G,−) yields a commuting
diagram

Hn(G,Γ)

Hn(G,E×) Hn(G,w(E)).

s

w

Taking the direct limit over all finitely generated subgroups Γ of w(E) shows
the claimed surjectivity and therefore the exactness of the sequences (5.7.2).
The proposition now follows from w(L) = w(E), Corollary 5.7.13, and the

isomorphism

Hn−1(G,w(L)⊗Q/Z) ∼= Hn(G,w(L)) for n ≥ 1

that arises by tensoring the short exact sequence 0 → Z → Q → Q/Z → 0
with the torsion-free group w(L).

5.7.4 p-cyclic Brauer classes

Let K be an arbitrary field of characteristic p. A Brauer class in Br(K) is
called p-cyclic if it becomes trivial over a cyclic Galois extension L/K of
degree p. Such an extension is an Artin–Schreier extension L = K(α), obtained
by adjoining a root α of a polynomial Xp − X − a = 0 for some a ∈ K.
Interpreting Br(K) as equivalence classes of central simple algebras, every p-
cyclic algebra which splits over L has a presentation of the form

[a, b) :=
〈
x, y

∣∣∣ xp − x = a, yp = b, xy = yx+ y
〉

for some b ∈ K×.

The fact that [a, b) splits over K(α) can be seen as follows. A central simple
algebra of prime degree p (square root of the dimension) is either split or a
division algebra. Over the Artin–Schreier extension K(α), the equation

p−1∏
i=0

(x− α− i) = (x− α)p − (x− α) = 0

shows that [a, b) has zero-divisors, so it must be split. Similarly, if β denotes
a root of Xp − b = 0, we have the equation

(y − β)p = yp − βp = 0,

which shows that [a, b) is also split by the purely inseparable extensionK(b1/p).
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5 The liftable section conjecture for good localisations

Proposition 5.7.15. Let K be a field of characteristic p. Then every p-cyclic
Brauer class in Br(K) is split by K1/p.

Proof. We have sketched above a proof in the language of central simple alge-
bras, but since we have so far preferred to view Br(K) as the cohomological
Brauer group H2(K,Gm), we give a self-contained proof using Galois cohomol-
ogy. Let L/K be a cyclic Galois extension of degree p with group G. By the
2-periodicity of the (Tate) cohomology of cyclic groups, we have an isomor-
phism

θK : K×/NmL/K(L×) ∼−→ Br(L/K),

so any p-cyclic Brauer class trivialised by L is of the form θK(b) for some
b ∈ K×. Let β := b1/p, then the extension L(β)/K(β) is also an Artin–
Schreier extension with Galois group canonically isomorphic to G, and we
have a commutative square of restriction maps

K×/NmL/K(L×) Br(L/K)

K(β)×/NmL(β)/K(β)(L(β)×) Br(L(β)/K(β)).

∼
θK

∼
θK(β)

The element b becomes the norm of β in the degree p extension L(β)/K(β),
which shows that θK(b) becomes trivial over K(β).

Remark 5.7.16. The central simple algebra viewpoint and the Galois cohomol-
ogy viewpoint are related as follows. Let L/K be an Artin–Schreier extension
of K obtained by adjoining a root α of Xp−X−a. A generator σ of the Galois
group G is given by σ(α) = α+1. Define χ : G ∼= Z/pZ by χ(σ) = 1. Viewing χ
as an element of H1(G,Z/pZ) and denoting by δ(χ) ∈ H2(G,Z) its image along
the boundary map from the short exact sequence 0 → Z → Z → Z/pZ → 0,
the periodicity isomorphism θK above (which depends on a through the choice
of σ) is given by forming the cup product with δ(χ):

θK(b) = δ(χ) ^ b,

and θK(b) is the class representing the central simple algebra [a, b) [GS17,
Corollary 4.7.4].

5.7.5 Ruling out mixed characteristics

After these generalities, let us return to the proof of Theorem A. Recall that
α ∈ Br(k) is the Brauer class with invariant 1

p , we have a rank 1 valuation w
on M such that α|Mh

w
6= 0, and we have the field diagram (5.6.1).

Proposition 5.7.17. The residue field of the valuation w has characteristic
zero.
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5.7 Ruling out mixed characteristics

Proof. Assume that w has positive residue characteristic, i.e. the restriction of
w to k equals the p-adic valuation. Let k1/k be the unramified extension of
degree p in a fixed algebraic closure k and let G := Gal(k1/k) be its Galois
group. For any extension F/k contained in K, denote by F1 the compositum
F1 := Fk1. By taking the unique extension of w from L to K and restricting,
F is endowed with a valuation. In this way, F/k is an extension of valued
fields and the compositum F1/F is unramified since k1/k is. The residue field
f1 of F1 is obtained as the compositum of the residue field f of F with the
residue field F1 of k1. If F is contained in Λ, then the Galois group Gal(F1/F )
is canonically isomorphic to G by Lemma 5.6.4.
Now take F equal to each of k, L, E, Λ in turn, for some suitable subexten-

sion E of Λ/L to be chosen later. In each case, we have the short exact sequence
from Proposition 5.7.14 for the relative Brauer group in the unramified exten-
sion F1/F . By functoriality with respect to extensions of valued fields, the
sequences form a commutative diagram as follows, with obvious notations for
the residue fields:

0 0 Br(k1/k) Hom(G, v(k)⊗Q/Z) 0

0 Br(`1/`) Br(L1/L) Hom(G,w(L)⊗Q/Z) 0.

0 Br(e1/e) Br(E1/E) Hom(G,w(E)⊗Q/Z) 0

0 Br(λ1/λ) Br(Λ1/Λ) Hom(G,w(Λ)⊗Q/Z) 0

∼
α 7→χα

!
=0

Here, the relative Brauer group Br(F1/F) for the residue field extension of k1/k
vanishes since the Brauer group of a finite field is trivial. The right vertical
maps are induced by the inclusions of value groups

v(k) ⊆ w(L) ⊆ w(E) ⊆ w(Λ).

The Brauer class α ∈ Br(k) with invariant 1
p is contained in the relative Brauer

group Br(k1/k) since the pullback map Br(k)→ Br(k1) is isomorphic to mul-
tiplication with [k1 : k] = p on Q/Z. Denoting by σ the canonical generator
of G given by the Frobenius automorphism, and by πk a uniformiser of k, the
image χα of α in Hom(G, v(k)⊗Q/Z) is given by

χα(σ) = v(πk)⊗
1

p
.

Observe that χα maps to zero in Hom(G,w(E)⊗Q/Z) if v(πk) becomes divis-
ible by p in w(E). We claim that there exists a subextension E of Λ/L with
residue field e equal to ` where this happens. If v(πk) is already divisible by p
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5 The liftable section conjecture for good localisations

in w(L), we simply set E := L, so assume v(πk) 6∈ pw(L). The field L must
have infinite residue field or non-discrete value group, for otherwise the comple-
tion L̂ would be finite over Qp by Lemma 5.7.10, contradicting the fact that L
contains the function field K of the curve X/k. So L satisfies the hypotheses of
Proposition 5.7.6 and there exists a subextension E = L(t1/p) ⊆ Λ with t ∈ L×
in whose value group v(πk) becomes divisible by p. The extension E/L has
degree at most p and ramification index divisible by p since v(πk) is contained
in pw(E) but not in pw(L). By the Fundamental Inequality (Fact 4.2.4), it
follows that the residue field extension is trivial: ` = e.
The choice of E implies that the restriction map Br(k1/k) → Br(E1/E)

actually takes values in Br(e1/e). The extension e1/e is cyclic of degree p. By
Proposition 5.7.15, every class in Br(e1/e) is also split by the purely inseparable
extension e1/p (= `1/p). By Proposition 5.7.4, we have `1/p ⊆ λ. Hence, the
restriction map Br(e1/e) → Br(λ1/λ) is trivial. In particular, α ∈ Br(k1/k)
maps to zero in Br(Λ), contradicting the choice of the valuation w.

5.8 Rationality

We have ruled out the possibility that the valuation w has positive residue
characteristic. So its restriction to k must be trivial and hence, by the valuative
criterion of properness, w equals the discrete valuation associated to a unique
closed point x ∈ Xcl. It remains to see that this point x is k-rational.

Lemma 5.8.1. The residue field extension λ/` of Λ/L is trivial and [` : k] is
not divisible by p.

Proof. Let k1/k be any Galois degree p extension in k′, for instance the unique
unramified one. Set L1 := Lk1 and Λ1 := Λk1 and let `1 and λ1 be their
residue fields. The field k, like any field, is henselian with respect to the trivial
valuation w|k, and the extension k1/k as well as its translates L1/L and Λ1/Λ
are trivially unramified with respect to w. They all have degree p since Λ and
k′ are linearly disjoint. Using that the exact sequence from Proposition 5.7.11
is functorial with respect to extensions of valued fields, we get a commutative
diagram:

1
pZ/Z Br(k1/k) Br(k1/k)

1
pZ/Z Br(`1/`) Br(L1/L)

1
pZ/Z Br(λ1/λ) Br(Λ1/Λ).

[`:k]

[λ:`]

The class α ∈ Br(k1/k) with invariant 1
p lands in the unramified Brauer group

Br(`1/`). As indicated in the diagram, each of the unramified relative Brauer
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groups is isomorphic to 1
pZ/Z and the vertical maps are given by multiplication

by the field extension degrees. Since the generator α of Br(k1/k) survives in
Br(Λ) by construction, the degrees [` : k] and [λ : `] are not divisible by p. Since
Λ/L is Z/pZ-elementary abelian, so is λ/`, hence we must have [λ : `] = 1.

Proposition 5.8.2. The closed point x ∈ X with valuation w is k-rational.

Proof. The residue field ` of L equals the residue field κ(x) of the closed point x.
By Lemma 5.8.1, we have p - deg(x). The residue field `′ of L′ equals the
maximal Z/pZ-abelian extension of `, obtained by adjoining p-th roots of all
elements. Consider the subextension ` ⊆ `′S ⊆ `′ given by the residue field
of L′S . As in the proof of Lemma 5.7.1, the extension L′S/L is obtained by
adjoining p-th roots of the group

∆S := {f ∈ K× : vs(f) ≡ 0 mod p for all s ∈ S} ⊆ K×.

Since L is henselian of residue characteristic zero, an element of ` admits a
p-th root in `′S if and only if a lift in O×L admits a p-th root in L′S . The residue
field `′S/` is thus obtained by adjoing p-th roots of the image of

∆S ∩ O×L → `×/`×
p
.

On the other hand, the field L′S equals the compositum Λk′ by the isomorphism
of Galois groups Gal(L′S/Λ) ∼= Gal(k′/k) from Lemma 5.6.4, which implies
`′S = λk′. By Lemma 5.8.1, we have ` = λ and hence `′S = `k′. In other words,
`′S is obtained from ` by adjoining p-th roots of all elements of k×. Combining
this with the considerations above, we find that the map ∆S ∩ O×L → `×/`×

p

has image equal to k×`×p/`×p. Hence, the subgroup O(XS)×∩O×L ⊆ ∆S∩O×L
maps into k×`×p/`×p. Condition (Rat) rules this out for a non-rational point,
so we must have κ(x) = k.

We have thus shown in Proposition 5.8.2 that the valuation w belongs to a
k-rational point x ofX. By Proposition 5.6.5, the image of the liftable section s′

is contained in the decomposition group Dx of x in π1(XS)′, in other words, s′

is a section over x. The uniqueness of x was shown in Proposition 5.3.2. The
proof the main theorem A is thus finished.
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In this chapter we collect some general criteria which can be used to verify
the conditions of a good localisation. Condition (Pic) is given an equivalent
formulation in Proposition 6.1.1. In Section 6.2, we show that each of the four
conditions of a good localisation is implied by a certain approximation property
for rational functions with respect to various valuations. In Section 6.3 we show
that Condition (Pic) for a localisation XS follows also from the possibility of
approximating divisors on X by divisors with support outside S. We show that
this is satisfied when the complement of S is uniformly dense (Definition 6.3.8).
Finally, in Section 6.4 we give one sufficient and one necessary condition for a
localisation to have the property (Fin).

6.1 The Picard group

Let k be a field of characteristic zero and let X/k be a smooth, proper, ge-
ometrically connected curve. The Picard scheme PicX/k is defined as the
commutative group scheme over k which represents the fppf-sheafification of
the presheaf T 7→ Pic(X ×k T ) [Kle05]. It has a decomposition as a disjoint
union

PicX/k =
∐
d∈Z

PicdX/k

with PicdX/k representing the subsheaf corresponding to line bundles of degree d.
The degree zero part of PicX/k is the identity component Pic◦X/k; it is an
abelian variety of dimension g, the genus of X, and each PicdX/k is an étale
Pic◦X/k-torsor. If the base field k it not separably closed, a k-point of PicX/k
does not necessarily represent an isomorphism class of line bundles in Pic(X)
but rather a Gal(`/k)-invariant element of Pic(X ⊗ `) for some finite Galois
extension `/k. The difference between Pic(X) and PicX/k(k) is measured by
the relative Brauer group Br(X/k) (Definition 5.5.2) via a short exact sequence

0→ Pic(X)→ PicX/k(k)→ Br(X/k)→ 0, (6.1.1)

which arises from the Leray spectral sequence for the étale sheaf Gm under
the structural morphism X → Spec(k). It is the vanishing of Pic(k) = 0 by
Hilbert’s Theorem 90 which ensures the injectivity of Pic(X)→ PicX/k(k).

Proposition 6.1.1. Let k be a finite extension of Qp, let X/k be a smooth,
proper, geometrically connected curve and let S ⊆ Xcl be a set of closed points.
Then the following are equivalent:
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(i) Pic(XS)/p = 0;

(ii) Pic(XS) is finite of order not divisible by p.

Proof. The implication (ii)⇒(i) is clear. For the forward direction, assume
that we have Pic(XS)/p = 0. The group Pic(XS) is a quotient of Pic(X)
via restriction of line bundles from X to XS . The group Pic(X) in turn is a
subgroup of PicX/k(k) via the exact sequence (6.1.1). The degree map defines
a short exact sequence

0→ Pic◦X/k(k)→ PicX/k(k)
deg−→ period(X)Z→ 0,

where period(X) is defined as the smallest positive integer d > 0 for which
PicdX/k(k) 6= ∅. As a consequence, Pic(XS) sits in a short exact sequence of
the form

0→ P → Pic(XS)→ Q→ 0

where P is a subquotient of Pic◦X/k(k) and Q is a subquotient of Z. The
group scheme Pic◦X/k is an abelian variety of dimension g over k, so the group
of k-points Pic◦X/k(k) has a structure of a compact p-adic analytic Lie group
over k. By a theorem of Mattuck [Mat55], Pic◦X/k(k) contains an open subgroup
isomorphic to (Ogk,+), which has finite index by compactness. Hence, the
subquotient P of Pic◦X/k(k) sits in an exact sequence of the form

0→ R→ P → F → 0,

where R is a subquotient of Ogk ∼= Zg·[k:Qp]
p and F is finite.

Now from Pic(XS)/p = 0 we get Q/p = 0. Since Q is a subquotient of Z,
this implies that Q is finite cyclic of order prime to p. Then also Q[p] = 0,
which implies P/p ∼= Pic(XS)/p = 0. With the latter exact sequence, we
find F/p = 0, hence F [p] = 0 since F is finite. As a consequence, we have
R/p ∼= P/p = 0. Since R is a free Zp-module of finite rank, this implies R = 0.
So P ∼= F is finite, and therefore Pic(XS) is finite as an extension of the finite
group Q by P . Finally, the order of Pic(XS) is not divisible by p because of
Pic(XS)/p = 0.

6.2 Approximation of rational functions

Each of the four conditions of a good localisation are implied by the possibility
of approximating rational functions on X with respect to various valuations
by rational functions with invertibility conditions.

Definition 6.2.1. Let K be a field and F ⊆ K a subset. Given valuations
v1, . . . , vn of K with value groups Γ1, . . . ,Γn, we say that K satisfies approx-
imation by F with respect to v1, . . . , vn if for all f1, . . . , fn ∈ K and all
γ1 ∈ Γ1, . . . , γn ∈ Γn, there exists f ∈ F such that vi(f − fi) > γi for all
i = 1, . . . , n.
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Remark 6.2.2. Definition 6.2.1 can be rephrased as follows: K satisfies approx-
imation by F with respect to v1, . . . , vn if and only if the image of F under the
diagonal embedding F ↪→

∏n
i=1(K, vi) is dense, where (K, vi) is the topological

field K with the vi-adic topology.
Example 6.2.3. Let K be a field and let v1, . . . , vn be finitely many pairwise
independent valuations on K. Then K satisfies approximation by K itself
with respect to v1, . . . , vn. This is the statement of the Approximation Theo-
rem 4.4.5.
We can formulate the following criteria in terms of approximation of rational

functions which imply the four conditions of a good localisation:

Proposition 6.2.4. Let k be a field of char(k) 6= p with µp ⊆ k, let X/k be
a smooth, proper, geometrically connected curve and S ⊆ Xcl a set of closed
points.

(a) Assume that at least one element of k is not a p-th power and that for
all x 6= y in X(k), the function field K of X satisfies approximation by
O(XS\{x,y})

× with respect to vx, vy. Then XS satisfies Condition (Sep).

(b) Assume that for every geometrically connected, Z/pZ-elementary abelian
finite étale cover Yf−1(S) → XS (cf. Corollary 2.4.11) and every
point y ∈ f−1(S), the function field κ(Y ) satisfies approximation by
O(Yf−1(S)\{y})

× with respect to vy. Then XS satisfies Condition (Pic).

(c) Assume that for every non-rational closed point x ∈ Xcl with p - deg(x),
the function field K satisfies approximation by O(XS\{x})

× with respect
to vx. Then XS satisfies Condition (Rat).

(d) Suppose that k is a finite extension of Qp. Assume that for every rank
one valuation w on K extending the p-adic valuation on k, the function
field K satisfies approximation by O(XS)× with respect to w. Then XS

satisfies Condition (Fin).

Proof. For (a), let a ∈ k× be an element which is not a p-th power and let x 6= y
in X(k) be different k-rational points. Using the approximation assumption,
there exists f ∈ O(XS\{x,y})

× such that vx(f−a) > 0 and vy(f−1) > 0. Then
f is invertible at x and y with f(x) = a and f(y) = 1, and thus f(x)/f(y) = a
is not a p-th power in k.
To prove (b), let Yf−1(S) → XS and y ∈ f−1(S) as above be given. We

show that Pic(Yf−1(S)) = 0, even without quotienting by multiples of p. A
prime divisor on Yf−1(S) is given by a point y ∈ f−1(S). To show that it
is a principal divisor, we need to find a rational function f ∈ κ(Y )× on Y
with vy(f) = 1 and no zeroes or poles in f−1(S) \ {y}. Let ty ∈ κ(Y )×

be a uniformiser at y. By the approximation assumption, there exists some
f ∈ O(Yf−1(S)\{y})

× such that vy(f − ty) > 1. Then it follows that we have
vy(f) = min{vy(f − ty), vy(ty)} = 1, as desired.
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To show (c), let x ∈ Xcl be a non-rational closed point with p - deg(x). We
show that the map O(XS∪{x})

× → κ(x)× given by f 7→ f(x) is surjective,
which implies by Corollary 5.1.5 that Condition (Rat) is satisfied. For a given
a ∈ κ(x)×, choose g ∈ OX,x with g(x) = a. By the approximation assumption,
there exists f ∈ O(XS\{x})

× such that vx(f − g) > 0. Then f is invertible also
at x, i.e. f is an element of O(XS∪{x})

×, and satisfies f(x) = g(x) = a.
Finally, to show (d), let w be a rank one valuation on K extending the

p-adic valuation on k such that K satisfies approximation by O(XS)× with
respect to w. We show that the map O(XS)× → (Kh

w)×/(Kh
w)×

p has even
trivial cokernel, i.e. is surjective. Since w has rank one, the field K is dense
with respect to the w-adic topology in the henselisation Kh

w. By assumption,
O(XS)× is dense in K with respect to the w-adic topology, so by transitivity,
O(XS)× is dense in (Kh

w)×. It follows that the image of O(XS)× is dense in the
quotient (Kh

w)×/(Kh
w)×

p. As a consequence of Hensel’s Lemma (Fact 4.5.2),
the group (Kh

w)×
p of p-th powers is open in (Kh

w)×; more precisely, if f ∈ (Kh
w)×

satisfies w(f − 1) > 2w(p), then the approximate root 1 of the polynomial
Xp−f implies the existence of an actual root in (Kh

w)×. Therefore, the quotient
(Kh

w)×/(Kh
w)×

p is discrete and the dense image of O(XS)× is the whole group.

6.3 Approximation of divisors

For Condition (Pic) we can formulate a criterion in terms of approximation of
divisors on X by divisors with support outside S.

6.3.1 The p-adic topology on the Picard group

In order to give a precise meaning to the notion of approximation of divisors,
we define a p-adic topology on the Picard group and on Hilbert schemes of
points.

Definition 6.3.1. Let k be a topological field and let X/k be a k-scheme
which is locally of finite type. The analytic topology on X(k) is defined
as follows: for an affine space, An(k) = kn carries the product topology. For
an affine scheme X/k of finite type, X(k) carries the subspace topology from
An(k) via an embedding X ↪→ Ank . This does not depend on the choice of
embedding. In general, a subset U ⊆ X(k) is open in the analytic topology
if and only if its intersection with any affine Zariski-open subscheme of finite
type is analytically open. If k is a p-adic field, we speak also of the p-adic
topology.

Given a morphism f : X → Y between two k-schemes which are locally of
finite type, the induced map f : X(k) → Y (k) is continuous with respect to
the analytic topology. This follows from the fact that for a topological field k,
every polynomial map kn → km is continuous.
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6 Criteria for good localisations

From now on, let k be a finite extension of Qp, and let X/k be a smooth,
proper, geometrically connected curve. The Picard scheme of X/k is locally of
finite type over k, so that we have a p-adic topology on PicX/k(k). Recall that
Pic(X) is a subgroup of PicX/k(k) as a consequence of Hilbert’s Theorem 90
(see Section 6.1 above).

Definition 6.3.2. The p-adic topology on Pic(X) is the subspace topology
induced by the p-adic topology on PicX/k(k).

Lemma 6.3.3. For every n ∈ N, the multiplication-by-n map on PicX/k(k) is
open with respect to the p-adic topology.

Proof. By [Poo17, Prop. 3.5.73], it suffices to show that multiplication by n
is étale on PicX/k as an endomorphism of schemes. Since étaleness satisfies
faithfully flat descent, this may be checked after a base change to an algebraic
closure k/k. On the identity component Pic◦

Xk/k
, the map is étale by [Stacks,

Lemma 0BFH], essentially because the multiplication-by-n map on the tangent
space at the identity is invertible. Choose a point p ∈ X(k). Then, for any
d ∈ Z, the degree-d component Picd

Xk/k
is the translate of Pic◦

Xk/k
by the line

bundle OXk(dp), hence the multiplication-by-n map is étale there as well.

Lemma 6.3.4. The Picard group Pic(X) is an open subgroup of PicX/k(k).

Proof. By the exact sequence (6.1.1), the quotient PicX/k(k)/Pic(X) is iso-
morphic to the relative Brauer group Br(X/k). As explained in Section 5.5,
Br(X/k) is annihilated by the index of X/k. Hence, if we set n := index(X),
then Pic(X) contains n·PicX/k(k). By Lemma 6.3.3, the subgroup n·PicX/k(k)
is open in PicX/k(k), hence Pic(X), being a union of open cosets, is open as
well.

Lemma 6.3.5. The subgroup p · Pic(X) is open in Pic(X).

Proof. The group p · Pic(X) is the image of the open subgroup Pic(X) of
PicX/k(k) under the open multiplication-by-p map.

6.3.2 The p-adic topology on the Hilbert scheme

We also want to define a p-adic topology on sets of divisors. For d ≥ 0, the
Hilbert scheme of points HilbdX/k represents the presheaf

T 7→
{

D ⊆ X ×k T closed subscheme s.t.
D → T is finite locally free of degree d

}
on k-schemes. Equivalently, the points in HilbdX/k(T ) are relative effective
Cartier divisors of X ×k T → T of degree d [Stacks, Lemma 0B9D]. In partic-
ular:

HilbdX/k(k) = {effective divisors on X/k of degree d}.
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6.3 Approximation of divisors

The scheme HilbdX/k is a smooth, proper k-variety of dimension d [Stacks,
Prop. 0B9I]. In particular, HilbdX/k is of finite type over k, so that we have a
p-adic topology on its k-points via Definition 6.3.1 and can define:

Definition 6.3.6. For d ≥ 0, the p-adic topology on the set of effective
degree-d divisors on X is the p-adic topology on HilbdX/k(k).

There is a morphism of k-schemes

HilbdX/k → PicdX/k

induced by mapping each relative effective Cartier divisor D ⊆ X ×k T to its
associated line bundle O(D), functorially for k-schemes T . On k-points, the
map clearly takes values in the subset Picd(X) of PicdX/k(k). Consequently, we
have for all d ≥ 0 a map

HilbdX/k(k)→ Picd(X),

which is continuous with respect to the p-adic topologies and which is given by
D 7→ OX(D) or, in terms of linear equivalence classes of divisors, by D 7→ [D].

6.3.3 Approximation of divisors

If divisors on X can be approximated by divisors with support outside S, then
we have Pic(XS)/p = 0:

Proposition 6.3.7. Let k be a finite extension of Qp and let S ⊆ Xcl be a set
of closed points such that for all sufficiently large d � 0, the set of effective
degree-d divisors on X with support outside S is p-adically dense in HilbdX/k(k).
Then we have Pic(XS)/p = 0.

Proof. It suffices to show that the classes of divisors on X with support outside
of S are dense in Pic(X). Indeed, any dense subset of Pic(X) surjects onto
Pic(X)/p since p · Pic(X) is open (Lemma 6.3.5). Restriction of divisors from
X to XS defines a further surjective homomorphism Pic(X)/p � Pic(XS)/p.
Hence, if the classes of divisors with support outside S are dense in Pic(X),
then they surject onto Pic(XS)/p. But their restriction to XS is trivial, so we
have Pic(XS)/p = 0.
To show the claim, let D be any divisor on X and let U ⊆ Pic(X) be a

p-adically open neighbourhood of [D]. We have to show that U contains the
class of a divisor with support outside S. Write D = D+ − D− with D+

and D− effective of sufficiently large degrees d+ and d−. By continuity of the
group operations, there exist p-adic neighbourhoods U+ and U− of [D+] and
[D−] such that U+ − U− ⊆ U . By the density assumption and the fact that
the map HilbdX/k(k)→ Pic(X) is continuous for all d ≥ 0, there exist divisors
E+ and E− with support outside S such that [E+] ∈ U+ and [E−] ∈ U−. Then
E := E+ − E− has support outside S and [E] is contained in U .
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6.3.4 Complements of uniformly dense subsets

We remain in the situation where k is a finite extension of Qp and XS/k is
the localisation of a smooth, proper, geometrically connected curve at a set of
closed points. Given a set of closed points T ⊆ Xcl and a field extension `/k,
we denote by T (`) ⊆ X(`) the subset of k-morphisms Spec(`)→ X with image
point contained in T .

Definition 6.3.8. A set of closed points T ⊆ Xcl is called uniformly dense
if T (`) is p-adically dense in X(`) for every finite field extension `/k.

Divisors on X can be approximated by divisors with support in a uniformly
dense subset:

Lemma 6.3.9. Let T ⊆ Xcl be a set of closed points which is uniformly dense.
Then for all d ≥ 0, the set of degree-d divisors on X with support in T is
p-adically dense in HilbdX/k(k).

Proof. Let D ∈ HilbdX/k(k) be a divisor and let U ⊆ HilbdX/k(k) be a p-adically
open neighbourhood of D. We have to show that U contains a divisor with
support in T . Addition of divisors (D1, D2) 7→ D1 + D2 is a morphism of
k-schemes

Hilbd1X/k×Hilbd2X/k → Hilbd1+d2
X/k ,

by [Stacks, Prop. 0B9I], and therefore continuous on k-points with respect
to the p-adic topology. Writing D as a sum of prime divisors, we may thus
assume that D consists of a single closed point x ∈ Xcl. Let ` := κ(x) be its
residue field, so that we have x ∈ X(`) and d = [` : k]. For any subextension
k ⊆ m ⊆ `, the set X(m) is p-adically closed in X(`). This follows from m
being p-adically closed in `, which in turn follows from the fact that the p-
adic topology on ` equals the product topology from k for any choice of basis,
and that m is a k-linear subspace. Since there are only finitely many proper
subextensions of `/k, there exists an open neighbourhood V of x in X(`) in
which all points have residue field equal to `.
We claim that the map V → HilbdX/k(k) mapping an `-point of X to its

underlying prime divisor is continuous. Let k/` be an algebraic closure. It
suffices to show that the composite map

V → HilbdX/k(k) ↪→ HilbdX/k(k). (∗)

is continuous, since HilbdX/k(k) carries the subspace topology from HilbdX/k(k).
The map (∗) sends y ∈ V with residue field ` to the divisor y ⊗` k =

∑
σ σ(y)

on X ⊗k k, with σ running through the set of k-embeddings Homk(`, k). This
follows from the isomorphism

`⊗k k =
∏
σ

k
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6.3 Approximation of divisors

given by a ⊗ b 7→ (σ(a)b)σ, which holds for any finite separable extension of
fields `/k. Thus, the map (∗) equals the sum of the d maps

V ↪→ X(`)
σ∗−→ X(k) = Hilb1

X/k(k)

induced by the k-embeddings σ : ` ↪→ k. As each of these maps is continuous,
the continuity of the map (∗) follows.
By the uniform density assumption, T (`) is dense in X(`). Thus, using the

continuity of (∗), there exists a point in T (`)∩V mapping to U , in other words,
U contains a prime divisor with support in T .

The property of having uniformly dense complement passes to covers:

Lemma 6.3.10. Let S ⊆ Xcl be a set of closed points whose complement is
uniformly dense in X. Then for every finite branched cover f : Y → X which
is unramified over S, the complement of f−1(S) is uniformly dense in Y .

Proof. Let T be the complement of S in Xcl. Then f−1(T ) is the complement
of f−1(S) in Ycl and we have to show that f−1(T )(`) is dense in Y (`) for every
finite extension `/k. Since the assumptions are stable under an extension of
scalars, it suffices to treat the case ` = k. Note that f induces a map on k-points
f : Y (k) → X(k) under which f−1(T )(k) is the preimage of T (k) ⊆ X(k). So
we can write f−1(T )(k) = f−1(T (k)) and have to show that f−1(T (k)) is dense
in Y (k). Let y ∈ Y (k) and let V ⊆ Y (k) be a p-adically open neighbourhood.
We are claiming that f−1(T (k)) ∩ V 6= ∅. If y is contained in f−1(T ), there is
nothing to do, so assume y 6∈ f−1(T ), i.e. y ∈ f−1(S). Since f is unramified
over S by assumption, the map f is étale at y. It follows that f is a local
homeomorphism for the p-adic topology near y by [Poo17, Prop. 3.5.73]. In
particular, f(V ) contains an open neighbourhood of f(y) in X(k). Since T (k)
is dense in X(k) by assumption, there exists a point in T (k)∩f(V ), and hence
a point in f−1(T (k)) ∩ V .

Combining the above results, we have the following criterion for Condi-
tion (Pic):

Proposition 6.3.11. Let k be a finite extension of Qp, let X/k be a smooth,
proper, geometrically connected curve and let S ⊆ Xcl be a set of closed points.
If the complement of S is uniformly dense, then XS satisfies Condition (Pic).

Proof. Let Yf−1(S) → XS be a geometrically connected, finite Z/pZ-elementary
abelian cover, arising by restriction from a finite branched cover f : Y → X
which is unramified over S. By Lemma 6.3.10, the complement of f−1(S) is
uniformly dense in Y . By Lemma 6.3.9, the effective divisors with support
outside f−1(S) are p-adically dense in HilbdY/k(k) for all d ≥ 0. By Proposi-
tion 6.3.7, this implies Pic(Yf−1(S))/p = 0.
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6.4 Criteria for p-adic valuations

Recall from Definition 4.1.12 that the rational rank of an abelian group Γ is
defined as

rr(Γ) := dimQ(Γ⊗Z Q).

Lemma 6.4.1. Let Γ be a torsion-free abelian group of finite rational rank.
Then for any natural number n ≥ 1, the group Γ/nΓ is finite.

Proof. Let r := dimQ(Γ ⊗Z Q) and choose elements γ1, . . . , γr ∈ Γ such that
{γi ⊗ 1}i=1,...,r is a Q-basis of Γ ⊗Z Q. Then the subgroup of Γ generated by
the γi is isomorphic to Zr, so we may assume Zr ⊆ Γ ⊆ Qr. Define Γ := Γ/Zr
by the exact sequence

0→ Zr → Γ→ Γ→ 0.

Since the functor A 7→ A/nA = A ⊗Z Z/nZ is right exact on abelian groups,
we obtain an exact sequence

(Z/nZ)r → Γ/nΓ→ Γ/nΓ→ 0.

The first term is finite, so it suffices to show finiteness of Γ/nΓ. Note that Γ is
a subgroup of (Q/Z)r, in particular a torsion group. We have a decomposition
Γ =

⊕
p Γ(p), where the p-primary part Γ(p) for a prime p consists of all

elements which are killed by a power of p. Since multiplication by n is an
isomorphism on all Γ(p) for which p does not divide n, it suffices to show
that Γ(p)/nΓ(p) is finite for all primes p. Write (−)∨ := Homcts(−,R/Z)
for the Pontryagin dual of a locally compact Hausdorff abelian group. Recall
that Pontryagin duality is a contravariant equivalence between discrete torsion
abelian groups and profinite abelian groups. The finiteness of Γ(p)/nΓ(p) is
equivalent to the finiteness of its Pontryagin dual (Γ(p)/nΓ(p))∨ = Γ(p)∨[n].
The inclusion Γ(p) ⊆ (Qp/Zp)r induces a surjection Zrp � Γ(p)∨. By the
structure theorem for finitely generated modules over principal ideal domains,
there is an isomorphism Γ(p)∨ ∼= Zsp ⊕ T with 0 ≤ s ≤ r and T a finite direct
sum of cyclic Zp-torsion modules. But every cyclic Zp-torsion module is of the
form Z/peZ for some e ≥ 0, in particular finite. It follows that T and hence
Γ(p)∨[n] = T [n] are finite.

In the following, for a valuation w on a field K, denote by (Kh
w, w

h) the
henselisation, by Oh

w ⊆ Kh
w the corresponding valuation ring and by mh the

maximal ideal.

Proposition 6.4.2. Let k be a finite extension of Qp with µp ⊆ k, let X/k be
a smooth, proper, geometrically connected curve and S ⊆ Xcl a set of closed
points. Let w be a rank one valuation on the function field K extending the p-
adic valuation on k. Assume that the following two reduction maps have finite
cokernel:
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(1) the map O(XS)× ∩ O×w → κ(w)×/κ(w)×
p;

(2) the map O(XS)× ∩ (1 + mw)→ (1 + mh
w)/(1 + mh

w)p.

Then Condition (Fin) is satisfied for w, i.e. the map O(XS)× → (Kh
w)×/(Kh

w)×
p

has finite cokernel.

Proof. For an abelian group A, written additively or multiplicatively, we write
A/p for the cokernel of the multiplication by p map. Let Γw be the value group
of w on K, which agrees with the value group of the henselisation Kh

w. We
have a commutative diagram:

1 O(XS)× ∩ O×w O(XS)× w(O(XS)×) 0

1 Oh
w
×
/p Kh

w
×
/p Γw/p 0.

w

wh

(6.4.1)

The first row is clearly exact. The second row is also exact since Γw, being
a totally ordered abelian group, is torsion-free, so that TorZ1 (Z/pZ,Γw) = 0.
The Dimension Inequality 4.2.6 yields

trdeg(κ(w)/F) + rr(Γw/Γv) ≤ trdeg(K/k), (6.4.2)

where F denotes the residue field of k and Γv ∼= Z denotes the value group of
the p-adic valuation v on k. This implies rr(Γw) ≤ 2, in particular the rational
rank of Γw is finite. Lemma 6.4.1 now implies that the group Γw/p is finite, so
that the middle vertical map has finite cokernel (as claimed) as soon as the left
vertical map does. Denote by O(XS)× ∩ O×w the image of O(XS)×∩O×w under
the map f 7→ f(w), O×w → κ(w)×. The residue field κ(w) of (K,w) coincides
with that of the henselisation (Kh

w, w
h), so we obtain a commutative diagram

as follows:

1 O(XS)× ∩ (1 + mw) O(XS)× ∩ O×w O(XS)× ∩ O×w 1

1 (1 + mh
w)/p Oh

w
×
/p κ(w)×/p 1.

The first row is clearly exact. To see the exactness of the second row, note that
κ(w) has characteristic p > 0 since w extends the p-adic valuation on k. As
a consequence, κ(w)× has no p-torsion, which implies the claimed exactness.
The assumptions (1) and (2) say that the right and left vertical map have finite
cokernel, which implies the same for the middle vertical map.

The map (1) in Proposition 6.4.2 having finite cokernel is a necessary con-
dition for Condition (Fin) to be satisfied:
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Lemma 6.4.3. Let XS/k be as above and let w be a valuation on the function
field K extending the p-adic valuation on k. If the map

O(XS)× → (Kh
w)×/(Kh

w)×
p

has finite cokernel, then so does the map

O(XS)× ∩ O×w → κ(w)×/κ(w)×
p
.

Proof. Replacing the top row of diagram (6.4.1) above with its mod p version,
we have a commutative diagram as follows:

1 (O(XS)× ∩ O×w )/p O(XS)×/p w(O(XS)×)/p 0

1 Oh
w
×
/p Kh

w
×
/p Γw/p 0.

w

wh

The top row is still exact since w(O(XS)×) ⊆ Γw is torsion-free. Since Γw has
finite rational rank, so does its subgroup w(O(XS)×). Thus, both terms on the
right are finite by Lemma 6.4.1. By assumption, the middle vertical map has
finite cokernel. The snake lemma implies that so does the left vertical map. It
follows that the composition with the reduction map,

(O(XS)× ∩ O×w )/p→ Oh
w
×
/p� κ(w)×/p

has finite cokernel as well.

Remark 6.4.4. If X is a flat, proper model of X over the valuation ring Ok
of k, then by the valuative criterion of properness, every valuation w on K
with Ok ⊆ Ow induces a unique morphism as follows:

Spec(K) X

Spec(Ow) Spec(Ok).

∃!

The image of the closed point under the map Spec(Ow) → X is called the
center of w. The valuation w is uniquely determined by the family of its
centers on all models. The valuations which extend the p-adic valuation on
k are those whose center on every model lies on the special fibre. See [PS17,
Appendix A] for a classification of the valuations on K with Ok ⊆ Ow.
Remark 6.4.5. For a rank 1 valuation w on K which extends the p-adic val-
uation on k, the residue field κ(w) is an extension of the finite residue field
F of k. If the extension κ(w)/F is algebraic, then the Frobenius x 7→ xp is
an automorphism of κ(w) and we have κ(w)×/κ(w)×

p
= 0. In this case the

surjectivity of the map

O(XS)× ∩ O×w → κ(w)×/κ(w)×
p
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is automatic. The necessary condition of Lemma 6.4.3 for a valuation w to
satisfy (Fin) is thus only interesting in the case where κ(w) is transcendental
over F. The Dimension Inequality 4.2.6 implies that trdeg(κ(w)/F) = 1 and
rr(Γw) = 1 in this case. Such a valuation belongs to an irreducible component
of the special fibre of some model of X over Ok.
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7 Examples of good localisations

In this chapter we collect some examples of curves and sets of closed points
which yield good localisations in the sense of Definition 5.1.1 and hence provide
examples where the liftable section conjecture holds. Throughout this chaper,
k denotes a finite extension of Qp containing the p-th roots of unity.

7.1 The birational case

For any smooth, proper, geometrically connected curve X/k, we can choose
the empty set of closed points S = ∅, in which case the localisation of X at
S equals the generic point ηX , or in other words the spectrum Spec(K) of the
function field of X. In this case we have O(XS)× = K×. The conditions for a
good localisation are easy to verify: For Condition (Sep), let x 6= y be two dis-
tinct k-rational points. Choose any element a ∈ k× which is not a p-th power
(for example, a uniformiser). By the Approximation Theorem 4.4.5, there ex-
ists a rational function f on X which satisfies f(x) = a and f(y) = 1, so
that f(x)/f(y) = a is not a p-th power. Condition (Pic) follows from Hilbert’s
Theorem 90 since every connected finite étale cover of Spec(K) is the spectrum
of a field. Condition (Rat) follows with Corollary 5.1.5 from the surjectivity
of the map O×X,x � κ(x)×/κ(x)×

p for every closed point x of X. For Condi-
tion (Fin) we can use the approximation criterion from Proposition 6.2.4 (d):
For any rank 1 valuation w on K extending the p-adic valuation on k, the field
K trivially satisfies approximation by K× with respect to w.
In conclusion, the liftable section conjecture for good localisations XS spe-

cialises to the birational liftable p-adic section conjecture from [Pop10, The-
orem A] by choosing S = ∅. This is of course no coincidence as our proof
was obtained by generalising the proof of loc. cit. from Spec(K) to XS , while
identifying a set of conditions which ensure that the arguments do in fact
generalise.

7.2 Finite sets

Let X still be arbitrary and, generalising the case S = ∅ above, let S ⊆ Xcl

be any finite set of closed points. Every finite étale cover of XS has the form
Yf−1(S) → XS for some finite branched cover f : Y → X by Corollary 2.4.11.
The set f−1(S) is again finite (of cardinality at most deg(f) · |S|), so it suffices
to show Condition (Pic) for XS rather than for every geometrically connected,
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finite Z/pZ-elementary abelian cover. For XS , all four approximation condi-
tions of Proposition 6.2.4 are satisfied: this follows from the Approximation
Theorem 4.4.5, where we ensure that the sought-after function is invertible on
points s ∈ S by adding to the approximation problem finitely many conditions
of the form vs(f − 1) > 0. For example, to show Condition (Rat), we have to
check that the function field K satisfies approximation by O(XS\{x})

× with
respect to vx for every non-rational closed point x ∈ Xcl with p - deg(x). Let
fx ∈ K and γ ∈ Z be given. Then, by the Approximation Theorem, there
exists f ∈ K satisfying the finite number of conditions vx(f − fx) > γ and
vs(f − 1) > 0 for all s ∈ S \ {x}, and the latter conditions ensure that f is
an element of O(XS\{x})

×. The proof of the other three conditions goes along
the same lines and is omitted.

7.3 Countable sets

Let X/k still be arbitrary and, further generalising the case of a finite set, sup-
pose that S ⊆ Xcl is at most countable. We want to verify the approximation
criteria of Proposition 6.2.4 as in the finite case, but the Approximation Theo-
rem is unable to guarantee invertibility of functions at infinitely many points.
We prove a new approximation theorem which accounts for this.

7.3.1 An approximation theorem with invertibility conditions

Theorem 7.3.1. Let K be a field and w1, . . . , wn pairwise independent valua-
tions of K. For i = 1, . . . , n, let Γi be the value group of wi and let fi ∈ K and
γi ∈ Γi be given. Let V be a set of valuations of K which are independent from
the wi and from each other. Assume that for any f ∈ K×, we have v(f) = 0
for all but finitely many v ∈ V . Assume moreover that there is a set Λ ⊆ K of
cardinality |Λ| > |V | which is contained in Owi for all i = 1, . . . , n and in O×v
for all v ∈ V and that the residue map Λ ↪→ O×v → κ(v)× is injective for all
v ∈ V . Then there exists f ∈ K such that

(1) wi(f − fi) > γi for all i = 1, . . . , n;

(2) v(f) = 0 for all v ∈ V .

The proof of Theorem 7.3.1 occupies the rest of this paragraph. Observe
that if V = ∅, then condition (2) is vacuous and we can simply use the classical
Approximation Theorem at the finitely many valuations w1, . . . , wn. So assume
V 6= ∅ in the following and fix some v0 ∈ V . Note that none of the wi is the
trivial valuation because v0 is assumed independent from the wi.

Step 1: Avoiding zeros in V

We first construct f ∈ K satisfying (1) and instead of (2) the weaker condition
v(f) ≤ 0 for v ∈ V . By the classical Approximation Theorem, there exists
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g ∈ K satisfying (1). We can ensure g 6= 0 by imposing the extra condition
v0(g − 1) > 0, so that there are only finitely many v ∈ V with v(g) > 0.
The idea is now to modify g by adding a suitable function in such a way that
the approximation conditions (1) are preserved while additionally avoiding any
zeros in V . Using the classical Approximation Theorem again, we find h ∈ K
such that wi(h) > γi for all i = 1, . . . , n and v(h− 1) > 0 (hence v(h) = 0) for
all v ∈ V with v(g) > 0. Consider the family of functions g + λh with λ ∈ Λ.
They all satisfy the approximation conditions (1):

wi(g + λh− fi) ≥ min(wi(g − fi), wi(λ) + wi(h)) > γi for i = 1, . . . , n.

We claim that for a suitable choice of λ we have v(g + λh) ≤ 0 for all v ∈ V .
We use the following lemma:

Lemma 7.3.2. Let K be a field and v a valuation on K. Let g, h ∈ K be
two elements such that v(g), v(h) are not both positive. Let Λ ⊆ K be a set of
v-units such that the residue map Λ ↪→ O×v � κ(v)× is injective. Then there
is at most one λ ∈ Λ for which v(g + λh) > 0.

Proof. If v(g) 6= v(h), then we have v(g + λh) = min(v(g), v(h)) ≤ 0 for all
λ ∈ Λ. If v(g) = v(h), then the common valuation is necessarily ≤ 0. We have
v(g/h + λ) ≥ 0, with strict inequality only if λ(v) = −(g/h)(v) holds in the
residue field κ(v). By assumption, this happens for at most one λ ∈ Λ. For all
others, we have

v(g + λh) = v
(g
h

+ λ
)

+ v(h) = v(h) ≤ 0.

Using the lemma and the assumption |Λ| > |V |, there exists some λ ∈ Λ
avoiding all bad choices, so that f = g + λh satisfies v(f) ≤ 0 for all v ∈ V .

Step 2: Avoiding poles in V

We now construct f ∈ K× satisfying (1) and v(f) ≥ 0 for all v ∈ V . We reduce
this problem to Step 1 by setting f = 1/f ′ for some suitable f ′ ∈ K×. Then
the poles of f are precisely the zeros of f ′:

v
(
1/f ′) < 0 ⇔ v(f ′) > 0 for v ∈ V.

We can assume that the fi are all different from zero by adding some δi ∈ K×
with wi(δi) > γi if necessary (such δi exists since wi is not the trivial valuation).
For each i = 1, . . . , n, the inversion map on K× is continuous with respect to
the topology induced by wi by Proposition 4.4.2, so there exist γ′i ∈ Γi for
which we have the implication:

wi
(
f ′ − 1

fi

)
> γ′i ⇒ wi

( 1

f ′
− fi

)
> γi.

By Step 1, there exists f ′ ∈ K satisfying wi
(
f ′ − 1

fi

)
> γ′i for i = 1, . . . , n and

without zeros in V . We have f ′ 6= 0 since V 6= ∅, so that we can take f = 1/f ′

and have the claimed properties.
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7.3 Countable sets

Step 3: Avoiding zeros and poles in V

Finally, we want to construct f ∈ K satisfying conditions (1) and (2). Using
Step 2, choose g ∈ K× satisfying (1) and having no poles in V . Using Step 2
again, choose h ∈ K× such that wi(h) > γi for all i = 1, . . . , n, such that
v(h− 1) > 0 (hence v(h) = 0) for all v ∈ V with v(g) > 0, and without poles
in V \ {v ∈ V : v(g) > 0}. Then h and hence all functions g + λh with λ ∈ Λ
have no poles in V . As in Step 1, they all satisfy (1). Using Lemma 7.3.2 and
|Λ| > |V |, there exists some λ ∈ Λ such that f := g + λh has no zeros in V
either, and hence satisfies (2). This finishes the proof of Theorem 7.3.1.

7.3.2 Proof of main theorems for countable sets

We use the approximation theorem of the previous paragraph to verify the
conditions of a good localisation in the case of a countable set of points:

Theorem 7.3.3 (⇒ Theorem B (a)). Let k be a finite extension of Qp with
µp ⊆ k, let X/k be a smooth, proper, geometrically connected curve and let
S ⊆ Xcl be a set of closed points which is at most countable. Then XS is a
good localisation.

Proof. We verify the approximation criteria of Proposition 6.2.4. Note that
for Condition (Pic) it suffices to consider only XS itself rather than all ge-
ometrically connected, finite Z/pZ-elementary abelian covers since those are
again localisations at sets of at most countably many closed points. All four
approximation criteria demand the existence of functions in the function field
K satisfying one or two approximation conditions and being invertible at all
points of a subset S′ ⊆ S. We therefore choose V in Theorem 7.3.1 to be the
set of valuations vs with s ∈ S′. For Λ we choose the set Ok \ {0} of nonzero
scalars in the valuation ring of k. This is contained in Ow for every valuation
w of K whose restriction to k is trivial or equals the p-adic valuation, and it is
contained in O×X,s for all s ∈ S′, with the reduction map Λ ↪→ O×X,s → κ(s)×

being injective since the residue field κ(s) is an extension of k. The valuation
ring Ok is uncountable whereas S is assumed at most countable, hence we have
|Λ| > |S|. So Theorem 7.3.1 applies and shows that the approximation criteria
of Proposition 6.2.4 are all satisfied for XS . Thus, XS is a good localisation as
claimed.

For base fields not necessarily containing the p-th roots of unity we have the
following version of the liftable section conjecture:

Theorem 7.3.4 (= Theorem D (a)). Let k be a finite extension of Qp and `/k a
finite Galois extension with µp ⊆ `. Let X/k be a smooth, proper, geometrically
connected curve and let S ⊆ Xcl be a set of closed points which is at most
countable. Then for every liftable section s′ : Gal(`′/k)→ Gal((XS ⊗k `)′/XS)
there exists a unique k-rational point x of X such that res`/k(s

′) lies over x. If
moreover one of the following holds:
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• p does not divide [` : k]; or

• s′ is twice-liftable;

then s′ itself lies over x.

Proof. Denote by S ⊗ ` the preimage of S under the projection X ⊗ ` → X.
We have XS ⊗ ` = (X ⊗ `)S⊗` since localisation commutes with base change
along closed morphisms (Lemma 2.2.5). The set S⊗` is still at most countable.
By Theorem 7.3.3, XS ⊗ ` is a good localisation and thus satisfies the liftable
section conjecture. Theorem 1.4.4 shows that for every liftable section s′ as
above there exists a unique k-rational point x of X such that res`/k(s

′) lies
over x. It also shows that s′ itself lies over x if p does not divide [` : k].
To apply Theorem 1.4.4 (b), consider a geometrically connected, finite étale
subcover (XS ⊗ `)′ → W → XS . By Corollary 2.4.11, W → XS is of the
form Yf−1(S) → XS for some finite morphism f : Y → X. In particular, W
is itself a localisation at a set of at most countably many closed points, and
the same holds for the base change W ⊗ `. By Theorem 7.3.3, every such
W ⊗ ` is a good localisation and hence satisfies the liftable section conjecture.
Theorem 1.4.4 (b) now implies that if s′ is twice-liftable, then s′ itself lies
over x.

Theorem 7.3.5 (= Theorem E (a)). Let k be a finite extension of Qp, let
X/k be a smooth, proper, geometrically connected curve and let S ⊆ Xcl be a
set of closed points which is at most countable. Then XS satisfies the section
conjecture.

Proof. Set ` := k(µp). Every geometrically connected, finite étale cover of XS

is of the form Yf−1(S) → XS for some finite morphism f : Y → X (Corol-
lary 2.4.11), hence is again a localisation at a set of at most countably many
closed points. The same holds for the base change Yf−1(S)⊗ `. Hence, by The-
orem 7.3.3, W ⊗ ` is a good localisation and thus satisfies the liftable section
conjecture, for every geometrically connected, finite étale coverW → XS . This
implies by Theorem 1.4.4 that XS satisfies the section conjecture.

7.4 Transcendental points

Let k be a finite extension of Qp with µp ⊆ k, let k0 ⊆ k be an arbitrary
subfield, let X0/k0 be a smooth, proper, geometrically connected curve and
set X = X0 ⊗k0 k. Denote by K0 and K the function fields of X0 and X,
respectively. We have an inclusion K0 ⊆ K, reflecting the fact that rational
functions on X0 pull back to rational functions on X.

Definition 7.4.1. A closed point x ∈ Xcl is called algebraic over k0 (relative
to X0) if its image under the projection X → X0 is a closed point. The non-
algebraic closed points are called transcendental over k0.

116



7.4 Transcendental points

Example 7.4.2. Let X0 = P1
k0
, so that X = P1

k. The point ∞ is mapped to the
closed point ∞ under the projection P1

k → P1
k0
, hence this point is algebraic

over k0. A k-rational point a of the affine part A1
k = Spec(k[t]) is algebraic

over k0 if and only if (t − a) ∩ k0[t] 6= (0), that is if there exists a nonzero
polynomial f with coefficients in k0 such that f(a) = 0. Hence, the algebraic
points over k0 in A1(k) are those elements of k which are algebraic over the
subfield k0 in the sense of commutative algebra.

Remark 7.4.3. Algebraicity of a closed point of X/k over a subfield k0 ⊆ k
is not an intrinsic property but depends on the choice of model X0/k0. For
example, in the case X = P1

k there are k-automorphisms (such as translations
by transcendental numbers) which do not preserve algebraicity.

The first aim of this section 7.4 is to prove the following:

Theorem 7.4.4 (⇒ Theorem B (b)). With the notation as above, let S ⊆ Xcl

be a set of closed points containing only finitely many points which are algebraic
over k0. Then XS is a good localisation.

After proving Theorem 7.4.4, we deduce the consequences for the liftable
section conjecture without p-th roots of unity and for the full section conjecture.

7.4.1 Verification of the conditions

For the purpose of proving Theorem 7.4.4, we can assume that k0 ⊆ k is
dense with respect to the p-adic topology. To see this, we use the following
consequence of Krasner’s Lemma:

Lemma 7.4.5. Let k be a finite extension of Qp. Then k contains a number
field which is p-adically dense in k.

Proof. Let α ∈ k be a generator of the extension k/Qp and let f(t) ∈ Qp[t] be
its minimal polynomial. For a polynomial g(t) ∈ Q[t] of the same degree with
coefficients p-adically close to those of f , there exists a root β of g(t) in an al-
gebraic closure k which is p-adically close to α. By Krasner’s Lemma [NSW08,
Lemma (8.1.6)], k is contained in Qp(β), and hence equal to Qp(β) since g has
the same degree as f . The number field Q(β) is then dense in k.

The set of points of X which are algebraic over k0 does not change un-
der extending scalars from k0 to a finite field extension inside k. Thus, us-
ing Lemma 7.4.5, we can assume in the following that the subfield k0 is
p-adically dense in k.
The three conditions (Sep), (Rat), (Fin) for a good localisation have in com-

mon that they all stipulate the existence of a sufficient supply of rational func-
tions on X which are invertible on XS . We have a way of producing rational
functions which are guaranteed to be invertible at all transcendental points:
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Lemma 7.4.6. Nonzero rational functions defined on X0 are invertible at all
transcendental points over k0 of X.

Proof. If x ∈ Xcl is transcendental over k0, then its image in X0 equals the
generic point Spec(K0), which implies that K×0 is contained in O×X,x.

Condition (Sep)

Proposition 7.4.7. If S ⊆ Xcl contains only finitely many algebraic points
over k0, then XS satisfies Condition (Sep).

Proof. Let x 6= y be distinct points in X(k). We have to construct a function
f ′ in O(XS∪{x,y})

× for which f ′(x)/f ′(y) is not a p-th power. Let U0 ⊆ X0

an affine open subscheme which contains the image of S ∪ {x, y} under the
projection X → X0. This is possible since this image contains only finitely
closed points of X0, and any open subset of X0 which is not the whole curve
is affine. Let t1, . . . , tn be a system of affine coordinates on U0, i.e. generators
of the coordinate ring O(U0) as a k0-algebra. Set U := U0⊗k0 k. Then U is an
open affine subscheme of X containing S ∪ {x, y}, and the ti are a system of
affine coordinates on O(U) over k. Since x 6= y by assumption, ti(x) 6= ti(y)
for at least one i. Set t := ti. Then, for any c1, c2 ∈ k, the system of linear
equations

at(x) + b = c1,

at(y) + b = c2,

is uniquely solvable for a, b ∈ k. By taking c1 to be a uniformiser of k and
c2 = 1, for example, we find a and b in k such that, upon setting f := at + b,
the value f(x)/f(y) = c1/c2 is not a p-th power in k. Now, using that k0 is
dense in k, choose elements a0 and b0 in k0 which are p-adically close to a and
b, and set f0 := a0t+ b0. The group k×p of p-th powers is open in k× of finite
index, hence its complement is also open and for a0 and b0 sufficiently close
to a and b, the value f0(x)/f0(y) is still not a p-th power. By replacing b0
with b0 + ε0 for some p-adically small number ε0 ∈ k0 (for example ε0 = pN

with N � 0), we can moreover avoid that f0 vanishes at any of the finitely
many points in S which are algebraic over k0, so that f0 is invertible at those
points. By construction, f0 is an element of O(U0), i.e. defined already on X0,
and therefore automatically invertible at all transcendental points over k0 by
Lemma 7.4.6. Thus, f0 is in O(XS)× and satisfies the requirements.

Condition (Rat)

Proposition 7.4.8. If S ⊆ Xcl contains only finitely many algebraic points
over k0, then XS satisfies Condition (Rat).
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7.4 Transcendental points

Proof. Let x ∈ Xcl be any closed point. We show that the map

O(XS∪{x})
× → κ(x)×/κ(x)×

p

given by f 7→ f(x), is surjective, so that XS satisfies Condition (Rat) by
Corollary 5.1.5. Let U0 ⊆ X0 be an open affine subscheme which contains the
image of S ∪ {x}, let t1, . . . , tn be a system of affine coordinates on U0 and
set U := U0 ⊗k0 k. The residue field κ(x) is generated by t1(x), . . . , tn(x) as
a k-algebra. Let a ∈ κ(x)× be arbitrary and write a = P (t1(x), . . . , tn(x))
for some polynomial P ∈ k[X1, . . . , Xn]. Using that k0 is dense in k, choose
P0 ∈ k0[X1, . . . , Xn] with coefficients approximating those of P . Since κ(x)×

p

is open in κ(x), we have

P0(t1(x), . . . , tn(x)) ∈ a · κ(x)×
p

for P0 sufficiently close to P . By replacing P0 with P0 + ε0 for some p-adically
small number ε0 ∈ k0 we can avoid that P0(t1, . . . , tn) vanishes at any of
the finitely many algebraic points over k0 in S. Then the rational function
f0 := P0(t1, . . . , tn) satisfies f0(x) ∈ a · κ(x)×

p by construction, is invertible
on the algebraic points in S over k0 and, since it is already defined on X0, is
invertible at all points which are transcendental over k0.

Condition (Fin)

Proposition 7.4.9. If S ⊆ Xcl contains only finitely many algebraic points
over k0, then XS satisfies Condition (Fin).

Proof. We show that O(XS)× is dense in K with respect to every rank one
valuation w which extends the p-adic valuation vk on k, so that XS satisfies
Condition (Fin) by Proposition 6.2.4 (d). Let w be one such valuation, let
γ ∈ Γw be an element of its value group, and let f ∈ K. We have to construct
a function f0 ∈ O(XS)× satisfying w(f0 − f) > γ. Let U0 ⊆ X0 be an affine
dense open subscheme containing the image of S under the projectionX → X0,
let t = (t1, . . . , tn) be affine coordinates on U0 and set U := U0 ⊗k0 k. Write
f = g(t)/h(t) as a rational function with polynomials g, h ∈ k[X1, . . . , Xn].
Using that k0 is dense in k, choose g0, h0 ∈ k0[X1, . . . , Xn] with coefficients
approximating those of g and h. Explicitly, write g =

∑
i aiX

i in multi-index
notation with ai ∈ k, choose bi ∈ k0 with vk(ai−bi)� 0, and set g0 :=

∑
i biX

i

(and similarly for h0). For each multi-index i ∈ Nn0 , the value

w(ait
i − biti) = vk(ai − bi) + w(ti)

becomes arbitrarily large as bi approaches ai since the rank one value group
Γw embeds into R as an ordered group. Thus, g0(t) and h0(t) can be chosen
arbitrarily close to g(t) and h(t) with respect to the valuation w. By replacing
g0 with g0 +δ0 and h0 with h+ε0 for some p-adically small numbers δ0, ε0 ∈ k0
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we can achieve that g0(t) and h0(t) are not constant zero on X and do not
vanish at any of the finitely many algebraic points in S over k0. Then, setting
f0 := g0(t)/h0(t), the function f0 is invertible on the algebraic points in S over
k0; it is also invertible at all transcendental points over k0 since it it defined
already on X0, and it satisfies w(f0 − f) > γ for g0 and h0 sufficiently close
to g and h by the continuity of the field operations with respect to the w-adic
topology.

Condition (Pic)

The remaining Condition (Pic) involves the Picard group of XS (and of finite
covers ofXS). Functions which are invertible onXS have limited use in proving
statements about Pic(XS). Therefore, instead of approximating functions on
X by functions defined on X0, we will use approximation of divisors on X by
divisors supported on algebraic points over k0.

Proposition 7.4.10. If S ⊆ Xcl contains only finitely many algebraic points
over k0, then XS satisfies Condition (Pic).

Proof. Denote by T the complement of S. By assumption, T contains all but
finitely many of the algebraic points over k0. We show that T is uniformly
dense in X (Definition 6.3.8), which implies that XS satisfies Condition (Pic)
by Proposition 6.3.11. Let `/k be a finite extension. We have to show that
T (`) is dense in X(`). The situation is stable under extending scalars, so it
suffices to treat the case ` = k. Let x ∈ X(k) and let U ⊆ X(k) be a p-adically
open neighbourhood of x. We have to show that U ∩ T (k) 6= ∅. Since X0 is
smooth, there exists an affine open subset V0 ⊆ X0 containing the image of x
such that there exists an étale morphism π0 : X0 → A1

k0
[Stacks, Lemma 054L].

By [Poo17, Prop. 3.5.73], the image π0(U ∩ V0(k)) ⊆ k is open. Since k0 is
dense in k, there exists a point y0 ∈ π0(U ∩ V0(k)) ∩ k0. By replacing y0 with
y0 + ε0 for some p-adically small number ε0 ∈ k0, we can ensure that y0 is not
the image of one of the finitely many algebraic points over k0 outside T under
π0. Let x0 ∈ U ∩ V0(k) with π0(x0) = y0. Then, since π0 is étale, the residue
field κ(x0) is a finite extension of κ(y0) = k0, which implies that x0 is algebraic
over k0. By construction, x0 is not equal to one of the finitely many algebraic
points over k0 outside T , so we have x0 ∈ T (k) and hence U ∩ T (k) 6= ∅.

This finishes the proof of Theorem 7.4.4.

7.4.2 Base fields without p-th roots of unity and full section
conjecture

Having proved the liftable section conjecture in the case where S contains only
finitely many algebraic points over k0, we deduce the consequences for the case
where the base field does not necessarily contain the p-th roots of unity and for
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the section conjecture with the full fundamental group. So let k be an arbitrary
finite extension of Qp and, as above, let k0 ⊆ k be a subfield, let X0/k0 be a
smooth, proper, geometrically connected curve and set X = X0⊗k0 k. Denote
by π : X → X0 the canonical projection. The generic points of X and X0 are
denoted by ηX and ηX0 .
The part of the descent statement in Theorem 1.4.4 concerning twice-liftable

sections as well as Theorem 1.4.6 for the full section conjecture require that
certain covers of XS ⊗ ` satisfy the liftable section conjecture. In order to
have a situation which is stable under finite étale covers, S needs to contains
all transcendental points over k0. In order to prove this, we start with a few
lemmas.
In the following statement it is more natural to work with localisations at

subsets containing the generic point rather than at sets of closed points:

Lemma 7.4.11. Let S0 ⊆ (X0)cl be a set of closed points of X0, and let
S̃0 := S0 ∪ {ηX0} ⊆ |X0|. Then the canonical map is an isomorphism

X
π−1(S̃0)

∼= (X0)
S̃0
⊗k0 k.

Proof. The canonical map is given by

X
π−1(S̃0)

= lim←−
U⊇π−1(S̃0)

U −→ lim←−
U0⊇S̃0

π−1(U0) = (X0)
S̃0
⊗k0 k,

where we use that fibre products commute with limits. We are claiming that
the open subsets of the form π−1(U0) with U0 ⊇ S̃0 are cofinal among all open
subsets U ⊇ π−1(S̃0) of X. Let U be an open subset of X containing π−1(S̃0).
Every point in the complement X \ U is mapped to a point of X0 outside S̃0.
Since the generic point ηX0 is contained in S̃0, we have that π(X \U) is a finite
set of closed points. Hence, the set U0 := X0 \ π(X \ U) is open. It satisfies
U0 ⊇ S̃0 and π−1(U0) ⊆ U . This shows the claimed cofinality.

Lemma 7.4.12. Suppose S0 ⊆ (X0)cl is a set of closed points of X0 and
set S := π−1(S0 ∪ {ηX0}) \ {ηX}, so that we have XS = (X0)S0 ⊗k0 k by
Lemma 7.4.11. Then every finite étale cover of XS arises by base change from
a finite étale cover of (X0)S0.

Proof. We are claiming the essential surjectivity of the functor

Cov((X0)S0)→ Cov(XS) (∗)

sending a finite étale cover W0 → (X0)S0 to the base change W0 ⊗k0 k → XS .
Choose compatible fibre functors F and F0 on the two Galois categories and
write

π1(XS) := π1(XS , F ) and π1((X0)S0) := π1((X0)S0 , F0)
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for the respective fundamental groups. Via the anti-equivalence between profi-
nite groups and Galois categories with fibre functor (Theorem 2.3.1), the es-
sential surjectivity of (∗) translates into the injectivity of the homomorphism
π1(XS) → π1((X0)S0). Choose algebraic closures k/k and k0/k0 with k0 ⊆ k,
defining absolute Galois group Gk := Gal(k/k) and Gk0 := Gal(k0/k0). The
two fundamental exact sequences for XS and (X0)S0 fit into a commutative
diagram as follows:

1 π1(XS ⊗k k) π1(XS) Gk 1

1 π1((X0)S0 ⊗k0 k0) π1((X0)S0) Gk0 1

The Künneth formula for fundamental groups [SGA 1, Exp. XIII, Prop. 4.6 (b)]
applied to the fibre product

XS ⊗k k = ((X0)S0 ⊗k0 k0)×k0 Spec(k)

implies that the left vertical map is an isomorphism. The hypotheses of the
Künneth formula are satisfied since the fields have characteristic zero, so that
resolution of singularities is known. We claim that also the right vertical map
is injective. Any automorphism σ ∈ Gal(k/k) is continuous with respect to
the unique extension of the p-adic absolute value on k to k. As a consequence
of Krasner’s Lemma, the subfield Q ⊆ k and hence also k0 is dense in k. Thus,
if σ restricts to the identity on k0, then necessarily σ = id.
As the left and right vertical maps are both injective, it follows that the

middle vertical map is injective as well.

Lemma 7.4.13. Let S ⊆ Xcl be a set of closed points. Assume that k0 is
relatively algebraically closed in k. Then the following are equivalent:

(i) S contains all transcendental points over k0;

(ii) there exists a set of closed points S0 ⊆ (X0)cl with π(S) ⊆ S0 ∪ {ηX0}
such that the canonical map is an isomorphism XS

∼= (X0)S0 ⊗k0 k.

Proof. For the implication (ii)⇒(i) assume thatXS
∼= (X0)S0⊗k0k for some set

of closed points S0 ⊆ (X0)cl with π(S) ⊆ S0 ∪ {ηX0}. Then by Lemma 7.4.11
we have XS = X

π−1(S̃0)
with S̃0 := S0 ∪ {ηX0}. Taking the underlying spaces,

we find
S ∪ {ηX} = π−1(S̃0)

as subspaces of |X|. The transcendental points of X are the closed points
which are mapped to the generic point in X0 under π, so they are all contained
in π−1(S̃0). Hence, S contains all transcendental points over k0.
Conversely, assume that S contains all transcendental points over k0. Let

S̃ := S ∪ {ηX}. We claim that we have S̃ = π−1(π(S̃)). This is equivalent to
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S̃ being a union of fibres of π. The fibre over the generic point ηX0 consists of
the generic point of X and all transcendental closed points over k0, hence this
fibre is completely contained in S̃ by assumption. The fact that k0 is relatively
algebraically closed in k implies that the fibre over each closed point of X0

consists only of a single point. This shows the equality S̃ = π−1(π(S̃)). Let
S0 := π(S̃) \ {ηX0}. Then we have XS

∼= (X0)S0 ⊗k0 k by Lemma 7.4.11.

Remark 7.4.14. In Lemma 7.4.13 (ii), the set of closed points S0 ⊆ (X0)cl with
XS
∼= (X0)S0 ⊗k0 k is unique: it satisfies π−1(S0 ∪ {ηX0}) = S ∪ {ηX} by

Lemma 7.4.11, and by taking images under the surjective map π we find

S0 = π(S) \ {ηX0}.

Proposition 7.4.15. Assume µp ⊆ k and let S ⊆ Xcl be a set of closed points
containing all transcendental points and only finitely many algebraic points
over k0. Then every geometrically connected, finite étale cover of XS is a good
localisation.

Proof. We may replace k0 with any algebraic extension in k without changing
the property of closed points of X to be algebraic over k0. We can therefore
assume that k0 is relatively algebraically closed in k. Then, as S contains all
transcendental points over k0 by assumption, we have XS = (X0)S0 ⊗k0 k by
Lemma 7.4.13, with S0 ⊆ (X0)cl consisting of the closed points in π(S). By
Lemma 7.4.12, every geometrically connected, finite étale cover of XS arises
by base change from a finite étale cover of (X0)S0 . Such a cover has the form
(Y0)T0 → (X0)S0 with f0 : Y0 → X0 unramified over S0 and T0 = f−1

0 (S0). Let
Y := Y0⊗k0 k and let T ⊆ Ycl be the set of closed points mapping to T0 or the
generic point in Y0, so that (Y0)T0 ⊗k0 ⊗k = YT by Lemma 7.4.11. The fact
that YT is geometrically connected over k implies that (Y0)T0 is geometrically
connected over k0. We have to show that YT is a good localisation. We have
a cartesian diagram as follows:

Y X

Y0 X0.

f

f0

The horizontal morphisms f and f0 are finite and hence send closed points to
closed points. As a consequence, a closed point y ∈ Ycl is transcendental over
k0 (relative to Y0) if and only if f(y) is transcendental over k0 (relative to X0).
From T0 = f−1

0 (S0) we have T = f−1(S). By assumption, S contains only
finitely many points which are algebraic over k0. As f has finite fibres, also T
contains only finitely many points which are algebraic over k0. We are thus in
the situation of Theorem 7.4.4 and conclude that YT is a good localisation.
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7 Examples of good localisations

We can now deduce the version of the liftable section conjecture over base
fields without p-th roots of unity and the section conjecture for the full funda-
mental groups:

Theorem 7.4.16 (= Theorem D (b)). Let X = X0 ⊗k0 k as above, let `/k
be a finite Galois extension with µp ⊆ ` and let S ⊆ Xcl be a set of closed
points containing only finitely many points which are algebraic over k0. Then
for every liftable section s′ : Gal(`′/k) → Gal((XS ⊗k `)′/XS), there exists a
unique k-rational point x of X such that the restriction res`/k(s

′) lies over
x⊗k `. If moreover one of the following holds:

• p does not divide [` : k]; or

• every transcendental point of X over k0 is contained in S and s′ is twice-
liftable;

then s′ itself lies over x.

Proof. Denote by S ⊗ ` ⊆ (X ⊗ `)cl the preimage of S under the projection
X ⊗ ` → X. We have XS ⊗ ` = (X ⊗ `)S⊗` since localisation commutes with
base change along closed morphisms (Lemma 2.2.5). A closed point in X ⊗ `
is algebraic over k0 if and only if its image in X is so. Since S contains only
finitely many points which are algebraic over k0, the same holds for S ⊗ `. By
Theorem 7.4.4, XS ⊗ ` is a good localisation, so it satisfies the liftable section
conjecture. With Theorem 1.4.4 we conclude that for every liftable section
s′ : Gal(`′/k)→ Gal((XS ⊗k `)′/XS) there exists a unique rational point x of
X such that res`/k(s

′) lies over x⊗`. Theorem 1.4.4 (a) also yields that s′ itself
lies over x if p does not divide [` : k]. Assume that every transcendental point
of X over k0 is contained in S and that s′ is twice-liftable. Proposition 7.4.15
shows thatW⊗` is a good localisation for every geometrically connected, finite
étale subcover (XS ⊗ `)′ →W → XS . Hence, Theorem 1.4.4 (b) applies and s′

itself lies over x.

Theorem 7.4.17 (= Theorem E (b)). Let X = X0 ⊗k0 k as above and let
S ⊆ Xcl be a set of closed points which contains all transcendental points
and only finitely many algebraic points over k0. Then XS satisfies the section
conjecture.

Proof. Let ` = k(µp). Proposition 7.4.15 implies that W ⊗ ` is a good lo-
calisation for every geometrically connected, finite étale cover W → XS . So
Theorem 1.4.6 applies and shows that XS satisfies the section conjecture.
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Outlook

We see several potential directions to continue the line of research of this dis-
sertation:

• More examples of good localisations. We have considered here only lo-
calisations at countable sets and at sets of transcendental points over a
subfield. It would be interesting to find further examples. Complements
of p-adic discs would be possible candidates to study. Another idea is to
generalise our approximation theorem with invertibility conditions. In
the present form it relies on a comparison of cardinalities; one could try
and modify it to use a comparison of p-adic volumes instead. The case of
countable sets could then be generalised to sets of small p-adic volume.
The larger the set of points, the closer we get to the section conjecture
for the complete curve, which is as yet unproved. On the other hand,
also negative examples showing the limitations of the method would be
interesting.

• Higher dimensions. The starting point of our investigation was Pop’s
proof of the birational liftable p-adic section conjecture for curves. He
has shown in [Pop17] that the method of proof generalises to higher-
dimensional varieties. We expect that our generalisation for localisations
of curves should similarly extend to localisations of higher-dimensional
varieties. We have introduced localisations of schemes and their funda-
mental groups in great generality partly with this generalisation in mind.
The task will be to find the correct conditions on the localisation of a
variety under which the proof of the liftable section conjecture can be
adapted to work.

• Sections on larger quotients. The liftable section conjecture is remarkable
in that the existence of a rational point is deduced from the existence of a
section for a very small quotient of the fundamental group. However, one
may ask whether the conditions of a good localisation can be weakened
at the cost of working with sections on larger quotients such as the pro-
p quotient. Having weaker conditions could lead to more examples of
localisations satisfying the p-adic section conjecture.
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Zusammenfassung

In dieser Arbeit geht es um die Schnittvermutung für sogenannte Lokalisierun-
gen von Kurven über p-adischen Körpern, was eine Interpolation zwischen der
birationalen und der vollen Schnittvermutung darstellt. Wir erklären im Fol-
genden einige Varianten der Schnittvermutung. In jedem Fall geht es darum,
die rationalen Punkte einer Kurve rein gruppentheoretisch mittels ihrer Fun-
damentalgruppe zu beschreiben. Die Vermutung fügt sich ein in einen weiteren
Ideenkreis, die sogenannte anabelsche Geometrie, wo allgemeiner untersucht
wird, inwieweit arithmetisch-geometrische Information aus zugeordneten Fun-
damentalgruppen rekonstruiert werden kann. Dieses Gebiet geht auf einen Brief
von Grothendieck an Faltings [Gro97] zurück, der weitgehende Vermutungen
dieser Art enthält, die zu einem großen Teil bis heute unbewiesen sind.

Die Schnittvermutung

Wir wollen zunächst die Grundideen kurz erläutern.

Rationale Punkte als Schnitte.

Sei k ein Körper. Angenommen, wir suchen Elemente a1, . . . , an ∈ k, die einer
Liste von polynomiellen Gleichungen mit Koeffizienten in k genügen sollen:

Fj(a1, . . . , an) = 0 für j = 1, . . . ,m (∗)

mit Polynomen F1, . . . , Fm ∈ k[T1, . . . , Tn]. Ein Tupel (a1, . . . , an) ∈ kn ist
mittels der Vorschrift Ti 7→ ai äquivalent zu einem Ringhomomorphismus
k[T1, . . . , Tn]→ k, der zur Inklusion linksinvers ist. Das Tupel erfüllt die Glei-
chungen (∗) genau dann, wenn der entsprechende Homomorphismus über den
Quotienten

A := k[T1, . . . , Tn]/(F1, . . . , Fm)

faktorisiert. Mit anderen Worten: eine k-rationale Lösung der Gleichungen (∗)
ist äquivalent zu einer Retraktion:

A

k
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Das arithmetische Problem lässt sich in der Sprache der Schemata geome-
trisch formulieren. Elemente des Körpers k werden als Funktionen auf einem
Raum Spec(k) aufgefasst. Gleichermaßen werden Elemente von A als Funktio-
nen auf X := Spec(A) aufgefasst. Die Abbildung k → A definiert einen Mor-
phismusX → Spec(k) in umgekehrter Richtung. Eine Lösung (a1, . . . , an) ∈ kn
der Gleichungen (∗) übersetzt sich zunächst wie oben in eine Retraktion und
damit unter dem Funktor Spec in einen Schnitt:

X

Spec(k)

Schnitte auf Fundamentalgruppen.

Gegeben sei eine stetige Abbildung von topologischen Räumen f : X → B.
Wir fassen dies als eine Familie von Räumen Xb := f−1(b) auf, die über den
Basisraum B parametrisiert ist. Angenommen, wir suchen für jedes b ∈ B einen
Punkt in der Faser xb ∈ Xb, der stetig mit b variiert, in dem Sinne, dass die
resultierende Abbildung B → X, gegeben durch b 7→ xb, stetig ist. Mit anderen
Worten, wir suchen stetige Schnitte:

X

B.

Eine wichtige Invariante eines topologischen Raums ist seine Fundamentalgrup-
pe. Sie kann benutzt werden, um die vorliegende Situation zu untersuchen. Da-
für muss man mit f kompatible Basispunkte b0 ∈ B und x0 ∈ f−1(b0) wählen
und erhält einen von f induzierten Gruppenhomomorphismus

f∗ : π1(B, b0)→ π1(X,x0)

Sei nun ein Schnitt x : B → X von f gegeben. Zu jeder Schleife im Basis-
raum B mit Anfangs- und Endpunkt b0 haben wir dann mittels x eine Schleife
in X mit Anfangs- und Endpunkt x(b0). Dies definiert den Homomophismus
x∗ : π1(B, b0) → π1(X,x(b0)). Wegen der Verschiedenheit der Basispunkte ist
x∗ nicht direkt ein Schnitt von f∗. Wenn wir aber annehmen, dass die Faser
f−1(b0) wegzusammenhängend ist, dann können wir einen Pfad γ : x(b0) x0

in f−1(b0) wählen und erhalten dadurch einen Homomorphismus

sx : π1(B, b0) π1(X,x(b0)) π1(X,x0).
x∗ γ(−)γ−1
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Dieser ist nun in der Tat ein Schnitt von f∗, da der Pfad γ unter f auf den
konstanten Pfad in b0 abgebildet wird. Wählt man anstelle von γ einen ande-
ren Pfad γ′ : x(b0)  x0 in f−1(b0), dann unterscheiden sich die beiden um
eine Schleife δ := γ′ ◦ γ−1 in f−1(b0) mit Anfangs- und Endpunkt x0. In der
Definition von sx wirkt sich dies als eine Konjugation mit i∗([δ]) aus, wobei
i∗ : π1(f−1(b0), x0) → π1(X,x0) von der Inklusion der Faser induziert ist. Der
Schnitt x : B → X liefert somit auf Fundamentalgruppen eine wohldefinierte
π1(f−1(b0), x0)-Konjugationsklasse von Schnitten [sx]. Die Zuordnung x 7→ [sx]
ist also eine Abbildung

( Schnitte x : B → X von f ) −→
(
Konjugationsklassen von

Schnitten von f∗

)
.

Insbesondere kann man die Nicht-Existenz von Schnitten x : B → X von f da-
durch zeigen, dass man die Nicht-Existenz von Schnitten π1(B, b0)→ π1(X,x0)
von f∗ nachweist. Diese letzte Beobachtung gilt auch dann, wenn der Raum X
anstelle der Faser f−1(b0) wegzusammenhängend ist.
Um das an einem Beispiel zu illustrieren, betrachten wir etwa die Quadratab-

bildung C× → C×, z 7→ z2. Auf Fundamentalgruppen induziert dies die Multi-
plikation mit 2 auf Z. Dies lässt keinen Schnitt zu, somit kann man schließen,
dass es unmöglich ist, jeder von Null verschiedenen komplexen Zahl z ∈ C×
auf stetige Weise eine Quadratwurzel zuzuordnen.

Die étale Fundamentalgruppe.

Wir haben oben erläutert, dass man Lösungen von Polynomgleichungen über
einem Körper k geometrisch als Schnitte einer Abbildung X → Spec(k) von
Schemata auffassen kann. Man ist also in einer ähnlichen Situation wie im
vorherigen Abschnitt: X kann als parametrisierte Familie von Räumen über
dem Basisraum Spec(k) angesehen werden. Auf den ersten Blick erscheint die-
se Sichtweise unergiebig, da der unterliegende topologische Raum von Spec(k)
aus nur einem einzigen Punkt besteht, entsprechend dem Nullideal in k. Aber
generell ist der unterliegende Zariski-Raum eines Schemas gänzlich ungeeig-
net, um die Fundamentalgruppe mittels Homotopieklassen von Schleifen zu
definieren. Man verfolgt daher gemäß [SGA 1, Exp. V] einen anderen Ansatz
und definiert die étale Fundamentalgruppe eines Schemas stattdessen, indem
man die Rolle, die die topologische Fundamentalgruppe in der Überlagerungs-
theorie spielt, in die Welt der Schemata überträgt.
Um dies zu erklären, betrachten wir ein zusammenhängendes Schema X. Als

Basispunkt wählen wir einen geometrischen Punkt x0 von X, d.h. einen Mor-
phismus Spec(Ω) → X mit einem separabel abgeschlossenen Körper Ω. Die
Rolle, die (endliche) Überlagerungen in der Topologie spielen, wird von den
endlich étalen Morphismen f : Y → X übernommen. Die Faser f−1(x0) → x0

ist eine endliche disjunkte Vereinigung von Kopien von Spec(Ω), kann somit
einfach als endliche Menge betrachtet werden. In der Topologie würde man
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(unter schwachen Voraussetzungen an den topologischen Raum X) eine Grup-
penwirkung von π1(X,x0) auf der Faser f−1(x0) durch das Hochheben von
Pfaden definieren: gegeben eine Schleife γ in X mit Anfangs- und Endpunkt
x0, und gegeben einen Punkt y ∈ f−1(x0), lässt sich γ auf eindeutige Wei-
se zu einem Pfad γ̃ in Y mit Anfangspunkt y hochheben, und man definiert
γ.y ∈ f−1(x0) als den Endpunkt von γ̃. In der algebraischen Welt wird ein
Element von π1(X,x0) einfach definiert als ein System von Permutationen
von f−1(x0) für jede endlich étale Überlagerung f : Y → X. Das System muss
einzig eine Natürlichkeitsbedingung erfüllen, d.h. eine Verträglichkeit mit Mor-
phismen zwischen endlich étalen Überlagerungen: Für zwei endlich étale Über-
lagerungen fi : Yi → X und einen Morphismus g : Y1 → Y2 über X soll für
γ ∈ π1(X,x0) das folgende Quadrat kommutieren:

f−1
1 (x0) f−1

2 (x0)

f−1
1 (x0) f−1

2 (x0).

γ

g

γ

g

Kompakter ausgedrückt: Wir haben eine Kategorie Cov(X) der endlich éta-
len Überlagerungen von X; diese ist ausgestattet mit einem Faserfunktor
Fibx0 : Cov(X) → FinSet in die Kategorie der endlichen Mengen, gegeben
durch (f : Y → X) 7→ f−1(x0); und die étale Fundamentalgruppe π1(X,x0)
ist definiert als die Automorphismengruppe dieses Faserfunktors:

π1(X,x0) := Aut(Fibx0).

Man versieht π1(X,x0) mit der gröbsten Topologie, so dass die Wirkungen auf
allen Fasern f−1(x0) stetig sind. Damit wird π1(X,x0) zu einer proendlichen
Gruppe.
Betrachten wir den Spezialfall, dass es sich bei X um das Spektrum eines

Körpers handelt, X = Spec(k). Die Wahl eines separablen Abschlusses k/k
definiert einen geometrischen Basispunkt x0 : Spec(k)→ Spec(k). Die zusam-
menhängenden endlich étalen Überlagerungen von Spec(k) sind von der Form
Spec(`) → Spec(k) mit einer endlich separablen Körpererweiterung `/k. Die
Faser über x0 lässt sich mit der Menge der k-Einbettungen Homk(`, k) gleich-
setzen. Die absolute Galoisgruppe Gal(k/k) wirkt auf natürliche Weise auf
Homk(`, k), und man kann sich überlegen, dass jedes kompatible System von
Permutationen der Mengen Homk(`, k) durch ein Element von Gal(k/k) defi-
niert ist. Daraus folgt, dass die étale Fundamentalgruppe von Spec(k) gerade
die absolute Galoisgruppe ist:

π1(Spec(k),Spec(k)) = Gal(k/k).

Insbesondere enthält die étale Fundamentalgruppe von Spec(k) viel mehr In-
formation als der unterliegende Zariski-Raum vermuten lässt. Dies ist ein Aus-
druck der Tatsache, dass die étale Topologie eines Schemas (die keine Topologie
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im klassischen Sinne ist, sondern eine Grothendieck-Topologie) viel feiner ist
als die Zariski-Topologie.

Die Schnittvermutung für eigentliche Kurven.

Sei nun k ein Körper der Charakteristik 0 und sei X/k eine glatte, eigentli-
che, geometrisch zusammenhängende Kurve, gegeben etwa als Nullstellenmen-
ge homogener Polynome in einem projektiven Raum. Sei k/k ein algebraischer
Abschluss und sei x0 ein geometrischer Punkt in Xk := X ⊗k k. Wir haben
dann eine fundamentale exakte Sequenz wie folgt:

1 −→ π1(Xk, x0) −→ π1(X,x0) −→ Gal(k/k) −→ 1. (8.1)

Ein k-rationaler Punkt x ∈ X(k) ist per Definition ein Schnitt der Strukturab-
bildung X → Spec(k) und induziert mittels Funktorialität einen Schnitt auf
Fundamentalgruppen

sx : Gal(k/k)→ π1(X,x0).

Genau wie im topologischen Fall muss man dazu einen (étalen) Pfad x  x0

(mit dem durch x induzierten geometrischen Punkt x : Spec(k) → Xk) auf
dem zusammenhängenden Schema Xk wählen, um die Verschiedenheit der Ba-
sispunkte zu berücksichtigen. Je zwei solcher Pfade unterscheiden sich um eine
Schleife, also ein Element von π1(Xk, x0). In der Folge ist der Schnitt sx wohl-
definiert bis auf π1(Xk, x0)-Konjugation. In dem Fall, dass der Grundkörper
k endlich erzeugt über seinem Primkörper Q ist, besagt die Grothendiecksche
Schnittvermutung [Gro97], dass die so erhaltene Abbildung x 7→ [sx] eine Bi-
jektion

X(k) −→
(
Konjugationsklassen von

Schnitten von (8.1)

)
(8.2)

ist, vorausgesetzt das Geschlecht von X ist mindestens zwei (d.h. X ist hyper-
bolisch). Sowohl die Schnittvermutung als auch ihr Äquivalent über p-adischen
Grundkörpern (die p-adische Schnittvermutung) sind noch offen (siehe [Sti13]
für Teilresultate und Indizien).

Die Schnittvermutung für offene Kurven

Grothendieck hat auch eine Variante der Schnittvermutung für nicht not-
wendigerweise eigentliche Kurven aufgestellt. Dem liegt die Beobachtung zu-
grunde, dass auch k-rationale Punkte “im Unendlichen” (genannt Spitzen),
d.h. die Punkte in X \ X, wo X die glatte Kompaktifizierung von X be-
zeichnet, zu Schnitten der Fundamentalgruppensequenz (8.1) führen (Spitzen-
schnitte). Die Schnittvermutung für offene Kurven besagt, dass jeder Schnitt
Gal(k/k) → π1(X,x0) von einem k-rationalen Punkt von X herkommt, also
entweder von einer Spitze oder einem Punkt in X. Für nicht notwendigerweise
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eigentliche Kurven muss die Hyperbolizitätsbedingung als χ(X) < 0 formuliert
werden, d.h. die Eulercharakteristik von X soll negativ sein. Bezeichnet g das
Geschlecht von X und r = #(X \X)(k) die geometrische Anzahl der Spitzen,
dann ist die Eulercharakteristik durch

χ(X) = 2− 2g − r. (8.3)

gegeben. Die Kurve X ist also genau dann hyperbolisch, wenn es sich bei
Xk entweder um den P1 ohne mindestens drei Punkte, um eine Kurve vom
Geschlecht eins ohne mindestens einen Punkt oder um eine Kurve höheren
Geschlechts mit einer beliebigen Zahl herausgenommener Punkte handelt.

Die birationale Schnittvermutung

Die Formel (8.3) für die Eulercharakteristik legt nahe, dass X umso “hyperbo-
lischer” wird, je mehr abgeschlossene Punkte man entfernt. Dies motiviert eine
birationale Variante der Schnittvermutung, wo die Kurve vollständig auf ihren
generischen Punkt reduziert ist, d.h. auf das Spektrum ihres Funktionenkör-
pers K. Die fundamentale exakte Sequenz (8.1) wird dann zu der folgenden
kurzen exakten Sequenz von absoluten Galoisgruppen:

1 −→ GKk −→ GK −→ Gk −→ 1. (8.4)

Jeder rationale Punkt x ∈ X(k) führt auf folgende Weise zu birationalen
Schnitten: Sei X̃ die Normalisierung von X im algebraischen Abschluss K/K
und sei x̃ ein gewählter Punkt über x in X̃. Die GK-Wirkung auf K indu-
ziert eine Wirkung auf X̃. Der Stabilisator Dx̃|x ⊆ GK des Punktes x̃ wird die
Zerlegungsgruppe von x̃|x genannt. Die Gruppe Dx̃|x operiert auf dem Rest-
klassenkörper κ(x̃), der kanonisch zu k isomorph ist. Der resultierende Homo-
morphismus Dx̃|x → Gk ist surjektiv und sein Kern Ix̃|x ist die Trägheitsgruppe
von x̃|x. Ein Schnitt s : Gk → GK wird Schnitt über x genannt, falls sein Bild
in einer Zerlegungsgruppe Dx̃|x für ein x̃ über x enthalten ist.

1 Ix̃|x Dx̃|x Gk 1

1 GKk GK Gk 1

s

(8.5)

Es existieren Schnitte über jedem k-rationalen Punkt von x: Sei nämlich T◦X,x
der Tangentialraum ohne Ursprung vonX an x, aufgefasst als k-Schema. Somit
ist T◦X,x nichtkanonisch isomorph zum Schema Gm über k. Deligne zeigt in sei-
ner Theorie der tangentialen Basispunkte [Del89, §15], dass die obere Zeile des
Diagramms (8.5) isomorph zur fundamentalen exakten Sequenz von T◦X,x /k
ist. Insbesondere induziert jeder von Null verschiedene Tangentialvektor an x
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eine Ix̃|x ∼= Ẑ(1)-Konjugationsklasse von Schnitten über x, deren Bild in der
Zerlegungsgruppe Dx̃|x enthalten ist.
Die birationale Schnittvermutung ist für die eigentliche Kurve X/k erfüllt,

wenn jeder Schnitt von (8.4) über genau einem k-rationalen Punkt von X liegt.
Über Zahlkörpern ist die Vermutung offen, aber das p-adische Äquivalent über
endlichen Erweiterungen von Qp wurde von Königsmann mittels Modelltheorie
p-adisch abgeschlossener Körper bewiesen [Koe05]. Pop hat hiervon eine “mi-
nimalistische” Variante gezeigt, wo GK durch einen sehr kleinen Quotienten
ersetzt wird [Pop10]. Im Fall, dass k die p-ten Einheitswurzeln enthält, genügt
es etwa, mit dem Z/pZ-metabelschen Quotienten von GK zu arbeiten. Diese
letztere Variante wird in dieser Arbeit verallgemeinert.

Die Schnittvermutung für Lokalisierungen von Kurven

Die vorliegende Arbeit beschäftigt sich mit der Schnittvermutung für Lokali-
sierungen von Kurven. Es geht dabei um Zwischenversionen zwischen der bira-
tionalen Schnittvermutung und der Schnittvermutung für die volle Kurve. Sei
X/k weiterhin eine glatte, eigentliche, geometrisch zusammenhängende Kurve
über einem Körper k der Charakteristik 0.

Definition. Für eine beliebige Menge abgeschlossener Punkte S ⊆ Xcl, defi-
nieren wir die Lokalisierung von X bei S als das pro-(offene Unterschema)
von X

XS :=
⋂{

U ⊆ X dicht offen mit S ⊆ U
}
. (8.6)

Der Durchschnitt soll im schematheoretischen Sinn in X gebildet werden, d.h.
als Faserprodukt von Schemata über X.

Wir zeigen, dass der Limes (8.6) stets existiert. Anschaulich wird XS aus X
gewonnen, indem man alle abgeschlossenen Punkte außerhalb von S entfernt.
Der unterliegende topologische Raum |XS | von XS ist der Unterraum von
|X|, der aus dem generischen Punkt ηX und den Punkten in S besteht. Zum
Beispiel: für S = Xcl ist XS = X die volle Kurve; im Fall S = ∅ ist XS = ηX
der generische Punkt. Im Allgemeinen liegt XS zwischen ηX and X.
Sei k/k wieder ein algebraischer Abschluss und x0 ein geometrischer Punkt

von XS ⊗k k. Sei Xuniv
S → XS die zugehörige universelle proendlich étale

Überlagerung und sei X̃ → X die Normalisierung von X im Funktionenkörper
von Xuniv

S . Gegeben einen k-rationalen Punkt x ∈ X(k) und einen Punkt x̃
in X̃ über x, haben wir eine Zerlegungsgruppe Dx̃|x (den Stabilisator von x̃

unter der π1(XS , x0)-Wirkung auf X̃) und eine Trägheitsgruppe Ix̃|x wie im
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birationalen Fall, und wir haben das folgende Diagramm:

1 Ix̃|x Dx̃|x Gal(k/k) 1

1 π1(XS ⊗k k, x0) π1(XS , x0) Gal(k/k) 1.

(8.7)

Wieder sagen wir, dass ein Schnitt der Abbildung π1(XS , x0)→ Gal(k/k) ein
Schnitt über x sei, falls sein Bild in einer Zerlegungsgruppe Dx̃|x für ein x̃|x
in X̃ enthalten ist. Wir zeigen, dass über jedem k-rationalen Punkt von X
Schnitte existieren.

Definition. Wir sagen, die Lokalisierung XS/k erfüllt die Schnittvermu-
tung, falls jeder Schnitt s : Gal(k/k) → π1(XS , x0) über genau einem k-
rationalen Punkt von X liegt.

Eines unser Hauptergebnisse besteht darin, dass wir im Fall eines p-adischen
Grundkörpers hinreichende Bedingungen an XS identifizieren, welche die Gül-
tigkeit der Schnittvermutung für XS implizieren. Wir zeigen auf diese Weise,
dass die Schnittvermutung beispielsweise erfüllt ist, wenn S höchstens abzähl-
bar ist (siehe den Abschnitt unten über unsere Hauptergebnisse).

Die hebbare Schnittvermutung

Diese Arbeit beschäftigt sich hauptsächlich mit einer Variante der Schnittver-
mutung für Lokalisierungen von Kurven, die mit sehr kleinen Quotienten der
Fundamentalgruppe arbeitet. Um die Aussage zu formulieren, fixieren wir eine
Primzahl p und führen die folgende Notation ein:
Notation. Sei Π eine proendliche Gruppe. Sei Π = Π(0) D Π(1) D . . . die
Z/pZ-abgeleitete Reihe:

Π(0) := Π, Π(i+1) = [Π(i),Π(i)]
(
Π(i)

)p
.

Wir bezeichnen mit

Π′ := Π/Π(1) = Πab ⊗ Z/pZ,

Π′′ := Π/Π(2)

den maximalen Z/pZ-abelschen bzw. Z/pZ-metabelschen Quotienten von Π.
Man beobachte, dass die Zuordnungen Π 7→ Π′ und Π 7→ Π′′ funktoriell sind

und dass jeder surjektive Homomorphismus proendlicher Gruppen unter (−)′

und (−)′′ surjektiv bleibt.

Definition. Sei Π� G ein surjektiver Homomorphismus proendlicher Grup-
pen. Ein Schnitt s′ : G′ → Π′ werde hebbar genannt, wenn ein Schnitt
s′′ : G′′ → Π′′ existiert, so dass das folgende Diagramm kommutiert:
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Π′′ G′′

Π′ G′.

s′′

s′

Sei XS/k die Lokalisierung einer Kurve an einer Menge abgeschlossener
Punkte wie im vorherigen Abschnitt. Sei Gk := Gal(k/k) die absolute Ga-
loisgruppe von k und sei π1(XS) die Fundamentalgruppe von XS bezüglich
eines geometrischen Basispunkts auf XS ⊗k k, so dass wir einen surjektiven
Homomorphismus π1(XS) → Gk haben. Wir können wieder definieren, wann
ein hebbarer Schnitt s′ : G′k → π1(XS)′ über einem k-rationalen Punkt von X
liegt, und es existieren hebbare Schnitte über jedem solchen.

Definition. Wir sagen, XS/k erfüllt die hebbare Schnittvermutung, falls
jeder hebbare Schnitt s′ : G′k → π1(XS)′ über einem eindeutigen k-rationalen
Punkt von X liegt.

Hauptergebnisse

Die hebbare Schnittvermutung für gute Lokalisierungen

Sei k eine endliche Erweiterung von Qp, welche die p-ten Einheitswurzeln ent-
hält. Unser Ausgangspunkt ist Pops Beweis der birationalen hebbaren Schnitt-
vermutung über k [Pop10, Theorem A]. Das Ziel unserer Arbeit ist, dieses
Ergebnis und dessen Beweis auf Lokalisierungen von Kurven zu verallgemei-
nern und somit einen Schritt vom birationalen Fall in Richtung offener oder
eigentlicher Kurven zu gehen, wo die Vermutung noch offen ist. Unser Haupt-
ergebnis ist das Ausmachen von Bedingungen an die Lokalisierung einer Kurve,
unter denen sich Pops Beweis verallgemeinern lässt und die hebbare Schnitt-
vermutung demzufolge erfüllt ist. Wir führen zu diesem Zweck den Begriff der
guten Lokalisierung ein. Gute Lokalisierungen sind durch vier Bedingungen
definiert, die grob gesprochen besagen, dass es hinreichend viele invertierbare
Funktionen auf XS gibt. Unser Hauptsatz lautet damit wie folgt:

Satz A. Sei k eine endliche Erweiterung von Qp mit µp ⊆ k. Sei X/k eine
glatte, eigentliche, geometrisch zusammenhängende Kurve und sei S ⊆ Xcl eine
Menge abgeschlossener Punkte. Wenn XS eine gute Lokalisierung ist, dann
erfüllt XS/k die hebbare Schnittvermutung.

Um die Nützlichkeit des Satzes zu demonstrieren, weisen wir die Bedingun-
gen für eine gute Lokalisierung in einigen Fällen nach und erhalten so konkrete
Beispiele von Lokalisierungen von Kurven, für welche die hebbare Schnittver-
mutung gilt:
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Satz B. Sei k eine endliche Erweiterung von Qp mit µp ⊆ k. Sei X/k eine
glatte, eigentliche, geometrisch zusammenhängende Kurve und sei S ⊆ Xcl eine
Menge abgeschlossener Punkte. Angenommen, es gilt eines der folgenden:

(a) S ⊆ Xcl ist höchstens abzählbar; oder

(b) X ist über einem Unterkörper k0 ⊆ k definiert und S ⊆ Xcl enthält nur
endlich viele über k0 algebraische Punkte

Dann erfüllt XS/k die hebbare Schnittvermutung.

Um den Nachweis für höchstens abzählbare Punktmengen S zu führen, be-
weisen wir einen neuen Approximationssatz mit Invertierbarkeitsbedingungen
für allgemeine Bewertungen.

Die hebbare Schnittvermutung ohne p-te Einheitswurzeln

Falls k eine endliche Erweiterung von Qp ist, welche nicht die p-ten Einheits-
wurzeln enthält, dann ist die hebbare Schnittvermutung über k im Allgemeinen
falsch. Es kann jedoch sehr allgemein gezeigt werden, dass die Gültigkeit der
hebbaren Schnittvermutung über einer Körpererweiterung `/k eine Variante
der hebbaren Schnittvermutung über k impliziert.
Um das genaue Ergebnis zu formulieren, sei k erst einmal ein beliebiger Kör-

per der Charakteristik 0 und sei XS eine Lokalisierung einer glatten, eigent-
lichen, geometrisch zusammenhängenden Kurve über k. Sei `/k eine endliche
Galoiserweiterung. Bezeichne

(XS ⊗k `)′′ → (XS ⊗k `)′ → XS ⊗k `

den Anfang des Turms von Überlagerungen, welcher durch die Z/pZ-abgeleitete
Reihe von π1(XS⊗`) definiert ist. Es handelt sich also um die maximale Z/pZ-
elementar abelsche Überlagerung (XS ⊗k `)′ → XS ⊗k ` und die maximale
Z/pZ-metabelsche Überlagerung (XS ⊗k `)′′ → XS ⊗k `. Die entsprechenden
Grundkörpererweiterungen seien mit `′′/`′/` bezeichnet. Man bemerke, dass
die beiden Überlagerungen auch über XS galoissch sind, da sie charakteristi-
sche Überlagerungen der Galoisüberlagerung XS ⊗k ` → XS sind. Die beiden
Körpererweiterungen `′ und `′′ sind gleichermaßen galoissch über k.

Definition. Ein Schnitt s′ : Gal(`′/k) → Gal((XS ⊗k `)′/XS) heiße hebbar,
wenn es einen Schnitt s′′ gibt, so dass das folgende Diagramm kommutiert:

Gal((XS ⊗k `)′′/XS) Gal(`′′/k)

Gal((XS ⊗k `)′/XS) Gal(`′/k)

s′′

s′
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Im Fall ` = k haben wir π1(XS)′ = Gal(X ′S/XS) und G′k = Gal(k′/k), und
diese Definition von hebbaren Schnitten spezialisiert sich zur zuvor formulierten
Definition. Wir zeigen, dass für alle `/k auch in diesem allgemeineren Sinne
hebbare Schnitte über jedem k-rationalen Punkt von X existieren.

Satz C. Sei k ein Körper der Charakteristik 0, sei X/k eine glatte, eigentli-
che, geometrisch zusammenhängende Kurve und sei S ⊆ Xcl eine Menge abge-
schlossener Punkte. Sei `/k eine endliche Galoiserweiterung, so dass XS ⊗k `
die hebbare Schnittvermutung erfüllt. Dann existiert für jeden hebbaren Schnitt

s′ : Gal(`′/k)→ Gal((XS ⊗k `)′/XS)

genau ein k-rationaler Punkt x von X, so dass der eingeschränkte Schnitt

s′|Gal(`′/`) : Gal(`′/`)→ Gal((XS ⊗k `)′/(XS ⊗k `))

über x⊗k ` liegt.

Im Zusammenhang mit diesem Satz untersuchen wir außerdem die Frage,
wann schon der uneingeschränkte Schnitt s′ über x liegt. Wir geben zwei ver-
schiedene Bedingungen an, unter denen dies der Fall ist. Zum Beispiel zeigen
wir mit Methoden der nicht-abelschen Galoiskohomologie, dass schon s′ über
x liegt, wenn der Grad [` : k] nicht durch die Primzahl p teilbar ist.

Die volle Schnittvermutung für Lokalisierungen von Kurven

Die hebbare Schnittvermutung ist insofern interessant, als man Informationen
über rationale Punkte schon aus sehr kleinen Quotienten der Fundamentalgrup-
pen gewinnt. Man kann aber sogar auf die Schnittvermutung für die vollen Fun-
damentalgruppen schließen, wenn die hebbare Variante für alle Überlagerungen
erfüllt ist. Im folgenden Satz wird die Gültigkeit der hebbaren Schnittvermu-
tung über gewissen zusammenhängenden endlich étalen Überlagerungen von
XS angenommen. Wie wir zeigen, sind all solche selbst wieder Lokalisierungen
von Kurven.

Satz D. Sei k ein Körper der Charakteristik 0, sei X/k eine glatte, eigentliche,
geometrisch zusammenhängende Kurve und sei S ⊆ Xcl eine Menge abgeschlos-
sener Punkte. Angenommen, es existiert eine endliche Galoiserweiterung `/k,
so dass für jede geometrisch zusammenhängende endlich étale Überlagerung
W → XS die hebbare Schnittvermutung für W ⊗k ` erfüllt ist. Dann erfüllt
XS die Schnittvermutung, d.h. jeder Schnitt s : Gk → π1(XS) liegt über einem
eindeutigen k-rationalen Punkt von X.

Durch Anwendung dieses Satzes erhalten wir neue Beispiele von Lokalisie-
rungen von Kurven, welche die Schnittvermutung erfüllen:

140



Satz E. Sei k eine endliche Erweiterung von Qp, sei X/k eine glatte, ei-
gentliche, geometrisch zusammenhängende Kurve und sei S ⊆ Xcl eine Menge
abgeschlossener Punkte. Angenommen, es gilt eines der folgenden:

(a) S ist höchstens abzählbar; oder

(b) X ist über einem Unterkörper k0 ⊆ k definiert und S enthält alle über k0

transzendenten und nur endlich viele über k0 algebraische Punkte.

Dann gilt für XS die Schnittvermutung.
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